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SUMMARY 

4-dimensional magnetic resonance imaging (4D-MRI) is an imaging technique that 

reconstructs a 3D MRI with time series from a set of time sequential images of 2D MR. 

One of the advantages of 4D medical imaging over 3D medical imaging is that the 

anatomic motion and organ deformation caused by respiratory motion can be clearly 

observed. Retrospective method is a common method that has been widely use to 

reconstruct 4D imaging. However, it requires long acquisition time. A prospective 

method to reconstruct 4D-MRI especially for thoracoabdominal organ was proposed in 

this thesis. The main purpose is to shorten the acquisition time while maintaining the 

quality. Although the prospective method is tested only in simulations using previously 

fully acquired data sets, it is successfully reduced time acquisition of data slices by 

75.7% and 82.1% for the volunteers and patients. A clinical application of 4D-MRI is 

also discussed in this thesis. The diaphragm motion from 4D-MRI of  8 chronic 

obstructive pulmonary disease (COPD) patients and 8 healthy volunteers were extracted. 

The displacements of the diaphragm were normalized and compared between COPD 

patients and healthy volunteers. The average of the normalized displacement of COPD 

patients was found to be smaller compared to healthy volunteers. Using the same 

diaphragm motion, we also generated inhalation phase length map that can be used to 

locate paradoxical motion of the diaphragm, which is one of the characteristics of 

COPD. 
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1. INTRODUCTION 

1.1. Research on 4D imaging 

Study of four-dimensional (4D) medical imaging of thoracoabdominal organs has 

been increasingly applied in radiotherapy treatment planning [1] [2]. One of the 

advantages of 4D medical imaging over 3D medical imaging is that the anatomic 

motion and organ deformation caused by respiratory motion can be clearly observed. 

This leads to better planning and delivery of radiotherapy. There are two common 

imaging modalities to reconstruct 4D medical imaging: computed tomography (CT) and 

magnetic resonance image (MRI). Table 1.1 shows the comparison of the common 

approach of each modality.  
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Table 1. 1. Common approach of 4D imaging using CT and MRI  

4D-CT reconstruction  [3] [4] [5] [6] [7] 4D-MRI reconstruction [8] [9] [10] [11] 

[12] 

Prospective gating:  

- Requires a predetermined gating 

window 

Retrospective gating: 

- Obtaining images in all breathing 

phases 

Common approach: 

- Obtain 2D-MR images to cover volume 

and respiratory phases from inhalation to 

exhalation phases.  

- Sorted based on the respiratory phase. 

Con: 

- Image acquisition uses 

high-energy radiation 

Con: 

- Long acquisition times because a large 

number of 2D images must be acquired 

 

Early reports on using 4D-CT acquisition may be found in the literature [3] [4] [5]. 

There are two standard ways to carry out 4D-CT: prospective gating and retrospective 

gating [3] [4] [5] [6] [7]. Prospective gating requires a predetermined gating window in 

specific breathing phases. Images are taken only when the respiratory phase is within 

the gating window. The process is repeated until volume of interest in a certain 

respiratory phase is fully covered. On the other hand, retrospective gating 4D-CT 

requires obtaining images in all breathing phases without a gating window and covering 

volume of interest. Those images are then synchronized according to their respective 

respiratory phases and locations using a separate signal that represents its breathing 

phase.  

Another common imaging modality used to reconstruct 4D medical imaging of 

thoracoabdominal organs is magnetic resonance imaging (MRI). Reconstruction of 

4D-MR images has been less investigated compared to 4D-CT, which is 

well-established. Several studies have proposed reconstruction of 4D-MR images using 

time-sequential 2D-MR images [8] [9] [10] [11] [12]. A common approach for 
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reconstruction of 4D-MR images is using 2D-MR images to cover both the volume of 

the respiratory organ and the volume of the respiratory phases from inhalation to 

exhalation phases. The 2D-MR images are then retrospectively sorted based on the 

obtained respiratory phase to reconstruct the 4D-MR images (i.e. retrospective 

4D-MRI).  

Although the results of the reconstruction usually have good image quality, 

retrospective 4D-MRI requires long acquisition times because a large number of 2D 

images must be acquired for the purposes of sorting and volume construction. For 

example, von Siebenthal et al. [8] developed a retrospective 4D-MRI process using a 

dedicated navigator slice at a fixed position that consists of 2D-MR image sequences. 

The purpose of the navigator slice is to determine the phase of a certain data frame for 

image sorting before reconstructing the complete 3D images in a whole breathing cycle. 

Although the data frame 2D-MR images are acquired using fast 2D imaging 

(175ms/frame), the total acquisition time is about an hour. An additional 1.5-3 hours are 

required for the purpose of determining the frame similarity by tracking the region of 

interest (ROI) over 3000-7000 navigator images. Such retrospective 4D-MRI consists of 

many breathing cycles and captures the irregularity of respiration as well.  

One navigator-based method that is used for 4D-MRI reconstruction was proposed 

by Tokuda et al [9]. This method was designed to acquire a series of 3D images that 

cover the whole range of respiratory organs by using the gating method. Instead of 

using one gating window, Tokuda et al used several bins (gating windows) to segment 

respiratory signals into several partitions. Since the purpose of this method is to obtain 

real-time tracking of 4D-MRI, complex hardware integration that used an A/D converter, 

RF pulse, and personal computer with MR scanner is required.  
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1.2. 4D-MRI reconstruction using intersection profile method 

A hardware-independent method to reconstruct a robust and high-quality 4D-MR 

image consisting one breathing cycle from a temporal sequence of 2D-MR images has 

been developed previously [13]. This is a navigator-based method called the intersection 

profile method. Time sequential 2D-MR images in the sagittal plane which functions as 

the navigator slice are obtained first for a long time so as to include many respiration 

cycles, typically 3 min. Data slices (time sequential 2D-MR images in the coronal 

plane) are then obtained from the front (anterior) to back (posterior) body positions for 1 

min for each slice position. Several spatio-temporal patterns from both the navigator 

slice and data slices are extracted at their intersection location to obtain the respiratory 

patterns. The 4D-MRI reconstruction is done by combining a proper respiratory pattern 

from each data slice that has the highest similarity to the corresponding navigator slice. 

The detail of the method is discussed in the following sections. 

1.2.1. Materials 

The MR images were acquired using 1.5T INTERA ACHIVA nova-dual (Philips 

Medical Systems) whole-body scanner with a 16ch SENSE TORSO XL coil. A 2D 

balanced FFE sequence was used. The imaging parameters were as follows: SENSE 

factor, 2.2; flip angle, 45o; TR, 2.2ms; TE, 0.9ms; FOV, 384mm; in-plane resolution, 

256x256 pixels and 1.5x1.5mm2; slice thickness, 7.5mm; slice gap, 6.0mm; scan time, 

150ms/frame. All subjects were instructed to breath normally during the acquisition 

process. The image acquisition experiment was conducted under the approval of the 

Ethical Review Board of Chiba University. The software used to implement our method 
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was MatLab 7.10 and we ran it on a PC with Intel®Core™2 Quad, 2.66GHz, 16GB 

RAM. 

1.2.2. Coordinate system and image acquisition 

In this subsection, we define a coordinate system and variables and then describe the 

method for image acquisition. We show specific values for some parameters to clarify 

the process and provide a practical situation for readers.  

We first define a 3D coordinate system as shown in Figure 1.1. Two types of 

2D-MR images are used: the navigator slice (NS) and the data slice (DS). The NS is a 

temporal sequence of 2D-MR images in the sagittal plane which consists of several 

hundred frames.  Those MR images are obtained at a constant X axis position and 

consist of several respiratory patterns in all acquisition data. We formally denote signal 

intensity of a frame in NS as  fnavi(Xs,y, z, tnavi) where tnavi represents the tnavi-th frame 

in NS. Here, Xs represents the X axis position where the NS is located and (y, z) 

represents the position in the NS. 

The DS is the temporal sequence of 2D-MR images in the coronal plane. One set of 

DS consists of DSs along the Y axis (anterior-posterior) to cover the thoracic volume. 

Each of the DSs in the DS set also consists of several hundred frames and has some 

respiratory patterns in all breathing phases. The signal intensity in the DS is denoted as 

fdata(x, yi, z, tdata), i1, 2, 3, …, n. Here yi represents the Y axis position where the ith 

DS is located, (x, z) represents the pixel position in the DS, and n represents the number 

of DSs. 

When the NS and DS are at the same respiratory phase, they should share the same 

signal intensity at (Xs, yi) along the Z axis and ideally the following expression should 

be satisfied: 
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fnavi(Xs,yi, z, tnavi) = fdata(Xs, yi, z, tdata)   (1.1) 

 

 

Figure 1. 1. Coordinate system of the proposed method. Navigator slice intersects with data slices at the 

location (Xs, yi) 

Although the NS and DS intersect at the location (Xs, yi), they are not obtained at the 

same time. The NS is obtained first at Xs and sequentially followed by DS acquisition at 

the location  yi, i=1, 2, 3, …, n. The total time of image acquisition for one subject is 

equal to 3 min for NS acquisition and n min to obtain n slices for the DS. Normally, 

about 10-25 slices are obtained for the DS set. Thus, the total acquisition time to get a 

complete data set ranges from 13 to 28 min. 

1.2.3. Description of intersection profile method 

Figure 1.2 shows a schematic illustration of the intersection profile method. Because 

the DS and NS intersect at yi, i=1, 2, 3, …, n, n spatio-temporal (ST) patterns can be 

generated from both the NS and DS at the intersection location. These ST patterns 

represent breathing cycles at a location (Xs, yi) over time. Several respiratory patterns 
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can be extracted from ST patterns generated from the NS. The idea of the intersection 

profile method is to employ the similarity of respiratory patterns found in ST patterns 

from the NS and ST patterns from the DS.  The respiratory patterns found in the NS 

are used as references and compared with the ST patterns from the DS. A similarity 

measure using the normalized cross correlation (NCC) is used to find the best matching 

respiratory pattern between the reference and ST patterns from the DS. A 4D-MR image 

can be reconstructed once the best matching respiratory patterns are found for each 

intersection location (yi). The detailed procedure to reconstruct 4D-MR images using 

the intersection profile method is as follows: 

1. Determine the intersection location of NS and each DS, denoted as  yi where i=1, 2, 

3, …n and n is the number of slices of DSs. 

2. Manually set region of interest (ROI) around the diaphragm boundary of the NS.  

3. Generate n ST patterns from the ROI of the NS.  

4. Extract respiratory patterns from the NS. One respiratory pattern is denoted as Ak,i(z, 

t), k=1, 2, … m where k denotes the kth respiratory pattern and m is the number of 

respiratory patterns extracted from the ST pattern. The period of the kth respiratory 

pattern is denoted by wk.  

5. Set ROI around the diaphragm boundary of the DSs and generate n ST patterns 

from each DS. Denote the ST patterns from DS as Bi(z, tdata).  

6. For each Ak,i , k=1, 2, 3, …m and i=1, 2, 3, …n, find the best NCC value between 

Ak,i and Bi. The best NCC value from the kth pattern at yi is denoted as Ck,i. The 

time at the DS where C takes the maximum value at yi is denoted as tkbest,i. 

7. Choose the best respiratory cycle from the NS by the selecting the highest 

geometric mean (geomean) using the following expression:  



8         1. Introduction 

 

 

   n

ik
n
ibest Ck

/1

,1maxarg      (1.2) 

This best geomean value will ensure that the corresponding respiratory patterns 

found in the DSs have the closest similarity with the respiratory patterns found in 

the NS. As a result, the respiratory cycle in the reconstructed 4D-MR image is also 

very close to the respiratory cycle in the NS. 

8. Finally, the 4D-MRI can be reconstructed by combining the DS fdata(x, yi, z, tdata) 

where tdata ranges from tkbest,i to tkbest,i+wkbest,i. 

 

An intuitive explanation why geomean is used in Eq. (1.2) instead of using the 

arithmetic mean is as follows. The geomean calculates the product of the given NCC 

values and then takes the nth root. The product of the NCC values should provide a 

more robust representation of the similarity measure compared to the arithmetic mean 

which uses the sum. For example, if an arithmetic mean is used, the NCC values of 0.9 

and 0.1 will produce the same arithmetic mean as NCC values of 0.5 and 0.5, as well as 

NCC values of 0.7 and 0.3. The arithmetic mean (similarity measure) of those examples 

is 0.5, which is bias and not representing the quality of reconstructed 4D-MRI. The use 

of geomean will avoid such bias. From the examples above, the geomean are 0.3, 0.5 

and 0.46 for the first, second and third case, respectively. The NCC value of 0.9 and 0.1 

yields the lowest geomean (similarity measure) compared to the other two because one 

of the NCC values is very low (0.1). Therefore, using geomean to reconstruct 4D-MRI 

will eliminate low NCC value to be included in the reconstructed 4D-MRI. It also 

ensures the quality of reconstructed 4D-MRI consists of similar quality of DSs. 



1.3. Thesis Contribution  9 

 

 

 
Figure 1. 2. Procedure to find a respiratory pattern from DS which is similar to that of the NS.  

1.3. Thesis Contribution 

The contribution of this study is mainly the improvement of the previous 4D-MRI 

reconstruction and clinical application of 4D-MRI. Specifically, the contributions of this 

thesis are: 

1. Diaphragm motion extraction and modeling using GND-PCA 

Extract diaphragm motion from 4D-MRI and model using GND-PCA. We also 

compared the motion modeling modeled with GND-PCA and regular PCA. The 

error of the model using GND-PCA is smaller compared to the regular PCA. 

2. Automation of 4D-MRI reconstruction. 

The automation are especially for diaphragm motion tracking and respiratory 

patterns extraction. Such automation is required since manual process will affect 
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the output of the 4D-MRI. Using automation, the reconstructed 4D-MRI will have 

consistent quality. 

3. Time reduction of 4D-MRI data acquisition. 

In order to reduce the time acquisition, we employed a prospective method during 

the data acquisition. The aim is not only reduce the time acquisition but also 

maintaining the quality of reconstructed 4D-MRI. 

4. Diaphragm motion analysis of COPD extracted from 4D-MRI 

One of the clinical application of 4D-MRI is extracting and analyzing the 

diaphragm motion of the COPD. We compared and analyzed the motion of the 

diaphragm extracted from the COPD patients and compared with healthy 

volunteers. 

1.4. Thesis Outline 

This thesis is divided into 4 major parts, statistical modeling, automatic extraction of 

diaphragm motion and respiratory cycle, time reduction of 4D-MRI reconstruction and 

clinical application of 4D-MRI. In the following chapters, we will discuss more detail 

on each topic. 

Chapter 2 describes statistical modeling of diaphragm motion extracted from 

4D-MRI using GND-PCA. The effectiveness of GND-PCA compared with general 

PCA to model diaphragm motion is covered in this chapter.  

To support the prospective method to reconstruct 4D-MRI, chapter 3 discusses about 

an automatic technique to extract diaphragm motion. The automation include diaphragm 

motion tracking and extraction of the respiratory cycles.  
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Chapter 4 presents the reconstruction of 4D-MRI using prospective method. One of 

the advantages of prospective method is to shorten acquisition time of the data slice 

while maintaining the quality of 4D-MRI. 

The clinical application of 4D-MRI is discussed in chapter 5. The diaphragm motion 

is extracted from 4D-MRI of volunteers and COPD patients. The diaphragm motion is 

quantitatively analyzed and also used to locate paradoxical motion of the COPD 

patients.   

