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Abstract 
 

Speaker recognition is referred to the task of establishing identity of an individual using 

his or her voice characteristics. In practice, the following desirable properties of speech 

characteristics are the guarantee to achieve a higher accurate recognition rate: uniqueness 

that means no two persons should be the same in terms of the characteristic; permanence 

requires the characteristic should be invariant over a long period; acceptability indicates 

people are willing to accept the particular biometric system.  

According to the speech content match or mismatch, speaker recognition is divided 

into text-dependent task and text-independent task. Text-independent speaker recognition 

is the much more challenging of the two tasks. In a text-independent speaker recognition 

system, results from the difference between the utterance for training and the utterance 

for test, phonetic variability have been considered to have a negative effect on 

performance of the system. These are due to changes of the acoustic environment, there 

are also some other undesirable factors that represents the inter-session variability, 

including health status, mood and aging.  

In general, the same speaker’s variation between training and test conditions is 

termed as intra-speaker variability, and it remains to be the most challenging problem in 

speaker recognition. If the intra-speaker variability (phonetic variability and the 

inter-session variability) can be successfully suppressed, a robust speaker recognition 

system will be realized.  

From the different application of identity of a person, speaker recognition is 

categorized fundamentally into two distinct types of problems, which are identification 

and verification. Many previous studies have thrown light on the Gaussian mixture model 

(GMM). This has become the standardized method which has contributed to the leading 

edge of performance for speaker identification. Recently the support vector machine 

(SVM) is applied in the field of speaker verification research resulting in better 

performance. SVM is an efficient tool which can quickly and accurately classify the 

unknown speech samples into one category or the other based on margin maximization. 

Speaker verification focuses on whether a voice sample really being produced by 
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supposed speaker or not.  

GMM and SVM are statistically constructed using features of speech data in 

speaker recognition. However, the conventional features of speech data called 

mel-frequency cepstral coefficients (MFCC) used by GMM and SVM are not based on 

the removal of the phonetic variability and inter-session variability. Therefore, the 

conventional method here, cannot obtain a high accuracy level because speech features 

vary depending on the intra-speaker variability.  

The first theme of this thesis, a subspace method based on principal component 

analysis (PCA) is proposed to remove phonetic variability. The proposed method 

constructs a subspace where the variance of data is maximized, under the assumption 

that phonetic variability is large in a lower order subspace called the phonetic-dependent 

subspace. An orthogonal higher order subspace obtained by PCA represents speaker 

information and this thesis called the subspace phonetic-independent subspace. A new 

speech feature is proposed based on a projection onto the phonetic-independent 

subspace where the phonetic variability is suppressed. The proposed method was shown 

to be effective in speaker identification experiments. As a result, the identification error 

rate was reduced by 21% by the proposed method compared with the conventional 

speech data based on MFCC.  

On the other hand, the second theme adopts and extends the previous PCA-based 

method to reduce the inter-session variability. The basic idea is to transform input 

speech feature vectors to another subspace, where the inter-session variability is 

separated into a different subspace. Additionally, the inter-session is reduced in the 

original speech data subspace. The proposed method was shown to be effective in 

speaker identification experiments. As a result, identification error rate was reduced by 

37% by the proposed method compared with the conventional speech features MFCC, 

and the proposed method was shown to be robust with the respect to the inter-session 

variation.  

The third theme of this thesis is to propose a speaker verification method, by 

integrating an innovative phoneme-dependent method using a speech recognition 

technique. This technique selects the phonemes with a high contribution for speaker 

verification so as to overcome the shortcoming of inter-session variability. A speaker’s 
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model can be represented by several various phoneme GMMs. The inter-session 

variability of phoneme GMMs can be constrained in an inter-session independent 

subspace constructed by a reduction method, which is termed as nuisance attribute 

subtraction (NAS) in this thesis. SVM-based speaker verification experiments 

demonstrate the improvements gained from the proposed method. The equal error rate 

was reduced by 19.4% by the proposed method compared with the conventional MFCC. 

The last theme of this thesis proposes an application of speaker diariztion using a 

speaker verification technique to extract one desired speaker’s utterances from 

conversational speech. As a result of speaker diariztion experiments，the equal error rate 

was reduced by up to 43.7% compared with the conventional target speaker model, so 

that the system was shown to be effective. 
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Chapter 1   

 

Introduction 

 

 

1.1 Background 

 

Biometrics generally refers to using personal traits or human physical characteristics to 

identify an individual. In theory, the biometrics authentication technology is expected, 

not only to protect the information safety, but also to guard against the threats of 

terrorism.  

An ideal biological measurement is qualified to be a biometric. A biometric is 

supposed to have the following properties. It is no doubt that the most indispensable 

property is uniqueness. Uniqueness means no two persons should be the same in terms of 

the characteristic. In practice, however, permanence and acceptability also play decisive 

roles. Permanence requires the characteristic should be invariant with a long time, and 

acceptability indicates people are willing to accept the biometric system [1].  

It occurs to our minds that face, iris, fingerprint, hand geometry and voice meet the 

aforementioned requirements. These biometrics have been proposed, researched, and 

evaluated. There is no single biometrics can effectively satisfy the needs of all 

authentication applications. Each biometrics appeals to a particular authentication 

application. The biometrics are used to identify an individual in roughly the same way in 

which Biometrics-based systems provide automatic, nearly instantaneous identity of a 

person by converting the biometrics into digital form and then comparing it against a 

computerized database [2].  

With the continued rise of the needs by more and more companies to securely 

access information as rapidly as possible, voice biometrics has emerged as an effective 

solution to satisfy these challenges. A more accurate description for voice biometrics is 

called speaker recognition that refers to recognizing persons using their voice [3]. Given 
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the situation that humans’ vocal tract shapes, larynx sizes and other parts of the voice 

production organs are different, namely, no two persons sound absolutely identical. 

State-of-the-art speaker recognition systems can be integrated as a part of a two-factor 

authentication process. It is combined with something like a password or PIN code to 

provide an extra layer of security to achieve more accurate authentication for confidential 

information and sensitive transactions. 

Forensics is one of the important applications for speaker recognition technology. 

There is a lot of information exchanged between two parties including criminals in 

telephone conversations. Meanwhile, besides forensics, it has been predicted that 

ordinary customer will benefit from telephone-based services with integrated speaker 

recognition in the near future. For example, automatic password authentication or reset 

via the telephone. It is obviously that the advantages of such automatic authentication 

system can deal with thousands of telephone calls simultaneously. In addition to speech 

data in telephone, other spoken documents like teleconference meeting, TV broadcasts, 

and video clips from vacations are continually increasing and filled with our daily life. 

The process of extracting metadata like topic of discussion or speaker genders from these 

spoken documents would make information searching and indexing automated. Speaker 

diariztion, a typical example, means extracting speaker sections of the different 

participants from recordings using speaker recognition techniques [4]. 

 

1.2 Speaker recognition 

 

Speaker recognition can be divided into text-dependent and text-independent systems. In 

text-dependent system, the recognition phrases are known beforehand or fixed. For 

example, the speaker is prompted to read a selected sequence of numbers. In 

text-independent system, on the other hand, there are no limitations on the content of 

speeches which the speakers are allowed to use. Namely, the utterances for training and 

the utterances for test may have different content completely. Consider the mismatch of 

phonetic, text-independent speaker recognition is the much more challenging task [3]. 

From different kind of application of identity of a person, speaker recognition is 

also categorized into two distinct types of problems fundamentally, that is identification 
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and verification. The identification task refers to an unknown speaker is compared with 

the database of a set of speakers, and the best matching speaker is taken to be the 

identification result. On the other hand, the verification task refers to the process of 

determining whether a given sample of speech originated from the target speaker or not.  

When the test utterance does not belong to any of the known speakers, it is called 

open-set speaker recognition, vice versa, a closed-set task refers to the provided speech 

sample to be determined from among a closed group of known speakers. The open-set 

nature of the process means much more challenge compared to the closed-set.  

General speaking, in a text-independent speaker recognition system, phonetic 

variability has been considered to have the negative effect on performance. Due to the 

changes of the acoustic environment, there are also some other undesirable factors that 

represents the inter-session variability including health status, mood and aging [5]. In 

general, the same speaker’s variation between training and test condition is termed as 

intra-speaker variability, and it remains to be the most challenging problem in speaker 

recognition. If the intra-speaker variability (phonetic variability and the inter-session 

variability) can be successfully suppressed, a robust speaker recognition system will be 

realized. 

 

1.3 Thesis Structure 

 

The remaining chapters of this thesis are composed as follows: 

Chapter 2 provides an overview of current speaker recognition technologies and 

describes the fundamentals of feature extraction, speaker modeling and score 

normalization techniques. 

Chapter 3 discusses the adverse effect on the accuracy of speaker identification by 

the phonetic variability and then proposes a phonetic variability compressed feature 

extraction method. The integration of GMM-based speaker identification system 

improves the identification accuracy. 

Chapter 4 discusses the adverse effect on the accuracy of speaker identification 

rates by the inter-session variability and describes Nuisance Attribute Projection (NAP). 

NAP is utilized to remove the inter-session variability by the proposed feature extraction 
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method. The integration of GMM-based speaker identification system further improves 

identification accuracy. 

Chapter 5 inherits the thought of chapter 4 and analysis from the view of some 

selected phonemes with high contribution for speaker verification. The integration of 

GMM-SVM based speaker verification in the proposed phoneme-dependent system 

presents the improvements for suppressing inter-session. 

In chapter 6, a new speaker indexing method using speaker verification technique 

is proposed to extract one desired speaker’s utterances from the overlapped speech. The 

proposed method detected other speakers’ speech from the observed speech itself. And 

then the computer has target speaker’s speech overlapped with other speakers’ speech to 

generate the overlapped speech model in order to improve the system.  

Chapter 7 concludes the dissertation with a summary of the contributions of this 

research and suggests further directions for continuing research in robust speaker 

recognition. 
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Chapter 2   

 

An overview of speaker recognition 

technology 

 

 

2.1 Introduction 

 

Speaker recognition is mainly defined as two tasks respectively by the requirement of 

different decisions. In speaker identification task, a speaker’s speech sample is compared 

with a set of labeled speaker models. The label of the best matching is taken to be the 

identification result. In speaker verification task, a claimer utters the speech sample along 

with his/her ID and system needs to determine whether the given speech sample 

originated from the target speaker or not. According to the contents of speech, speaker 

recognition can be divided into two categories: text-dependent and text-independent. In a 

text-independent context, the system expects a pre-defined phrase to be spoken by the 

user. This approach allows very high accuracy to be achieved through the analysis of 

particular phrase and intonation characteristics of the speech. However, increased 

interaction between the user and the system is required as clients may need to produce a 

particular set of key-words or be prompted with a required phrase for the verification 

process. The text-independent case on the other hand, allows the speaker to use 

unrestricted speech for the recognition process. This is an inherently difficult task and it is 

applicable to forensic-based applications in which speaker-unaware verification is to be 

performed. In general, the development of robust speaker recognition aims to achieve 

these tasks through the following process: speech feature extraction (section 2.2), speaker 

modeling (section 2.3) and score normalization (section 2.4). 
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2.2 Speech feature extraction 

 

In the context of automatic speaker recognition, speech processing refers to those 

operations applied to the raw auditory speech signal to produce a set of features suitable 

for use in a classifier. This feature extraction process is used to produce feature vectors 

holding the speaker information from the speech frames. These feature vectors are used to 

train speaker models and to perform classification. The selection of a feature set is critical 

for speaker recognition as it influences factors such as accuracy and robustness [6]. A 

significant benefit of analyzing speech in the cepstral domain is that linear 

time-invariant channel effects can be conveniently represented as mean offsets from the 

cepstral coefficients [12]. As a very common and efficient technique for speech 

processing, Mel Frequency Ceptral Coefficient (MFCC) [16] is based on human hearing 

perceptions. Some minor variations exits in the process steps of MFCC but the essential 

details are as below [8, 9, 10, 11]. 

 

2.2.1 Pre-emphasis 

 

Pre-emphasis is traditionally applied before the process of windowing. First order high 

pass FIR filter is used to pre-emphasize the higher frequency components. This process 

serves to flatten the signal so that the spectrum consists of formants of similar heights.  

 

2.2.2 Windowing 

 

The hamming window is the most commonly used window shape in speech process. The 

feature extraction is performed on 20-30ms windows with 5-10ms shift overlapped 

between two consecutive windows. The speech signal is split into several frames such 

that each frame can be analyzed in the short time instead of analyzing the entire signal at 

once. Windowing is performed to avoid unnatural discontinuities in the speech segment 

and distortion in the underlying spectrum.  
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2.2.3 Fourier transform 

 

The basis of performing Fourier transform is to convert the convolution of the glottal 

pulse and the vocal tract impulse response in the time domain into multiplication in the 

frequency domain. Spectral analyses signify that different timbres in speech signals 

corresponds to different energy distribution over frequencies. Therefore, Fourier 

transform is executed to obtain the magnitude frequency response of each frame and to 

prepare the signal for the next stage. In the practical application of speech process, Fast 

Fourier Transform (FFT) is commonly used. 

 

2.2.4 Mel-frequency warping  

 

The power spectrum is warped according to the mel-scale in order to adapt the frequency 

resolution to the properties of the human ear. Then the spectrum is segmented into a 

number of critical bands by means of a filterbank. The filterbank typically consists of 

overlapping triangular filters. The logarithmic mel-scale is estimated by 

 

 
𝑀𝑒𝑙(𝑓) = 2595𝑙𝑜𝑔10 (1 +

𝑓

700
), (2.1) 

 

 𝑐𝑙𝑚𝑓𝑏(𝑙) = log𝑚(𝑙). (2.2) 

 

The role of logarithm here is to separate the convoluted components of glottal pulse and 

the vocal tract impulse response. 

 

2.2.5 Cepstrum  

 

Mel-Cepstral coefficients are derived by transforming the log-energies of the filterbank 

outputs using a discrete cosine transform (DCT). DCT encodes the mel logarithmic 

magnitude spectrum to the mel-frequency cepstral coefficients MFCC. 
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𝑐𝑚𝑓𝑐𝑐(𝑖) = √
2

𝑁
∑ 𝑐𝑙𝑚𝑓𝑏(𝑙) 𝑐𝑜𝑠 {(𝑙 −

1

2
)

𝑖𝜋

𝐿
}

𝐿

𝑙=1

 

 

(2.3) 

 

Delta coefficients are generally appended to each feature to capture the dynamic 

properties of the speech signal. These coefficients approximate the instantaneous 

derivative of each of the cepstral coefficients by finding the slope coefficient when 

performing a least-squares linear regression over a window of consecutive frames with a 

window length of 5-10 frames. 

