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Abstract

The excitonic phases, often referred to as the excitonic insulators, are described by
the quantum condensation of excitons in a small band-gap semiconductor or a small
band-overlap semimetal. It is known that the exciton condensation in a semimetallic
region can be described in analogy with the BCS theory of superconductivity and that
in a semiconducting region can be discussed in terms of the Bose-Einstein condensation
(BEC) of excitons. The excitonic phases were predicted theoretically half a century ago
using free-electron–like models for weakly correlated electron systems. However, candi-
date materials recently reported as the excitonic insulators are mostly transition-metal
compounds, which are one of the main stages of strongly correlated electron systems, and
thus we need to construct any appropriate theories for such systems taking into account
the spin, lattice, and orbital degrees of freedom explicitly.

In this thesis, motivated by such developments in the field, we investigate the exci-
tonic phases in strongly correlated electron systems. First, we investigate the BCS-BEC
crossover of the exciton condensation using the extended Falicov-Kimball model, which
is a minimal lattice model to describe the excitonic phases in strongly correlated electron
systems. In particular, we focus on an anomalous Green’s function from weak to strong
coupling regions and show the character of the crossover phenomena by means of exact
diagonalization, density matrix renormalization group, and variational cluster approxi-
mation methods. Next, to construct the theory of the excitonic phase with spin degrees
of freedom, we investigate the stability of excitonic phases in the multi-band Hubbard
model. Using the variational cluster approximation, we show that the interband repul-
sion leads to the excitonic instability in both the spin-singlet and spin-triplet channels
and that the interband exchange interaction, such as Hund’s rule coupling, always sta-
bilizes the spin-triplet excitonic phase. We also investigate the excitonic phases in the
multi-band Hubbard model supplemented by the electron-phonon coupling. We show the
spin-singlet excitonic phase becomes stabler than the spin-triplet excitonic phase when
the electron-phonon coupling is stronger than the interband exchange interaction. Then,
we elucidate the spatial structures of the spin-singlet and spin-triplet exciton condensates
using the local wave functions in the tight-binding approximation, putting particular em-
phasis on their consequences such as the bond order and multipole formations. Finally,
we discuss the electronic state and observed phase transition of Ta2NiSe5, a promising
candidate material for the spin-singlet excitonic insulator.
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Chapter 1

Introduction

The formation and condensation of excitonic bound states of electrons and holes in semimetallic or
semiconducting systems possessing a small band overlap or band gap were predicted theoretically half
a century ago [1, 2]. The excitonic phases, often referred to as the excitonic insulators, are described
by the quantum condensation of such excitons triggered by the interband Coulomb interaction [1–19].
The exciton condensation in semimetallic systems can be described in analogy with the BCS theory of
superconductors, and that in semiconducting systems can be discussed in terms of the Bose-Einstein
condensation (BEC) of preformed excitons [20–23]. The crossover phenomena between the BCS and
BEC states are then expected to produce rich physics in the field of quantum many-body systems.

Recently, a number of candidate materials for the excitonic phases have been discovered and physics
of the excitonic phases has attracted renewed experimental and theoretical attention. Examples of the
candidate materials are the following: Tm(Se,Te) was argued to exhibit a pressure-induced excitonic
instability, where an anomalous increase in the electrical resistivity and thermal diffusivity have been
reported [23, 24]. In Ca1−xLaxB6, the observed weak ferromagnetism was interpreted in terms of the
doped spin-triplet excitons [25–27]. The charge-density-wave (CDW) state observed in 1T -TiSe2 was
claimed to be of the excitonic origin [28–35]. Likewise, the structural phase transition observed in a
layered chalcogenide Ta2NiSe5 has been attributed to a spin-singlet excitonic insulator [36–41]. The
spin-density-wave (SDW) states of Cr [42–45] and iron-pnictide superconductors [46–59] has sometimes
been argued to be of the excitonic origin as well. The condensation of spin-triplet excitons was also
predicted to occur in the proximity of the spin-state transition [60], of which Pr0.5Ca0.5CoO3 is an
example [61,62].

In this thesis, motivated by such developments in the field, we investigate the excitonic condensation
in solids theoretically. The conventional theories of excitonic phases have often been based on free-
electron–like models of weakly interacting electrons, but the candidate materials recently discovered as
the excitonic insulators are transition-metal compounds, which are obviously among strongly correlated
electron systems, and thus one needs to construct any appropriate theories for such systems. The
purpose of this thesis is therefore to build the theory of excitonic phases in strongly correlated electron
systems. We in particular focus on the stability of the excitonic phases in correlated lattice fermion
models and consider the crossover phenomena between the weak-coupling BCS and strong-coupling
BEC states. We also apply the theory of the excitonic insulators to the candidate material Ta2NiSe5,
of which much experimental and theoretical attention has been attracted in recent years.

This thesis is organized as follows. In Chap. 2, we briefly review the basic theory of excitonic phases.
We first describe the characters of an excitonic phase using the simplest spinless model and introduce the
order parameter, gap equation of the excitonic phase, and its solutions in both the semiconducting and
semimetallic regions. We also discuss the difference between the excitonic phase and superconductivity
in terms of the two-particle density matrix, which is often used to evaluate superfluidity of the systems.
Then, we describe the excitonic phases with spin degrees freedom and discuss the effects of interband
interactions and calculate the ground states in the Hartree-Fock approximation. We introduce two
possible excitonic phases realized when the order parameter has the spin degrees of freedom; i.e. an
excitonic CDW state realized as a condensed state of spin-singlet excitons, and an excitonic SDW state
realized as a condensed state of spin-triplet excitons.

In Chap. 3, we introduce the numerical methods used in this thesis, which enables us to treat
the strongly correlated electron models. First, we introduce the exact-diagonalization (ED) technique
based on the Lanczos algorithm, which can solve the many-body problems in small-size systems exactly.

1



Chapter 1. Introduction

Next, we introduce the variational cluster approximation (VCA) based on the self-energy functional
theory (SFT), where we can take into account the effects of short-range spatial electron correlations
even in low-dimensional systems; the momentum dependences of physical quantities can be reproduced
precisely in this method. The VCA is useful for discussing the spontaneous symmetry breaking in
correlated electron systems beyond the mean-field theory. Within the framework of the VCA, we use
the cluster perturbation theory (CPT) to calculate the Green’s function, which is useful for evaluating the
single-particle excitation spectrum and their integrated values such as the density of states, momentum
distribution function, etc. Thus, the method of the CPT is also discussed in this chapter.

In Chap. 4, we investigate the exciton condensation in the extended Falicov-Kimball model (EFKM),
which is a minimal theoretical model to describe the excitonic phases in strongly correlated electron
systems. In particular, we focus on the BCS-BEC crossover of the exciton condensation. In Sec. 4.2, we
address the problem of exciton condensation in an electron-hole double layer system described by the 2D
EFKM, where we use the ED technique. We calculate the anomalous excitation spectra, condensation
amplitude, and exciton momentum distribution function in the BCS, intermediate, and BEC regions.
From the calculated condensation amplitude, we evaluate the pair coherence length and order parameter
of the condensate. We also compare the results of the ED calculations with the results of the mean-field
theory and VCA. We also discuss the effects of a mass imbalance between the holes and electrons based
on the calculated pair coherence length and exciton binding energy. In Sec. 4.3, we investigate the
excitonic insulator state in the 1D EFKM. First, we describe the complete ground-state phase diagram
of the 1D EFKM from the large-scale density matrix renormalization group (DMRG) method [63]. In
comparison with the 2D system, the excitonic phase in the 1D EFKM is a critical phase with power-
law correlation decay; we thus show a critical character in the 1D system using the concept of the
central charge. We also show a crossover between the BCS and BEC condensates by the exciton-exciton
correlation function and exciton momentum distribution function. Following the method used in the 2D
systems, we also calculate the anomalous spectral function and extract the pair coherence length and
binding energy of the electron-hole pairs in the 1D EFKM. [Chap. 4 is based on T. Kaneko, S. Ejima,
H. Fehske, and Y. Ohta, Phy. Rev. B 88, 035312 (2013), and S. Ejima, T. Kaneko, Y. Ohta, and H.
Fehske, Phy. Rev. Lett. 112, 026401 (2014).]

The EFKM is the simplest model to investigate the excitonic phases, but it does not include the
spin degrees of freedom. In real materials, electrons have the spin degrees of freedom, and therefore we
need to investigate the excitonic phases with spinful strongly correlated electron models. In Chap. 5,
we investigate the excitonic phase in the two-band Hubbard model (TBHM), which is the simplest
model for discussing the excitonic phases with spin degrees of freedom. We study the stability of the
excitonic phases with the spin degrees of freedom in the TBHM, where the interband interactions such
as the interband Coulomb repulsion, interband exchange interaction, and pair-hopping term are taken
into account in addition to the standard intraband Hubbard repulsion. We first rewrite the interband
interaction part of the Hamiltonian in terms of the creation and annihilation operators of the spin-singlet
and spin-triplet excitons. Then, we show that the interband repulsion actually leads to the exciton
formation in both the spin-singlet and spin-triplet channels and that the interband exchange interaction
always lowers the energy of the spin-triplet exciton and raises the energy of the spin-singlet exciton. The
VCA is then used to study the stability of the excitonic phases in the TBHM in detail. Moreover, we
examine the characteristics of these excitonic phases using a variety of physical quantities, including the
single-particle spectral function, density of states, condensation amplitude, and pair coherence length.
[Chap. 5 is based on T. Kaneko, and Y. Ohta, Phy. Rev. B 90, 245144 (2014).]

Taking into account only the electronic interband interactions, we find that the spin-singlet excitonic
phase is difficult to stabilize, which is however thought to be realized in 1T -TiSe2 and Ta2NiSe5. On
the other hand, in these materials, the importance of electron-phonon coupling was recently pointed
out [31–35, 38]. Thus, in Chap. 6, to clarify how the spin-singlet excitonic condensation occurs, we
investigate the TBHM with the electron-phonon coupling. The model is analyzed by the static mean-
field theory for the electron-phonon coupling and by the VCA for treating the electronic correlations.
We first discuss the influence of the electron-phonon coupling on the stability of the spin-singlet excitonic
state. We thereby find that, incorporating the interband exchange interactions, the spin-triplet excitonic
state indeed competes with the spin-singlet excitonic state. The ground-state phase diagram of the
TBHM is thus determined. We moreover pay particular attention to the macroscopic phase of the order
parameter, which is related to possible superfluidity of the excitonic condensation states. We thereby
find that the phase of the order parameter is fixed by including the electron-phonon coupling and pair-
hopping interaction and thus the superfluidity is unlikely to occur in the ground state of the excitonic
condensation states. [Chap. 6 is based on T. Kaneko, B. Zenker, H. Fehske and Y. Ohta, Phy. Rev. B
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92, 115106 (2015).]
In Chap. 7, in order to visualize the electronic structures of the excitonic phases in strongly correlated

electron systems, we evaluate charge and spin densities of the spin-singlet and spin-triplet exciton
condensation states from the local wave function in the tight-binding approximation. In this chapter, we
first consider the charge and spin densities of the excitonic phases when the valence and conduction bands
are composed of orthogonal two orbitals in a single ion. Because the energy bands are reconstructed
by the hybridization of many orbitals in real materials, we also consider the electronic structure of the
excitonic phases, in which the valence and conduction bands include the components of many orbitals
in a single ion. In this chapter, we also illustrate the excitonic density-wave states when the valence and
conduction bands are composed of the orbitals located in different ions.

In Chap. 8, we introduce a theory to elucidate the origin of the structural phase transition and
associated anomalous electronic properties of Ta2NiSe5, a promising candidate for an excitonic insula-
tor. We carry out the density-functional-theory (DFT) based electronic structure calculations for the
orthorhombic phase of Ta2NiSe5. Based on the DFT calculation, we construct an effective three-chain
Hubbard model to reproduce the three bands near the Fermi level. The phonon degrees of freedom are
also taken into account in the model. We then analyze this model by the mean-field approximation and
calculate its phase diagrams to clarify the origin of the structural phase transition. To reproduce the
flattening of the valence band top observed in experiment, we calculate the single-particle excitation
spectra. To consider the anomalous electronic properties associated with the excitonic phase transition,
we also carry out the calculations of thermodynamic quantities, such as heat capacity and elastic con-
stant, as well as the ultrasonic attenuation and nuclear-magnetic-resonance spin-lattice relaxation rates.
[Chap. 8 is based on T. Kaneko, T. Toriyama, T. Konishi, and Y. Ohta, Phy. Rev. B 87, 035121 (2013)
and K. Sugimoto, T. Kaneko, and Y. Ohta, Phy. Rev. B 93, 041105(R) (2016).]

Summary of this thesis is given in Chap. 9.
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Chapter 2

Introduction of Excitonic Phases

2.1 Introduction

The formation and condensation of excitonic bound states of electrons and holes in semimetallic or
semiconducting systems possessing a small band overlap or band gap were predicted theoretically half
a century ago [1, 2]. The excitonic phases, often referred to as the excitonic insulator, are described
by the quantum condensation of excitons triggered by the interband Coulomb interaction [1–19]. The
exciton condensation in semimetallic systems can be described in analogy with the BCS theory of
superconductors, and that in semiconducting systems can be discussed in terms of the Bose-Einstein
condensation (BEC) of preformed excitons [20–23].

In this chapter, we introduce the excitonic phase. First, we describe basic features of excitonic phases
using the simplest spinless model. Here, we show the order parameter, gap equation of an excitonic
phase, and its solutions in the semiconducting and semimetallic region. After that, we discuss the general
phase diagram of the excitonic phase. We also discuss the difference between the excitonic phase and
superconductivity in terms of the two-particle density matrix, whereby we can evaluate superfluidity
of the systems. Finally, we describe the excitonic phases with spin degrees freedom and discuss the
effects of interband interactions and calculate the ground states in the Hartree-Fock approximation.
We introduce two possible excitonic phases realized when the order parameter has the spin degrees of
freedom; i.e. an excitonic charge-density-wave state realized as a condensed state of spin-singlet excitons,
and an excitonic spin-density-wave state realized as a condensed state of spin-triplet excitons.

2.2 Excitonic Phases

2.2.1 Order Parameter and Gap Equation

The simplest model describing the excitonic phases is the two-band model with Coulomb repulsive
interaction between electrons in the valence and conduction bands, which is given as

H =
∑

k

εa(k)a†kak +
∑

k

εb(k)b†kbk +
1
Ω

∑

k,k′,q

V (q)b†k+qbka†k′−qak′ , (2.1)

where a†k (ak) and b†k (bk) are the creation (annihilation) operators of the valence and conduction
bands, respectively. εa(k) and εb(k) are the energy dispersions around the valence band maximum and
conduction band minimum, respectively, which are defined as

εa(k) = − k2

2ma
− G

2
, εb(k) =

(k −Q)2

2mb
+

G

2
, (2.2)

where ma and mb are the effective masses of the valence and conduction bands, respectively, and G
is the energy gap. G > 0 indicates a semiconductor and G < 0 indicates a semimetal. This energy
dispersion represents that the valance band maximum and conduction band minimum are separated by
the wave vector Q. V (q) is the Coulomb repulsive interaction between electrons in the valence and
conduction bands defined as

V (q) =
4πe2

K(q)q2
, (2.3)
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valence
band

conduction
band

Semi-metal Excitonic Phaseexciton

hole condensationelectron

exciton

Figure 2.1: Schematic picture of excitonic phase.

where K(q) is the effective dielectric constant1. The Coulomb repulsive interaction between electrons in
the valence and conduction bands corresponds to the Coulomb attractive interaction between a valence
band hole and a conduction band electron. The interband Coulomb interaction drives the excitonic
phase in a small band-overlap semimetal or a small band-gap semiconductor. In this section, in order
to make a proper correspondence to the BCS theory for superconductivity, we consider a direct gap
(Q = 0) semiconductor (or semimetal), assuming that the valence and conduction electrons have the
same masses (ma = mb = m). We also ignore the spin degrees of freedom in the model (2.1), which we
will discuss in the next section.

In this model, the creation operator of an exciton with momentum q is given as b†k+qak. Exciton
condensation state at q = 0 is given by 〈b†kak〉 6= 0. Therefore, in the theory of excitonic phases, the
order parameter of the exciton condensation state is defined as2

∆(k) ≡ − 1
Ω

∑

k′
V (k − k′)〈b†k′ak′〉. (2.4)

Using the order parameter ∆(k), the mean-field Hamiltonian of Eq. (2.1) is given by

H̃ =
∑

k

εa(k)a†kak +
∑

k

εb(k)b†kbk +
∑

k

(
∆(k)a†kbk + h.c.

)
+ ε0, (2.5)

where the energy term ε0 is derived from the mean-field approximation as ε0 =
∑

k ∆(k)〈a†kbk〉. To
diagonalize Eq. (2.5), we introduce the Bogoliubov transformation [9]

αk = ukak − vkbk, (2.6)
βk = v∗kak + u∗kbk. (2.7)

Due to the commutation relation [αk, α†k]+ = 1, the coefficients uk and vk should fulfill

|uk|2 + |vk|2 = 1. (2.8)

To diagonalize the mean-field Hamiltonian (2.5), the off-diagonal term of the Bogoliubov transformed
Hamiltonian (coefficients of α†kβk and β†kαk) should be zero, and thus uk and vk are given by3

|uk|2 =
1
2

(
1 +

ξk

Ek

)
, (2.9)

|vk|2 =
1
2

(
1− ξk

Ek

)
, (2.10)

1When the Coulomb interaction is screened with screening length κ−1 in real space, V (q) is given as follows.

V (r) =
e2

Kr
e−κr ⇒ V (q) =

4πe2/K

q2 + κ2

Here, the effective dielectric constant is given as K(q) = K(1 + κ2/q2).
2Using the transformation ak → c†k,↑, b†k → c†−k,↓, the order parameter in Eq. (2.4) becomes

∆(k) = − 1

Ω

X

k′
V (k− k′)〈c†

k′,↑c
†
−k′,↓〉,

which is consistent with the order parameter of the s-wave superconductivity in the BCS-theory.
3The off-diagonal term is given as (εa(k)− εb(k))ukvk + ∆(k)u2

k −∆∗(k)v2
k = 0.
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Chapter 2. Introduction of Excitonic Phases

where we define

ξk ≡ εb(k)− εa(k)
2

, Ek ≡
√

ξ2
k + |∆(k)|2. (2.11)

From the Bogoliubov transformation, the diagonalized Hamiltonian becomes

H̃ =
∑

k

Eα(k)α†kαk +
∑

k

Eβ(k)β†kβk + ε0, (2.12)

where the energy eigenvalues Eα(k) and Eβ(k) are given as

Eα(k) = ηk − Ek, Eβ(k) = ηk + Ek

(
ηk ≡ εb(k) + εa(k)

2

)
. (2.13)

The expectation values of the number of the quasiparticles at finite temperature are given by
〈α†kαk〉 = f(Eα(k)) and 〈β†kβk〉 = f(Eβ(k)), where f(x) = 1/(eβx + 1) is Fermi distribution func-
tion and β−1 = kBT . From the inverse Bogoliubov transformation4 and Eq. (2.4), the gap equation of
the excitonic phase is given by

∆(k) =
1
Ω

∑

k′
V (k − k′)

∆(k′)
2Ek′

[f(Eα(k′))− f(Eβ(k′))] . (2.14)

Here, we assume m = ma = mb for simplicity and the gap equation is finally given as5

∆(k) =
1
Ω

∑

k′
V (k − k′)

∆(k′)
2Ek′

tanh
βEk′

2
. (2.15)

This formula is consistent with the gap equation of an s-wave superconductivity in the BCS theory. The
gap equation (2.15) is solved self-consistently and the solution with ∆(k) 6= 0 indicates the presence of
the excitonic phase. ∆(k) induces the hybridization gap between the valence and conduction bands and
the system becomes insulating. Therefore, the excitonic phase is called the “excitonic insulator”.

The wave function of the excitonic phase also has similarity with the BCS-theory of superconduc-
tivity. The normal semiconducting ground state is given as

|ΨN〉 =
∏

k

a†k|0〉, (2.16)

where |0〉 indicates the vacuum state. In the excitonic phase with ∆(k) 6= 0, the ground state of the
excitonic phase is given as6

|ΨE〉 =
∏

k

α†k|0〉 =
∏

k

(u∗k − v∗kb†kak)|ΨN〉. (2.17)

A hole in the a-band at k and an electron in the b-band at k are either present or absent in this state,
which obviously corresponds to the ground state of the BCS theory of superconductivity [9].

2.2.2 Solution of the Gap Equation

In this section, we give solutions of the gap equation Eq. (2.15) in the two regions, (i) semiconducting
region, where the exciton binding energy |EB | is close to the band gap G, and (ii) semimetal region,
where the valence and conduction bands are deeply overlapped.

4From the inverse Bogoliubov transformation, 〈b†kak〉 in Eq. (2.4) is given by

〈b†kak〉 = −u∗kvk

“
〈α†kαk〉 − 〈β†kβk〉

”
= −∆(k)

2Ek

ˆ
f(Eα(k))− f(Eβ(k))

˜
.

5From m = ma = mb, εb(k) = −εa(k), Eβ(k) = −Eα(k) = Ek and f(Eα(k))− f(Eβ(k)) = tanh (βEk/2).
6
Q
k(u∗k − v∗kb†kak)|ΨN〉 =

hQ
k(u∗k − v∗kb†kak)

i hQ
k′ a†

k′
i
|0〉 =

Q
k

h
(u∗k − v∗kb†kak)a†k

i
|0〉 =

Q
k(u∗ka†k − v∗kb†k)|0〉 =

Q
k α†k|0〉 = |ΨE〉.

6



Chapter 2. Introduction of Excitonic Phases

(i) Semiconducting Region

In the semiconducting region, it is known that the gap equation Eq. (2.15) has nontrivial solution
when the exciton binding energy is larger than the band gap, |EB | > G. Following the study of Kozlov
and Maksimov in Ref. [5], we introduce the solution of the gap equation Eq. (2.15) around |EB | ∼ G.

The gap equation (2.15) at T = 0 is given by

∆(k) =
1
Ω

∑

k′
V (k − k′)

∆(k′)
2Ek′

. (2.18)

Here, we introduce ψ(k) = ∆(k)/2Ek as a wave function and the gap equation can be rewritten as

[(
k2

m
+ G

)2

+ 4∆2(k)

] 1
2

ψ(k) =
1
Ω

∑

k′
V (k − k′)ψ(k′). (2.19)

In the semiconducting region, ∆(k) = ∆0 ¿ G around k = 0, and we can approximate Eq. (2.19) as
[
k2

m
+ G +

2∆2
0

G

]
ψ(k) =

1
Ω

∑

k′
V (k − k′)ψ(k). (2.20)

On the other hand, the elementary equation for the exciton wave function in momentum space is
given as7

[
k2

m
+ |EB |

]
ϕ(k) =

1
Ω

∑

k′
V (k − k′)ϕ(k′)

(
|EB | = m

4

(
e2

K

)2
)

. (2.21)

In comparison between Eq. (2.19) and (2.21), we confirms that ∆0 = 0 when G > |EB |. We can also
verify that a nontrivial solution, ∆0 > 0, exists when G < |EB |. At G ∼ |EB |, we may approximate
G + 2∆2

0/G in Eq. (2.20) as an exciton binding energy, i.e. |EB | ∼ G + 2∆2
0/G. Thus, the order

parameter ∆0 at G . |EB | may be given as

∆0 = |EB |
√

1
2

(
1− G

|EB |
)

. (2.22)

(ii) Semimetallic Region (G < 0)

At G < 0, the valence and conduction bands are overlapped and it is a semimetal. We can solve the
gap equation approximately in the deeply overlapped semimetal (|G| À 1) and the results are basically

G |EB|

|EB|G
∆0

Semiconductor Excitonic Phase

Figure 2.2: Schematic picture of the excitonic phase transition in a semiconductor, where the exciton
binding energy |EB | is close to the band gap G.

7The Schrödinger equation for the exciton wave function is

»
−∇

2

2µ
− e2

Kr

–
ϕ(r) = −|EB |ϕ(r)

 
|EB | =

µ

2

„
e2

K

«2
!

where 1/µ = 1/ma + 1/mb is the reduced mass. In this section, we assume ma = mb = m, and thus 1/µ = 2/m. Here,
we also use the static dielectric constant K because the system is a semiconductor. We obtain Eq. (2.21) from the Fourier
transformation of this Schrödinger equation.
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Chapter 2. Introduction of Excitonic Phases

consistent with the BCS theory. In the semimetal, the valence and conduction bands are crossed at
εa(k) = εb(k) and Fermi momentum kF is defined as kF =

√
m|G| [see Fig. 2.3]. Thus, the energy

dispersions are given by

ε(k) ≡ εb(k) = −εa(k) =
k2

2m
− k2

F

2m
(2.23)

When |G| À 1, the Coulomb interaction is screened by a large number of carriers, which is given as [5]

V (k) =
4πe2/K

k2 + κ2
κ2 =

2
π

m

(
e2

K

)
kF , (2.24)

where κ is the screening parameter. Using V (k) in Eq. (2.24), the gap equation becomes

∆(k) =
1

(2π)3

∫
dk′

4πe2/K

|k − k′|2 + κ2

∆(k′)
2Ek′

tanh
βEk′

2
. (2.25)

In the deeply overlapped semimetal, the Coulomb interaction V (k) is weak due to the screening, and
thus the BCS-like weak electron-hole pairing is expected.

To solve the gap equation, we introduce the cut-off kc and approximate the order parameter around
the Fermi momentum kF as

∆(k) =
{

∆0 |k − kF | < kc

0 |k − kF | > kc
, (2.26)

where we assume ∆0 ¿ |G| due to weak interaction V (k). Note that we have to be careful of choosing
the cut-off kc because kc appears in the solutions. In Eq. (2.24), the spread of the Coulomb interaction
in momentum space depends on the screening parameter κ, and the cut-off kc may have the order of
the screening parameter κ 8. Thus, in this section, we assume kc ∼ κ.

First, we estimate the order parameter at T = 0. From Eq. (2.25) and (2.26), the gap equation at
T = 0 is given as

∆(k) =
1

(2π)3

∫
dk′

4πe2/K

|k − k′|2 + κ2

∆(k′)
2Ek′

' 4πe2/K

(2π)3
∆0

∫ kF +kc

kF−kc

dk′
∫ π

0

dθ

∫ 2π

0

dφ
k′2 sin θ

k2 + k′2 − 2kk′ cos θ + κ2

1
2Ek′

=
e2/K

2πk
∆0

∫ kF +kc

kF−kc

k′dk′
1

2Ek′
ln

[
(k + k′)2 + κ2

(k − k′)2 + κ2

]
. (2.27)

The integration for k′ in Eq. (2.27) is analytically difficult. Here, we assume kc ¿ kF so that the range
of the integration in Eq. (2.27) is narrow around k′ = kF . Thus, we may approximately take out the
factor ln[· · · ] from the integration assuming k′ = kF . At k = kF , ∆(kF ) = ∆0 and the gap equation
becomes

1 =
e2/K

2πkF
ln

[
1 +

4k2
F

κ2

] ∫ kF +kc

kF−kc

k′dk′
1

2
√

ε2(k′) + ∆2
0

. (2.28)

Using ξ = ε(k), we can integrate Eq. (2.28) with respect to k′, and we obtain

∫ kF +kc

kF−kc

k′dk′
1

2
√

ε2(k′) + ∆2
0

= m

∫ kF kc
m

0

dξ
1√

ξ2 + ∆2
0

' m ln
[
2kF kc

m∆0

]
. (2.29)

Therefore, the gap equation at T = 0 finally becomes [5]

1 =
me2/K

2πkF
ln

[
1 +

4k2
F

κ2

]
ln

[
2kF kc

m∆0

]
. (2.30)

Here, we note the relation

4k2
F

κ2
=

2πkF

me2/K
= π

√
|G|
|EB | , (2.31)

8Kozlov and Maksimov in Ref. [5] have defined the cutoff kc from ∆(kF ± kc) = ∆(kF )/2.
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−

|G|
  2

  k2

2m
− +

|G|
  2

  k2

2m
−

EF EF

Ek

-Ek
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Figure 2.3: Schematic picture of transition of excitonic phase in semimetallic region.

and from Eq. (2.30) and (2.31), the order parameter at T = 0 is given as

∆0 =
2kF kc

m
exp


− π

√
|G|/|EB |

ln
(
1 + π

√
|G|/|EB |

)

 . (2.32)

Next, we evaluate the order parameter around the transition temperature Tc. At T = Tc, we can
approximate as Ek = ε(k) and the gap equation is given by

∆(k) =
1

(2π)3

∫
dk′

4πe2/K

|k − k′|2 + κ2

∆(k′)
2ε(k′)

tanh
(

βcε(k′)
2

)
. (2.33)

Using the same assumption as above, the gap equation is approximately given as

1 =
e2/K

2πkF
ln

[
1 +

4k2
F

κ2

] ∫ kF +kc

kF−kc

k′dk′
1

2ε(k′)
tanh

(
βcε(k′)

2

)
. (2.34)

Using ξ = βcε(k)/2, we can integrate Eq. (2.34) with respect to k′ as

∫ kF +kc

kF−kc

k′dk′
1

2ε(k′)
tanh

(
βcε(k′)

2

)
= m

∫ kF kc
2m βc

0

dξ
1
ξ

tanh ξ

= m

([
ln ξ tanh ξ

] kF kc
2m βc

0
−

∫ kF kc
2m βc

0

dξ
ln ξ

cosh2 ξ

)
. (2.35)

At |G| À 1, ∆0 decreases exponentially with |G| and Tc is expected to be very low. Therefore, we can
approximate as kF k2βc/(2m) →∞ in the second term of Eq. (2.35), which is given as

∫ ∞

0

dξ
ln ξ

cosh2 ξ
= − ln

4eγ

π
, (2.36)

where γ = 0.577 · · · is a Euler constant. From this estimation, the integration in Eq. (2.35) is given as

∫ kF kc
2m βc

0

dξ
1
ξ

tanh ξ ' ln
(

2eγ

π

kF kc

m
βc

)
. (2.37)

From Eqs. (2.34), (2.35), and (2.37), the gap equation at T = Tc finally becomes

1 =
me2/K

2πkF
ln

[
1 +

4k2
F

κ2

]
ln

[
2eγ

π

kF kc

m
βc

]
. (2.38)

From Eq. (2.38), the transition temperature Tc is given as

kBTc =
2eγ

π

kF kc

m
exp


− π

√
|G|/|EB |

ln
(
1 + π

√
|G|/|EB |

)

 . (2.39)
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Around T ∼ Tc, the gap equation is approximately given as

1 =
me2/K

2πkF
ln

[
1 +

4k2
F

κ2

] ∫ kF kc
m

− kF kc
m

dξ
1

2
√

ξ2 + ∆2
tanh

(
β
√

ξ2 + ∆2

2

)
, (2.40)

where we assume ∆ 6= 0 and ε(k) = ξ. We expand the integrand in Eq. (2.40) with respect to ∆ (¿ 1)
and we have

∫ kF kc
m

− kF kc
m

dξ
1

2
√

ξ2 + ∆2
tanh

(
β
√

ξ2 + ∆2

2

)
' ln

(
2eγ

π

kF kc

m
β

)
− β2∆2

π2

7
8
ζ(3) +O(∆4), (2.41)

where ζ(s) =
∑∞

n=1 n−s is the zeta function9. From Eqs. (2.38), (2.40) and (2.41), we have

ln
(

T

Tc

)
= − ∆2(T )

π2(kBTc)2
7
8
ζ(3), (2.42)

and thus the order parameter around the transition temperature is given as10

∆(T ) = πkBTc

√
8

7ζ(3)
· Tc − T

Tc
. (2.43)

Comparing between Eqs. (2.32) and (2.39), we find that ∆0 and kBTc have the same functional form.
Therefore, the ratio between ∆0 and kBTc is a universal constant given as

2∆0

kBTc
=

2π

eγ
∼ 3.53. (2.44)

In the weak-coupling semimetallic region (G < 0 and |G| ¿ 1), we can formally solve the gap equation
just as in the BCS theory, and thus the ratio in Eq. (2.44) is consistent with the BCS theory for the
s-wave superconductivity. In contrast to the BCS theory of superconductivity, where ∆0 and Tc increase
exponentially with increasing kF

11, ∆0 and Tc in the excitonic phase given in Eqs. (2.32) and (2.39)
show the exponential decrease with increasing kF . This differences is caused by the k-dependence of
the interaction V (k). In the excitonic phase, the screening of the interaction V (k), which increases with
increasing kF , suppresses the excitonic order exponentially.