Finally, the summary and future works are presented in chapter 6. 
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2. GND-PCA BASED STATISTICAL MODELING OF 

DIAPHRAGM MOTION 

Major parts of this chapter were published as a manuscript in the Journal of 

Computational and Mathematical Methods in Medicine: 

Windra Swastika, Yoshitada Masuda, Rui Xu, Shoji Kido, Yen-Wei Chen, and 

Hideaki Haneishi, “GND-PCA-Based Statistical Modeling of Diaphragm 

Motion Extracted from 4D MRI,” Computational and Mathematical Methods in 

Medicine, vol. 2013, Article ID 482941, 9 pages, 2013. 

doi:10.1155/2013/482941.*) 

 

*) Article was publish under a "Creative Commons Attribution License". 

Abstract 

We analyzed a statistical model of diaphragm motion using regular principal 

component analysis (PCA) and Generalized N-dimensional PCA (GND-PCA). First, we 

generate 4D-MRI of respiratory motion from 2D MRI using an intersection profile 

method. We then extract semi-automatically the diaphragm boundary from the 4D-MRI 

to get subject-specific diaphragm motion. In order to build a general statistical model of 

diaphragm motion, we normalize the diaphragm motion in time and spatial domain and 

evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA 

and GND-PCA. We also validate the results using the leave-one-out method. The 

results show that the first three principal components of regular PCA contain more than 

98% of the total variation of diaphragm motion. However, validation using 
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leave-one-out method gives up to 5.0mm mean of error for right diaphragm motion and 

3.8mm mean of error for left diaphragm motion. Model analysis using GND-PCA 

provides about 1mm margin of error and is able to reconstruct the diaphragm model by 

fewer samples. 

Keywords 

Statistical modeling, GND-PCA, diaphragm motion, 4D-MRI 
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2.1. Background 

4D-MRI is an advanced imaging technique that reconstructs a 3D MRI with time 

series from a set of time sequential images of 2D MRI into. For respiratory motion, the 

use of 4D MRI has an important role in many clinical applications such as lung cancer 

radiotherapy planning, examining pulmonary diseases and analyzing diaphragm motion. 

However, current MRI is unable to acquire 4D MRI directly. Therefore, in the recent 

years some methods have been proposed to reconstruct 4D MRI of respiratory organs 

based on the sequential 2D MRI [8] [9] [13] 

M von Siebenthal [8] proposed a method to obtain 4D image using internal 

respiratory gating and reconstructed it by retrospective sorting of dynamic 2D MR 

images. It showed the detailed deformation of an organ during free breathing. Tokuda 

also proposed an adaptive imaging method to acquire a series of 3D MR images of 

respiratory organs as the extension of respiratory gating [9]. Our previous study 

successfully achieved 4D-MR imaging of organs with respiratory motion using a 

method called intersection profile method [13]. In this method, we reconstructed 4D 

MRI of respiratory organ from time sequential images of 2D MRI under natural 

respiration. We not only successfully visualized 4D MRI of respiratory organ, but also 

proposed to construct diaphragmatic function map that can be used to evaluate 

diaphragm motion quantitatively. Previous related works on 4D respiratory motion 

modeling include [14] [15] [16] [17] [18].  

Recent statistical model of respiratory motion was proposed by Li et al [19]. It was a 

statistical model of lung based on principal component analysis (PCA) and applied to 
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clinical data. The lung motion model, however, was based on two types of respiratory 

phantoms and cosine function which will only be idealistic for phantom motion. 

Extraction and statistical modeling of lung motion field was also demonstrated in [20]. 

The experiment extracted motion fields from a 4D-CT data set and built a motion model 

for both intra- and intersubject. Although it focused on the lung motion, the results 

showed that the use of diaphragm as a stimulator to drive the motion model could 

reduce the prediction error. Simultaneous registration of all dynamic MR images and 

modeling processing were performed in [21] for the purposes to improve the accuracy 

of motion estimation. However, this approach may only be feasible for simple rigid or 

affine motion model. Applying this model to organs that have complex or non-rigid 

motion will significantly increase the number of parameter and consequently execution 

time also becomes much larger. 

The statistical modeling in was focusing on how to model respiratory motion based 

on lung motion [19] [20] [21] or internal liver motion [22]. In this paper, instead of 

extracting lung to obtain respiratory motion, we focus on extracting diaphragm motion 

from 4D-MRI and analyzing it using PCA. As one of the major determinant in 

respiratory motion, diaphragm has greater superior-interior translation compared with 

other respiratory organs such as lung or liver. Thus by modeling and analyzing 

diaphragm motion, the variability of respiratory motion can be clearly visualized. As 

mentioned in [23], GND-PCA method can construct MR T1-weighted brain volumes 

and CT lung volumes using fewer training samples compared with regular PCA. Hence, 

we also interested to analyze the efficacy of GND-PCA compared with regular PCA in 

modeling the diaphragm motion. 
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To the best of our knowledge, this is the first study of modeling and analyzing 

diaphragm motion extracted from 4D MRI. 

2.2. Materials and Methods 

The process of constructing and analyzing the diaphragm motion model consists of 

four parts. The first is diaphragm segmentation and motion tracking. We will briefly 

review the methodology we used to create 3D model of diaphragm shape. Second is 

data normalization. We will cover how to normalize the data obtained from the previous 

step. This step is primarily important to generalize the data from different subjects. 

Third is model analysis using PCA and GND-PCA. Basic theory of PCA and 

GND-PCA will be described. Last is data evaluation which we will explain how to 

validate the constructed model. 

2.2.1. 3D Diaphragm Segmentation and Motion Tracking 

Right-handed Cartesian coordinate system is used to cover the whole diaphragm 

area. A number of MRI data slices, size of 256x256 pixels in coronal view are set along 

the y axis (Fig. 1a). Each data slice position is denoted as yi where i=1,…, S. To assess 

the diaphragm motion, we also use T time-sequential images for each data slice of yi. 

We denote one data slice as fdata(x, yi, z, t), where t=1, 2, …, T. A first shape of 

diaphragm is obtained from fdata(x, yi, z, t) for i=1, 2, …, S and t=1. The diaphragm 

shape is determined as follows. Several points are selected in each data slice (yi) that 

represents diaphragm boundary shown as white dots in Fig. 1a. The number of points 

varies from 10 to 15 depend on the curve of diaphragm boundary. Generally, more 

points are required if the diaphragm boundary has a rounded or curvature shape. The 

points are then connected by spline interpolation. By conducting this operation for all yi, 
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the area of diaphragm in xy plane is defined as shown in Figure 2.1. We denote this 

shape as W. Note that we ignore the area below the heart because it is strongly affected 

by heart beat and apart from respiratory motion. The entry of this matrix represents z 

value of diaphragm surface at (x,y). The 3D representation of diaphragm surface is 

shown in Fig. 1c. In this step, S x 256 matrix for one whole diaphragm area is generated, 

where S is the number of slice. Depends on the acquisition process, S will vary between 

16 to 24. 

    

(a)                         (b)                     (c) 

Figure 2. 1. Coordinate definition of 4DMRI and diaphragm extraction. (a) Manually selecting several 

points (white dots) of one data slice to extract diaphragm surface, (b) complete extraction of diaphragm 

surface from y1 to y20 and (c) representation of diaphragm area. 

 

Once the 3D shape on diaphragm area W is obtained for t=1 (as shown in Figure 

2.1b), the 3D shape of diaphragm over the area of W is tracked in the next frame. In 

order to do so, a profile of fdata(x, yi, z, t) along Z at position (x, y) over W is compared 

with a profile of fdata(x, yi, z, t-1) at the same position (x, yi) and find a value of 

displacement of diaphragm along z axis by using normalized cross correlation.  

Figure 2.1 summarizes the flow diagram of diaphragm motion tracking method. 

Complete reference regarding this motion tracking method can be found in [13]. 
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Figure 2. 2. Flow diagram of diaphragm motion tracking method. 

2.2.2. Data Normalization 

The acquisition of diaphragm motion based on the previously explained method 

cannot be generalized for all diaphragms due to the wide range of variability of 

diaphragm shape and size among the subjects. Hence, the acquired data need to be 

normalized. The normalization process takes four steps.  

First, we divide the diaphragm area into two parts, right and left diaphragm area.  

Second, to represent a detailed and unique diaphragm region, we calculate gradient 

edges of all diaphragm shapes and choose one that has the highest gradient edges as 

reference image. Affine registration is then performed for all diaphragm shapes to 

ensure the same location and size of all diaphragm shape before the analysis is 

performed. 

Extract diaphragm surface of 
first data slice (t=1)

Proceed to the next slice
t=t+1

Find the best correlation of 
between fdata(x, yi, z, t) and 

fdata(x, yi, z, t-1) along Z axis

Obtain diaphragm surface for 
slice t

End of slice?

Data normalization

no 

yes
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Third, for each diaphragm area, we set the top left and bottom right coordinate to 

limit the diaphragm area into a rectangular shape. The distance of new top left position 

is 1/10 of the diaphragm area width and so is the new bottom right position. Figure 2.3 

shows how to set new region of diaphragm area. Selecting the region of diaphragm area 

ensures that the analysis is only done in the main part of the diaphragm area and ignores 

the area that has small movement. This also maintains the correspondence on different 

subjects since the top and bottom area will constantly represent same anterior and 

posterior position of all subjects. 

 

Figure 2. 3. Set the top left and bottom right coordinate to limit the diaphragm area 

The last step of normalization process consists of two parts, temporal and spatial 

normalization. Temporal normalization makes all subjects have the same number of 

frames, while spatial normalization only normalizes the size of diaphragm area. 

Let Z(x,y,t) denotes the z value of diaphragm surface (or target image) at (x,y) 

position and tth frame (1, 2, …, T). After temporal normalization Z(x, y, t) can be 

denoted as Z(x, y, t*) where t* range from 1 to 20. The following operator is used to 

define t*: 

�∗ = �
����

���
(� − 1)+ 1�                    (2.1) 

Y

X

1/10 1/10
Y

X
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Here the operator ⌊ ⌋ represents ceiling function which returns a decimal number 

to its smallest integer. 

Due to fact that the coordinate position and the size of rectangular area shown in 

Figure 2.3 vary among the subjects, the last part in the normalization process is to fix 

the rectangular area for both y and x axis. The purpose is that all the data will have the 

same size and position. The size of the reference image is represented by W ���∙H���. In 

our study, we used 60x100 pixels for W ���∙H���. Actual normalization process is 

described as follows. 

1. Normalization of Y axis. To normalize the diaphragm area into Y axis, the origin 

image is scaled and fixed to the reference image. The following operator is used to 

scale diaphragm area in Y axis. 

��(�,�,�)= �(�,�
�������

� ���
��,�∗) (2.2) 

where Htarget
 is height of the image target and Href is the height of the reference 

image. Operator ⌈x⌉ represents ceiling function which rounds up the decimals into 

an integer. This scaling process is done for all x and y. The results of Y axis 

normalization is called intermediate image. 

2. Normalization of X axis. The width of the reference image is also fixed by 

horizontal scaling. The operator used to scale diaphragm area in X axis is written as: 

Z��(x,y,t)= Z′(�
� ������(�)�� ������(�)

� ���
� + �������(1)�,�,�

∗) (2.3) 

where Wtarget(n) and Wtarget(1) are the last and first non-zero position in the current y 

axis and Wref is the width of the reference image. This horizontal scaling is done for 

all x, y. The result of X axis normalization is a final image with the same width and 

height from the reference image. 
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Since there are both right and left diaphragm area, scaling the area using the 

reference image is done for both diaphragm areas. This process is repeated for each data 

frame obtained from the previous algorithm starting from the first time-sequential image 

to the last one (t*=1..20).  

The matrix dimension of diaphragm motion after normalization is Wref x Href x 20 or 

equals to 60x100x20 (spatial size of reference image x 20 frames) for each side of 

diaphragm. To ensure the diaphragm motion is represented as a whole diaphragm and 

keeping the shape variance, we merge right and left side of diaphragm into a matrix. 

The final matrix dimension after the merging is 60x200x20. Considering the data as 

high dimensional data, linear statistical analysis is possible to be carried out by applying 

principal component analysis (PCA). It reduces the data set and reveals the hidden 

pattern as maintaining majority of the variation in the original data.  

Upper part of Figure 2.4 shows the spatial normalization process of certain frame. 

After modeled using PCA, we reverse the image into original diaphragm shape. Firstly, 

we create a mask based on the original diaphragm shape. Using this mask the modeled 

image is then resized and reshaped to the original diaphragm shape. The bottom part of 

Figure 2.4 shows the reversing process from a frame modeled by PCA to a diaphragm 

shape image. 



2.2. Materials and Methods  23 

 

 

. 

Figure 2. 4. Diagram of spatial normalization and its reconstruction process to obtain diaphragm 

original shape. 

2.2.3. PCA and GND-PCA diaphragm motion model  

Generally, PCA is a statistical method to transform a set of correlated variables into 

a smaller number of uncorrelated variables or principal components (PCs). The PCs are 

sorted in the descending order of importance. The purpose of PCA is that the first few 

PCs are able to explain large proportion of the variation in the original variables, and 

only those PCs are retained for further analysis. 

The following paragraphs describe how PCA is used to analyze diaphragm motion. 

Let � be a vector of z value of the spatio-temporally normalized for both right and left 

diaphragm. Vector � can be expressed as 1D array: 

�= [z�,z�,z�,…	z�]
� (2.4) 

where 

z� = �(�,�,�) (2.5) 

and i is the index obtained by the following equation: 

� = (� − 1)�������� + (� − 1)���� + �  (2.6) 
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w ref

h ref

w target

h target

Image modeled 
by PCA

Resized image 
Based on a mask

Final reconstructed 
image

Target image
Intermediate

image

PCA Modeling



24         2. GND-PCA Based Statistical Modeling of Diaphragm Motion 

 

 

For m subjects, we denote z (j) (j=1, 2, 3, …, m) as a diaphragm motion data set from 

j-th subject. 

Principal components are the eigenvectors with its corresponding eigenvalues of 

covariance matrix of z. The sorted eigenvectors by decreasing order of its corresponding 

eigenvalues is the most optimal with respect to information loss. 

Another method to build a statistical method is GND-PCA. It is a method to model a 

series of multi-dimensional array proposed by Xu [23]. Instead of using one long vector 

to represent a motion model, GND-PCA uses a tensor to represent a shape or motion 

model. The tensor itself is a multi-dimensional array whose order is the number of 

dimensions, also known as ways or modes. We will give a brief explanation of 

GND-PCA. More details about GND-PCA can be read in [23]. 

An Nth-order tensor, denoted by A, where A R I1 x I2 x I3 x … x In and Rn denotes the 

set of all vectors with n real components.  In tensor point of view, a vector and a 

matrix are a tensor of order one and order two, respectively. One diaphragm motion can 

be considered as third-order tensor M, where M RI1 x I2 x I3 (I1 x I2
 is the spatial 

dimension of the diaphragm in each frame and I3 is the number of frame). 

Here let Mi (i=1, 2, 3, …, m) denotes m samples of third-order tensor that represents 

diaphragm motion from m subjects. A series of lower rank tensors Mi*R
J1 x J2 x J3 is 

defined as the most accurate approximation of original tensors Mi where J1 < I1, J2 < I2 

and J3 < I3. To obtain Mi*, we decompose the tensors into smaller core tensors and its 

corresponding orthogonal mode matrices shown by: 

Mi* = Ci x 1Y x 2X x 3T  (2.7) 
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The product nX denote the n-mode product between the tensor and the mode 

matrices [23]. Figure 2.5 shows the illustration of 3rd order tensor decomposition of 

diaphragm motion model. 