A common method of improving the robustness of a feature set is cepstral mean 

subtraction (CMS) [20]. This process reduces the effects of channel distortion by 

removing the mean from cepstral coefficients [16]. Essentially, CMS can be viewed as a 

high-pass filter applied to a set of feature vectors. Although the technique is effective at 

reducing the effects of channel distortion, it has been shown to also remove beneficial 

speaker-specific information from the speaker recognition system [19]. In order to 

alleviate the effect of additive noise, cepstral mean and variance normalization (CMVN) 

[20] was proposed as an extension to CMS. 

 

2.3 Speaker Modeling 

 

In recent years, significant changes have been made to the way in which speakers’ 

characteristic is robustly modeled in speaker recognition systems. Approaches of 

significant influence include vector quantization (VQ) codebooks [25], Gaussian mixture 

models (GMM) [31], Gaussian Mixture Model-Universal Background Model 

(GMM-UBM) [47] and Support Vector Machine (SVM) using GMM super-vectors [48, 

58].  

 

2.3.1 GMM-based speaker identification 

 

Significant progress was achieved in speaker recognition technology with the 

introduction of Gaussian mixture models (GMM) such that they are now classical in 
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text-independent speaker identification configurations [29]. A number of factors have 

contributed to the acceptance of GMMs as the standard in speaker identification 

including their high accuracy, ability to scale training algorithms for large data sets, and 

their probabilistic framework [31]. 

A single Gaussian mixture model can be viewed as several overlapping Gaussian 

distributions having the ability to reflect the short-term spectral density of a speaker’s 

speech. The density of a sample 𝒙𝑡  from a D-dimensional multivariate Gaussian 

distribution is given by 

 

 
𝑁(𝒙𝑡|𝝁𝑠𝑚，∑𝑠𝑚) 

=
1

(2𝜋)
𝐷

2⁄ |∑|
1

2⁄
𝑒𝑥𝑝 {−

1

2
(𝒙𝑡 − 𝝁𝑠𝑚)𝑇∑𝑠𝑚

−1(𝒙𝑡 − 𝝁𝑠𝑚)}, 

  

(2.4) 

 

with the distribution means of 𝝁𝑠𝑚, covariances defined by ∑𝑠𝑚 and T represents the 

number of samples in the utterance. 

Due to the nature of the speech signal to continually change in spectral density, a 

number of Gaussian components (typically 256 components) are necessary to model the 

speaker-dependent features over the length of an utterance [31]. The collection of these 

Gaussian components results in the complete Gaussian mixture model. Central to the idea 

of Gaussian mixture speaker modeling is the assumption that each feature vector 

extracted from a test speech segment was produced by only one of the GMM 

components. 

 

 

∑ 𝜔𝑠𝑚 = 1

𝑀

𝑚=1

. 

 

(2.5) 

 

In order to place emphasis on those GMM components that better represent the 

more commonly observed characteristics of the speaker, each component is assigned a 

weight during model training. The weights 𝜔𝑠𝑚 are then utilized in the classification 

process where the utterance 𝑋 = {𝒙𝟏 …  𝒙𝑻} is compared to GMM of M components by 
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the joint density, 

 

 

𝑝(𝑋|𝜆𝑠) = ∏ ∑ 𝜔𝑠𝑚𝑁(𝑥𝑡|𝝁𝒔𝒎，∑𝑠𝑚).

𝑀

𝑚=1

𝑇

𝑡=1

 

 

(2.6) 

 

An identification result is obtained as speaker s with maximum log likelihood 

shown in Eq. (2.7) 

 

 




T

t

it
i

xPs
1

)|(logmaxarg  . 
(2.7) 

 

2.3.1.1 Maximum Likelihood Estimation 

 

The expectation-maximization (E-M) algorithm [33] is a common way to train GMMs 

[32]. The motivation of the E-M algorithm is to estimate a new and improved model 𝜆 

from the current model 𝜆̂  using the training utterance 𝑋  such that the probability 

𝑝(𝑋|𝜆) ≥  𝑝(𝑋|𝜆̂). This is an iterative technique whereby the new model becomes the 

current model for the following iteration. 

As the name suggests, expectation-maximization involves two steps; expectation 

and maximization. The expectation step, or E-step, calculates the expected value of the 

model from the training utterance 𝑋 in order to estimate the information that is missing 

from the model. The maximization step, or M-step, uses this information to adjust and 

improve the current model parameters. 

Specifically, the E-M algorithm attempts to maximize the auxiliary function 

𝑄(𝜆; 𝜆̂). This is generally implemented using Jensen’s inequality ensuring 𝑝(𝑋|𝜆) ≥

 𝑝(𝑋|𝜆̂).  The auxiliary function can be formulated as 

 

 

𝑄(𝜆; 𝜆̂) = ∑ ∑ 𝑃(𝑚|𝒙𝑡)𝑙𝑜𝑔𝑤𝑚𝑔(𝒙𝑡|𝝁𝑚, ∑𝑚)

𝑀

𝑚=1

𝑇

𝑡=1

, 

 

(2.8) 
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where 𝑃(𝑚|𝒙)  forms the E-step or expected probability of component 𝑚  being 

responsible for producing observation 𝒙 using  

 

 
𝑃(𝑚|𝒙) =

𝜔̂𝑚𝑔(𝜔̂|𝝁̂𝑚, ∑̂
𝑚

)

𝑝(𝒙|𝜆̂)
. 

 

(2.9) 

 

The M-step then sees the auxiliary function 𝑄(𝜆; 𝜆̂) maximized using (2.8). This 

maximization results in the GMM parameters being estimated as 

 

 

𝜔𝑚 =
𝑛𝑚

𝑇
∑ 𝑃

𝑇

𝑡=1

(𝑚|𝒙𝑡 , 𝜆̂), 

 

(2.10) 

 

 

𝝁𝑚 =
1

𝑛𝑐
∑ 𝑃

𝑇

𝑡=1

(𝑚|𝒙𝑡 , 𝜆̂)𝒙𝑡, 

 

(2.11) 

 

 

𝛴𝑚 =
1

𝑛𝑚
∑ 𝑃

𝑇

𝑡=1

(𝑚|𝒙𝑡 , 𝜆̂)𝒙𝑡𝒙𝑡
𝑇 − 𝝁𝑡𝝁𝑡

𝑇 , 

 

(2.12) 

 

where 𝑛𝑚 is the component occupancy count from all the observations of the utterance 

𝑋. 

A suitable technique is desired to initialize models as it defines the final model 

parameters and how rapidly the E-M process will converge. The initial GMM is typically 

defined using the k-means algorithm often used in the vector quantization (VQ) approach 

[34]. The k-means algorithm is also based on an iterative approach in which the clustering 

of training feature vectors is performed through the estimation of cluster means or code 

vectors [35]. 
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2.3.1.2 Maximum A Posteriori Estimation 

 

A more recent and commonly used approach for GMM training is based on Bayesian 

estimation theory and is termed maximum a-posteriori (MAP) adaptation [36]. MAP 

adaptation incorporates prior knowledge regarding the nature of speech into the speaker 

model prior to training, or adapting, the model parameters to exhibit the speaker-specific 

characteristics. This is accomplished by initializing each new speaker model with the 

parameters of the universal back-ground model (UBM). 

The UBM is a GMM trained from a large selection of representative speech, often 

using the maximum likelihood (ML) approach described in section (2.3.2). In using a 

large cohort of training data, the true characteristics of speech can be more reliably 

modeled in the UBM. MAP adaptation can then exploit this wealth of information to 

produce more robust speaker models, particularly when subject to limited training data 

[21]. Further, the proposal of MAP adaptation saw the appearance of more detailed 

speaker models. The number of components is expanded from around 64 using the ML 

approach to over 2048 with MAP adaptation. 

During the training of speaker models, common practice is to adapt only the means 

of the mixture components of the UBM to match the target speaker’s characteristics. The 

NIST SREs have demonstrated the benefits of allowing GMM speaker models to 

maintain the same weights and covariances as the UBM as the mean GMM parameters 

contain the most speaker information [37]. 

During training, the model parameters λ are constrained to satisfy the prior 

distribution of speaker model parameters using the criterion: 

 

 𝜆𝑀𝐴𝑃 = 𝑎𝑟𝑔𝜆𝑚𝑎𝑥𝑝(𝜆|𝑋), (2.13) 

 

where 𝑃(𝑋|𝜆) is the posteriori probability of the model parameters after observing the 

training set 𝑋 . Applying Bayes theroem, the MAP problem is solved by  

 

 𝜆𝑀𝐴𝑃 = 𝑎𝑟𝑔𝜆𝑚𝑎𝑥𝑝(𝜆)𝑝(𝑋|𝜆),  (2.14) 
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which is the prior distribution 𝑝(𝜆) multiplied by the likelihood of the training data for 

the given model parameters. The joint likelihood of this equation is solved using the E-M 

algorithm. 

The MAP-adapted means 𝝁𝑚
𝑀𝐴𝑃 of Gaussian component m can be adapted from 

the prior distribution means 𝒔𝑚 using 

 

 𝝁𝑚
𝑀𝐴𝑃 = 𝛼𝑚𝒔𝑚 + (1 − 𝛼𝑚)𝝁𝑚

𝑀𝐿 , (2.15) 

 

where 𝝁𝑚
𝑀𝐿 are the means estimated using maximum likelihood estimation and 𝛼𝑚 is 

the mean adaptation coefficient defined as 

 

 
𝛼𝑚 =

𝑛𝑚

𝑛𝑚 + 𝜏𝑚
, 

 

(2.16) 

 

where 𝑛𝑚  is the component occupancy count for the training data and 𝜏𝑚  is the 

relevance factor, typically set between 8 and 32. Based on these equations, it can be seen 

that this MAP adaptation is essentially a combination of the prior distribution means and 

the ML estimated means given the training data whose relative weighting are controlled 

by 𝛼𝑚. 

 

2.3.2 SVM-based speaker verification 

 

Recently, machine learning techniques have been adapted to the task of pattern 

recognition. These modelling techniques are trained to differentiate between classes by 

learning from examples of both the target and non-target. Support vector machine 

(SVM) has received significant focus in pattern recognition literature [60]. The 

discriminative nature of the SVM has been successfully applied to speaker verification 

[21, 39]. The training of Speaker SVM requires example from both the target speaker 

and a selection of impostor speaker. The following contents in this section provides an 

overview of the speech feature for SVM-based speaker verification in section 2.3.2.1 

and section 2.3.2. SVM is described in detail in section 2.3.2.3 and section 2.3.2.4.  
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2.3.2.1 GMM-UBM 

 

The most common speaker verification system architecture employed is the GMM-UBM 

configuration, first proposed by Reynolds [10]. This approach represents state-of-the-art 

technology when combined with robust modeling techniques [38, 39]. As its name 

suggests, the universal background model models the characteristics of speech from a 

representative population of speakers. For this task, a large amount of data is required to 

train a UBM, which in turn, allows the model to consist of a large number of components 

to better represent the speaker characteristics in the training data. 

As mentioned previously, the main task of the UBM is to provide the prior 

distribution when employing MAP adaptation for the training of some speaker GMMs. 

There are several benefits in using this training approach that have accounted for 

significant performance improvements in GMM-based systems. 

Firstly, when training data is not available for the adaptation of components in the 

UBM, the speaker model parameters revert to those in the UBM to provide a more robust 

speaker model. In contrast, when a lot of training data is available for a given GMM 

component, the speaker model parameters approach those of the ML estimate. 

The final purpose of the UBM is to represent the null hypothesis or background 

speaker population when using expected log-likelihood ratio (ELLR) scoring. In ELLR 

scoring, classification scores are represented as a log-ratio of the probability of a target 

trial and an impostor trial. Given the speaker model 𝜆 and the background model 𝜆𝑈𝐵𝑀, 

the ELLR can be calculated using 

 

 
Λ(𝑠) = 𝐸 [𝑙𝑜𝑔

𝑝(𝒙𝑡|𝜆)

𝑝(𝒙𝑡|𝜆𝑈𝐵𝑀)
]. (2.17) 

 

In this configuration, the universal background model (UBM) is a reference speaker 

model to which the target speaker model is compared during the classification process to 

produce a log-likelihood ratio [47]. During classification, the log-likelihood-ratio (LLR) 

can be calculated from the target speaker model and background model. In essence, this 
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configuration can be viewed as the UBM normalizing for the characteristics of the 

impostor population that have potential to affect the classification score. 

 

2.3.2.2 GMM-UBM super-vector 

 

In the context of the GMM-UBM configuration for speaker recognition, GMMs are 

trained using features extracted from a speech sample of a speaker. GMMs are generated 

by mapping the parameters of the UBM through MAP adaptation to represent the speaker 

using the corresponding training data.  

     The parameters of adaptable GMM include the component mixture weights 𝜔𝑚 the 

means 𝝁𝑚 and the covariances Σ𝑚 of the Gaussians. Accordingly, the GMM likelihood 

function is given as  

 

 

𝑔(𝑥) = ∑ 𝜔𝑚𝑁(𝒙; 𝝁𝑚，Σ𝑚).

𝑀

𝑚=1

 

  

(2.18) 

 

Typically, only the means of the UBM are adapted as they possess the majority of 

speaker-dependent information within the model [47]. Consequently, the majority of 

speaker dependent characteristics from a trained speaker GMM can be represented by the 

adapted component model mean offsets from the UBM model means.  

A GMM-UBM super-vector can be obtained by concatenating each of the mean 

vectors, 𝝁 = [𝝁1
𝑇 … 𝝁𝑚

𝑇 ]  of an adapted GMM. A GMM-UBM super-vector can be 

formed from this adapted model as shown in Fig. 2.1 
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Figure 2.1 Concept of GMM-UBM super-vector 

 

2.3.2.3 Support Vector Machines 

 

Guyon, et al. developed Supporter Vector Machines (SVM) [100] based on the theory of 

structural risk minimization that allowed a specific capacity point to be found which 

minimizes generalization error in turn and provides the basis for the development of the 

SVM. Guyon discovered that linear classifiers require the capacity control to maximize 

potential to generalize from the training data to the classification of unknown data. The 

capacity of a classifier means the number of adjustable or free parameters. When having a 

large generalization error for test data, a classifier with a large capacity is more possible to 

over fit the training data. A small capacity of a classifier may prevent the classifier from 

adapting to the task at all.   

SVM is a linear classifier to minimize the generalization error. As mentioned, SVM 

is based on the theory of margin maximization. SVM based classification lies a kernel 

function. The purpose of the kernel is to convert input feature vectors to a higher 
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dimensional space. Actually it is possible to specify a linear kernel in (2.19) that operates 

in the input feature space.  