2.2.3 Phase Diagram

In this subsection, we summarize the results of the previous subsections and discuss the characteristic
behaviors of the phase diagram of the excitonic phase. At G > |EB |, the system is normal semiconduct-
ing. However, when G = |EB |, the gap equation has a nontrivial solution and the semiconductor gives
way to the excitonic phase. At G . |EB |, ∆0 ∝

√
1−G/|EB |, indicating that the phase transition from

the semiconductor to the excitonic phase is of the second-order. At |EB | > G > 0, the order parameter
increases with decreasing G and ∆0 has a maximum at G = 0, where the valence band top touches
the conduction band bottom. In the semimetallic region at G < 0, the Coulomb repulsive interaction
becomes weak with increasing of the number of carriers, and thus ∆0 decreases monotonically with
increasing |G| from the maximum value of ∆0 at G = 0. In the deeply overlapped semimetal (G < 0
and |G| À 1), we can solve the gap equation in the BCS-like approximation and the order parameter
∆0 decrease exponentially as in Eq. (2.32). In real materials, the valence and conduction bands have

9In Eq. (2.41), we have

Z kF kc
m

− kF kc
m

dξ
1

2
p

ξ2 + ∆2
tanh

 
β
p

ξ2 + ∆2

2

!

=

Z kF kc
m

− kF kc
m

dξ
1

2ξ
tanh

„
βξ

2

«
+

Z kF kc
m

− kF kc
m

dξ

"
1

2
p

ξ2 + ∆2
tanh

 
β
p

ξ2 + ∆2

2

!
− 1

2ξ
tanh

„
βξ

2

«#
.

The first term is consistent with the first term in Eq. (2.41). In the second term, we expand the integrand and integrate
it. It is consistent with the second term of Eq. (2.41).

10At T ∼ Tc, ln(T/Tc) ' (T − Tc)/Tc.
11In the BCS theory of superconductivity, ∆0 and Tc ∝ exp(−c/kF ), where c is a constant.
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Excitonic 
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Figure 2.4: Schematic phase diagram of the excitonic phase. G is the band gap at G > 0 and the band
overlap at G < 0. |EB | is the exciton binding energy.

an anisotropy of the Fermi surfaces and it is known that the anisotropy suppresses the excitonic phase
and a finite boundary |Gc| appears in the semimetallic region [10].

The critical temperature of the excitonic phase Tc is related to the value of the order parameter at
zero temperature ∆0, i.e. kBTc = (eγ/π)∆0 in the semimetallic region [see Eq. (2.44)]. Schematic phase
diagram of the excitonic phase is shown in Fig. 2.4. In the semiconducting region (G > 0), an electron
and a hole make a pair and the preformed excitons exist above the critical temperature (T > Tc). In
the semiconducting region, the Coulomb interaction is not screened by the carriers, and thus tightly
bound excitons are expected to persist unlike in the semimetallic region. Therefore, the excitonic phase
in the semiconducting region is described by the BEC of preformed excitons, which are hydrogen-like
Bose particles. On the other hand, in the semimetallic region (G < 0), preformed excitons do not
exist but an electron-hole plasma state is realized above the critical temperature (T > Tc) due to the
strong screening of Coulomb interaction. We can solve the gap equation for the excitonic phase in the
semimetallic region in the BCS-like approximation, and thus the condensation of weakly paired excitonic
state is realized below Tc. Therefore, the phase diagram of the excitonic phase includes two different
types of exciton condensation states, i.e., BEC and BCS states, and the BCS-BEC crossover is expected
as a function of the energy gap G.

2.2.4 Absence of Off-Diagonal Long-Range Order

The theory of excitonic phase has a lot of similarities with the BCS theory of superconductivity.
However, Jérome et al. [9] have shown that the fundamental character of the order, which is related
to superfluidity, is entirely different between the excitonic insulator and superconductor [9, 64]. It
is known that superfluidity in a system is often characterized by the off-diagonal long-range order
(ODLRO) [17, 65, 66]. The criterion for the ODLRO of composite bosons, such as Cooper pairs and
excitons, is given by the two-particle density matrix, which is defined as

〈x′ y′|ρ2|x y〉 ≡ 〈ψ†(y)ψ†(x)ψ(x′)ψ(y′)〉, (2.45)

where ψ(x) is a field operator. By using the two-particle density matrix, the ODLRO is defined with

〈x′ y′|ρ2|x y〉 6= 0 at |x− x′| → ∞ and x ' y, x′ ' y′. (2.46)

For example, in the BCS theory of superconductivity, the two-particle density matrix is given by

〈x′ ↑ y′ ↓ |ρ2|x ↑ y ↓〉 ≡ 〈ψ†↓(y)ψ†↑(x)ψ↑(x′)ψ↓(y′)〉
= 〈ψ†↑(x)ψ↑(x′)〉〈ψ†↓(y)ψ↓(y′)〉+ 〈ψ†↓(y)ψ†↑(x)〉〈ψ↑(x′)ψ↓(y′)〉. (2.47)

11



Chapter 2. Introduction of Excitonic Phases

In the limit |x− x′| → ∞, x ' y and x′ ' y′, we have

〈x′ ↑ y′ ↓ |ρ2|x ↑ y ↓〉 → 〈ψ†↓(x)ψ†↑(x)〉〈ψ↑(x′)ψ↓(x′)〉 6= 0, (2.48)

and the second term in Eq. (2.47) remains finite12. Thus, superconductivity is characterized by the
ODLRO.

On the other hand, in the excitonic phase, the two-particle density matrix Eq. (2.45) in the two band
model, is given with the field operator as

ψ(x) =
1√
Ω

∑

k

[ϕak(x)ak + ϕbk(x)bk] , (2.49)

where ϕak(x) and ϕbk(x) are the Bloch wave function of the a and b bands at k. In the mean-field
(Hartree-Fock) approximation, the two-particle density matrix becomes

〈x′ y′|ρ2|x y〉 = 〈ψ†(x)ψ(x′)〉〈ψ†(y)ψ(y′)〉 − 〈ψ†(x)ψ(y′)〉〈ψ†(y)ψ(x′)〉. (2.50)

By using the field operator of the two-band model in Eq. (2.49), we have

〈ψ†(x)ψ(x′)〉 = g(x, x′)− f(x, x′) (2.51)

with

g(x, x′) =
1
Ω

∑

k

[|uk|2ϕ∗ak(x)ϕak(x′) + |vk|2ϕ∗bk(x)ϕbk(x′)
]

(2.52)

f(x, x′) =
1
Ω

∑

k

[u∗kvkϕ∗bk(x)ϕak(x′) + ukv∗kϕ∗ak(x)ϕbk(x′)] . (2.53)

Both g(x,x′) and f(x,x′) vanish when |x−x′| → ∞. Therefore, in the limit |x−x′| → ∞, x ' y and
x′ ' y′, we have

〈x′ y′|ρ2|x y〉 → 0, (2.54)

and thus the ODLRO is absent in the excitonic insulator state.
It should be noted here that, Jérome et al. [9] have shown that the two-particle density matrix

〈x′ y′|ρ2|x y〉 is finite and has a periodic dependence on |x− y| in the limit |x− y| → ∞, x = x′ and
y = y′, and thus the excitonic phase has an additional diagonal long-range order (DLRO) [9,64]. In this
section, we have assumed a direct gap (Q = 0) for simplicity, but when there is an indirect gap with a
finite Q, an excitonic phase shows a new periodicity characterized by Q in real space as a DLRO [9,64].

We point out here that the absence of the ODLRO may not always indicate the absence of super-
fluidity [67]. Nagaoka in fact has suggested that, even though it is a DLRO, a condensate can show
superfluidity in ideal and simplified systems when there is a continuous degeneracy of energy in the
symmetry breaking state [67]. For example, Fröhlich has predicted superconductivity in incommen-
surate density waves, which are DLRO [68]. In the theory of incommensurate density waves, due to
a continuous degeneracy in the phase of the order parameter, the condensate has a gapless collective
mode in the excitation spectrum, indicating a translational motion of the condensate without loss of
energy [68]. However, imperfections in real materials, such as impurity, lattice defects, and anisotropy,
lift the continuous degeneracy and a condensate needs a finite energy for a collective motion [67, 69].
Therefore, the collective motion of DLRO is influenced by a lot of factors in real materials, leading to
the absence of superfluidity in DLRO [67]. On the other hand, Keldysh [70] has pointed out that the
excitonic insulator state is in a thermodynamic equilibrium state, whereas the absence of superfluidity
is not justified in the case of high-density nonequilibrium excitons in semiconductors [64,70,71].

12By using the field operator of free electron ψσ(x) = (1/
√

Ω)
P
k eik·xckσ , the two-particle density matrix in the BCS

theory [9] is given as 〈x′ ↑ y′ ↓ |ρ2|x ↑ y ↓〉 = g(x′ − x)g(y′ − y) + f∗(x− y)f(x′ − y′), where

g(x′ − x) ≡ 〈ψ†σ(x)ψσ(x′)〉 =
1

Ω

X

k

〈c†kσckσ〉e−ik·(x−x′) =
1

Ω

X

k

|vk|2eik·(x′−x),

f(x− y) ≡ 〈ψ↑(x)ψ↓(y)〉 =
1

Ω

X

k

〈ck↑c−k↓〉eik·(x−y) =
1

Ω

X

k

ukvkeik·(x−y).

In the limit |x − x′| → ∞, x ' y and x′ ' y′, g(x′ − x) = g(∞) = 0 and f(x − y) = f(0) 6= 0. Thus, the two-particle
density matrix in the Eq. (2.47) remains finite in this limit.

12



Chapter 2. Introduction of Excitonic Phases

2.3 Excitonic Phases with Spin Degrees of Freedom

2.3.1 Interband Interactions with Spin Degrees of Freedom

In the previous section, we neglect the spin degrees of freedom. In this section, following a review
by Halperin and Rice [14,15], we introduce the excitonic phases with spin degrees of freedom. Here, we
consider a spinful two-band model for simplicity, where the valence band a and conduction band b are
separated by the wave vector Q. The Coulomb interaction is generally given as

Hint =
1
2

∑

σ,σ′

∫
dxdx′V (x,x′)ψ†σ(x)ψσ(x)ψ†σ′(x

′)ψσ′(x′), (2.55)

where V (x, x′) is the Coulomb repulsive interaction and ψσ(x) is a field operator. By using the Bloch
wave state ϕnk(x) and the creation (annihilation) operator c†n,k,σ(cn,k,σ) of an electron at n = a, b band,
the field operator is given as

ψσ(x) =
1√
Ω

∑

k

∑

n=a,b

ϕnk(x)cn,k,σ. (2.56)

From Eq. (2.55) and (2.56), the Coulomb repulsive interaction becomes

Hint =
1
2

∑

σ,σ′

∑

k,k′,q

∑
n1,n2,n3,n4

V n1n2n3n4
k,k′,q c†n1,k+q,σcn2,k,σc†n3,k′−q,σ′cn4,k′,σ′ . (2.57)

V n1n2n3n4
k,k′,q is the Coulomb repulsive interaction in momentum space and is given as

V n1n2n3n4
k,k′,q ≡ 1

Ω

∑

G,G′
VGG′(q)

[
Fn2n1
−G (k,k + q)

]∗
Fn3n4
−G′ (k′ − q,k′), (2.58)

where G is a reciprocal lattice vector, VGG′(q) is a Fourier transformation of V (x, x′) 13, and Fnn′
G (k +

q,k′) is called the form factor [15] defined as

Fnn′
G (k + q, k′) ≡

∫
dxϕ∗nk+q(x)ϕn′k′(x)ei(q+G)·x. (2.59)

In order to discuss the excitonic phases, we just consider the interband interaction although the
interaction in Eq. (2.57) includes the intraband interactions as well. The interaction in Eq. (2.57) has
three types of interband interactions. The interaction Hamiltonian with n1 = n2 = b, n3 = n4 = a gives
the direct term,

HI
int =

∑

σ,σ′

∑

k,k′,q

V bbaa
k,k′,qb†k+q,σbk,σa†k′−q,σ′ak′,σ′ . (2.60)

In the previous section discussing the spinless system, we consider this term only. The interaction
Hamiltonian with n1 = n4 = b, n2 = n3 = a gives the exchange term,

HII
int =

∑

σ,σ′

∑

k,k′,q

V baab
k,k′,qb†k+q,σak,σa†k′−q,σ′bk′,σ′ . (2.61)

The interaction Hamiltonian with n1 = n3 = b. n2 = n4 = a and n1 = n3 = a, n2 = n4 = b gives the
pair hopping term,

HIII
int =

1
2

∑

σ,σ′

∑

k,k′,q

(
V baba

k,k′,qb†k+q,σak,σb†k′−q,σ′ak′,σ′ + V abab
k,k′,qa†k+q,σbk,σa†k′−q,σ′bk′,σ′

)
. (2.62)

13VGG′ (q) is given as V (x,x′) = (1/Ω)
P
q

P
G,G′ ei(q+G)·xe−i(q+G′)·x′VGG′ (q).
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Chapter 2. Introduction of Excitonic Phases

2.3.2 Ground-State Energy and Excitonic Density-Wave States

Ground-State Energy

The excitonic phases are characterized by the nonvanishing values 〈b†k+Q,σak,σ′〉 in the presence of
the interband interactionsHI

int, HII
int andHIII

int. In the Hartree-Fock approximation at 〈b†k+Q,σak,σ′〉 6= 0,
the energies (expectation values of the Hamiltonian) from the interband interactions are given as14

〈HI
int〉 = −

∑

σ,σ′

∑

k,k′
V bbaa

k′+Q,k,k−k′〈b†k+Q,σak,σ′〉〈a†k′,σ′bk′+Q,σ〉, (2.63)

〈HII
int〉 =

∑

σ,σ′

∑

k,k′
V baab

k,k′+Q,Q〈b†k+Q,σak,σ〉〈a†k′,σ′bk′+Q,σ′〉, (2.64)

〈HIII
int〉 =

1
2

∑

σ,σ′

∑

k,k′

[
V baba

k,k′,Q〈b†k+Q,σak,σ〉〈b†k′+Q,σ′ak′,σ′〉+ h.c.
]

− 1
2

∑

σ,σ′

∑

k,k′

[
V baba

k′,k,k−k′+Q〈b†k+Q,σak,σ′〉〈b†k′+Q,σ′ak′,σ〉+ h.c.
]
. (2.65)

To consider the spin degrees of freedom, we introduce the unitary matrix M̂ for the Bogoliubov trans-
formation and the operators of the quasiparticles are given as

αk,σ = ukak,σ − vk

∑

σ′
Mσσ′bk+Q,σ′ , (2.66)

βk,σ = vkak,σ + uk

∑

σ′
Mσσ′bk+Q,σ′ , (2.67)

where we assume that uk and vk are real for simplicity15. From the Bogoliubov transformation in
Eqs. (2.66) and (2.67), the expectation value for the excitonic term is given by

〈b†k+Q,σak,σ′〉 = −
(
f(Eα

k )− f(Eβ
k)

)
ukvkMσσ′ ≡ g(k)Mσσ′ , (2.68)

where we define g(k) ≡ −(f(Eα
k )− f(Eβ

k))ukvk. From Eq. (2.68), Eqs. (2.63)-(2.65) become

〈HI
int〉 = −2

∑

k,k′
V bbaa

k′+Q,k,k−k′g(k)g(k′), (2.69)

〈HII
int〉 =

∑

k,k′
V baab

k,k′+Q,Qg(k)g(k′)
∣∣∣trM̂

∣∣∣
2

, (2.70)

〈HIII
int〉 =

∑

k,k′
V baba

k,k′,Qg(k)g(k′)Re
[(

trM̂
)2

]
−

∑

k,k′
V baba

k′,k,k−k′+Qg(k)g(k′)Re
[
tr

(
M̂2

)]
. (2.71)

In general, 〈HI
int〉 À 〈HII

int〉, 〈HIII
int〉, and we sometimes consider 〈HI

int〉 only without 〈HII
int〉 and

〈HIII
int〉. This approximation is called the dominant term approximation in Ref. [15]. 〈HI

int〉 does not
depend on the matrix M̂ , and thus the results of the dominant term approximation is consistent with
those of the spinless model. Here, we denote the energy in the dominant term approximation as A.

Next, we consider the contributions from 〈HII
int〉 and 〈HIII

int〉. The coefficient of M̂ in 〈HII
int〉 and the

first term of 〈HIII
int〉 have the same values16, and thus we define

B ≡
∑

k,k′
V baab

k,k′+Q,Qg(k)g(k′) =
∑

k,k′
V baba

k,k′,Qg(k)g(k′). (2.72)

Note that B is basically positive if we neglect the electron-phonon coupling [15]. On the other hand, we
also define the coefficient of M̂ in the second term of 〈HIII

int〉 as

C ≡
∑

k,k′
V baba

k′,k,k−k′+Qg(k)g(k′), (2.73)

14In Eq. (2.65), we use (V baba
k,k′,q)

∗ = V abab
k′−q,k+q,q

.
15We can use this assumption when the order parameter ∆(k) is real.
16In Eq. (2.72), we use g(−k) = g(k) and F ba

−G(k −Q,k) = F ab
−G(−k,−k +Q).

14



Chapter 2. Introduction of Excitonic Phases

and C is positive17.
Therefore, the ground-state energy from the interband interactions Eint ≡ 〈HI

int〉+ 〈HII
int〉+ 〈HIII

int〉,
is given as

Eint = A + B

(∣∣∣trM̂
∣∣∣
2

+ Re
[(

trM̂
)2

])
− CRe

[
tr

(
M̂2

)]
, (2.74)

which depends on the matrix M̂ . In the following, we show two examples of the ground states (or the
choice of M̂), i.e., the charge density wave (CDW) and spin density wave (SDW)18 [15].

Charge density wave

The spin-singlet excitonic phase is characterized by

M̂ = Î , (2.75)

where Î is the unit matrix. When M̂ = Î, the energy in Eq. (2.74) is given as

Eint = A + 8B − 2C, (2.76)

and the ordered state appears in the charge density defined as

ρ(x) =
∑

σ

ψ†σ(x)ψσ(x). (2.77)

The Fourier transformation of ρ(x) is given by

ρq+G =
∫

dxe−i(q+G)·xρ(x) =
∑

k

∑
σ

∑

n,n′
Fn′n
−G (k − q, k)c†n′,k−q,σcn,k,σ, (2.78)

where Fn′n
−G (k − q, k) is the form factor defined in Eq. (2.59). The excitonic phase is characterised by

〈b†k+Q,σak,σ〉 6= 0 and the expectation value of the charge density at q = Q is given as

〈ρQ+G〉 = 2
∑

k

F ab
−G(k, k + Q)g(k)Re

[
trM̂

]
= 2ρ0

Q+GRe
[
trM̂

]
(2.79)

where ρ0
Q+G ≡ ∑

k F ab
−G(k, k+Q)g(k). Therefore, the excitonic phase with M̂ = Î indicates the charge

density wave with 〈ρQ+G〉 = 4ρ0
Q+G. Throughout the thesis, we call this state the excitonic CDW state.

Spin density wave

The spin-triplet excitonic phase is characterized by

M̂ = n · σ̂, (2.80)

where n is the unit direction vector and σ̂ is the Pauli spin matrix. When M̂ = n · σ̂, the energy in
Eq. (2.74) is given as

Eint = A− 2C, (2.81)

and the ordered state appears in the spin density defined as

ρs(x) =
∑

σ,σ′
ψ†σ(x)σσσ′ψσ′(x). (2.82)

The Fourier transformation of ρs(x) is given by

ρs
q+G =

∫
dxe−i(q+G)·xρs(x) =

∑

k

∑

σ,σ′

∑

n,n′
Fn′n
−G (k − q, k)c†n′,k−q,σσσ,σ′cn,k,σ′ . (2.83)

17g(k) has a large peak at k ∼ 0 and C ' `Pk g(k)
´2

V baba
0,0,Q > 0.

18In Ref. [14, 15], Halperin and Rice also mentioned the other solutions, i.e., the charge current density wave and spin
current density wave states. However, their energy are higher than those of the CDW and SDW states.
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The excitonic phase is characterised by 〈b†k+Q,σak,σ′〉 6= 0 and the expectation value of the spin density
at q = Q is given as

〈ρs
Q+G〉 = 2

∑

k

F ab
−G(k,k + Q)g(k)Re

[
tr

(
σ̂M̂†

)]
= 2ρ0

Q+GRe
[
tr

(
σ̂M̂†

)]
. (2.84)

Therefore, the excitonic phase with M̂ = n · σ̂ indicates the spin density wave with 〈ρs
Q+G〉 = 4ρ0

Q+Gn.
Throughout the thesis, we call this state the excitonic SDW state.

Comparing the energies of the CDW in Eq. (2.76) and SDW in Eq. (2.81), the SDW state is lower
than that of the CDW state. On the other hand, Halperin and Rice have pointed out that, if we consider
electron-phonon coupling, the coefficients B can be negative [14,15], and thus the CDW can be stabilized
by the strong electron-phonon coupling even though the interband Coulomb interactions exist.

2.4 Summary

In this chapter, we have reviewed the basic theory of excitonic phases. We have discussed the nature
of excitonic phases using the simplest spinless model, where we have shown that a lot of similarities with
the BCS theory of superconductivity exist in, e.g., the order parameter, gap equation, and its solutions.
In contrast to superconductivity, however, we have discussed that the ODLRO is absent in the excitonic
insulator states, indicating the difficulty in realizing superfluidity in real materials of excitonic insulators.
After that, we have described the excitonic phases with spin degrees of freedom. We have introduced
two types of the excitonic phases that can be realized when the order parameter has the spin degrees of
freedom; i.e., the excitonic CDW and SDW states, which are the diagonal long-range orders.
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Chapter 3

Numerical Methods

3.1 Introduction

In this Chapter, we introduce numerical methods used in this thesis, which enable us to treat the
strongly correlated electron models. First, we introduce an exact-diagonalization (ED) technique based
on the Lanczos algorithm, which can solve many-body problems in small-size systems exactly. Next,
we introduce the variational cluster approximation (VCA) based on the self-energy functional theory
(SFT), where we can take into account the effects of short-range spatial electron correlations even in
low-dimensional systems in the thermodynamic limit. The VCA is useful for discussing the spontaneous
symmetry breaking in correlated electron systems beyond the mean-field theory. Within the framework
of the VCA, we use the cluster perturbation theory (CPT) to calculate the Green’s function, which
is useful for evaluating the single-particle excitation spectrum and their integrated values such as the
density of states, momentum distribution function, etc. Thus, the method of the CPT is also discussed
in this Chapter.

3.2 Exact Diagonalization (ED)

3.2.1 Eigenvalue from the Lanczos Method

The Lanczos method is one of the simplest method for calculating eigenvalues of a sparse matrix [72–
74]. In the Lanczos method, we can calculate the eigenvalues efficiently with the tridiagonalized matrix,
which is composed from the Lanczos basis. In comparison with other methods, the Lanczos method is
suitable for calculating the maximum/minimum eigenvalue of the large sparse matrix.

The Lanczos basis is constructed from the series of the states by applying the matrixH repeatedly [72,
73]. Starting from a random initial state |φ0〉, the next state is given as

|φ1〉 = H|φ0〉 − 〈φ0|H|φ0〉
〈φ0|φ0〉 |φ0〉, (3.1)

where |φ1〉 and |φ0〉 are orthogonal. The next state, which is orthogonal to both |φ0〉 and |φ1〉, is given
as

|φ2〉 = H|φ1〉 − 〈φ1|H|φ1〉
〈φ1|φ1〉 |φ1〉 − 〈φ1|φ1〉

〈φ0|φ0〉 |φ0〉. (3.2)

In the same way, the (k + 1)-th state is composed as

|φk+1〉 = H|φk〉 − ak|φk〉 − b2
k|φk−1〉, (3.3)

where the coefficients are defined as

ak =
〈φk|H|φk〉
〈φk|φk〉 , (3.4)

b2
k =

〈φk|φk〉
〈φk−1|φk−1〉 . (3.5)
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The basis set {|φ0〉, · · · , |φN−1〉} is called the Lanczos basis. By using the Lanczos basis, the Hamiltonian
becomes the tridiagonalized matrix given as

H̃N =




a0 b1 0
b1 a1 b2 0

0 b2 a2 b3
. . .

0 b3 a3
. . . 0

. . . . . . . . . bN−1

0 bN−1 aN−1




. (3.6)

To obtain the exact eigenvalue, we need to diagonalize the tridiagonal matrix with the same Hilbert
space dimension. However, the Lanczos basis spans the Krylov subspace and the component of the
largest/smallest eigenvalue is enhanced with increasing the Lanczos step N 1. When the eigenvalue
converges within an allowable error, we can stop the step at a small N . We can thus calculate the
largest/smallest eigenvalue from the matrix H̃N easily. The Lanczos method is therefore suitable for
calculating the ground state energy of our models.

3.2.2 Eigenstate from the Inverse Iteration Method

The inverse iteration method is suitable for calculating the eigenstate if the ground state energy is
found by the Lanczos method [73]. Here, we introduce E′

0 = E0 − δ, where E0 is the ground state
energy calculated from the Lanczos method and δ is a very small value. We also assume that |ψi〉 is the
eigenstate belonging to the eigenenergy Ei, i.e. H|ψi〉 = Ei|ψi〉. By subtracting E′

0 from both sides of
the equation, i.e., (H− E′

0)|ψi〉 = (Ei − E′
0)|ψi〉, and multiplying (H− E′

0)
−1 to both sides, we obtain

(H− E′
0)
−1|ψi〉 =

1
Ei − E′

0

|ψi〉, (3.7)

and thus we can regard (Ei − E′
0)
−1 as the eigenvalue of (H− E′

0)
−1.

In the inverse iteration method, we configure the new state as

|un〉 = (H− E′
0)
−1|un−1〉. (3.8)

Here, we introduce the initial vector |u0〉 and expand it with the eigenstates |ψi〉, i.e.,

|u0〉 =
∑

i

Ci|ψi〉. (3.9)

From Eqs. (3.7) and (3.9), we have

|un〉 =
∑

i

Ci

(Ei − E′
0)n

|ψi〉. (3.10)

When i 6= 0 and Ei − E′
0 > E0 − E′

0 = δ, we can approximate Eq. (3.10) as

|un〉 =
C0

(E0 − E′
0)n


|ψ0〉+

∑

i6=0

Ci

C0

(
E0 − E′

0

Ei − E′
0

)n

|ψi〉

 ' C0

(E0 − E′
0)n

|ψ0〉, (3.11)

with a large enough value of n. By normalizing |un〉 and noting C0/(E0 − E′
0)

n ' 1 for a large enough
value of n, we can obtain the ground state as |ψ0〉 ' |un〉.

1Starting from an initial state |u0〉, we construct the state |un〉 = Hn|u0〉 by applying the matrix H repeatedly. Expand
|u0〉 with respect to the eigenstates |i〉 (belonging to the eigenvalue Ei) of the matrix H, we have

|un〉 = Hn|u0〉 = Hn
X

i

Ci|i〉 =
X

i

CiE
n
i |i〉 = C0En

0

0
@|0〉+

X

i6=0

Ci

C0

„
Ei

E0

«n

|i〉
1
A ,

where |0〉 is the eigenstate belonging to the largest eigenvalue |E0| > |Ei|. With increasing n, the weight of |0〉 is enhanced
and we can approximate as |un〉 = C0En

0 |0〉 within an allowable error.
˘|u0〉,H|u0〉,H2|u0〉, · · · ,Hn|u0〉

¯
is called the

Krylov subspace.
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To calculate |un〉, we have to evaluate (H − EGS)−1, but the matrix inversion in a large dimension
is time-consuming. Here, we solve a simultaneous equation

(H− E′
0)|un〉 = |un−1〉 (3.12)

and we generate the new state |un〉. By using the conjugate gradient method, we can solve the simul-
taneous equations (3.12) for a large sparse matrix efficiently. In our numerical calculation, we use the
conjugate gradient method to solve Eq. (3.12).

3.2.3 Dynamical Functions

In the ED technique, the calculations of the dynamical functions, such as correlation functions and
single-particle spectral functions, are comparatively easy [72, 73]. Here, we consider the dynamical
function defined as

C(t) = 〈ψ0|O†(t)O(0)|ψ0〉, (3.13)

where |ψ0〉 is the ground state of the system and O(t) = eiHtOe−iHt. In practice, we estimate the
Fourier transformed dynamical function given as

C(ω) =
∫ ∞

−∞
dteiωt〈ψ0|O†(t)O(0)|ψ0〉

=
∑

n

|〈ψn|O|ψ0〉|2δ(ω − (En − E0)), (3.14)

where H|ψn〉 = En|ψn〉 and |ψn〉 (n 6= 0) is the excited state. To calculate the excited states |ψn〉,
we need a perfect diagonalization, which is time-consuming. Thus, we introduce the continued fraction
expansion method. In this method, we introduce

G(z) = 〈ψ0|O† 1
z −HO|ψ0〉. (3.15)

When z = ω + E0 + iη, G(z) is given as

G(ω + E0 + iη) =
∑

n

|〈ψn|O|ψ0〉|2 1
ω − (En − E0) + iη

. (3.16)

From Eqs. (3.14) and (3.16), we can find the relation2

C(ω) = − 1
π

lim
η→+0

Im G(ω + E0 + iη). (3.17)

Thus, we have to calculate the function G(z) to evaluate the dynamical function C(ω).
In the Lanczos method, we can calculate G(z) as follows. First, we introduce the initial vector

defined as

|f0〉 =
O|ψ0〉√

〈ψ0|O†O|ψ0〉
. (3.18)

By using |f0〉, the function G(z) becomes

G(z) = 〈ψ0|O†O|ψ0〉〈f0| 1
z −H|f0〉, (3.19)

so that we have to calculate 〈f0|(z −H)−1|f0〉. In the Lanczos method, we generate the states in order
as3

|fk+1〉 = H|fk〉 − αk|fk〉 − β2
k|fk−1〉, (3.20)

2Here, we use

1

x + iη
= P

1

x
− iπδ(x).

3At k = 1, |f1〉 = H|f0〉 − α0|f0〉.
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where the coefficients are defined as

αk =
〈fk|H|fk〉
〈fk|fk〉 , (3.21)

β2
k =

〈fk|fk〉
〈fk−1|fk−1〉 . (3.22)

From the bases |f0〉, |f1〉, |f2〉 · · · , the matrix representation of z −H is given by

z −H =




z − α0 −β1

−β1 z − α1 −β2

−β2 z − α2
. . .

. . . . . .




. (3.23)

〈f0|(z −H)−1|f0〉 is given by the (0, 0)-element in the inverse matrix of Eq. (3.23). From the Cramer’s
rule, we have

〈f0| 1
z −H|f0〉 =

(
(z −H)−1

)
00

=
adj(z −H)00
det(z −H)

, (3.24)

where adj(z − H) is the adjugate matrix and det(z − H) is the determinant. Here, we introduce the
determinant

Di ≡

∣∣∣∣∣∣∣∣∣∣

z − αi −βi+1

−βi+1 z − αi+1 −βi+2

−βi+2 z − αi+2
. . .

. . . . . .

