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Abstract 

Pueraria lobata (Willd.) Ohwi has a long and broad application in the 

treatment of disease. However, in the US and EU, it is treated as a 

notorious weed.  

Sophora flavescens Aiton has long been used to treat various diseases. 

Although several research findings revealed the biosynthetic pathways of 

its characteristic chemical components as represented by matrine, 

insufficient analysis of transcriptome data hampered in-depth analysis of 

the underlying putative genes responsible for the biosynthesis of 

pharmaceutical chemical components. 

The information to be gained from decoding the deep transcriptome 

profile would facilitate further research on P. lobata and S. flavescens. In 

this study, more than 93 million fastq format reads were generated by 

Illumina’s next-generation sequencing approach using five types of P. 

lobata tissue, followed by CLC de novo assembly methods, ultimately 

yielding about 83,041 contigs in total. Then BLASTx similarity searches 

against the NCBI NR database and UniProtKB database were conducted. 

Once the duplicates among BLASTx hits were eliminated, ID mapping 

against the UniProt database was conducted online to retrieve Gene 

Ontology information. In search of the putative genes relevant to essential 

biosynthesis pathways, all 1,348 unique enzyme commission numbers were 

used to map pathways against the Kyoto Encyclopedia of Genes and 

Genomes. Enzymes related to the isoflavonoid and flavonoid biosynthesis 

pathways were focused for detailed investigation and subsequently, 
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qRT-PCR was conducted for biological validation. Metabolites of interest, 

puerarin and daidzin were studied by HPLC. 

For S. flavescens, more than 200 million fastq format reads were 

generated by next-generation sequencing approach using its nine types of 

tissue, CLC de novo assembly produced 83,325 contigs over 300 bp. 

RPKM values were calculated to analyze gene expression levels, and 

overrepresented gene ontology terms were evaluated using Fisher’s exact 

test. To study its characteristic metabolic pathways, all 1,350 unique 

enzyme commission numbers of S. flavescens were used to map pathways 

against KEGG. The preferential expression of the gene for putative 

lysine/ornithine decarboxylase committed in the initial step of matrine 

biosynthesis in leaves and stems was confirmed in semi-quantitative PCR 

analysis. By analyzing expression patterns, we proposed some candidate 

genes involved in the biosynthesis of isoflavonoids and quinolizidine 

alkaloids.  

Adopting RNA-Seq analysis, we obtained substantially credible 

contigs for downstream work and the findings in this report may serve as a 

stepping-stone for further research into the promising leguminous 

medicinal plants. 
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General Introduction 

Ⅰ Studies Fueled by Phytochemical Genomics 

Phytochemical genomics is a recently emerging filed, which investigates 

the genomic basis of the synthesis and function of phytochemicals (plant 

metabolites) (Saito, 2013). Central dogma of molecular biology described 

the sequential information flow in biological systems: through replication, 

DNA could be copied to produce DNA and then mRNA can be achieved by 

transcription, followed by translation to synthesize proteins using mRNA as 

a template. A portion of proteins will work as enzymes to catalyze the 

reactions in vivo in various organisms to generate metabolites. In order to 

study the biosynthetic mechanism and regulation, function and evolution of 

plant metabolites, systematic integration of genomics and related ‘-omics’ 

such as transcriptomics, proteomics and metabolomics will be very useful 

(Saito, 2013).  

Hypotheses regarding the related scientific domains can be generated 

and tested by this integrated systematic analysis. One of the many powerful 

approaches is taking advantage of integrated functional genomics. By 

studying the correlation of co-responding elements in transcriptome, the 

related genes responsible for the production of certain metabolites can be 

grouped together for gene expression and metabolite accumulation study. 

Statistical analysis suggested there are up to 1 million plant metabolites 

and phytochemical genomics may hold the key to how these specialized 

plant products are produced and regulated (Muranaka and Saito, 2013).  
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Ⅱ Advent and Rapid Development of Next-generation Sequencing 

Next-generation sequencing (NGS) is the newer approach compared to the 

automated Sanger’s method which is regarded as a ‘first-generation’ 

sequencing approach. During the first-generation era, there were several 

well-established sequencing techniques, such as the Sanger method, DNA 

sequencing in real time by the detection of the released pyrophosphate (also 

known as the Pyrosequencing method), the Maxam and Gilbert method, 

and single molecule sequencing, which showed different features (Franca, 

et al., 2002). The automated Sanger method was popular and widely used 

for almost two decades and resulted in a series of great accomplishments, 

including the achievement of the human genome project. 

As a part of NGS, RNA-Seq utilizes newly developed deep-sequencing 

techniques. Total or fractionated RNA is converted to a library of cDNA. 

After fragmentation, adaptors are attached to each cDNA fragment at one 

or both ends. Using high-throughput sequencing instrumentation, short 

(usually 30-400bp) raw reads from one end or both ends will be obtained 

(FigureⅠ) (Wang et al., 2009). The resultant sequence reads can then be 

aligned to the reference genome or transcriptome, or using de novo 

assembly approaches to generate contigs or unigenes. 

In the early 1990s, the cost for DNA sequencing would be expected at 

about $0.12 to $0.15 per base (Adams et al., 1991). However, 20 years later, 

the cost was reduced rapidly to $0.07 per million bases (Liu et al., 2012). In 

addition to the drastic cost reduction, time span, accuracy and throughput 

for the whole process have also been improved significantly. 
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FigureⅠ| A typical RNA-Seq experiment 
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Ⅲ Usage of de novo deep transcriptome assembly 

Typically, for studying model plants for which genome information is 

available, to map the raw reads back to the plants’ genome would not be a 

big challenge. While the unavailability of the genome hampers the research 

for the non-model plants. 

With the rapid development of NGS, several practical de novo 

assembly platforms emerged to deal with tremendous amount of the 

information obtained by deep sequencing technologies, including Trinity 

(Grabherr et al., 2011), CLC (CLC bio, Aarhus, Denmark), Assembly by 

Short Sequences (AbySS) (Simpson et al., 2009), Velvet (Zerbino and 

Birney, 2008), Short Oligonucleotide Analysis Package (SOAPdenovo) (Li 

et al., 2009). 

For de novo assembly, a table of all sub-sequences of length k (k-mers) 

is generated from every single read and length k may vary in different 

experiments to achieve the best performance.  

By using de Bruijn graph, all the potential neighboring sub-sequences 

will be considered to extend the assembled contigs if shifting a k-mer by 

one character creates an exact k-1 overlap between the two k-mers. Figure

Ⅱ (Martin and Wang, 2011) shows an example of 5-mers. Due to 

sequencing error or SNP, the resultant de Brujin graph may consist of 

‘bubbles’. Then the chains are merged and the simplified graph with the 

existing bubbles is achieved. Finally, consider all the possible alternative 

paths in each assembled de Brujin graph and generate the isoforms (Martin 

and Wang, 2011). 
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FigureⅡ| Overview of de novo deep transcriptome assembly 
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Ⅳ Flavonoids and Isoflavonoids Biosynthesis in Plants 

As phenolic secondary metabolites, isoflavones are mainly found in 

leguminous plants. Studies have shown that isoflavones are involved in 

plenty of plat-microbe interactions. 

Both flavonoids and isoflavonoids are accumulated as major plant 

secondary metabolites which demonstrate various biological features as 

well as show important ecological impacts. Such constituents not only take 

part in critical physiological processes but also exert beneficial effects on 

human health, ranging from decreasing cholesterol levels and prevention of 

certain solid tumors to improving women’s health (Ralston et al., 2005). 

Followed by phenylalanine biosynthesis, the essential amino acid is 

converted to cinnamic acid with the help of phenylalanine ammonia-lyase 

(PAL). Subsequently, trans-cinnamate 4-monooxygenase (CA4H) play the 

role to generate 4-coumaric acid. 4-coumarate-CoA ligase (4CL) catalyzes 

the reaction to produce 4-coumaroyl CoA and by far, the acquired 

compounds can be used as precursors in various biological processes.  

The dedicated part responsible for the biosynthesis of flavones starts 

from chalcone synthase (CHS) catalyzing the reaction to obtain chalcone 

scaffolds. For the following steps to produce flavonoids and isoflavonoids, 

although the typical procedure is conserved in plants, depending on the 

species, many enzymes including isomerases, reductases, hydroxylases and 

C- or O-glycosyltransferases kick in to modify the structures and modulate 

the physiological activity by changing the solubility and reactivity (Maria 

et al., 2012). 
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Ⅴ Transcriptomic Analysis on P. lobata and S. flavescens 

In spite of the powerful methods recently developed including 

phytochemical genomics and the protruding urgency of applying RNA-Seq 

analysis on medicinal plants, the unavailability of deep transcriptomic data 

for the two leguminous plant P. lobata and S. flavescens hinders their 

in-depth study. 

P. lobata demonstrates potent efficacy in treating diseases such as 

alcoholism (Carai et al., 2000) and diabetic retinopathy (Teng et al., 2009; 

Cherdshewasart et al., 2007). However, since it was introduced to the 

United States of American in the 19
th

 century and then to the European 

countries, due to its aggressive growth rate, it has long been regarded as a 

major biosystem threat. The general non-targeted deep transcriptomic 

analysis would shed light into its underlying mechanism and provide clues 

to solve the problem in an ecology perspective. 

S. flavescens has been recorded and used for more than 1,800 years 

(Sun et al., 2012). As a widely distributed and effective herbal medicine, it 

severed as a cure for asthma, sores, gastrointestinal hemorrhage, diarrhea, 

allergy, inflammation in eastern Asian countries (Hong et al., 2009; Funaya 

and Haginaka, 2012). Main chemical components of S. flavescens include 

flavonoids (1.5%), alkaloids (3.3%), alkylxanthones, quinones, triterpene 

glycosides, fatty acids as well as essential oils and recently, several clinical 

studies reported that alkaloids of S. flavescens were efficacious in treating 

various types of solid tumors (including breast, lung, liver and 

gastrointestinal tract cancers), which drew close attention to this traditional 
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herbal plant (Sun et al., 2012; Li et al., 2012). RNA-Seq analysis on the 

multiple tissues of this plant will deepen our understanding concerning its 

overall biological nature and specialized biosynthetic pathways as well as 

metabolite accumulation.  

 

Ⅵ Thesis Work 

In this study, five tissues of P. lobata, leaf, mature root, root vascular 

cylinder, young root and stem were collected for RNA-Seq analysis. We 

assembled all the contigs and uploaded the raw reads to the public 

repository Kyoto Encyclopedia of Genes and Genomes (KEGG) for the 

overall better understanding of this medicinal plant. Because the multiple 

tissues bear distinct accumulation profile of various characteristic 

compounds, we employed the method to calculate RPKM values and 

furthermore assessed the differentially expressed transcripts.  

The characteristic compound found in P. lobata is puerarin. Researchers 

have tried for a long period of time to puzzle out its biosynthesis. Although 

the biosynthetic pathway for flavonoids and some of the isoflavonoids has 

been well established, the enzyme responsible for the formation of this 

special C-glycoside remains a mystery. By investigating the co-expression 

information, we proposed a list of candidate glucosyltransferases for future 

research. As for the isoflavonoid biosynthetic pathway in P. lobata, 

candidate enzymes were picked out and subjected to qRT-PCR for 

biological validation. 

For S. flavescens, nine tissues (callus, leaf, flower, stem, young bud, 
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mature bud, bud right before blossom, pedicel while bud stage and pedicel 

while blossom) were sampled for next generation sequencing. In order to 

study the biosynthesis of its major quinolizidine alkaloids including 

matrine and oxymatrine, based on the knowledge currently available, 

co-expression analysis was performed to find the closely related transcripts 

to the identified gene lysine/ornithine decarboxylase (L/ODC) and 

semi-quantitative PCR was conducted to verify the expression profile of 

L/ODC in different tissues of S. flavescens. 