 

 𝑓(𝑥) = ∑ 𝛼𝑖𝑡𝑖𝐾(𝑥, 𝑥𝑖) + 𝑑𝑁
𝑖=1 . (2.19) 

 

Where 𝑥 represents the input vector, 𝑥𝑖 the support vectors, 𝑡𝑖 the ideal outputs 

(±1) and 𝛼𝑖 the respective weights, ∑ 𝛼𝑖𝑡𝑖 = 0𝑁
𝑖=1 , and 𝛼𝑖 > 0 

In a linearly separable instance, the kernel function is given as 𝐾(∙,∙) =  𝑥 ⋅

𝑥𝑖 which is known as a linear kernel as it simply find the dot product of input vectors in al 

linear space. In a non-linearly separable instance, the purpose of a non-linear SVM kernel 

is to allow non-linear separation to be applied to a data set by mapping the input vectors to 

a high-dimensional space where linearly separable can be achieved. So the kernel can be 

more stated generally as,  

 

 𝐾(∙,∙) = 𝜙(𝑥𝑖) ⋅ 𝜙(𝑥𝑗), (2.20) 

 

where 𝜙 is mapping function employed to convert input vectors to a desired higher 

dimensional space. The mapping function is chosen on a basis that satisfies the higher 

dimensional space where linear separation is to be performed. 

A 2-D plot of several linearly separable observations from x is depicted in Figure 

2.2. Separation of the positive and negative classes is performed using a “separating” 

hyperplane as indicated by the solid line in the plot. The points that reside on the 

hyperplane are given by ω ⋅ x + b = 0 where ω is the normal to the hyperplane and |b| / 

|ω| defines the distance between the hyperplane and the origin. 

A margin exists on either side of the hyperplane (depicted as dashed lines in Figure 

2.2) to define the boundaries of each class such that  

 

 𝑦𝑖(𝜔 ⋅ 𝑥 + 𝑏) ≥ 1. (2.21) 

 

The training objective of SVM training is to maximize this margin through the 

optimal positioning of the hyperplane. Given the width of the margin is 2/‖ω‖, the 
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hyperplane margin can be maximized by minimizing ‖ω‖2 subject to the constraints of 

(2.21). 

Those training examples that are located on the class boundaries, such that the 

equality in (2.21) is satisfied, are termed as support vectors and are usually only a small 

subset of the training data. As their name suggests, support vectors are the training 

examples that support or define the hyperplane. All other training examples that are not 

selected as support vectors provide no information in the training of the SVM such that 

the removal of these examples from the training set would result in the same hyperplane 

being found. 

The SVM training algorithm is often represented in terms of Lagrange multipliers 

αi as it facilitates the explanation of training from non-separable data [60]. The optimal 

position of the hyperplane (the normal of 𝜔 can be determined by maximizing  

 

 
∑ 𝛼𝑖

𝑖

−
1

2
∑ 𝛼𝑖𝛼𝑗

𝑖,𝑗

𝑦𝑖𝑦𝑗 𝑥𝑖 ∙ 𝑥𝑗, 
 

(2.22) 

 

subject to the following constraints: 

 

 𝜔 = ∑ 𝛼𝑖𝑦𝑖

𝑖

𝑥𝑖, 
 

(2.23) 

 

 ∑ 𝛼𝑖𝑦𝑖

𝑖

= 0.  

(2.24) 

 

In this form, the training examples allocated 𝛼𝑖 > 0 are support vectors and lie on 

the hyperplane margin. For this reason, the Lagrangian multiplier 𝛼𝑖 is often referred to 

as a support vector weighting or coefficient. 
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Figure 2.2 Concept of SVM training 

  

2.3.2.4 Support vector machines for speaker verification 

 

Support vector machine (SVM) classification is particularly suited to the task of speaker 

verification as the objective is to determine whether a given speech sample belongs to 

the target speaker or not. In this sense, the discrimination of the target speaker from 

other speaker is performed by the hyperplane of a trained SVM.  

     Being a discriminative classifier, the training of an SVM requires examples from 

both the target and impostor speaker classes; this imposter role is fulfilled by a set of 

observation from a representative background speakers.  

     As described in the previous section, the SVM relies on the negative examples of 

the background dataset to provide discriminatory information against client data during 

the training process. In the context of speaker verification, it is common for the number 

of impostor observations used in SVM training to significantly outweigh the number of 

positive speaker examples. Consequently, the SVM get most of its discriminatory 

information from the background dataset. The background dataset must, therefore, 

consist of suitable impostor examples to ensure good classification performance.  
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2.4 Score Normalization techniques 

 

Speaker verification systems developed for practical and real-world applications are 

often faced with several factors that contribute to significant accuracy loss. These factors 

include additive noise, channel distortion, handset mismatch and human changes due to 

health and age [46, 21]. 

Normalization techniques are employed to model and counteract the effects of 

these adverse factors [6, 42, 48]. Normalization in speaker verification systems is the 

process of removing statistical error from features, models or scores in order to allow for 

a more direct comparison of the true speaker characteristics being modeled. 

Score normalization refers to the scaling of the classification score distribution 

based on a set of parameters obtained using a set of impostor trials [42]. The cohort of 

impostor utterances used to perform these trials is from dataset held out from the 

evaluation data. Cohort normalization [49] attempts to normalize classification scores in 

the same manner as the UBM. Rather than using a world model, an impostor speaker 

model with similar characteristics to the target speaker is dynamically selected from a 

small cohort of similar impostor speakers.  This cohort is selected based on a distance 

metric between models. Higgins, et al. [50] showed that using a cohort of speakers ‘close’ 

to the target speaker left the speaker verification system vulnerable to very dissimilar 

speakers.  Reynolds resolved this issue by introducing a method of selecting a wider 

range of speakers to make up the cohort model set [51]. Restricting the degree of 

similarity between the models in the cohort set provided a much more robust cohort 

model. The performance advantages provided through score-based normalization have 

made it a commonly employed technique in both GMM and SVM-based speaker 

verification systems in recent NIST SREs [54]. Auckenthaler, et al. [42] presented a study 

on two most common forms of score normalization: Zero and Test normalization (Z-norm 

and T-norm, respectively).  

 

2.4.1 Zero-normalization 

 

Zero-normalization (Z-norm) attempts to compensate for training variations that exist 
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between speakers in the verification process [42]. Z-norm is performed after the training 

of a speaker model but prior to the testing phase. 

The technique firstly calculates the mean 𝜇𝑍 and variance 𝜎𝑍 from the impostor 

score distribution which is estimated by trialing a set of impostor utterances against a 

given speaker model. During testing time, the unnormalized score distribution 𝜌(𝑥) is 

normalized by, 

 

 
𝜌𝑧(𝑥) =

𝜌(𝑥) − 𝜇𝑧

𝜎𝑧
. 

(2.25) 

 

2.4.2 Test-normalization 
 

Z-norm is the approach to compensate for the training conditions of the target model. 

However, the score distribution from verification trials can also be effected by the 

conditions exhibited by the test utterance. Test-normalization (T-norm) was proposed by 

Auckenthaler, et al. [42] to address this issue. In contrast to Z-norm, T-Norm is employed 

during the testing phase using the encountered test utterance. 

The encountered test utterance is firstly trialed against a set of impostor models 

which are trained from a cohort of impostor utterances. The mean 𝜇𝑧 and variance 𝜎𝑍 

from resulting impostor score distribution is then calculated. The classification score of 

the utterance against the target speaker model is finally normalized using equation (2.25). 

The advantage of T-norm is that acoustic mismatch is avoided due to the same utterance 

being used to estimate impostor parameters. 
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Figure 2.3 Concept of T-norm-based speaker verification 

 

2.5 Summary  

 

Speaker modeling and GMM-based speaker identification is discussed regarding the 

classical technology offered through Gaussian mixture models. Then SVM-based speaker 

verification using GMM-UBM super-vectors was described in detail to highlight the 

benefits offered through this generative model that had led to its widespread acceptance. 

Score normalization was detailed as the successful method used to counteract 

statistical variations in the GMM-UBM configuration. Zero normalization (Z-norm) and 

test normalization (T-norm) were highlighted as the most commonly employed score 

normalization techniques in speaker recognition systems. 

In the chapter, the typical cepstral-based speech feature extraction process (i.e., 

MFCC) for text-independent speaker recognition is also described. However, result from 

the difference between the utterance for training and the utterance for test, phonetic 

variability has the negative effect on accuracy. In additional, due to the changes of the 

acoustic environment, there are also some other undesirable factors that represents the 

inter-session variability including health status, mood and aging. Phonetic variability and 

inter-session variability in MFCC are merged as the intra-speaker variability which is 

needed to be reduced to improve the accuracy.  
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The focus of the following chapters is given to the techniques developed to 

increase the robustness of the feature extraction process. The techniques are highlighted 

as effective approaches to help construct robust speaker recognition system.  
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Chapter 3  

 

New speech feature with less 

phonetic variability 

 

 

3.1 Introduction  

 

Speaker recognition technique makes it possible to use the speaker’s voice to verify their 

identity and control access to services such as voice dialing, banking by telephone, 

telephone shopping, database access services, information services, voice mail, security 

control for confidential information areas, and remote access to computers, etc. Speaker 

identification has potentially more applications than verification, which is mostly limited 

to security field. For instance, in speaker tracking the task is to locate the segments of 

given speakers in an audio stream [87, 88, 89, 90]. However, there are still many 

problems to solve in this technology. The most essential one among them is to find a 

suitable feature to discriminate the speaker. This chapter focuses on the method of 

suppressing phonetic variability in speech feature which influences the performance for 

Text-independent (TI) speaker identification. 

The process of speaker identification depends on the feature information extracted 

from his/her speech data. Many research shows that the coefficients based on frequency 

domains are efficient in speaker recognition. Most of the feature representations that are 

often used in the literatures of speaker recognition such as Mel Frequency Ceptrum 

Coefficient (MFCC) [16], Liner Prediction Ceptrum Coefficient (LPCC) [16; 91], Delta 

Coefficient [16], etc, are all short term spectral based features. Among them, the MFCC is 

undoubtedly the most widely used and successful feature. In this decade, MFCC has been 

often used in speaker identification. It is a problem that speech feature varies depending 

on sentences and time difference for TI speaker identification task [10]. Especially, the 
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variation of phonetic variability strongly affects the performance of speaker identification. 

If this phonetic variability in his/her speech data can be suppressed, a robust speaker 

identification system will be realized by using speech data having less phonetic 

variability. However, it is difficult to suppress phonetic variability included in speech data 

completely at present. 

In TI speaker identification, GMM (Gaussian Mixture Model) [86] has been 

conventionally used and is statistically constructed using features [95] (e.g. MFCC) of 

speech data. However, MFCC is used as a common feature vector for speech recognition 

and speaker recognition and it doesn’t consider the influence of phonetic variability to the 

performance of TI speaker identification. Thus, prior researches about speaker 

recognition based on a speaker space method [96, 97], pointed out that the speech feature 

variation is mainly caused by the variation of the phonetic variability in speech data. 

Although some works have been used Principal Component Analysis (PCA) in speaker 

recognition [5, 92, 93], they did not discuss the meanings of each axis of PCA. Hence, we 

consider the meanings of the axes and propose a new feature vector that does not use axes 

which mainly represent phonetic variability. In the method, it is assumed that some axes 

with larger dispersion in the speech feature space represent phonetic variability when 

having many speech data prepared. PCA is utilized in order to confine phonetic 

variability into some axes. The phonetic variability is reduced by the projection using 

PCA eigenvectors without some principal components that have larger contribution rates, 

i.e. eigenvalues. That is, a subspace constructed with the some principal components is 

considered as "phoneme-dependent space" and a subspace constructed without these 

components is considered as "phoneme-independent space" in this paper. 

The remainder of this chapter is organized as follows. Section 3.2 introduces a new 

feature vector of our proposed method with PCA. In section 3.3, comparative 

experiments and discussion is carried out to show an effectiveness of the proposed 

method with the conventional MFCC. Finally, section 3.4 gives the summary of this 

chapter. 
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3.2 PCA-based phonetic variability suppression for speaker       

identification 

 

Figure 3.1 shows a block diagram of our proposed TI speaker identification system. It 

consists of a training module and a recognizing module.  
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Figure 3.1 the proposed speaker identification system 

 

In the proposed system, it is assumed that phonetic variability has larger dispersion 

in speech feature space and the information is mainly represented with the some principal 
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components calculated using many speech data. 

At the process of training module, a robust TI speaker model can be realized for 

phoneme differences by projecting feature vectors of each speaker's speech data into a 

"phoneme-independent subspace". In order to realize the projection to the 

phoneme-independent subspace, PCA is employed. First, PCA obtains eigenvectors from 

many speech data that include many phonetically-rich texts by many speakers. Next, each 

speaker’s data is projected into a subspace using the eigenvectors that do not have several 

largest contribution rates and several smallest contribution rates. The detail of the 

projection is described in the following subsection. As original feature vectors, the 

Mel-Frequency Filter Banks (MFB) is used instead of MFCC. 24-channel MFB is used in 

this paper. Finally, after projection, the new feature vectors having less phonetic 

variability are used to train speaker model and the trained model is stored to a database 

with ID of each speaker. 

 

3.2.1 Projection algorithm with PCA 

 

MFCC is commonly used in speaker identification. MFCC is obtained from the MFB 

using discrete Cosine Transform (DCT). However DCT is not designed to transform a 

space by considering a data distribution as well as correlation of feature parameters. In 

general, PCA is used to diagonalize a data covariance matrix and to decorrelate each 

dimension of the feature parameters. In this study, PCA is utilized to separate the 

“phoneme-dependent subspace”. 

A set of observed n-dimensional training feature vectors of all speakers in an 

observation space can be denoted by ),2,1}({ Ntxt  .The mean vector of 


N

t

tx
1

 can be 

computed by 
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(3.1) 

 

here, N denotes frames of all speakers’ speech data. And a covariance matrix by 
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(3.2) 

 

The covariance matrix XR (n by n) can be composed into eigenvectors and 

eigenvalues as follows: 

 

 T

XR  , 
(3.3) 

 

where  is a diagonal matrix whose diagonal components are eigenvalues 

),,,,1( nkii   of XR .   is a matrix whose columns are eigenvectors 

),,,1( nkii   of XR  corresponding to the eigenvalues in the matrix . 

In this theme, It is assumed that a space constructed with some principal 

components having larger contribution rates corresponding to the large eigenvalues up to 

k is considered as “phoneme-dependent subspace” and a subspace constructed without 

these components is considered as “phoneme-independent subspace”. This means that the 

phoneme-dependent subspace can separated by means of projecting the input speech data 

to the eigenvectors corresponding to the higher eigenvalues from k+1 to m

)1( nmk   obtained by performing PCA for feature data. 

So the projection of the t-th frame data can be expressed as follow: 
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(3.4) 

 

where 
)(

,

s

jtx ),,1( nj  are n dimensional  feature vectors （i.e. 24-channel MFB was 
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used in the experiment of this paper and n=24）of speaker s observed in an 

n-dimensional observation space. PCA is applied to all the speech data of all the speakers 

and n dimensional eigenvectors ),,1;,,1(, njmkiji    are obtained by the 

eigenvalue decomposition. ),,1(ˆ
)(

, kmjx
s

ji   is the (m-k) dimensional new feature 

vectors that have less phonetic variability after projection. Each speaker’s GMM is 

trained using these new feature vectors. 