∣∣∣∣∣∣∣∣∣∣

. (3.25)

By using Di, the determinant and the (0, 0)-element of the adjugate matrix of Eq. (3.23) are given by

D0 = det(z −H), (3.26)
D1 = adj(z −H)00, (3.27)

respectively. Thus, 〈f0|(z −H)−1|f0〉 = D1/D0. From Eq. (3.25), we also find the recurrence relation

Di = (z − αi)Di+1 − β2
i+1Di+2. (3.28)

From the Eq. (3.28), we have

Di/Di+1 = z − αi −
β2

i+1

Di+1/Di+2
. (3.29)

Using the relation Eq. (3.29) repeatedly, we obtain

〈f0| 1
z −H|f0〉 =

1
D0/D1

=
1

z − α0 −
β2

1

D1/D2

=
1

z − α0 −
β2

1

z − α1 −
β2

2

D2/D3

= · · · . (3.30)

Therefore, from Eqs. (3.19) and (3.30), the function G(z) is given by the continued fraction expansion,

G(z) =
〈ψ0|O†O|ψ0〉

z − α0 −
β2

1

z − α1 −
β2

2

z − α2 − · · ·

. (3.31)

From the relation Eq. (3.17) and the continued fraction expansion Eq. (3.31), we can calculate the
dynamical function C(ω). In practice, we can cut the continued fraction expansion in a finite step
within an allowable error.
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3.3 Self-energy Functional Theory (SFT)

3.3.1 Grand Potential and Self-energy

In the SFT, we consider the grand canonical system with the chemical potential µ and temperature
T (= 1/β) [75]. The Hamiltonian consisting of the noninteracting one-body term t and interaction term
U is given as

H = Ht,U = Ht +HU , (3.32)

Ht =
∑

αβ

tαβc†αcβ , (3.33)

HU =
1
2

∑

αβγδ

Uαβγδc
†
αc†βcγcδ, (3.34)

where c†α (cα) is the creation (annihilation) operator of a fermion. In the grand canonical system, the
grand potential of the system is given by the partition function:

Ωt,U = − 1
β

ln Zt,U , (3.35)

Zt,U = tr [exp(−β(Ht,U − µN))] . (3.36)

The one-particle Green’s function Gαβ ≡ 〈〈cα; c†β〉〉 is given by the the thermal average, so that the
Green’s function depends on t and U , i.e., Gt,U ,αβ . In this section, we write the matrix representation
of Gt,U ,αβ as Gt,U . At U = 0, the free Green’s function Gt,0 is given as

Gt,0,αβ(iωn) = [(iωn + µ)δαβ − tαβ ]−1, (3.37)

where iωn ≡ i(2n + 1)π/β is the fermion Matsubara frequency. Introducing the self-energy Σt,U , which
includes the many-body effects, the Green’s function of the interacting system Gt,U is given from the
Dyson’s equation as

G−1
t,U = G−1

t,0 −Σt,U . (3.38)

Conversely, we can evaluate the self-energy from the Green’s functions: Σt,U = G−1
t,0 −G−1

t,U .

3.3.2 Luttinger-Ward Functional

In the interacting system, the grand potential is given by the Luttinger-Ward (LW) functional
Φ̂U [G] 4 [75–79]. The LW functional plays an important role in the SFT. In this section, we therefore
introduce the LW functional in some detail. The LW functional has the following properties.

(I) The domain of the LW function is given by the space of the Green’s function G [75,76]. The LW
functional is constructed by the skeleton diagrams shown in Fig.3.1 [75, 76]. It is also known that the
LW functional can be formulated in the path integral method [75, 77–79]. In the non-interacting limit
(U = 0), the LW functional vanishes, i.e., Φ̂U [Gt,U ] = 0.

(II) When the Green’s function is exact in the system with Hamiltonian Ht,U , i.e., G = Gt,U , the
LW functional gives the exact quantity

Φ̂U [Gt,U ] = Φt,U , (3.39)

and the grand potential of the system is given by

Ωt,U [Gt,U ] = Φt,U + TrlnGt,U − Tr(Σt,UGt,U ), (3.40)

where TrX = T
∑

ωn

∑
k

∑
α eiωn0+

trXαα(iωn) and Σt,U is the exact self-energy given by the Dyson’s
equation (3.38) [75].

4In this section, we indicate functionals as X̂[· · · ] with a hat, which should be distinguished from physical quantities
A [75].

21



Chapter 3. Numerical Methods

ΦU[G]

Figure 3.1: Skeleton diagrams of the Luttinger-Ward functional Φ̂U [G]. Red arrows and blue wave lines
represent the Green’s function G and interaction U , respectively.

(III) The functional derivative of the LW functional Φ̂U [G] with respect to the Green’s function G
gives

1
T

δΦ̂U [G]
δG

= Σ̂U [G], (3.41)

and the functional Σ̂U [G] corresponds to the self-energy. For the exact Green’s function Gt,U , this
gives the exact self-energy: [75]

Σ̂U [Gt,U ] = Σt,U . (3.42)

(IV) The functional relation of Φ̂U [· · · ] explicitly depends on the interaction U , but it does not
depend on t. In other words, when two systems have the same interaction U but different one-body
term t, the systems are described by the same LW functional. From Eq. (3.41), Σ̂U [· · · ] does not depend
on t either. Therefore, the LW functional is a universal functional [75,76].

3.3.3 Variational Principle

In the SFT, the grand potential is described as a functional of Σ [75, 77, 78]. Although the LW
functional Φ̂U [G] is given by a functional of G, we can introduce another functional of Σ by using the
Legendre transformation, which is given as

F̂U [Σ] = Φ̂U [ĜU [Σ]]− Tr(ΣĜU [Σ]). (3.43)

Here, ĜU [Σ̂[G]] = G. From Eqs. (3.41) and (3.43), the functional derivative of F̂U [Σ] with respect to
Σ gives the following relation5

1
T

δF̂U [Σ]
δΣ

= −ĜU [Σ]. (3.44)

With the functional F̂U [Σ] and Eq. (3.40), we can define the grand potential functional, which is given
as

Ω̂t,U [Σ] = Tr ln
(
G−1

t,0 −Σ
)−1

+ F̂U [Σ]. (3.45)

The functional derivative of Eq. (3.45) with respect to Σ gives

1
T

δΩ̂t,U [Σ]
δΣ

=
1

G−1
t,0 −Σ

− ĜU [Σ]. (3.46)

5

1

T

δF̂U [Σ]

δΣαβ
=

1

T

X

γ,δ

δΦ̂U [ĜU [Σ]]

δĜU,γδ[Σ]

δĜU,γδ[Σ]

δΣαβ
− δ

δΣαβ

0
@X

γ,δ

ΣδγĜU,γδ[Σ]

1
A

=
X

γ,δ

Σδγ
δĜU,γδ[Σ]

δΣαβ
−
X

γ,δ

 
δα,δδβ,γĜU,γδ[Σ] + Σδγ

δĜU,γδ[Σ]

δΣαβ

!
= −ĜU,βα[Σ]
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When the self-energy is exact (Σ = Σt,U ), the functional ĜU [Σt,U ] = Gt,U becomes the exact Green’s
function Gt,U , where we find

ĜU [Σt,U ] = Gt,U =
1

G−1
t,0 −Σt,U

(3.47)

from the Dyson’s equation (3.38). From Eqs. (3.46) and (3.47), we find the following relation when
Σ = Σt,U :

δΩ̂t,U [Σt,U ]
δΣt,U

= 0. (3.48)

In other words, we may regard Eq. (3.48) as the variational equation for a trial self-energy Σ, i.e.,

δΩ̂t,U [Σ]
δΣ

= 0, (3.49)

whereby we can determine the exact self-energy Σt,U from the variational equation Eq. (3.49). Therefore,
the problem of seeking for the exact ground state in the interacting systems is consistent with the problem
of seeking for the stationary point of the Grand potential functional Ω̂t,U [Σ].

3.4 Variational Cluster Approximation (VCA)

3.4.1 Reference System and VCA

In the SFT, we need to calculate the grand potential Ω̂t,U [Σ]. However, the calculation of the
functional F̂U [Σ] is difficult in general. The idea of VCA is based on the universality of the LW
functional, i.e., F̂U [Σ] is unknown but explicitly depends only on U .

From Eq. (3.45), the grand potential functional of the original system [see Fig. 3.2 (a)] is given by

Ω̂t,U [Σ] = Tr ln (G−1
t,0 −Σ)−1 + F̂U [Σ]. (3.50)

Let us introduce the reference system here, whose example is shown in Fig. 3.2 (b). In the reference
system, the one-body parts t′ are only valid in the cluster and inter-cluster hopping parameters are zero.
The grand potential functional of the reference system is given as

Ω̂t′,U [Σ] = Tr ln (G−1
t′,0 −Σ)−1 + F̂U [Σ]. (3.51)

Owing to the universality of the functional F̂U [Σ], we find that Eqs. (3.50) and (3.51) have the same
functional F̂U [Σ] even though the original and reference systems have the different one-body terms.

1

3 4

2

R1

1

3 4

2

R2

1

3 4

2

R4

1

3 4

2

R3

(a) (b)

Figure 3.2: (a) Original lattice system and (b) reference system based on 2× 2 = 4 site clusters.
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From Eqs. (3.50) and (3.51), we can eliminate the unknown functional F̂U [Σ] and then the grand
potential functional of the original system is given by

Ω̂t,U [Σ] = Ω̂t′,U [Σ] + Tr ln (G−1
t,0 −Σ)−1 − Tr ln (G−1

t′,0 −Σ)−1. (3.52)

Up to here, the formalism of Eq. (3.52) does not include any approximation. Adopting the exact self-
energy of the reference system, i.e., Σ = Σt′,U , the first and third term of r.h.s. of Eq. (3.52) becomes
Ω̂t′,U [Σt′,U ] = Ωt′,U and G−1

t′,0 − Σt′,U = G−1
t′,U , respectively. Thus, using Σ = Σt′,U , Eq. (3.52)

becomes

Ω̂t,U [Σt′,U ] = Ωt′,U + Tr ln (G−1
t,0 −Σt′,U )−1 − Tr ln Gt′,U . (3.53)

Introducing the reference system, where we solve the many-body problem exactly in each cluster, we can
calculate all the terms of r.h.s of Eq. (3.53), and thus we can evaluate Ω̂t,U [Σ] approximately. Nothing
that Ω̂t,U [Σt′,U ] is a function of the variational parameters t′, we use the notation Ω(t′) ≡ Ω̂t,U [Σt′,U ]
hereafter.

The grand potential Ω(t′) includes approximation, but using the variational principle,

∂Ω(t′)
∂t′

= 0, (3.54)

we can optimize Ω(t′) with respect to t′, so that we can evaluate the accurate ground state6 [75,77–81].

Grand potential for numerical calculations

For our numerical calculations, we rewrite the grand potential (3.53) as follows. First, introducing
V ≡ Ht −Ht′ , we rewrite the second term of r.h.s of Eq. (3.53) as7

G−1
t,0 −Σt′,U = G−1

t′,U − V . (3.55)

Using V , the grand potential (3.53) becomes

Ω(t′) = Ωt′,U + Tr ln (G−1
t′,U − V )−1 − Tr ln Gt′,U

= Ωt′,U − Tr ln (1− V Gt′,U ). (3.56)

Next, let us discuss the quantity of V in detail. Here, we label each cluster in the reference system
as R and the site in the cluster as ra [see Fig. 3.4 (a)]. Then, using R and ra, the site of the original
lattice system is given by

ri = R + ra. (3.57)

Noting that the one-body parts of the reference system are only valid in the cluster, the Hamiltonian
Ht′ is given with R and ra as

Ht′ =
∑

ij

t′ijc
†
i cj =

∑

RR′

∑

ab

δR,R′t′abc
†
RacR′b. (3.58)

Using R and ra, V is then given by

V =
∑

ij

(tij − t′ij)c
†
i cj =

∑

RR′

∑

ab

(tRR′
ab − δR,R′t′ab)c

†
RacR′b ≡

∑

RR′

∑

ab

V RR′
ab c†RacR′b. (3.59)

6In the VCA, we calculate the grand potential directly and seek for the stationary point. On the other hand, from
Eq. (3.54), we can derive the following Euler equation,

∂Σt′,U
∂t′

δΩ̂t,U [Σt′,U ]

δΣt′,U
= T

∂Σt′,U
∂t′

 
1

G−1
t,0 −Σt′,U

−Gt′,U
!

= 0.

We can solve the Euler equation self-consistently, which is consistent with the self-energy optimization in the dynamical
mean-field theory.

7Free Green’s function of the original lattice system is give as Gt,0(z) = (z + µ−Ht)−1 and

G−1
t,0 −Σt′,U = (z + µ−Ht′ −Σt′,U )− (Ht −Ht′ ) = G−1

t′,U − V
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In the reference system, V does not maintain the translation symmetry of the original lattice system
but keeps the translation symmetry of the superlattice constructed by the small clusters. The Fourier
transformation for the superlattice is defined as

c†Ra =
1√
N

∑

Q

c†QaeiQ·R, (3.60)

where N is the number of the clusters in the reference system. Using the Fourier transformation for the
superlattice thus defined, we have

V =
∑

Q

∑

ab

(∑

R

V 0R
ab eiQ·R

)
c†QacQb ≡

∑

Q

∑

ab

Vab(Q)c†QacQb, (3.61)

where V is diagonal with respect to Q. Defining

Vab(Q) ≡
∑

R

V 0R
ab eiQ·R =

∑

R

t0R
ab eiQ·R − t′ab, (3.62)

we obtain the grand potential (3.53) as8

Ω(t′) = Ωt′,U − T
∑
ωn

∑

Q

∑
σ

ln det(1− V (Q)Gt′,U (iωn)). (3.63)

In our practical calculations, we usually use the ED method to solve the many-body problem in each
cluster, which is suitable for calculating quantities at zero temperature. Therefore, we introduce the
formalism of the grand potential at zero temperature. Using the residue theorem9, the second term of
r.h.s. of Eq. (3.63) is given by

I ≡ T
∑
ωn

∑

Q

∑
σ

ln det(1− V (Q)Gt′,U (iωn))

=
∑

σ

∮

Γ

dz

2πi
f(z)

∑

Q

ln det(1− V (Q)Gt′,U (z)), (3.64)

where f(z) is the Fermi distribution function and Γ is the contour around the Matsubara frequency iωn.
At zero temperature, the Fermi distribution function becomes a step function, and thus Γ becomes C,
the contour of the frequency integral that encloses the negative real axis. Thus, the integral I at T = 0
is given as10,

I =
∑

σ

∮

C

dz

2πi

∑

Q

ln det(1− V (Q)Gt′,U (z))

=
∑

σ




∫ ∞

0

dx

π

∑

Q

ln |det(1− V (Q)Gt′U (ix))| −
∑

Q

trV (Q)
2


 . (3.65)

We can also calculate Ωt′,U in Eq. (3.63) from the ED. With the ground state energy E′
0 and the number

of particles N ′ in the reference system, the grand potential of the reference system is given by

Ωt′U =
1
L

(E′
0 − µN ′), (3.66)

8In Eq. (3.63), we use the definition Tr = T
P

ωn

P
k

P
σ eiωn0+

tr and the relation tr lnA = ln detA. From Eq. (3.74)

given below, we find that Gt′,U (iωn) does not depend on Q.
9The Fermi distribution function f(z) = 1/(eβz + 1) has poles of order one at the Matubara frequency iωn and

lim
z→iωn

z − iωn

eβz + 1
= −T.

Thus, from the residue theorem, the following relation holds:

T
X
n

g(iωn) =

I

Γ

dz

2πi
f(z)g(z).

10The details of the calculation of Eq. (3.65) is given in Ref. [79].
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Figure 3.3: (a) Antiferromagnetic state in the reference system with L = 2× 2 = 4 sites cluster and (b)
the calculated grand potential as a function of the Weiss field M ′ with the 4 site cluster at U/t = 8.

where L is the number of sites in the cluster. From Eqs. (3.63), (3.65) and (3.66), the grand potential
at zero temperature is given by

Ω(t′) =
1
L

(E′
0 − µN ′)− 1

NL

∑
σ




∫ ∞

0

dx

π

∑

Q

ln |det(1− V (Q)Gt′,U (ix))| −
∑

Q

trV (Q)
2


 , (3.67)

where we divide Ω(t′) by NL. We can calculate E′
0 and Gt′,U (z) from the ED and estimate V (Q) from

Eq. (3.62). In our calculation, we use the double exponential formula for the integration in Eq. (3.67).

3.4.2 Spontaneous Symmetry Breaking in VCA

Within the VCA, we can take into account the spontaneous symmetry breakings just by adding
appropriate Weiss fields to the reference system [82], adopting the fields as the variational parameters.
In this section, as an example of the spontaneous symmetry breaking treated in the VCA, we show
the antiferromagnetic (AF) ordered state in the two-dimensional square-lattice Hubbard model. The
Hubbard Hamiltonian is defined as

H = −
∑

i,j,σ

tijc
†
i,σcj,σ + U

∑

i

ni,↑ni,↓. (3.68)

The ground state of the Hubbard model on the square lattice is known to be the AF state. Here, we
introduce the Weiss field for the AF order, which is given as

HAF = M ′∑

i,σ

eiQ·ri(ni,↑ − ni,↓), (3.69)

where Q = (π, π) and the AF state is shown in Fig. 3.3 (a). To discuss the stability of the AF state,
we add the Weiss field (3.69) to the Hubbard Hamiltonian (3.68), i.e. H′ = H + HAF. We calculate
the grand potential (3.67) for the Hamiltonian of the reference system H′ and search the most stable
stationary point as a function of the variational parameter M ′.

In Fig. 3.3 (b), we show the calculated grand potential Ω(M ′) obtained using the L = 2× 2 = 4 site
cluster at U/t = 8. The calculated grand potential has three stationary points, which are at M ′ = 0 and
M ′ = ±M1 6= 0. Noting Ω(M1) < Ω(0), the stationary point at M1 is the most stable, which indicates
that the AF state is stabler than the normal state.

3.5 Cluster Perturbation Theory (CPT)

3.5.1 Green’s Function of CPT

In this section, we introduce the CPT [81,83,84]. In the VCA, we calculate the grand potential using
the self-energy of the reference system Σt′,U . From Eq. (3.47) and (3.55), using the the self-energy Σt′,U ,
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Figure 3.4: (a) Reference system with 16 site clusters and (b) Brillouin zone of the reference system.

the Green’s function of the original lattice system is given by

G(z) ≡ ĜU [Σt′,U ] = (G−1
t′,U − V )−1. (3.70)

Using the index of the reference system (ri = R + ra), we write Gij(z) = GRR′
ab (z) and the Fourier

transformation of G(z) is given by

G(k, k′, z) =
1

NL

∑

RR′ab

GRR′
ab (z)e−ik·(R+ra)eik′·(R′+rb). (3.71)

The Green’s function G(z) keeps the translation symmetry of the superlattice, which is diagonal
with respect to the momentum of superlattice Q. Here, we consider the Fourier transformed Green’s
function Gab(Q, z) defined as

Gij(z) = GRR′
ab (z) =

1
N

∑

Q

Gab(Q, z)eiQ·(R−R′). (3.72)

The Green’s function of the reference system is valid in the cluster, i.e.,

Gt′,U ,ij(z) = δR,R′Gt′,U ,ab(z). (3.73)

From the Fourier transformation of the Green’s function of the reference system,

Gt′,U ,ab(Q, z) =
∑

R

δ0,RGt′,U ,ab(z)eiQ·R = Gt′,U ,ab(z), (3.74)

we find that the Green’s function of the reference system does not depend on Q. Also, from Eq. (3.62),
V depends only on Q. Therefore, we have

Gab(Q, z) = (G−1
t′,U (z)− V (Q))−1

ab =
(

Gt′,U (z)
I − V (Q)Gt′,U (z)

)

ab

. (3.75)
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From Gab(Q, z) and Eq. (3.71), we have11

G(k, k′, z) =
1
L

∑

ab

∑

Q

Gab(Q, z)e−ik·raeik′·rbδQ,k−k̃δQ,k′−k̃′ (3.76)

where k̃ and k̃′ are the reciprocal lattice vector of the superlattice (eĩk·R = 1). Defining k− k̃ = K and
k′ − k̃′ = K′ [see Fig. 3.4] and using (3.76), we have

G(k, k′, z) =
1
L

∑

ab

Gab(K, z)e−ik·raeik′·rbδK,K′ . (3.77)

Because k̃ is the reciprocal lattice vector of the superlattice (eik̃·R = 1), we have

Vab(K) =
∑

R

V 0R
ab ei(k−k̃)·R =

∑

R

V 0R
ab eik·R = Vab(k), (3.78)

and thus Vab depends only on k. The momentum dependence of Gab is given in Vab, and thus Gab

depends only on k, i.e.,

Gab(K, z) = Gab(k, z). (3.79)

Gab(K, z) does not include k̃ but δK,K′ still have the dependence of k̃. Introducing k̃ − k̃′ ≡ qs, we
find that the number of qs is L in the first Brillouin zone of the original system [see Fig. 3.4]. The delta
function in Eq. (3.79) becomes

δK,K′ =
L∑

s=1

δk,k′+qs , (3.80)

and thus the Green’s function of the original lattice system is give by

G(k, k′, z) =
1
L

∑

ab

Gab(k, z)e−ik·raeik′·rb

(
L∑

s=1

δk,k′+qs

)
. (3.81)

We introduce the reference system, which keeps the translation symmetry of the superlattice, but it
breaks the translation symmetry of the original lattice system. Therefore, G is not diagonal with
respect to k and the final form includes qs = k̃− k̃′. In the CPT, we use the approximation, neglecting
the off-diagonal term qs 6= 0, we finally obtain the CPT Green’s function as

GCPT(k, z) =
1
L

L∑

a,b=1

Gab(k, z)e−ik·(ra−rb). (3.82)

3.5.2 Physical Quantity from CPT

Using the CPT Green’s function GCPT(k, ω), we can evaluate the single particle excitation spectrum
A(k, ω) defined as

A(k, ω) = − 1
π

lim
η→0

Im GCPT(k, ω + iη), (3.83)

11

G(k,k′, z) =
1

NL

X

RR′ab

0
@ 1

N

X

Q
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1
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=
1

L

X

ab

X

Q
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Figure 3.5: Single-particle excitation spectrum A(k, ω) of the one-dimensional Hubbard chain at (a)
n = 1 and (b) n = 5/6.

where η gives broadening to the spectrum. In Fig. 3.5, we show the calculated result for A(k, ω) for the
one-dimensional Hubbard chain. Summing up A(k, ω) over momentum k, we can evaluate the density
of states ρ(ω) defined as

ρ(ω) =
∑

k∈BZ

A(k, ω) = − 1
π

lim
η→0

∑

k∈BZ

Im GCPT(k, ω + iη). (3.84)

On the other hand, integrating A(k, ω) with respect to frequency ω, we can evaluate the momentum
distribution function n(k) defined as

n(k) =
∮

C

dz

2πi
GCPT(k, z). (3.85)

We can also evaluate the expectation values of the one-body parameter O as

〈O〉 =
1

NL

∑

αβ

Oαβ〈c†αcβ〉. (3.86)

From the Green’s function G in Eq. (3.77), the expectation value of O is given by

〈O〉 =
1

NL
TrOG =

1
NL

∮

C

dz

2πi

∑

Q

tr[OG(Q, z)]. (3.87)

Note that we sum up over momenta in the reduced Brillouin zone for the superlattice Q in Eq. (3.87).
For example, the expectation value of the number of particles n = 〈ni〉 is given, setting O = 1, as

n =
1

NL

∑

i

〈ni〉 =
1

NL

∮

C

dz

2πi

∑

Q

tr[G(Q, z)]. (3.88)

Note that, within the framework of the VCA, we use the optimized one-body parameter tOPT for the
CPT calculations.

3.6 Summary

In this Chapter, we have reviewed the numerical methods used in this thesis. First, we have intro-
duced the ED technique based on the Lanczos algorithm, which can solve the many-body problems in
finite-size systems exactly. We have also introduced the method for calculating dynamical correlation
functions with the ED technique. Next, we have introduced the VCA based on the SFT, where we
can take into account the effects of short-range spatial correlations even in low-dimensional systems in
the thermodynamic limit and can discuss the spontaneous symmetry breakings of correlated electron
systems beyond the mean-field theory. We have also introduced the CPT, which is useful for evaluating
the single-particle excitation spectrum and their integrated values such as the density of states and
momentum distribution function in the thermodynamic limit.
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Chapter 4

Excitonic Phase in the Extended
Falicov-Kimball Model

4.1 Introduction

The minimal theoretical model to investigate the excitonic condensation states in lattice systems is
the Falicov-Kimball type model [85]. The original Falicov-Kimball model describes localized f electrons
interacting via a local Coulomb repulsion with itinerant c electrons if they reside at the same site [85,86].
An extended version of the model takes into account the direct nearest-neighbor f -electron hopping [87].
The Hamiltonian of the extended Falicov-Kimball model (EFKM) is given as

H = −tf
∑

〈i,j〉
f†i fj + εf

∑

i

nf
i − tc

∑

〈i,j〉
c†i cj + εc

∑

i

nc
i + U

∑

i

nf
i nc

i

=
∑

k

εf
kf†kfk +

∑

k

εc
kc†kck +

U

L

∑

k,k′,q

f†k+qfkc†k′−qck′ , (4.1)

where α†i (α†k) denotes the creation operator of a spinless electron α (= f, c) at site i (momentum k).
Schematic picture of the EFKM is shown in Fig. 4.1(a). tα and εα are the electron hopping integral
on the neighboring sites and the energy level of an electron α, respectively. L is the number of sites.
εα
k is the energy band dispersion in k space of the band α. In this chapter, we assume εf < 0 and

εc > 0, so that the f and c bands correspond to the valence and conduction bands, respectively. The
noninteracting band structure is shown in Fig. 4.1(b); a small gap semiconducting or small overlapped
semimetallic state can be realized by tuning the on-site energy difference εc−εf . U (> 0) is the interband
Coulomb repulsive interaction, which parametrizes the interband Coulomb attraction between f -holes
and c-electrons. The Hamiltonian Eq. (4.1) is consistent with Eq. (2.1) in Sec. 2.2.1. Therefore, the
interband interaction U induces excitonic instability in the system.

The EFKM has been studied in the context of exciton condensation (as well as electronic ferroelec-
tricity [87–91]), where Hartree Fock (mean-field) approximation [89–92], slave boson approach [93–95],
random phase approximation [92,96], projection-based renormalization method [97,98], and variational

f

c

E
k

k

U

tc

tf εf

cε
(a) (b)

f

c

Figure 4.1: (a) Schematic representation of the extended Falicov-Kimball model (EFKM). (b) Non-
interacting band structure of the EFKM.
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cluster approach [99] have been used. At half-filling, it is known that the EFKM shows the three phases;
i.e., staggered orbital ordered (SOO) phase, exciton condensed (excitonic insulator, EI) phase and band
insulator (BI) phase. If the energy levels of the f and c electrons are located close to each other (εf ∼ εc),
the SOO phase characterized by the periodic staggered modulation of the partial density of f and c
electrons appears. In the opposite limit, where the energy level splitting between the f and c electrons
is large (εf ¿ εc), the BI state characterized by the completely filled f band appears. Between the SOO
and BI phases, the EI state is stabilized. The EI state is characterized by the spontaneous hybridization
between the c and f electrons induced by the interband interaction U . In the EI phase, the finite
temperature phase diagram in the system with the spatial dimension larger than three corresponds to
the phase diagram shown in Fig. 2.4 1 [92]. Starting from the noninteracting semimetallic state, the
EFKM can describe the smooth crossover of the exciton condensation state from the weak-coupling BCS
state to the strong-coupling BEC state with increasing U . Therefore, the EFKM is a simple spinless
model and suitable for discussing the BCS-BEC crossover of the exciton condensation state. Recently,
the EFKM is applied to the candidate materials of the EI such as 1T -TiSe2 [33] and Ta2NiSe5 [39] to
explain the experimental results.

In this Chapter, we investigate the exciton condensation state in the EFKM using unbiased numerical
techniques. Especially, we focus on the BCS-BEC crossover of the exciton condensation state in the
two-dimensional (2D) and one-dimensional (1D) lattice systems.

In Sec. 4.2, we address the problem of exciton condensation in an electron-hole double layer system
described by the 2D EFKM, where we use the exact-diagonalization (ED) technique2. We calculate the
anomalous excitation spectra, condensation amplitudes and exciton momentum distribution function in
the BCS, intermediate, and BEC regions. From the calculated condensation amplitude, we evaluate the
pair coherence length and order parameter of the condensate as a function of U . We also compare the
results of the ED with the results of the mean-field (MF) theory and variational cluster approximation
(VCA) at mass-symmetric case (tf = tc). Finally, we investigate the effects of a mass imbalance between
the f holes and c electrons based on the pair coherence length and exciton binding energy.

In Sec. 4.3, we investigate the EI state in the 1D EFKM3. First, we determine the phase boundary
of the SOO-EI and EI-BI transitions and describe the complete ground-state phase diagram of the 1D
EFKM from the large-scale density matrix renormalization group (DMRG) method [63]. In comparison
with the 2D system, the EI state in the 1D EFKM is critical. Then, we show a critical character of
the excitonic state in the 1D system by the central charge. We also show a crossover between the BCS
and BEC condensates by the exciton-exciton correlation and exciton momentum distribution functions.
Following the method used in the 2D systems, we also study the anomalous spectral function and extract
the pair coherence length and binding energy of the electron-hole pairs. This allows us to comment on
the nature of the excitonic bound states occurring in the condensation process and to discuss the effect
of a mass imbalance between the c-electrons and f -holes.

4.2 Two-Dimensional Double-Layer System

In this section, we discuss the BCS-BEC crossover of the exciton condensation state in the two-
dimensional double-layered system. Here, we assume that the energy level εα are taken as a chemical
potentials of each layer µα. In practice, we adjust the chemical potentials µf and µc to maintain the
numbers of electrons in the f and c layers independently. Without loss of generality, the f layer is
assigned to the hole (or valence-band) layer and the c layer to the electron (or conduction-band) layer.
This mimics the generic situation in semiconductor electron-hole double quantum wells [100–102], and
double-monolayer [103,104] or double-bilayer graphene systems [105]. We furthermore assume that the
excited electrons and holes have infinite lifetime and that the number of excited electrons is equal to
the number of excited holes. This is in accordance with the experimental situations in the majority of
cases [100,104,106–113].

To discuss the BCS-BEC crossover of the exciton condensation state, we use the Lanczos ED method.
In the ED investigation of the double-layer EFKM, we use finite-size square lattice of Lc = 4× 4 = 16

1The interband interaction U induces the Hartree shift, which enhances the energy level splitting between f and c
electrons. Thus, the semimetallic EI state becomes the semiconducting EI or BI states with increasing U . In comparison
with the phase diagram in Fig. 2.4, the EFKM does not include the screening effect that changes the size of the band gap
or overlap.

2Sec. 4.2 is based on T. Kaneko, S. Ejima, H. Fehske, and Y. Ohta, Phy. Rev. B 88, 035312 (2013) and JPS Conf.
Proc. 3, 017006 (2014).

3Sec. 4.3 is based on S. Ejima, T. Kaneko, Y. Ohta, and H. Fehske, Phy. Rev. Lett. 112, 026401 (2014).
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Figure 4.2: (a) Schematic representation of the 2D EFKM cluster model with Ns = 16 sites (32 orbitals).
(b) Non-interacting tight-binding band structure and (c) square lattice Brillouin zone. Dots indicate
the allowed momenta of the 4× 4 lattice with periodic boundary condition. Throughout this work, we
assume filling factors nf = 0.75 and nc = 0.25, i.e., (Nf , Nc) = (12, 4) which means nh = ne = 0.25,
irrespective of U . The red and blue lines in (c) show the perfectly matching hole and electron Fermi
surfaces, respectively, with finite-lattice Fermi momenta kF located at k = (±π/2, 0) and (0,±π/2) [114].

( π, π )

( π, π )

( π, 0 )
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0 2 84
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0 84
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Figure 4.3: Anomalous spectral function F (k, ω) in the mass-symmetric 2D EFKM with U/t = 0.5
(left), 5 (middle), and 50 (right). We use a Lorentzian broadening of η/t = 0.1.

sites (32 orbitals) with periodic boundary condition (PBC). We show the schematic representation of
the 2D EFKM cluster model in Fig. 4.2. Here, we assume a band structure with a direct band gap
(tctf < 0). The particle densities are fixed to be nf = 0.75 and nc = 0.25, i.e., (Nf , Nc) = (12, 4),
which realizes a quarter-filled electron and hole band: ne = nh = 0.25. For the 4 × 4 lattice with
(Nf , Nc) = (12, 4) considered, the Fermi momenta are located at kF = (±π/2, 0) and kF = (0,±π/2) at
U = 0 [see Fig. 4.2 (c)].