 

Figure 2. 5. Decomposition of 3rd order tensor into one core tensor and three mode matrices. 

The orthogonal mode matrices capture the variation along the spatial (YRI1xJ1 and 

XRI2xJ2) and time (TRI3xJ3) dimension. The core tensors (CiR
 J1 x J2 x J3) control the 

interaction between mode matrices and can be seen as the compressed version of the 

original tensor. The mode matrices can be obtained by solving the following equation: 

min || Mi - Mi*|| = min|| Mi - Ci x 1Y x 2X x 3T || (2.8) 

 

2.2.4. Evaluation Methods 

In this study, we evaluate the performance of the diaphragm motion model by 

calculating mean and maximum errors of the constructed model. Leave-one-out method 

is used for this evaluation [24].  

The error of approximated model from each subject can be obtained by simply 

subtracting each of the elements of constructed model from the original shape and 

getting the absolute value. The error of right and left diaphragm shape of j-th subject 

can be mathematically written as: 

�(�)(�,�,�)= ��̂�(�,�,�)− �(�)(�,�,�)�	 (2.9) 

M*I1
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Here we redefined the shape of normalized diaphragm by �(�)(�,�,�).We also 

represent the estimate by the statistical model by �̂(�)(�,�,�). 

Based on this definition of error, some kinds of mean or maximum error can be 

expressed. For instance, mean error of each subject is given by: 

�����
(�) =

�

�(�)�
∑ ∑ ��

(�)
(�,�,�)

�,�∈W(�)
�
���  (2.10) 

where n(j) is the number of non-zero values in the diaphragm area W(j) of j-th subject. 

Inter-subject average of ��,����
(�) is given by: 

����� =
�

�
∑ �����

(�)�
��� 		   (2.11) 

The maximum error for j-th subject is given by: 

����
(�)

= max��(�)(�,�,�)�  (2.12) 

We can also calculate the inter-subject average of maximum error by: 

���� =
�

�
∑ ����

(�)�
���    (2.13) 

Another evaluation method we used is frame-by-frame error calculation. 

Frame-by-frame error is important to analyze which respiratory phase gives the largest 

or smallest error. Frame-by-frame mean error of each subject is given by: 

�(�)(�)=
�

�(�)
∑ �(�)(�,�,�)�,�   (2.14) 

Inter-subject average of frame-by-frame error is given by: 

�(�)=
�

�
∑ �(�)(�)�
��� 		   (2.15) 
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2.3. Experimental Results 

Ten healthy subjects within the age ranging from 23 to 46 participated in this study. 

For diaphragm motion studies, MR Images are particularly preferred than CT images 

since MR images provide high soft tissue contrast to produce detailed respiratory organs. 

The high contrast of MR images will be useful during the manual diaphragm boundary 

segmentation process. 

In this study, MR Images were acquired using 1.5T INTERA ACHIVA nova-dual 

(Philips Medical Systems) whole-body scanner with a 16ch SENSE TORSO XL Coil. A 

2D balanced FFE sequence was used. The imaging parameters are as follow. SENSE 

factor: 2.2, flip angle: 45o, TR: 2.2ms, TE: 0.9ms, FOV: 384mm, in-plane resolution 

256x256 pixels and 1.5x1.5mm2, slice thickness: 7.5mm, slice gap=6.0mm, scan time: 

150ms/frame and 400 frame/slice. Normal breathing was instructed for all subjects 

during the acquisition process. This image acquisition experiment was conducted under 

an approval of Ethical Review Board of Chiba University. 

The software used for PCA is MatLab 7.10 and running on PC with Intel®Core™2 

Quad, 2.66GHz, 16GB RAM. 

2.3.1 PCA and GND-PCA Model Output 

The contribution ratio and cumulative up to three principal components of right and 

left diaphragm motion are listed in Table 2.1. The percentage of variance of first 

principal component is 97.4% and 99.2% for the first three principal components. 
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Table 2. 1. Percent variations and cumulative contribution up to three principal components of 10 

healthy subjects 

PC % Cum. % 

1 97.4 97.4 

2 1.1 98.5 

3 0.7 99.2 

Mapping the error of z coordinates in the constructed model using different number 

of PCs will be useful for further analysis. Figure 2.6 and Figure 2.7 illustrate color 

mapping of the error in the first frame of the first subject given by: 

�(�)(�,�,1)= �̂(�)(�,�,1)− �(�)(�,�,1)  (2.16) 

Note that the error is not absolute value as expressed in Eq. (2.9). 

The white area represents the exact approximation, red and blue are indicate that 

estimated z coordinates is higher and lower than the actual position, respectively. 

Figure 2.6 is the case when first one, first two and first three PCs are used in regular 

PCA respectively. As shown in Figure 2.6c, the red and blue areas are decreasing. This 

indicates that the model well approximated the actual shape when the first three PCs 

were used. 

 

(a)       (b)      (c) 

Figure 2. 6. Regular PCA Error position mapping of one frame using (a) First PC (b) First two PCs and 

(c) First three PCs. 

The similar results are also shown by GND-PCA construction as illustrated in 

Figure 2.7. The error color mappings were obtained by reconstructing the model with 

4x2x1, 8x4x2, 16x8x4, 32x16x8 and 64x32x16 core tensors respectively and 

subtracting them from the original shape of diaphragm. The last three core tensors 
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showed that the red and blue colors on the diaphragm area are almost disappeared which 

means the constructed models are very similar to the original shape. 

   

(a)         (b)         (c) 

    

(d)     (e) 

Figure 2. 7. GND-PCA error position mapping of one frame using (a) 4x2x1 (b) 8x4x2 (c) 16x8x4 (d) 

32x16x8 and (e)64x32x16 core tensors. 

In term of number of coefficients required to construct the model, regular PCA 

outperformed the GND-PCA. Table 2. 2 shows the comparison of the number of 

coefficients required to construct diaphragm motion model between regular PCA and 

GND-PCA. 

Table 2. 2. Comparison the number of coefficients required to construct diaphragm motion model 

 

Regular PCA GND-PCA 

PC Coef. Core tensor Coef. 

First PC 1 4x2x1 8 

First two PCs 2 8x4x2 64 

First three PCs 3 16x8x4 512 

 

2.3.2. Leave-one-out Method Validation 

We omitted one subject as a testing subject and constructed the diaphragm motion 

model using training data from the remaining nine subjects. This model was then 
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applied to the testing subject. The mean error of the testing subject was calculated using 

Eq. 2.10. The whole procedure is repeated till each of ten subjects has become testing 

subject once.  

Figure 2.8a shows the mean error of each subject in case of model using regular 

PCA and GND-PCA, respectively. For regular PCA model, the mean error ranges are 

3.8-13.4mm for first PC, 3.6-10.2mm for first two PCs and 3.5-10.6mm. Although more 

than 98% variability of the diaphragm motion can be covered by the first three PCs as 

shown in Table 2.1, the validation using leave-one-out method showed that inter-subject 

the average of mean error of the model given by Eq. 2.11 is more than 4 mm. 

Contrary to the regular PCA, the error mean of model by GND-PCA as shown in 

Figure 2.8b is much smaller. The mean error ranges are 1.4-9.0mm for 4x2x1 core 

tensor, 1.4-4.0mm for 8x4x2 core tensor and 0.8-2.1mm for 16x8x4. 
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(a) 

 

(b) 

Figure 2. 8. The mean error of the model by (a) regular PCA from and (b) GND-PCA. The measurement 

unit is in mm. 

Figure 2.9 showed frame-by-frame mean error �(�) of the model by regular PCA. 

As shown in this figure, 18-20th frames indicate low mean error (about 3.9mm on 

average) and 9-11th frames indicate high mean error (about 9.0mm on average). It is 

probably caused by the smaller variability in the 18-20th frames and higher variability 

in 9-12th frames. 
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Figure 2. 9. Regular PCA mean of error frame-by-frame 

Different results were obtained using GND-PCA as shown in Figure 2.10. Since 

GND-PCA can capture both spatial and time variability; there were no large differences 

of mean error among the frames. For instance, the standard deviation of mean error 

from 16x8x4 core tensors is 0.37mm, while for three principal components of regular 

PCA the mean error is 2.2mm. 

 

  
Figure 2. 10. GND-PCA mean of error frame-by-frame 

 

Table 2.3 summarizes the average of mean error ����� and average of maximum 

error ����. The results of GND-PCA, showed consistent reconstruction with smaller 

error compared with the model constructed using regular PCA. 
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Table 2. 3. Leave-one-out method validation using regular PCA: mean and average of maximum error 

position (in mm) 

Used PC Regular PCA GND-PCA 

Mean Max Mean Max 

1st PC 9.2 15.7 5.5 13.5 

1st+2nd PCs 6.5 17.3 2.4 8.1 

1st+3rd PCs 6.3 17.2 1.3 5.5 

 

2.4. Discussion 

In this paper, we described how to build a statistical model of diaphragm motion 

using PCA and GND-PCA. The model was obtained from 4D-MRI that reconstructed 

from time sequential images of thoracic 2D MRI of ten healthy subjects. The modeling 

process involves manual segmentation of diaphragm boundary, automatic motion 

tracking based on the intersection profile method [13], constructing region of interest 

for right and left area of diaphragm and normalization of diaphragm shape.  

The developed model using regular PCA can accurately describe more than 98% of 

the total variation by including the first three PCs. This indicates that most of the 

diaphragm motion variability are adequately described using a few number of 

parameters. Consequently, the description and motion of the diaphragm are greatly 

simplified by this model. 

Leave-one-out validation was employed to evaluate the performance of the model. 

As shown on Table 2.3, the results of regular PCA illustrated that mean error position of 

both side of diaphragm was more than 6.0mm, which considered as large error.  
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To build a better statistical modeling, we applied GND-PCA [23]. Differs from 

regular PCA, GND-PCA is not necessarily unfolding the diaphragm motion model into 

one long vector. Instead, it decomposes the model into a core tensor and several mode 

matrices for dimensionality reduction. The mode matrices can represent the principal 

axes of variation. Several numbers of core tensors are chosen to construct the motion 

model. The smallest size of core tensor is 4x2x1 which is able to construct the motion 

model under leave-one-out validation with mean error of 5.5mm. Among the three sizes 

of core tensor (4x2x1, 8x4x2, and 16x8x4), the best model construction is achieved by 

16x8x4 core tensor which gives mean error of 1.3mm. The maximum error is also 

significantly reduced to 5.6mm. Compared with regular PCA using first three PCs, the 

results of GND-PCA showed significant improvement to the motion model. Mean error 

obtained from frame-by-frame analysis as shown in Figure 2.10 also confirmed that 

GND-PCA is able to capture the motion variability of the diaphragm. One of the major 

drawbacks of GND-PCA is that it requires more coefficients to construct the model 

compared with regular PCA. 

 There are some considerations regarding the diaphragm motion model in this study. 

The first is the resolution of MR images used in this study limits the motion model for 

being used in the clinical application such as radiotherapy planning. At this stage, our 

main focus is to demonstrate that GND-PCA can model the diaphragm motion with 

smaller number of sample data compared with regular PCA. The model cannot be 

applied for the clinical application due to the low MR image resolution. Higher 

resolution of MR image is required if one needs to apply the model for a clinical 

application. 
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Second is about shape modeling approach. In this study, we used simple spatial and 

temporal normalization. Although this simple normalization is sufficient to show the 

efficacy of GND-PCA compared with regular PCA, the use of other spatial 

normalization techniques such as active point distribution model [25] or non-rigid 

registration [26] such as thin-plate splines or cubic B-splines will provide a better 

diaphragm motion modeling. We will consider this issue in our future works. 

Other consideration is that the manual segmentation of diaphragm area can affect 

the final results. Manual segmentation of diaphragm boundary is very subjective to the 

experience of the user. Hence, the variability of the diaphragm motion may change 

when the diaphragm area is resegmented. An automatic statistical shape model of 

diaphragm area from thoracic 2D MRI is needed to be developed for further work. 

Although proposed method in [27] can be used to develop a statistical shape model of 

diaphragm, it suits only for respiratory-gated CT data-sets. Several adjustments need to 

be done to apply the method to thoracic 2D MRI. 

2.5. Conclusion 

We have developed a statistical method to model diaphragm motion using PCA. 

Time-sequential 2D MRI were constructed from a 4D MRI and extracted to obtain a 3D 

diaphragm motion model. Regular PCA and GND-PCA were then applied to construct 

model. In the experiment, we investigated that three eigenvectors or PCs with the 

largest eigenvalues are sufficient to accurately describe diaphragm motion model from 

ten healthy subjects. Model validation using leave-one-out showed that GND-PCA 

gives more stable reconstruction compared with regular PCA. This concludes that 

GND-PCA can model the motion better with a small numbers of sample data. Further 
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works to be done include automatic segmentation of diaphragm area and investigation 

of compactness, generality, and specificity of the model. 
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3 
3. AUTOMATIC EXTRACTION OF DIAPHRAGM MOTION AND 

RESPIRATORY PATTERN 

Major parts of this chapter were published as a manuscript in the Journal of 

TELKOMNIKA: 

Windra Swastika, Yoshitada Masuda Takashi Ohnishi and Hideaki Haneishi: 

“Automatic Extraction of Diaphragm Motion and Respiratory Pattern from 

Time-sequential Thoracic MRI”, TELKOMNIKA, Vol.14, No.2, pp. 329-334 

(2015) *) 

 

*) Used with the permission of the Journal of TELKOMNIKA 

 

Abstract 

Thoracic time-sequential MRI can be used to assess diaphragm motion pattern without 

exposing radiation to subject. Clinicians may employ the motion to evaluate the severeness of 

chronic obstructive pulmonary disease (COPD). This study proposed a diaphragm motion 

extraction method on time-sequential thoracic MRI in sagittal plane. Otsu’s threshold and active 

contour algorithm are used to obtain diaphragm boundary. An automatic diaphragm motion 

tracking and extraction of respiratory pattern are also performed based on the diaphragm 

boundary. A total of 1200 frames time-sequential MRI in sagittal plane was obtained for total of 

15 subjects (8 healthy volunteers and 7 COPD patients). The proposed method successfully 

extracts diaphragm motion and respiratory patterns for both healthy volunteers and COPD 

patients. 
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3.1. Introduction 

Diaphragm is a dome-shape respiratory organ located below the lung that separates 

chest from the abdomen. It controls the movement of the lungs and the breathing 

process (inhalation and exhalation). The motion of the diaphragm can be used to 

evaluate the severeness of chronic obstructive pulmonary disease (COPD) [28]. Hence, 

in the past few decades diaphragm motion has been assessed in several studies [28] [29] 

[30] [31] [32] [33]. In 1985, Diament et al. [29] extracted diaphragm motion from 

ultrasonography to evaluate diaphragm motion abnormalities. Gerscovich et al. [30] and 

Boussuges et al. [31] used M-mode ultrasonography to record diaphragm motion in two 

dimensions. Despite its portability, real-time examination and no ionization radiation, 

due to the nature of ultrasonography the imaging result does not reveal tissue density 

and potentially creates artifacts. The use of magnetic resonance imaging, which 

provides more clear and detailed images of soft tissue, has been proposed in [32] [33] 

[34]. However, none of them use automatic extraction to extract diaphragm motion and 

respiratory pattern. 