As well as in speaker model training, after the process of projecting again by (4) 

with test data x̂ , a log likelihood of each customer c is computed by GMM. An 

identification result is obtained as customer c with maximum log likelihood shown in Eq. 

(3.5) 

 

 
)|ˆ(logmaxarg )(sxPc  . 

(3.5) 

 

The proposed method is termed as “MFB-PCA”. 

 

3.3 Experiments 

 

3.3.1 Conditions 

 

The evaluation of the proposed method was conducted by text-independent closed-set 

speaker identification experiments using two databases. 

One is large-scale Japanese speaker recognition evaluation corpus constructed by 

National Research Institute of Police Science (NRIPS), which contains 283 Japanese 

males from 18 to 76 years old, recorded at two time session over 3 months. Each speaker 

uttered 50 ATR phoneme balanced sentences and each utterance having a length of about 

5 seconds on average was recorded twice at each session via 4 kinds of channel , a 

bone-conduction microphone, an air-conduction microphone, and two kinds of speeches 

referred over cell phone respectively. In this study, only the utterances recorded via an 

air-conduction microphone at first recording session is used. A full description of the 
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corpus can be referenced at [74]. After down-sampling at 16 kHz, the first 5 utterances 

were defined for each speaker as the training set and remaining 45 utterances as the test 

set. 

The other is NTT database made up of 2110 utterances by 23 male speakers at 

seven time session over 16 months. The length of each speech data is 6 seconds on 

average. Each utterance is recorded at 16 kHz sampling frequency with 16 bit per sample. 

In the speaker identification experiment, each five sentences uttered by 23 speakers at 

first time session are defined as the training set and each 15 sentences uttered at other time 

session as the test set for evaluation, that is, a total of 1,995 utterances is used. 

Compared with the NTT database, the NRIPS has a large scale of speakers so that 

we can test the performance in a multi speaker environment by the proposed method, but 

it has only one time session. On the contrary, the NTT database with a much smaller scale 

of speakers has a multi time session so that the performance at different time session can 

be tested. Evaluation by using a database that meets the demand of both scale and multi 

time session is the following work for us. 

For both of the two databases, each utterance is divided into 25ms frames with 

10ms frame increment and parameterized into 12 cepstral coefficients obtained by 

24-channel Mel-frequency filter-bank (MFB) analysis. The first speaker identification 

experiments were carried out by two kinds of method: the first method is a conventional 

method based on GMM using 12 dimensional MFCC parameters. The second is the 

proposed method based on GMM using the 12 dimensional phoneme-independent 

subspace vectors obtained from 24-channel MFB. 

 

3.3.2 Experimental results 

 

Table 3.1 shows the results of comparative speaker identification experiments between 

the proposed method (MFB-PCA) and the conventional method with MFCC on the two 

database using 16, 32 and 64 mixtures. The GMM technique is used for both of methods. 

In Table 3.1, “MN” indicates number of mixtures. “MFCC” denotes the IER of 

using 12 dimensional MFCC feature vector extracted from 24-channel MFB. “MP” 

denotes the IER by the proposed method (MFB-PCA) based on the same 24-channel 
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MFB.  In order to investigate phoneme-dependency of each eigenvector axis, four 

subspaces are compared with 1-12th, 2-13th, 3-14th and 4-15th eigenvectors respectively 

for NTT database first. The best IER 3.56% was achieved by MFB-PCA (3-14), 

Compared with the conventional method with MFCC (64 mixtures), the IER was reduced 

by 36%, meanwhile, after PCA dimensionality reduction, new feature vector sets such as 

MFB-PCA (2-13)，MFB-PCA (3-14) and MFB-PCA (4-15) achieved some 

improvement compared with MFCC except for MFB-PCA (1-12). The reason of this 

phenomenon might be that MFB-PCA (1-12) had not suppressed any phonetic variability 

owing to the subspace being projected to the axis of the 1st lower eigenvector. Therefore, 

that phonetic variability is affirmed powerfully represented in the lower 1st and 2nd 

principal components. A detailed discussion of the 1st and 2nd eigenvectors is provided 

in the flowing subsection 3.3. 

 

Table 3.1 Speaker identification error rate on 12 dim.(%) 

 NTT 

MN MFCC(1-12) MP(1-12) MP(2-13) MP(3-14) MP(4-15) 

16 6.70 6.87 5.31 4.76 5.31 

32 5.61 5.76 4.41 3.56 4.81 

64 5.56 7.07 4.16 4.41 5.21 

 

So the following evaluation for NRIPS database, comparative experiments are 

directly conducted between MFCC (1-12) and MP (3-14). 

 

Table 3.2 Speaker identification error rate on 13 dim.(%) 

 NRIPS 

MN MFCC(1-12) MP(1-12) 

16 5.73 5.58 

32 5.61 5.32 

64 6.10 6.87 

 

In table II, the NRIPS database presents a more realistic challenge to speaker 
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identification for its scale of 283 speakers than the NTT database. The best IER was 

5.32% by MFB-PCA (3-14) (32 mixtures). Compared with the conventional method with 

MFCC (32 mixtures), the IER was reduced by 5.17%. 

In addition, on the basic of suppressing the first two eigenvectors, some more 

experiments are carried out by increasing the dimensionality of MFCC and MFB-PCA 

respectively. Table III, IV, and V show the experimental results with 13, 14, and 15, 

16-dimensional feature vectors respectively. Although the performance of IER by MFCC 

became better and better with dimension increasing, our proposed method (MFB-PCA) 

still indicated some improvements than MFCC. Especially, in table V, achieved 2.61% 

IER that was the best performance and has reduced error by 21% compared with the 

conventional method with MFCC (32 mixtures) for NTT database. On the side of NRIPS 

database, the best IER was 4.52% by MFB-PCA (3-17) (32 mixtures). Compared with the 

conventional method with MFCC (32 mixtures), the IER was reduced by 15.8%. 

 

Table 3.3 Speaker identification error rate on 14 dim.(%) 

DB NTT NRIPS 

MN MFCC(1-13) MP(3-15) MFCC(1-13) MP(3-15) 

16 5.86 4.21 5.59 5.37 

32 4.11 3.21 5.19 5.03 

64 4.06 4.41 5.71 6.37 

 

Table 3.4 Speaker identification error rate on 15 dim.(%) 

DB NTT NRIPS 

MN MFCC(1-14) MP(3-16) MFCC(1-14) MP(3-16) 

16 5.51 4.31 5.58 4.84 

32 3.96 3.11 5.36 4.75 

64 3.51 3.36 6.12 6.39 

 

Table 3.5 Speaker identification error rate on 16 dim.(%) 

DB NTT NRIPS 

MN MFCC(1-14) MP(3-16) MFCC(1-14) MP(3-16) 
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16 5.51 4.31 5.58 4.55 

32 3.96 3.11 5.37 4.52 

64 3.51 3.36 5.89 6.06 

 

Furthermore, a graph is made to show the trends of the best IER (highlighted in 

every table) achieved by MFB-PCA corresponding to the different ranges of projected 

axis. 

 

Figure 3.2 Best IER of 32 Mixtures 

 

Obviously, for both of the two databases, when projecting over the 17th 

eigenvector, the performance of MFB-PCA begins to decrease to some degree. The 

reason resulting in the phenomenon is that besides phonetic variability and speaker 

information, there is no doubt some other thimbleful information like time difference and 

people condition in the very higher eigenvectors. When utterance data projected to them, 

they are also could be factors that affect the performance of the IER. 

As a result, high identification performance can be obtained by the proposed 

method (MFB-PCA) by suppressing phonetic variability, under the assumption that a 
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subspace constructed with some principal components having larger contribution rate is 

considered as "phoneme-dependent space" and a subspace constructed without these 

components is considered as "phoneme-independent space" in this chapter. 

 

 

3.3.3 Discussion 

 

In this section, the phonetic variability is discussed in the lower eigenvectors when a great 

deal of utterance was prepared for PCA. To confirm the phoneme-dependent space 

constructed by the first two eigenvectors that contain a large part of phonetic variability, 

the projection distance is investigated between two vowels respectively in 

phoneme-dependent and phoneme-independent subspace. Figure.3.2 shows the image of 

projection distance. 

 

 

Figure 3.3 the image of the distance between projection of two vowels 

 

In this subsection, Japanese long-vowels |a:| and |i:| are projected into a subspace 

constructed with some eigenvectors ),,,,1( nskii  . The distance between two 
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projections of vowel can be shown as follows: 

 

 




s

ki

ii yxdist ||  , 
(3.6) 

 

where yx, are the mean vector of a set of 24-dimensional MFB feature vectors of a: 

and i: respectively. k and s denotes the range of eigenvectors projected. Because the 

phonetic variability of these two vowels is absolutely different, the optimal outcome is 

that the projection distance in the phoneme-independent subspace is much shorter than 

it in the phone-dependent subspace. 

In advance, a series of utterance data of Japanese long vowels are prepared for 

projection test. They were recorded by a person from 2003 to 2004, once a week, in the 

morning, afternoon and night, over 16 months. Each long vowel has 204 utterances 

respectively. Figure 3.3 and 3.4 shows the projection distance by projecting to the lower 

eigenvectors obtained in subsection 3.3.2. 

 

 

Figure 3.4 Projection distance in phoneme-dependent subspace for NIRPS database 
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Figure 3.5 Projection distance in phoneme-independent subspace with 15 DIM for 

NIRPS database 

 

From the Figure 3.4, it is obvious that until projecting to the 3rd eigenvector, the 

projection distance rises sharply, compared with almost no changes by projecting to the 

3rd eigenvectors or later ones. Therefore, it is proved that the very first two lower 

eigenvectors suppress the phonetic variability when a great deal of utterance data was 

prepared for PCA. It is also clear in Figure 5 that we can find the projection distance 

decreases steep until by projecting to the 3rd eigenvectors or the later ones in such a 

phoneme-independent subspace. This is consistent with the explanations for the changes 

of projection distance in phoneme-independent subspace. 

Then, let us continue to focus on the Figure 3.3, Figure 3.4 to compare the 

distance which is corresponding to the range of eigenvectors projected after the 3rd. The 

projection distance in phoneme-independent subspace is much closer than it in 

phoneme-dependent subspace. The projection for NTT database also shows the 

characteristic of the distance changes similarly. The MFB feature transformation to 

phoneme-independent subspace has suppressed a large part of phonetic variability so 

that the IER can be improved.  

In general, the speech data roughly consists of three main parts, i.e. phonetic 

variability, speaker information, time difference, and others. In this paper, phonetic 
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variability is discussed. From the results of the experiments, TI speaker identification 

performance is confirmed to be improved by discarding some principal components. It 

shows these components are strongly affected by phonetic variability. On the other hand, 

the dimensionality increasing reduced the error. Although it should be studied where the 

upper limit achievable for higher dimension PCA eigenvector is, speaker information 

and other information are intermingled in them. Hence, [74] developed new speech 

database in which time difference has the largest dispersion. 

 

3.4 Summary 

 

This chapter has introduced a new feature vector extraction method using PCA for 

text-independent speaker identification. In the method, it is assumed that a subspace 

constructed with some principal components having larger contribution rates is 

considered as "phoneme-dependent subspace" and a subspace constructed without these 

components is considered as "phoneme-independent subspace". GMM-based TI speaker 

identification experiments are conducted using the proposed phoneme-independent 

feature vector (MFB-PCA) and the conventional MFCC and show how a standard 

speaker identification system can be significantly improved. The results for two 

databases are also better than the conventional method. Therefore, a robust speaker 

model can be constructed by the new feature vector having less phonetic variability in a 

phoneme-independent subspace and get a better TI speaker identification performance. 
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Chapter 4  

 

Inter-session variability reduction 

for MFCCs 

 

 

4.1 Introduction  

 

A speaker identification system consists of a feature extraction frontend and a classifier. 

For Text-Independent (TI) speaker identification systems, a popular choice for the 

features is Mel-Frequency Cepstral Coefficients (MFCCs) [75] and the classifier is the 

Gaussian Mixture Model (GMM) [76]. MFCCs are extracted from a speech waveform 

by first obtaining Mel filter bank spectrum (MFB) and then applying Discrete Cosine 

Transforms (DCT). GMM is a statistical model that can model complex data 

distribution using multiple Gaussian distributions and their mixing weights. 

The performance of speaker identification systems largely depends on features. 

To achieve higher performance, the frontend should extract features so that speaker 

information is emphasized while phonetic and inter-session variability are suppressed. 

While the MFCC features are very popular for speaker identification, they do not equip 

a mechanism to suppress the phonetic variability because they are originally developed 

for speech recognition, where the extraction of phone information is important. 

Therefore, the GMM has to manage phonetic variability all by itself. In order to 

suppress the phonetic variability helping the GMM to identify speakers regardless of 

what is said, a feature extraction method that utilizes Principal Component Analysis 

(PCA) has been previously proposed, and has shown that it is effective to improve 

speaker identification performance [77, 78].  

Inter-session variability refers to variability of speech characteristics that arise for 

speech sounds recorded in different sessions over a certain time-span. It is known that 
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even in the same recording environment, such as the same microphone and the same 

room reverberation, the characteristics of recorded speech sounds vary. This variability 

is due to the fact that characteristics of our voice itself drift over time. Though it is rare 

that the change is noticed, it largely impacts the performance of automatic speaker 

identification systems. 

Although the problem of the session variability is widely recognized, its 

mechanism has not been well investigated, and there are only few researches to 

normalize the effect [79]. However, without addressing the problem, it is not possible to 

provide a practical speaker identification system as a useful biometrics application since 

the performance degrades as time passes after the registration of users’ voice.  

In this chapter, previous PCA based phonetic variability suppression method [78] 

is adopt and extend to suppress the session variability [72]. The basic idea is to 

transform observed MFB spectrum to another space, where the session variability and 

others including speaker information are separated into different subspaces. Then, by 

discarding the session variability subspace and applying inverse transformation, 

normalized spectrum is obtained. The question is how to obtain such transformation. 

For this purpose, speech data that specifically contains session variability is prepared by 

controlling other factors. PCA is applied to it assuming that the session variability 

subspace is obtained as a primary subspace by the PCA analysis. 

The formulation of our proposed method is similar to the Nuisance Attribute 

Projection (NAP) method in which a transformation is applied to features to suppress 

channel differences in SVM expansion space [65]. The NAP has been developed to a 

popular intersession variability compensation method [80], which estimates and 

removes the channel information existed in speaker’s features from the super-vectors 

before SVM training. Consider the channel dependent portion is much lower dimension 

than the speaker dependent portion, so PCA can be employed to estimate the first n 

largest components from the super-vectors. But NAP is designed only for SVM and the 

super-vector is computed from performing a MAP adaption to GMM-UBM training 

with the speech data. Actually, our method can be regarded as a special case of the NAP 

method, so the PCA is also applied to the controlled recordings of a special database [74] 

to using the speech features instead of super-vectors. The new contribution of our paper 
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is to apply the framework for the time difference problem that is originated from 

speaker’s pronunciation itself and the way of estimating the parameters of the 

transformation is also a new point of this paper. 