4.2.1 Anomalous Green’s Function

Let us first discuss the anomalous Green’s function. Using the ED technique, the anomalous Green’s
function is obtained from

Gcf (k, ω) = 〈Nf − 1, Nc + 1|c†k
1

ω + iη −H+ E0
fk|Nf , Nc〉 , (4.2)

where |Nf , Nc〉 is the ground state of the EFKM with fixed numbers of c and f electrons. In Eq. (4.2),
E0 is the average energy of the states |Nf , Nc〉 and |Nf − 1, Nc + 1〉 [114–116]. From Gcf (k, ω), we can
immediately deduce the anomalous spectral function: F (k, ω) = − 1

π ImGcf (k, ω). Note that, if |tf | = tc,
F (k, ω > 0) and the inverse function F (k,−ω) is symmetrical with respect to ω = 0. However, for the
mass-asymmetric case |tf | 6= tc, F (k, ω) is not consistent with F (k,−ω), and thus we need to calculate
the inverse function.

Figure 4.3 gives an intensity plot of F (k, ω) in the square-lattice Brillouin zone with |tf | = tc = t.
In the weak-coupling regime [see Fig. 4.3 (a)], F (k, ω) has a sharp peak at the Fermi momentum
kF = (π/2, 0), whose intensity goes almost to zero as soon as the momentum deviates from kF. With
increasing U/t, the lowermost peak of F (k, ω) shifts to higher energies, indicating an enhancement of
the exciton’s binding energy |EB |, which may also be evaluated from the ground-state energies [see
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Figure 4.4: Condensation amplitude F (k) (upper panels) and momentum distribution function N(q)
of excitons (lower panels) in the mass-symmetric 2D EFKM at U/t = 0.5 (left), 5 (middle), and 50
(right) [114].

below]. For U/t = 5 [see Fig. 4.3(b)], F (k, ω) still exhibits pronounced peak around kF, but to compare
with the spectrum at U/t = 0.5, F (k, ω) acquires substantial weight at momenta away from kF. In the
strong-coupling limit [see Fig. 4.3(c)], the spectral weight of F (k, ω) is redistributed to higher energies
and spread over the entire Brillouin zone. If the effective mass of the c electron is equal to that of the f
hole (or |tf | = tc = t), the exciton condensation state in the double-layer EFKM can be mapped onto
the superconducting (superfluid) state in the attractive Hubbard model. The behavior of F (k, ω) for the
exciton condensation state in the EFKM using the ED is consistent with that of the anomalous spectral
function for the superconducting state in the attractive Hubbard model obtained by the VCA [117]; see
also Appendix A.

4.2.2 Momentum Distribution Functions

To elucidate the nature of exciton condensation in momentum space, we now consider the condensa-
tion amplitude F (k) and the exciton momentum distribution N(q). Within the ED, the condensation
amplitude can be directly calculated from

F (k) = 〈Nf − 1, Nc + 1|c†kfk|Nf , Nc〉 . (4.3)

Introducing a creation operator b†q = (1/
√

Ns)
∑

k c†k+qfk of an excitonic quasiparticle with momentum
q, the momentum distribution function of excitons can be obtained from

N(q) =
〈
Nf , Nc b†qbq Nf , Nc

〉
. (4.4)

Figure 4.4 shows the corresponding data for the condensation amplitude F (k) and exciton momentum
distribution N(q) in the mass-symmetric case (|tf | = tc = t) in a wide parameter range of U . In the
weak-coupling regime [panels (a) and (d)], F (k) exhibits pronounced maxima at the Fermi momenta
kF = (±π/2, 0), (0,±π/2) where |F (kF)| ' 0.5 and decreases rapidly away from the ‘Fermi surface’,
pointing towards a BCS-type instability of weakly bound electron-hole pairs with s-wave symmetry.
The sharply peaked F (k) in momentum space indicates that the radius of the exciton is large in real
space, i.e., we observe a weakly bound electron-hole pair. In the weak coupling region, N(q) has a weak
peak at q = 0. As U increases, F (k) broadens in momentum space [see Fig. 4.4 (b)], indicating that the
radius of the bound electron-hole objects becomes smaller in real space. Accordingly, N(q) is enhanced
at momentum q = (0, 0) [see Fig. 4.4 (e)]. In the strong-coupling regime [see Fig. 4.4 (c) and (f)], F (k)
is homogeneously spread over the entire Brillouin zone, whereas N(q) is sharply peaked at q = (0, 0),
which is a sign of a BEC of tightly bound excitons. That is to say, as the attraction between electrons
and holes increases in the EFKM, we get evidence for a BCS-BEC crossover. In Appendix A, we show
the condensation amplitude for the Cooper pairs in the attractive Hubbard model, where we find that
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Figure 4.5: Coherence length ξ (squares), order parameter ∆ (diamonds), and exciton binding energy
EB (circles) for the mass-symmetric 2D EFKM as functions of U/t. For comparison, the asymptotics in
the strong-coupling limit ∆ ∝ 0.45U (dashed line) and |EB | ∝ U (dotted line) have been inserted [114].

the behavior of F (k) is consistent with that for the superconducting state in the attractive Hubbard
model.

4.2.3 Pair Coherence Length

The pair coherence length ξ gives valuable information as to the nature of the exciton condensate.
Using F (k), this quantity may be defined as

ξ2 =
∑

r r2|F (r)|2∑
r |F (r)|2 =

∑
k |∇kF (k)|2∑

k |F (k)|2 , (4.5)

where F (r) = 1√
L

∑
r′〈c†r′+rfr′〉 is the condensation amplitude in real space for the electron-hole pairs

with distance r [99,114,116,117]. Here, we assume the lattice constant a = 1.
The behavior of the coherence length with |tf | = tc = t is shown in Fig. 4.5. At small U/t, the

coherence length is larger than the lattice constant, as a consequence of the weakly bound electron-hole
pairs [see the behavior of F (k) shown in Fig. 4.4 (a)]. This is the BCS limit. Increasing U , ξ decreases
and first becomes comparable with, and finally becomes much smaller than the lattice constant. As a
result, the excitons become BEC-like tightly bound pairs at large U . Altogether, we observe a smooth
crossover from a BCS state of weakly paired electrons and holes (ξ À 1) to a BEC state of tightly
bound pairs (ξ ¿ 1). This crossover behavior is consistent with the calculated spectral and momentum
distribution properties of the system shown in Fig. 4.3 and Fig. 4.4.

At mass-symmetric case (|tf | = tc = t), the exciton condensation state in the double-layer EFKM
can be mapped onto the superconducting (superfluid) state in the attractive Hubbard model [117,118],
and thus we compare the coherence length calculated by the ED with results calculated by the VCA
and MF. The results obtained by the ED, VCA, and MF are shown in Fig. 4.6 (a). In contrast to the
coherence length obtained by the VCA and MF, ξ calculated by the ED stays finite as U/t → 0. This
is clearly a finite-size effect caused by the small number of available momenta in the Brillouin zone. In
the VCA and MF, we can treat the large number of momenta in the Brillouin zone, so that ξ diverges
as U/t → 0. In the intermediate-to-strong coupling regime, the coherence lengths calculated by the ED,
VCA, and MF are in quantitative agreement.

4.2.4 Order Parameter and Binding Energy

Let us discuss the order parameter for exciton condensation and binding energy of an electron and
a hole. The order parameter again can be obtained from the condensation amplitude as

∆ =
U

L

∑

k

〈c†kfk〉 =
U

L

∑

k

F (k), (4.6)
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where we also define the anomalous expectation value Φ =
∑

k〈c†kfk〉/L = ∆/U . Within our finite-
cluster approach, the exciton binding energy EB may be obtained as follow. Representing the f -c flavor
by electron-hole variables, i.e., f†i → hi and c†i → e†i , the interaction term of the EFKM takes the
form U

∑
i nf

i nc
i → −U

∑
i ne

i n
h
i + U

∑
i ne

i . We find that, in addition to the attractive electron-hole
interaction, an extra on-site energy term appears. Due to this term, we should first determine the energy
for the addition and removal of an electron:

E+
B = E0(Nf − 1, Nc + 1) + E0(Nf , Nc)− 2E0(Nf , Nc + 1) + U, (4.7)

E−
B = E0(Nf − 1, Nc + 1) + E0(Nf , Nc)− 2E0(Nf − 1, Nc)− U, (4.8)

where E0(Nf , Nc) is the ground-state energy of the system with (Nf , Nc) electrons. Then, if |tf | = tc,
the exciton binding energy EB equals E+

B = E−
B . For the mass-asymmetric case |tf | 6= tc, however,

E+
B 6= E−

B because E0(Nf , Nc + 1)− U 6= E0(Nf − 1, Nc). Hence, EB should be defined as the average
of E+

B and E−
B , i.e., in general, the exciton binding energy is given by

EB = E0(Nf − 1, Nc + 1) + E0(Nf , Nc)− E0(Nf − 1, Nc)− E0(Nf , Nc + 1). (4.9)

Figure 4.5 displays the U dependence of both the exciton order parameter and exciton binding energy
at |tf | = tc = t. The binding energy of an exciton, EB , is equal to twice of the order parameter ∆ in the
weak-coupling limit and deviate largely from this value in the strong-coupling regime. The results may
be compared with those of the BCS mean-field theory [22, 119], which gives ∆ and EB as a solution of
the self-consistent equations

1 =
U

2Ns

∑

k

1√
(εk − µ̄)2 + ∆2

, (4.10)

2n = 1− 1
Ns

∑

k

εk − µ̄√
(εk − µ̄)2 + ∆2

, (4.11)

where εk = 2t(cos kx + cos ky), n = ne = nh, µ̄ = µ − U(n − 1/2), and µf = −µc = µ. In the weak-
coupling limit, we should recover the usual BCS picture. ∆ should therefore increase exponentially
with U : ∆ ∝ exp(−1/ρ(εF)U), thereby satisfying the relation |EB | = 2∆ with ρ(εF) being the density
of states at the Fermi level. In the strong-coupling limit, on the other hand, the BCS equations yield
the asymptotic behavior: ∆ = U

√
n(1− n) =

√
3U/4 ' 0.433U and |EB | = 2

√
µ̄2 + ∆2 = U . The

numerical results obtained for ∆ and |EB | show that we find the BCS relation |EB | = 2∆ at weak
couplings. In the strong-coupling limit, ∆ and |EB | are found to be ∝ 0.45U and ∝ U , respectively,
which matches the BEC of composite bosons, where ∆ = 0.433U and |EB | = U for U/t →∞.

In Fig. 4.6 (b), we also compare the results of the ED, MF and VCA. In the weak-coupling region,
the ED obviously fails in reproducing the BCS mean-field-like behavior: Φ calculated by the ED stays
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finite as U/t → 0 and ∆ evaluated by the ED does not show the exponential increase at U/t & 0.
Clearly, this can be attributed to finite-size effects within our small cluster calculation. Remarkably,
the VCA yields the exponential increase expected in the weak-coupling limit [see inset of Fig. 4.6 (b)].
We furthermore note that Φ obtained by the VCA is in qualitative accordance with the ED and MF
results in the intermediate to strong coupling regime. For U/t & 5, Φ obtained by the VCA is reduced
in comparison to the MF result. This may be due to the effects of quantum fluctuations of exciton
condensation included in the VCA but not in the MF. Note that the calculations of the ED include
quantum fluctuations in the cluster, but the ED calculations tend to overestimate the order parameter
due to finite size effect. Due to quantum fluctuations, Φ calculated by the VCA is suppressed in
comparison with the result of the MF theory, Φ ∼ 0.405 < 0.433 at U →∞.

4.2.5 Effect of Mass Asymmetry

In this section, we address the effects of a mass imbalance between f holes and c electrons. Since
|tf | 6= tc it makes sense to use U as the unit of energy and determine the exciton binding energy EB and
coherence length ξ in dependence on |tf |/U . Figure 4.7 shows the results for tc/U = 1 in comparison to
the mass-symmetric case where a BCS-to-BEC crossover occurs with decreasing |tf |/U . By contrast, ξ
is not reflective of such a crossover for tc 6= |tf |, and the exciton binding energy even weakens at strong
couplings |tf |/U ¿ 1.

In the strong-coupling region, where both |tf |/U and tc/U are small, the EFKM can be mapped
onto the XXZ quantum spin-1/2 model in a magnetic field [87],

HXXZ = J
∑

〈i,j〉

(
Sx

i Sx
j + Sy

i Sy
j + ∆Sz

i Sz
j

)− h
∑

i

Sz
i

= J
∑

〈i,j〉
[Si · Sj + δSz

i Sz
j ]− h

∑

i

Sz
i , (4.12)

where Si = (1/2)
∑

α,β α†iσαββi (α, β = f, c; σ is the vector of Pauli matrices), J = 4|tf |tc/U , ∆ =
(t2f + t2c)/(2|tf |tc), and δ = (|tf |− tc)2/(2|tf |tc). h = 2µ is determined in order to maintain

∑
i Sz

i = 1/4.
The effective model is isotropic in spin space for the case of |tf | = tc, and exhibits antiferromagnetic
order in the x-y plane at zero temperature. This long-range ordered state corresponds to an exciton
condensate in the original EFKM. Different hopping parameters tc 6= |tf | give rise to an Ising anisotropy
∆ (or δ), which tends to suppress the x-y antiferromagnetic order. Accordingly, the exciton binding
energy |EB | (excitonic condensate) is suppressed as |tf |/U → 0.

Figure 4.8 compiles our EB (left panel) and ξ (right panel) data by two contour plots in the tc/U -
|tf |/U plane. For the mass-symmetric case tc = |tf |, i.e., on the diagonals of Fig. 4.8, both |EB |/U
and ξ indicate a smooth crossover from BCS to BEC as U increases. On the other hand, at sufficiently
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Figure 4.7: Binding energy EB/U (left ordinate) and coherence length ξ (right ordinate) for the mass-
asymmetric (filled symbols) and mass-symmetric (open symbols) 2D EFKM as functions of |tf |/U at
tc/U = 1 [114].
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Figure 4.8: (a) Exciton binding energy EB/U and (b) coherence length ξ of the 2D EFKM in the
tc/U–|tf |/U plane [114].

weak Coulomb interactions, tc/U & 0.3, we stay in the BCS-like state as |tf |/U is varied by changing
the absolute value of tf/tc. Note that a strong mass imbalance between electrons and holes acts in a
‘pair-breaking’ way in both the BCS [23] and BEC [120] limits.

4.3 One-Dimensional System

In this section, we investigate the exciton condensation state in one-dimensional system. Here, we
assume the energy levels εα as a level splitting between the f and c electrons; εc = −εf = D/2. In
comparison with the previous section, we do not tune the number of electrons in the f and c chain
independently, which indicates the number of electron of each chain can not be maintained by changing
D and U . Note that we assume the half filling; the total number of electrons is constant with nf +nc = 1.
This situation may correspond to the ground state of candidates materials as excitonic insulators.

To discuss the EI state in the 1D EFKM, we mainly use the large-scale DMRG [63] method4. In
the DMRG calculation, we keep at least m = 3200 density-matrix eigenstates which ensure a discarded
weight smaller than 1× 10−6. We also use the ED to calculate the dynamical Green’s function defined
in Eq. (4.2). In the ED calculation, we use L = 16 site (32-orbitals) cluster. Note that, in our 1D
setting, we use the term ‘condensate’ to indicate a critical phase with power-law correlation decay. In
this section, we assume tc = t = 1 as a unit energy.

4.3.1 Phase Diagram

First, we describe the phase diagram of the 1D EFKM in the U–D plane. To investigate the EI state
in the one-dimensional system, the strong-coupling (large-U) limit gives a first hint of which phases
might be realized in the 1D EFKM. At the strong coupling regime, the 1D EFKM can be mapped
onto the exactly solvable spin-1/2 XXZ-Heisenberg model in a magnetic field h = D aligned in the
z-direction [121] (see Eq. (4.12) ). The XXZ model exhibits three phases in the 1D chain system: the
gapped antiferromagnetic (AF) phase, the critical gapless XY phase, which is discussed below, and the
ferromagnetic (FM) phase. Transition lines, between the AF and XY phases (hc1 = DXXZ

c1 ), and between
the XY and FM phases (hc2 = DXXZ

c2 ), are given from the Bethe ansatz [122,123]:

hc1 = DXXZ
c1 =

2πJ sinhφ

φ

∞∑
m=0

1
cosh[(2m + 1)π2/2φ]

, (4.13)

hc2 = DXXZ
c2 = J(1 + ∆), (4.14)

where φ = cosh−1 ∆ and ∆ = (|tf |2 + t2c)/(2|tf |tc) in Eq. (4.12).
4DMRG calculations were performed by Dr. S. Ejima.
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Figure 4.9: Ground-state phase diagram of the half-filled 1D EFKM with |tf | = 0.1. Here and in what
follows, we take tc as the unit of energy. Squares (circles) denote the EI-BI (EI-SOO) transition points
Dc2 (Dc1) obtained by DMRG method with up to L = 128 sites and OBC. The solid line gives the
analytical solution (4.15) for the EI-BI boundary; the dotted line shows the strong-coupling result for
the EI-SOO boundary. The finite-size scaling of Dc1(L) is illustrated by the inset (open symbols), here
the corresponding strong-coupling data are given by filled symbols [125].

Correspondingly, increasing the magnitude of the f -c level splitting D in the EFKM, we expect to
find the following sequence of phases: (i) the SOO phase that matches the Ising-like AF phase in the
XXZ model, (ii) an intermediate critical EI phase, which is consistent with the critical XY phase in the
XXZ model, and (iii) a BI state, which is characterized by a filled (empty) f (c) band and related to
the FM phase of the XXZ model. The phase boundary separating the EI and BI states in the EFKM
is exactly known to be [124]

Dc2 =
√

4(|tf |+ |tc|)2 + U2 − U . (4.15)

In the finite-size system, the transition points of the SOO-EI (AF-XY) and EI-BI (XY-FM) in the
EFKM are given by

Dc1(L) = E0(L/2 + 1, L/2− 1)− E0(L/2, L/2) , (4.16)
Dc2(L) = E0(L, 0)− E0(L− 1, 1) , (4.17)

respectively, corresponding to the XXZ model. Here, E0(Nf , Nc) denotes the ground-state energy for a
system with Nf and Nc at D = 0.
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Figure 4.10: Central charge obtained at U = 5 for various L and PBC. Criticality, c∗ ∼ 1, is observed
for the EI [125].
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Figure 4.11: (a) Exciton-exciton correlation function 〈b†i bj〉 and (b) excitonic momentum distribution
function N(q) at U = 1 and (c) 1.9 for tf = −0.1, D = 1. Data are obtained by the DMRG for 1D
L-site lattices with PBC [125].

The complete phase diagram of the 1D EFKM is presented in Fig. 4.9. Symbols denote the DMRG
BI-EI and EI-SOO transition points, which can be obtained from Eq. (4.16) and Eq. (4.17), respectively,
in the course of a finite-size scaling analysis up to L = 128 (see the inset). Note that Eq. (4.17) holds
for both open and periodic boundary conditions (OBC/PBC), whereas Eq. (4.16) has to be evaluated
with PBC (if OBC were used here, an extra factor 2 results: DOBC

c1 = 2Dc1). The Dc2(L → ∞)
values demonstrate the accuracy of our DMRG calculations. Exact results for Dc1(L →∞) can only be
obtained numerically, where a comparison with the dotted line reveals the limits of the strong-coupling
approach. Even if we assume indirect gap with tf tc > 0, we can get exactly the same phase diagram.

4.3.2 Criticality of Excitonic Insulator

Next, we discuss the criticality of the EI phase in the 1D EFKM. Corresponding to the critical
XY phase in the XXZ model, the EI state in the 1D EFKM should be characterized by the central
charge c = 1. The central charge can be confirmed by the von Neumann entanglement entropy SL(`) =
−Tr`(ρ` ln ρ`) (with reduced density matrix ρ` = TrL−`(ρ)). Numerically, the central charge is best
estimated from the entropy difference [126,127]:

c∗(L) ≡ 3[SL(L/2− 1)− SL(L/2)]
ln [cos(π/L)]

. (4.18)

The results from DMRG calculation are shown in the Fig. 4.10 for |tf | = 0.1 at U = 5. It give clear
evidence that c∗ → 1 in the EI, whereas we find c∗ = 0 in the BI and SOO phases.

We also discuss the nature of the EI state with the correlation function. As a signature of an
excitonic Bose-Einstein condensate in 1D, one expects (i) a power-law decay of the correlations 〈b†i bj〉
with b†i = c†ifi and (ii) a divergence of the excitonic momentum distribution N(q) = 〈b†qbq〉 with
b†q = (1/

√
L)

∑
k c†k+qfk for the state with the lowest possible energy (in the direct gap case at q = 0)

due to the absence of true long-range order. In Fig. 4.11, we show the correlation function calculated
by DMRG. Calculated results support these expectations: Whereas in the weak-coupling BCS regime
(U = 1), 〈b†i bj〉 decays almost exponentially (see Fig. 4.11(a)) and N(q) shows only a marginal system-
size dependence for all momenta (see Fig. 4.11(b)), in the strong-coupling BEC regime close to the
EI-BI transition (U = 1.9), 〈b†i bj〉 exhibits a rather slow algebraic decay of the excitonic correlations
(see Fig. 4.11(a)) and N(q = 0) becomes divergent as L →∞ (see Fig. 4.11(c)).

4.3.3 BCS-BEC Crossover

Following the previous section, we discuss the excitonic BCS-BEC crossover using the anomalous
Green’s function Gcf (k, ω) in Eq. (4.2). Figures 4.12(a) and 4.12(b) show the anomalous spectral
function F (k, ω) calculated by the ED method in the weak-coupling (U = 1) and strong-coupling
(U = 1.9) regimes, respectively, at D = 1. At U = 1, EI arises from a semimetallic phase and the most
of the spectral weight of the quasiparticle excitations is located around the Fermi points k = ±kF. The
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Figure 4.12: Anomalous spectral function F (k, ω) in the 1D EFKM with U = 1 (a) and U = 1.9 (b),
where tf = −0.1, D = 1. Data are obtained by ED using η = 0.1, L = 16, and PBC. Numerical
results for F (k) (c) and E(k) (d) are shown for U = 1 (circles), 1.5 (diamonds), 1.7 (triangles), and 1.9
(squares). F (k) is determined by the DMRG for L = 64 (PBC), whereas E(k) is extracted from the
lowest peaks of single-particle spectra A(k, ω) calculated by ED for L = 16 (PBC). Dashed lines in the
panel (c) mark the corresponding Fermi momenta kF = πNc/L in the noninteracting limit [125].

sharply peak around the Fermi points k = ±kF in momentum space indicates that the radius of the
exciton is large in real space, indicating a weak BCS-type pairing of electrons and holes. Fermi surface
effects play no role at U = 1.9 where the Hartree shift drives the system to the semiconducting regime.
Here, the F (k, ω) has a large peak at k = 0 and the peaks become larger in the entire momentum space
in comparison with the weak coupling region. Spreading out of F (k, ω) in momentum space indicates
the radius of electron-hole pairs becomes small in real space. The gap between the lowest energy peaks
observed in F (k, ω) is equal to the binding energy EB given by Eq. (4.9), and it enhances with increasing
U .

To investigate the nature of excitons in momentum space in detail, we evaluate the condensation
amplitude F (k) with large size DMRG calculation. In Fig. 4.12(c), we display F (k) calculated by DMRG
with L = 64. At U = 1, F (k) exhibits a sharp peak at the Fermi momentum, corresponding to F (k, ω).
Increasing U , F (k) becomes broad in momentum space and the peak shifts to smaller momenta. Close
to the EI-BI transition point U = 1.9 . Uc2 = 1.92, F (k) has a maximum at k = 0 but is spread out in
momentum space, indicating a strong BEC-type pairing of electrons and holes.

In Fig. 4.12(d), we also show the quasiparticle dispersion E(k) derived from single-particle excitation
spectrum A(k, ω) by the ED method. Driving the BCS-BEC crossover by increasing U , the peaks around
k = ±kF disappear as well as the notch around k = 0. Instead a valence band with a flat top around
k = 0 develops, just as observed e.g. in quasi-1D Ta2NiSe5 [36].

Figure 4.13 shows the calculated binding energy EB defined in Eq. (4.9) and the coherence length ξ
defined in Eq. (4.5) in the EI phase of the 1D EFKM with |tf | = 1 (left panels) and 0.1 (right panels)
by the DMRG. At small U , EB is rather small, but increases exponentially with U , indicating a BCS
pairing mechanism [see Fig. 4.13 (a) and (b)]. On the other hand, corresponding to F (k), the excitonic
state is composed of electron-hole pairs having large spatial extension, leading to large values of ξ [see
Fig. 4.13 (c) and (d)]. At large U , the binding energy EB increases linearly with U . Here, small values
of ξ indicates tightly bound spatially confined excitons in a Bose-Einstein condensation process.

We address the influence of a mass imbalance between f - and c-band quasiparticles. In the mass-
symmetric case |tf | = tc, EFKM is consistent with the 1D Hubbard model at D = 0. Here, we cannot
distinguish between the AF (with vanishing spin gap) and EI phases, because both phases are critical.
Therefore, in this limit, we have examined the 1D EFKM for Nf > L/2. To this end, both the U and D
axes in Fig. 4.13 have been rescaled by (|tf |+ tc), as suggested by the EI-BI transition lines Eq.(4.15).
Indeed, we find that EI phase shrinks as |tf | decreases. That is, the mass anisotropy gets stronger,
which is simply a bandwidth effect, however, leading to a stronger Ising anisotropy. This, on their part,
enlarges the SOO region at small D region, while the EI-BI phase boundary basically is unaffected.
Importantly, the location of the BCS-BEC crossover, which can be derived from the intensity plots for
EB and ξ, does not change in this presentation.

To expose correlation effects, we include in Fig. 4.13 the semimetallic-to-semiconducting transition
line assuming that the EI phase is absent. UBI(D) can be obtained from the band gap ∆c that depends
linearly on U for fixed D: ∆c(D) = U + 2(|tf |+ tc) + UBI(D) [i.e., UBI(D) scales again with |tf |+ tc].
Apparently, in the BCS-BEC crossover regime, a strong renormalization of the band structure due to

40



Chapter 4. Excitonic Phase in the Extended Falicov-Kimball Model

(d)(c)

(b)(a)

Figure 4.13: Intensity plots of the binding energy EB (upper panels; L = 128, OBC) and the coherence
length ξ (lower panels; L = 64, PBC) in the rescaled U/(|tf |+tc)–D/(|tf |+tc) plane. Data were obtained
by the DMRG for Nf > L/2 (to avoid the AF state in the Hubbard model limit |tf | = 1, D = 0). Solid
lines denote the SOO-EI and EI-BI transition points in the thermodynamic limit (in the lower panels
the small uncolored slot just above the SOO-EI appears because |EB| and ξ are obtained here for a
fixed finite system size). The dashed line [UBI(D)] would separate the semimetallic and semiconducting
phases if the EI is assumed to be absent [125].

the incipient f -c hybridization takes place.

4.4 Summary

In this Chapter, we have investigated the exciton condensation state in the EFKM and the nature
of the BCS-BEC crossover of the condensation by using the ED and DMRG. In Sec. 4.2, we have
investigated the formation and condensation of excitons in the double-layer EFKM on the square lattice
by using ED technique. We have analyzed the nature of excitonic condensation states on the basis of
the interband interaction U dependence of the anomalous excitation spectrum, condensation amplitude,
coherence length, exciton binding energy, and order parameter. We have compared the results of the
ED with the results of the VCA and MF at the mass-symmetric case; in this respect, the VCA turns out
to be especially advantageous in the weak-to-intermediate coupling regime. We have also investigated
the effect of the mass asymmetry of electrons and holes. We found that a mass asymmetry between
electrons and holes suppresses the condensation of excitons.

In Sec. 4.3, we have examined the one-dimensional EFKM by using the numerically exact DMRG
technique and proved that the EI state is critical in contrast to the higher dimensional systems. The
phase boundary between the BI, EI, and SOO was determined with high accuracy and the complete
ground-state phase diagram was derived. The related anomalous spectral function clearly showed the
different nature of the electron-hole pairing and condensation process at the weak and strong couplings.
At fixed level splitting, the binding energy between c electrons and f holes is exponentially small in
the weak-coupling regime and strongly increases as the Coulomb attraction increases. Concomitantly,
the coherence length of the electron-hole pair condensate shortens. This unambiguously demonstrates
a crossover from the BCS-like electron-hole pairing to the BEC of preformed excitons.
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Chapter 5

Roles of Interband Exchange
Interaction for Excitonic Phases

5.1 Introduction

In the previous Chapter, we investigated the excitonic phase in the extended Falicov-Kimball model
(EFKM). The EFKM is the simplest model to study the excitonic phase, but the EFKM does not
include the spin degrees of freedom. In real materials, electron has spin degrees of freedom, and thus
we need to investigate the excitonic phase with spinful model. The simplest model to discuss the
excitonic phases with spin degrees of freedom is the two-band Hubbard model (TBHM). In the TBHM,
the excitonic phases are characterized by an order parameter 〈c†k+Qσfkσ′〉, where c†kσ and f†kσ are the
creation operators of an electron with spin σ in the conduction and valence bands, respectively. If the
valence-band top and conduction-band bottom are separated by the wave vector Q, the system shows
the density wave with modulation Q [14, 15]. When the order parameter has spin degrees of freedom,
two possible excitonic phases can be realized, i.e. excitonic charge density wave (CDW) state, which
is a spin-singlet excitonic state, and excitonic spin density wave (SDW) state, which is a spin-triplet
excitonic state.

In this section, we study the stability of the excitonic density-wave states in the TBHM with the
interband exchange interaction1. It is known that the interband Coulomb repulsion induces the excitonic
instability in the system [57, 128], but the condensations of the spin-singlet and spin-triplet excitons
are exactly degenerate unless interband exchange interaction or electron-phonon coupling are taken
into account. Thus, in this section, we study the roles of the interband exchange and pair-hopping
interactions played in the excitonic density wave formation. We first rewrite the interband interaction
terms of the Hamiltonian in terms of the creation and annihilation operators of the spin-singlet and
spin-triplet excitons. We then show that the interband repulsion U ′ actually leads to the exciton
formation in both the spin-singlet and spin-triplet channels and that the interband exchange interaction
J always lowers the energy of the spin-triplet exciton and raises the energy of the spin-singlet exciton.
The variational cluster approximation (VCA) [80, 82] is then used to study the TBHM in detail, and
we show that the interband exchange and pair-hopping interactions always stabilize the excitonic SDW
state and destabilize the excitonic CDW state. The characteristics of these excitonic density-wave states
will moreover be examined using a variety of physical quantities, including the single-particle spectral
function, density of states (DOS), condensation amplitude, and pair coherence length.

5.2 Model and Method

5.2.1 Two-band Hubbard model

We consider the TBHM with interband exchange and pair-hopping terms,

H = He +HU
e-e +HU ′

e-e +HJ
e-e +HJ′

e-e, (5.1)

defined on a two-dimensional square lattice.
1Chap. 5 is based on T. Kaneko, and Y. Ohta, Phy. Rev. B 90, 245144 (2014).
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The noninteracting f and c band electrons are described by

He = −tf
∑

〈i,j〉

∑
σ

f†iσfjσ + εf

∑

i

nf
i − tc

∑

〈i,j〉

∑
σ

c†iσcjσ + εc

∑

i

nc
i

=
∑

k

∑
σ

εf
kf†kσfkσ +

∑

k

∑
σ

εc
kc†kσckσ, (5.2)

where α†iσ (α†kσ) denotes the creation operator of an electron at site i (momentum k) and spin σ (=↑, ↓)
in the α (= f, c) band and nα

i = nα
i↑ + nα

i↓ = α†i↑αi↑ + α†i↓αi↓ is the number operator at site i in
the α band. tα is the electron hopping integral between the neighboring sites and εα is the energy
level of the α band. On the two-dimensional square lattice, the dispersion of the band α is given by
εα
k = −2tα(cos kx +cos ky)+εα. The chemical potential µ is fixed to ensure a filling of two electrons per

site (half filling), i.e., 〈nf
i 〉+ 〈nc

i 〉 = 2. In this section, we fix the hopping parameters as tf = tc = t and
use t as the unit of energy. Furthermore, we set εc = −εf = D > 0, so that the f and c bands correspond
to the valence and conduction bands, respectively. The conduction-band bottom at k = (0, 0) gives rise
to an electron pocket, while the valence-band top produces a hole pocket at k = (π, π), resulting in the
modulation vector of the density wave Q = (π, π). Figure 5.1(a) and 5.1(b) show the band dispersions
and Fermi surfaces in the Brillouin zone of the square lattice.