In this study, we focused on automatic extraction of diaphragm motion from a 

time-sequential thoracic MRI in sagittal plane. The extraction results were used to 

calculate diaphragmatic dome factor (Kdome) and diaphragm displacement. We then 

compared the statistical analysis of Kdome and diaphragm displacement from COPD 

patients and healthy volunteers. 

3.2. Subjects and methods 

This section describes the image acquisition and the methods of automatic 

diaphragm motion extraction including respiratory pattern extraction.  
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3.2.1. Image acquisition 

The MR images were acquired using 1.5T INTERA ACHIVA nova-dual (Philips 

Medical Systems) whole-body scanner with a 16ch SENSE TORSO XL Coil. A 2D 

balanced FFE sequence was used. The imaging parameters are as follow. SENSE factor: 

2.2, flip angle: 45o, TR: 2.2ms, TE: 0.9ms, FOV: 384mm, in-plane resolution 256x256 

pixels and 1.5x1.5mm2, slice thickness: 7.5mm, slice gap=6.0mm, scan time: 

150ms/frame.  

Normal breathing was instructed for all subjects during the acquisition process and 

total of 1200 frames in sagittal plane were obtained for each subject. Image acquisition 

experiment was conducted under an approval of Ethical Review Board of Chiba 

University. 

3.2.2. Diaphragm motion extraction 

In order to get diaphragm motion, we first define a region of interest (ROI) of the 

MR image by cropping the image that covers the diaphragm boundary. Typically, 

diaphragm boundary is located in middle of MRI in sagittal plane. To cover the whole 

area of diaphragm boundary, we first define two parameters, h and w to represent the 

width and height of ROI.  

There two main steps to extract diaphragm motion. The first step is to obtain 

diaphragm boundary for the first frame only using active contour algorithm. Once the 

first frame of diaphragm boundary is obtained, the next step is to extract the diaphragm 

boundary for the subsequent frames based on normalized cross correlation (NCC) value. 

The complete processes of diaphragm motion extraction are as follows.  

We first perform clustering-based image thresholding using Otsu’s thresholding 

method [35]. After the thresholding process, the diaphragm area became clearly 
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distinguishable from other organs. A mask is created above the diaphragm boundary as 

seed point in order to trace the diaphragm boundary using active contour algorithm [36]. 

Note that this process is only performed for the first frame only. Figure 3.1 shows the 

process of obtaining diaphragm boundary of the first frame.  

 

 
 

Figure 3. 1. Obtaining diaphragm boundary for the first frame. 

 

To get diaphragm boundary for the subsequent frames, we utilize one column 

matrices template defined by Tx where x=1..w. The element of matrix Tx is obtained 

from pixel values of the ROI at column the x. Therefore, the size of matrix Tx is 1xh, 

where h is the height of the ROI. It is also necessary to generate a 2D spatio temporal of 

column x (Figure 3.2a). The location of diaphragm boundary at column x for the 

subsequent frames is defined by the highest NCC value between the matrix Tx and the 

2D spatio temporal of the subsequent frames at column x. The process is repeated for 

x=1..w. We denoted the position of the diaphragm boundary at location x as fx(i) where i 

represents the ith frame.  The fx(i) shows periodic peaks and valleys associated with 

respiration cycles. Figure 3.2 illustrates how to determine the location of diaphragm 

boundary. 
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(a) 

 

(b) 

Figure 3. 2 Determine the location of diaphragm boundary. (a) Element of matrix Tx is obtained from the 

pixel values of ROI at column x and the spatio temporal is generated at the column x from the subsequent 

frames; (b) The detected diaphragm motion at column x (fx(i)), is represented by the white line. 

3.2.3. Respiratory patterns extraction 

Respiratory patterns are automatically extracted from diaphragm motion that is 

previously obtained. The extraction of respiratory patterns is only performed at the 

column x that has the largest diaphragm movement.   

In general, a respiratory pattern consists of one peak and one valley. A 

semi-automatically peak and valley detection was proposed in [37]. Although this 

proposed method was able to detect peaks and valleys from a respiratory pattern, the 

respiratory signal is not obtained from time-sequential images. It is directly measured 

by a digital voltage signal using a pressure sensor. Moreover, manual user review is also 

required to verify the results. 
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In this study we propose an automatic peak and valley detection from respiratory 

signal obtained from diaphragm motion (Figure 3.3). We first perform noise filtering 

using an adaptive noise-removal filter [38]. Next step is to set a baseline value based on 

the statistical mode (most frequently occurring value) of the signal. A parameter, p is 

used to determine the height of the peak. Points in the respiratory signal that are higher 

than the baseline multiplied with p are marked as peak. The similar process is also done 

to detect the valleys. Instead of finding statistical mode, regional minima of the signal 

are calculated and multiplied by a parameter, v. All points below this value are marked 

as valley. 
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(a) 

 

 

(b) 

 

 

(c) 

 

(d) 

Figure 3. 3. Determining peaks from a signal. (a) Original signal before noise removal. (b) Signal after 

noise removal using an adaptive noise-removal filter. (c) Histogram of respiratory signal after noise 

removal; baseline is determined by most occurring value. Points that are higher than baseline multiplied 

a parameter p are marked as peak. (d) Valleys are detected using regional minima. The detected valleys 

are circled.  
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3.3. Results 

We tested the proposed method to a total of 15 subjects (8 healthy volunteers and 7 

COPD patients). The number of frame for each subject is 1200 frames. Table 3.1 shows 

the number of respiratory patterns found and the number frame for one respiratory 

cycle. 

 

Table 3. 1. Number of respiratory patterns found and the average number of frame required for one respiratory 

cycle in healthy volunteers. 

Subject # Resp. 

Pat. 

#Frame/cycle 

Healthy Volunteers 

1 32 36.7 

2 36 33.3 

3 37 32.4 

4 52 23.1 

5 19 63.2 

6 57 21.0 

7 48 25.0 

8 34 35.3 

COPD patients 

1 49 24.5 

2 77 15.6 

3 34 35.3 

4 38 31.6 

5 61 19.7 

6 56 21.4 

7 46 26.1 

 

Ideally, the number of frame for one respiratory cycle ranges from 25-35 

frame/cycle. Figure 3.4 shows an example of respiratory patterns which successfully 

extracted from healthy volunteer #3. The number of detected respiratory patterns is 37 
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and the number of frame per cycle is 32.4 which is considered as normal respiratory 

motion. 

 
Figure 3. 4. Detected respiratory patterns for healthy volunteer #3. 

However, breathing irregularity is a factor that makes respiratory pattern extraction 

failed. Another factor that affects the number of detected respiratory pattern is 

respiratory frequency. For example, subject 6 has the largest number of extracted 

respiratory patterns among the other healthy volunteers. The subject’s 2D spatio 

temporal shows that this subject has high respiratory frequency (Figure 3.5a).  

The healthy volunteer who has the smallest number of detected respiratory patterns 

is subject 5. As we can see in the Figure 3.5b, subject 5 has several irregular breathing 

cycles (pointed by white arrows) that make the system failed to extract them. 

 

 

(a) 

 
(b) 

Figure 3. 5. An example of (a) high respiratory frequency and (b) irregular breathing of healthy 

volunteers 
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For COPD patients, the number of extracted respiratory patterns tends to be higher 

compared with healthy volunteers. Figure 3.6 shows two examples of COPD patients 5 

and 6. The frame/cycle of these patients are 19.7 and 21.4, respectively. It indicates that 

these patients have smaller lung volume capacity compared with healthy subjects. 

Several irregular breathings were also found in the first 100 frames of the patient 6 

(Figure 3.6b) and they failed to be extracted. 

 

(a) 

 

(b) 

Figure 3. 6. Two examples of extracted respiratory patterns of COPD patient 5 and 6. 

3.4. Conclusion 

This study proposed an automatic method to extract diaphragm motion and 

respiratory patterns from time sequential MR images in sagittal plane. Our method 

successfully extracts diaphragm motion and respiratory patterns for both healthy 

volunteers and COPD patients. However, our study has certain limitations. First, it fails 

to detect irregular breathing patterns which can occur during MRI acquisition. Second, 

the results of the present study were obtained from a small number of subjects. Larger 
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number of subjects for both healthy volunteer and COPD patients are required to 

validate our method. 
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4 
4. REDUCTION OF ACQUISITION TIME FOR 4D-MRI 

RECONSTRUCTION 

Major parts of this chapter were published as a manuscript in the SPIE Journal of 

Medical Imaging: 

W Swastika, Y Masuda, T Ohnishi et al.; "Reduction of acquisition time in the 

intersection profile method for four-dimensional magnetic resonance imaging 

reconstruction of thoracoabdominal organs," J. Med. Imag., 2(2), 024008 

(2015) *) 

*) Used with the permission of the SPIE. 

Abstract 

We have previously proposed an intersection profile method for reconstructing 

4D-MRI consisting one breathing cycle of the thoracoabdominal region. This method 

captures a set of temporal sequence images in a proper sagittal plane and sets of 

temporal sequence images in continuous coronal slices. The former set is used as a 

navigator slice and the latter sets are used as data slices. A 4D-MRI is reconstructed by 

synchronizing the respiratory pattern found in the navigator slice and the data slices. In 

this study, we propose a prospective method to reduce the acquisition time for data 

slices. During data slice acquisition, the synchronization process between respiratory 

pattern found in the navigator slice and one data slice is monitored in real time. Data 

acquisition will be terminated and moved to the next data slice based on a threshold 

value. We used 14 data sets (7 patients with certain pulmonary disease and 7 healthy 
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volunteers) previously obtained for the original intersection profile method for a 

simulation using the proposed method to evaluate the time reduction and impact on 

image quality. Each of the data set was tested using 3 different threshold values and the 

acquisition time can be reduced up to 75%. Although the quantitative evaluation of 

image quality was slightly worse than by the conventional method,  the difference 

based on the visual inspection was subtle to human eyes. 

Keywords  

4D-MRI, respiratory motion, intersection profile method, thoracoabdominal organs. 
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4.1. Introduction 

Reconstruction of 4D-MRI using intersection profile method as described in section 

1.2 is considered as a retrospective method. One of the drawbacks of retrospective 

method is that it requires long time to obtain a full data set. In this chapter we modify 

the method so as to shorten the acquisition time of MRI data. In the modified method, a 

reference respiratory pattern is determined from the navigator slice. Then, during the 

data slice image acquisition, each respiratory pattern is compared with the reference 

respiratory pattern in real time and a similarity measure between them is calculated. 

Once the similarity measure reaches the threshold, the image acquisition for the current 

data slice will be halted and the acquisition proceeds to the next position.  In order to 

implement this idea to a real MRI equipment, manufacturer has to change the image 

acquisition system. Currently it is not realized yet. On the other hand, we have a lot of 

raw data collected from the previous method. So we can simulate how the prospective 

method works using those images. 

In the following sections, we describe how we modified it to reduce the acquisition 

time. We then present the experimental results using 14 data sets. The time reduction 

and image quality are evaluated and discussed. 

4.2. Modification to prospective method 

The coordinate system, variables and image acquisition is same as we described in 

chapter 2. We modify the retrospective method in section 1.2 into a prospective method 

to reduce the time needed for DS acquisition. To find the best matching between 

respiratory patterns of NS and spatio temporal pattern of DS, structural similarity 

(SSIM) is used instead of NCC. SSIM index is measured by considering three important 
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components of image: luminance (mean), contrast (variance) and structure 

(cross-correlation) [39]. To measure SSIM of two images, x and y, the following SSIM 

function is used: 
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where x and y are mean value of image x and y; x, and y, denote the standard 

deviation of image x and y; and xy denotes correlation coefficient. Three parameters , 

, and , are parameters to adjust component’s contribution (usually set to 1) and 

constants C1, C2, and C3 are small positive constants. 

The use of SSIM is proven to be consistent with perceptual image distortion and 

works better than traditional similarity measures such as root mean square, normalized 

least square error, and correlation in term of maintaining image’s structure [39] [40] 

[41].  

Figure 4.2 shows a schematic illustration of the modified version of the intersection 

profile method. Here steps 6, 7 and 8 of the previous method are changed as shown 

below:  

6'. Instead of using all respiratory patterns, choose one of the most frequent 

respiratory patterns from the NS and use it as a reference to compare with the 

corresponding respiratory patterns in the DS. The most frequent respiratory 

pattern is defined by a pattern that has the smallest mean distance from other 

respiratory patterns. We then determine the location of most frequent 

respiratory pattern as follows. 

     2

max,max,,1 ,,minarg tzAtzAk kjtz
m

kj
jbest 

                  (4.2) 
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where m is the number of respiratory pattern found in the NS. The most 

frequent respiratory pattern is then defined as Ak’best,i(z, t) where t ranges from 

tk’best,i to tk’best,i+wk’best,i.  

In Eq. 4.2, Aj, i represents the j-th respiratory pattern in intersection location i, 

where j ranges from 1..m and i ranges from 1..n. We can see Aj, i  in Figure 4.1  

as a box with certain width and height. The z and t in Eq. 5. 4 represent the 

“height” and “width” of the box (respiratory pattern). Therefore, the range of t 

is limited by the width of the box. 

Note that the location to pick most frequent respiratory pattern is the 

intersection location that has the largest diaphragm movement. To obtain the 

intersection location that has the largest diaphragm motion, we measured the 

displacement of the diaphragm for each intersection location from end 

inhalation to end exhalation (automatically) and determine the intersection 

location that has the largest displacement  (denoted as ymax).  

Once the position of the most frequent pattern (k'_best) at ymax was obtained, 

the same position is used for other intersection locations (y1..yn). Thus, the 

position of k'_best is always the same for each intersection location. Another 

reason why k'_best  is picked at only one intersection location rather than 

picked at each intersection location is that different k'_best that is picked at 

each intersection location might produce “out-of-phase” reconstruction since 

the respiratory patterns (1..m) might have different size. 

7'. For yi, i=1, 2, 3, …n, evaluate the SSIM value between Ak’best,i and Bi as image 

acquisition of DS proceeds. When the SSIM value becomes greater than a 

predetermined value, stop the data acquisition in the current position (yi) and 
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proceed to the next intersection position. 

During the coronal slices acquisition, the signal of MR image is also processed 

simultaneously. The processing includes: (1) calculate similarity measure 

between respiratory pattern in sagittal plane and coronal plane, (2) save the data 

if it satisfies the condition (similarity measure higher than the threshold value) 

and (3) store the best matching image into storage for reconstruction purpose. 

The detail of time required for the image processing is shown in fig. 4.1. 

 
Figure 4. 1. Time required to acquire and process the image. 

8'. Reconstruct the 4D-MRI by combining DS fdata(x, yi, z, tdata) where tdata ranges 

from tk’best,i to tk’best,i+wk’best,i. 
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Figure 4. 2. Modification to prospective method. The acquisition is stopped and proceed to the next data slice once the SSIM 

value higher than the threshold value 

Fixed threshold is used to implement 4D-MRI reconstruction using the prospective 

method. It sets a certain threshold which will be used to stop the acquisition process if 

the SSIM value exceeds it. The SSIM value has an influence to the image quality of 

4D-MRI. In this study, three threshold values 0.5, 0.4, and 0.3 are investigated.  