The remainder of this chapter is organized as follows. In Section 4.2, the 

proposed session variety suppression method is explained. Experimental setups are 

described in Section 4.3 and the results are shown in Section 4.4. Finally, summary is 

given in Section 4.5. 

 

4.2 Nuisance Attribute Projection 

 

Solomonoff, et al proposed nuisance attribute projection (NAP) [56] as a technique to 

suppress session variations.  

NAP constructs a session matrix subspace with low-dimensional session 

variations observed in a training corpus of speech. NAP uses projection method in the 

SVM kernel space to project data onto a subspace in which less prone to variations 

while inter-session variability modelling removes variations in the GMM space via a set 

of mean offsets. It means to project out the unwanted dimensions of within-class 

variation. 

A sequence of 𝑛 nuisance directions, defined by the low-rank transformation 

matrix 𝑈, can be reduced from the input data 𝑥 using the projection. 

 

 𝑃𝑛𝑥 = (𝐼 − 𝑈𝑛𝑈𝑛
𝑇)𝑥, (4.1)  

 

𝐼 is the identity matrix in (5.1). The directions are found by the criterion maximization  

 

 𝐽(𝑢) = 𝑢𝑇𝑆𝜔𝑢, (4.2) 

 

𝑆𝜔 is the training data from within-class scatter matrix. This is same as determining the 

eigenvectors corresponding to the largest eigenvalues. 

 

 𝑆𝜔𝑢 = 𝜆𝑢. (4.3) 
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In practice, PCA is used to solve the problem. With the help of PCA, the 

eigenvalues and eigenvectors corresponding to the low-dimensional correlation matrix 

of 𝑆𝜔 are separated from the high-dimensional 𝑆𝜔 through the decomposition. The 

within-class scatter matrix can be got from 

 

 𝑆𝜔 = (𝑑𝑖𝑎𝑔(𝑊1) − 𝑊)𝐾, (4.4) 

 

where 𝐾 is the matrix, 1 is a column vector, 𝑊 is the weight matrix that means 

observations in the same speaker’s training data set. 

The linear SVM kernel with the integration of NAP compensation can finally be 

indicated as 

 

  𝐾(𝑥𝑖,𝑥𝑗,) = 𝑃𝑛𝑥𝑖 ∙ 𝑃𝑛𝑥𝑗, (4.5) 

 

where 𝑃𝑛 is the projected out of the input data 𝑥𝑖and 𝑥𝑗. 
 

NAP is regularly employed throughout this dissertation because it simplistic 

application and famous capability to suppress session variability. 

 

4.3 Inter-session variability suppression for GMM based speaker 

identification 

 

A. General Structure  

 

The overview of our proposed method is shown in Fig.1. The system diagram of our 

proposed TI speaker identification system consists of a training phase and an 

identification phase. In the training phase, inter-session variability subspace is first 

obtained by applying PCA to MFB spectrum vectors of a specific vowel from a single 

speaker. It is assumed that inter-session variability is mainly located in the first principal 

component. In other words, it is assumed that it represents the direction of inter-session 

variability. Given the subspace of inter-session variability, original MFB spectrum 
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vectors from all the training and test set speakers are normalized by removing that 

component.  Using the normalized MFB spectrum, MFCC features are estimated and 

GMMs are trained and evaluated for speaker identification. 
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Figure 4.1 Overview of the proposed speaker identification system 
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B. PCA based Inter-session Variability Suppression  

 

Let 
T

nxxx },,{ ,21 x denote n-dimensional MFB spectrum vectors of a specific 

vowel of a designated speaker. A mean vector can be computed by  
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where L is the number of samples. Similarly, a covariance matrix is obtained by 
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The covariance matrix xR (n by n) can be decomposed to eigenvectors and eigenvalues 

as follows: 

 

 T

XR  . 
(4.8) 

 

where   is a diagonal matrix whose diagonal components are eigenvalues 

),,,,1( nkii  . Φ is a matrix whose columns are eigenvectors 

),,,1( nkii   corresponding to the eigenvalues. 

In this study, it is assumed that the first eigenvector (i.e. 1 ) spans the subspace 

that has the largest inter-session variability. This means the most inter-session variability 

can be removed by projecting the MFB spectrum into the ortho-complementary space of 

the first eigenvector and then transforming it back to the original space. Or equivalently, 

the inter-session variability component can be first obtained by projecting the MFB 
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spectrum to the inter-session variability subspace and then subtracting it in the original 

feature space as shown in Equation (4.9). 

 

 
11 )(' 

T
xxx  . 

(4.9) 

 

C. GMM training and likelihood evaluation 

 

The inter-session variability subspace obtained from the designated speaker is used in 

common for the inter-session variability normalization for all the training and test set 

speakers. Then, MFCC features are obtained from the normalized MFB spectrum 'x  

by applying DCT as shown in Equation (4.10).  

 

 )'(ˆ xDCTx . (4.10) 

 

 

For speaker identification, GMM log likelihood for speaker s is obtained for the MFCC 

features "x̂ as )|"ˆ(log )(sλP x , where  is the GMM parameters. An identification 

result c is obtained by computing the maximum of the log likelihood as shown in Eq. 

(4.11) 

 

 )|"(logmaxarg )(ˆ s

s

λPc x . (4.11) 

 

4.4 Experiments 

 

4.4.1 Conditions 

 

Two databases were used in the experiments. One was used to obtain the 

session-variability subspace and the other was used as training set of speaker GMMs 

and test set. For the former, “Specific Speakers’ Speech Corpus over Long and Short 
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Time Periods” [81] is used including five Japanese vowels /a/, /i/, /u/, /e/, and /o/, 

uttered by a person once a week for 10 months. For the latter, a subset of the NTT 

speaker recognition database [3] consisting of 780 phoneme-balanced utterances from 

23 male speakers is used. Among the 23 speakers, one had three sessions, another had 

had 6 sessions, and the ohters had 7 sessions. These sessions are recorded separately 

during 16 months. The duration of each utterance is 6 seconds on average. The 

waveforms are recorded at16kHz sampling frequency and 16bit quantization. Five 

utterances per a speaker were used for his speaker model training. Similarly, five 

utterances per a speaker from the rest of the sessions are used for the evaluation [82]. 

 

4.4.2 Experiment results  

 

The results with various vowels are shown in the following tables where the MN means 

mixture numbers. 

 

Table 4.1 Baseline speaker identification error rate (IER) using MFCCs without 

inter-session variability normalization. Rows are number of GMM components of a 

speaker model. Columns are a dimension of MFCC feature vectors that are obtained from 

24 channel Mel-Filter Bank output. 

MN 12dim 13dim 14dim 15dim 16dim 

16 3.31  3.61  3.01  2.56  1.65  

32 1.95  1.95  1.80  1.65  1.20  

64 1.95  2.11  1.20  2.11  1.19  

96 4.06  2.71  1.35  1.50  1.35  

128 3.31  3.46  2.11  1.80  2.26  

 

Table 4.2 IER (%) using MFCCs with proposed PCA based session variability 

suppression. Session variability subspace is obtained using /a/ sound. 

MN 12dim 13dim 14dim 15dim 16dim 

16 4.36 3.91 2.56 2.56 2.11 
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32 2.11 1.50 1.35 0.75 0.90 

64 1.50 1.65 1.20 1.20 1.05 

96 2.26 1.65 2.26 2.26 1.65 

128 2.86 2.26 3.01 3.31 1.95 

 

Table 4.3 IER (%) using MFCCs with proposed PCA based session variability 

suppression. Session variability subspace is obtained using /i/ sound. 

MN 12dim 13dim 14dim 15dim 16dim 

16 4.66  4.82  3.91  3.31  3.31  

32 2.11  2.11  1.65  1.95  1.65  

64 3.01  2.71  1.05  1.50  1.65  

96 3.01  2.56  1.95  2.11  1.50  

128 4.66  4.21  3.76  3.01  2.41  

 

Table 4.4 IER (%) using MFCCs with proposed PCA based session variability 

suppression. Session variability subspace is obtained using /u/ sound. 

MN 12dim 13dim 14dim 15dim 16dim 

16 4.66  4.82  3.91  3.31  3.31  

32 2.11  2.11  1.65  1.95  1.65  

64 3.01  2.71  1.05  1.50  1.65  

96 3.01  2.56  1.95  2.11  1.50  

128 4.66  4.21  3.76  3.01  2.41  

 

Table 4.5 IER (%) using MFCCs with proposed PCA based session variability 

suppression. Session variability subspace is obtained using /e/ sound. 

MN 12dim 13dim 14dim 15dim 16dim 

16 4.06  4.66  3.91  3.31  2.56  

32 2.86  2.71  3.16  2.41  1.50  

64 3.31  2.86  2.11  2.11  1.35  

96 3.16  1.95  2.11  1.80  2.41  
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128 3.31  1.95  2.26  2.71  1.65  

 

Table 4.6 IER (%) using MFCCs with proposed PCA based session variability 

suppression. Session variability subspace is obtained using /o/ sound. 

MN 12dim 13dim 14dim 15dim 16dim 

16 3.76  4.51  4.21  2.26  2.41  

32 2.11  1.50  1.65  1.35  1.05  

64 3.61  2.86  1.65  0.90  1.20  

96 3.01  2.41  1.50  2.26  1.80  

128 3.31  3.01  1.80  1.65  1.95  

 

Table 4.7 IER (%) using MFCCs with proposed PCA based session variability 

suppression. Session variability subspace is obtained using /N/ sound. 

MN  12dim 13dim 14dim 15dim 16dim 

16 5.41  4.21  3.01  3.31  2.86  

32 2.86  1.95  2.11  1.65  1.05  

64 3.01  2.11  1.80  2.11  1.35  

96 3.91  2.11  2.26  2.11  1.80  

128 3.01  1.95  3.01  2.41  1.65  

 

4.4.3 Discussion 

 

Table 4.1 shows baseline speaker identification error rate (IER) that are obtained by 

using the MFCC features without the inter-session variability normalization. IER were 

evaluated using speaker GMMs with varying number of component Gaussians and 

MFCC features with varying dimensions. These MFCC features are sub-vectors of 

MFCCs that were obtained from 24 channel Mel-filter bank output. The lowest IER 

1.19 is obtained when the MFCC dimension was 16 and the speaker GMM had 64 

Gaussian components. 

Tables 4.2 to 4.7 show IER using the MFCC features made from the 
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session-variability normalized MFB spectrum using different vowels to estimate the 

session-variability subspace. The lowest IER based on vowels /a/, /i/, /u/, /e/ and /o/ for 

the subspace-estimation were 0.75, 1.05, 1.35, 0.90 and 1.05, respectively. The lowest 

IER of 0.75 was obtained when vowel /a/ was used with a GMM having 32 mixture 

components and the features having 15 dimensions. The relative IER reduction from the 

baseline result was 37.0%. 

 

4.5 Summary  

 

A new feature vector extraction method is proposed using PCA for text-independent 

speaker identification that suppresses inter-session variability. According to the 

experiment results, by applying PCA to MFB spectrum vectors of a specific vowel from 

a single speaker recorded over several sessions, session variability sub-space is obtained 

as the primary eigenvector. Given the eigenvector representing the direction of session 

variability, the session variability component is obtained as an inner product of the 

spectrum vector and the eigenvector. By subtracting the obtained session variability 

term from the original vector, the session variability is normalized. GMM based 

text-independent speaker identification experiments showed that the proposed 

session-variability normalization method is effective. Compared to a MFCC based 

baseline, 37.0% relative reduction of IER was obtained. Future work includes 

improving the estimation of the session variability subspace. 
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Chapter 5   

 

Phoneme dependent inter-session 

variability reduction for speaker 

verification 

 

 

5.1 Introduction  

 

The current trend in Text-Independent speaker verification is using GMM-UBM 

super-vectors to model the speaker features [47]. However, variation between training 

and test utterances recorded over months can strongly affect the performance. The 

variation referred to as inter-session variability has become one of the most challenging 

problems facing speaker verification researchers today. Due to the fact that 

characteristics of voices change over time, the characteristics of recorded speech sounds 

vary even if they are recorded in the same environment, such as using the same 

microphone and a room with the same reverberation. State-of-the-art session variability 

compensation methods have been proposed to reduce the confusing variability that is 

generally caused by GMM-UBM super-vectors. Eigenvoice [62], Eigenchannel [63] and 

joint factor analysis (JFA) [64] are based on separating the lower dimensional 

speaker-dependent subspace and the channel-dependent subspace in the super-vector 

frame-work. Nuisance attribute projection (NAP) [65] applies a linear transformation to 

the GMM-UBM super-vectors to project out nuisance directions. Inspired by JFA, 

speaker and channel variability are jointly modeled to obtain i-vectors [66] using factor 

analysis, and then LDA and WCCN are used to reduce dimensionality, while retaining 

the speaker identity information in the GMM-UBM super-vectors domain. Meanwhile, 

the enrolment utterances are required to be long enough to contain as many phonemes 
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as possible [67]. 

Nevertheless, they do not take into account phoneme deficiency. What if just a 

small amount of training utterances were available? GMM-UBM super-vectors will 

potentially lead to worse modeling because some phonemes are missing in the 

enrolment utterances. Several phoneme-based works have tried to constrain the effect, 

e.g. Margin-Chagnoleau et al. [68] have shown that speaker identification performance 

depends on the phonetic label of the speech segments used. Matsui and Furui [69] used 

phoneme-specific HMMs to more accurately model the target speakers. Mohamed 

Abdel et al. [70] described the phoneme selection of a speaker utterance before 

recognition much improved the speaker verification accuracy. Gutman and Bistritz [71] 

proposed a two-stage phoneme adaption method using the TIMIT and NTIMIT 

database. 

However, they did not directly consider the other side that the original acoustic 

GMM mean vectors contained the inter-session variability. In this study, an effective 

phoneme dependent method is developed to reduce the inter-session variability. Via 

speech segmentation using speech recognition technology, a speaker’s model can be 

represented by several various phoneme Gaussian mixture models. Each of them covers 

an individual phoneme. Then, the inter-session variability subspace for each individual 

phoneme can be obtained as a primary subspace constructed with first several principal 

components. A reduction method similar to NAP, called nuisance attribute subtraction 

(NAS) was employed to reduce the inter-session variability through using a long-term 

recorded corpus uttered by a single speaker. That is, a subspace constructed with the 

some principal components is considered as ‘inter-session variability space’ and a 

subspace constructed without these components is considered as ‘inter-session- 

independent space’ in this paper. 