This manuscript is divided into two chapters detailing the findings 

acquired throughout the whole thesis work. Chapter one covers the study 

on different aspects of P. lobata deep transcriptome data. Chapter two 

summarizes the experiment regarding RNA-Seq analysis on S. flavescens. 
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Chapter 1: Transcriptomic Landscape of Pueraria 

lobata Demonstrates Potential for Phytochemical Study 

 

1.1 Introduction 

Pueraria lobata (Willd.) Ohwi (Kudzu) has been described and used as a 

traditional medicinal plant for more than 20 centuries in oriental medicine 

(Keung and Vallee, 1998). The P. lobata root, a part of the plant that is 

prescribed most frequently, accumulates abundant polyphenolic compounds, 

including isoflavones, isoflavonoid glycosides, coumarins, puerarols and 

the associated derivatives (Wong et al., 2011). Intensive investigation has 

revealed a chemical profile with antioxidant and antimutagenic activity 

(Miyazawa et al., 2001; Cherdshewasart and Sutjit, 2008) and efficacy in 

the treatment of alcoholism (Carai et al., 2000) and diabetic retinopathy 

(Teng et al., 2009; Cherdshewasart et al., 2007). The plant was introduced 

to the United States in 1876 as an ornamental plant and then to Europe. 

Due to its rapid growth and vigorous adaptation to the surroundings, P. 

lobata is now regarded as a major ecosystem threat (Follak, 2011) and a 

noxious weed, according to the USDA plant database. In order to evaluate 

the plant’s potential as a cure for disease or regulate its invasive influence 

on other native plants, additional research using next-generation 

sequencing technologies into this leguminous plant is necessary. 

The genomes for many model organisms have been sequenced but for 

these non-model plants, the lack of reference genome information hinders 
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studies on the underlying genes involved in essential biological processes 

related to drug development. In this regard, transcriptomic sequencing 

plays an essential role in understanding the genetic diversity across 

organisms. Such approaches elucidate the genetic code that underlies 

protein diversity (Muranaka and Saito, 2013; Saito, 2013). The use of new 

technologies such as the Short Oligonucleotide Analysis Package 

(SOAPdenovo) (Li et al., 2009), Assembly by Short Sequences (AbySS) 

(Simpson et al., 2009), and Trinity (Grabherr et al., 2011) accelerates the 

pace of transcriptomic profiling when processing tremendous amounts of 

data generated from large-scale sequencing projects. Massively parallel 

cDNA sequencing (RNA-Seq) measures the levels of transcripts and their 

isoforms far more precisely than other methods (Fullwood et al., 2009; 

Wang et al., 2009).  

C-glycosides are widespread in plants, insects and microbes, where 

they serve a diverse range of functions including acting as antibiotics, 

antioxidants, attractants and feeding deterrents (Brazier-Hicks et al., 2009). 

Early study on Fagopyrum esculentum seedlings showed 2-hydroxylation 

of flavanones was a critical prerequisite for the corresponding 

C-glucosyltransferase to catalyze (Kerscher and Franz, 1987). Recently, 

reports regarding C-glycosylation of flavonoids in crops such as wheat and 

corn suggested considerable similarity of the proteins some of which 

exhibited bifunctional C- and O-glucosyltransferase activity (Ferreyra et al., 

2013). For the characteristic compound daidzein-8-C-glycoside (puerarin) 

found in P. lobata, although the biosynthetic pathway for daidzein in 
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legumes is well established (Steele et al., 1999; Jung et al., 2000), the key 

enzyme responsible for catalyzing this isoflavone aglycon remains to be 

identified.  

In this study, 93,248,914 paired-end reads of P. lobata were generated 

from five different tissues by Illumina’s sequencing platform. Illumina 

reads were deposited at the DDBJ Sequence Read Archive (DRA) with 

accession number DRA001736 and the resultant contigs along with the top 

hits of BLASTx at GitHub (https://github.com/rongchunhan/Pueraria_loba- 

ta). CLC Genomics Workbench (CLC bio, Aarhus, Denmark) was 

subsequently applied to conduct de novo assembly. Based on the findings 

provided by Gene Ontology and KEGG pathway mapping, the candidate 

genes that may be involved in the biosynthesis of key chemical components 

were identified. For biological validation, quantitative real-time reverse 

transcription polymerase chain reaction (qRT-PCR) was applied to check 

the genuine expression profile for the genes involved in the biosynthetic 

pathway leading to isoflavonoids. Meanwhile, the concentrations of 

puerarin and daidzin, the characteristic compounds in Kudzu, were 

measured by High Performance Liquid Chromatography (HPLC) within 

the five tissues from which we obtained the deep transcriptomic data. 
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1.2 Materials and Methods 

1.2.1 Plant Materials, Chemicals and Total RNA Extraction 

Fresh tissues and organs were collected from healthy P. lobata plants 

growing in Chiba, Japan in May 2012. Puerarin and daidzin standard 

substances were purchased from LC laboratories (USA). The materials 

were dipped into RNA stabilization solution (RNAlater, Life technologies, 

USA) immediately after removal from the field. The RNAlater solution 

was gently removed with a Kimwipe.  

Then the remaining sample was frozen by liquid nitrogen and powdered 

using Multi Beads Shocker (Yasui Kikai, Japan). TRIzol Reagent 

(Invitrogen, USA) was used to extract total RNA from powdered P. lobata. 

The RNA obtained was then treated using the RNeasy Mini Kit (Qiagen, 

USA). 

 

1.2.2 cDNA Library Preparation and Sequencing 

The TruSeq RNA Sample Prep Kit v2 (Illumina, CA, USA) was used for 

cDNA library preparation and sequencing. Once the mRNA in total RNA 

had been polyA-selected and fragmented, double-stranded cDNA was 

prepared for cDNA library construction. After the creation of blunt-end 

fragments and indexed adaptor ligation, the samples were hybridized to 

flow cells.  

Cluster amplification was completed using the cBot Cluster Generation 

System (Illumina, CA, USA)  and then sequenced by Illumina’s 

next-generation sequencing instrument, the HiSeq 1000 (Kozarewa et al., 
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2009). 

 

1.2.3 CLC Approach to de novo Assembly 

Prior to assembly, the original fastq P. lobata format data were subjected to 

CLC trimming to eliminate reads of poor quality. The CLC method 

(version 4.9) was used to process these clean reads. The publically 

available P. lobata expressed sequence tags (ESTs) data (6,365) were 

downloaded from the National Center for Biotechnology Information 

(NCBI) database of expressed sequence tags (dbEST).  

All resultant contigs over 200 bp were taken into consideration for the 

downstream analysis. Because the assembly process may result in duplicate 

contigs, CD-HIT-EST was applied with representative sequences at 90% 

identity to obtain unique unigenes (Fu et al., 2012). 

 

1.2.4 Transcript Abundance and Expression-based Analysis 

RPKM stands for reads per kilobase of the transcript per million mapped 

reads. The formula is as follows:      
     

   
, where C is the number of 

reads mapped to the gene’s exons, N the total number of mapped reads in 

the experiment and L the total length of the exons in base pairs.  

In order to estimate contig expression level, we applied the CLC 

approach to map all fastq format reads back to the contigs and calculated 

the RPKM values. Because the five samples lacked technical replicates, the 

non-parametric approach for the identification of differentially expressed 

genes, NOISeq-sim (Tarazona et al., 2011), was adopted to analyze ten 
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independent pair-wise sample comparisons. 

 

1.2.5 Annotation Pipeline and Data Mining 

All de novo contigs were used as query sequences for the BLASTx 

sequence similarity search against the non-redundant (NR) protein database 

at NCBI and the Universal Protein resource (UniProt) at UniProt 

consortium (Magrane and Consortium, 2011). 

The e-value threshold was set to 1e10; the upper limit on the number 

of subject sequences from databases to show alignment was limited to 20. 

As to the large BLASTx output, only percent identities over 40% and 

e-values less than 1e30 were taken into consideration.  

After eliminating redundancies, all unique gene identifiers in fasta 

format were then uploaded to the UniProt ID mapping website for online 

data processing (http://www.uniprot.org).  

By consolidating the returned target list and the UniProtKB accession 

numbers (ACs) obtained from the above-mentioned BLASTx output 

against the UniProt database, we applied the redundancy-free ACs to 

annotation using the same online facilities. Out of the huge number of 

annotation results, we examined the reviewed findings from 

UniProtKB/Swiss-Prot as well as TrEMBL for data mining. The sequences 

with Gene Ontology (GO) terms at the protein level were classified. 

Ultimately, 1,348 enzyme commission (EC) numbers were applied to map 

pathways against KEGG, and the enzymes related to daidzein biosynthesis 

were depicted. 

http://www.uniprot.org/
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1.2.6 Gene Expression Validation Adopting qRT-PCR 

qRT-PCR was conducted using 96-well plates and StepOnePlus real-time 

PCR system (Applied biosystems). Three technical replicates were used for 

each reaction, and a negative control consisting of template without primers 

was included for each template.  

Reaction volume was 15 L and each reaction comprised 7.5 L of 

SYBR Select Master mix (2), 0.15 L of 10 M primers (11 mix of 

forward and reverse primers), 1.0 L of cDNA synthesized using 

SuperScript VILO cDNA Synthesis Kit (Life technologies), and 6.35 L of 

nuclease-free distilled water.  

Reaction conditions included 10 min incubation at 95℃, then 40 cycles 

of 95℃ for 15 sec and 60℃ for 1 min, followed by a melt-curve analysis 

to confirm single PCR product amplification. β-actin was used as the 

internal control gene(Hong et al., 2010). No amplification was observed in 

any negative control.  

Equivalent slopes for target and internal control gene were observed in 

amplification plots, so the comparative threshold-cycle (CT) method was 

used to calculate relative expression levels as 2
-Ct

 where Ct = (CT target 

gene – CT internal control gene), assuming similar PCR efficiencies of 

target and internal control gene (Schmittgen and Livak, 2008; Gaines et al., 

2014). 

 

1.2.7 HPLC Analysis of Puerarin and Daidzin in 5 Tissues of P. lobata 
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1 g of every fresh tissue studied was ground to powder in liquid nitrogen 

and extracted overnight with 5 ml of acetone at 4℃. Then the extract was 

centrifuged at 3,500 rpm for 30 min (He et al., 2008; He et al., 2011) and 

the supernatant was dried in ventilator.  

The residues were resuspended in methanol, and 10 L of the solution 

was analyzed by reverse-phase HPLC (HITACHI D7000 system) on a 

5-m C15 column (150  4.6 mm, Mightysil). The flow rate was 0.5 

mL/min with the mobile phase methanol/water (2575). 
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1.3 Results 

1.3.1 Plant RNA Extraction and cDNA Library Preparation 

Studies on legumes showed the isoflavones daidzein and genistein were 

major metabolites in all embryonic organs within the dry seeds. Seedling 

roots and callus cultures are known to produce daidzein, with the highest 

daidzein concentration to be found in mature fruits (Graham, 1991; Bouque 

et al., 1998). We aimed to collect information about the nature of the genes 

responsible for the biosynthesis of daidzein and daidzin in P. lobata. We 

extracted total RNA from the leaf, mature root, root vascular cylinder (Root 

VC), young root and stem of the plant. Five distinct cDNA libraries were 

established from these five tissue samples. We will refer to the five libraries 

in the following manner: Library 1 (leaf), Library 2 (mature root), Library 

3 (root VC), Library 4 (young root), Library 5 (stem). Wherever applicable, 

a uniform color scheme will be used to represent the libraries: red (Library 

1), purple (Library 2), green (Library 3), blue (Library 4) and yellow 

(Library 5). 

 

1.3.2 Illumina Sequencing and de novo Assembly 

All five libraries were processed using the Illumina HiSeq 1000 platform. 

Empty reads, reads of low quality and those containing unknown bases 

were trimmed using CLC software. In order to consolidate the available 

bio-information to obtain more reliable and thorough findings, we 

combined the resultant clean reads with P. lobata EST sequences obtained 

from the NCBI database to conduct de novo assembly; thus, 83,041 contigs 
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were generated. By applying CD-HIT-EST with a threshold of 0.9, 

duplicates were identified and removed, leaving 81,508 non-redundant 

contigs for downstream analysis. An overview of the experimental pipeline 

is shown in Figure 1.1. Table 1.1 and Table 1.2 summarize trimming, 

sequencing and assembly results. 