The intraband Coulomb interaction takes the form

HU
e-e = Uf

∑

i

nf
i↑n

f
i↓ + Uc

∑

i

nc
i↑n

c
i↓

=
Uf

N

∑

k,k′,q

f†k+q↑fk↑f
†
k′−q↓fk′↓ +

Uc

N

∑

k,k′,q

c†k+q↑ck↑c
†
k′−q↓ck′↓, (5.3)

where Uα (> 0) is Coulomb interaction between electrons in the α band. In this study, we assume
Uf = Uc = U for simplicity. The interband Coulomb interaction takes the form

HU ′
e-e = U ′∑

i

nf
i nc

i

=
U ′

N

∑

k,k′,q

∑

σ,σ′
f†k+qσfkσc†k′−qσ′ck′σ′ , (5.4)

where U ′ (> 0) gives the Coulomb interaction between the interband electrons, which is responsible for
an effective electron-hole attraction, leading eventually to an excitonic instability in the system. This
Hamiltonian HU ′

e-e is a dominant term discussed in Ref. [14] and is consistent with Eq. (2.60) in Sec. 2.3.1.
The interband exchange interaction such as Hund’s rule coupling, is defined by

HJ
e-e = −2J

∑

i

(Sf
i · Sc

i +
1
4
nf

i nc
i )

=
J

N

∑

k,k′,q

∑

σ,σ′
f†k+qσckσc†k′−qσ′fk′σ′ , (5.5)

where Sα
i =

∑
σ,σ′ α

†
iσσσσ′αiσ′/2 and σ is the vector of Pauli matrices. J (> 0) is the strengths of the

interband exchange interaction. This Hamiltonian HJ
e-e is consistent with Eq. (2.61) in Sec. 2.3.1. The

pair-hopping interaction is defined by

HJ′
e-e = −J ′

∑

i

(
c†i↑c

†
i↓fi↑fi↓ + f†i↑f

†
i↓ci↑ci↓

)

=
J ′

N

∑

k,k′,q

(
c†k+q↑c

†
k′−q↓fk′↓fk↑ + f†k+q↓f

†
k′−q↑ck′↑ck↓

)
, (5.6)

where J ′ (> 0) is the strengths of the pair-hopping interaction. This Hamiltonian HJ′
e-e is consistent

with Eq. (2.62) in Sec. 2.3.1.
The Hamiltonian (5.1) in the spinless case with U = J = J ′ = 0 is equivalent to the extended

Falicov-Kimball model with dispersive c and f electrons, of which the excitonic insulator state has been
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Figure 5.1: (a) Noninteracting band structure and (b) Fermi surface of the two-dimensional square
lattice at half-filling and D/t = 3.2. The electron and hole pockets are located at k = (0, 0) and
k = (π, π), respectively, and the nesting vector is give by Q = (π, π). (c) The phase diagram of the
TBHM without the exchange interactions (J = J ′ = 0) at D/t = 3 [128].

studied much in detail [87, 96, 99, 114, 125]. The excitonic phases in the TBHM without the interband
exchange and pair-hopping terms (J = J ′ = 0) have also been studied [57,128], where it was shown that
the model exhibits three ground-state phases: (i) the band insulator (at U ′, D À U, J), where 〈nf 〉 = 2
and 〈nc〉 = 0, (ii) the antiferromagnetic Mott insulator (at U, J À U ′, D), where 〈nf 〉 = 〈nc〉 = 1, and
(iii) the excitonic density-wave state between the above two phases, where 2 > 〈nf 〉 > 1 > 〈nc〉 > 0 [see
Fig. 5.1(c)].

5.2.2 Stability of Spin-singlet and Spin-triplet Excitonic States

To see the stability of the spin-singlet and spin-triplet excitons, let us first introduce the creation
operators of the spin-singlet and spin-triplet excitons, which are defined respectively as2

A0
i
†

=
1√
2

∑
σ

c†iσfiσ, (5.7)

Ai
† =

1√
2

∑

σσ′
c†iσσσσ′fiσ′ . (5.8)

Using the spin-singlet and spin-triplet exciton operators thus defined, the interband Coulomb repulsion
term in Eq. (5.4) can be divided exactly into the spin-singlet and spin-triplet terms as

U ′nifnic = −U ′A0
i
†
A0

i − U ′A†
i ·Ai. (5.9)

Therefore, the formation of excitons lowers the energy of the system in both the spin-singlet and the
spin-triplet channels by the same amount. The interband exchange and pair-hopping interactions in
Eq. (5.5) and (5.6) can also be rewritten exactly as

−JSif · Sic =
3J

4
A0

i
†
A0

i −
J

4
A†

i ·Ai, (5.10)

−J ′c†i↑c
†
i↓fi↑fi↓ =

J ′

4
A0

i
†
A0

i
† − J ′

4
A†

i ·A†
i . (5.11)

Therefore, due to the interband exchange interaction J , the formation of the spin-triplet (spin-singlet)
excitons always lowers (raises) the energy of the system, thus lifting the degeneracy that occurs at
J = J ′ = 0. The pair-hopping term J ′ can also be divided into the spin-singlet and spin-triplet terms
as in Eq. (5.11), which are of the off-diagonal form.

2When we use the electron-electron operator, spin-singlet state is given as 1√
2
(c†↑f

†
↓ − c†↓f

†
↑ )|0〉. However, in Eq. (5.7),

we use electron-hole operator, so that the spin-singlet state is given as 1√
2
(c†↑f

†
↓ − c†↓f

†
↑ )|0〉 = 1√

2
(c†↑f↑ + c†↓f↓)[f

†
↑f†↓ |0〉].
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5.2.3 Variational Cluster Approximation

We use the VCA [80, 82], which is a quantum cluster method based on the self-energy functional
theory (SFT) [77, 78], and we solve the quantum many-body problem defined in Eq. (5.1). Details of
the SFT and VCA have been written in Sec. 3.3 and Sec.3.4. To study the symmetry-broken phases in
the VCA, we introduce the Weiss fields as variational parameters. The variational Hamiltonian for the
excitonic CDW (spin-singlet) and SDW (spin-triplet) states are then defined as

H′CDW = ∆′
0

∑

k,σ

c†k+Qσfkσ + H.c. = ∆′
0

∑

i,σ

eiQ·ric†iσfiσ + H.c., (5.12)

H′SDW = ∆′
z

∑

k,σ

σc†k+Qσfkσ + H.c. = ∆′
z

∑

i,σ

σeiQ·ric†iσfiσ + H.c., (5.13)

respectively, where ∆′
0 is the Weiss field for condensation of the spin-singlet excitons and ∆′

z is the z
component of the Weiss field for condensation of the spin-triplet excitons. The variational parameters
∆′

0 and ∆′
z are optimized on the basis of the variational principle, i.e., ∂Ω/∂∆′

0 = 0 for the excitonic
CDW state and ∂Ω/∂∆′

z = 0 for the excitonic SDW state. The solutions with ∆′
0 6= 0 and ∆′

z 6= 0
correspond to the excitonic CDW and SDW states, respectively.

We solve the eigenvalue problem H′|ψ0〉 = E0|ψ0〉 of a finite-size (Lc sites) cluster to obtain the
ground state, and we calculate the trial Green’s function of the reference system by the Lanczos exact-
diagonalization method. Using the basis Ψ†

i = (f†iσ, c†iσ), the Green’s-function matrix Ĝ′σ may be written
as

Ĝ′σ(ω) =
(

Ĝ′ff
σ (ω) Ĝ′fc

σ (ω)
Ĝ′cf

σ (ω) Ĝ′cc
σ (ω)

)
, (5.14)

where Ĝ′αβ
σ is an Lc × Lc matrix and the matrices are indicated by a hat hereafter. In our VCA

calculation, we assume the two-dimensional square lattice and use an Lc = 2× 2 = 4 site (eight-orbital)
cluster as the reference system.

5.3 Results

5.3.1 Stability of Excitonic Phases

First, let us examine the stability of the excitonic CDW and SDW states using the grand potential.
In Fig. 5.2(a), we show the calculated grand potentials of the excitonic CDW and SDW states as
a function of the variational parameter ∆′, which are obtained using the atomic-limit relation U ′ =
U −2J [130–132]. We find that the grand potential has the stationary points at ∆′ = 0 and ∆′ 6= 0, and
the latter is lower in energy, indicating that the excitonic density-wave states are thermodynamically
stable. Figure 5.2(a) clearly shows that the SDW is stabler than the CDW.

However, if we assume the atomic-limit relation U ′ = U − 2J , the change in the parameter values,
e.g., J , leads to the change in the overlap of the valence and conduction bands and hence to the change
in the number of conduction-band electrons (and valence-band holes) as shown in Fig. 5.2 (b). The
reason for the change in the overlap of the valence and conduction bands can be seen in the mean-field
approximation. In the mean-field theory applied to our model Eq. (5.1), the diagonal terms of the
mean-field Hamiltonian are given by εf (k) = −εc(k) = −2t

∑d
i cos ki − D + n(U/2 − U ′ + J/2) with

n = 〈nifσ〉−〈nicσ〉, and thus the Hartree shift n(U/2−U ′+J/2) that changes the band overlap appears in
this expression [38]. Depending on the values of U , U ′ and J , we therefore find, e.g., the Mott-insulator
state at U ′ ¿ (U +J)/2 and the band-insulator state at U ′ À (U +J)/2 [57,128], which are due simply
to the effect of the Hartree shift. The change in the depth of band overlap (or the change in the number
of carriers) affects the stability of the excitonic phases [128] and this gives an additional complexity to
our calculations because in this study we just want to focus on the relative stability of the excitonic
CDW and SDW states in the presence of the interband exchange and pair-hopping interactions. The
effects of this Hartree shift can be suppressed completely if we assume the relation U ′ = (U + J)/2.
Hereafter, unless we mention otherwise, we assume the relation U = 2U ′ − J to suppress the Hartree
shift, and we use the value U/t = 8 and D/t = 3.2 at which the excitonic density-wave state is stabilized
between the band-insulator and the Mott-insulator states [128].

In Fig. 5.2 (c), we show the calculated grand potentials of the excitonic CDW and SDW states as a
function of the variational parameter ∆′, which are obtained using the relation U = 2U ′−J and changing
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Figure 5.2: (a) Calculated grand potentials of the excitonic CDW and SDW states as a function of the
variational parameter ∆′ (= ∆′

0, ∆
′
z), which are obtained using the atomic-limit relation U ′ = U − 2J

with U/t = 5, J/t = J ′/t = 0.5 and D/t = 2. The crosses and circles indicate the stationary points
for the excitonic CDW and SDW states, respectively. (b) The number of the conduction-band electrons
〈nc〉 (or the valence-band holes) as a function of J/t in the normal state (or ∆′ = 0), which is obtained
using the atomic-limit relation U ′ = U − 2J with U/t = 5, D/t = 2, and J ′ = 0. (c) Calculated
grand potentials for the excitonic CDW and SDW states as a function of the variational parameter ∆′

(= ∆′
0, ∆

′
z), which are obtained using the relation U ′ = (U + J)/2 and U/t = 8 and D/t = 3.2, at

J/t = J ′/t = 0, 0.25, 0.5, 0.75, and 1. Ω0 is the grand potential in the normal (semimetallic) state. The
crosses and dots indicate the stationary points of the excitonic CDW and SDW states, respectively. (d)
J (= J ′) dependence of the grand potential at the stationary point for the normal (or semimetallic),
excitonic CDW, and SDW states. (e) Optimized values of the grand potentials in the presence (J ′ = J)
and absence (J ′ = 0) of the pair-hopping term. (f) J dependence of the order parameters of the excitonic
CDW and SDW states in the presence (J ′ = J) and absence (J ′ = 0) of the pair-hopping term [129].

the exchange interaction J . At J = J ′ = 0, the grand potentials of the excitonic CDW and SDW states
are exactly degenerate [see Fig. 5.2(a)], but J and J ′ lift this degeneracy. The optimized values of the
grand potential as a function of J (=J ′) are shown in Fig. 5.2(d), where we find that, with increasing J
(and J ′), the energy of the excitonic SDW state decreases, but the energy of the excitonic CDW state
increases and approaches the energy of the normal semimetallic state. Therefore, the excitonic SDW
(CDW) state is stabilized (destabilized) by J and J ′. In Fig. 5.2(e), we show the optimized values of
the grand potentials in the presence (J ′ = J) and absence (J ′ = 0) of the pair-hopping term, where we
find that the stability of the excitonic SDW (CDW) state is enhanced (suppressed) by the pair-hopping
term J ′.

We also calculate the order parameters of the excitonic CDW and SDW states. Here, we introduce
the quantities Φ0 and Φz for the excitonic CDW and SDW order parameters, respectively, which are
defined as

Φ0 =
1

2N

∑

k

∑
σ

〈c†k+Qσfkσ〉, (5.15)

Φz =
1

2N

∑

k

∑
σ

σ〈c†k+Qσfkσ〉. (5.16)
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The calculated results for Φ0 and Φz are shown in Fig. 5.2(f) in the presence (J ′ = J) and absence
(J ′ = 0) of the pair-hopping term. We find that Φz is enhanced with J (and J ′) and Φ0 is suppressed
with J (and J ′), which are in accordance with the stability of the excitonic CDW and SDW states
evaluated from the behaviors of the calculated grand potentials. Thus, we may state that the interband
exchange interaction stabilizes the excitonic SDW state and destabilizes the excitonic CDW state. As
seen in Figs. 5.2(e) and 5.2(f), we may moreover state that the pair-hopping term enhances the stability
of the excitonic SDW state and suppresses the stability of the excitonic CDW state.

5.3.2 Single-particle Spectral Function

Next, let us calculate the Green’s function at the optimized values of the variational parameters
using the cluster perturbation theory (CPT) [83]. The Green’s function is defined as

Ĝσ(k, k′, ω) =
1
Lc

Lc∑

i,j=1

ĜCPT
ij,σ (k, ω)e−ik·ri+ik′·rj , (5.17)

where ĜCPT
σ (k, ω) =

[
Ĝ′−1

σ (ω) − V̂σ(k)
]−1. Using this Green’s function, the single-particle spectral

function is defined as

A(k, ω) = − 1
π

∑
α,σ

Im Gαα
σ (k, k, ω + iη), (5.18)

where η gives the artificial Lorentzian broadening to the spectrum. We also calculate the DOS for the
α (= f, c) band, which is defined as

Nα(ω) = − 1
πN

∑

k

∑
σ

Im Gαα
σ (k, ω + iη). (5.19)
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Figure 5.3: Single-particle spectral function A(k, ω) and DOS Nα(ω) calculated by CPT at U/t = 8,
D/t = 3.2, and J/t = J ′/t = 0.5. We show the results for the excitonic CDW state (metastable) in
(a) and (c) and for the excitonic SDW state (stable) in (b) and (d). In (c) and (d), the solid, dashed,
and dotted lines indicate the f orbital, c orbital, and total DOSs, respectively. The artificial Lorentzian
broadening of η/t = 0.15 is used for A(k, ω) and η/t = 0.05 is used for Nα(ω). The Fermi level is located
at ω = 0 [129].
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In Fig. 5.3, we show the calculated single-particle spectral function A(k, ω) and DOS Nα(ω); the
results for the metastable CDW state [see Figs. 5.3(a) and 5.3(c)] and stable SDW state [see Figs. 5.3(b)
and 5.3(d)] obtained at J/t = J ′/t = 0.5 are shown. We find that, although a semimetallic state with
a small band overlap is assumed as the noninteracting band structure at D/t = 3.2, the valence band
around k = (π, π) is hybridized with the conduction band around k = (0, 0) due to the spontaneous
c-f hybridization (or exciton condensation), leading to the opening of the band gap at the Fermi level.
At J = J ′ = 0, the single-particle excitation gap ∆g is estimated to be ∆g/t = 1.47. We find that,
in agreement with the change in the order parameters, the single-particle gap in the excitonic CDW
state, e.g., ∆g/t = 0.76 at J/t = J ′/t = 0.5, is suppressed in comparison with the J = J ′ = 0 case
[see Figs. 5.3(a) and 5.3(c)]. We also find that the single-particle gap in the excitonic SDW state, e.g.,
∆g/t = 1.81 at J/t = J ′/t = 0.5, is enhanced in comparison with the J = J ′ = 0 case [see Figs. 5.3(b)
and 5.3(d)]. We moreover find in Figs. 5.3 (c) and 5.3(d) that the sharp coherence peak appears at the
edges of the gap and that the coherence peak of the excitonic SDW state is sharper than that of the
excitonic CDW state, indicating that the spontaneous c-f hybridization in the excitonic SDW (CDW)
state is enhanced (suppressed) by the interband exchange and pair-hopping interactions. We note that
no significant differences are found in the behaviors of Nα(ω) discussed above, even if we switch off J ′,
retaining only J .

In order to see the character of the density oscillation in the real space, we calculate the DOS of the
A and B sublattices. In general, the local Green’s function is given by

Gσ(r, ω) =
1
N

∑

α,β

∑

k

ϕαk(r)ϕ∗βk(r)Gαβ
σ (k, ω), (5.20)

where ϕαk(r) is the Bloch wave function of α band [19]. Due to r-dependence of the wave function
ϕαk(r), the local Green’s function depends on the spatial position r in a unit cell, and thus the charge
and spin density distributions of the excitonic phases in the real space are somewhat complicated [52].
Details of the electronic distribution of the excitonic phases will be discussed in Chap. 7. In this section,
we assume that the Bloch wave function is constant, i.e., independent of r, for simplicity [33,52,57] and
calculate the DOS of the A and B sublattices. Using the CPT, the sublattice Green’s function is given
by

ĜXσ(k, ω) =
2
Lc

∑

i,j∈X

ĜCPT
ij,σ (k, ω)e−ik·(ri−rj) (5.21)

with X = A or B. Assuming the constant Bloch wave functions, the DOS of the A or B sublattices is
given by

NXσ(ω) = − 1
πN

∑

k

∑

α,β

Im Gαβ
Xσ(k, ω + iη). (5.22)
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Note that the following results correspond to the local DOS Nσ(r, ω) at a some position r in each unit
cell and do not directly represent the total charge or net magnetization in the unit cell.

In Fig. 5.4(a), we show the calculated DOS for the excitonic CDW state at J/t = J ′/t = 0.5. We find
that NA↑(ω) = NA↓(ω) > NB↑(ω) = NB↓(ω) below the Fermi level (ω < 0). Note that the local charge
density deviation at the position r in each unit cell is given by δni(r) = δni↑(r)+δni↓(r) ∝ Φ0 cos Q ·ri

with the order parameter Φ0, where we write δniσ(r) = δniσ(r− ri) for simplicity. On the other hand,
in Fig. 5.4(b), we show the calculated DOS for the excitonic SDW state at J/t = J ′/t = 0.5. We find
that NA↑(ω) = NB↓(ω) > NA↓(ω) = NB↑(ω) below Fermi level. Note again that the local magnetization
at the position r in each unit cell is given by mi(r) = δni↑(r)− δni↓(r) ∝ Φz cosQ · ri with the order
parameter Φz. We thus find that, due to the effect of the exchange interactions, Φz (Φ0) is enhanced
(suppressed), where Φz = 0.20 and Φ0 = 0.11 at J/t = J ′/t = 0.5; i.e., the excitonic SDW (CDW)
modulation in real space becomes rather strong (weak). We also find that, in the excitonic CDW state,
NAσ(ω) ' NBσ(ω) far away from the Fermi level and that the coherence peak appears in the DOS of
the A sublattice just below the Fermi level, where NAσ(ω) > NBσ(ω). On the other hand, the DOS of
excitonic SDW state has a large gap and a sharp coherence peak appears at the edge of the DOS.

5.3.3 Condensation Amplitude and Coherence Length

In order to see the character of the exciton condensation in momentum space, we calculate the
condensation amplitude (or the anomalous momentum distribution function). Using the off-diagonal
(or anomalous) Green’s function given in Eq. (5.17), the condensation amplitudes for the spin-singlet
and spin-triplet excitons are defined as

F0(k) =
1
2

∑
σ

∮

C

dz

2πi
Gcf

σ (k,k + Q, z), (5.23)

Fz(k) =
1
2

∑
σ

σ

∮

C

dz

2πi
Gcf

σ (k,k + Q, z), (5.24)

respectively. Note that we here use the term “anomalous” to indicate that the number of electrons on
each of the c and f bands is not conserved due to the excitonic condensation, although the total number
of electrons is conserved.

We show the calculated results in Fig. 5.5 for the excitonic CDW and SDW states. We find that,
with increasing J (= J ′), the peak of F0(k) at the Fermi momentum kF becomes sharper in the CDW
state [see Fig. 5.5(a)] and that the peak of Fz(k) at kF becomes broader in momentum space in the
SDW state [see Fig. 5.5(c)]. The sharp (broad) peak of F (k) [= F0(k) or Fz(k)] in momentum space
indicates that the spatial extension of the electron-hole pair becomes large (small) in real space. We
note that no significant differences are found in the behavior of F (k) even if we set J ′ = 0 retaining
only J .

Using F (k), we evaluate the pair coherence length ξ, which corresponds to the spatial size of the
electron-hole pair and may be defined by [99,114,125]

ξ2 =
∑

k |∇kF (k)|2∑
k |F (k)|2 . (5.25)
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Figure 5.5: Condensation amplitude F (k) [= F0(k) or Fz(k)] calculated by CPT. We show the results
for (a) the excitonic CDW state at J/t = J ′/t = 1.0 (metastable), (b) the excitonic CDW/SDW states
at J = J ′ = 0 (degenerate), and (c) the excitonic SDW state at J/t = J ′/t = 1.0 (stable) [129].
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Figure 5.6: Calculated pair coherence length ξ in units of the lattice constant. J (= J ′) dependence
of ξ is shown for the spin-singlet (open circles) and spin-triplet (solid circles) exciton condensations.
The inset shows the results in the absence of the pair-hopping term J ′ = 0 (open and solid squares),
which are compared with the results in the presence of the pair-hopping term J ′ = J (open and solid
circles) [129].

In Fig. 5.6, we show the calculated results for the spin-singlet excitons (ξ0) and spin-triplet excitons
(ξz) as a function of J . We find that, with increasing J (= J ′), ξ for the spin-singlet (triplet) excitons
increases (decreases) monotonically. Thus, the size of the spin-singlet exciton becomes larger than the
lattice constant (ξ0 > 1) for larger J values, indicating the crossover from the tightly paired BEC state
to the weakly paired BCS state. The spin-triplet excitons, on the other hand, are paired more tightly,
and the size is always smaller than the lattice constant in the parameter space examined. We also find
in the inset of Fig. 5.6 that the above tendencies induced by J are again enhanced by J ′.

5.4 Summary

To summarize, we have studied the stability of the excitonic density-wave states in the TBHM
with the interband Coulomb interaction U ′, interband exchange interaction J , pair-hopping term J ′,
as well as the intraband Hubbard interaction U . We have rewritten the interband interactions of the
Hamiltonian in terms of the creation and annihilation operators of the spin-singlet and spin-triplet
excitons and examined the roles of these interactions. We have thereby shown that the U ′ term drives
the formation of excitons in both the spin-singlet and the spin-triplet channels, and the J term stabilizes
(destabilizes) the formation of the spin-triplet (spin-singlet) excitons. Using the VCA to calculate the
grand potential of the system in the thermodynamic limit, we have moreover shown that the exchange
interaction always stabilizes the excitonic SDW state and destabilizes the excitonic CDW state, of which
the tendencies are enhanced by the pair-hopping term. A variety of physical quantities have also been
calculated, which include the single-particle spectral function, density of states, anomalous Green’s
functions, condensation amplitude, and pair-coherence length.
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Chapter 6

Roles of Electron-Phonon Coupling
for Excitonic Phases

6.1 Introduction

In the previous Chapter, we discussed excitonic phases in spinful systems in the framework of the two-
band Hubbard model (TBHM). We showed there that the interband exchange interaction stabilizes the
spin-triplet excitonic phase in the otherwise degenerate spin-singlet and spin-triplet excitonic phases [57,
60–62, 128, 129]. On the other hand, we showed in our previous Chapter that, taking into account
electronic interactions only, a spin-singlet excitonic phase cannot be stabilized, which may however be
realized in 1T -TiSe2 and Ta2NiSe5. In these materials, the importance of electron-phonon coupling was
recently pointed out [31–35, 38]. Although the spin-singlet excitonic state has been investigated in the
spinless multiband model with electron-phonon coupling [33, 133, 134], not much is known about the
role of the electron-phonon coupling played in the excitonic density wave states in the spinful multiband
Hubbard model.

In this Chapter we will thoroughly investigate the stability of the excitonic density wave states in
the TBHM, paying particular attention to the electron-phonon coupling1. The model is analyzed by
the static mean-field theory for the electron-phonon coupling and the variational cluster approximation
(VCA) for the electronic correlations. We will first show that the interband Coulomb interaction U ′

and electron-phonon interaction λ cooperatively stabilize the CDW and that a smooth crossover occurs
between “excitonic” CDW and “phononic” CDW states, just by increasing the ratio λ/U ′. Then,
incorporating the interband exchange interaction J , an excitonic SDW state competes with the excitonic
CDW state. The ground-state phase diagram of the extended TBHM is determined in the J-λ plane.
We will moreover pay particular attention to the phase of the order parameter and show that both
the electron-phonon coupling and pair-hopping terms fix the phase of the excitonic order parameters,
thereby preventing the system from realizing a superfluid state. Finally, the implications for exciton
condensation in real materials will be discussed.

6.2 Model and Methods

6.2.1 Model Hamiltonian

We consider the TBHM, supplemented by electron-phonon coupling,

H = He +HU
e-e +HU ′

e-e +HJ
e-e +HJ ′

e-e +Hph +He-ph, (6.1)

defined on a two-dimensional square lattice. We use the same Hamiltonian consisting of the non-
interacting term He and electron-electron interaction terms HU

e-e, HU ′
e-e, HJ

e-e and HJ ′
e-e, which have been

defined in the previous Chapter [see Eqs. (5.2)-(5.6) in Sec. 5.2.1].
In Eq. (6.1), we also included the phonon degrees of freedom because the lattice displacements play an

important role in the materials under consideration. The electron-phonon coupling becomes particularly

1Chap. 6 is based on T. Kaneko, B. Zenker, H. Fehske and Y. Ohta, Phy. Rev. B 92, 115106 (2015).

51



Chapter 6. Roles of Electron-Phonon Coupling for Excitonic Phases

important when we address the spin-singlet electron-hole excitations. In the harmonic approximation,
the phonon part of the Hamiltonian is given by

Hph =
∑

q

ωqb†qbq , (6.2)

where the bosonic operator b†q creates a phonon with momentum q and frequency ωq (we set ~ =
1). The dominant electron-phonon coupling term between a c-f (electron-hole) excitation and lattice
displacement is assumed to be

He-ph =
1√
N

∑

k,q

∑
σ

gq(bq + b†−q)c†k+qσfkσ + H.c., (6.3)

with a coupling constant gq [33,35,133,134].
In this section, we fix the hopping parameters tf = tc = t and use t as the unit of energy. Furthermore,

we set εc/t = −εf/t = 3.2, so that the noninteracting band structure represents a semimetal with a
small band overlap. The conduction-band bottom at k = (0, 0) gives rise to an electron pocket, while
the valence-band top produces a hole pocket at k = (π, π), resulting in the modulation vector of the
density wave Q = (π, π); see Fig. 5.1 for the band dispersions and Fermi surfaces in the Brillouin zone of
the square lattice. Following the previous chapter, we assume Uf = Uc = U and employ U = 2U ′−J to
suppress the Hartree shift for simplicity. In this choice, the excitonic insulator state is stabilized between
the band-insulator and Mott-insulator states [128,129]. Moreover, we consider a dispersionless Einstein
phonon ωq = ω and a momentum-independent electron-phonon coupling constant gq = g. Since the
strength of the electron-phonon coupling appears in the form λ = g2/ω in the mean-field approximation
used below, we take λ as the electron-phonon coupling parameter in what follows.

6.2.2 Mean-Field Approximation for Phonons

We treat the electron-phonon interaction term He-ph in the mean-field (frozen-phonon) approxima-
tion. Introducing the expectation values of the c-f hybridization 〈c†f〉 and lattice displacement 〈b〉,
the operators in Eq. (6.3) are approximated as bqc†k+qσfkσ ∼ [ 〈bq〉c†k+qσfkσ + bq〈c†k+qσfkσ〉 ]δq,Q −
〈bq〉〈c†k+qσfkσ〉δq,Q. Since in our model the nesting vector Q = (π, π) is commensurate with the lattice
periodicity, i.e., e2iQ·ri = 1 for lattice vectors ri, we have bQ = b−Q (b†Q = b†−Q) [33], where bQ and b−Q

(b†Q and b†−Q) annihilate (create) the same phonon. This implies 〈bQ〉 = 〈b−Q〉 = 〈b†Q〉, and therefore
〈bQ〉 becomes a real number. In view of 〈c†k+Qσfkσ〉 = 〈f†kσck+Qσ〉∗ 6= 0, we define the complex order
parameter of the excitonic CDW as

Φc = |Φc|eiθc =
1

2N

∑

k,σ

〈c†k+Qσfkσ〉, (6.4)

where |Φc| and θc are the amplitude and phase of the order parameter, respectively. Then the electron-
phonon part in the mean-field approximation is given by

HMF
e-ph =

2g√
N
〈bQ〉

∑

k,σ

(
c†k+Qσfkσ + f†kσck+Qσ

)
+ 4g

√
N(b†Q + bQ)|Φc| cos θc − 8g

√
N〈bQ〉|Φc| cos θc.

(6.5)

Introducing Bq = bq + δq,Q(4g
√

N/ω)|Φc| cos θc, the phonon Hamiltonian Hph together with the second
term of the r.h.s. of Eq. (6.5) can be diagonalized, yielding ω

∑
q B†

qBq − 16λN |Φc|2 cos2 θc. Hence,
from 〈BQ〉 = 〈B†

Q〉 = 0, we find

〈bQ〉 = 〈b†Q〉 = −4g
√

N

ω
|Φc| cos θc. (6.6)

Substituting this expression into Eq. (6.5), we finally obtain the mean-field electron-phonon Hamiltonian,

HMF
e-ph =∆p cos θc

∑

k,σ

f†kσck+Qσ + H.c. +
N∆2

p

4λ
cos2 θc (6.7)
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with ∆p = −8λ|Φc|. Using Eq. (6.7), we will minimize the grand potential of the system with respect
to ∆p and θc as shown below.

We define the complex order parameter of the excitonic SDW as

Φs = |Φs|eiθs =
1

2N

∑

k,σ

σ〈c†k+Qσfkσ〉, (6.8)

where |Φs| and θs are the amplitude and phase of the order parameter, respectively. Because we assume
an excitonic SDW state with modulation vector Q = (π, π), where the expectation value 〈c†i↑fi↑〉 is
in antiphase compared to 〈c†i↓fi↓〉 regarding the spatial variation, these two expectation values have
opposite signs on the same site. In momentum space, this reads

∑
k〈c†k+Q↑fk↑〉 = −∑

k〈c†k+Q↓fk↓〉.
We then find, from Eqs. (6.4) and (6.7), that 〈bQ〉 = 〈b†Q〉 ∝

∑
k,σ〈c†k+Qσfkσ〉 = 0, which means that

the spin-triplet condensate will not couple to the phonons.