The remainder of this chapter is organized as follows. Section 5.2 provides a 

description of phoneme-based inter-session reduction for speaker verification. In 

Section 5.3, comparative experiments and discussions are carried out to show the 

effectiveness of our proposed method. Finally, Section 5.4 gives the summary of this 

chapter. 

 

http://ejje.weblio.jp/content/data+deficiency
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5.2 Baseline GMM-SVM speaker verification system 

 

State-of-the-art GMM-SVM speaker verification systems provide a performance 

reference point for the further development of speaker verification systems and 

associated techniques. Accordingly, research efforts through this dissertation are 

compared to a baseline GMM-SVM system in order to evaluate the potential 

performance gains achieved by the proposed methods. 

The GMM-UBM configuration described in Section 2.3.2.1 represents state-of- 

the-art technology and forms the fundamental baseline configuration used in this work. 

This system is also used to produce the GMM-UBM mean super-vectors for the 

baseline support vector machine (SVM) classifier later described in Section 5.4. 

The feature extraction process is depicted in section 2.2 and benefits 

from12-dimensional feature-warped MFCCs with appended delta coefficients. GMM 

training utilizes mean-only MAP adaptation. Unless otherwise stated, an adaptation 

relevance factor of τ=10 and 256-mixture models are used throughout this work. 

Speaker adaptation takes place after a single E-M MAP adaptation iteration. 

Gender-dependent UBMs were trained using a diverse selection of 1675 utterances from 

National Research Institute of Police Science (NRIPS) speech database. GMM-SVM 

based classification scores are calculated by T-norm score normalization. 

 

5.3 Phoneme-based inter-session reduction for speaker verification 

 

Figure 5.1 shows a block diagram of our proposed phoneme-based inter-session 

reduction for speaker verification. The process consists of the following modules: 
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Figure 5.1 Block diagram of our proposed Phoneme-based inter-session reduction for 

speaker verification 

 

5.3.1 Segmentation 

 

Segmentation of the speech was carried out by 3-state monophonic HMM-based speech 

recognition. Since the sentences for training are known, segmentation was relatively easy 

to perform by doing forced alignment. Then, phoneme segmentation for each testing 

utterance can be processed with the previously constructed HMM phoneme models. 

 

5.3.2 Phoneme-based GMM-UBM adaption 

 

For a given phoneme, a phoneme GMM can be generated by adapting a well-trained 

phoneme UBM using the maximum a posteriori (MAP) adaptation approach. Supposing 

a D-dimensional phoneme feature vector, 𝒙𝑝 , the probability density for a phoneme 

model is defined as the weighted sum of M Gaussian densities: 

 

𝑝(𝒙𝑝|𝜆) = ∑ 𝜔𝑖𝑔(𝒙𝑝|𝝁𝑖 , Σ𝑖

𝑀

𝑖=1

) , (5.1) 

 

where 𝑔(𝒙𝑝|𝝁𝑖 , Σ𝑖) is the Gaussian probability density function, which is parameterized 
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by mean vector 𝝁𝑖, covariance matrix Σ𝑖, and mixture weights  𝜔𝑖 that add to unity. 

These parameters are collectively represented by the notation: 𝜆 = {𝜔𝑖 , 𝝁𝑖 , Σ𝑖}  𝑖 =

1, … , 𝑀. Each component density is a D-variate Gaussian function of the form: 

 

g(𝒙𝑝|𝝁𝑖 , Σ𝑖)

=
1

(2𝜋)𝐷/2|Σ𝑖|
1/2

exp {−
1

2
(𝒙𝑝−𝝁𝑖)

𝑇
𝛴𝑖

−1(𝒙𝑝 − 𝝁𝑖)} . 
(5.2) 

 

5.3.3 Inter-session Reduction Procedure 

 

The section focuses on reducing the inter-session variability. Previous PCA-based 

phonetic variability suppression method [72] is adopted and extended to reduce the 

inter-session variability. The basic idea is to transform input vectors to another subspace, 

where the inter-session variability and other factors including speaker information were 

separated into different subspaces. Then, by discarding the inter-session variability 

subspace and applying inverse reduction, normalized feature vectors were obtained. The 

question is how to obtain such reduction. For this purpose, speech database that 

deliberately contained inter-session variability is prepared by controlling other factors.  

The next two subsection introduce how to apply the inter-session reduction, 

which similar to NAP, in the GMM mean vectors domain and GMM-UBM 

super-vectors domain respectively 

 

A. Nuisance Attribute Subtraction in GMM Mean Vectors Domain (NAS-m) 
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Figure 5.2 NAS in GMM mean vectors domain for a phoneme 
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Figure 5.2 shows a block diagram of phoneme-dependent using nuisance attribute 

subtraction in the GMM mean vector domain, when the long-term speech data uttered 

by a single speaker is segmented into phoneme segments, and then, the sequence data of 

a phoneme {𝑥𝑡}(𝑡 = 1, 2, … , 𝑁) was observed in a D-dimensional observation space. 

The mean vector x̅ and covariance matrix Mg were computed from the input data as 

𝑥̅ =
1

𝑁
∑ 𝑥𝑡

𝑁
𝑡=1  and 𝑀𝑔 =

1

𝑁
∑ (𝑥𝑡 − 𝑥̅)(𝑥𝑡 − 𝑥̅)𝑇𝑁

𝑡=1 , respectively. 𝑀𝑔 could be 

decomposed to eigenvectors and eigenvalues as follows: 

 

𝑀𝑔 = 𝑈𝑔𝛬𝑔𝑈𝑔
𝑇 , (5.3) 

 

where the columns of 𝑈𝑔  contain the eigenvectors 𝜑  of 𝑀𝑔 , and 𝛬𝑔  contains the 

corresponding eigenvalues 𝜆 in its diagonal. In this study, it is assumed that the first q 

eigenvectors (i.e.𝜑1, … , 𝜑𝑞) span the subspace that had the largest inter-session variability, 

which means that the inter-session variability component can be first obtained by 

projecting each phoneme GMM mean vector 𝑚𝑔  onto the inter-session variability 

subspace and then subtracting it in the original space, namely applying nuisance attribute 

subtraction (NAS) on the GMM mean vector as shown in Equation (5.4). 

 

𝒑𝑔 = (𝐼 − 𝑈[𝑞]𝑔𝑈[𝑞]𝑔
𝑇 )𝒎𝑔 , (5.4) 

 

where 𝑈[𝑞]𝑔 means a subspace of 𝑈𝑔, which is constructed with the first q components. 

Then, the new GMM mean vector 𝒑g could concatenate an inter-session variability 

reduced phoneme GMM-UBM super-vector. Thus, a large dimensional GMM-UBM 

super-vector including the entire selected phoneme could be combined with equal 

weights for continued SVM-based speaker verification. 

 

B. Nuisance Attribute Subtraction in Super-Vector Domain (NAS-sv) 
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Figure 5.3 NAS in super-vectors domain for a phoneme 
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Figure 5.3 shows a block of phoneme-dependent inter-session variability reduction for 

speaker verification using nuisance attribute subtraction in the super-vector domain. 

When segmentation of the long-term speech was completed, every M-mixture phoneme 

GMM generated from one short utterance could be concatenated into a MD-dimensional 

phoneme GMM-UBM super-vector. Then, for R short utterances, there is a sequence of 

the phoneme GMM-UBM super-vector {𝒔𝑗}(𝑗 = 1, 2, … , 𝑅)  observed in a MD- 

dimensional observation space. The mean vector 𝒔̅ and covariance matrix 𝑀𝑠𝑣  were 

computed from the input data as 𝒔̅ =
1

𝑅
∑ 𝒔𝑗

𝑅
𝑡=1  and 𝑀𝑠𝑣 =

1

𝑅
∑ (𝒔𝑗 − 𝒔̅)(𝒔𝑗 − 𝒔̅)𝑇𝑅

𝑡=1 , 

respectively. 𝑀𝑠𝑣 could be decomposed to eigenvectors and eigenvalues as follows: 

 

𝑀𝑠𝑣 = 𝑈𝑠𝑣𝛬𝑠𝑣𝑈𝑠𝑣
𝑇  . (5.5) 

 

the inter-session variability subtraction applied to the GMM-UBM super-vector can be 

given by Equation(5.6). 

 

𝒑𝑠𝑣 = (𝐼 − 𝑈[𝑘]𝑠𝑣𝑈[𝑘]𝑠𝑣
𝑇 ) 𝒎𝑠𝑣 , (5.6) 

 

where 𝑚𝑠𝑣 is the phoneme GMM-UBM super-vector and 𝑈[𝑘]𝑠𝑣 is a subspace of 𝑈𝑠𝑣 

constructed with the first k components. Thus, a large dimensional GMM-UBM 

super-vector including the entire selected phoneme could be combined with equal 

weights for SVM-based speaker verification. 

In this paper, these selected phonemes refer to vowels and nasals in Japanese, i.e., /a/, /i/, 

/u/, /e/, /o/, /m/, /n/ and /s/&/sh/ [70]. 

 

5.4 SVM-based Speaker Verification using phoneme GMM-UBM 

super-vectors 

 

Support vector machines (SVMs) have proven to be a novel effective method for speaker 

verification because of their inherent property of discriminative training, and the ease of 

combining feature vectors.  

The SVM two-class classifier was constructed using weighted sum of a kernel 

function 𝐾(·,·) as follows: 
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𝑓(𝒙𝑝𝑠) = ∑ ∝𝑖 𝑡𝑖𝐾(𝒙𝑝𝑠,𝝂𝑖) + 𝑑

𝑁

𝑖=1

 , (5.7) 

 

where 𝒙𝑝𝑠 are the GMM-UBM super-vectors of phoneme combined with equal weights; 

N is the number of support vectors, 𝝂𝑖  are the support vectors obtained via an 

optimization process, and 𝑡𝑖 are ideal outputs, with values of ±1 depending on whether 

the accompanying support vectors belonged to class 0 or 1. Overall, the parameters were 

subject to the constraint:∑ 𝛼𝑖𝑡𝑖 = 0𝑁
𝑖=1 . 

In this study, the linear kernel was used, which is given by Equation 5.8. 

 

𝐾(𝒙𝑝𝑠, 𝒗𝑖) = 𝒙𝑝𝑠 · 𝒗𝑖 , (5.8) 

 

For classification, a class decision was based upon whether the value 𝑓(𝒙𝑝𝑠), was above 

or below a threshold. 

 

5.5 T-norm 

 

The SVM score distribution from verification trials, however, can also be affected by the 

conditions exhibited by the test utterance. T-norm shares similarities with model-based 

cohort normalization while additionally incorporating score variance to better model the 

impostor cohort score distribution to address this issue. It is commonly applied to 

SVM-based classification scores as was seen in the recent NIST SREs to provide 

improved robustness to statistical errors encountered during the speaker modeling 

process [73].  

T-norm is utilized to enhance the performance of GMM-SVM systems in this study. 

The normalization parameters were estimated using scores derived at test time from a set 

of imposter speaker models. A fixed set of imposter speaker models were scored in 

parallel with the target speaker model. The mean 𝜇𝑡𝑛𝑜𝑟𝑚 and standard deviation 𝜎𝑡𝑛𝑜𝑟𝑚 

of the imposter scores were then used to adjust the target speaker score as 

 

𝑆𝑡𝑔𝑡|𝑡𝑛𝑜𝑟𝑚(𝑂) =
𝑆𝑡𝑔𝑡(𝑂)−𝜇𝑡𝑛𝑜𝑟𝑚

𝜎𝑡𝑛𝑜𝑟𝑚
 , (5.9) 
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where 𝑆𝑡𝑔𝑡(𝑂) is the target speaker score for observations 𝑂. 

 

5.6 Experiments 

 

5.6.1 Conditions 

 

The evaluation experiments were processed based on a SVM speaker verification system. 

It was conducted by text-independent open-set speaker verification experiments with a 

large Japanese speaker verification evaluation corpus separated into four 

cross-validations. The corpus was developed by the National Research Institute of Police 

Science (NRIPS). It contains speech data of 335 Japanese males aged 18 to 76 years, and 

was recorded in two time sessions over three months. Each ATR phoneme-balanced 

sentence has a length of about 2.5 seconds on average. In this study, the utterances 

recorded at the first session are used for training, and the phoneme models are 

constructed and the utterances recorded at the second session are used for testing. A full 

description of the corpus can be referenced in [74]. 

179 male speakers are used to train the UBM, and 78 male speakers were treated as 

target speakers, the remaining 78 male speakers were treaded as imposters. 

After down sampling to 16 kHz, each 5 phoneme-balanced utterance 

was defined as training UBM, training set, and test set. The speech signals were 

analyzed with 25 ms window width and 10 ms shift. The feature vector size was 

26-dimensional, which consisted of 12 mel-cepstrum coefficients, a log energy 

coefficient, and these delta mel-cepstrum coefficients. Since the utterance was not long 

enough to keep the mixture count at a large number, the mixture number was set at 32 for 

phoneme segments. Thus, each phoneme GMM could be concatenated into a 26*32=832 

dimensional phoneme GMM-UBM super-vector. Then, several various phoneme 

GMM-UBM super-vectors continued to concatenate i.e., /a/, /i/, /u/, /e/, /o/, /m/, /n/ and, 

/s/&/sh/ into an 832*8 = 6656 dimensional GMM-UBM super-vector with equal weights. 

This was precisely corresponds to the baseline based 26*256 = 6656 dimensional 

GMM-UBM super-vector. 
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5.6.2 Experiment results 

 

The results of comparative experiments are evaluated by equal error rate (EER) and 

detection error trade-off (DET) curves, which were also used for the performance 

criterion. 

 

Table 5.1 Results comparison with respect to EER% 

System EER (%) 

BASELINE 3.61 

PHONE COMB (no NAS) 3.46 

PHONE COMB Parameter 

NAS-m 

q = 1 3.34 

q = 2 3.52 

q = 3 3.60 

NAS-sv 

k = 1 3.48 

k = 26 3.93 

k = 52 3.85 

k = 78 4.63 

 

In Table 5.1, BASELINE indicates the conventional method based on short 

phoneme-balanced utterances. PHONE COMB means the proposed method based on 

general phoneme combination without NAS. First, a TI speaker verification experiment is 

carried out with the GMM-UBM super-vectors concatenated by special phonemes to 

compare the system performance with that of BASELINE. Note that PHONE COMB led 

to an improvement in the system performance from 3.61% (achieved by BASELINE) to 

3.46% (4.16% relative reduction of EER). The results reveal the fact that using some 

special phonemes extracted from phoneme-balanced utterance to model the GMM-UBM 

super-vectors can improve the performance when the enrolment utterances are relative 

short. 
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Figure 5.4 Detection Error Trade-off curves 

 

To investigate the effect of inter-session reduction, several inter-session 

independent subspaces are compared by applying various parameters for NAS. From the 

results in Table 5.1, the best EER of 3.34% was achieved with NAS[1]-m, which can 

greatly improve the system performance up to 7.48% relative to the BASELINE. It is also 

superior to the ERR of 3.48% achieved by NAS[1]-sv, and the EER was reduced by 

3.47% compared with the PHONE COMB. However, there was no improvement 

achieved with NAS-sv compared to PHONE COMB. The reason for this might be that 

NAS-sv had not successfully reduced any inter-session variability in the super-vectors 

domain owing to its phoneme GMM-UBM super-vectors being generated directly from 

short utterances.  