 

 

 

 

Figure 1.1 | Summary of the experimental design and analysis pipeline. 
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Table 1.1 Quality control for transcriptomic analysis 

Library 
No. of reads 

(paired) 

Average length 

(bp) 

No. of reads 

after trim (bp) 

Average length 

after trim (bp) 

1 (Leaf) 18,247,136 101.0 18,189,752 98.8 

2 (Mature root) 14,090,648 101.0 14,039,985 98.2 

3 (Root VC) 20,847,896 101.0 20,776,909 98.7 

4 (Young root) 23,941,990 101.0 23,869,723 98.8 

5 (Stem) 16,429,912 101.0 16,372,545 98.5 

 

 

Table 1.2 Overview of P. lobata transcriptomic assembly 

Items Numbers 

Total bases 9,197,584,658 

Average length of reads (bp) 98.6 

No. of reads (6,365 ESTs included) 93,255,279 

Average length of contigs (bp) 730 

N75; N50; N25 (bp) 488; 1,145; 2,125 

No. of contigs over 200 bp 83,041 

Non-redundant contigs 81,508 

 

 

1.3.3 Guanine-Cytosine (GC) Content Analysis 

The reported GC content for unigene sequences in soybean and 

Arabidopsis is 0.43 and 0.44, respectively (Tian et al., 2004; Kawaguchi 

and Bailey-Serres, 2005). The average GC content of P. lobata transcripts 

was found to be 39.9% (Figure 1.2). In eukaryotes, mean GC content 

varies from ~20 to 60% (Serres-Giardi et al., 2012). Our values are in the 
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middle of this range, slightly lower than those reported for Glycine max 

(43%) but very close to those reported for Medicago truncatula (40%) 

(Tian et al., 2004). 

 

 

 

 

Figure 1.2 | GC content at different base positions for all P. lobata 

contigs. The length of the contigs varies from 200 to 15,631 bp. However, the GC 

content presented here does not calculate contigs information for more than 10,000 bp. 
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1.3.4 Transcriptome Information and Differential Accumulation of 

Transcripts 

RPKM calculation was performed as the first step of transcript expression 

analysis after RNA-seq reads from every library were aligned to all contigs. 

A Venn diagram was drawn by utilizing the R project in conjunction with 

the Venn Diagram package (Chen and Boutros, 2011) to illustrate the 

distribution profile of all active contigs (78,201) with RPKM values >0 in 

at least one of the libraries (Figure 1.3).  

 

Figure 1.3 | Transcriptomic expression analysis. A Venn diagram shows the 

distribution of transcriptionally active contigs whose RPKM values are greater than 0 in 

at least one of the libraries. 
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33.8% of the active transcripts were expressed across all 5 libraries, 

suggesting the homogeneity and high quality of the acquired raw data. 

Compared to other three tissues, young root and leaf had more exclusively 

expressed contigs, which demonstrated in spring, such tissues played 

important and unique physiological roles.  

 

 

 

Figure 1.4 | Number of differentially expressed transcripts determined 

by NOISeq-sim for pairwise comparisons among the 5 libraries. 

 

 

RPKM calculation considers gene length variation and the number of 

total mapped reads, which allows this normalized output to be used directly 

for the comparison of gene expression. To perform differential expression 
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(DE) analysis, ten pair-wise comparisons for the five libraries were 

conducted by applying NOISeq-sim, which is a non-parametric approach 

for the identification of differentially expressed genes from count data or 

previously normalized count data. By running NOISeq-sim on an R 

language platform with the given threshold (q = 0.9) for selecting 

differentially expressed features, the resultant number of DE transcripts 

varied across comparisons. The highest value obtained was 1,408 

differences between leaf and mature root transcripts; the lowest value 

obtained was 297 differences between mature root and root vascular 

cylinder (Figure 1.4). 

 

1.3.5 Protein Function Annotations and Gene Ontology (GO) Classification 

Functional annotations according to sequence similarity are often the initial 

step in studying the role and biological functions of gene products 

(Ramilowski et al., 2013).  

The basic local alignment search tool (BLAST) was utilized to scan 

nucleotide query sequences against protein databases (NR, UniProt) to 

identify similar subject sequences. When the threshold e-value for BLASTx 

searches was set to 1e10 and the top 20 subject sequences for each query 

sequence were taken into consideration, we obtained 829,087 subject 

sequences for all 81,508 query sequences. To obtain reliable results while 

reducing redundancy, we set stricter requirements for retrieving the 

candidate genes. With this approach, significant matches were assigned to 

30,156 contigs. 
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Gene Ontology, consisting of three main domains (cellular components, 

molecular functions and biological processes), is a useful instrument with 

which to study the nature of annotated genes (Ashburner et al., 2000). 

Based on NCBI NR BLAST results, with the aid of Web Gene Ontology 

Annotation Plot (WEGO) software (Ye et al., 2006), 26,245 contigs yielded 

corresponding GO terms that could be further classified into 48 

sub-categories: 12 related to cellular components, 13 to molecular function 

and 23 to biological processes.  

 

 

 

Figure 1.5 | Gene Ontology annotation for P. lobata contigs. 

48 subcategories are affiliated to three main domains: molecular function, 

cellular components and biological processes. 
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Figure 1.5 presents the large number of transcripts related to metabolic 

processes (14,164) and biological regulation (7,194). The contigs assigned 

to “growth” and “developmental process” under GO biological process 

may hold the key to the mechanism underlying its rapid and aggressive 

growth rate.  

The disadvantage of evaluating gene classification by directly counting 

the number of GO terms which possess the same or very similar functions 

is that the expression level of these query sequences varies, which grants 

distinct weight to the same GO term as it corresponds to different query 

sequences.  

With this concern, overrepresented GO terms were identified by 

Fisher’s exact test. The one-tailed Fisher’s exact p-values corresponding to 

overrepresented categories were calculated according to the counts in 2×2 

contingency tables. Counts n11, n12, n21 and n22 in each table stand for: n11, 

number of observations of a specific category in the first gene set; n12, 

number of other categories in the first gene set; n21, number of observations 

of a category in the second gene set; and n22, number of observations of 

other categories in the second gene set (Takahashi et al., 2011). P-values 

were corrected using the false discovery rate (FDR) method (Benjamini 

and Hochberg, 1995) with the threshold set at 0.05. For each P. lobata 

library, contigs with RPKM value over 15.0 (the top ~10% of all 

transcripts) were regarded as highly expressed genes and extracted 

respectively. Then the merged 14,364 contigs were used to perform 

Fisher’s exact test. 
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As with many woody vines supported by trees or man-made structures, 

Kudzu may allocate the majority of its biomass to vine elongation and leaf 

growth. It is regarded as an invasive alien plant in Europe and northern 

America because its rapid growth rate (up to 30 cm d
1

) (Lindgren et al., 

2013) allows Kudzu to suffocate neighboring plants that are deprived of 

sunlight. The overrepresented GO terms (Supplementary 1.1, selected GO 

terms with p < 1E30) suggest that highly activated biological processes 

such as cell division (GO: 0051301), cell growth (GO: 0016049), root hair 

elongation (GO: 0048767), response to cold (GO: 0009409) and response 

to salt stress (GO: 0009651) could play an essential role in its aggressive 

development. 

 

1.3.6 KEGG Pathway Retrieval 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 

2012) provides a robust instrument for biological pathway assignment as 

well as the functional annotation of gene products. Based on ID mapping 

results, we obtained 1,348 unique enzymes corresponding to 16,380 contigs 

and subsequently retrieved pathways using KEGG. These EC numbers 

were assigned to 152 biological pathways with the largest number of 

enzymes (697) involved in metabolic pathways. Given the remarkable 

reputation of legumes with regard to the ability to accumulate functional 

flavonoids, 19 flavonoid biosynthetic and 14 isoflavonoid biosynthetic 

enzymes are presented in Figure 1.6 and Figure 1.7. 
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1.3.7 Genes Involved in Isoflavonoid Biosynthesis in P. lobata 

Flavonoids are a group of polyphenolic compounds distributed widely 

throughout the plant kingdom. These compounds modulate the activity of 

enzymes to benefit the entire organism. As an important subgroup of 

flavonoids, isoflavonoids are mainly produced in legumes and affect 

oxidative stress markers, immune function and adipogenesis (Miadokova, 

2009).  

In the phenylpropanoid pathway, the synthesis of flavonoids is 

initialized by transforming phenylalanine into p-coumaroyl-CoA. To 

initiate flavonoid biosynthesis, chalcone synthase catalyzes the formation 

of chalcone scaffolds, from which all flavonoids derive (Falcone Ferreyra 

et al., 2012; Saito et al., 2013).  

Based on our functional annotation findings, 45 contigs were predicted 

to represent seven enzymes critical to the biosynthesis of daidzein, which 

may be necessary to make the puerarin found in P. lobata. The number of 

contigs corresponding to each enzyme and the biosynthesis procedure are 

presented in Figure 1.8. 
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Figure 1.8 | Proposed daidzein biosynthesis pathway in P. lobata. Every 

enzyme is followed by the number of corresponding contigs in parentheses. PAL: 

Phenylalanine ammonia-lyase, EC 4.3.1.24; CA4H: Trans-cinnamate 4-monooxygenase, 

EC 1.14.13.11; 4CL: 4-coumarate-CoA ligase, EC 6.2.1.12; CHS: 6'-deoxychalcone 

synthase, EC 2.3.1.170; CHI: Chalcone isomerase, EC 5.5.1.6; IFS: 

2-hydroxyisoflavanone synthase, EC 1.14.13.136; HID: 2-hydroxyisoflavanone 

dehydratase, EC 4.2.1.105. Solid arrows show the pathways identified by the data 

obtained while the dotted arrows show unsolved steps. 

 

 



Chapter 1: RNA-Seq Analysis on P. lobata 

34 

 

Figure 1.9 shows the expression profile for the 45 contigs 

corresponding to seven daidzein-biosynthesis-related enzymes across 5 

libraries. From the heatmap, majority of the contigs had strong expression 

in library 4 (young root) and high correlation could be found among PAL, 

4CL, CHS, CHI and HID, which gave light to the biosynthetic pathway of 

flavonoids in P. lobata.  

 

Figure 1.9 | Heatmap showing the expression profile for 45 contigs 

related to daidzein biosynthesis. Next to each contig name, the enzyme 

abbreviation is presented. 
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Figure 1.10 | Expression profile for isoflavonoid biosynthesis contigs. 

The vertical axis indicates RPKM values of the annotated contigs while the 

horizontal axis shows five libraries in P. lobata dataset. 
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A previous study (Chen et al., 2001) showed that concentrations of 

puerarin and daidzein were up to 3-fold higher in the roots as compared to 

the veins of P. lobata. In our study, biosynthesis of the chalcone scaffold 

showed that the expression of downstream enzymes exhibits a clear pattern 

that provides evidence into the organ-specific biosynthesis of daidzein 

(Figure 1.10). In P. lobata, early steps for the biosynthesis of daidzein and 

even puerarin might take place mainly in young root. After transportation 

of the required precursors to other parts of the plant or along with organ 

growth, the expression of related enzymes increases in mature root. Finally, 

the high expression of 2-hydroxyisoflavanone dehydratase in stem and 

mature root may account for the accumulation of daidzein and puerarin in 

certain plant organs. 

Figure 1.8 demonstrates 45 contigs involved in the isoflavonoid 

biosynthetic pathway. We carried out to validate the genuine biological 

expression profile of such contigs, focusing on the genes from chalcone 

synthase (EC 2.3.1.170) to 2-hydroxyisoflavanone dehydratase (EC 

4.2.1.105) since these are crucial factors leading to the accumulation of 

isoflavonoids. According to Figure 1.10, several contigs can be aligned to 

each of the four enzymes. Therefore, we set the following criteria for 

selecting the appropriate candidate contigs in qRT-PCR experiment: firstly, 

the contig itself should consist of long fragment; secondly, the expression 

judging by RPKM values across the five tissues was relatively high; thirdly, 

the identity between the candidate contig and target enzyme should be high. 

Contig 21904, 14454, 15184 and 01454, corresponding to chalcone 
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synthase, chalcone isomerase, 2-hydroxyisoflavanone synthase and 

2-hydroxyisoflavanone dehydratase, respectively, were chosen to perform 

qRT-PCR. For CHS and CHI, Table 1.3 shows similar pattern of gene 

expression profile between deep transcriptomic data and qRT-PCR result. 

Regarding chalcone synthase, its differential expression between young 

root and leaf was detected by NOISeq-sim and the ratio of 2
-Ct

 was also 

the highest one, 36. However, although the trend that the expression of 

2-hydroxyisoflavanone synthase (IFS) and HID in library 1 was always 

lower compared to other libraries was verified by both approaches, the ratio 

varied. 