There are no precise rules for selecting SSIM value to evaluate image quality or 

compare between two images [42]. As proposed in [39], SSIM value is very sensitive to 

structural changes on the image. Therefore, a small distortion on the image will produce 

low SSIM value. In [39], the author show that SSIM value of JPEG compressed image, 

blurred image and salt-pepper noise are is 0.6949, 0.7052 and 0.7748. SSIM higher than 

0.9 can only be achieved by contrasts-stretched and mean-shifted image – which means 

there are no structural changes in the image structure. 
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Several studies have also been proposed to assess the quality of medical images 

using SSIM (specifically MR image) [43] [44]. In [43], the authors show the quality 

assessment performance of compressed MRI images using SSIM. The range of SSIM 

value between original image and compressed MR images is 0.195 to 0.8234. 

Apparently, achieving SSIM higher than 0.9 is difficult to obtain when distortion 

occurred on the image.  

Similar SSIM values are also achieved in our study. By comparing respiratory 

pattern from the navigator slice and data slice using SSIM, the range falls between 0.1 

to 0.7.  Based on our empirical SSIM values during the matching process, we set the 

threshold values to 0.3, 0.4 and 0.5. 

4.3. Experiment 

4.3.1. Image data used in experiment 

The MR images were acquired using 1.5T INTERA ACHIVA nova-dual (Philips 

Medical Systems) whole-body scanner with a 16ch SENSE TORSO XL coil. A 2D 

balanced FFE sequence was used. The imaging parameters were as follows: SENSE 

factor, 2.2; flip angle, 45o; TR, 2.2ms; TE, 0.9ms; FOV, 384mm; in-plane resolution, 

256x256 pixels and 1.5x1.5mm2; slice thickness, 7.5mm; slice gap, 6.0mm; scan time, 

150ms/frame. All subjects were instructed to breath normally during the acquisition 

process. The image acquisition experiment was conducted under the approval of the 

Ethical Review Board of Chiba University. The software used to implement our method 

was MatLab 7.10 and we ran it on a PC with Intel®Core™2 Quad, 2.66GHz, 16GB 

RAM. Total processing time for one subject to complete the 4D-MRI reconstruction 

after obtaining a set of raw data was less than one minute. 
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Fourteen subjects (seven healthy subjects and seven patients with known pulmonary 

diseases) participated in this study.  The number of DSs varied from 14 to 25 slices 

where each slice contained 400 frames. The number of NS frames also varied from 400 

to 1200. Statistical data for the subjects are summarized in Table 4.1. 

Table 4. 1. Subjects’ data statistic. For each subject, the number of slice of DS, number of frame of NS, and 

diagnosis are given 

Subj. #DS # NS’ frame Diagnosis 

V
O

L
U

N
T

E
E

R
 

V1 20 400 - 

V2 24 800 - 

V3 24 800 - 

V4 14 1200 - 

V5 14 1200 - 

V6 13 1200 - 

V7 13 1200 - 

P
A

T
IE

N
T

S
 

P1 14 1200 Pulmonary Tumor 

P2 25 1200 COPD 

P3 23 1200 Right-giant bulla 

P4 10 1200 COPD 

P5 25 1200 COPD 

P6 12 1200 COPD 

P7 12 1200 COPD 

 

The number of frames of NS varies only for the volunteers (healthy subjects). 

During the acquisition, when the breathing patterns of the subjects are considered as a 

regular breathing, the acquisition does not have to be 3 min long. One or two min 

should be enough to get the variation of the breathing patterns from the subjects. In 

most cases, healthy volunteers have regular respiratory patterns. When the operator does 

not spot any irregular breathing within one min, he stops the acquisition in one min. 

However, if there seems to be an irregular breathing within one min, the acquisition will 
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be continued for another one min. For the patients, some of them have irregular 

breathing patterns and the acquisition time has to be 3 min long to capture the breathing 

patterns’ variation. 

4.3.2. Time reduction using a predetermined threshold value 

As described earlier, by applying the retrospective method, DS acquisition time by 

minutes is equivalent to the number of slices. Time reduction is possible using the 

prospective method that employs a predetermined threshold value. During the DS 

acquisition, when the SSIM value in the yi position is larger than the threshold value, the 

acquisition process will be stopped and the process will proceed to the next slice 

position.  

By applying smaller threshold value, better time reduction can be achieved. 

Complete comparison of time reduction is shown in Table 4.2. Here “w/o T” stands for 

“without threshold” that the modified method is applied without thresholding. The total 

acquisition time for volunteer data can be reduced by 23.1%, 53.1% and 75.6%  on 

average for 0.5, 0.4 and 0.3 threshold values, respectively. For patient data, the average 

of time reduction are 32.5%, 59.3% and 84.0% for 0.5, 0.4 and 0.3 threshold values.   
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Table 4. 2. Comparison of total acquisition time and time reduction of w/o T, 0.5, 0.4 and 0.3 threshold values.  

Subj. 

w/o T 0.5 0.4 0.3 

Total DS 

acquisition 

time 

Total DS 

acquisition 

time 

Time  

reduction 

(%) 

Total DS 

acquisition 

time  

Time  

reduction 

(%) 

Total DS 

acquisition 

time 

Time  

reduction 

(%) 

V
olu

n
teers 

V1 20:00 17:57 10.3 14:14 28.8 3:01 84.9 

V2 24:00 5:14 78.2 2:05 91.3 1:36 93.3 

V3 24:00 15:08 36.9 7:06 70.4 4:11 82.6 

V4 14:00 10:20 26.2 5:33 60.4 4:05 70.8 

V5 14:00 12:39 9.6 8:07 42.0 6:17 55.1 

V6 13:00 10:14 21.3 6:45 48.1 4:35 61.8 

V7 13:00 10:07 22.2 6:10 52.6 2:27 81.2 

Geomean 16:49 10:58 23.1 6:18 53.1 3:26 75.6 

P
atien

ts 

P1 14:00 8:46 37.4 4:53 65.1 1:55 86.3 

P2 25:00 19:51 20.6 11:14 55.1 4:06 83.6 

P3 23:00 6:40 71.0 2:15 90.2 1:42 92.6 

P4 10:00 6:12 38.0 2:41 73.2 1:43 82.8 

P5 25:00 17:02 31.9 10:26 58.3 6:30 74.0 

P6 12:00 8:28 29.4 5:50 51.4 2:14 81.4 

P7 12:00 9:38 19.7 7:38 36.4 1:24 88.3 

Geomean 16:10 9:59 32.5 5:30 59.3 2:24 84.0 

 

The quality of the 4D-MRI reconstructions were also assessed by the geomean of all 

the best SSIM values between the reference spatio-temporal image of the NS and 

spatio-temporal image of the DSs at all intersection locations. Figure 4.3 shows the plot 

of geomean of SSIM and time reduction. Overall results indicated that the best geomean 

of the SSIM was achieved by the w/o T method. 
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Figure 4. 3. Average of SSIM and data slice time reduction of volunteers and patients. Solid line indicates 

the average of SSIM (left scale) and dashed line indicates time reduction (right scale). 

Certain threshold values used in reconstruction reduced the DS acquisition time in 

the exchange of the lower SSIM geomean (or in other words, lower quality of the 

4D-MRI reconstruction). Both volunteer and patient data results demonstrated that 

0.4-0.5 threshold value may reduce data acquisition time up to 50%. Reconstructing 

4D-MRI using higher threshold value, for example 0.6, is also possible. However, the 

time reduction in this scenario would be very small since most data slices have SSIM 

values less than 0.6. 

The trade-off of time reduction is the quality of 4D-MRI reconstruction. Image 

quality of 4D-MRI is discussed in the next section. Visual evaluation is first discussed 

and followed by the quantitative evaluation. 

4.4. Image quality evaluation 

4.4.1. Visual Evaluation 

4.4.1.A. Volume rendering image and MIP image of reconstructed 4D-MRI 

Reconstructed 4D-MR images were visualized by a volume rendering technique 

implemented in Osirix. Three images of 4D-MRI reconstruction from the same subject 
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(V1) are shown in Figure 4.4. Fig. 4.4a, b, and c show the reconstruction using the 

retrospective method, the prospective method w/o T, and the prospective method with 

0.3 threshold value, respectively. End inhalation phase is shown in the left side and end 

exhalation is shown in the right side of Fig. 4.4. In order to show the difference between 

left and right images, we drew a white dashed line at the top level of the diaphragm of 

the left image. The total time required to obtain whole data set of 4D-MRI using the 

retrospective method and the prospective method w/o T were 24 min (4 min to obtain 

navigator slice and 21 min to obtain data slices). By using the prospective method with 

0.3 threshold value, the total data slice acquisition time can be reduced to 3 min 1 s. 

From the visual inspection, we confirmed that these volume rendering images look very 

similar. 
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4.4.1.B. Sagittal slice evaluation 

The shape of diaphragm extracted from 4D-MRI in sagittal plane can also be used as 

an indicator of reconstruction quality. We extracted a sagittal cut at NS location Xs and 

another sagittal cuts at two locations different from NS as shown in Fig. 4.6. The 

distances between the sagittal cuts and original location of NS were 30mm on the left 

side (Xs-30mm) and 30mm on the right side (Xs +30mm). 

 

Figure 4. 6. Extraction of sagittal cuts from reconstructed 4D-MRI. The distances of the extracted sagittal 

cuts are 30mm on the left side and 30mm on the right side of original NS position. 

The visual comparison of extracted sagittal cuts at the same location as NS and two 

locations different from NS are shown in Fig. 4.7. We picked one volunteer and two 

patients who have 20 slices or more as examples and 4D-MRI reconstruction using the 

retrospective method, the prospective method w/o T and the prospective method with 

0.3 threshold value. Figure 4.6 shows sagittal cuts extracted from the V1, P2 and P3. 

Only at the location of the original NS (Xs), we can compare the appearance of the 

original NS image and sagittal cuts extracted from the reconstructed 4D-MRI. Since the 

number of DSs is limited and the spatial resolution of the sagittal cuts is low, the 

Z
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-30
mm

+30
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sharpness of the sagittal cuts is clearly lower than the original NS images. However, the 

general structure was natural and similar to that of the original NS image. The 

diaphragm boundary of sagittal cuts from the retrospective method and the prospective 

method w/o T were found to be smoother compared to 0.3 threshold. The diaphragm 

shape of 0.3 threshold had more crease over the boundary (indicated by white arrow). 

The quantitative evaluation of such comparison will be discussed in the Sec. 4.4.2. 

The sagittal cuts extracted from Xs-30mm and Xs +30mm of NS location have a 

similar image quality to the sagittal cut at Xs. However, vertical stripes are visible 

especially in P2 case. Pixel value adjustment should be done to achieve the uniformity 

of intensity. However, in any sagittal cuts, the diaphragm is clearly separable with other 

organs and the shapes look natural. 
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(a) V1 

 

(b) P2 

 

(c) P3 

Figure 4. 7. Visual comparison of original NS and sagittal cuts extracted from location of NS (Xs) and 

two locations different from NS (Xs-30mm and Xs+30mm). The sagittal cuts were extracted from the 

retrospective method, the prospective method w/o T and the prospective method with 0.3 threshold value. 

White arrow indicates crease over the diaphragm boundary. 
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4.4.2. Image quality evaluations 

Focusing on the sagittal cut of 4D-MRI corresponding to the NS, we performed two 

validation experiments to assess the accuracy of the prospective 4D-MRI reconstruction 

using 0.5, 0.4 and 0.3 threshold values, respectively. We defined the sagittal slice from 

NS as a ground truth and evaluate the sagittal cuts in the NS location from the 4D-MRI.  

 
Figure 4. 8. Displacement error of diaphragm measured based on the difference diaphragm boundary 

position between the sagittal slice from NS as ground truth and sagittal cuts from reconstructed 4D-MRI. 

 

In the first validation, the measurement was performed by calculating the difference 

of the Z axis displacement at the intersection location (yi, i=1, 2, 3, …, n). The 

schematic diagram how to measure the Z displacement error is shown in Figure 4.7. 

Each column of the sagittal cut in the intersection location (yi, i=1, 2, 3, …, n) was 

extracted. In general, the pattern of the extracted column consists of two major 

intensities, dark and gray. The extracted column of sagittal cut is then matched using 

cross correlation along the Z axis with the corresponding column of the original NS. Z 

displacement error is determined from the position of the best cross correlation value. 

Ideally, the extracted column of sagittal cut has the same pattern as the extracted 

column of original NS along the intersection location. Thus, the Z displacement errors 

Z Z

YY

Z disp. 
error

Original NS Sagittal cut

Column 
extracted from 

original NS

Column 
extracted from 

sagittal cut



68         4. Reduction of acquisition time for 4D-MRI reconstruction 

 

along the intersection location are equal to 0 and the diaphragm shape of sagittal cut is 

also same as the navigator slice. However, since our method tries to find the best 

matching of the respiratory pattern between navigator slice and data slice, such ideal 

condition is difficult to obtain. Therefore, in the first validation, we calculate the 

average of the Z differences over intersection locations (yi, i=1, 2, 3, …, n) and 

respiratory phases (frames). 

In the second validation, we compare the similarity of the sagittal cuts extracted 

from the reconstructed 4D-MRI with the original NS. The similarity measure is done 

using cross correlation function. We used NCC since contrast variation between the NS 

and DS may have been present. Higher NCC indicates that the diaphragm structure 

extracted from 4D-MRI is moving synchronously with the original NS. 

Table 4.3 shows the results of two validation experiments; one is Z displacement 

error (in mm) and the other is geomean of NCC. The geomean of NCC is also shown in 

Figure 4.9. 
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Table 4. 3. Comparison of Z displacement error of diaphragm and geomean of NCC of w/o T, 0.5, 0.4 and 0.3 

threshold values.    

Subj. 

w/o T 0.5 0.4 0.3 

Z disp. error 

(mm) 

Geo 

-mean 

of 

NCC 

Z disp. error 

(mm) 
Geo- 

mean 

of NCC 

Z disp.  

error (mm) 

Geo- 

mean 

of 

NCC 

Z disp. error 

(mm) 

Geo- 

mean 

of 

NCC 
Mean SD Mean SD Mean SD Mean SD 

V
olu

n
teers 

V1 2.51  0.24 0.85 2.56  0.26 0.85 2.63  0.37 0.84 2.60  0.33 0.83 

V2 2.32  0.53 0.86 2.39  0.55 0.84 2.71  0.72 0.82 2.94  0.89 0.81 

V3 2.46  0.47 0.80 2.83  0.68 0.79 3.14  0.75 0.78 3.62  0.82 0.75 

V4 3.06  1.12 0.85 3.13  1.17 0.84 3.27  1.23 0.84 3.36  1.29 0.83 

V5 2.56  0.72 0.73 2.61  0.81 0.73 2.83  0.83 0.73 3.05  0.89 0.72 

V6 2.98  1.00 0.67 3.27  1.14 0.67 3.39  1.27 0.66 3.03  1.38 0.66 

V7 2.52  1.17 0.80 2.48  1.17 0.80 2.62  1.22 0.80 2.43  1.33 0.79 

Mean 2.63 0.75 0.79 2.75 0.83  0.79  2.94  0.91  0.78  3.00  0.99  0.77  

P
atien

ts 

P1 3.01  0.71 0.79 3.04  1.06 0.78 3.01  1.28 0.78 2.90  1.26 0.76 

P2 2.34  0.43 0.63 2.33  0.47 0.63 2.29  0.61 0.62 2.30  0.70 0.61 

P3 3.65  0.89 0.89 4.45  0.94 0.87 4.51  1.07 0.85 4.26  0.83 0.83 

P4 4.44  0.67 0.92 4.28  0.62 0.92 4.28  0.96 0.92 4.16  1.05 0.89 

P5 2.67  0.35 0.84 2.73  0.37 0.83 2.70  0.42 0.83 2.58  0.40 0.83 

P6 2.75  1.31 0.81 2.78  1.30 0.80 2.81  1.36 0.80 3.22  1.28 0.80 

P7 2.55  0.78 0.87 2.58  0.82 0.86 2.73  0.90 0.86 3.02  1.20 0.86 

Mean 3.06  0.73  0.82  3.17  0.80  0.81  3.19  0.94  0.81  3.21  0.96  0.80  
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Figure 4. 9. Range and distribution of geomean of NCC of volunteer, patients and all. The differences of geomean of 

the NCC between w/o T, 0.5, 0.4, and 0.3 threshold values were small for both volunteers and patients.. 