For EER, given the simple transformation used, the performance of NAS[1]-m 

clearly shows the effectiveness of the proposed inter-session reduction procedure. 

Performance comparison of the BASELINE, PHONE COMB, NAS[1]-m, and 



Chapter5: Phoneme dependent inter-session variability reduction for speaker verification 

 

68 

 

NAS[1]-sv is also shown in Figure 5.4 using DET curves. Here, it is observed that the 

superiority of the proposed method NAS[1]-m over the BASELINE system while it 

consistently provides further improvement compared to PHONE COMB in the DET 

range. 

 

5.6.3 Discussion 

 

Besides the above comparison experiments, table 5.2 also shows the EER of SVM-based 

TI speaker verification using various single phonemes in Table 5.2. 

 

Table 5.2 EER% obtained using various phonemes 

Phoneme  EER (%) 

/a/ 12.33 

/i/ 19.78 

/u/ 24.34 

/e/ 20.05 

/o/ 16.32 

/m/ 26.93 

/N/ 27.25 

/s/ 14.68 

 

As illustrated in Table 5.2 and Table 5.1, it has been shown and confirmed that 

speaker identify information can be characterized by some phonemes and their 

combination, such as vowels and nasals, which are hard to affect by inter-session 

variability.  

Furthermore, forced alignment is also conducted for test utterance segmentation to 

get a more accurate speech recognition rate and carry out the comparative experiments 

again.  
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Table 5.3 Results comparison with respect to EER% using forced alignment for test 

utterance segmentation 

System EER (%) 

BASELINE 3.61 

PHONE COMB (no NAS) 3.34 

PHONE COMB Parameter 

NAS-m 

q = 1 2.91 

q = 2 3.34 

q = 3 3.70 

NAS-sv 

k = 1 3.48 

k = 26 3.79 

k = 52 4.35 

k = 78 4.42 

 

With a more accurate speech recognition rate for phoneme segmentation, table 5.3, 

shows the EER% of PHONE COMB has been improved from 3.34% in Table 5.1 to 

3.46%, also the best EER% achieved by NAS[1]-m has been improved from 3.34% in 

Table 5.1 to 2.91%. Compared with the conventional BASELINE method, it led to the 

improvement of system performance from 3.61% to 2.91% (a relative reduction of EER 

of 19.39%).  

Obviously, for both experiments, when the reduced components were over the 2nd 

eigenvector, the performance of NAS began to decrease to some degree. The reason for 

this is that besides inter-session variability, there is no doubt that useful phonetic 

variability and especially speaker information also exist in the very low eigenvectors. 

When utterances were projected on them, they could be the factors that affected the 

performance of the EER. 

 

5.7 Summary 

 

In this chapter, an effective phoneme-based inter-session reduction method is developed 
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including a new reduction called nuisance attribute subtraction (NAS) for TI speaker 

verification. In the method, for each phoneme GMM mean vector, given the eigenvector 

representing the direction of inter-session variability subspace obtained by applying PCA 

to a long-term corpus, the inter-session variability component was obtained as an inner 

product of the input vector and the eigenvector. By subtracting the obtained inter-session 

variability term from the original GMM mean vector, the inter-session variability was 

normalized. SVM-based TI speaker verification experiments are conducted using the 

proposed NAS in the phoneme GMM mean vectors domain and showed how a standard 

speaker verification system can be significantly improved. Therefore, a robust speaker 

model could be constructed by the new GMM-UBM super-vectors with less inter-session 

variability obtained in an inter-session independent subspace to get a better TI speaker 

verification performance. 
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Chapter 6   

 

Robust extraction of desired 

speaker’s utterance in overlapped 

speech 

 

 

6.1 Introduction  

 

By the popularization of the smart phone equipped with voice recording function like IC 

recorder these recent years, the voice recording becomes easier and more convenient at 

quite a long time meeting. If you want to detect a voice section of a desired speaker from 

the recording speech, it obviously costs a lot of effort only through listening and 

searching manually by human being. Therefore, if it is possible to automatically label the 

desired speaker’s voice section from the recording speech by speaker recognition 

technique, a quick and accurate system for extracting the desired speaker’s voice section 

will be realized, which can also be expected as a useful information search tool.  

For this purpose, in recent years, the study of speaker diarization has been actively 

developed [2, 101, 102]. In a general way, speaker diariztion is asked to detect who and 

when speaking the voice under the condition that the number of conversation participants 

and the length of voice are unknown [2]. As mentioned of the process, the input speeches 

for evaluation are divided into multiple clusters in the first place. Second, analyze the 

features of speech clusters, and the partition not similar will be further divided into more 

clusters and then the similar partition will be combined. Finally, the repeated dividing and 

combining processes will keep running until the predetermined stop criterion is met. It’s 

the popular way to estimate who and when is speaking by dividing the speech into 

segments [2, 101, 103, 104, 105].  
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There also are other researches for speaker diariztion like using the video and audio 

information, detecting who is speaking to whom with fisheye lens [106], identifying who 

is photographed with face recognition [107] detecting speaker with audio and mouth 

information [108].   

Of course, speaker diarization are still facing a lot of problems most of which is 

how to accurately extract the desired speaker’s utterance in an overlapped conversational 

speech [2, 109]. Of course, it is possible to do conduct speaker diariztion correctly when a 

speech section is uttered by just only one speaker, owing to the likelihood of evaluation 

speech that uttered by the same speaker is relatively higher than the likelihood of the 

overlapped speech. The likelihood, however, probably decreases due to the noise of 

conversation itself in a relative complicated overlapped conversational speech. As a 

result, a speech should have been identified as a section of target speaker might be false 

rejected. Vice versa, it also probably comes higher for the target speaker’s model’s 

likelihood which should have been lower due to other speakers’ overlapped speech. 

In order to resolve the problem of performance decreasing resulted from the 

overlapped speech, it is necessary to detect the section of overlapped speech in the first 

place. There exists several detection methods based on the HMM/GMM using the silence 

model, single speech model and overlapped speech model [2, 110, 111]. On the other 

hand, some researches focus on detecting the ratio of the silence section since only few 

silence section exists in an opinion exchange frequent conversational speech [111]. 

If the identified overlapped speech section is labeled, it is possible to divide the 

whole section into each speaker’s clusters using the single speaker model. In addition, it 

is the general way that two speakers who get the highest scores can be regarded as the 

corresponding conversation speakers through calculating the scores between the labeled 

overlapped speech and each speaker’s model [109, 110]. 

This paper is conditional on detecting a desired speaker (afterwards also called 

target speaker). A speaker indexing method is proposed using speaker verification 

technique to extract target speaker’s utterances from conversational speech. Although the 

target of this study is easier than the speaker diariztion mentioned above, it still has 

considerably practical significance in many occasions, such as detecting the speech 

section of a target speaker’s himself introduction at the beginning of a meeting in which is 
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usually labeled manually. In this study, with extracting the unknown speaker’s 

(afterwards also called cohort speaker) speech from the observed speech, a method is 

proposed using two kinds of overlapped speeches that are target and cohort speaker’s 

overlapped speech, other cohort speakers’ overlapped speech. The study is also based on 

the following requirements: there are three speakers in the conversational speech, and two 

speakers’ speeches are overlapped. Except for the target speaker, other two cohort 

speakers’ speech are unknown. The effectiveness of constructing the model of undetected 

speaker’s speech and overlapped speech from the observed speech is presented. Besides 

two kinds of overlapped speech models mentioned earlier, there are seven kinds of speech 

models in total (single speech UBM, overlapped speech UBM, target speaker model, 

target and cohort speaker overlapped speech model, other cohort speakers’ model, target 

and other cohort speakers’ overlapped speech model, other two speakers’ overlapped 

speech model). After calculating their scores, the indexing experiments are carried out 

using Support Vector Machine (SVM) [100] and then the evaluation experiment results 

showed the effectiveness of our proposed method.  

The remainder of this paper is organized as follows. In section 6.2 introduces 

process of detection of target speaker’s speech section in detail. In section 6.3, 

experiments are carried out using the proposed method to show the effectiveness of our 

proposed method. Finally, section 6.4 and section 6.5 gives the discussion and summary, 

future work of this chapter. 
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Figure 6.1 A block diagram of the proposed method of the model construction 

 

6.2 Detection of target speaker’s speech section 

 

6.2.1 Process of detecting the target speaker’s speech section 

 

This section introduces the process of detecting the target speaker’s speech section which 

means the detection of the registered speaker’s speech section from the input speeches. 

For detecting the target speaker’s speech section, speaker verification is performed by 

every section of a certain length (one second in this paper) from the beginning of the 

conversational speech. The process is started with that the result of speaker verification in 

this section is different from the previous section, and then end in the same way.  
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In this study, the detection of speaker’s speech section is performed by every 

second and shift by every 0.5 second. That means the result of speaker verification is 

output by every 0.5 second.  

In this study, cohort speaker’s speech not overlapped is extracted from the 

conversational speech itself. It is utilized to construct the speaker model for speaker 

verification. Fig.1 shows the image of constructing each speech model i.e. single speech 

UBM, overlapped speech UBM of section 6.2.2, target speaker model of section 6.2.3, 

target and cohort speaker overlapped speech model of section 6.2.4, other cohort speakers’ 

model of section 6.2.5, target and other cohort speakers’ overlapped speech model of 

section 6.2.6, other two speakers’ overlapped speech model of section 6.2.7. Section 6.2.2 

of A is the process of constructing UBM with large scale of corpus. Section 6.2.3~6.2.4 is 

the process of constructing the model with labeling speech section manually. Section 

6.2.5~6.2.7 of B is the process of constructing the model using the speech extracted from 

the conversation by proposed method. 

 

6.2.2 UBM 

 

The process consists of constructing single speech UBM and overlapped speech UBM 

with large scale of corpus. The following is the detail of construction for the two kinds of 

UBM. 

All the undesignated speakers’ non-overlapped speech is utilized to construct the 

single speech UBM through maximum likelihood estimation. 

On the other hand, for constructing overlapped speech UBM, the computer has two 

speakers’ speech overlapped when the signal-noise ratio of speech that constructs the 

single speech UBM equals 0. Multiple speaker is reading the same sentence in general, 

actually, however, given the situation where it is rare to read the same sentence, the 

different sentence is used to pile up. And then the overlapped speech is utilized to 

construct the overlapped speech UBM. The large scale of corpus was developed by the 

National Research Institute of Police Science (NRIPS). 
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6.2.3 Target speaker model 

 

The speech section of a target speaker’s himself introduction is detected at the beginning 

of a meeting in which is labeled manually and then extract the target speaker’s speech. 

Target speaker’s model can be generated by adapting a well-trained UBM using the 

maximum a posteriori (MAP) adaptation approach. The process can be indicated by 

function (6.1) as below: 

 

𝜇1̂ =
𝜏𝑚𝑖+∑ 𝑐𝑖𝑡

𝑇
𝑡=1 𝑥𝑡

𝜏+∑ 𝑐𝑖𝑡
𝑇
𝑡=1

, (6.1) 

 

where 𝑚𝑖 is the 𝑖-th component’s mean vector of UBM, 𝑥𝑡 is the adapted speech vector, 

𝑐𝑖𝑡 is the Gaussian probability of each mixture, T is the number of Frames and the t is the 

frame. Obviously, how much 𝜇1̂  close to UBM is defended by 𝜏 . Namely, a 

mixture-dependent adaptation of parameters is allowed by using a data-dependent 

adaptation coefficient 𝜏. If 𝜏  0, the function (6.1) is causing the use of the new target 

speaker-dependent parameters, otherwise, if 𝜏  ∞, 𝜇1  ̂is closer to the UBM. 

 

6.2.4 Target and cohort speaker overlapped model 

 

The computer has cohort speakers’ speech overlapped with the target speaker’s speech to 

generate the target and cohort speaker overlapped model. The cohort speakers’ speech is 

random extracted and overlapped in the signal-noise ratio equals -6dB, -3dB, 0dB and 

6dB.  

 

6.2.5 Other speakers’ model 

 

Other speaker model is generated by other speakers’ speech extracted from the 

conservation speech. The detail process is followed by the step as below.  

 

6.2.5.1 Single and overlapped speech section determination 
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The log likelihood of conservation speech and the two kinds of UBM generated in (6.2.2) 

is computed respectively and then carried out the examination of likelihood ratio. The log 

likelihood 𝐿 of segment 𝑖 is computed by the following function (6.2): 

 

𝐿 = 𝑙𝑜𝑔
𝑃(𝑥𝑖|𝐻1)

𝑃(𝑥𝑖|𝐻0)
, (6.2) 

 

𝑥𝑖  indicates the observed segment 𝑖  while 𝐻0  is the single speech and 𝐻1  is the 

overlapped speech. The speech is determined as single speech if L is greater than the 

threshold and conversely it is determined as overlapped speech. Fig 6.2 is a sample of 

determination.  

 

 

Figure 6.2 Single/overlapped speech section determination 

 

http://ejje.weblio.jp/content/conversely
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Figure 6.3 T-norm score of each section 

 

6.2.5.2 Other speakers’ speech section detection 

 

T-norm shares similarities with model-based cohort normalization while additionally 

incorporating score variance to better model the cohort score distribution to address the 

issue caused by the conditions exhibited. T-norm score 𝑆𝑐̃(𝑋𝑖) of target speaker model is 

computed from the single speech detected in (6.2.5.1). The mean 𝜇𝜆 and standard 

deviation 𝜎𝜆 of the imposter scores were then used to adjust the target score as function 

(6.3): 

 

𝑆𝑐̃(𝑋𝑖) =
𝑆𝑐(𝑥𝑖)−𝜇𝜆

𝜎𝜆
. (6.3) 
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A sample of T-norm score of single speech and overlapped speech is given by Fig. 

6.3 gives where the x-axis is time and y-axis is T-norm score. And then the other speakers’ 

speech section is detected if the T-norm score is below the threshold.  

 

6.2.5.3 Other speakers’ model  

 

Other speakers model can be generated by adapting a well-trained single speech UBM of 

(6.2.2) using the maximum a posteriori (MAP) adaptation approach. 

 

6.2.6 Target and others overlapped model 

 

The computer has other speakers’ speech overlapped with the target speaker’s speech to 

generate the target and others overlapped model. Other speakers’ speech is random 

extracted and overlapped in the same way as described in (6.2.4) in which signal-noise 

ratio equals -6dB, -3dB, 0dB and 6dB. Target and others overlapped model can be 

generated by adapting a well-trained single speech UBM of (6.2.2) using the maximum a 

posteriori (MAP) adaptation approach. 