 

 

Table 1.3 Validation of differentially expressed genes related to 

isoflavonoid biosynthesis 

Contig Annotation 

Fold change : RNA-Seq and qRT-PCR validation 

Lib 2 / Lib 1 Lib 4 / Lib 1 Lib 3 / Lib 1 Lib 5 / Lib 1 

RPKM 2
-Ct

 RPKM 2
-Ct

 RPKM 2
-Ct

 RPKM 2
-Ct

 

21904 CHS 0.49 1.87 48

 36 0.76 0.97 0.47 0.60 

14454 CHI 1.20 0.72 9.0 14.6 1.12 0.63 1.29 2.07 

15184 IFS 20.1 2.90 25.1 6.84 3.31 2.45 2.69 2.14 

01454 HID 5.87 7.86 2.27 12.3 4.04 8.51 6.07 25.1 

Fold change of RPKM and 2
-Ct

 between Lib 1 (Library 1) and other Libraries, 

respectively. *differently expressed gene detected by NOISeq-sim. CHS chalcone 

synthase, CHI Chalcone isomerase, IFS 2-hydroxyisoflavanone synthase, HID 

2-hydroxyisoflavanone dehydratase. 
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For example, RPKM value suggested 20.1-fold elevated expression in 

library 2 while qRT-PCR granted only 2.90-fold. We collected the samples 

for sequencing in 2012 but the materials used for qRT-PCR were obtained 

in 2014 from the same location, though. The slightly changed sampling 

conditions may result in the variations in validation experiment. The 

primers designed for qRT-PCR are listed in Table 1.4. 

 

 

Table 1.4 Primers designed for qRT-PCR experiment 

Contig Annotation Forward primer Reverse primer 

00518 β-actin TCCACTGGCATACAGAGACAAGA GGCACCACTCAATCCCAAG 

21904 CHS AATGGCTGCCACCTTAGTCTCT TCTTTTGTGGTAACTGTGCTGGTT 

14454 CHI GCAGTTTTCCATCACCTTCTTTG GCTGGTTGAGACCCTTGACTTCT 

15184 IFS CTGTTGGGCCTCTGCACTTT GTTCCCTTCGGACCTTACTGG 

01454 HID GCTTCCCACGCCAACAA CCGCTGGTTTCACCTCCTAC 

CHS, chalcone synthase; CHI, chalcone isomerase; IFS, Isoflavanone synthase; HID, 

2-hydroxyisoflavanone dehydratase. 
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1.4 Discussion 

From the expression pattern of isoflavonoid biosynthesis in Kudzu, 

transportation of certain precursors into other parts of the plant for 

downstream reaction may be required (refer to genes involved in 

isoflavonoid biosynthesis in P. lobata). By searching the annotation data, 

41 expressed ABC transporters were retrieved. Regarding IFS and HID, 

suggested by the changes of expression level in different tissues, 

transportation of the intermediates may occur.  

 

 

Table 1.5 Contigs annotated as ABC transporter showing 

Pearson correlation coefficients to contig 01454 and contig 15184. 

Contig_ID 
Coeffiecient_to

_contig01454 

Coefficient_to

_contig_15184 
Annotation 

Contig00240 -0.73 -0.18 ABC transporter D family member 

Contig00241 -0.77 -0.5 ABC transporter D family member 

Contig02360 0.34 -0.21 ABC transporter family 

Contig02621 -0.56 -0.72 ABC transporter family protein 

Contig03204 0.2 -0.23 ABC transporter family 

Contig07356 -0.63 0.6 ABC transporter G family member 

Contig07381 -0.78 -0.39 ABC transporter family protein 

Contig09681 -0.78 -0.41 
AAA ATPase; ABC transporter, 

transmembrane region, type 1 

Contig09727 0.05 0.58 ABC transporter C family member 

Contig10273 -0.38 0.69 ABC transporter G family member 

Contig11124 -0.79 -0.44 ABC transporter I family member 

Contig16119 -0.4 0.73 ABC transporter family protein 

Contig16951 -0.97 -0.24 ABC transporter D family member 

Contig17808 -0.96 -0.28 ABC transporter D family member 

Contig18533 -0.91 0.06 ABC transporter C family member 
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Contig22029 -0.22 0.6 ABC transporter C family member 

Contig23310 -0.72 -0.47 ABC transporter B family member 

Contig27958 -0.3 -0.58 ABC transporter C family member 

Contig27959 -0.38 0.58 ABC transporter C family member 

Contig31585 -0.92 -0.11 ABC transporter C family member 

Contig33504 0.05 0.37 
Multidrug resistance protein ABC 

transporter family 

Contig33505 0.51 0.06 
Multidrug resistance protein ABC 

transporter family 

Contig33602 -0.65 -0.5 ABC transporter D family member 

Contig36545 0.08 0.2 ABC transporter B family member 

Contig41300 0.5 0.22 ABC transporter G family member 

Contig41301 0.28 -0.17 ABC transporter G family member 

Contig42074 -0.06 -0.5 ABC transporter G family member 

Contig44359 -0.08 -0.62 ABC transporter B family member 

Contig56331 -0.72 -0.47 
ABC transporter ATP-binding 

protein/permease 

Contig58577 -0.58 -0.79 ABC transporter B family member 

Contig69143 -0.4 0.73 
ABC transporter ATP-binding 

protein/permease 

Contig69144 -0.54 -0.67 
ABC transporter ATP-binding 

protein/permease 

Contig70145 -0.4 0.73 
ABC transporter ATP-binding 

protein/permease 

Contig73108 0.06 0.36 
Multidrug resistance protein ABC 

transporter family 

Contig73572 0.43 -0.12 
Multidrug resistance protein ABC 

transporter family (Fragment) 

Contig74670 -0.34 0.69 ABC transporter G family member 

Contig76477 0.26 0.89 
Multidrug resistance protein ABC 

transporter family (Fragment) 

Contig76628 0.43 -0.12 
Multidrug resistance protein ABC 

transporter family 

Contig79472 -0.4 0.73 ABC transporter B family member 

Contig80235 -0.4 0.73 ABC transporter B family member 

Contig81715 0.02 1 ABC transporter B family member 
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Table 1.5 lists 41 ABC transporters found in Kudzu dataset along with 

Pearson correlation coefficients to contig 15184 which is a putative IFS and 

contig 01454, an annotated HID. 

A recent study provided fairly constructive insights into the 

biosynthetic pathway of puerarin and contributed more than 6,365 ESTs 

(He et al., 2011). We integrated the publically available ESTs into our raw 

reads from five different tissues of Kudzu and then performed de novo 

assembly altogether. This enabled us to utilize related information and the 

assembled contigs showed identical or highly similar transcripts with the 

ESTs regarding glucosyltransferase. 

Many C-glucosyltransferases have been identified in bacteria, insects 

and plants, especially in cereals. The elucidated mechanism for 

C-glycosylation of flavonoids proved 2-hydroxylation of flavanones was 

the appropriate premise for the catalytic reaction to proceed. Likewise, in 

studying the biosynthesis of puerarin, 2-hydroxylation of isoflavanone 

(2,7,4'-trihydroxy-isoflavanone) should be considered as a possible 

substrate for its formation when daidzein as a direct putative precursor 

meets with obstacles. With the formation of trihydroxy-isoflavone 8-C 

glycoside catalyzed by suitable UDP-dependent glucosyltransferases, the 

glycoside may be subjected to dehydration reaction, resulting in puerarin. 

49 contigs were annotated as glucosyltransferase in our dataset, if the target 

glucosyltransferase utilizes either one of the above-mentioned precursors, 

the correlation with the enzyme directly producing 

2,7,4'-trihydroxy-isoflavanone or daidzein would be significant. Table 1.6 
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lists the annotated glucosyltransferases along with Pearson correlation 

coefficients to HID and IFS.  

 

Table 1.6 Putative glucosyltransferases with  

Pearson correlation coefficients to HID and IFS 

Contig_ID 
Coefficient

_to_HID 

Coefficient

_to_IFS 
Annotation 

Contig02990 0.37 0 Sucrose-UDP glucosyltransferase 

Contig03131 -0.4 0.74 Anthocyanidin 3-O-glucosyltransferase 

Contig03133 -0.45 0.48 Anthocyanidin 3-O-glucosyltransferase 

Contig05593 -0.59 0.53 glycoprotein glucosyltransferase 

Contig09646 -0.68 0.31 Cytokinin-O-glucosyltransferase 

Contig10691 -0.59 0.45 glycoprotein glucosyltransferase 

Contig11620 0.79 0.1 Putative glucosyltransferase 

Contig11621 -0.69 -0.4 Putative glucosyltransferase 

Contig11622 -0.84 -0.39 Putative glucosyltransferase 

Contig12257 -0.66 -0.54 Cytokinin-O-glucosyltransferase 

Contig14425 -0.77 0.47 Putative UDP-glucosyltransferase 

Contig15137 -0.6 0.54 glycoprotein glucosyltransferase 

Contig15603 -0.72 -0.47 Isoflavonoid glucosyltransferase 

Contig20530 -0.78 -0.3 Sterol 3-beta-glucosyltransferase 

Contig22923 -0.07 0.2 Sterol 3-beta-glucosyltransferase 

Contig22924 -0.94 0.04 Sterol 3-beta-glucosyltransferase 

Contig23483 -0.4 0.73 Zeatin O-glucosyltransferase 

Contig23956 -0.35 0.79 Isoflavonoid glucosyltransferase 

Contig25035 -0.19 0.94 Putative glucosyltransferase 

Contig28030 -0.29 -0.39 flavonoid 3-O-glucosyltransferase 

Contig28462 -0.03 0.46 Hydroquinone glucosyltransferase 

Contig29838 -0.47 0.22 Isoflavone 7-O-glucosyltransferase 1 

Contig29839 0.15 -0.43 Isoflavone 7-O-glucosyltransferase 1 

Contig31158 0.34 -0.12 Cytokinin-O-glucosyltransferase 

Contig32270 -0.39 0.71 Anthocyanidin 3-O-glucosyltransferase 

Contig32277 -0.13 0.58 Hydroquinone glucosyltransferase 

Contig40732 -0.67 0.07 Sucrose-UDP glucosyltransferase 
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Contig42441 -0.9 -0.18 Cytokinin-O-glucosyltransferase 

Contig43033 0.27 -0.7 Isoflavone 7-O-glucosyltransferase 1 

Contig44304 -0.15 0.59 Isoflavone 7-O-glucosyltransferase 1 

Contig45936 -0.04 -0.98 Isoflavone 7-O-glucosyltransferase 1 

Contig46490 0.34 -0.55 Anthocyanidin 3-O-glucosyltransferase 

Contig47890 -0.28 0.75 Sterol 3-beta-glucosyltransferase 

Contig51492 -0.41 0.7 UDP-glucosyltransferase 

Contig52569 -0.22 0.64 Sterol 3-beta-glucosyltransferase 

Contig65011 -0.4 0.68 UDP-glucosyltransferase 

Contig73434 0.56 -0.38 Limonoid UDP-glucosyltransferase 

Contig74493 0.1 0.21 Anthocyanidin 3-O-glucosyltransferase 

Contig77022 -0.35 0.47 Anthocyanidin 3-O-glucosyltransferase 

Contig79587 -0.4 0.73 Cytokinin-O-glucosyltransferase 

Contig79864 -0.4 0.73 Cytokinin-O-glucosyltransferase 

Contig03787 0.47 -0.6 Glucosyltransferase 

Contig06374 -0.83 0.07 Glucosyltransferase-13 (Fragment) 

Contig11423 -0.71 -0.49 Glucosyltransferase 

Contig14082 -0.58 -0.42 Glucosyltransferase-2 

Contig14083 -0.6 -0.35 Glucosyltransferase-12 

Contig14085 0.3 0.89 Glucosyltransferase-2 

Contig24631 0.04 0.67 Glucosyltransferase-5 

Contig28995 -0.33 0.73 Glucosyltransferase-12 

 

 

Kudzu root, which is the main part prescribed in oriental medicines in 

treating various diseases, produce predominantly isoflavone C- and O- 

glucosides. We collected five tissues from which the deep transcriptomic 

data were generated and studied puerarin and daidzin profile using HPLC. 