6.2.3 Variational Cluster Approximation

In order to take electron correlation effects into account, we treat the electronic interactions in
Eq. (6.1) within the VCA [80,82], which is a quantum cluster method based on the self-energy functional
theory [77, 78]. In our VCA calculation, we take an Lc = 2 × 2 = 4 site (eight-orbital) cluster as the
reference system and we use exact diagonalization to solve the corresponding quantum many-body
problem in the cluster. Within VCA, we can take into account spontaneous symmetry breakings just
by adding appropriate Weiss fields to the reference system [82], and take these fields as variational
parameters. The Weiss fields for excitonic CDW and SDW states, which are defined by the order
parameter Φc [in Eq. (6.4)] and Φs [in Eq. (6.7)], respectively, may be written as

HWF
c = ∆′

0e
iθc

∑

k,σ

f†kσck+Qσ + H.c., (6.9)

HWF
s = ∆′

se
iθs

∑

k,σ

σf†kσck+Qσ + H.c. . (6.10)

Here, ∆′
0 and ∆′

s are the strengths of the Weiss fields for the excitonic CDW and SDW states generated
by HU ′

e-e, HJ
e-e and HJ′

e-e.
According to Eq. (6.6), we take into account the contribution of the phonons in the mean-field

approximation as a one-particle term in the original system. Then, the Hamiltonian describing an
excitonic CDW state in the reference system is given by

H′c = He +HU
e-e +HU ′

e-e +HJ
e-e +HJ′

e-e +HMF
e-ph +HWF

c , (6.11)

where we note that He +HU
e-e +HU ′

e-e +HJ
e-e +HJ′

e-e +HMF
e-ph is the Hamiltonian of the original system and

the Weiss field HWF
c is added in the reference system. Using H′c, we calculate the grand potential Ω and

optimize the variational parameters ∆′
0, ∆p, and θc. The most stable solution with (∆′

0, ∆p) 6= (0, 0)
corresponds to the excitonic CDW state. Note that we determine the parameters ∆p and θc via the
minimization of the grand potential rather than solving the self-consistent equation. Both procedures
are equivalent, however, since the order parameter Φc calculated, using the Green’s function with ∆p and
θc optimized via the grand potential calculation in VCA, exactly satisfies the self-consistent condition
∆p = 8λΦc.

Since the spin-triplet term does not couple to the lattice degrees of freedom within our mean-field
approach, the phonons will not affect the excitonic SDW state. Then, the Hamiltonian of the reference
system describing an excitonic SDW is

H′s = He +HU
e-e +HU ′

e-e +HJ
e-e +HJ ′

e-e +HWF
s . (6.12)

Again we calculate the grand potential Ω from the reference Hamiltonian H′s and optimize ∆′
s and θs,

where the most stable solution with ∆′
s 6= 0 corresponds to the excitonic SDW state.

6.3 Results

6.3.1 Phase of Order Parameters

We first discuss the phase of the different order parameters entering the grand potential. In the
spin-singlet excitonic state, the system forms an excitonic CDW at any finite U ′ and λ due to the

53



Chapter 6. Roles of Electron-Phonon Coupling for Excitonic Phases

-14.66

-14.64

-14.62

-14.60

-14.58

-14.56

Ω
 /

 t

θc

-π π0

(b)

0.0

0.50.5

0.0

∆p / t

Ω / t

-14.7

-14.6

-14.5

θc = 0

(a)

∆0 / t'

-14.68

-14.67

-14.66

-14.65

-14.64

Ω
 /

 t

θs

-π π0

(d)

 0.0  0.1  0.2  0.3  0.4  0.5

-14.66

-14.68

-14.64

-14.62

-14.60

-14.58

-14.56

Ω
 /

 t

(c)

∆s / t'

π

4
−θs =

θs = 0

π

2
−θs =

Figure 6.1: (a) Grand potential Ω as a function of the variational parameters ∆′
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points [135].

perfect nesting of the Fermi surface. Figure 6.1(a) shows the calculated grand potential Ω as a function
of the variational parameters ∆′

0 and ∆p. Obviously, the grand potential has a stationary point at
(∆′

0, ∆p) 6= (0, 0), signaling a CDW ordering. Without electron-phonon coupling, Ω is independent of
the phase θc, i.e., Ω(θc) = Ω(θ′c). Accordingly, the excitonic CDW state reveals a gapless acoustic phase
mode in its excitation spectrum [134]. If, however, the electron-phonon coupling comes into play, the
grand potential manifests a dependence on the phase of the (complex) order parameter. In Fig. 6.1(b),
we display the θc dependence of Ω; the grand potential takes its minimum at θc = 0, π. This phase
fixation may be expected looking at Eq. (6.6). In our mean-field approximation, the single-particle
gap caused by λ is given as ∆p cos θc and is maximized at θc = 0. When θc is fixed by the electron-
phonon coupling, the collective phase mode in the spin-singlet excitonic state becomes massive (see the
discussion of the spinless model in Ref. [134]).

In the case of the spin-triplet excitonic state, the excitonic SDW and CDW states are degenerate if
the electron-phonon and exchange couplings are neglected. The exchange terms ∝ J and ∝ J ′ lift this
degeneracy and stabilize the excitonic SDW state. Note that the θs dependence of the grand potential
behaves differently in the presence or absence of the pair-hopping term J ′: For J ′ = 0, the grand
potential of the excitonic SDW state does not depend on θs, i.e., Ω(θs) = Ω(θ′s), whereas Ω depends
on θs at any finite J ′. Again the independence of Φs on the phase value θs accounts for a gapless
excitation spectrum, i.e., an acoustic phase mode. Figure 6.1(c) and 6.1(d) gives the calculated grand
potential Ω as a function of the phase θs in the presence of the pair-hopping term J ′. Indeed we find
that Ω has two minima, at θs = 0, π, which fixes the phase θs of Φs. It is known that the energy in the
presence of the pair-hopping-type exchange interaction shows a phase dependence cos 2θs [136]. This is
why the pair-hopping term J ′ fixes θs and in that way destroys the gapless acoustic phase mode in the
spin-triplet excitonic state.

6.3.2 Stability of Spin-singlet Excitonic Phase

Now let us analyze the stability of the CDW state in the presence of the electron-phonon coupling
in more detail. In Fig. 6.2, we present the results for both the optimized grand potential Ωopt and the
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order parameter Φc when the interband Coulomb interaction U ′ and the electron-phonon coupling λ are
varied. Ωopt indicates that (i) the symmetry-broken CDW state is lower in energy than the normal state
and (ii) the stability of the CDW state is enhanced if U ′ and λ are increased; see Figs. 6.2(a) and 6.2(b).
This is corroborated by the behavior of the order parameter Φc displayed in Figs. 6.2(c) and 6.2(d).
We see that the interband Coulomb interaction U ′ induces and boosts the excitonic CDW state while
the electron-phonon coupling λ rather promotes a phononic CDW state (see below). Both, however,
cooperatively stabilize a charge-ordered state. In this connection, the electron-phonon coupling lifts the
degeneracy of excitonic CDW and SDW that exists for λ = 0.

In the mean-field approximation, the gap parameter of the CDW state, ∆c = (U ′ + 8λ)Φc, can be
separated into two contributions: the excitonic (or interband Coulomb driven) part ∆0 = U ′Φc and the
phononic (or electron-phonon driven) part ∆p = 8λΦc. Figure 6.3(a) illustrates the relative magnitude
of ∆0 and ∆p as a function of the ratio 8λ/U ′. At 8λ/U ′ ¿ 1, ∆c ' ∆0 À ∆p and the CDW state,
stabilized by the interband Coulomb interaction U ′, is excitonic by its nature. Increasing 8λ/U ′, ∆0

decreases while ∆p increases, indicating a smooth crossover to a phononic CDW, which fully develops
at 8λ/U ′ À 1, where ∆c ' ∆p À ∆0. In the crossover region 8λ/U ′ ' 1, both excitonic and phononic
contributions are equally important.

In Figs. 6.3(b)–6.3(e), we show the behavior of the different contributions to the gap parameter
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∆c when U ′ and λ are varied separately. Data are obtained by VCA. Enhancing U ′/t (λ/t) at weak
λ/t (small U ′/t) leads to an increase in ∆p (∆0) as well, since both interactions couple to the same
operator-product expectation value 〈c†k+Qσfkσ〉; see Figs. 6.3(b) and 6.3(d). The crossover between
excitonic and phononic CDWs can be seen in Figs. 6.3(c) and 6.3(e), where a crossing between ∆p and
∆0 appears when U ′ ' 8λ.

6.3.3 Ground-state Phase Diagram

We now study the influence of the interband exchange and pair-hopping interactions on the nature of
the excitonic phase and also when an additional electron-phonon coupling acts in the system. Evidently,
excitonic CDW and SDW states are degenerate at J = J ′ = 0 and λ = 0 [128,129]. Any finite J and/or
λ lifts this degeneracy. Figure 6.4 clearly shows that by increasing J , the optimized grand potential
Ωopt for the excitonic SDW (CDW) state monotonically decreases (increases); accordingly, the order
parameter for the excitonic SDW (CDW) phase is enhanced (suppressed). This holds for both J ′ > 0
and J ′ = 0. Clearly the excitonic SDW state is stable as soon as ΩSDW

opt becomes less than ΩCDW
opt . A

finite pair-hopping term ∝ J ′ amplifies the tendency towards excitonic SDW formation [129].
The competition between the electron-phonon and interband exchange interaction leads to the

ground-state phase diagram of the model Eq. (6.1) presented in Fig. 6.5. Obviously, λ and J tend
to establish CDW and SDW phases, respectively, on top of an excitonic state enforced by U ′. A finite
J ′ increases the region in the J-λ plane where the excitonic SDW is the ground state. We note that the
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SDW-CDW transition is a first-order transition in our approximations.

6.4 Discussion

First, let us discuss implications of our findings on materials aspects. The transition-metal chalco-
genides 1T -TiSe2 and Ta2NiSe5 have recently been discussed in terms of the spin-singlet excitonic
insulator. In these systems, the valence and conduction bands are formed by orbitals located on differ-
ent atoms. For example, in 1T -TiSe2, the 4p orbitals of Se ions account for the valence bands and the 3d
orbitals of Ti ions account for the conduction bands [28–35]. Also in Ta2NiSe5, the 3d orbitals of Ni ions
form the valence bands and the 5d orbitals of Ta ions form the conduction bands [36–39]. The interband
exchange interaction such as Hund’s rule coupling, acting between electrons on different orbitals of a
single ion and favoring the spin-triplet excitons, is therefore negligible. Rather, in these materials, the
electron-phonon coupling is at play and will stabilize a spin-singlet excitonic insulator state. The inter-
band Coulomb interaction and electron-phonon interaction, which are inherently interrelated in these
materials, will cooperatively stabilize the excitonic CDW, which is predominantly phononic or excitonic
depending on the importance of electron-phonon or Coulomb effects. By contrast, in the iron-pnictide
superconductors [51,52,57] and Co oxides [60–62], the valence and conduction bands are formed by the
d orbitals on the (same) transition-metal ions, so that the Hund’s rule coupling is expected to be strong.
Hence, in these materials, the SDW phase, if really excitonic in origin, is rather triggered by the Hund’s
rule coupling than by electron-phonon coupling. Then, as our phase diagram suggests, the condensation
of spin-triplet excitons will play a major role.

Second, let us comment on the phase of the excitonic order parameters. On the one hand, as we
have shown in the preceding section, the electron-phonon interaction stabilizes the spin-singlet excitonic
condensate, whereas exchange interactions such as the Hund’s rule couplings stabilize a spin-triplet
excitonic condensate in the otherwise degenerate excitonic density-wave states. On the other hand,
these interactions, in particular the electron-phonon and pair-hopping interactions, will fix the phase
of the order parameter of the excitonic state; see Sec. 6.3.1. Because the spatial modulations of the
excitonic CDW and SDW are given by cos(Q ·ri + θ), the phase θ may lead to a translational motion of
the condensate as a whole [137]. If the energy of the condensate is independent of the phase, maintaining
the continuous symmetry of the system with respect to the phase, a gapless acoustic phase mode may
appear in the excitation spectrum, allowing for a translational motion of the condensate without loss of
energy (i.e., superfluidity), as predicted by Fröhlich in his theory of incommensurate density waves [68].
In real materials, however, excitonic condensation will be influenced by the lattice degrees of freedom
or affected by the pair-hopping term. Then, the phase of the condensate is fixed and a gap opens for
the collective phase mode. This makes realization of excitonic superfluidity in real materials unlikely.

6.5 Summary

To summarize, we have studied the stability of the excitonic states with charge and spin density
modulations in terms of the TBHM, supplemented by electron-phonon and interband exchange inter-
actions, where the static mean-field theory is employed for coupling to the lattice degrees of freedom
and the variational cluster approximations for the electron correlations. We have shown that both the
interband Coulomb interaction U ′ and the electron-phonon coupling λ tend to stabilize an excitonic
CDW state. While at λ = 0 the excitonic insulator exhibits an acoustic phase mode, any finite λ fixes
the phase of the order parameter and therefore eliminates such a gapless excitation related to super-
transport properties. The CDW typifies a predominantly excitonic and phononic state for small and
large ratios λ/U ′, respectively. The interband exchange interaction J , on the other hand, promotes an
excitonic SDW phase, which is further stabilized by pair-hopping processes, which also fixes the phase
of the order parameter. These results obtained for a generic microscopic model Hamiltonian should
contribute to a better understanding of exciton condensation in several material classes with strong
electronic correlations.
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Chapter 7

Charge and Spin Density
Distributions in Excitonic Phases

7.1 Introduction

In the previous Chapter, we discussed the stability of excitonic phases in the multi-band model. It is
indubitable that the excitonic phases become a long-range density-wave state with modulation vector Q
when the valence and conduction bands are separated by Q [14,15]. Then, what is the difference between
the excitonic density-wave states in the multi-band systems and the conventional charge-density-wave
(CDW) and spin-density-wave (SDW) states in the single-band systems?

In this Chapter, we evaluate charge and spin density distributions of the excitonic CDW and SDW
states from the local wave functions in the tight-binding approximation. First, we consider the charge
and spin densities of the excitonic phases when the valence and conduction bands are composed of
orthogonal orbitals in a single ion. In the real materials, the energy bands are reconstructed by the
hybridization of many orbitals. Thus, we next consider the electronic structure of the excitonic phases,
in which the valence and conduction bands include the components of many orbitals in a single ion.
Finally, we briefly discuss the excitonic density-wave states when the valence and conduction bands are
composed of orbitals in different ions.

7.2 Multi-Orbitals in a Single Ion

7.2.1 Charge and Spin Densities

First, we consider the charge and spin densities of excitonic phases, in which the valence and con-
duction bands are composed of orthogonal orbitals in a single ion. In this case, the field operator in the
tight-binding approximation is given by

Ψσ(r) =
∑

i

∑
α

φα(r −Ri)ciασ, (7.1)

where φα(r) is the Wannier function of the α-orbital, Ri is the lattice vector, and ciασ (c†iασ) is the
annihilation (creation) operator of an electron at site i and spin σ (=↑, ↓) in the α-orbital [60, 138].
From the field operator, the charge and spin densities are given by

ρ(r) =
∑

σ

〈Ψ†σ(r)Ψσ(r)〉, (7.2)

s(r) =
1
2

∑

σ,σ′
〈Ψ†σ(r)σσσ′Ψσ′(r)〉, (7.3)

respectively, where σ = (σx, σy, σz) is the Pauli matrix.
In this subsection, we assume a two-orbital model for simplicity and evaluate charge and spin densities

in a unit cell. Using the orbitals of the valence (a) and conduction (b) bands, the field operator in the
i-th unit cell is given as

Ψiσ(r) = φa(r)ciaσ + φb(r)cibσ, (7.4)
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where we write φα(r−Ri) = φα(r) for simplicity [60,138]. We assume that φα(r) is real [60,138], which
may be reasonable when we neglect the spin-orbit coupling.

From the field operator in Eq. (7.4), the local charge density in the i-th unit cell is given by

ρi(r) =
∑

σ

〈Ψ†iσ(r)Ψiσ(r)〉 =
∑

σ

∑

α,β

φα(r)φβ(r)〈c†iασciβσ〉. (7.5)

When the spin-singlet condensation state with vector Q is realized, the orbital off-diagonal order pa-
rameter for the excitonic CDW is given by

∑
σ

〈c†ibσciaσ〉 = Φse
iQ·Ri , (7.6)

where we set the phase of the order parameter to be zero and assume the real order parameter. Using
Φs, the local charge density in the excitonic CDW state in Eq. (7.5) becomes

ρi(r) = φ2
a(r)nia + φ2

b(r)nib + 2φa(r)φb(r)Φs cosQ ·Ri, (7.7)

where we define niα ≡
∑

σ〈c†iασciασ〉. From Eq. (7.7), we confirm that the local charge density has the
modulation with Q in the excitonic CDW state.

On the other hand, the local spin density in the i-th unit cell is given by

si(r) =
1
2

∑

σ,σ′
〈Ψ†σ(r)σσσ′Ψσ′(r)〉 =

1
2

∑

σ,σ′

∑

α,β

φα(r)φβ(r)〈c†iασσσ,σ′ciβσ′〉. (7.8)

When the spin-triplet condensation state with vector Q is realized, the orbital off-diagonal order pa-
rameter for the excitonic SDW is given by

1
2

∑

σ,σ′
〈c†ibσσσσ′ciaσ′〉 = Φte

iQ·Ri . (7.9)

Using Φt, the local spin density in the excitonic SDW state in Eq. (7.8) becomes

si(r) = φ2
a(r)mia + φ2

b(r)mib + 2φa(r)φb(r)Φt cosQ ·Ri, (7.10)

where we define miα ≡
∑

σ,σ′〈c†iασσσσ′ciασ′〉/2. From Eq. (7.10), we confirm that the local spin density
has the modulation with Q in the excitonic SDW state.

When the excitonic phases are realized in strongly correlated electron systems, an important factor
in the charge and spin density is

F (r) = φa(r)φb(r). (7.11)

F (r) is given by the product of the wave functions of the a and b orbitals, which has either positive or
negative part as a function of r. Therefore, due to F (r), it is expected that the charge and spin densities
are spatially varying and show a variety of electronic clouds in the unit cell. In general, when parities
of the wave functions φa(r) and φb(r) are the same, the parity of F (r) becomes even. On the other
hand, the wave functions φa(r) and φb(r) have different parities, their product F (r) has odd parity and
breaks the space inversion symmetry in the unit cell. Electronic ferroelectricity, which is derived from
the broken inversion symmetry of F (r), has been suggested in the extended Falicov-Kimball model [87].

Here, we consider a simple example where the valence band a and conduction band b are composed of
the s-orbital and pz-orbital, respectively [see Fig. 7.1(a)]. In this example, the orbital off-diagonal orders
for the excitonic density waves are realized with nis = ns, nipz = npz , mis = mipz = 0, corresponding
to the results in Chap. 5. In this case, the local charge density (7.7) in the excitonic CDW state is given
by

ρi(r) = φ2
s(r)ns + φ2

pz
(r)npz + 2φs(r)φpz (r)Φs cos Q ·Ri (7.12)

and the local spin density (7.10) in the excitonic SDW state is given by

si(r) = 2φs(r)φpz (r)Φt cos Q ·Ri. (7.13)
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Figure 7.1: (a) Schematic picture of the example when the valence and conduction bands are composed
of the s and pz orbitals, respectively. (b) Isosurface of F (r) = φs(r)φpz (r). Red and blue indicates
positive and negative parts of F (r), respectively. Illustrated are the charge density of (c) the normal
state and (d) ECDW (excitonic charge-density wave) state with Q = π, and the spin density of (e) the
normal state and (f) ESDW (excitonic spin-density wave) state with Q = π.

In Fig. 7.1(b), we show the function F (r) = φs(r)φpz (r). The wave functions φs(r) and φpz (r) have
even and odd parities, respectively, and thus their product F (r) has odd parity, which breaks the space
inversion symmetry in the unit cell. In Figs. 7.1(c)-7.1(f), we show the charge and spin densities in the
normal state (Φs = 0, Φt = 0), the charge density in the excitonic CDW state (Φs 6= 0), and the spin
density in the excitonic SDW state (Φt 6= 0) with Q = π 1. The charge density in the normal state is
uniform as in Fig. 7.1(c). When the excitonic CDW state is realized (Φs 6= 0), the charge density is
deviated towards the +z direction, corresponding to F (r), in the i-th site and towards the −z direction
in the neighboring sites, and thus the charge density has the density wave with twice period (Q = π)
in the system [see Fig. 7.1(d)]. In Fig. 7.1(e) and 7.1(f), we find that there are no spin polarizations in
the normal state, but in the excitonic SDW state (Φt 6= 0), the spin polarization, which corresponds to
F (r), appears. Corresponding to Q = π, the spin polarization inverts alternately over the unit cells and
the spin density has the density wave with twice period [see Fig. 7.1(f)]. From the above, we confirm
that the local charge and spin densities have the density waves corresponding to Q in the excitonic
insulator state. In this example, the local charge and spin densities are modulated, but we also have to
emphasize that the total charge in the unit cell (or in the atom) does not change as shown in Fig. 7.1(d)
and the net magnetization in the unit cell (or in the atom) is zero as shown in Fig. 7.1(f).

In comparison with the s and p orbitals in the above example, the wave functions φα(r) of the d
and f orbitals, which are the main stage of strongly correlated electron systems, have complex shapes.
In Fig. 7.2, we show the function F (r) and spin density when the spin-triplet excitonic condensation
state is realized from the dxy and dx2−y2 orbitals. In this example, the hopping integral of the dxy

orbital has the opposite sign to that of the dx2−y2 orbital, txytx2−y2 < 0, and the direct gap system
is realized [see Fig. 7.2(a)]. Thus, the excitonic state becomes a ferro state with Q = 0, which are
realized in direct gap systems [see Fig. 7.2(c)]. From the formula of the spin density in Eq. (7.13), we
understand that the spin density makes the density wave with Q, but from Fig. 7.2, we find that the
excitonic SDW state is significantly different from the conventional SDW state that corresponds to an
antiferromagnetic order. The excitonic density-wave state is the order with the charge and spin densities
distributed anisotropically in each unit cell (or in the atom). Thus, it may be suitable to describe an
excitonic order as a multipole order in these cases.

1To illustrate the densities in Figs. 7.1(c)-7.1(f), we use the spherical harmonics of s and pz orbitals for angular part
(θ, ϕ). However, in order to exaggerate the electronic structure, we broaden the radial distribution function of the 1s
orbital. Thus, Figs. 7.1(c)-7.1(f) are not exact but a schematic picture.
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Figure 7.2: (a) Schematic picture of the example when the valence and conduction bands are composed
of the s and pz orbitals, respectively. (b) Isosurface of the wave function of dxy and dx2−y2 orbitals and
their product F (r). Red and blue indicates positive and negative parts of F (r), respectively. (c) The
spin density of the spin-triplet excitonic condensation state with F (r).

7.2.2 Multipole Moments

In this subsection, we describe the character of the excitonic phases in terms of the multipole mo-
ments. Here, we consider the previous example, where the valence s-orbital and conduction pz-orbital
are hybridized due to excitonic ordering. First, we evaluate an electric monopole moment, which corre-
sponds to the total charge in each unit cell. The electric monopole moment is defined as

Q0 ≡
∫

drρi(r) =
∑

σ

∑

α,β

[∫
drφα(r)φβ(r)

]
〈c†iασciβσ〉. (7.14)

From the orthogonality of the wave function of orbitals
∫

drφα(r)φβ(r) = δα,β , (7.15)

Q0 in Eq. (7.14) becomes

Q0 =
∑

σ

∑
α

〈c†iασciασ〉 =
∑
α

niα, (7.16)

which is given simply by niα. In the same way, a magnetic dipole moment, which corresponds to the
net magnetization in each unit cell, is given as

M0 ≡ 2
∫

drsi(r) =
∑

σ,σ′

∑

α,β

[∫
drφα(r)φβ(r)

]
〈c†iασσσσ′ciβσ′〉 = 2

∑
α

miα, (7.17)

where M0 = (Mx
0 ,My

0 ,Mz
0 ). In the example with the s and pz orbitals, the electric monopole moment

(total charge) Q0 remains unchanged and the magnetic dipole moment (net magnetization) M0 vanishes
when the excitonic density-wave states are realized with 〈c†ipzσcisσ〉 6= 0, niα = nα and miα = 0.

Next, we discuss the higher rank multipole moments, which are determined by the excitonic order
with 〈c†ipzσcisσ〉 6= 0. In the same example, we evaluate an electric dipole moment in the excitonic CDW
state. The electric dipole moment of z-direction is defined as

Qz ≡
∫

drzρi(r) =
∑

σ

∑

α,β

[∫
drzφα(r)φβ(r)

]
〈c†iασciβσ〉. (7.18)
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Here, the integral parts in Eq. (7.18) are
∫

drzφα(r)φα(r) = 0,

∫
drzφs(r)φpz

(r) 6= 0. (7.19)

Therefore, the electric dipole moment becomes

Qz =
∑

σ

[∫
drzφs(r)φpz (r)

] [
〈c†isσcipzσ〉+ 〈c†ipzσcisσ〉

]
. (7.20)

When the excitonic CDW state is realized with
∑

σ〈c†ipzσcisσ〉 6= 0, the electric dipole moment of z-
direction becomes finite. When we calculate the electric dipole moment of x- and y-directions, the
integral parts of the wave function become zero and thus Qx = Qy = 0. Therefore, depending on
the shape of the wave functions of the valence and conduction bands, the electric dipole moment of
z-direction becomes finite but that of the other directions becomes zero. In the same way, the magnetic
quadrupole moment, which is characterized by the product of the integral part of the wave functions
with the dipole distribution for z-direction and the spin polarization (magnetic dipole) 〈c†isσσσσ′cipzσ′〉,
is given as

Mz ≡ 2
∫

drzsi(r) =
∑

σ,σ′

[∫
drzφs(r)φpz (r)

] [
〈c†isσσσσ′cipzσ′〉+ 〈c†ipzσσσσ′cisσ′〉

]
, (7.21)

where Mz = (Mx
z ,My

z ,Mz
z ). When the excitonic SDW state is realized with

∑
σ,σ′〈c†ipzσσσσ′cisσ′〉 6= 0,

the magnetic quadrupole moment Mz becomes finite.
In the excitonic phase, depending on the wave functions of the valence and conduction bands, the

finite multipole moments are different because the charge and spin density distributions in real space
are different. As in Fig. 7.2, when the spin-triplet excitonic order is realized from the dxy and dx2−y2

orbitals, the higher rank multipole moment becomes finite. In general, the multipole moments are
characterized by the projection onto the spherical harmonics [139–141]. Using the spherical harmonics,
the electric multipole moment is defined as

Qlm ≡
∫

dr
[
rlZlm(r̂)

]
ρi(r) =

∑
σ

∑

α,β

[∫
drrlZlm(r̂)φα(r)φβ(r)

]
〈c†iασciβσ〉, (7.22)

where r̂ = (θ, ϕ) indicates the angular component, and we define Zlm(r̂) ≡
√

4π/(2l + 1)Ylm(r̂). Here,
we assume the real spherical harmonics, which are sometimes called the tesseral harmonics2. In practice,
the electric multipole moments in Eq. (7.22) are given by Q00 = Q0, Q10 = Qz, Q

(c)
11 = Qx, Q

(s)
11 = Qy,

· · · . l is the rank of the electric multipole moments, and the moments of each rank is called the electric
monopole (l = 0), dipole (l = 1), quadrupole (l = 2), octupole (l = 3), hexadecapole (l = 4), etc. As in
the charge density, we define the multipole moment for the spin density as3

Mlm ≡ 2
∫

dr
[
rlZlm(r̂)

]
si(r) =

∑

σ,σ′

∑

α,β

[∫
drrlZlm(r̂)φα(r)φβ(r)

]
〈c†iασσσσ′ciβσ′〉, (7.23)

where Mlm = (Mx
lm,My

lm,Mz
lm). The multipole moment in Eq. (7.23) is characterized by the product

of the integral part of the l-th rank multipole distribution and the spin polarization (magnetic dipole).
In this sense, we may call the multipole moments in Eq. (7.23) starting from l = 0 magnetic multipole
moments, where l = 0 corresponds to the magnetic dipole.

2The spherical harmonics with m = 0 are real. For |m| > 0, the spherical harmonics can be taken to be real with the
following relations.

Y
(c)
l|m|(r̂) =

1√
2

ˆ
Yl−|m|(r̂) + (−1)mYl|m|(r̂)

˜
, Y

(s)
l|m|(r̂) =

i√
2

ˆ
Yl−|m|(r̂)− (−1)mYl|m|(r̂)

˜
.

3In the definition of the multipole moments for the spin density in Eq. (7.23), we divide the multipole moment into
the integral part of the wave functions and the spin polarization, corresponding to the definition of the electric multipole
moments in Eq. (7.22). In this definition, (l, m) in Eq. (7.22) is characterized by the integral part. On the other hand, the
magnetic multipole moments are often defined as Mlm ≡ 2

R
drr ˆrlZlm(r̂)

˜ · s(r) [139, 141]. We also have to consider
orbital magnetism when the wave functions of valence and conduction bands and order parameter of excitonic state are
imaginary. In this case, we may need to improve the definition of the magnetic multipole moment in Eq. (7.23).
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From the above discussion, we find that, when the excitonic CDW or SDW state is realized from
the valence and conduction bands composed of the orthogonal orbitals, the charge or spin density
distributions change in each unit cell and higher rank electric or magnetic moments become finite,
depending on the wave functions of the valence and conduction bands. Therefore, we may interpret that
the waves in the charge and spin densities are given by the ordered multipole moments with modulation
vector Q in the excitonic insulator states. In this sense, the excitonic CDW and SDW states should be
called the electric multipole density-wave state and magnetic multipole density-wave state, respectively.
We may point out that the accurate electronic structure of the excitonic phase is rather difficult to
detect experimentally when higher rank multipole moments become finite due to exciton condensation.

7.2.3 Valence and Conduction Bands Composed of Multi-Orbitals

In the previous examples, we have mentioned that the net magnetization (magnetic dipole moment)
in the unit cell (or in the atom) does not appear when the orthogonal bands are hybridized as an
excitonic order. However, the SDW state in Cr [42–45] and iron-based superconductors [46–59] are
sometimes regarded as excitonic orderings. In these studies, we note that the excitonic SDW state has
the antiferromagnetic order (conventional SDW), which has a net magnetization in each site. Why does
this difference arise?

In the previous subsection, we assumed that the valence and conduction bands are composed of the
pure orthogonal atomic orbitals without hybridization between different orbitals. However, in the real
materials, although orbitals are orthogonal in the same site, the different orbitals can hybridize via the
hoppings between the neighboring sites and the energy bands are reconstructed by the hybridization of
many orbitals.

Here, we consider the example, where the valence and conduction band are composed of the s-orbital
and dx2−y2 -orbital on the one-dimensional chain [see Fig. 7.3(a)]. In contrast to the previous examples
with the s and pz orbitals, the s and dx2−y2 orbitals hybridize via the hoppings between the neighboring
sites tsd [see Fig. 7.3(a)]. Hereafter, we use d as the dx2−y2 orbital for simplicity. The noninteracting
tight-binding Hamiltonian is given as

He =
∑

α=s,d

(
εα

∑

i,σ

c†iασciασ − tα
∑

〈i,j〉,σ
c†iασcjασ

)
− tsd

∑

〈i,j〉,σ

(
c†isσcjdσ + c†idσcjsσ

)

=
∑

k,σ

(
c†ksσ c†kdσ

) (
εs(k) tsd(k)
tsd(k) εd(k)

)(
cksσ

ckdσ

)
, (7.24)

where εα and tα are the energy level and the hopping integral between the α orbitals in the neighboring
sites, respectively. The orbital diagonal and off-diagonal dispersions in momentum space are given by
εα(k) = εα − 2tα cos k and tsd(k) = −2tsd cos k, respectively. We assume εs < εd, indicating that
the valence (conduction) band includes large component of s (dx2−y2) orbital. We can obtain the
diagonalized energy dispersions with the unitary transformation connecting between the band µ and
orbital α, γkµσ =

∑
α ζµα(k, σ)ckασ. In the Hamiltonian (7.24), the energy dispersion of the valence

band Ev(k) and conduction band Ec(k) are given by

Ev(c)(k) = η(k)− (+)
√

ξ2(k) + t2sd(k) (7.25)

with 2η(k) = εd(k)+ εs(k), 2ξ(k) = εd(k)− εs(k). Here, the unitary transformation connecting between
the band µ (=v, c) and orbital α (=s, d) is given by

(
γkvσ

γkcσ

)
=

( √
1− ν2(k) −ν(k)
ν(k)

√
1− ν2(k)

)(
cksσ

ckdσ

)
, (7.26)

where the off-diagonal term of the unitary transformation ν(k) is given by

ν2(k) =
1
2

(
1− ξ(k)√

ξ2(k) + t2sd(k)

)
. (7.27)

We assume εs < εd and the valance (conduction) band is mainly composed of the s (dx2−y2) orbital.
However, due to tsd, the conduction (valence) band includes the component of the s (dx2−y2) orbital.
ν(k) indicates the weight of a component of the s (dx2−y2) orbital in the conduction (valence) band. In
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Figure 7.3: (a) Schematic picture of the example where the valence and conduction band are composed
of the s and dx2−y2 orbitals. The s and dx2−y2 orbitals between the neighboring sites have the hopping
integral tsd. (b) Energy band dispersions and (c) the off-diagonal term of the coefficient in the unitary
transformation ν(k) at tsd/t = 0.0 (dashed line) and 0.5 (solid line), where we use ts = td = t and
(εd − εs)/t = 3.