 

6.2.7 Other two speakers overlapped model 

 

The mean of T-Norm score is computed using the other speakers’ speech and target 

speech. The mean can be seen as a threshold to determine whose speech belongs to 

speaker A and whose speech belongs to speaker B. After overlapping the other speakers’ 

speech, other speakers overlapped model can be generated by adapting a well-trained 

single speech UBM of (6.2.2) using the maximum a posteriori (MAP) adaptation 

approach. 

 

6.2.8 SVM  

 

Extraction of desired speaker’s Utterance in overlapped speech is identified segment by 

segment using support vector machine (SVM). The seven kinds of parameters, that is the 
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likelihood for evaluation speech and single speech UBM, overlapped speech UBM, target 

speaker model, target and cohort speaker overlapped model, other speaker model,  

Target and others overlapped model, other speakers overlapped model is utilized as the 

input 7-dim vector of SVM. 

 

6.3 Experiments 

 

The evaluation experiments were processed based on a SVM system. In order to show the 

effectiveness of the proposed model, the experiments is also conducted using three 

conventional methods as the input parameter of SVM, which are ① T-norm score of 

target speaker model described in (6.2.5.2), ② Likelihood for single speech UBM, 

Likelihood for overlapped speech UBM + ①, ③ Likelihood for target and cohort 

speaker overlapped model + ②, Table 5.1 shows the detail of each method. 
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Table 6.1 Input vector of SVM 

① T-norm score of target speaker model  

② T-norm score of target speaker model  

Likelihood for single speech UBM  

Likelihood for overlapped speech UBM  

③ T-norm score of target speaker model  

Likelihood for single speech UBM  

Likelihood for overlapped speech UBM  

Likelihood for target and cohort speaker overlapped model  

④ T-norm score of target speaker model  

Likelihood for single speech UBM  

Likelihood for overlapped speech UBM  

Likelihood for target and cohort speaker overlapped model  

T-norm score of other speakers’ model  

Likelihood for target and others overlapped model  

Likelihood for other two speakers overlapped model  

 

6.3.1 Condition 

 

Evaluation Experiments is conducted with a large Japanese corpus separated into four 

cross-validations. The corpus was developed by the National Research Institute of Police 

Science (NRIPS). It contains speech data of 336 Japanese males aged 18 to 76 years, and 

was recorded in two time sessions over three months. Each ATR phoneme-balanced 

sentence has a length of about 2-5 seconds. In this study, the utterances recorded at the 

first session are used. A full description of the corpus can be referenced in [74].  

150 male speakers are used to train the UBM, and the remaining 186 male speakers 

were separated into 61 groups to test the performance of extraction of desired Speaker’s 

utterance in overlapped speech. After down sampling to 16 kHz, 5 phoneme-balanced 

utterance (A01-A05) are defined as training UBM set and the following A06-A10 are 

adapted to MAP the UBM into GMM. T-norm speakers involve 183 of all 186 speakers 

who do not attend the corresponding conservation speech.  

A11-A50 are defined as evaluation utterance. Fig.6.4 defines the rules of the 
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conversational speech for evaluation, Speaker A is regarded as the target speaker and then 

Speaker B or C is regarded as other speaker. The silence section is removed in all the 40 

speech sentences and then joint the silence section removed speech. The length of each 

speaker’s jointed speech is around 120~160 seconds. The first 40 seconds of the jointed 

speech is single speech and next 40 seconds speech is overlapped with other speaker’s 

speech. The results of 40 seconds overlapped speech are showed in 6.3.2. Another set of 

experiments is also carried out by reducing the time of overlapped speech to 20 seconds, 

10 seconds, 5 seconds, and 2.5 seconds and the results are showed in 6.3.3. 

 The detection of speaker’s speech section is performed by every second and shift 

by every 0.5 second. The feature vector size was 26-dimensional, which consisted of 12 

mel-cepstrum coefficients, a log energy coefficient, and these delta mel-cepstrum 

coefficients. A detail of speech analysis is showed in table 6.2. Owing to the results of 

previous experiments, the RBF (γ = 0.25) is employed as the kernel function of SVM.  

 

Table 6.2 Acoustic analysis conditions 

Sample Frequency 16kHz 

Pre-emphasis 1 − 0.97𝑧−1 

Frame Length 25ms 

Frame Periodicity 10ms 

Window hamming 

Number of Mel-Filter Bank 24 

 

 

Figure 6.4 Speech for evaluation 
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6.3.2 Experiment results 1 

 

The results of extraction of target speaker’s utterance in all speech segments and in 

overlapped segments are evaluated respectively by detection error trade-off (DET) curves 

and equal error rate (EER). Fig.6.5 shows the DET curves and Table 6.3 shows the EER. 

In the Table 6.3, the best extraction result is obtained by the proposed method 

compared to the other conventional methods. Compare the results obtained by method ① 

with method ②, we can see the extraction results is improved when the overlapped 

speech model is used. Compare the results obtained by method ② with method ③, we 

can see the extraction results is improved in the overlapped speech segments when target 

speech is included in the overlapped speech model. Furthermore, compare the results 

obtained by method ③ and method ④, the extraction result is further improved by the 

proposed overlapped speech model when using the speech extracted from the observed 

conversation speech. 

 

Table 6.3 Experiment result 1 (EER (%)) 

 all segments  overlapped segments  

Method ① 26.28  32.87  

Method ② 14.30  25.99  

Method ③ 13.60  24.45  

Proposed method ④  10.72  18.77  
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Figure 6.5 DET curve of each method 

 

6.3.3 Experiment results 2 

 

Another set of experiments is also carried out by reducing the time of overlapped speech 

to 20 seconds, 10 seconds, 5 seconds, and 2.5 seconds and the results are showed in table 

6.4 (a)~(d). The training condition of SVM is exactly same as the time of overlapped 

speed 40 seconds in experiment 1.  

 

Table 6.4 Experiment result 1 (EER (%)) 

(a) Time of overlapped speech 20 Secs 

 all segments  overlapped segments  

Method ① 21.29 30.89 

Method ② 10.25 25.67 

Method ③ 9.62 24.20 

Proposed method ④  7.48 18.42 

 

(b) Time of overlapped speech 10 Secs 

 all segments  overlapped segments  

Method ① 14.01 31.11 

Method ② 6.18 25.73 

Method ③ 5.66 24.38 

Proposed method ④  4.97 18.15 

 

(c) Time of overlapped speech 5 Secs 

 all segments  overlapped segments  

Method ① 9.59 31.11  

Method ② 6.18 25.73 

Method ③ 5.66 24.38 

Proposed method ④  4.97 18.15 
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(d) Time of overlapped speech 5 Secs 

 all segments  overlapped segments  

Method ① 9.59 31.19  

Method ② 3.96 25.60 

Method ③ 3.63 24.66 

Proposed method ④  2.75 18.12 

 

Even if the time of overlapped speech is reduced, the EER obtained by the 

proposed method is still better than the EER obtained by other conventional method. 

 

6.4 Discussion  

 

T-norm score of other speakers’ model, likelihood for target and others overlapped model, 

likelihood for other two speakers’ overlapped model is showed in the Fig.6.6~6.8 

respectively. The mean of likelihood is also showed above the every corresponding 

section.  

At first, let us focus on the Fig.6.6 of T-norm score of other speakers’ model. The 

score of speaker B or C’s single speech section is higher than the score of speaker A’s 

single speech section. The score of other speakers’ overlapped speech (B+C) is a little 

higher than the score of target speaker’s overlapped speech (A+B, A+C) even if it is not 

so much obvious. 

Second, let us focus on the Fig.6.7 of likelihood for target and others overlapped 

model. This is what is proposed in this section. The likelihood for target speaker’s 

overlapped speech (A+B, A+C) is obviously higher than the likelihood for other speakers’ 

overlapped speech (B+C). According to the scores of all sections including single speech 

and overlapped speech, the score of the target speaker’s speech (A, A+B, B+C) is still 

higher than the score of the speech section excluding target speaker. Compared with the 

Fig.6.3, the score of speaker B’s single speech is higher than the score of the speakers’ 

overlapped speech (C+A) while the likelihood for speaker B’s single speech decreases in 

Fig.6.7.  

Finally, continue to focus on the Fig.6.8 of likelihood for other two speakers’ 
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overlapped model. The likelihood for other speakers’ overlapped speech (B+C) is higher 

than the likelihood for target speaker’s overlapped speech (A+B, C+A). The likelihood 

for target speaker’s single speech is lower than the likelihood for other speaker B or C’s 

single speech. Therefore, other speakers’ overlapped speech model is considered to 

contribute to the target speaker verification. 

 

 

Figure 6.6 T-norm score of other speakers’ model 
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Figure 6.7 Likelihood for target and others overlapped model 
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Figure 6.8 Likelihood for other two speakers overlapped model 

 

Furthermore, to confirm the effectiveness of the proposed method, the verification 

experiments are performed using the additional method ③ + T-norm score of other 

speakers’ model, ③  + likelihood for target and others’ overlapped model, ③  + 

likelihood for other two speakers’ overlapped model. The results are showed in Table. 6.5 

(the time of overlapped speech is 40 seconds). The best result is obtained by ③ + 

likelihood for other two speakers’ overlapped model that reduced EER by 4~5%. 
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Table 6.5 Verification experiment result (EER (%)) 

 all segments  overlapped segments  

③ (for reference) 13.60 24.45 

③ + T-norm score of other speakers’ model 11.41 20.18 

③ + likelihood for target and others’ 

overlapped model 

11.12 19.12 

③ + likelihood for other two speakers’ 

overlapped model 

11.48 20.62 

Proposed method ③ (for reference)  10.72 18.77 

 

6.5 Summary  

 

In this study, a new speaker indexing method is proposed using speaker verification 

technique to extract one desired speaker’s utterances from conversational speech. It is 

under the condition that there are 3 speakers, two of whose speech is overlapped. The 

proposed method detected other speakers’ speech from the observed speech itself. And 

then the computer has target speaker’s speech overlapped with other speakers’ speech to 

generate the overlapped speech model. This is also the feature of this study. 

Compared with the conventional methods that are T-norm score of target speaker 

model using the speaker verification technique, Likelihood for single speech UBM, 

Likelihood for overlapped speech UBM, Likelihood for target and cohort speaker 

overlapped model, the experiment results shows the performance can be improved by 

using the proposed method. Furthermore, under the condition of overlapped speech only, 

the EER was reduced by up to 43.7% compared with the conventional methods that use a 

target speaker model and overlapped speech model. The EER is reduced by up to 21.2% 

under the condition of all speech. Therefore, a robust  

Therefore, a robust speaker indexing system to extract one desired speaker’s 

utterances from conversational speech can be constructed by the proposed method even 

in a condition of overlapped speech. 

In the future work, it will be discussed how to identify the other two unknown 

speakers and to generate the overlapped speech model speaker by speaker. There also 
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needs to conduct the desired speaker indexing experiment under a more actual 

conservation environment without the limit on the number of speakers. 
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Chapter 7   

 

Conclusions and Future works 

 

 

7.1 Introduction  

 

This chapter provides a summary of the work presented in this dissertation and the 

conclusions drawn. The summary follows the four main research themes in 

aforementioned chapters — new speech feature with less phonetic variability; 

inter-session variability reduction for MFCCs in a GMM-based speaker identification; 

innovative phoneme dependent inter-session variability reduction for SVM-based 

speaker verification; and an application of a multi-speaker diarization using speaker 

verification technology.  

 

7.2 Speech feature with less phonetic variability 

 

Chapter 3 described the adverse effect of phonetic variability along with conventional 

speech feature MFCC. A new speech feature for TI speaker identification that suppresses 

the phonetic variability by a subspace method was proposed, under the assumption that a 

subspace with large variance in the speech feature space is a ‘phoneme-dependent 

subspace’ and a complementary subspace of it is a ‘phoneme-independent subspace’. 

PCA is employed to construct these subspaces. GMM-based speaker identification 

experiments using both the phonetic variability suppressed feature and the conventional 

MFCC were carried out. As a result, the proposed method has been proven to be effective 

for decreasing the identification error rates. 
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7.3 Inter-session variability reduction for MFCCs 

 

Chapter 4 saw the proposal of a novel speech feature MFCCs for the purpose of 

inter-session variability reduction in speaker identification systems. It adopted and 

extended the previous PCA-based phonetic variability suppression method to reduce the 

inter-session variability. The basic idea is to transform input vectors to another subspace, 

where the inter-session variability and other factors including speaker information were 

separated into different subspaces. 

 

7.4 Innovative phoneme dependent inter-session variability 

reduction for SVM-based speaker verification 

 

Chapter 6 presented that an innovative phoneme-dependent using speech recognition 

technique was integrated with GMM-SVM-based speaker verification. This technique 

selects the phonemes with high contribution for speaker verification so as to overcome 

the shortcoming of inter-session variability along with the traditional GMM-UBM 

super-vectors. A speaker’s model can be represented by several various phoneme 

Gaussian mixture models. Each of them covers an individual phoneme whose 

inter-session variability can be constrained in an inter-session independent subspace 

constructed by a reduction method. The reduction method is termed as nuisance attribute 

subtraction (NAS). SVM-based experiments performed using a large Japanese speaker 

recognition evaluation corpus constructed by the National Research Institute of Police 

Science (NRIPS) demonstrate the improvements gained from the proposed method. 

 

7.5 Robust extraction of desired speaker’s Utterance in overlapped 

speech 

 

A new speaker diarization method using speaker verification technique is proposed in 

chapter 6. The proposed method detected other speakers’ speech from the observed 

speech itself. And then the computer has target speaker’s speech overlapped with other 

speakers’ speech to generate the overlapped speech model to extract one desired 
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speaker’s utterances from the overlapped speech. The experiment results shows the 

performance can be improved by using the proposed method. Furthermore, under the 

condition of overlapped speech only, the EER was reduced by up to 43.7% compared 

with the conventional methods that use a target speaker model and overlapped speech 

model. The EER is reduced by up to 21.2% under the condition of all speech. 

 

7.6 Future work 

 

The work aims to improve the classification performance and practicality of 

text-independent, speaker recognition systems via the removal of the intra-speaker 

variability of speech. The improvement of classification errors was achieved through the 

subspace–based reduction method. However, there is a factor also needs to be taken into 

account. It is emotion factor that is supposed to affect the accuracy. It is expected that 

speaker’s emotional characteristic is to be held via database refinement.  

On the other hand, the illustration of differences between the GMM and SVM 

domain for the reduction of variation provides motivation for further development of 

robust modeling techniques. Meanwhile, to improve the estimation of the intra-speaker 

variability subspace with the NIST SRE data is also the future work. 
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