Both puerarin and daidzin are highly accumulated in mature root and root 

vascular cylinder and the concentration of puerarin is higher than that of 

daidzin (Table 1.7). Although several genes related to isoflavonoid 
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biosynthesis are highly expressed in young root, the concentration of the 

two compounds is low in young root compared with that in mature root. 

This may be due to the essential enzymes for the production of puerarin 

actively expressed in the young and mature roots but the accumulation of 

puerarin does not reach to the maximum yet in the young root. Deep 

transcriptomic data obtained in this study may provide the key to this 

question. In relatively young stem which was used in this study and leaf, 

daidzin was not detectable. 

RNA-Seq analysis is cost effective and the most efficient approach 

currently available to manage high-throughput data. By consolidating data 

information obtained from five P. lobata libraries, we analyzed the 

differential expression profile and mapped biosynthetic pathways against 

KEGG using enzyme accession numbers. Evaluating overrepresented GO 

terms by considering the RPKM values of the corresponding contigs 

provided a more accurate representation of the data. By qRT-PCR and 

HPLC, both gene expression validation and metabolite analysis were 

performed. The deep transcriptomic data we present here may facilitate 

future research on this promising plant. 

 

Table 1.7 Determination of puerarin and daidzin in fresh plant samples 

 Leaf Stem Mature root Young root Root VC 

Puerarin N.D.
a
 1.473 0.007

 b
 4.024  0.005 0.231  0.002 3.327  0.005 

Daidzin N.D. N.D. 0.668  0.004 0.156  0.002 0.994  0.008 
a
N.D. = Not detected. 

b
Means  SD (mg/g fresh weight, n = 3).
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Chapter 2: Transcriptome Analysis of Nine Tissues to 

Discover Genes Involved in the Biosynthesis of  

Active Ingredients in Sophora flavescens 

 

2.1 Introduction 

In 1889, the characteristic compound matrine was isolated from the dry 

roots of S. flavescens (Nagai, 1889) and several decades later, the absolute 

structure of (+)-matrine was figured out (Okuda et al., 1966). Due to its 

notable medicinal efficacy, attempts to synthesize and biosynthesize 

matrine were conducted (Boiteau et al., 1998; Saito et al., 1989; Shibata 

and Sankawa, 1963). In 1995, Saito et al. proposed the biosynthetic 

pathway of the carbon framework of matrine (Saito and Murakoshi, 1995). 

Although the first steps of quinolizidine alkaloids biosynthesis have been 

elucidated recently in S. flavescens (Bunsupa et al., 2012), more effort 

needs to be done to puzzle out the practical biosynthetic pathway of 

matrine. 

S. flavescens also contain series of flavonoids and isoflavonoids such 

as kuraridin, kurarinone, isokurarinine, daidzein, maackiain (Chen et al., 

2004). Much effort has been done to elucidate the biosynthetic pathway of 

flavonoids and many of the related genes are clear now in other species 

(Falcone et al., 2012), but the ones involved in the biosynthesis of 

flavonoids in S. flavescens have not yet been discovered. In spite of several 

research findings cracking relevant quinolizidine alkaloids biosynthetic 
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pathway and membrane-bound prenyltransferase (Gao et al., 2011; Sasaki 

et al., 2011), to our best knowledge, analysis using next generation 

sequencing approach for S. flavescens was not found up to date. 

More and more genomes of model organisms have been sequenced 

(Meyer et al., 2013; Michael and Jackson, 2013). Nevertheless, for those 

non-model plants, lack of reference genome information jeopardizes 

studies on the underlying genes which are involved in biological processes 

related to vital plant physiology and drug development, etc. With this 

regard, transcriptome sequencing plays an essential role in apprehending 

the genetic diversity of organisms. Furthermore, such approaches help to 

obtain overall insights into whole gene sets associated to the protein 

diversity (Saito, 2013). Armed with well-established approaches such as 

Short Oligonucleotide Analysis Package (SOAPdenovo) (Li et al., 2009), 

Assembly by Short Sequences (AbySS) (Simpson et al., 2009), Trinity 

(Grabherr et al., 2011), transcriptome profiling accelerates its pace in 

processing tremendous amount of data generated from large-scale 

sequencing projects. Despite the intensive challenges including library 

construction, reducing errors in image analysis and removal of low-quality 

reads, massively parallel cDNA sequencing (RNA-Seq) offers a more 

precise measurement of levels of transcripts and their isoforms than other 

methods (Wang et al., 2009).
 

In this study, 203,598,590 fastq format reads from 9 tissues of S. 

flavescens were generated by Illumina’s next-generation sequencing 

approach. CLC Genomics Workbench (CLC bio, Denmark) was 
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subsequently applied to conduct de novo assembly. Based on the findings 

provided by Gene Ontology and KEGG pathway mapping, the candidate 

genes that may be involved in the biosynthesis of key chemical components 

were identified. By studying expression pattern of genes related to the 

biosynthesis of quinolizidine alkaloids, we propose some promising contigs 

for future research. 

 

2.2 Materials and Methods 

2.2.1 Sampling and Total RNA Extraction 

Except for leaf sample collected in May 2012, all the rest fresh tissues and 

organs were obtained from healthy S. flavescens plants growing in Chiba, 

Japan in June 2013. Callus tissue whose origin and subculturing were 

described previously (Yamamoto et al., 1991), and other eight parts of the 

plant were sampled, including leaf, flower, stem, young bud, mature bud, 

bud right before blossom (BBB), pedicel while bud stage (PBS), pedicel 

while blossom (PWB) (Figure 2.1).  

After sampling from the field, the tissues were dipped into RNA 

stabilization solution (RNAlater, Life technologies, USA) immediately. 

Then RNAlater solution was gently removed with a Kimwipe and the 

remaining sample was frozen by liquid nitrogen and subsequently 

powdered by using Multi Beads Shocker (Yasui Kikai, Japan).  

Total RNA was extracted from powdered tissues of S. flavescens by 

TRIzol Reagent (Invitrogen, USA) according to the instructions, 

respectively. The acquired RNA was then cleaned up by RNeasy Mini Kit 
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(Qiagen, USA).  

For semi-quantitative RT-PCR analysis, in November 2014, the tissues of 

root, stem and leaf of kurara were sampled in the same location, where the 

other tissues were collected for deep-transcriptome sequencing, and 

subjected to the extraction of total RNA as described above. 

 

 

 

Figure 2.1 | Different organ / tissue of S. flavescens used for total RNA 

extraction. 1 callus, 2 leaf, 3 flower, 4 stem, 5 young bud, 6 mature bud, 7 bud right 

before blossom (BBB), 8 pedicel while bud stage (PBS), 9 pedicel while blossom 

(PWB). 

 

 

2.2.2 cDNA Library Construction and Illumina Sequencing 

TruSeq RNA Sample Prep Kit v2 (Illumina, USA) was applied according to 
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the manufacturer’s recommendation. First of all, the mRNA portion in total 

RNA was polyA-selected and subsequently fragmented. Then the 

double-stranded cDNA was prepared for cDNA library construction. After 

the blunt-end fragments were generated, followed by indexed adaptor 

ligation, the samples were then hybridized to flow cells. Cluster 

amplification was performed using the cBot Cluster Generation System 

(Illumina, USA) and finally sequenced by Illumina’s next-generation 

sequencing instrument. 

 

2.2.3 De novo Assembly adopting CLC Genomics Workbench   

Before de novo assembly, the original fastq format data of S. flavescens 

were subjected to CLC trimming process for the purpose of eliminating 

empty reads, reads with poor quality and as a result, clean reads were 

obtained. The CLC workbench (version 6.5) was then utilized to process 

the clean reads and all contigs over 300 bp were taken into consideration 

for downstream work.  

Since the assembled contigs may contian duplicates due to sequencing 

error, CD-HIT-EST was utilized with representative sequences at 90% 

identity to obtain unique unigenes. 

 

2.2.4 RPKM Calculation and Expression Analysis   

The standard formula for RPKM (reads per kilobase of the transcript per 

million mapped reads) is as follows:      
     

   
 (Chen et al., 2011). 

In order to estimate the expression level of the contigs, with the aid of 
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Burrows-Wheeler Aligner (Li and Durbin, 2009), Sequence Alignment/ 

Map tools (Li et al., 2009) and High Throughput Sequencing (HTSeq) 

(Anders, 2010), we applied the Mortazavi’s approach to map all the fastq 

format reads back to the contigs and calculated the RPKM values 

(Mortazavi, et al., 2008). Because the S. flavescens samples lacked 

biological replicates, NOISeq-sim, the well-established non-parametric 

approach for the identification of differentially expressed (DE) genes, was 

used to analyze 36 independent pair-wise sample comparisons (Tarazona et 

al., 2011). 

 

2.2.5 Annotation Pipeline and Data Mining 

After applying CD-HIT-EST, All 83,325 de novo contigs were subjected to 

BLASTx against the non-redundant (NR) protein database at NCBI and the 

Universal Protein resource (UniProt) at UniProt consortium with the 

e-value threshold set at 1e10.  

If possible, the top 20 subject sequences from databases to show 

alignment would be taken into consideration. As to the large BLASTx 

result, only percent identities over 40% and e-values less than 1e30 were 

utilized for downstream analysis. After eliminating redundancies, online ID 

mapping was conducted by uploading all unique gene identifiers in fasta 

format to the uniprot official website (http://www.uniprot.org) to retrieve 

accession information.  

By combining the returned target list and the UniProt accession 

numbers (ACs), we finished annotation process using the same online 
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facilities. Reviewed findings from UniProtKB/Swiss-Prot as well as 

UniProtKB/TrEMBL were studied for data mining. In all, 1,350 enzyme 

commission (EC) numbers were applied to map pathways against KEGG, 

and the enzymes related to flavonoids and isoflavonoids biosynthesis were 

studied. 

 

2.2.6 Semi-quantitative Reverse Transcription PCR for a putative lysine/ 

ornithine decarboxylase (L/ODC) gene 

By using the total RNA extracted from the tissues harvested in 2014, cDNA 

was prepared according to the manufacturer’s instructions, SuperScript 

VILO kit (Invitrogen, USA).  

A 477 bp fragment of L/ODC was amplified by PCR using Ex taq DNA 

polymerase (Takara) and specific primers (L/ODC-F: 5'-GAC ATT GGT 

GGC GGT TTC AC-3',  L/ODC-R: 5'-AGT GCT AAA GCC ATT GAA 

GTT GG-3'). The PCR for L/ODC cDNA was performed with an initial 

denaturation at 94℃ for 2 min, then 26, 28 or 30 cycles each at 94℃ for 

30 s, at 54℃ for 30 s, and 72℃ for 50s.  

For normalization of the different RNA preparations, a 571 bp fragment 

of S. flavescens β-actin was amplified with the following primers: (Act-F: 

5'-AAG GCC AAC AGA GAG AAG ATG AC-3',  Act-R: 5'-ACC CAC 

CAC TAA GCA CGA TAT TT-3'). The PCR for β-actin cDNA was 

performed with an initial denaturation at 94℃ for 2 min, then 22 cycles 

each at 94℃ for 30 s, at 53℃ for 30 s, and 72℃ for 50s.  
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The PCR products were separated by electrophoresis using 1.5% gel at 

100V, and the gel was further stained by Ethidium Bromide Solution 

(Nacalai Tesque Inc., Japan). 

 

2.2.7 S. flavescens CYP86A24-like full-length cDNA amplification 

Total RNA was prepared from relatively young leaves of S. flavescens and 

then SuperScript Ⅱ first-strand cDNA synthesis (Invitrogen, USA) was 

applied according to manufacturer’s instructions. To amplify the full-length 

sequence and be ready for the subsequent experiment using Gateway 

system (Invitrogen, USA), we used the following primer pairs: (SfCYP-F: 

5'-AAA AAG CAG GCT TCA CCA TGG ATG GAT GCA TCA ACG GCT 

TTT ATGA-3',  SfCYP-R: 5'-AGA AAG CTG GGT CTC AAG CAT CAG 

CAG CAA CCA TTTC-3'). attB-PCR product was separated by 

electrophoresis and the target band was excised and purified according to 

PEG purification protocol (Invitrogen, USA). 