The averages of the geomean of NCC for volunteers were 0.80, 0.79, 0.78, and 0.77 

for w/o T, 0.5, 0.4, and 0.3 threshold values, respectively. For the patients, the averages 

were 0.82, 0.81, 0.81 and 0.80 for w/o T, 0.5, 0.4, and 0.3 threshold values. The 

differences were very small  which indicates that the reconstruction using w/o T, 0.5, 

0.4 and 0.3 threshold values were similar. 

Figure 4.9 shows the range and distribution of Z displacement error when all errors 

pooled in one distribution. The maximum errors for volunteers were 8.0mm, 8.0mm, 

9.0mm, and 9.0mm for w/o T, 0.5, 0.4, and 0.3 threshold values, respectively. For 

patients, the maximum errors were 8.0mm, 8.0mm, 8.0mm, and 9.0mm for w/o T, 0.5, 

0.4, and 0.3 threshold values, respectively. 

0.79 0.79 0.78 0.77

0.4 

0.6 

0.8 

1.0 

w/o T 0.5 0.4 0.3

G
e

o
m

e
an

 o
f 

N
C

C

Threshold values

Volunteers

0.82 0.81 0.80 0.79

0.4 

0.6 

0.8 

1.0 

w/o T 0.5 0.4 0.3

G
e

o
m

e
an

 o
f 

N
C

C

Threshold values

Patients

0.81 0.80 0.79 0.78

0.4 

0.6 

0.8 

1.0 

w/o T 0.5 0.4 0.3

G
e

o
m

e
an

 o
f 

N
C

C

Threshold values

Volunteers and patients



4.4. Image quality evaluation  71 

 

 

  

 

Figure 4. 10. Range and distribution of Z displacement error of diaphragm of  (a) volunteers and (b) patients after 

pooling all errors into one distribution. 

  

Assuming the Z displacement errors pooled in one distribution for volunteers and 

patients are normally distributed, interval and range of 95% confidence level is listed in 

Table 4.4. 

Table 4. 4. Corresponding interval and range of 95% confidence level after pooling Z displacement errors into one 

distribution. 

Subj. 

w/o T 0.5 0.4 0.3 

Interval 

(mm) 

Range 

(mm) 

Interval 

(mm) 

Range 

(mm) 

Interval 

(mm) 

Range 

(mm) 

Interval 

(mm) 

Range 

(mm) 

Volunteers 0.26 2.32-2.84 0.27 2.45-2.98 0.28 2.64-3.20 0.28 2.75-3.32 

Patients 0.25 2.72-3.21 0.28 2.86-3.42 0.28 2.86-3.42 0.28 2.83-3.40 

 

2.58 2.72 2.92 3.04
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4.5. Discussion 

In this study, we implemented a fixed threshold using SSIM for our prospective 

method to reconstruct a 4D-MRI consisting one breathing cycle. The main purpose of 

implementing the prospective method is to reduce acquisition time of the data slices. In 

the cases when all SSIM values were lower than the threshold value, maximum 

acquisition time will be required. Also when most of SSIM values were lower than the 

threshold value, the time reduction was very small. 

Reconstruction using 0.5 threshold value for V5, for example, showed that the total 

data slice acquisition time was 12 min 39 s, which was reduced by only 1 min and 11 s 

(reduced by only 9.6%) compared to V2 which demonstrated an 18 min (78.2%) 

reduction using the same 0.5 threshold value. Only 9.6% time reduction was observed 

in V5 because most of the SSIM values in the intersection location were found to be 

lower than the threshold. As a result, full acquisition time, 1 min, were required in the 

most DSs. 

We validated the 4D-MRI reconstruction visually and quantitatively. The visual 

validation includes MIP volume rendering and comparison of sagittal cuts between 

original NS and sagittal cuts extracted from 4D-MRI. Since the 4D-MRI is composed of 

a stack of coronal images captured, the thickness of the coronal image determines the 

resolution of the sagittal cut. Currently the slice thickness is 7.5mm and it is hard to 

improve this resolution markedly. When the thickness is lowered, for examples to 

3.0mm or 4.0mm, the signal-to-noise ratio becomes worse. Consequently, the image 

quality will also be degraded. Even if possible, the acquisition of many more DSs is 

needed. It does not meet the aim of time reduction. In spite of lower resolution of the 

sagittal cuts, the diaphragm shape of the sagittal cuts in Figure 4.7, extracted from 



4.5. Discussion  73 

 

 

Xs-30mm, Xs, and Xs+30mm of NS location, are clearly separable with other organs and 

the shapes look natural. 

The first quantitative validation was performed by measuring the displacement error 

of diaphragm. Mean of Z displacement error using w/o T, 0.5, 0.4 and 0.3 threshold 

values was smaller than 5mm. The standard deviation was also found to be small, which 

indicates that the displacement error in each respiratory phase is close to the mean. 

The second quantitative validation was carried out by comparing the similarity of 

sagittal cuts from reconstructed 4D-MRI with the NS as the ground truth. As shown in 

Figure 4.9, the differences of geomean of the NCC between w/o T, 0.5, 0.4, and 0.3 

threshold values were small for both volunteers and patients. Thus, the quality of 

reconstruction using threshold method was very similar with the ground truth and in the 

same time, the total data acquisition can be reduced up to 75%. 

The geomean of NCC for P2 was found to be smallest among the others. Figure 4.11 

shows the sagittal cuts extracted from reconstructed 4D-MRI and the original NS of P2. 

In the bottom left of the original NS, white region supposed to be fat was clearly 

observed. On the other hand, the bottom left of the sagittal cut showed an unclear white 

region. Although the exact reason of this difference is unclear to us, the difference of 

spatial resolution could be a possible reason. This difference mainly seems to reduce the 

NCC value. However, the diaphragm surface from the sagittal cuts was also similar as 

the original NS. In fact, the displacement error was less than 3mm from Table 4.3. 
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Figure 4. 11. Comparison of sagittal-cuts extracted from reconstructed 4D-MRI and original NS of patient P2.  

As shown in the table 4.3, the Z displacement errors of diaphragm motion are 

3.060.75mm and 2.630.75mm for patients and volunteers, respectively. For 

diaphragm motion, the error is clinically acceptable (<1cm) [45]. However, for other 

clinical applications that required high precision such as modeling respiratory motion 

for image guided intervention or radiation therapy, the mean error is too large. Keal et al 

suggested that the error should less than 3mm to be clinically acceptable [1]. Therefore, 

our proposed method is not suitable and a more accurate reconstruction method is 

required. The CT image is probably more appropriate for respiratory modeling since CT 

image has higher imaging resolution and less motion artifact which leads to better 

accuracy for 4D imaging reconstruction. 

It is also interesting that the time reduction of the patients is higher compared to the 

volunteers. Time reduction is related with displacement of diaphragm to certain degree. 

During the matching process, if the displacement is small, the time reduction tends to be 

high. On the other hand, if the displacement is large, the time reduction tends to be low. 

The figure below shows the correlation between time reduction and diaphragm 

displacement. 
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Figure 4. 12. Correlation between time reduction and average displacement of diaphragm. 

Apparently, small displacement of the diaphragm is one of the factor to achieve high 

SSIM value during the matching process. Therefore, the SSIM will soon reach the 

threshold value and the acquisition for current frame is stopped. As a result, the time 

reduction for current frame is high. 

Finally, we introduce one application of 4D-MRI briefly. In [46], we demonstrated 

how to extract the diaphragm motion from 4D-MRI. The advantage of using 4D-MRI to 

extract diaphragm motion is that both diaphragm surface and motion can be captured. 

We then analyzed and compared displacement map that is derived from the diaphragm 

motion of healthy volunteers and COPD patients. Using the displacement map, we 

found that COPD patients tended to have smaller displacements in certain area 

compared to healthy volunteers. We were also able to locate paradoxical motion of the 

diaphragm which is one of the COPD characteristics. Such information obtained from 
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4D-MRI will be beneficial for the physician and leads to a better treatment for COPD. 

In such an application, the above mentioned stable extraction of diaphragm was very 

useful. 

4.6. Conclusion 

We have improved the intersection profile method proposed previously to 

reconstruct 4D-MR images. We carried out a prospective 4D-MRI reconstruction to 

shorten acquisition time. Although the prospective synchronization method was tested 

only in simulations using previously acquired full data sets, we found that the 

prospective methods with 0.3 threshold value successfully reduced acquisition time of 

data slices by 75.6% and 84.0% for volunteer and patient data. 

The quality of the 4D-MRI reconstruction was visually evaluated in three aspects; 

volume rendering, MIP images, and sagittal cut images. In most cases, the image quality 

of prospective reconstruction of 4D-MRI was satisfactory.  The quality of the 4D-MRI 

reconstruction was also validated by calculating the displacement of diaphragm and 

calculating the geomean NCC value between the reconstructed 4D-MRI and the original 

navigator slice.  

One limitations in full-scale implementation of this method is the need for 

significant modification in the manufacturing of MR scanner system. However, upon 

implementation of this method, it is reasonable to expect similar results to be achieved. 
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5 
5. EVALUATION OF COPD’S DIAPHRAGM MOTION EXTRACTED 

FROM 4D-MRI 

Abstract 

We have developed a method called intersection profile method to construct a 

4D-MRI (3D+time) from time-series of 2D-MRI. The basic idea is to find the best 

matching of the intersection profile from the time series of 2D-MRI in sagittal plane 

(navigator slice) and time series of 2D-MRI in coronal plane (data slice). In this study, 

we use the reconstructed 4D-MRI to semi-automatically extract right diaphragm motion 

of 16 subjects (8 healthy volunteers and 8 COPD patients). The diaphragm motion is 

then evaluated quantitatively by calculating the displacement of each subjects and 

normalized it. We also generate inhalation phase length map to view and locate 

paradoxical motion of the COPD patients. The quantitative results of the normalized 

displacement shows that COPD patients tend to have smaller displacement compared to 

healthy volunteers. The average normalized displacement of total 8 COPD patients is 

9.4mm and the average of normalized displacement of 8 healthy volunteers is 15.3mm. 

The generated phase-length maps show that not all of the COPD patients have 

paradoxical motion, however if it has paradoxical motion, the inhalation phase length 

map is able to locate where does it occur. 
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5.1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a lung disorder characterized by 

airflow limitation that is irreversible [47]. The airflow limitation usually is a result of 

airway narrowing, parenchymal destruction or both [48].  Imaging modalities such as 

computed tomography (CT) can provide a visual assessment to observe structural 

imaging such as airways or lung parenchyma [48] [49] [50] [51].  

Other imaging modality that is able to noninvasively quantify respiratory motion is 

magnetic resonance imaging (MRI) [52] [53] [54] [34] [28]. One of the advantage of the 

MRI over the CT imaging is that the MRI can obtain structural organ without irradiation. 

Using a fast acquisition techniques of MRI, Suga et al showed high spatial and temporal 

visualization of respiratory motion and also quantitatively evaluated the diaphragm 

motion of healthy volunteers and COPD [53]. Plathow et al used dynamic MRI to 

calculate vital capacity (VC) and compared it with VC calculated from spirometry. The 

correlation of VC calculated from spirometry and VC from dynamic MRI is high which 

indicates that MR imaging can be used to evaluate respiratory motion [54]. The use of 

dynamic MRI to investigate abnormal diaphragmatic motion on lung emphysema was 

also reported in [55]. Other study that evaluated the respiratory motion of lung 

parenchyma using dynamic MRI [28] was conducted by Shibata et al. Several points 

were set and tracked in ventrodorsal direction (X-axis) and craniocaudal direction 

(Y-axis). The tracking was only performed on a time-series sagittal slice. Therefore, the 

tracking points was limited in the anterior-posterior direction and unable to obtain 

respiratory motion  in the right-left direction. Using only anterior-posterior tracking, 

the paradoxical motion of the diaphragm of COPD patients could not be confirmed. 
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Despite several studies have reported quantitative analysis of respiratory organs 

motion of COPD from dynamic MRI, a quantitative analysis from 4D imaging (3D + 

time) have never been reported. One of the advantages of 4D imaging over the dynamic 

MRI is that the anatomic motion and organ deformation caused by respiratory motion 

can be clearly observed in 3D which leads to better treatment [1] [2]. Some methods to 

reconstruct 4D imaging, specifically 4D-MRI include [8] [9] [10] [11] [12] [13]. A 

common approach to reconstruct 4D-MRI is using 2D-MR images to cover both the 

volume of the respiratory organ and the respiratory phases from inhalation to exhalation. 

The 2D-MR images are then retrospectively sorted based on the obtained respiratory 

phase to reconstruct the 4D-MR images (i.e. retrospective 4D-MRI).  

In this study, we aim to obtain diaphragm motion from diaphragm surface that is 

extracted from 4D-MRI reconstructed using intersection profile method [13].  We then 

quantitatively analyze the differences of the diaphragm motion between the COPD 

patients and healthy volunteers.   

In the following sections, we first review our method to reconstruct 4D-MRI and 

then we present the method of diaphragm  motion extraction from 4D-MRI, 

displacement normalization and inhalation phase length (IPL) map generation. Finally, 

comparison of displacement and IPL map between COPD and healthy volunteers will 

be addressed. 
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5.2. Methods 

5.2.1. Extraction of diaphragm motion from 4D-MRI  

Our method to reconstruct 4D-MRI is discussed at Chapter 5, Sec. 5.2. In order to 

obtain diaphragm motion, we extract only on the right diaphragm motion. The left 

diaphragm  is omitted because its motion are influenced by heart beat.  

Four main steps to obtain diaphragm motion are: (1) set a region of interest (ROI) 

for the first frame; (2) set ROI for the subsequent frames; (3) track diaphragm surface 

for all frames (one respiratory cycle) based on the obtained ROI from (1) and (2); and 

(4) repeat the diaphragm surface tracking from anterior to posterior slice.   

The ROI setting for the first frame is done manually by selecting 2-3 points at the 

surface of the diaphragm and connect them using interpolation (the selected points are 

not meant to represent the diaphragm surface but instead to be used as an initial contour 

for the next step). ROI is then set based on the lowest and highest location of the 

selected points. This ROI setting process is applied for each slices from anterior to 

posterior slice. Figure 5.1 shows the workflow of the ROI setting. 
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Figure 5. 1. Workflow of ROI setting for the first frame. 

To automatically determine the ROI position for the subsequent frames, we use the 

ROI of the first frame as a template and find the best matching in the subsequent frames. 