Figs. 7.3(b) and 7.3(c), we show the band dispersion and ν(k) with the hopping tsd, where we assume
ts = td = t and (εd − εs)/t = 3. We find that, even when tsd is finite, the valence band top and
conduction band bottom are located at k = ±π and k = 0, respectively, and thus the band structure
has excitonic instability with Q = π. At tsd = 0, where ν(k) = 0, the valence (conduction) band is
solely composed of the component of the s (dx2−y2) orbital. When tsd becomes finite, ν(k) has the large
values around k = 0, ±π, but ν(k) = 0 at k = ±π/2, due to tsd(k) = −2tsd cos k. Due to ν(k), the
component of the s (dx2−y2) orbital around the conduction band bottom at k = 0 (valence band top
at k = ±π) is enhanced with increasing tsd. Therefore, both the valence band around k = ±π and
conduction band around k = 0 include the component of the same orbital at tsd > 0 and the intraorbital
Coulomb interaction may become effective as an interband Coulomb interaction.

To investigate the magnetization in this band dispersion, we apply the Hartree-Fock mean-field
approximation for the two-band Hubbard model, which are given by the intraorbital Coulomb (HU

e-e),
interorbital Coulomb (HU ′

e-e), interorbital exchange (HJ
e-e), and pair-hopping (HJ ′

e-e) interactions defined
in Eqs. (5.3)-(5.6). Here, we evaluate the spin-triplet orbital diagonal and off-diagonal states given
by mz

α =
∑

i,σ σ〈c†iασciασ〉eiQRi/2N =
∑

k,σ σ〈c†k+Qασckασ〉/2N and Φz
t =

∑
i,σ σ〈c†idσcisσ〉eiQRi/2N =∑

k,σ σ〈c†k+Qdσcksσ〉/2N , respectively. To solve the self-consistent problem, we use the antiferromagnetic
Brillouin zone and expand the 2×2 Hamiltonian in Eq. (7.24) into 4×4 matrix. In Fig. 7.4(a), we show
the calculated Φz

t and mz
α as a function of tsd, where we use ts = td = t, (εd−εs)/t = 3, Us/t = Ud/t = 2,

U ′/t = 1, J/t = J ′/t = 0.5. At tsd = 0, we obtain the solution with Φz
t > 0 and mz

α = 0, which is
consistent with the previous results in Chap. 5. However, we find that mα becomes finite at tsd 6= 0
and Φz

t and mz
α are enhanced with increasing tsd, where we obtain the solution with mz

s = mz
d due to

Us/ts = Ud/td, and Φz
t and mz

α have the opposite sign. Therefore, when both the valence and conduction
bands include the component of the same orbital due to tsd, the net magnetization (magnetic dipole
moment) in each unit cell, Mz

0 = 2mz
s + 2mz

d, becomes finite, which is consistent with the conventional
SDW states.

Using the solution mz
α 6= 0 and Φz

t 6= 0, the local spin density in the i-th unit cell is given by

sz
i (r) =

[
φ2

s(r)mz
s + φ2

d(r)mz
d + 2φs(r)φd(r)Φz

t

]
cos Q ·Ri. (7.28)

In Figs. 7.4(b)-7.4(d), we illustrate the local spin density distribution given by Eq (7.28) 4. When mz
α = 0

at tsd = 0 [see Fig. 7.4(b)], the formalism of the spin density in Eq. (7.28) corresponds to the formalism
4In the same way as in Figs. 7.1(c)-7.1(f), we broaden the radial distribution function of the 1s orbital in order to

exaggerate the electronic structure, and thus Figs. 7.4(b)-7.4(d) are schematic pictures.
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Figure 7.4: (a) The spin-triplet orbital diagonal and off-diagonal order parameters as a function of tsd

calculated by the Hartree-Fock mean-field approximation for the two-band Hubbard model. Here, we
use ts = td = t, (εd − εs)/t = 3, Us/t = Ud/t = 2, U ′/t = 1, J/t = J ′/t = 0.5. Due to Us/ts = Ud/td,
we find mα = ms = md. Isosurface of the spin density in the unit cell at Ri = 0 when (b) Φt > 0 and
mα = 0 at tsd = 0 and (c) Φt > 0 and mα < 0 at tsd 6= 0. Red and blue indicates positive and negative
parts of the spin density, respectively. (d) Illustrated is the spin density distribution with Φt > 0 and
mα < 0 at tsd 6= 0.

of the examples in the previous subsections. In this case, using the s-orbital and dx2−y2-orbital, the
magnetic octupole moment is finite but the magnetic dipole moment is absent. However, when mz

α

becomes finite at tsd 6= 0, the spin density is affected by φ2
α(r)mz

α as in Eq. (7.28). In Fig. 7.4(c), the
negative part is enhanced along y-axis and the positive part is reduced at ±x. The negative part is larger
than the positive part in the unit cell, and thus the net magnetization appears in total. In this state, the
magnetic dipole and octupole moments are finite in each unit cell. Corresponding to Q = π, the spin
polarization inverts alternately over the unit cells and the magnetization oscillates with twice period [see
Fig. 7.4(d)]. In contrast to the conventional SDW state in the single-orbital Hubbard system, in which
all part of the spin density in a unit cell is polarized along the same direction, we find that some part
of the spin density is polarized along the opposite direction to the direction of the total magnetization
in a unit cell due to finite multipole moments in the excitonic SDW state in the multi-orbital system.

In this subsection, using the simple example, we show that the net magnetization (magnetic dipole
moment) in each unit cell, M0 = 2

∑
α mα, becomes finite when both the valence and conduction

bands include the component of the same orbital due to the hybridization of different orbitals via the
hopping between the neighboring sites. This is consistent with the SDW state discussed in Cr and
iron-based superconductors. In contrast to the conventional SDW state in the single-orbital system, the
complicated density wave states with the higher rank multipole moments can be realized in the local spin
density si(r), which cannot be seen in mα. In this subsection, we have considered the one-dimensional
system as an example for simplicity, but, in higher dimensions, we should be more careful with the
spatial distributions of the wave functions of orbitals and hoppings between neighboring sites.

7.3 Multi-Orbitals in Different Ions

In the previous section, we have discussed the excitonic phases, in which the valence and conduction
bands are composed of orbitals in a single ion. In this section, we consider the case where the valence and
conduction bands are composed of orbitals in different ions. We note for example that the valence and
conduction bands in the candidate materials of excitonic insulators, TiSe2 and Ta2NiSe5, are composed
of orbitals in different ions [38,142,143]. In this chapter, we therefore discuss the electronic distributions
in the excitonic phases, in which the valence and conduction bands are composed of orbitals in different
ions.

When there are several ions in a unit cell, we have to consider the position of the α-orbital rα.
Therefore, the field operator is given by

Ψσ(r) =
∑

i

∑
α

φα(r − rα −Ri)ciασ. (7.29)

Using the field operator in Eq. (7.29), we can evaluate the charge and spin densities of excitonic state
from Eqs. (7.2) and (7.3).
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In this section, we assume that the valence and conduction bands are composed of two orbitals
located in different ions for simplicity. Using the orbitals of the valence (a) and conduction (b) bands,
the field operator in the i-th unit cell is given as

Ψiσ(r) = φa(r − ra)ciaσ + φb(r − rb)cibσ, (7.30)

where we write φα(r− rα −Ri) = φα(r− rα) for simplicity. Using the field operator in Eq. (7.30), the
density of electrons of spin σ is given by

ρiσ(r) = 〈Ψ†iσ(r)Ψiσ(r)〉 =φ2
a(r − ra)〈c†iaσciaσ〉+ φ2

b(r − rb)〈c†ibσcibσ〉
+ φa(r − ra)φb(r − rb)

[
〈c†ibσciaσ〉+ 〈c†iaσcibσ〉

]
, (7.31)

where the charge density is given by ρi(r) = ρi↑(r) + ρi↓(r) and the spin density of the z-direction is
given by 2sz

i (r) = ρi↑(r)− ρi↓(r).
When 〈c†ibσciaσ〉 is modulated due to excitonic phase transition, the change in the density distribution

of electrons is given by the third term in Eq. (7.31). Here, φa(r − ra)φb(r − rb)〈c†ibσciaσ〉 indicates
the density of electrons between the ions. When the excitonic density wave is given as 〈c†ibσciaσ〉 =
〈c†iaσcibσ〉 = Aσ cosQ ·Ri +Cσ, the density of electrons between the ions is enhanced (making a bonding
orbital) at some site and is reduced (making an antibonding orbital) at the neighboring sites. Therefore,
when the excitonic phase is stabilized, in which the valence and conduction bands are composed of
orbitals in different ions, the strength of the electronic bonding between the ions are modulated and
the bond density wave is realized. Note that the third term in Eq. (7.31) includes the product of the
wave functions of a and b orbitals φa(r − ra)φb(r − rb), and thus the electron distribution depends
on the sign of the wave functions. If 〈c†ibσciaσ〉 is enhanced due to excitonic ordering, the ions make
the bonding (anti-bonding) orbital at the positive (negative) part of the product of the wave functions
φa(r − ra)φb(r − rb).

In contrast to the excitonic phases formed from the orbitals in a single ion, the interorbital exchange
interaction that arranges the spins ferromagnetically like Hund’s rule coupling is weak between orbitals
in different ions, and thus the spin-triplet exciton condensation state is difficult to be stabilized [14,15,
129, 135]. Moreover, when the density of electrons between ions is enhanced due to excitonic ordering,
the enhancement of the charge density tends to shorten the distance between the ions. Therefore, in this
case, the electrons couple with the lattice degrees of freedom and the spin-singlet excitonic condensation
state is most likely to be stabilized with the lattice distortion [135].

In Fig. 7.5, we show an example of the excitonic phase, where the valence and conduction bands
are composed of the s and pz orbitals in different ions. Here, we assume that the ions locate along
z-direction in a unit cell [see Fig, 7.5(a)]. We show the charge density of the normal state and excitonic
CDW state with Q = π in Fig. 7.5(b) and 7.5(c), respectively. In the normal state, the charge density
is uniform [see Fig. 7.5(b)]. In the excitonic CDW state, the charge density is enhanced and the ions
make an electronic bonding at the part with φa(r − ra)φb(r − rb)〈c†ibσciaσ〉 > 0, but the ions make an
antibonding at the neighboring sites. Corresponding to the charge density, the electrons couple with
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Figure 7.5: Illustrated excitonic phase where the valence and conduction bands are composed of the s
and pz orbitals in different ions. (a) The position of the wave function of the s and pz orbitals in a unit
cell. Red and blue indicates positive and negative parts of the wave function, respectively. Illustrated
are the charge density of (b) the normal state and (c) excitonic CDW state with Q = π. In (c), we
assume the lattice distortion with Q = π as well.
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the lattice degrees of freedom and the lattice distortion is usually induced like in Fig. 7.5(c). Therefore,
when the valence and conduction bands are composed of orbitals in different ions, the bonding and
antibonding orbitals alternate over the unit cells and the bond charge-density-wave state is realized [see
Fig. 7.5(c)] when the excitonic ordering occurs.

7.4 Summary

In this Chapter, we have evaluated the charge and spin densities in the excitonic CDW and SDW state
from the local wave functions in the tight-binding approximation. First, we have discussed the charge
and spin densities of excitonic phases when the valence and conduction bands are composed of orthogonal
orbitals in a single ion. We have shown that the charge or spin density distributes anisotropically in
each unit cell and higher rank electric or magnetic multipole moment becomes finite, depending on
the wave functions of the valence and conduction bands. In this case, the excitonic density-wave state
is consistent with the multipole density-wave state. In contrast to the conventional CDW and SDW
state, the modulation of the total charge (electric monopole moment) and net magnetization (magnetic
dipole moment) in the unit cell does not appear when the orthogonal two orbitals are hybridized via a
spin-singlet or spin-triplet excitonic condensation. However, in the real materials, the energy bands are
constructed by the hybridization of many orbitals in a single ion. In this case, we have shown that, if both
the conduction and valence bands include the component of the same orbitals, the modulation of the net
magnetization in each unit cell appears like a conventional SDW (antiferromagnetic) state. Finally, we
have discussed the density of electrons in the excitonic phases when the valence and conduction bands
are composed of orbitals in different ions. In this case, we have shown that the exciton condensation
enhances the electronic density between ions and the excitonic density-wave state corresponds to the
bond density-wave state.
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Chapter 8

Theory of Ta2NiSe5 as an Excitonic
Insulator

8.1 Introduction

Recently, a transition-metal chalcogenide Ta2NiSe5 has been studied experimentally as a candidate
for an excitonic insulator (EI) [36, 37]. This material has a layered structure stacked loosely by a weak
van der Waals interaction, and in each layer, Ni single chains and Ta double chains are running along
the a-axis of the lattice to form a quasi-one-dimensional (1D) chain structure [144]. The observed
resistivity shows a semiconducting behavior over a wide temperature range with a quasi-1D anisotropic
electron conduction at high temperatures [145]. Then, an anomaly in the resistivity appears at 328K,
which is associated with a second-order-like structural phase transition from orthorhombic to monoclinic
phase [145]. The magnetic susceptibility exhibits diamagnetism in a wide temperature range (4.2− 900
K) and shows a sudden drop (being more negative) below the structural transition temperature (328
K) [145]. The system was thus suggested to be a small band-gap semiconductor with oxidation states
of Ni0+ (3d10) and Ta5+ (5d0), rather than a magnetic or Mott insulator [145, 146]. However, a recent
X-ray photoemission spectroscopy (XPS) experiment, together with a cluster-model calculation, showed
that Ni ions have a 3d9L character (L is a Se 4p hole) and consequently Ta ions have a 5d1 character [36].
Moreover, the angle-resolved photoemission spectroscopy (ARPES) experiment [36,37] showed that the
spectra are strongly temperature dependent; i.e., at 40 K the flatness of the top of the valence band
is extremely enhanced and the size of the band gap becomes wider. It was thereby suggested that the
EI state is realized as the ground state of this material, where the spin-singlet excitons between the Ni
3d-Se 4p holes and Ta 5d electrons are presumed [36].

In this Chapter, we introduce a theory to elucidate the origin of the structural phase transition and
associated anomalous electronic properties of Ta2NiSe5

1. First, we carry out the density-functional-
theory (DFT) based electronic structure calculations for the orthorhombic phase of Ta2NiSe5. Based on
the DFT calculation, we construct an effective three-chain Hubbard model to reproduce the three bands
near the Fermi level with the phonon degrees of freedom. We analyze this model by the mean-field
approximation and calculate its phase diagrams to clarify the origin of the structural phase transition.
We show that the interband Coulomb interaction and electron-lattice coupling cooperatively induce an
excitonic and structural phase transition in Ta2NiSe5. To reproduce the flattening of the valence band
top in the ARPES results, we also calculate the single-particle excitation spectra. We also carry out
the calculations of thermodynamic quantities, such as heat capacity and elastic constant, and show that
a jump is observed in the specific heat at the phase transition and that the elastic softening relating
to the structural phase transition is observed in the elastic shear constant. Finally, we calculate the
temperature dependence of the ultrasonic attenuation and nuclear-magnetic-resonance (NMR) spin-
lattice relaxation rates and demonstrate that the coherence peak appears in the ultrasonic attenuation
rate, while there occurs a rapid decrease in the NMR relaxation rate.

1Chap. 8 is based on T. Kaneko, T. Toriyama, T. Konishi, and Y. Ohta, Phy. Rev. B 87, 035121 (2013) and K.
Sugimoto, T. Kaneko, and Y. Ohta, Phy. Rev. B 93, 041105(R) (2016).
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Figure 8.1: Crystal structure of Ta2NiSe5 [144]. Blue, red, and green spheres indicate Ta, Ni, and Se
ions, respectively. All the Ta ions and Ni ions are crystallographically equivalent but there are three
inequivalent Se ions, Se(1), Se(2), and Se(3). In the right panel, we define the local coordinate axes x,
y, z for the orbitals on Ta, Ni, and Se(3) ions.

atom x y z
Ta -0.007931 0.221349 0.110442
Ni 0 0.701132 1/4

Se(1) 0.505303 0.080385 0.137979
Se(2) -0.005133 0.145648 0.950866
Se(3) 0 0.327141 1/4

atom x y z
Ta 0 0.222447 0.108098
Ni 0 0.702224 1/4

Se(1) 1/2 0.079970 0.139183
Se(2) 0 0.142111 0.951164
Se(3) 0 0.328012 1/4

Table 8.1: Left panel: experimental atomic coordinates of the monoclinic phase of Ta2NiSe5 given in
Ref. [144]. Right panel: optimized atomic coordinates of the orthorhombic phase of Ta2NiSe5. Definition
of the coordinates (x, y, z) is given in Ref. [144].

8.2 Electronic Structure of Ta2NiSe5

In this section, we carry out the band structure calculations employing the WIEN2k code [147] based
on the full-potential linearized augmented-plane-wave method, where we use the generalized gradient
approximation for electron correlations with the exchange-correlation potential of Ref. [148].

8.2.1 Crystal Structure of Ta2NiSe5

We show the crystal structure of Ta2NiSe5 in Fig. 8.1. The primitive unit cell contains four Ta ions,
two Ni ion, and ten Se ions. All the Ta ions and Ni ions are crystallographically equivalent but there
are three inequivalent Se ions, Se(1), Se(2), and Se(3). This material has a layered structure stacked
loosely by a weak van der Waals interaction. In each layer, Ni single chains and Ta double chains are
running along the a-axis and aligned alternately along the c-axis of the crystal structure. Se ions are
coordinated around the Ta ions octahedrally and around the Ni ions tetrahedrally. In the right panel
of Fig. 8.1, we define the local coordinate axes x, y, z for the orbitals on Ta, Ni, and Se(3) ions. In
Fig. 8.2, we show schematic pictures of the local orbitals on Ta and Ni ions, and we use these definition
in this Chapter.

Because the crystal structure of the high-temperature orthorhombic phase of Ta2NiSe5 is not known,
we make the structural optimization to determine the internal coordinates of the ions in the orthorhombic
phase. Assuming the orthorhombic structure (space group Cmcm) and keeping the experimental lattice
constants of the monoclinic phase (a = 3.496, b = 12.829, and c = 15.641 in units of Å), we optimize
the internal coordinates of all the ions. In the self-consistent calculations, we use 9 k-points in the
irreducible part of the Brillouin zone, assuming the muffin-tin radii (RMT) of 2.41, 2.21, and 1.96 Bohr
for Ta, Ni, and Se ions, respectively, and the plane-wave cutoff of Kmax = 7.0/RMT . The determined
atomic coordinates are listed in Table 8.1.
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Figure 8.2: Schematic pictures of the local orbitals on (a)-(c) Ta and (d)-(f) Ni ions in Ta2NiSe5. Blue,
red, and green spheres indicate Ta, Ni, and Se ions, respectively. The local coordinate axes x, y, z on
Ta and Ni ions are defined in Fig. 8.1.

8.2.2 Underestimation of the Band Gap

The band structure for the orthorhombic phase of Ta2NiSe5 is calculated for this optimized crystal
structure, where we use 468 k-points in the irreducible part of the Brillouin zone in the self-consistent
calculations, assuming the muffin-tin radii of 2.50, 2.33, and 2.06 Bohr for Ta, Ni, and Se ions, respec-
tively, and the plane-wave cutoff of Kmax = 7.0/RMT . The results for the band dispersion and density
of states (DOS) are shown in Figs. 8.3(a) and 8.3(b), respectively. We find that the results predict a
metallic state, which is in contrast to the experimental data that the electric resistivity shows a clear
insulating behavior and the ARPES observes a well-defined band gap even above the structural tran-
sition temperature. It is well-known that the DFT-based band calculations often cause this problem,
where the band gap in semiconductors is underestimated. In the present case, a small band overlap
appears between the bottom of the conduction bands coming from the 5d orbitals of Ta and top of the
conduction bands coming from the 3d orbitals of Ni hybridized with the 4p orbitals of Se.
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Figure 8.3: (a) Calculated band dispersions of the orthorhombic phase of Ta2NiSe5, where we assume
ky = 0. (b) DOS of the orthorhombic phase of Ta2NiSe5. In (c), we show the calculated band gap
as a function of the potential Vorb, where the band gap is defined as the energy of the bottom of the
conduction band measured from the energy of the top of the valence band [38].
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Figure 8.4: Calculated band dispersion and PDOS of the orthorhombic phase of Ta2NiSe5. (a) The
weighted band dispersions, where the width of the curves is in proportion to the weight of the Ta 5dxy

orbital, and (c) that of the Ni 3dxz+yz orbital, (b) PDOS for the Ta 5d t2g orbitals and (d) PDOS for
the Ni 3d t2 orbitals [38]. (e) Schematic picture of the orbitals for the electronic structure near the
Fermi level. Here, the local orbitals defined in Fig. 8.2 is used.

In order to solve this problem, we introduce a standard procedure [149], where the conduction
(valence) bands are shifted upward (downward) by adding (subtracting) an orbital-dependent potential
Vorb into the Hamiltonian so as to open the gap in the band dispersions. Here, we add the potentials
Vorb to the energy of the 5d orbitals of Ta and −Vorb to the energy of the 3d orbitals of Ni and 4p
orbitals of Se. The band gap thus calculated is shown in Fig. 8.3(c) as a function of Vorb, where we find
that the band gap actually opens for Vorb & 4.2 eV. Note that the bands do not shift rigidly by Vorb

due to the hybridization between the 5d orbitals of Ta and the 3d and 4p orbitals of Ni and Se, just as
it has been pointed out in Ref. [149] for a variety of materials. A similar situation has also been noticed
in Ref. [150] for a transition-metal oxide TiO2.

8.2.3 Effective Electronic Structure for Exciton Formation

The results for the partial densities of states (PDOS) and band dispersions obtained are shown in
Fig. 8.4. Here, we use the value Vorb = 5 eV, so that we have the band gap of 0.2 eV and band structure
where the top of the valence band and bottom of the conduction band are both located at the Γ point of
the Brillouin zone with the direct band gap, which is in good agreement with the experiment [36,145]. In
Fig. 8.4(b), we show the calculated PDOS for the Ta t2g orbitals. We find that the Ta 5dxy component
has the largest weight and is approximately equal to the PDOS of the total Ta 5d orbitals near the Fermi
level, indicating that the conduction band bottom is only composed of the Ta 5dxy band. In Fig. 8.4(d),
we show the calculated PDOS for the Ni t2 orbitals. We find that the Ni 3dxz+yz component has the
largest weight near the Fermi level and the valence band top is only composed of the 3dxz+yz orbital.
We also find that the Se 4px+y component has the largest weight in the valence band top although not
shown here.

In Figs. 8.4(a) and 8.4(c), we show the band dispersions with the weight of the Ta 5dxy and Ni
3dxz+yz orbitals, respectively. We find that the band structure near the Fermi level is rather simple; the
conduction band has a cosine-like quasi-1D band dispersion coming from the 5dxy orbitals of Ta ions
arranged along the chain, whereas the top of the valence band has a quasi-1D dispersion coming from
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Figure 8.5: (a) Noninteracting band dispersion of our model Eq. (8.1). The conduction band is doubly
degenerate. The Fermi level is indicated by a horizontal line. (b) Schematic representations of the three-
chain Hubbard model for the 1D structural unit consisting of the two chains of the Ta 5dxy orbitals
yielding the c-bands and one chain of the Ni 3dxz+yz and Se 4px+y orbitals of Ta2NiSe5 yielding the
f -band. The lattice distortion of the chain corresponding to the orthorhombic-to-monoclinic phase
transition is schematically illustrated [38].

the Ni 3dxz+yz (and Se 4px+y) orbitals arranged along the chain, and no hybridization occurs between
the top of the valence band and bottom of the conduction band. We show the schematic picture of the
relevant orbitals near the Fermi level in Fig. 8.4(e).

8.3 Model Study of Ta2NiSe5

8.3.1 Model Hamiltonian

Based on the results, we make the effective three-chain model containing the nondegenerate valence
f -band coming from the hybridized Ni 3dxz+yz and Se 4px+y orbitals and the doubly degenerate con-
duction c-bands coming from the Ta 5dxy orbitals, to which the Hubbard-type onsite and interchain
repulsive interactions are added (see Fig. 8.5). We also introduce the electron-lattice coupling assuming
a uniform shear distortion of the chain (see Fig. 8.5) corresponding to the structural transition from the
orthorhombic to monoclinic phase [151]. The Hamiltonian of our model is written as

H = H0 +He-e +Hlat, (8.1)

where H0 is a noninteracting band dispersion term, He-e is an electron-electron interaction term, and
Hlat is a lattice-distortion term relating to the structural phase transition in Ta2NiSe5.

The noninteracting band dispersion term is written as

H0 =
∑

k,α,σ

εc(k)c†k,α,σck,α,σ +
∑

k,σ

εf (k)f†k,σfk,σ, (8.2)

where c†k,α,σ and f†k,σ are the Fourier transforms of c†i,σ,α that creates an electron with spin σ (=↑, ↓) at
site i on the c-orbital of the chain α (= 1, 2) and f†i,σ that creates an electron at site i of the f -orbital,
respectively. The noninteracting band dispersions are given as εc(k) = 2tc(cos k − 1) + D/2 − µ and
εf (k) = 2tf (cos k − 1)−D/2− µ with the hopping parameters tc and tf and the band gap D.

The electron-electron interaction term is given as

He-e = Uc

∑

i,α

nc
i,α,↑n

c
i,α,↓ + Uf

∑

i

nf
i,↑n

f
i,↓

+ V
∑

i,α,σ,σ′
nc

i,α,σnf
i,σ′ + V

∑

i,σ,σ′
(nc

i+1,1,σ + nc
i−1,2,σ)nf

i,σ′ , (8.3)
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where nc
i,α,σ and nf

i,σ are the electron number operators on the c- and f -orbitals, respectively. Uc and
Uf are the on-site Coulomb interaction of the c and f band electrons. V is the intersite interaction
between f and c electrons, which drives the excitonic instability in the system.

The lattice-distortion term consists of a term of harmonic oscillators for the Ta atoms and a hy-
bridization term between conduction and valence band electrons caused by the lattice distortion, which
is written as

Hlat =
K

2

∑

i,α

X2
i,α −

∑

i,α,σ

γαXi,α

(
c†i,α,σfi,σ + f†i,σci,α,σ

)
, (8.4)

where Xi,α is the displacement of a Ta atom at site i in the α-th chain measured from its equilibrium
position, and K is a spring constant of the harmonic oscillators. γα is the strength of hybridization
between f and c electrons caused by the lattice distortion.

We use the values tc = −0.8, tf = 0.4, and D = 0.2 in units of eV obtained from the fitting to the
calculated band dispersions. We assume Uc = Uf (= U) for simplicity and choose V = U/4 in order to
minimize the Hartree shift in the mean-field approximation. We also assume γ1 = γ and γ2 = −γ and
make use of the parameter λ = γ2/2K for the strength of the electron-lattice coupling in the following
discussions. L is the number of the unit cells in the system, where the unit cell contains an f - and two
c-orbitals. We restrict ourselves to the filling of two electrons per unit cell.

8.3.2 Mean-Field Approximation

To investigate the excitonic and structural phase transition of the model (8.1), we apply the mean-
field approximation

ni,↑ni,↓ ≈ 〈ni,↑〉ni,↓ + n↑〈ni,↓〉, (8.5)

for the onsite terms of both orbitals and

nc
i,α,σnf

i,σ′ ≈〈nc
i,α,σ〉nf

i,σ′ + nc
i,α,σ〈nf

i,σ′〉 − 〈nc
i,α,σ〉〈nf

i,σ′〉
−〈f†i,σci,α,σ〉c†i,α,σfi,σ − f†i,σci,α,σ〈c†i,α,σfi,σ〉+ 〈f†i,σci,α,σ〉〈c†i,α,σfi,σ〉, (8.6)

for the formation of spin-singlet excitons. Assuming the uniform electron distribution, the numbers of
electrons per c and f site may be written, respectively, as

〈nc
i,α,σ〉 = n, 〈nf

i,σ〉 = 1− 2n. (8.7)

The excitonic order parameters (or excitonic gap functions) may be defined by

∆1,1 = V 〈c†i,1,σfi,σ〉, ∆1,2 = V 〈c†i+1,1,σfi,σ〉,
∆2,1 = V 〈c†i,2,σfi,σ〉, ∆2,2 = V 〈c†i−1,2,σfi,σ〉, (8.8)

and the order parameter of the uniform lattice distortion may be defined by

δα = γαXi,α. (8.9)

Using the approximations, we obtain the mean-field Hamiltonian

HMF =
∑

k,σ

(
c†k,1,σ c†k,2,σ f†k,σ

)



ε̃c(k) 0 −∆̃∗
1(k)

0 ε̃c(k) −∆̃∗
2(k)

−∆̃1(k) −∆̃2(k) ε̃f (k)







ck,1,σ

ck,2,σ

fk,σ


 + Lε0, (8.10)

with

ε̃c(k) = 2tc(cos k − 1) +
1
2
(D − 4nV )− µ0, ε̃f (k) = 2tf (cos k − 1)− 1

2
(D − 4nV )− µ0, (8.11)

where we define µ0 as µ = µ0 + 4V (1− n/2),

∆̃1(k) = ∆1,1 + ∆1,2e
ik + δ1, ∆̃2(k) = ∆2,1 + ∆2,2e

−ik + δ2, (8.12)
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and

ε0 = −4V (1− 2n2) +
2
V

∑

α,β

|∆α,β |2 +
1
4λ

∑
α

δ2
α. (8.13)

Diagonalizing the mean-field Hamiltonian given in Eq. (8.10), we obtain

HMF =
∑

k,σ

∑
ε=c,±

Ek,εγ
†
k,ε,σγk,ε,σ + Lε0, (8.14)

where

Ek,c = ε̃c(k), Ek,± = ηk ± Ek (8.15)

with

ηk =
ε̃c(k) + ε̃f (k)

2
, ξk =

ε̃c(k)− ε̃f (k)
2

, Ek =
√

ξ2
k + |∆̃1(k)|2 + |∆̃2(k)|2. (8.16)

γk,ε,σ (γ†k,ε,σ) is the annihilation (creation) operator of the quasiparticle. The quasiparticle operators
satisfy the relation ck,µ,σ =

∑
ε ψk,σ;µ,εγk,ε,σ, where ψk,σ;µ,ε is the Bogoliubov transformation coefficient

and fk,σ = ck,3,σ. The coefficients ψk,σ;µ,ε are determined as




ck,1,σ

ck,2,σ

fk,σ


 =




|∆̃2|
|∆̃1|w

∗
k,1 −ukw∗k,1 vkw∗k,1

− |∆̃1|
|∆̃2|w

∗
k,2 −ukw∗k,2 vkw∗k,2

0 vk uk







γk,c,σ

γk,+,σ

γk,−,σ


 (8.17)

with

uk =

√
1
2

(
1 +

ξk

Ek

)
, vk =

√
1
2

(
1− ξk

Ek

)
, wk,α =

∆̃α(k)√
|∆̃1(k)|2 + |∆̃2(k)|2

. (8.18)

The self-consistent equations for n, ∆α,β , and δα are determined to minimize the free energy2

F = −kBT
∑

k,ε,σ

ln(1 + e−βEk,ε) + Lε0. (8.19)

Writing the parameter as x, the minimization satisfies the equation ∂F/∂x = 0. This equation reads

∑

k,ε,σ

∂Ek,ε

∂x
f(Ek,ε) + L

∂ε0

∂x
= 0, (8.20)

where f(E) = 1/(eβE + 1) is the Fermi distribution function. For the number of conduction electrons
n, we obtain

n =
1

2L

∑

k

{
f(Ek,c) + u2

kf(Ek,+) + v2
kf(Ek,−)

}
. (8.21)

For the excitonic order parameters ∆α,1 and ∆α,2, we obtain

∆α,1 = − V

2L

∑

k

∆̃α(k)
Ek

(f(Ek,+)− f(Ek,−)) , (8.22)

∆α,2 = − V

2L

∑

k

e∓ik ∆̃α(k)
Ek

(f(Ek,+)− f(Ek,−)) , (8.23)

2The free energy is given as

F = 〈HMF 〉 − TS =
X

k,σ,ε

Ek,εf(Ek,ε) + Lε0 +
1

β

X

k,σ,ε

˘
(1− f(Ek,ε)) ln(1− f(Ek,ε)) + f(Ek,ε) ln f(Ek,ε)

¯
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and for the displacement δα we have

δα = −4λ

L

∑

k

Re[∆̃α(k)]
Ek

(f(Ek,+)− f(Ek,−)) . (8.24)

We solve these equations self-consistently to obtain the order parameters. Corresponding to the lattice
distortion with δ1 = δ2, we find the solution with ∆1,1 = ∆2,1 and ∆1,2 = ∆2,2. Note that the definition
of the excitonic gap functions is slightly generalized from the previous study [38] but the calculated
results do not change significantly.