 

2.2.8 Characterization of S. flavescens CYP86A24-like enzyme using 

Gateway system 

An entry clone was generated by performing BP reaction using the purified 

attB-flanked DNA fragment and pDONR 221 vector (Invitrogen, USA), 

followed by LR reaction to create an expression clone with pYES-DEST52 

and subsequent expression in Saccharomyces cerevisiae. 



Chapter 2: Deep Transcriptomic analysis on S. flavescens 

53 

 

2.3 Results 

2.3.1 S. flavescens Total RNA Preparation 

The principal bioactive constituents of S. flavescens are the major 

quinolizidine alkaloids matrine and oxymatrine (Ling, et al., 2007). The 

contents of these two components in S. flavescens are also the main 

valuation criteria of this plant. Meanwhile, considerable quantity of 

flavonoids and isoflavonoids are also accumulated in S. flavescens (Shen, 

et al., 2013).  

In this study, we aimed to collect information about the nature of the 

genes responsible for the biosynthesis of matrine and oxymatrine, and 

study the related genes involved in the biosynthesis of flavonoids and 

isoflavonoids in S. flavescens.  

We extracted total RNA from the 9 tissues of this plant, resulting in 9 

distinct cDNA libraries. We will refer to the libraries in the following 

manner: Lib 1 (callus), Lib 2 (leaf), Lib 3 (flower), Lib 4 (stem), Lib 5 

(young bud), Lib 6 (mature bud), Lib 7 (bud right before blossom), Lib 8 

(pedicel while bud stage), and Lib 9 (pedicel while blossom).  

 

2.3.2 Next generation Sequencing and CLC de novo Assembly 

Using the Illumina HiSeq platform, fastq format paired-end reads were 

generated for all 9 libraries of S. flavescens. Raw reads with poor quality 

were trimmed using CLC trimming function. Nucleotide fastq sequences of 

Illumina trimmed reads were deposited at DDBJ Sequence Read Archive 

(DRA) with the accession number DRA003182.  
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To practice de novo assembly, the fastq reads from all 9 libraries were 

combined together to generate fasta format contigs. After the entire run was 

assembled, the quality of the assembly (e.g., the ratio of aligned reads, 

average contig size, N75, N50 and N25 contig length) was identified to be 

better than the de novo results from individual libraries. The assembly of 

the 9 libraries was utilized in the following analysis to discover their 

genetic information.  

 

 

Figure 2.2 | Summary of the experimental design and analysis pipeline. 

BBB, bud right before blossom; PBS, pedicel while bud stage;  

PWB, pedicel while blossom. 
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85,054 contigs were generated using CLC genomics workbench. By 

applying CD-HIT-EST with a threshold set at 0.9, duplicate contigs were 

identified and discarded, resulting in 83,325 non-redundant contigs. An 

overview of the experimental pipeline is shown in Figure 2.2. Table 2.1 

summarizes sequencing and assembly results. 

 

 

Table 2.1 Overview of S. flavescens transcriptome assembly 

Items Numbers 

Total bases 20,044,281,186 

Average length of reads (bp) 98.4 

No. of reads 203,598,590 

Average length of contigs (bp) 664 

Maximum contig length (bp) 15,827 

N75; N50; N25 (bp) 431; 969; 1,947 

No. of contigs over 300 bp 85,054 

Non-redundant contigs 83,325 

 

 

2.3.3 S. flavescens GC Content Profile 

The average GC content of S. flavescens transcripts was found to be 39.3% 

(Figure 2.3). Before 5000 base position, the GC content is relatively stable 

at the level of 40%. However, after 5000 base position, the GC content of S. 

flavescens varies dramatically due to the rapidly reduced number of the 

assembled contigs. The GC value found in S. flavescens is close to the 

reported legume plants Glycine max (43%) and Medicago truncatula (40%) 

(Kawaguchi and Bailey-Serres, 2005). 
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Figure 2.3 | GC content at different base positions for all S. flavescens 

contigs. The length of contigs varies from 300 to 15,827 bp. The GC content presented 

here does not include the information of contigs over 10,000 bp. Percentage of GC 

content stands for number of G- and C-bases observed at current position normalized to 

the total number of bases observed at that position. 

 

 

2.3.4 NOISeq-sim Analysis on Differentially Expressed Transcripts 

In order to perform transcript expression analysis, RPKM calculation is the 

initial step to do. RPKM value of the contigs allows such normalized 

output to be applied directly for the comparison of gene expression. 

For DE analysis, 36 pair-wise comparisons of the nine libraries were 

conducted by applying NOISeq-sim, a non-parametric approach.  
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By running NOISeq-sim on the R language platform with a given 

threshold (q = 0.9) for selecting differentially expressed features, the 

resultant number of DE transcripts varied across comparisons. The highest 

value obtained was 1,061 differences between callus and mature bud 

transcripts; the lowest value obtained was 0 between mature bud and BBB 

(Figure 2.4 and Figure 2.5). 

 

 

 

Figure 2.4 | Number of DE genes between callus and the rest 8 tissues. 

The pair-wise comparisons were between callus and the rest 8 tissues, respectively, 

of S. flavescens with the number varying from 876 to 1,061. 
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Figure 2.5 | Number of DE genes detected by NOISeq-sim. 

The lowest DE genes is 0 between mature bud and BBB. 

 

 

2.3.5 Transcripts Function Annotation and Gene Ontology Analysis  

BLAST was applied to search protein databases to identify similar subject 

sequences. When the threshold E-value was set to 1e10 and if possible, 

the top 20 subject sequences for each query sequence were taken into 

consideration, we obtained 570,611 subject sequences for all 83,325 query 
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sequences. In order to reduce redundancy and simplify the experiment 

procedure, more stringent criteria for retrieving the candidate genes were 

set. With this approach, significant matches were assigned to 27,909 

transcripts. 

Gene Ontology is a useful tool to study the character of annotated 

genes. By utilizing the BLAST results as well as Web Gene Ontology 

Annotation Plot software, 25,921 contigs yielded corresponding GO terms 

that could be further classified into 50 sub-categories: 14 related to cellular 

components, 13 to molecular function and 23 to biological processes 

(Figure 2.6).  

 

Figure 2.6 | Gene Ontology annotation for S. flavescens contigs.  

Fifty sub-categories are affiliated to three main domains: molecular function, cellular 

components and biological processes. 
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Directly counting the number of GO terms related to the corresponding 

contigs bears a very obvious shortcoming. The expression level of those 

query sequences varies, which grants distinct weight to the same GO term 

as it corresponds to different query sequences. Regarding this, 

overrepresented GO terms were identified by Fisher’s exact test. The 

one-tailed Fisher’s exact p-values corresponding to overrepresented 

categories were calculated according to the counts in 2×2 contingency 

tables. Counts n11, n12, n21 and n22 in each table stand for: n11, number of 

observations of a specific category in the first gene set; n12, number of other 

categories in the first gene set; n21, number of observations of a category in 

the second gene set; and n22, number of observations of other categories in 

the second gene set (Takahashi et al., 2011).  

For each S. flavescens library, contigs with RPKM value over 30.0 (the 

top ~10% of all transcripts) were regarded as highly expressed genes and 

extracted respectively. Then the merged 9,867 contigs were used to perform 

Fisher’s exact test.  

The overrepresented GO terms (Supplementary 2.1, GO terms with p 

< 1E30 are listed) indicate expectedly cellular component like plasma 

membrane (GO: 0005886) and cytoplasm (GO: 0005737) plays crucial 

roles in all aspects regarding S. flavescens. Meanwhile, biological process 

including isopentenyl diphosphate biosynthetic process, methylerythritol 

4-phosphate pathway (GO: 0019288) is also highlighted in the list, which 

will provide information for future research. 
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2.3.6 KEGG Pathway Mapping 

ID mapping resulted in 1,350 unique enzymes from S. flavescens dataset 

and KEGG pathway mapping was performed. These enzyme commission 

numbers were assigned to 154 biological pathways with the largest number 

of enzymes (707) involved in metabolic pathways. Given the remarkable 

reputation of S. flavescens to accumulate large quantity of functional 

flavonoids, 18 flavonoid biosynthetic and 13 isoflavonoid biosynthetic 

enzymes are presented in Figure 2.7 and Figure 2.8. 

 

2.3.7 Putative Genes Involved in Isoflavonoid and Quinolizidine Alkaloids 

Biosynthesis in S. flavescens  

From the essential amino acid phenylalanine, with the help of 

phenylalanine ammonia-lyase, cinnamic acid is generated. Then 

trans-cinnamate 4-monooxygenase catalyzes the reaction to produce 

4-coumaric acid. 4-coumarate-CoA ligase produces the compound 

4-coumaroyl CoA and now it is ready for the production of the specific 

flavonoids.  

First, chalcone synthase plays the role to produce isoliquiritigenin, 

followed by the formation of liquiritigenin catalyzed by chalcone isomerase.  

Then trihydroxy-isoflavanone comes into being due to isoflavanone 

synthase and finally, hydroxyisoflavanone dehydratase is responsible for 

the production of daidzein. 

Based on our functional annotation findings, 34 contigs were predicted 

to represent seven enzymes essential to the biosynthesis of daidzein in S. 
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flavescens. The number of contigs corresponding to each enzyme and the 

biosynthesis procedure are presented in Figure 2.9. In the annotation result, 

contig c_86767 had 97.54% similarity to the L/ODC which catalyzes lysine 

into cadaverine and thus initiates the first steps toward the final product 

quinolizidine alkaloids including matrine and oxymatrine (Bunsupa et al., 

2012).  

 

 

Figure 2.9 | Proposed daidzein biosynthetic pathway in S. flavescens. 

Each EC number is followed by the number of corresponding contigs in parentheses. 

EC 4.3.1.24: Phenylalanine ammonia-lyase, EC 1.14.13.11: Trans-cinnamate 

4-monooxygenase, EC 6.2.1.12: 4-coumarate-CoA ligase, EC 2.3.1.170: Chalcone 

synthase, EC 5.5.1.6: Chalcone isomerase, EC 1.14.13.136: 2-hydroxyisoflavanone 

synthase, EC 4.2.1.105: 2-hydroxy- isoflavanone dehydratase. 
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By far, despite the sustained effort to crack the biosynthetic pathway 

regarding quinolizidine alkaloids, the identified genes underlying this 

process are very few. We focused on co-expression pattern related to 

c_86767 in order to hunt for candidate genes. According to RPKM values 

from all the studied organs, we calculate the Pearson correlation 

coefficients.  

 

Figure 2.10 | Heatplot showing the expression profile for the 31 related 

contigs. The annotations for the transcripts highly related to the gene L/ODC are listed. 

C_55306 MLP-like protein, C_87044 cytochrome P450, C_87047 ripening related 

protein and C_13631 uncharacterized protein. 
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The heatplot (Figure 2.10) demonstrates several promising candidates 

including c_55306 (MLP-like protein), c_87044 (cytochrome P450) and 

c_87047 (ripening related protein). Such contigs shared very similar 

expression pattern across all the 9 tissues, suggesting their potential 

relationship in the process of quinolizidine alkaloid synthesis.  

For contig c_86767 annotated as L/ODC gene, RPKM values of leaf 

and stem were as high as 553 and 321, respectively. Its expression pattern 

was further confirmed by semi-quantitative RT-PCR of L/ODC gene in the 

samples from leaf, stem and root of S. flavescence, using β-actin as the 

internal control gene (Hong et al., 2010), as shown in Figure 2.11.  

 

 

Figure 2.11 | Semi-quantitative RT-PCR validation for L/ODC gene. 

Total RNA of kurara leaf, stem and root was extracted and then subjected to semi-quant- 

itative RT-PCR using S. flavescens β-actin as an internal control. 
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PCR amplification was carried out with three different cycle numbers 

(30, 28 and 26 cycles) to verify the linearity of semi-quantitative analysis. 

The highest expression was seen in leaf followed by stem. No detectable 

expression was observed in root in this condition. These RT-PCR results 

verified the expression pattern deduced from RPKM values provided by 

RNA-seq analysis.  

Furthermore, it was also consistent with the preferential L/ODC 

expression in the leaf of Lupinus angustifolius (Bunsupa et al., 2012). In all, 

accumulation of the final product such as matrine and oxymatrine would be 

high in other organs including root, but the initial steps for quinolizidine 

alkaloid biosynthesis feature in green parts of S. flavescens, such as leaf 

and stem as suggested previously (Saito and Murakoshi, 1995). 