The similarity measure we use to find the best matching is normalized cross correlation 

(NCC). Figure 5.1 shows the workflow to determine the ROI for one respiratory cycle 

(expiration-inspiration-expiration). 
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Figure 5. 2. ROI setting for the subsequent frames based on the template obtained from the first frame. 

Next step is to track the diaphragm motion inside the ROI. This step is very crucial 

because it will be used to calculate the displacement and also generate phase-length map. 

The initial contour in step 1 cannot be used to represent the diaphragm surface because 

it just interpolates selected points in the diaphragm surface. There are many cases, 

especially for COPD subject where the shape of the diaphragm surface is not perfectly 

round or wavy. In such cases, the initial contour is unable to follow the wavy surface 

and more detail contour is required. 

To obtain the detail contour for each frames, we first filter the ROI using Gaussian 

filtering to remove noise and apply active contour without edges method [36]. When 

Slice #5

Slice #8

Slice #11

.

.

.

.

.

.

Anterior

Posterior

Expiration
(template)

inspiration expiration



84         5. Evaluation of COPD’s Diaphragm Motion Extracted From 4D-MRI 

 

other parts besides the diaphragm surface are also detected, only the longest contour is 

considered as the diaphragm surface. Hence the final result is only one contour that 

represents the diaphragm surface on current frame and slice. Figure 5.3 shows how the 

active contour without edges is applied to obtain detail contour of the diaphragm 

surface.  

 

Figure 5. 3. Automatic detection of the diaphragm surface 

This process of diaphragm surface detection is repeated for all subsequent frames 

(one respiratory cycle) and slices from anterior to posterior.  

5.2.2. Normalization and IPL map  

The displacement of the diaphragm is relative to subject’s lung size. Therefore, 

normalized the displacement is necessary. We defined a normalized displacement as a 

percentage of diaphragm motion to the lung size. The displacement normalization (DN) 

is expressed as:  

DN = (displ * 100) / d                 (5.1) 
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where d is length of the lung and displ is the difference point between end 

exhalation and end inhalation (Figure 5.4). 

 

Figure 5. 4. Normalization of the displacement 

The normalization is performed to each points in the contour of the diaphragm 

surface. Each points represents the displacement of the diaphragm from end-exhalation, 

end-inhalation and end-exhalation (one respiratory cycle). The displacement from 

end-exhalation to end-inhalation can be used to locate paradoxical motion of the 

diaphragm. Paradoxical motion is an abnormal chest movement that is considered as 

one of the characteristics of COPD in very severe stage. It is defined as downward (or 

upward) motion as lung area decreases (or increases) due to the poor airflow during 

respiration [55]. 

For healthy subjects, the lowest displacement (end-inhalation) falls between 30-40% 

in one respiratory cycle. However, for COPD  patients there are parts of the diaphragm 

that moves asynchronously with the other parts. They move upward during inhalation 

and move downward during exhalation. Therefore, the lowest displacement for those 

parts falls between 70-80% in one respiratory cycle. 
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In order to locate paradoxical motion, we create a map called inhalation phase 

length (IPL) map. It maps the where is the lowest position (end-inhalation) of the 

displacement for each points. To determine the location of end-inhalation, we first 

extract displacement of diaphragm and normalized into 1-100 (where 1 represents the 

beginning of the respiratory cycle and 100 represents the end of the respiratory cycle).  

The end-inhalation is lowest position between 1-100. Figure 5.5 shows the detail to 

obtain IPL. 

 
Figure 5. 5. Inhalation phase length (IPL) obtained from a point of displacement in the diaphragm 

5.3 Experiment 

5.3.1. Image data and patient characteristics used in experiment 

The MR images were acquired using 1.5T INTERA ACHIVA nova-dual (Philips 

Medical Systems) whole-body scanner with a 16ch SENSE TORSO XL coil. A 2D 

balanced FFE sequence was used. The imaging parameters were as follows: SENSE 

factor, 2.2; flip angle, 45o; TR, 2.2ms; TE, 0.9ms; FOV, 384mm; in-plane resolution, 

256x256 pixels and 1.5x1.5mm2; slice thickness, 7.5mm; slice gap, 6.0mm; scan time, 

150ms/frame. All subjects were instructed to breath normally during the acquisition 

process. The image acquisition experiment was conducted under the approval of the 

Ethical Review Board of Chiba University. The software used to reconstruct 4D-MRI 
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was MatLab 7.10 and we ran it on a PC with Intel®Core™2 Quad, 2.66GHz, 16GB 

RAM.  

The participant of this study were 8 COPD patients (6 men; mean age: 735.9 yr; 

mean height: 1.620.07 m; mean weight: 5112kg) and 8 healthy volunteers (8 men; 

mean age: 321.4 yr; mean height: 1.764.38 m; mean weight: 675.6 kg) participated 

for this study.  Detail of pulmonary function test (PFT) of COPD patients is shown in 

Table 5.1. 

Table 5. 1. COPD patients characteristics 

Pulmonary function test COPD patients 

Stage (GOLD standard) 

    3 

    4 

 

1 

7 

VC (l) 2.270.65 

%VC 66.7313.71 

FVC (l) 2.170.71 

%FVC 65.2016.85 

FEV1 0.730.32 

FEV1/FVC 34.409.97 

FEV1 % pred. 27.7810.79 

5.3.2. Diaphragm motion extraction and statistical analysis 

Figure 5.6 shows the normalized displacement of COPD and healthy volunteers. As 

seen in the displacement map of COPD, most of the diaphragm area is blue or green 

which indicate the displacement is less than 10. For healthy volunteers, the 

displacement maps show some yellow or red area which indicate higher displacement.  



88         5. Evaluation of COPD’s Diaphragm Motion Extracted From 4D-MRI 

 

 

Figure 5. 6. Displacement map of COPD and healthy volunteers 

Figure 5.7 shows the quantitative results of normalized displacement from COPD 

patients and healthy volunteers. The average of normalized displacement are 6.31.7 for 

COPD and 10.22.4 for healthy volunteers. We also performed a statistical analysis, 

t-test to see if the displacement of the COPD is significantly less than the healthy 

subjects. The p-value is equal to 0.000872, which indicate that the displacement of the 

COPD is significantly less than the volunteers 

 

Figure 5. 7. Comparison of normalized displacement between COPD patients (P1-P8) and healthy 

volunteers (V1-V8) 
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5.3.3. Inhalation phase length (IPL) map 

Figure 5.8 shows the IPL map of the COPD. Ideally, in one respiratory cycle, 

end-inhalation  takes place somewhere between 30-40% (represented as green-yellow 

in the color bar). However, for certain area, the end of inhalation takes place at 60-70% 

(represented as red in the color bar) – which indicates paradoxical motion occur in that 

area. 

 

(a) 

 

(b) 

Figure 5. 8. IPLmap of (a) COPD and (b) healthy volunteers. The color bar represents the location of 

end inhalation (in %). 
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5.4 Discussion 

We performed diaphragm motion extraction from 4D-MRI and calculate the 

normalized displacement of the diaphragm motion. The displacement of the COPD 

patients tend to have smaller displacement compared to healthy volunteers.  This result 

confirms previous study by Shibata et al [28] that tracked several points in the lung 

during respiration and compared between COPD and healthy volunteers.  

Using the extraction of the diaphragm motion, IPL map can be generated. An IPL 

map can be used to show the position of end-inhalation and also to locate paradoxical 

motion of the diaphragm. A very apparent paradoxical motion were shown in the IPL of 

P3. Our visual inspection of the diaphragm motion of P3 also showed that the red area 

moves asynchronously during respiration (Figure 5.9).  

 

Figure 5. 9. Paradoxical motion of P3 

Paradoxical motion also found in P2 and P5 in the right side near the anterior area. 

For P7, although there were small parts showing red, paradoxical motion could not be 

confirmed. The red parts only occur in two separate displacement points and caused by 

error during motion tracking process. 

11th frame 22nd frame
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Two IPL maps of the volunteers, V5 and V7, showed that brown color dominates 

the diaphragm area. These cases were caused by the position of end-inhalation is higher 

compared to other volunteers. It cannot be categorized as paradoxical motion since most 

points of the end-inhalation position also falls in the 50%-60%.  

5.5. Conclusion and future works 

We extracted diaphragm motion from 4D-MRI of 8 COPD patients and 8 healthy 

volunteers. The displacement of the diaphragm were normalized and compared between 

COPD patients and healthy volunteers. The average of the normalized displacement of 

COPD patients are smaller compared to healthy volunteers. Using the same diaphragm 

motion, we also generated inhalation phase length map which can be used to locate 

paradoxical motion of the diaphragm, which is one of the characteristics of COPD.  

The displacement of the diaphragm of COPD might have high correlation with the 

pulmonary functional tests. However, we need to confirm by adding more COPD data 

in the future.  
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6 
6. SUMMARY AND FUTURE WORKS 

6.1. Summary 

We present three aspects of 4D-MRI in this thesis: statistical modeling, 

reconstruction using prospective method and clinical application of 4D-MRI. The main 

contributions of each aspects are as follows: 

- Statistical modeling using GND-PCA. Instead of using regular PCA, the 

GND-PCA provides better diaphragm motion modeling which has smaller error 

margin.   

- Reduction of acquisition time using prospective method to reconstruct 4D-MRI. 

Our proposed method is able to reduce the acquisition time of data slice up to 

75% while maintaining the quality of the reconstruction. Although full-scale 

implementation of this method is currently not possible, we believe that upon 

implementation, it is reasonable to expect similar time acquisition reduction. 

- Application of 4D-MRI to locate paradoxical motion in the diaphragm of the 

COPD patients.  

6.2. Future works 

In chapter 2, we proposed diaphragm motion modeling using GND-PCA. The 

subjects in the diaphragm motion modeling are healthy subjects. We did not include 

patient in the sample. It is interesting if several patients with paradoxical motion are 
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also included in the sample. Since PCA captures the largest possible variance of motion, 

we can expect that the paradoxical motion is also captured in the PCA model. However, 

an experiment is required to support the hypothesis. The motion model can also be used 

along with surrogate data that have a strong relationship with the motion of interest to 

estimate motion of interest. It opens new potential for clinical applications such as 

image guided intervention or more accurate treatment for radiotherapy. 

In chapter 4, we discussed the improvement of 4D-MRI reconstruction method. The 

current method is only able to capture 1 most common respiratory cycle. It is interesting 

if the variability of the respiratory cycles can be obtained. The analysis of respiratory 

motion or respiratory modeling will be more accurate if the 4D-MRI can capture 

respiratory cycle variability. 

In clinical application, there are still many potentials of 4D-MRI that can be explored 

in the future. We have proposed a method to extract the diaphragm motion and 

quantitatively analyzed the displacement in chapter 5. We showed that the normalized 

displacement of the COPD tend to be smaller compared to the healthy volunteer. Other 

application is measuring the change of lung volume of COPD. It will benefit the 

physicians to have more understanding of COPD and its relationship with the severity 

of COPD. The correlation of paradoxical motion and airflow obstruction is also another 

interesting topic that can be investigated using 4D-MRI.



 

95 

BIBLIOGRAPHY 

 
[1]  P. J. Keall, G. S. Mageras and J. M. Balter, "The management of respiratory 

motion in radiation oncology report of AAPM Task Group 76a," Medical physics, 

vol. 33, no. 10, pp. 3874-3900, 2006.  

[2]  P. Keall, "4-dimensional computed tomography imaging and treatment planning," 

Seminars in radiation oncology , vol. 14, no. 1, pp. 81-90, 2004.  

[3]  S. S. Vedam, P. J. Keall, V. Kini and a. et, "Acquiring a four-dimensional 

computed tomography dataset using an external respiratory signal," Physics in 

medicine and biology, vol. 48, no. 1, p. 45, 2003.  

[4]  K. Saito, M. Saito, S. Komatu and a. et, "Real-time four-dimensional imaging of 

the heart with multi-detector row CT," Radiographics, vol. 23, no. 1, pp. E8-E8, 

2003.  

[5]  D. A. Low, M. Nystrom, E. Kalinin and a. et, "A method for the reconstruction of 

four-dimensional synchronized CT scans acquired during free breathing," Medical 

physics, vol. 30, no. 6, pp. 1254-1263, 2003.  

[6]  R. W. Underberg, F. J. Lagerwaard, J. P. Cuijpers and a. et, "Four-dimensional CT 

scans for treat-ment planning in stereotactic radiotherapy for stage I lung cancer," 

Journal of Radiation Oncology* Biology* Physics, vol. 60, no. 4, pp. 1283-1290, 

2004.  



 96 

 

 

[7]  W. Lu, P. J. Parikh, I. M. El Naqa and a. et, "Quantitation of the reconstruction 

quality of a four-dimensional computed tomography process for lung cancer 

patients," Medical physics, vol. 32, no. 4, pp. 890-901, 2005.  

[8]  M. von Siebenthal, G. Székely, U. Gamper and a. et, "4D MR imaging of 

respiratory organ motion and its variability," Phys Med Biol, vol. 52, p. 1547–1564, 

2007.  

[9]  J. Tokuda, S. Morikawa, H. Haque and a. et, "Adaptive 4D MR imaging using 

navigator-based respiratory signal for MRI-guided therapy," Magn Reson Med., 

vol. 59, no. 5, pp. 1051-1061, 2008.  

[10] G. Remmert, J. Biederer, F. Lohberger and a. et, "Four-dimensional magnetic 

resonance imaging for the determination of tumour movement and its evaluation 

using a dynamic porcine lung phantom," Physics in medicine and biology, vol. 52, 

no. 18, p. N401, 2007.  

[11] J. Cai, C. Z, Z. Wang and a. et, "Four-dimensional magnetic resonance imaging 

(4D-MRI) using image-based respiratory surrogate: a feasibility study," Medical 

physics, vol. 38, no. 12, pp. 6384-6394, 2011.  

[12] A. P. King, C. Buerger, C. Tsoumpas and a. et, "Thoracic respiratory motion 

estimation from MRI using a statistical model and a 2-D image navigator," Medical 

image analysis, vol. 16, no. 1, pp. 252-264, 2012.  

[13] Y. Masuda and H. Haneishi, "4D MR Imaging of Respiratory Organ Motion using 

Intersection Profile Method," Proc of SPIE , vol. 7625, pp. 76250Z-1-76250Z-10, 

2010.  

[14] R. Werner, J. Ehrhardt, T. Frenzel and a. et, "Motion Artifact Reducing 



97          

 

Reconstruction of 4D CT Image Data for the Analysis of Respiratory Dynamics," 

Meth. Inf. Med., vol. 46, pp. 254-260, 2007.  

[15] R. Werner, J. Ehrhardt, R. Schmidt and H. Handels, "Modeling respiratory lung 

motion: a biophysical approach using finite element methods.," Proc. SPIE, vol. 

6916, pp. N1-11, 2008.  

[16] J. McClelland, J. Blackall and S. Tarte, "A continuous 4D motion model from 

multiple respiratory cycles for use in lung radiotherapy," Medical Physics, no. 33, 

pp. 3348-3358, 2006.  

[17] M. Georg, R. Souvenir, A. Hope and R. Pless, "Manifold learning for 4D CT 

reconstruction of the lung.," Computer Vision and Pattern Recognition Workshops, 

vol. 2008, no. CVPRW08, pp. 1-8.  

[18] M. Lyksborg, R. Paulsen, C. Brink and R. Larsen, "4D Lung Reconstruction with 

Phase Optimization," IFMBE Proceedings, pp. 2227-2230, 2010.  