 

2.3.8 Cloning of one S. flavescens CYP86A24-like gene 

Since callus of S. flavascens does not produce quinolizidine alkaloids 

(Saito et al., 1989), not to mention matrine or oxymatrine, while stem and 

leaf of kurara do accumulate considerable amount of matrine and 

oxymatrine (Wang et al., 2008), we searched the pool of DE contigs 

between callus and leaf / stem. 139 transcripts were found to be highly 

expressed in leaf and stem and 5 of them were annotated as 

monooxygenase or cytochrome P450. We focused on contig C_84372 and 

C_87778 and the BLAST result suggested these two contigs may belong to 

the different parts of a single gene. We performed the experiment to clone 

the full-length sequence and the similarity with CYP86A24 from Glycine 
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max is over 80%. 

Although the functional identification for CYP86A24 could not be 

found, according to the previous reports (Hofer et al., 2008; Serra, et al., 

2009), AtCYP86A1 and QsCYP86A32 are fatty acid omega-hydroxylases 

that are potentially involved in suberin biosynthesis. 

The sequence for S. flavescens CYP86A24-like gene is presented in 

Supplementary 2.2.  And the phylogenetic tree for the selected genes 

(Figure 2.12) suggests SfCYP450 may also have the function as a fatty 

acid omega-hydroxylase. Functional enzyme assays are now being 

undertaken. 

 

 

Figure 2.12 | Phylogenetic tree for selected genes related to SfCYP450 

(SfCYP86A24-like). Gm Glycine max, Mt Medicago truncatula, Sf Sophora 

flavescens, Pt populus trichocarpa, Mn Morus notabilis, Ph Petunia hybrid, Bn 

Brassica napus, At Arabidopsis thaliana, Sm Salvia miltiorrhiza and Qs Quercus suber. 
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2.4 Discussion 

S. flavescens has remarkable pharmaceutical attributes, including treating 

viral hepatitis, viral myocarditis, gastrointestinal hemorrhage and skin 

diseases (such as psoriasis and eczema).  

Numerous studies have reported the isolation and pharmacological 

action of the bioactive components in S. flavescens. Despite the importance 

and wide application of this medicinal plant, very few studies focused on 

its genetic profile. To generate overall deep transcriptome data for this plant 

will be helpful in discovering its underlying mechanism for the production 

of quinolizidine alkaloids. In this study, we utilized more than 200 million 

fastq format reads resulted from 9 tissues of S. flavescens to perform 

RNA-Seq analysis. 83,325 representative contigs were obtained and the 

key enzymes involved in the biosynthetic pathways of active compounds 

were retrieved. 

As to differentially expressed genes, NOISeq-sim output (Figure 2.5) 

showed DE genes identified by pair-wise comparison between callus and 

the rest 8 tissues were more than that of any other individual comparison. 

This is quite reasonable because in contrast with other organs of S. 

flavescens, callus consists of undifferentiated photoautotrophic cells.  

And in the slightly different situations as mature bud and bud right 

before blossom, not a single DE gene could be detected. Callus of S. 

flavescens does not accumulate quinolizidine alkaloids, which allows for 

the responsible genes to pop up by comparing it with other capable organs. 

By measuring the changes of matrine and oxymatrine in different growth 
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stages and organs (Zhang et al., 2008 and Wang et al., 2008) of S. 

flavescens by HPLC, the concentration of above-mentioned compounds in 

root and seeds was 3- to 6-fold higher than that of leaf, stem and flower. 

Nevertheless, such reports also showed leaf, stem and flower did 

accumulate considerable quantity of matrine and oxymatrine. These 

observations suggest that the gene(s) responsible for the formation of such 

characteristic compounds should lie in the list of differentially expressed 

genes (Figure 2.4) and the alkaloids may translocate from the sites of de 

novo biosynthesis to the different sites of final accumulation. 

Feeding studies illustrated the very first step for quinolizidine alkaloids 

biosynthesis. It concerns the decarboxylation of L-Lysine into cadaverine 

by catalysis of L/ODC (EC 4.1.1.18). With the presence of copper amine 

oxidase (CuAO, EC 1.4.3.22), oxidative deamination of cadaverine 

produces 5-aminopentanal that spontaneously cyclizes to Δ
1
-piperideine 

Schiff base (Bunsupa et al., 2012; Ma and Gang, 2004).  

The following steps to the final product matrine and oxymatrine still 

remain unknown. Based on co-expression pattern across the studied 

samples, we analyzed some candidate genes which were clustered into the 

same clade with the identified L/ODC gene. What’s more, the genes 

suggested by the RNA-Seq data of S. flavescens are also the ones indicated 

by the deep transcriptome data of Lupinus angustifolius, a species of 

legume that accumulates considerable quinolizidine alkaloids (Bunsupa et 

al. unpublished). 

Using enzyme commission numbers identified in S. flavescens dataset 
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to search KEGG for possible biosynthetic pathways retrieved 379 enzymes 

involved in biosynthesis of secondary metabolites. In addition to flavonoid 

biosynthetic pathway, valuable information about other pathways were also 

presented, such as monoterpenoid biosynthesis and steroid biosynthesis, 

which will contribute to the better understanding of the related mechanisms 

in plant kingdom.  

In this study, the obtained putative novel genes which may underlie the 

pharmaceutical function of S. flavescens and the findings on several 

essential biosynthetic pathways may serve as a stepping-stone for further 

studies on this promising and time-honored medicinal plant. 
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General Discussion and Conclusions 

Deep transcriptome data resulted from 5 tissues of P. lobata and 9 tissues of 

S. flavescens were achieved. Trimming process and assembly results 

showed the high quality of the raw fastq format reads and reliability of the 

assembled data. 

In chapter one, GC content of P. lobata was found to be similar to that 

of Medicago truncatula and Glycine max. Gene ontology annotation and 

overrepresentation analysis using Fisher’s exact test revealed certain GO 

terms may be related to its rapid and aggressive growth. For isoflavonoid 

biosynthetic pathway, 45 putative transcripts were retrieved and four 

contigs were chosen for biological validation using qRT-PCR. In general, 

the result was consistent with the RPKM ratio obtained by RNA-Seq 

analysis. 

By HPLC, the accumulation of puerarin and daidzin in different tissues 

of P. lobata was measured. The underground parts contain the two 

compounds with varied concentration while leaf does not accumulate 

puerarin or daidzin. According to co-expression analysis, candidate genes 

for producing puerarin were proposed and because the production of 

puerarin may require transportation across different tissues, 41 expressed 

ABC transporters were also discussed. 

In chapter 2, RNA-Seq data from 9 tissues were employed to search for 

putative genes involved in quinolizidine alkaloids biosynthesis. Due to the 

limited information concerning this pathway, genes co-expressed with 

L/ODC were studied and contigs annotated as MLP-like protein, 
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cytochrome P450 and ripening related protein may be involved in this 

pathway. 

By focusing on the differentially expressed genes between callus and 

stem / leaf, we managed to pin down one putative cytochrome 450 gene 

with high similarity to CYP86A subfamily which shows fatty acid 

omega-hydroxylation capacity in the previous report (Hofer et al., 2008). 

The work to identify the function of this protein is now being undertaken. 

We also used semi-quantitative PCR to measure the expression of 

L/ODC in leaf, stem and root of S. flavescens. The result suggested its 

highest expression in leaf, followed by stem, while there was no detectable 

expression in root. 
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Supplementary 1.1 Over-represented GO terms resulted for P. lobata. 

Probability GO term Gene_ontology_name n11  n12  n21  n22 

0.00E+00 GO:0005737 cytoplasm 1311 1152 13053 65992 

0.00E+00 GO:0009507 chloroplast 1561 1376 12803 65768 

0.00E+00 GO:0005829 cytosol 1225 462 13139 66682 

0.00E+00 GO:0016021 integral component of membrane 1700 2082 12664 65062 

0.00E+00 GO:0005634 nucleus 3346 3560 11018 63584 

4.61E-239 GO:0005794 Golgi apparatus 649 356 13715 66788 

8.24E-233 GO:0009570 chloroplast stroma 514 179 13850 66965 

7.99E-177 GO:0009651 response to salt stress 429 186 13935 66958 

3.44E-165 GO:0005774 vacuolar membrane 385 152 13979 66992 

1.47E-160 GO:0009535 chloroplast thylakoid membrane 306 67 14058 67077 

2.64E-103 GO:0009409 response to cold 251 108 14113 67036 

3.69E-94 GO:0009611 response to wounding 224 92 14140 67052 

4.11E-93 GO:0005802 trans-Golgi network 223 93 14141 67051 

3.90E-92 GO:0006355 regulation of transcription, 

DNA-templated 

469 572 13895 66572 

1.84E-89 GO:0010200 response to chitin 250 142 14114 67002 

1.85E-88 GO:0007030 Golgi organization 171 39 14193 67105 

7.18E-88 GO:0016787 hydrolase activity 374 381 13990 66763 

2.65E-87 GO:0003824 catalytic activity 359 352 14005 66792 

8.27E-86 GO:0005768 endosome 228 118 14136 67026 

2.69E-84 GO:0016192 vesicle-mediated transport 188 66 14176 67078 

3.08E-84 GO:0005618 cell wall 278 206 14086 66938 

2.06E-83 GO:0048046 apoplast 244 150 14120 66994 

2.48E-79 GO:0003723 RNA binding 469 650 13895 66494 

4.64E-79 GO:0019344 cysteine biosynthetic process 178 64 14186 67080 

2.17E-74 GO:0042742 defense response to bacterium 216 131 14148 67013 

1.21E-73 GO:0051788 response to misfolded protein 140 30 14224 67114 

5.34E-73 GO:0009737 response to abscisic acid 230 159 14134 66985 

1.03E-72 GO:0010027 thylakoid membrane organization 170 67 14194 67077 

3.46E-72 GO:0048193 Golgi vesicle transport 159 54 14205 67090 

5.54E-72 GO:0006094 gluconeogenesis 145 38 14219 67106 

5.31E-71 GO:0006612 protein targeting to membrane 225 157 14139 66987 

7.15E-71 GO:0015031 protein transport 186 94 14178 67050 
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9.86E-70 GO:0009853 photorespiration 127 23 14237 67121 

3.32E-69 GO:0009414 response to water deprivation 196 114 14168 67030 

2.28E-68 GO:0080129 proteasome core complex 

assembly 

111 11 14253 67133 

8.76E-66 GO:0010207 photosystem II assembly 130 32 14234 67112 

8.08E-65 GO:0006886 intracellular protein transport 164 77 14200 67067 

8.77E-65 GO:0006457 protein folding 204 141 14160 67003 

7.03E-64 GO:0006508 proteolysis 362 484 14002 66660 

5.43E-63 GO:0016567 protein ubiquitination 263 262 14101 66882 

1.79E-61 GO:0019252 starch biosynthetic process 152 68 14212 67076 

3.56E-61 GO:0005525 GTP binding 206 157 14158 66987 

4.42E-61 GO:0009733 response to auxin 183 117 14181 67027 

7.84E-59 GO:0005777 peroxisome 151 73 14213 67071 

4.61E-58 GO:0050832 defense response to fungus 190 139 14174 67005 

7.22E-58 GO:0009744 response to sucrose 138 57 14226 67087 

2.71E-57 GO:0005507 copper ion binding 173 112 14191 67032 

3.49E-57 GO:0009867 jasmonic acid mediated signaling 

pathway 

171 109 14193 67035 

9.04E-57 GO:0000139 Golgi membrane 156 86 14208 67058 

1.18E-56 GO:0006635 fatty acid beta-oxidation 141 64 14223 67080 

1.39E-56 GO:0009738 abscisic acid-activated signaling 

pathway 

174 116 14190 67028 

5.56E-55 GO:0009902 chloroplast relocation 100 18 14264 67126 

9.71E-55 GO:0015995 chlorophyll biosynthetic process 113 32 14251 67112 

1.27E-50 GO:0048767 root hair elongation 148 91 14216 67053 

1.40E-41 GO:0009723 response to ethylene 124 79 14240 67065 

1.76E-41 GO:0009644 response to high light intensity 125 81 14239 67063 

1.50E-39 GO:0009408 response to heat 137 109 14227 67035 

3.67E-39 GO:0003743 translation initiation factor 

activity 

111 65 14253 67079 

1.20E-36 GO:0006950 response to stress 182 217 14182 66927 

1.34E-34 GO:0051301 cell division 154 165 14210 66979 

2.79E-34 GO:0045454 cell redox homeostasis 99 60 14265 67084 

3.34E-34 GO:0016049 cell growth 97 57 14267 67087 

2.00E-30 GO:0009637 response to blue light 73 31 14291 67113 

 



Supplementary Data 

91 

 

Supplementary 2.1 Over-represented GO terms for S. flavescens. 