[19] R. Li, J. Lewis, X. Jia, T. Zhao and a. et, "PCA-based lung motion model," 16th 

International Conference on the Use of Computers in Radiation Therapy, 2010.  

[20] T. Klinder, C. Lorenz and C. Ostermann, "Free-breathing intra-and inter-subject 

respiratory motion capturing, modeling, and prediction," Proc. SPIE, vol. 7259, p. 

72590T, 2009.  

[21] P. King, C. Buerger and T. Schaeffter, "Cardiac respiratory motion modelling by 

simultaneous registration and modelling from dynamic MRI images," Biomedical 

Image Registration, vol. 4th International Workshop, pp. 222-233, 2010.  

[22] W. Wein, J.-Z. Cheng and A. Khamene, "Ultrasound based respiratory motion 

compensation in the abdomen.," MICCAI 2008 Worshop on Image Guidance and 



 98 

 

 

Computer Assistance for Softissue Intervetions, vol. 32, no. 6, p. 294, 2008.  

[23] R. Xu and Y. W. Chen, "Generalized N-dimensional principal component analysis 

(GND-PCA) and its application on construction of statistical appearance models 

for medical volumes with fewer samples," Neurocomputing, vol. 72, no. 10, pp. 

2276-2287, 2009.  

[24] S. J. McQuaid, T. Lambrou, V. Cunningham and a. et, "The application of a 

statistical shape model to diaphragm tracking in respiratory-gated cardiac pet 

images," Proceedings of the IEEE, vol. 97, no. 12, pp. 2039-2052, 2009.  

[25] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, "Active shape models-their 

training and application," Computer vision and image understanding, vol. 61, no. 

1, pp. 38-59, 1995.  

[26] Z. Qiu, H. Tang and D. Tian, "Non-rigid medical image registration based on the 

thin-plate spline algorithm," Computer Science and Information Engineering, vol. 

2, pp. 522-577, 2009.  

[27] S. J. Martin, J. Dey, M. A. King and B. F. Hutton, "Segmenting and Tracking 

Diaphragm and Heart Regions in Gated-CT Datasets as an Aid to Developing a 

Predictive Model for Respiratory Motion-Correction," Nuclear Science Symposium 

Conference Record, vol. 4, pp. 2680-2685, 2007.  

[28] H. Shibata, T. Iwasawa, T. Gotoh and a. et, "Automatic Tracking of the Respiratory 

Motion of Lung Parenchyma on Dynamic Magnetic Resonance Imaging: 

Comparison With Pulmonary Function Tests in Patients With Chronic Obstructive 

Pulmonary Disease," Journal of thoracic imaging, vol. 27, no. 6, pp. 387-392, 

2012.  



99          

 

[29] M. J. Diament, M. I. Boechat and H. Kangarloo, "Real‐time sector ultrasound in 

the evaluation of suspected abnormalities of diaphragmatic motion," Journal of 

clinical ultrasound, vol. 13, no. 8, pp. 539-543, 1985.  

[30] E. O. Gerscovich, M. Cronan, J. McGahan and a. et, "Ultrasonographic evaluation 

of diaphragmatic motion," Journal of ultrasound in medicine, vol. 20, no. 6, pp. 

597-604, 2001.  

[31] A. Boussuges, Y. Gole and P. Blanc, "Diaphragmatic motion studied by m-mode 

ultrasonography," Chest, vol. 135, no. 2, pp. 391-400, 2009.  

[32] T. Kotani, S. Minami, K. Takahashi and a. et, "An analysis of chest wall and 

diaphragm motions in patients with idiopathic scoliosis using dynamic breathing 

MRI," Spine, vol. 29, no. 3, pp. 298-302, 2004.  

[33] P. Kolar, J. Neuwirth, Sanda and a. et, "Analysis of diaphragm movement during 

tidal breathing and during its activation while breath holding using MRI 

synchronized with spirometry," Physiological Research, vol. 58, no. 3, p. 383, 

2009.  

[34] T. Iwasawa, H. Takahashi, T. Ogura and a. et, "Influence of the distribution of 

emphysema on diaphragmatic motion in patients with chronic obstructive 

pulmonary disease," Japanese journal of radiology, vol. 29, no. 4, pp. 256-264, 

2011.  

[35] N. Otsu, "A threshold selection method from gray-level histograms," Automatica, 

vol. 11, no. 285-296, pp. 23-27, 1975.  

[36] T. F. Chan and L. A. Vese, "Active contours without edges," Image Processing, 

IEEE Transactions on, vol. 10, no. 2, pp. 266-277, 2001.  



 100 

 

 

[37] W. Lu, M. M. Nystrom, P. J. Parikh and a. et, "A semi-automatic method for peak 

and valley detection in free-breathing respiratory waveforms," Medical physics, 

vol. 33, no. 10, pp. 3634-3636, 2006.  

[38] R. C. Gonzalez, R. E. Woods and S. L. Eddins, Digital Image Processing using 

MATLAB, Prentince Hall, 2004.  

[39] Z. Wang, A. C. Bovik, H. R. Sheikh and a. et, "Image quality assessment: from 

error visibility to structural similarity," Image Processing, IEEE Transactions on, 

vol. 13, no. 4, pp. 600-612, 2004.  

[40] D. M. Rouse and S. S. Hemami, "Understanding and simplifying the structural 

similarity metric," in 15th IEEE International Conference In Image Processing, 

2008.  

[41] Z. Liu and R. Laganiere, "On the Use of Phase Congruency to Evaluate Image 

Similarity," in ICASSP (2), 2006.  

[42] H. Alain and D. Ziou, "Is there a relationship between peak-signal-to-noise ratio 

and structural similarity index measure?," Image Processing, vol. 7, no. 1, pp. 

12-24, 2013.  

[43] K. Bijendra, S. B. Kumar and C. Kumar, "Development of improved SSIM quality 

index for compressed medical images," in Image Information Processing (ICIIP), 

2013.  

[44] Z. Zangen, K. Wahid, P. Babyn and R. Yang, "Compressed sensing-based MRI 

reconstruction using complex double-density dual-tree DWT," Journal of 

Biomedical Imaging, p. 10, 2013.  

[45] A. Betgen, A. Tanja, S. Jan-Jakob, V. Corine van, B. Harry and R. Peter, 



101          

 

"Assessment of set-up variability during deep inspiration breath hold radiotherapy 

for breast cancer patients by 3D-surface imaging," Radiotherapy and Oncology , 

vol. 2, pp. 225-230, 2013.  

[46] W. Swastika, Y. Masuda, N. Kawata, K. Matsumoto, T. Suzuki, K. Iesato, Y. Tada, 

T. Sugiura, N. Tanabe, K. Tatsumi, T. Ohnishi and H. Haneishi, "Evaluation of 

COPD's diaphragm motion extracted from 4D-MRI," in SPIE, Florida, 2015.  

[47] B. R. Celli, W. MacNee, A. Agusti and a. et, "Standards for the diagnosis and 

treatment of patients with COPD: a summary of the ATS/ERS position paper," 

European Respiratory Journal, vol. 23, no. 6, pp. 932-946, 2004.  

[48] M. Hasegawa, Y. Nasuhara, Y. Onodera and a. et, "Airflow limitation and airway 

dimensions in chronic obstructive pulmonary disease.," American journal of 

respiratory and critical care medicine, vol. 173, no. 12, pp. 1309-1315, 2006.  

[49] A. Haruna, S. Muro, Y. Nakano and a. et, "CT scan findings of emphysema predict 

mortality in COPD," CHEST, vol. 138, no. 3, pp. 635-640, 2010.  

[50] Barr and e. a. COPDGene CT Workshop Group: R. Graham, "A combined 

pulmonary-radiology workshop for visual evaluation of COPD: study design, chest 

CT findings and concordance with quantitative evaluation.," COPD: Journal of 

Chronic Obstructive Pulmonary Disease, vol. 9.2, pp. 151-159, 2012.  

[51] T. Ohara, T. Hirai, S. Muro and a. et, "Relationship between pulmonary 

emphysema and osteoporosis assessed by CT in patients with COPD," CHEST, vol. 

134, no. 6, pp. 1244-1249, 2008.  

[52] J. Tokuda, M. Schmitt, Y. Sun and a. et, "Lung motion and volume measurement 

by dynamic 3D MRI using a 128-channel receiver coil," Academic Radiology, vol. 



 102 

 

 

16, no. 1, pp. 22-27, 2009.  

[53] K. Suga, T. Tsukuda, H. Awaya and a. et, "Impaired respiratory mechanics in 

pulmonary emphysema: evaluation with dynamic breathing MRI," Journal of 

Magnetic Resonance Imaging, vol. 10, no. 4, pp. 510-520, 1999.  

[54] C. Plathow, M. Schoebonger, C. Fink and a. et, "Evaluation of lung volumetry 

using dynamic three-dimensional magnetic resonance imaging," Investigative 

radiology, vol. 40, no. 3, pp. 173-179, 2005.  

[55] T. Iwasawa, S. Kagei, T. Gotoh and a. et, "Magnetic resonance analysis of 

abnormal diaphragmatic motion in patients with emphysema," European 

Respiratory Journal, vol. 19, no. 2, pp. 225-231, 2002.  

[56] M. Schneider and a. et, "Model-based respiratory motion compensation for 

image-guided cardiac interventions," Computer Vision and Pattern Recognition 

(CVPR), pp. 2948-2954, 2010.  

[57] K. Demura, S. Morikawa, K. Murakami and a. et, "An easy-to-use microwave 

hyperthermia system combined with spatially resolved MR temperature maps: 

phantom and animal studies," Journal of Surgical Research, vol. 135, no. 1, pp. 

179-186, 2006.  

[58] S. C. Bushong, Magnetic Resonance Imaging: Physical and Biological Principles, 

Mosby, 2003.  

[59] C. Westbrook, Handbook of MRI Technique, Wiley-Blackwell, 1999.  

[60] W. Hendee and R. Ritenour, Medical imaging physics, John Wiley & Sons, 2003.  

 

 



 

103 

RELEVANT PUBLICATIONS BY THE AUTHOR 

Articles in International Journals 

1. Windra Swastika, Yoshitada Masuda, Takashi Ohnishi and Hideaki Haneishi: 

"Reduction of acquisition time in the intersection profile method for 

four-dimensional magnetic resonance imaging reconstruction of 

thoracoabdominal organs," J. Med. Imag., 2(2), 024008, 14 pages (2015). 

doi:10.1117/1.JMI.2.2.024008 

2. Windra Swastika, Yoshitada Masuda Takashi Ohnishi and Hideaki Haneishi: 

“Automatic Extraction of Diaphragm Motion and Respiratory Pattern from 

Time-sequential Thoracic MRI”, TELKOMNIKA, Vol.14, No.2, pp. 329-334 

(2015.5)  

3. Windra Swastika, Yoshitada Masuda, Rui Xu, Shoji Kido, Yen-Wei Chen, and 

Hideaki Haneishi, “GND-PCA-Based Statistical Modeling of Diaphragm Motion 

Extracted from 4D MRI,” Computational and Mathematical Methods in 

Medicine, vol. 2013, Article ID 482941, 9 pages, (2013). 

doi:10.1155/2013/482941  

4. Windra Swastika, Hideaki Haneishi: Compressed Sensing for Thoracic MRI with 

Partial Random Circulant Matrices, TELKOMNIKA, Vol.10, No.1, pp. 147-154 

(2012.3) 

Articles in International Conferences with Review Committee 

1. Windra Swastika, Yoshitada Masuda, Naoko Kawata, Koji Matsumoto, Toshio 

Suzuki, Ken Iesato, Yuji Tada, Toshihiko Sugiura, Nobuhiro Tanabe, Koichiro 

Tatsumi, Takashi Ohnishi, Hideaki Haneishi, “Evaluation of COPD's diaphragm 

motion extracted from 4D-MRI”, SPIE Medical Imaging, Florida, USA, (Feb 

21-26, 2015) 

 

2. Windra Swastika, Yoshitada Masuda, Takashi Ohnishi, Hideaki Haneishi, “Time 

Reduction of 4D-MRI Reconstruction for Thoracoabdominal Organs using 

Intersection Profile Method”, CARS 28th International Congress and Exhibition, 

Fukuoka, Japan, (Jun 24-28, 2014) 

 



 104 

 

 

3. Swastika W, Masuda Y, Xu R, Kido S, Chen YW, Haneishi H, "Statistical 

Modeling of Diaphragm Motion Extracted from 4D-MRI using 1DPCA and 

2DPCA". Proc. of International Forum on Medical Imaging in Asia (IFMIA), 

Korea, (Nov 16-17, 2012) 

 

4. Swastika W, Nishikawa T, Masuda Y, Haneishi H, "Statistical Model of 

Diaphragm Motion Using Principal Component Analysis". Proc of 97th 

Radiology Society of North America (RSNA) scientific assembly and annual 

meeting, Chicago, USA, 2011. 

Abstract in Other Conferences 

1. Swastika W, Nishikawa T, Masuda Y, Haneishi H, "Statistical Model of 

Diaphragm Motion Using Principal Component Analysis". Proc of 30th 

Japanese Society of Medical Imaging Technology (JAMIT) annual meeting, 

Otawa, Japan, 2011 

 

2. Windra Swastika, Yoshitada Masuda, Hideaki Haneishi, "Automatic Intersection 

Profile Method for 4D-MRI Construction". 5th Japanese Society of Pulmonary 

Functional Imaging (JSPFI) 2013, P11-5, Tokushima, (Jan 12-13, 2013)  

 

3. Windra Swastika, Yoshitada Masuda, Hideaki Haneishi, "Automation and Time 

Reduction of 4D-MRI Reconstruction for Thoracoabdominal Organs using 

Intersection Profile Method", 第 32 回 日本医用画像工学会大会，PP2-6,産

業技術総合研究所臨海副都心センター(2013.8.1-3) 

 

4. Windra Swastika, Yoshitada Masuda, Naoko Kawata, Koji Matsumoto, Toshio 

Suzuki, Ken Iesato, Yuji Tada, Tanabe Sugiura, Nobuhiro Tanabe, Koichiro 

Tatsumi, Takashi Ohnishi, Hideaki Haneishi: Visual and quantitative assessment 

of COPD’s diaphragm motion extracted from 4D-MRI, 第 6 回 呼吸機能イメ

ージング研究会 2013, P-74, 北海道大学, (2014.01.23-24) 



 

105 

ACKNOWLEDGEMENT 

Doctoral course is an amazing and yet challenging journey. Without help from many 

people, I could never have reached the end point of this journey.  

First, I want to express my gratitude to my supervisor Prof. Hideaki Haneishi for 

many things. For accepting me to join his laboratory back then in 2010. For giving me  

a freedom to do research and also directing my research topic in the same time. For 

giving me so many valuable insights from the beginning of my research and all the way 

to final thesis defense. All of those experiences are priceless. 

I would to thank Takashi Ohnishi as a senior and co-supervisor as well. He was 

there to help me familiarize with the lab. environment, setting up the PC, network and 

software I used on my first days in the laboratory. I really appreciate his kindness and 

could not ask for more.  

I would also to thank Prof. Etsuji Yamamoto, Prof. Wenwei Yu and Prof. Tadashi 

Yamaguchi for their advices and suggestions. Their advices and suggestions has helped 

this thesis to reach a better scientific writing.  

Finally, I would like to thank my wife, Theresia and my children, Hide-kun and 

Megu-chan. Thank you for the love, support and encouragement during my doctoral 

journey. 

   