GO_term Gene_ontology_name P_value 

GO:0005886 plasma membrane  0.00E+00 

GO:0005737 cytoplasm  0.00E+00 

GO:0009507 chloroplast  0.00E+00 

GO:0005829 cytosol  0.00E+00 

GO:0005634 nucleus  0.00E+00 

GO:0016021 integral component of membrane  2.07E-258 

GO:0009570 chloroplast stroma  8.37E-227 

GO:0009506 plasmodesma  8.02E-189 

GO:0046872 metal ion binding  8.69E-176 

GO:0046686 response to cadmium ion  3.68E-167 

GO:0005576 extracellular region  8.47E-167 

GO:0009651 response to salt stress  7.50E-166 

GO:0005794 Golgi apparatus 2.65E-163 

GO:0009941 chloroplast envelope  5.30E-162 

GO:0005739 mitochondrion 6.54E-156 

GO:0016020 membrane  6.65E-144 

GO:0005524 ATP binding  7.82E-139 

GO:0005774 vacuolar membrane  2.11E-137 

GO:0009535 chloroplast thylakoid membrane  1.88E-122 

GO:0005618 cell wall 1.17E-117 

GO:0005783 endoplasmic reticulum  8.31E-113 

GO:0019288 
isopentenyl diphosphate biosynthetic process, 

methylerythritol 4-phosphate pathway  

6.74E-106 

GO:0005730 nucleolus  3.82E-99 

GO:0048046 apoplast  2.29E-90 

GO:0006098 pentose-phosphate shunt  4.88E-89 

GO:0006096 glycolytic process  9.54E-86 

GO:0006364 rRNA processing  1.52E-80 

GO:0005840 ribosome 2.75E-77 

GO:0051788 response to misfolded protein  7.98E-75 

GO:0009853 photorespiration  1.15E-74 

GO:0007030 Golgi organization  6.12E-74 

GO:0003824 catalytic activity  2.11E-73 
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GO:0006351 transcription, DNA-templated  8.54E-73 

GO:0006412 translation 3.37E-72 

GO:0019344 cysteine biosynthetic process  5.01E-72 

GO:0003735 structural constituent of ribosome  3.72E-70 

GO:0005773 vacuole  9.96E-70 

GO:0080129 proteasome core complex assembly  2.43E-69 

GO:0003677 DNA binding  2.36E-68 

GO:0010027 thylakoid membrane organization 1.67E-66 

GO:0009409 response to cold 9.66E-64 

GO:0006355 regulation of transcription, DNA-templated 1.34E-63 

GO:0042742 defense response to bacterium 1.65E-63 

GO:0009505 plant-type cell wall 2.73E-62 

GO:0009793 embryo development ending in seed dormancy 6.03E-62 

GO:0006511 ubiquitin-dependent protein catabolic process 3.70E-61 

GO:0003700 
sequence-specific DNA binding transcription factor 

activity 

4.52E-61 

GO:0006094 gluconeogenesis 4.88E-60 

GO:0005507 copper ion binding 1.33E-59 

GO:0015995 chlorophyll biosynthetic process 6.74E-59 

GO:0045893 positive regulation of transcription, DNA-templated 2.51E-58 

GO:0019252 starch biosynthetic process 2.80E-57 

GO:0016126 sterol biosynthetic process 7.55E-57 

GO:0015031 protein transport 7.62E-57 

GO:0000166 nucleotide binding 6.49E-56 

GO:0016117 carotenoid biosynthetic process 1.35E-54 

GO:0006457 protein folding 2.87E-53 

GO:0016787 hydrolase activity 1.11E-51 

GO:0009737 response to abscisic acid 3.31E-51 

GO:0010207 photosystem II assembly 4.85E-50 

GO:0009744 response to sucrose 6.91E-47 

GO:0048767 root hair elongation 1.38E-46 

GO:0005802 trans-Golgi network 1.68E-46 

GO:0001510 RNA methylation 4.03E-46 

GO:0016192 vesicle-mediated transport 3.90E-45 

GO:0005768 endosome 4.96E-45 

GO:0009664 plant-type cell wall organization 1.11E-44 
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GO:0009414 response to water deprivation 1.89E-44 

GO:0006833 water transport 2.33E-44 

GO:0006612 protein targeting to membrane 5.58E-43 

GO:0009902 chloroplast relocation 1.27E-42 

GO:0010363 regulation of plant-type hypersensitive response 1.74E-42 

GO:0006979 response to oxidative stress 1.96E-42 

GO:0005525 GTP binding 2.58E-42 

GO:0010200 response to chitin 4.32E-42 

GO:0009611 response to wounding 5.03E-42 

GO:0015979 photosynthesis 6.93E-42 

GO:0048193 Golgi vesicle transport 7.29E-42 

GO:0009408 response to heat 9.02E-42 

GO:0005506 iron ion binding 1.20E-41 

GO:0005777 peroxisome 2.13E-41 

GO:0009640 photomorphogenesis 3.08E-41 

GO:0009909 regulation of flower development 3.37E-41 

GO:0006886 intracellular protein transport 1.49E-40 

GO:0009750 response to fructose 1.70E-40 

GO:0000023 maltose metabolic process 2.07E-40 

GO:0006950 response to stress 3.74E-40 

GO:0009965 leaf morphogenesis 4.25E-40 

GO:0019761 glucosinolate biosynthetic process 4.86E-40 

GO:0010075 regulation of meristem growth 5.15E-40 

GO:0030244 cellulose biosynthetic process 7.38E-40 

GO:0000139 Golgi membrane 7.94E-40 

GO:0005789 endoplasmic reticulum membrane 1.64E-39 

GO:0016491 oxidoreductase activity 3.09E-39 

GO:0016567 protein ubiquitination 8.44E-39 

GO:0034976 response to endoplasmic reticulum stress 1.20E-38 

GO:0035304 regulation of protein dephosphorylation 1.62E-38 

GO:0006635 fatty acid beta-oxidation 3.61E-38 

GO:0030154 cell differentiation 5.92E-38 

GO:0006972 hyperosmotic response 1.26E-37 

GO:0020037 heme binding 1.68E-37 

GO:0016049 cell growth 2.25E-37 

GO:0009220 pyrimidine ribonucleotide biosynthetic process 2.28E-37 
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GO:0019013 viral nucleocapsid 2.68E-37 

GO:0006816 calcium ion transport 2.68E-37 

GO:0000502 proteasome complex 6.40E-37 

GO:0006007 glucose catabolic process 8.47E-37 

GO:0051301 cell division 1.15E-36 

GO:0009534 chloroplast thylakoid 4.58E-36 

GO:0009658 chloroplast organization 5.98E-36 

GO:0043085 positive regulation of catalytic activity 1.65E-35 

GO:0006508 proteolysis 4.59E-35 

GO:0032440 2-alkenal reductase [NAD(P)] activity 6.41E-35 

GO:0009733 response to auxin 9.18E-35 

GO:0005975 carbohydrate metabolic process 3.10E-34 

GO:0031348 negative regulation of defense response 3.49E-34 

GO:0048481 ovule development 6.37E-34 

GO:0006633 fatty acid biosynthetic process 7.00E-34 

GO:0050832 defense response to fungus 9.16E-34 

GO:0009845 seed germination 1.58E-33 

GO:0043161 
proteasome-mediated ubiquitin-dependent protein 

catabolic process 

2.04E-33 

GO:0008152 metabolic process 2.60E-33 

GO:0010228 vegetative to reproductive phase transition of meristem 4.74E-33 

GO:0006623 protein targeting to vacuole 1.51E-32 

GO:0009644 response to high light intensity 2.18E-32 

GO:0030529 ribonucleoprotein complex 2.23E-32 

GO:0016132 brassinosteroid biosynthetic process 4.54E-32 

GO:0005759 mitochondrial matrix 5.33E-32 

GO:0006626 protein targeting to mitochondrion 3.01E-31 

GO:0006499 N-terminal protein myristoylation 4.85E-31 

GO:0006084 acetyl-CoA metabolic process 5.06E-31 

GO:0006606 protein import into nucleus 8.01E-31 
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Supplementary 2.2 Fasta format sequence of CYP86A24-like gene 

>SfCYP86A24-like 

ATGGATGCATCAACGGCTTTTATGATCCTATCAGCCATGGGAGGCTATTTAATATGGTTCTCCTT

CATCTCGCGGTCACTGAGAGGTCCACGTGTCTGGCCCCTATTGGGTAGTCTCCCAGGTCTCAT

CCAACACGCCAACCGCATGCACGACTGGATCTCAGACAACCTCCGCGCGTGTGGCGGCACGT

ACCAAACCTGCATCTGTCCCATTCCCTTCCTCGCCAGAAAACAGGGTCTCGTGACCGTCACGT

GCGACCCCAAGAACCTCGAGCACATCCTCAAGCTCCGCTTCGACAACTACCCCAAGGGTCCG

ACGTGGCAGGCAGTATTCCACGACTTGCTCGGAGATGGCATTTTCAATTCAGATGGTGACACG

TGGCTGTTCCAGCGCAAGACCGCCGCGCTGGAATTCACCACCGCACCCTGCGCCAAGCCATG

GCCCGCTGGGTGAGCCGAGCCATCAAGCACAGGTTCTGTCCCATCTTAGCCGCCGCACAGCA

TGATCAGAAGTCTGTCGACCTCCAGGACCTGCTGCTTCGGCTCACTTTCGATAACATATGCGG

CTTGGCTTTCGGGCAAGACCCACAAACACTTGACGTGGGCCTACCCGAAAACAAGTTCGCAT

TGTCTTTCGACCGTGCAACCGAAGCCACGCTGCAACGCTTCATCTTGCCCGAAATTGTTTGGA

AGTTTAAGAAATGGCTTGGACTCGGGATGGAAGTGAGCCTGACCCAAAGCCTCAGACACATT

GATAAGTACCTTTCCAACATCATCAACACGCGCAAGCTTGAGCTGGTGGAAAAACAACAAGT

CATTGGTGCTGGTGGGGCCACCCATGATGACCTGTTATCTCGGTTCATGAAAAAGAAGGAATC

CTACTCAAACGAGTTCCTCCAACACGTGGCACTCAACTTCATCCTAGCTGGACGTGACACATC

ATCGGTGGCACTCAGCTGGTTCTTCTGGCTATGCATCCTAAATCCCAGCGTAGAGGAAAAGAT

CTTGATCGAGCTCTGCACCGTTCTGATGGAGACACGTGGCGGTGACGTGTCAAAGTGGGTCG

ACGAGCCTCTAGTGTTCGAGGAGGTTGACCGGTTGGTGTACCTGAAGGCCGCACTGTCGGAG

ACGCTGCGGCTTTACCCGTCGGTGCCGGAGGATTCGAAGCACGTGGTGAACGACGACGTTTT

GCCGAACGGGACGTTCGTTCCGGCGGGTTCAGCGGTTACCTATTCCATTTACAGCATCGGGAG

GATGAAGTTCATTTGGGGAGAGGACTGCCTGGAGTTCAAGCCGGAGCGGTGGCTCTCCGCCG

ACGGGAAACAGATTCAGGTGCATGATTCTTACAAATTCGTTTCGTTCAATGCGGGGCCCAGGA

TTTGCTTGGGGAAGGACTTGGCTTACTTGCAGATGAAGTCCATAGCGGCGGCGGTGCTGCTCC

GCCACCGCCTCACGGTGGCGCCGGGACACCGCGTGGAGCAGAAGATGTCGCTGACGCTGTTC

ATGAAGTATGGGCTAAAGGTGAACGTGCACCCTAGGGATCTAAGGCCGGTGTTGGAAAAGAT

AAAAAGCAAGGTTGAGTCGTGTGGTAAAGAAGCTCTCAGTAATAATGGTAATATGGACGGGG

TTGAAATGGTTGCTGCTGATGCT 