8.3.3 Excitonic and Structural Phase Transition

The calculated results for the ground-state and finite-temperature phase diagrams are shown in
Fig. 8.6. Note that, in this calculation, we assume ∆1,1 = ∆2,1 = ∆1,2 = ∆2,2 = ∆ and δ1 = δ2 = δ
for simplicity [38]. As for the ground state, we clearly see in Figs. 8.6(a)-8.6(c) that when V and λ
are small the system is the band insulator (BI) with ∆ = δ = 0 but when V and λ are large the EI
state ∆ > 0 with the shear distortion of the chain δ > 0 appears in the ground state. The EI state
occurs simultaneously and cooperatively with the lattice distortion except at the lines λ = 0 and V = 0.
We emphasize here that even if λ is small the structural phase transition occurs with the help of the
exciton condensation: i.e., the interaction V drives the EI-state formation ∆ > 0, which leads to the
spontaneous c-f hybridization, and as a consequence, the structural distortion δ > 0 occurs even if λ is
small. The spontaneous c-f hybridization stabilizes the lattice distortion, leading to the orthorhombic-
to-monoclinic phase transition. This is consistent with the situation in the real material Ta2NiSe5,
where the monoclinic distortion of the angle 0.5◦−1◦ (or the atomic displacement 0.02−0.04 Å) is very
small [145]; a rough estimation may be δ ∼ 0.02− 0.04 eV, which corresponds to λ ∼ 0.02− 0.05 eV 3.
The oxidation states of Ni2+ and Ta4+ observed in the XPS experiment [36] are also consistent with
the nonzero value of n induced by the spontaneous c-f hybridization in the EI phase (see Fig. 8.6(c)).
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Figure 8.6: Ground-state phase diagram with the order parameters (a) ∆, (b) δ, and (c) n, in the
parameter space (V, λ). (d) Finite-temperature phase diagram with the order parameter ∆ as a function
of V at λ = 0.04 eV. Also shown are (e) the V dependence of ∆ and (f) λ dependence of δ at T = 0 K
with λc = 0.125 eV and Vc = 0.6 eV. Abbreviations are BI (band insulator), EI (excitonic insulator), O
(orthorhombic), and M (monoclinic) [38].

3A rough estimation for Ta2NiSe5 may be γ ∼ 1 eV/Å, δ = γ〈Xi,α〉 ∼ 0.02 − 0.04 eV, K ∼ 10 − 30 eV/Å2, and
λ = γ2/2K ∼ 0.02− 0.05 eV.
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Figure 8.7: Calculated temperature dependence of the single-particle spectra of the three-chain Hubbard
model. (a)-(c) Total spectral weight, (d)-(f) spectral weight on the c-orbital, and (g)-(i) spectral weight
on the f -orbital. We assume V = 0.55 eV and λ = 0.04 eV. The calculated transition temperature is
kBTc = 0.0722 eV. The Lorentzian broadening of the spectra of 0.01 eV is applied for comparison with
the experimental ARPES spectra [36,37]. The band dispersion without condensation ∆ = δ = 0 is given
by the dashed curves. The Fermi level is indicated by the horizontal line [38].

The temperature dependence of the EI phase is given in Fig. 8.6(d), where we find that by lowering
temperature the BI state with the undistorted (orthorhombic) structure changes into the EI state with
the distorted (monoclinic) structure and the transition is of the second order. Thus, the experimental
situations are correctly reproduced.

8.3.4 Single-particle Spectra

The single-particle spectra for the c- and f -electrons are calculated as

Ac(k, ω) =
1
2
u2

kδ(ω − Ek,+) +
1
2
v2

kδ(ω − Ek,−) +
1
2
δ(ω − Ek,c), (8.25)

Af (k, ω) = v2
kδ(ω − Ek,+) + u2

kδ(ω − Ek,−), (8.26)

respectively, and the total single-particle spectrum is given as A(k, ω) = 2Ac(k, ω) + Af (k, ω). The
calculated temperature dependence of the single-particle spectra is shown in Fig. 8.7, where we find the
large deformation of the top of the valence band occurs by the spontaneous c-f hybridization in the EI
state formation by lowering temperature: the flattening of the band dispersion is evident and the shift
of the top of the valence band away from the Fermi level is noticed, both of which are consistent with
experimental ARPES results [36, 37]. The hybridization can be seen in the c-orbital spectral weight
below the Fermi level (see Figs. 8.7 (d) and 8.7 (e)) and f -orbital spectral weight above the Fermi
level (see Figs. 8.7 (g) and 8.7 (h)). Splitting of the c-bands into two is also noticed, where the lower
“nonbonding” band remains unaffected in the presence of ∆ and δ.

Note that the c-f hybridization is absent above the transition temperature (Tc) in our mean-field
calculations (see Figs. 8.7 (c), 8.7 (f), and 8.7(i)). However, the characteristic temperature scale asso-
ciated with the formation of preformed excitons should be present [23]. In the experimental ARPES
spectrum on Ta2NiSe5, the band dispersion approaches to the parabolic behavior with increasing tem-
perature, but the flattening of the valence band top remains even above Tc [37, 39]. Seki et al. showed
that the ARPES results around Tc can be well reproduced by the finite temperature variational cluster
approximation (VCA) calculations for an extended Falicov-Kimball model, which can take into account
the quantum fluctuations beyond the mean-field approximation [39]. The VCA calculations show that
the band flattening above Tc is derived from the strong excitonic fluctuation in the preformed exciton
region [39].
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λ

Figure 8.8: (a) Calculated temperature dependence of the heat capacity per unit cell, where the red
solid line is for the excitonic phase and the blue dashed line is for the normal phase. (b) Calculated
λ dependence of the jump in the heat capacity (red squares) and Tc (blue circles). (c) Calculated
temperature dependence of the elastic shear constant per unit cell. We assume V = 0.6 eV and λ =
0.01 eV in (a) and (c) [40].

8.3.5 Heat Capacity

We also evaluate the heat capacity of the model, which may be calculated from the free energy in
Eq. (8.19) as

C = −T
∂2F

∂T 2
=

∑

k,ε,σ

Ek,ε
∂f(Ek,ε)

∂T
. (8.27)

Note that, from here, we assume ∆1,1 6= ∆1,2 and ∆2,1 6= ∆2,2 in the mean-field calculation4 and we set
V = 0.6 eV and λ = 0.01 eV unless otherwise stated [40]. The calculated result is shown in Fig. 8.8(a),
where we find that the jump at Tc associated with the second-order phase transition is clearly visible,
satisfying the entropy balance. The jump is given by (CE − CN)/CN ' 0.20 for the parameter values
appropriate for Ta2NiSe5, where CE and CN are the heat capacities in the excitonic and normal phases,
respectively, at Tc. This value is much smaller than the value 1.43 (a universal constant) in the BCS
superconductivity and depends strongly on the model parameters used; its λ dependence, e.g., is shown
in Fig. 8.8(b). Such a difference in the magnitude of the jump comes mainly from the difference in
the normal phase: It is a band insulator in the present excitonic condensation while it is a metal in
superconductivity. We also note in Fig. 8.8(b) that the jump in the heat capacity and the value of Tc

increase monotonically as λ increases, indicating that the larger values of the order parameters in the
excitonic phase lead to the larger jump in the heat capacity. We point out that a recent specific heat
measurement on Ta2NiSe5 [152] reveals a behavior consistent with our theoretical prediction. We note
that the heat capacity coming from the lattice degrees of freedom should be taken into account when
we compare our result with experimental data for Ta2NiSe5.

8.3.6 Elastic Constant

Next, we evaluate the elastic constant of the model, which may also be calculated from the mean-field
free energy in Eq. (8.19) as

Cshear =
∂2F

∂δ2
, (8.28)

where we assume the lattice distortion of the transverse acoustic phonon mode in the long wavelength
limit, corresponding to the observed structural phase transition [see Fig. 8.9(d)]. The calculated result
is shown in Fig. 8.8(c), where we actually find the elastic softening (Cshear = 0) at Tc, leading to the
structural phase transition. We observe a Curie-Weiss–like behavior 1/Cshear = 1/C∞shear + A/(T − Tc)
at T > Tc with 1/C∞shear = 0.094 eV and A = 0.546 eV·K. A recent experimental observation of the
diffuse x-ray scattering [153] suggests the presence of the soft phonon mode, which is consistent with
our theoretical prediction.

4Form here, the calculations were performed by Dr. K. Sugimoto [40].
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8.3.7 Ultrasonic Attenuation Rate

Let us discuss the ultrasonic attenuation rate. Defining Aq,α = aq,α + a†−q,α using the phonon
annihilation (creation) operator aq,α (a†q,α) on the Ta chain α, we write the Matsubara phonon Green’s
function as

Dα(q, τ) = −〈TτAq,α(τ)A−q,α(0)〉, (8.29)

where Aq,α(τ) = e−ωqτaq,α + eωqτa†−q,α is the Heisenberg representation of Aq,α at imaginary time τ
and phonon wave number q with a phonon dispersion ωq. Using the Fourier coefficient Dα(q, iωn) =∫ β~
0

dτ Dα(q, τ)eiωnτ , the phonon Dyson’s equation is given as

Dα(q, iωn) = D(0)
α (q, iωn) +D(0)

α (q, iωn)Πα(q, iωn)Dα(q, iωn), (8.30)

where Πα(q, iωn) is the self-energy of the phonon Green’s function. The ultrasonic attenuation rate is
then given by the imaginary part of the retarded self-energy [154] as

αq,α =
1

τq,α
= −2 Im ΠR

α(q, ωq + iη), (8.31)

where τq,α is a relaxation time of the phonon and η is an infinitesimal value.
We consider the lattice oscillation corresponding to the distortion in the structural phase transition,

i.e., an ultrasonic shear wave for the transverse acoustic mode that propagates along the direction
perpendicular to the chains [see Fig. 8.9(d)]. The perturbation Hamiltonian of the phonons coupled
with electrons is given by

H′ =
∑

k,q,σ

2∑
α=1

{
M cc
−qA−q,αc†k−,α,σck+,α,σ −M cf

−qA−q,α

(
c†k−,α,σfk+,σ + f†k−,α,σck+,σ

)}
, (8.32)

with k± = k ± q/2. The first term represents the couping between the phonon and charge density
of the conduction band electrons with a coupling constant M cc

−q, and the second term represents the
hybridization between the conduction and valence bands by the phonon with a coupling constant M cf

−q.
The coupling between the phonon and charge density of the valence band electrons is ignored as being
irrelevant to the present instability mode. Eq. (8.32) then reads

H′ =
∑

k,q,σ

2∑
α=1

3∑
µ=1

Wα,µ(−q)A−q,α

(
c†k−,α,σck+,µ,σ + c†k−,µ,σck+,α,σ

)
, (8.33)

where Wα,µ(q) =
(
δα,µM cc

q /2− δµ,3M
cf
q

)
and we have defined ck,3,σ = fk,σ.

We adopt the second-order perturbation theory for the phonon self-energy. Since the ultrasonic wave
number q is small enough, we may assume q ' 0 in Eq. (8.31). We then obtain

αq=0,α =2πωph

∑

k,σ

∑
ε1,ε2

β

4 cosh2 (βEk,ε1/2)
δ (Ek,ε1 − Ek,ε2)

∑
µ,ν

Wα,µWα,ν ×
{

2Ψα,α;ε1(k, σ)Ψµ,ν;ε2(k, σ) + Ψν,α;ε1(k, σ)Ψµ,α;ε2(k, σ) + Ψα,µ;ε1(k, σ)Ψα,ν;ε2(k, σ)
}

, (8.34)

where ωph is the ultrasonic frequency and Ψµ,ν;ε(k, σ) = ψk,σ;µ,εψ
∗
k,σ;ν,ε with the Bogoliubov transfor-

mation coefficient ψk,σ;µ,ε.
The calculated results for the temperature dependence of the ultrasonic attenuation rate are shown

in Figs. 8.9(a)-8.9(c). We find the following: in the normal state (obtained with vanishing order pa-
rameters), thermally excited electrons are scattered by phonons via the coupling with charge density
of the conduction band electrons, resulting in the behavior αq=0,α ∝ (M cc

0 )2. The M cf
0 term does not

contribute here. In the excitonic phase, a large coherence peak appears due to the phonon-induced c-f
hybridization (M cf

0 ), which is however overwhelmed by the charge-density term (M cc
0 ) at M cc

0 À M cf
0 ,

where the increase in the band gap suppresses the thermal excitation of electrons, resulting in a rapid
decrease in the rate αq=0,α. However, in the ultrasonic attenuation experiment using the transverse
sound mode, the coupling between the phonon and charge density of electrons does not contribute to
the rate, and therefore we have the situation shown in Fig. 8.9(a). The experimental observation of the
coherence peak in the ultrasonic attenuation rate should thus be realizable.
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Figure 8.9: Calculated ultrasonic attenuation rate normalized by the ultrasonic frequency ωph. We
assume M cf

0 = 1 eV with (a) M cc
0 = 0 eV, (b) M cc

0 = 1 eV, and (c) M cc
0 = 5 eV. (d) Schematic represen-

tation of the oscillation of the ultrasonic shear wave that propagates along the direction perpendicular
to the chains. Also shown are the calculated NMR relaxation rates at (e) Ta and (f) Ni sites. The red
solid line (E) is for the excitonic phase and the blue dashed line (N) is for the normal phase [40].

8.3.8 Nuclear Magnetic Relaxation Rate

Finally, let us discuss the NMR spin-lattice relaxation rate, which may be written [155] as

1
T1,µ

∝ −kBT

~ωµ

∑
q

Im χR
+−,µ(q, ωµ), (8.35)

using the transverse dynamical spin susceptibility

χR
+−,µ(q, ωµ) = −i

∫ ∞

−∞
dt eiωµt〈[S+

q,µ(t), S−−q,µ(0)]〉θ(t), (8.36)

where we define S+
q,µ =

∑
k c†k−,µ,↑ck+,µ,↓ and S−q,µ =

∑
k c†k−,µ,↓ck+,µ,↑, and ωµ is a resonant frequency

of nuclear spins (µ = 1, 2 for Ta and µ = 3 for Ni). Using the mean-field approximation and assuming
a small ωµ value compared to typical energy scales of the system, we may rewrite Eq. (8.35) as

1
T1,µ

∝ π
∑

k,q

∑
ε1,ε2

Ψµ,µ;ε1(k−, ↑)Ψµ,µ;ε2(k+, ↓) 1
4 cosh2

(
βEk−,ε1/2

)δ
(
Ek−,ε1 − Ek+,ε2

)
. (8.37)

The calculated results for the temperature dependence of the NMR relaxation rate are shown in
Figs. 8.9(e) and 8.9(f) for Ta and Ni nuclear spins, respectively. We find that, in contrast to the typical
s-wave superconducting phase [156], there appear no characteristic peaks in the rate of the excitonic
phase but the rate simply drops just below Tc. Thus, the behavior of the NMR relaxation rate in
the excitonic phase is similar to that of an ultrasonic attenuation rate in the s-wave superconducting
phase. We point out that a recent NMR experiment on Ta2NiSe5 [157] suggests the behavior of the rate
consistent with our theoretical prediction.

8.4 Summary

In summary, we have discussed the origin of the orthorhombic-to-monoclinic phase transition and
associated anomalous electronic properties of Ta2NiSe5 of the layered chalcogenide Ta2NiSe5 using the
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band structure calculation and mean-field analysis of the derived three-chain Hubbard model. From
the band structure calculation, we have shown that the band structure near the Fermi level is simple;
the conduction band has a cosine-like quasi-1D band dispersion coming from the 5dxy orbitals of Ta
ions arranged along the chain, whereas the top of the valence band has a quasi-1D dispersion coming
from the Ni 3dxz+yz and Se 4px+y orbitals arranged along the chain. Based on the band structure
calculation, we have made the effective three-chain Hubbard model with electron-lattice coupling. We
have shown that the BEC of excitonic electron-hole pairs cooperatively induces the instability of the
shear lattice distortion in the effective model, resulting in the structural phase transition of the system.
We have also shown that the spontaneous c-f hybridization explains the valence states of Ta and Ni ions
observed in the XPS experiment and that the calculated single-particle spectra reproduce the flattening
and shift of the band structure observed in the ARPES experiment. We have also demonstrated that
the heat capacity exhibits a relatively small jump at Tc and the elastic shear constant indicates a
softening when the temperature approaches Tc, both of which are consistent with recent experimental
observations for Ta2NiSe5 [152, 153]. Finally, we have calculated the temperature dependence of the
ultrasonic attenuation and NMR relaxation rates and have shown that the coherence peak can appear
in the ultrasonic attenuation rate just below Tc. In the NMR relaxation rate, on the other hand, no
characteristic peak appears in 1/T1 but it simply drops just below Tc, in agreement with recent NMR data
for Ta2NiSe5 [157]. We therefore hope that our theoretical predictions made here will encourage further
experimental studies to provide proof that the excitonic condensation actually occurs in Ta2NiSe5.
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Summary

In this thesis, we have presented our theoretical studies of excitonic phases in strongly correlated
electron systems. In particular, we have focused on the stability of the excitonic phases as well as on the
crossover phenomena between the weak-coupling BCS and strong coupling BEC states in the strongly
correlated lattice models. We have also applied the theory of excitonic insulators to the candidate
material Ta2NiSe5 that has attracted much attention in recent years.

In Chap. 2, we have reviewed the basic theory of excitonic phases. We have discussed the nature
of excitonic phases using the simplest spinless model, where we have shown that a lot of similarities
with the BCS theory of superconductivity exist in, e.g., the order parameter, gap equation, and its
solutions. In contrast to superconductivity, however, we have discussed that the off-diagonal long-range
order is absent in the excitonic insulator states, indicating the difficulty in realizing superfluidity in real
materials of excitonic insulators. After that, we have described the excitonic phases with spin degrees
of freedom. We have introduced two types of the excitonic phases that can be realized when the order
parameter has the spin degrees of freedom; i.e., the excitonic charge density wave (CDW) and spin
density wave (SDW) states, which are the diagonal long-range orders.

In Chap. 3, we have discussed the numerical methods used in this thesis. First, we have introduced the
exact-diagonalization (ED) technique based on the Lanczos algorithm, which can solve the many-body
problems in finite-size systems exactly. Next, we have introduced the variational cluster approximation
(VCA) based on the self-energy functional theory (SFT), where we can take into account the effects
of short-range spatial correlations even in low-dimensional systems in the thermodynamic limit and
can discuss the spontaneous symmetry breakings of correlated electron systems beyond the mean-field
theory. We have also introduced the cluster perturbation theory (CPT), which is useful for evaluating
the single-particle excitation spectrum and their integrated values such as the density of states and
momentum distribution function.

In Chap. 4, we have investigated the exciton condensation state in the extended Falicov-Kimball
model (EFKM) and have discussed the nature of the BCS-BEC crossover of the condensate. In Sec. 4.2,
we have investigated the formation and condensation of excitons in the double-layer EFKM on the square
lattice using the ED technique. We have analyzed the nature of the excitonic condensate on the basis of
the interband interaction dependence of the anomalous excitation spectrum, condensation amplitude,
coherence length, exciton binding energy, and order parameter. We have also investigated the effect of
the mass asymmetry of electrons and holes, thereby finding that a mass asymmetry between electrons
and holes suppresses the condensation of excitons. In Sec. 4.3, we have examined the one-dimensional
EFKM using the density matrix renormalization group (DMRG) technique and have shown that the
excitonic insulator state is critical in contrast to that of the higher dimensional systems. We have
determined the phase boundary between the band insulator, excitonic insulator, and staggered orbital
order, and have presented the complete ground-state phase diagram with high accuracy. Using the
anomalous spectral functions, we have also shown that the different nature of the electron-hole pairing
and condensation processes occurs in the weak and strong coupling regions.

In Chap. 5, we have studied the stability of the excitonic phases with the spin degrees of freedom
in the two-band Hubbard model (TBHM), where we have taken into account the interband Coulomb
interaction U ′, interband exchange interaction J , pair-hopping interaction J ′, as well as the intraband
repulsion U . We have rewritten the interband interactions of the Hamiltonian in terms of the creation
and annihilation operators of the spin-singlet and spin-triplet excitons and have examined the roles of
these interactions, whereby we have shown that the U ′ term drives the formation of excitons in both
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the spin-singlet and spin-triplet channels, and that the J term stabilizes (destabilizes) the formation of
the spin-triplet (spin-singlet) exciton. Using the VCA to calculate the grand potential of the system in
the thermodynamic limit, we have moreover shown that the exchange interaction always stabilizes the
excitonic SDW state and destabilizes the excitonic CDW state, of which the tendencies are enhanced
by the pair hopping term. A variety of physical quantities have also been calculated, which include the
single-particle spectral function, density of states, anomalous Green’s functions, condensation amplitude,
and pair coherence length.

In Chap. 6, we have studied the stability of the excitonic states in the TBHM taking into account
the electron-phonon coupling, where the static mean-field theory is employed for treating the lattice
degrees of freedom and the VCA for the electron-electron correlations. We have shown that both the
interband Coulomb interaction U ′ and the electron-phonon coupling λ tend to stabilize an excitonic
CDW state. The CDW typifies predominantly excitonic and phononic states for small and large ratios
λ/U ′, respectively. Incorporating the interband exchange interactions, we have shown that a spin-
triplet excitonic state competes with the spin-singlet excitonic state, and have determined the ground-
state phase diagram, where the electron-phonon coupling and interband exchange interactions tend
to establish the excitonic CDW and SDW phases, respectively. We have also shown that, while the
excitonic insulator state exhibits a gapless acoustic phase mode in the absence of the electron-phonon
and pair-hopping couplings, the presence of these couplings fixes the phase of the order parameter and
therefore eliminates such a gapless excitation that is related to supertransport properties of the system.

In Chap. 7, we have evaluated the charge and spin densities in the excitonic CDW and SDW states
from the local wave functions in the tight-binding approximation. We have shown that, when the va-
lence and conduction bands are composed of different orthogonal orbitals in a single ion, the charge
and spin densities of the excitonic phases distribute anisotropically in each unit cell and higher rank
electric or magnetic multipole moments become finite, depending on the shapes of the wave functions of
the valence and conduction bands. In this case, the excitonic density-wave state is consistent with the
multipole density-wave state. In contrast to the conventional CDW and SDW states, the modulation of
the total charge or net magnetization in the unit cells does not appear even when the orthogonal two
orbitals are hybridized as a result of the excitonic long-range order. However, in the real materials, the
energy bands are reconstructed by the hybridization of many orbitals; in such cases, we have shown that
the modulation of the net magnetization in each unit cell appears like a conventional SDW (antiferro-
magnetic) state if the conduction and valence bands include a large amount of the component of the
same orbitals. We have also discussed the density of electrons in the excitonic phases when the valence
and conduction bands are composed of orbitals located in different ions. In this case, we have shown
that the exciton condensation enhances/suppresses the electronic density between the ions, indicating
that the excitonic density-wave state corresponds to the bond density-wave state.

In Chap. 8, we have discussed the origin of the phase transition and associated anomalous electronic
properties observed in the layered chalcogenide Ta2NiSe5 using the band structure calculation and mean-
field analysis of the derived three-chain Hubbard model. From the band structure calculation, we have
shown that the band structure near the Fermi level is rather simple; the conduction band has a cosine-
like quasi-1D band dispersion coming from the orbitals of Ta ions arranged along the chain, whereas the
top of the valence band has a quasi-1D dispersion coming from the Ni and Se orbitals arranged along
the chain. Based on the results of the band structure calculation, we have constructed the effective
three-chain Hubbard model with the electron-lattice coupling. We have shown that the interband
Coulomb interaction and electron-lattice coupling cooperatively induce an excitonic and structural phase
transition in Ta2NiSe5. The calculated single-particle spectra reproduce the flattening and shift of the
band structure observed in the angle-resolved photoemission spectroscopy experiment. We have also
demonstrated that the heat capacity exhibits a relatively small jump at Tc and the elastic shear constant
indicates a softening when the temperature approaches Tc. Finally, we have calculated the temperature
dependence of the ultrasonic attenuation and nuclear-magnetic-resonance (NMR) relaxation rates. We
have shown that the coherence peak can appear in the ultrasonic attenuation rate just below Tc, but in
the NMR relaxation rate, no characteristic peak appears but the rate simply drops just below Tc.

Future Prospects

It is known that many experimental results so far obtained for the candidate materials of excitonic
insulators TiSe2 and Ta2NiSe5 can be explained within the theory of excitonic condensation. However,
as we have shown in Chap. 6 and Chap. 8, the electron-phonon coupling may contribute to the formation
of the low-temperature ordered phase in these materials, and if this coupling overwhelms the interband
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Coulomb interactions in the formation of the order, the phase should not be called the excitonic phase.
Therefore, first of all, we point out that it is necessary to quantify experimentally the contributions of the
interband Coulomb interaction and electron-phonon coupling in the formation of the low-temperature
ordered states of TiSe2 and Ta2NiSe5. Such experiments would provide us with a solid proof that these
materials are indeed excitonic insulators.

Recently, superconductivity in TiSe2 and Ta2NiSe5 has been discovered experimentally under pres-
sure or by intercalation [158–160]. In these materials, the excitonic order expected at ambient pressure
vanishes under high pressure (or intercalation) and the superconductivity appears around the point
where the ordered state disappears. Therefore, the melting of the excitonic order may contribute to
the emergence of the superconductivity; i.e., an exotic electron-electron pairing mediated by excitonic
fluctuations may be expected. We point out that the mechanisms of superconductivity in these materials
have not been elucidated, which we hope will be explored in near future.

A complicated magnetic multipole order due to excitonic condensation has been predicted theoret-
ically at the spin-state transition in a cobalt oxide with a cubic perovskite structure. However, the
electronic structure of this type of excitonic multipole orders has not been identified experimentally.
Therefore, we need to study the response of the excitonic magnetic multipole orders to the external
fields theoretically and to suggest the way to detect the excitonic order experimentally in such materi-
als. Moreover, when the local wave functions of the valence and conduction bands have different parities
(for example s-p, p-d, and d-f orbitals), the excitonic orders become magnetic quadrupole, hexadecapole,
or tetrahexacontapole orders, which break the space-inversion and time-reversal symmetries in each unit
cell, and thus magnetoelectric effects can be expected in this type of excitonic insulators. Therefore,
the magnetic multipole orders caused by the excitonic condensation need to be studied further both
experimentally and theoretically.

We can expect a variety of interesting phenomena in (and around) the excitonic phases. However,
because the candidate materials of excitonic insulators are not many, one of the most important tasks
may be to discover new candidate materials. To realize the excitonic phases, we have to make the band
structure located in the vicinity of the semiconductor-semimetal transition. In TiSe2 and Ta2NiSe5, the
valence and conduction bands are composed of the orbitals in different ions. To make materials similar
to TiSe2 and Ta2NiSe5, we have to use ions whose highest occupied and lowest unoccupied energy levels
are close to each other. The replacement of chalcogens in large band-gap semiconductors may be a way
to realize the band structure around the semiconductor-semimetal transitions; TiO2, TiS2 and Ta2NiS5

are large band-gap semiconductors, so that the exciton condensation does not occur here, but replacing
the oxygen and sulfur with selenium, the higher energy level of p orbitals of selenium raises the energy
of the valence bands, so that the band structures of TiSe2 and Ta2NiSe5 become a small band-overlap
semimetal and a small band-gap semiconductor, respectively. When the valence and conduction bands
are composed of the orbitals in the same ion, electrons feel the strong interorbital Coulomb repulsion
and interorbital exchange interaction such as the Hund’s rule coupling, stabilizing a magnetic multipole
order as a result of the condensation of atomic size, spin-triplet excitons, as in the cobalt oxide. In
this case, the crystal field splitting of orbitals makes the band structure located in the vicinity of the
semiconductor-semimetal transition. We have not considered the spin-orbit coupling in this thesis, but
this coupling may be another way to split the energy levels of an ion and to realize a suitable band
structure for the excitonic condensation state. In this respect, the extension of our theory including the
spin-orbit coupling may be necessary in the future.
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Appendix A

BCS-BEC Crossover in the
Attractive Hubbard Model

A.1 Introduction

Crossover between the Bardeen-Cooper-Schrieffer (BCS) state and the Bose-Einstein condensed
(BEC) state, i.e., the BCS-BEC crossover, is the major issues in the physics of exciton condensation
or excitonic phase, as well as in the physics of superconductivity. The idea of a continuous crossover
between the BCS and BEC limits first arose in the 1960s as a problem of exciton condensation near
the semimetal-semiconductor transition [3,5,14]. The BCS-BEC crossover also attracted attention from
the early stages of the theory of superconductivity, where Eagles first addressed this issue in metals
with a very low electron density [161]. In 1980, using a variational approach, Leggett showed a smooth
crossover from the weak-coupling BCS state to the strong-coupling BEC state at zero temperature [162].
The critical temperature Tc across the BCS-BEC crossover was first evaluated by Nozières and Schmitt-
Rink [22]. In 1986, the discovery of high-Tc cuprate materials, where the coherence length is only a few
times larger than the lattice spacing, led to intensive discussion on the possible realization of the BCS-
BEC crossover in cuprate superconductors [163]. In systems of ultracold fermionic atoms, the crossover
between the BCS-type and BEC-type superfluid states has also been observed [164–171], where the
interaction strength is controlled through a magnetically tuned Feshbach resonance.

In this Appendix, we study the BCS-BEC crossover of the superconducting (superfluid) ground state
in the attractive Hubbard model by means of the variational cluster approximation (VCA)1 [77,78,80,82].
We will show that the order parameter is suppressed in comparison with that obtained using the mean-
field theory owing to the effects of spatial fluctuations in low-dimensional systems. In order to show
the dynamics of the BCS-BEC crossover, we will then use the cluster perturbation theory (CPT) [83]
to calculate the single-particle and anomalous Green’s functions. We will present the single-particle
spectra and densities of states to clarify the behavior of the superconducting (superfluid) gap. We will
also present the Bogoliubov quasiparticle spectra and condensation amplitude to discuss the character
of the Cooper pairs in the BCS and BEC states. In particular, we will evaluate the pair coherence
length ξ from the condensation amplitude and demonstrate the smooth crossover from a weakly paired
BCS state (ξ À a) to a BEC state of tightly bound pairs (ξ ¿ a), where a is the lattice constant. We
will finally calculate the kinetic and potential energies in the superconducting (superfluid) and normal
ground states and show that the superconducting (superfluid) state is driven by the gain in potential
energy in the BCS state, but by the gain in kinetic energy in the BEC state.

A.2 Model and Method

A.2.1 Attractive Hubbard Model

To discuss the BCS-BEC crossover, we use the attractive Hubbard model defined as

H = −t
∑

〈i,j〉,σ
c†iσcjσ − U

∑

i

ni↑ni↓ − µ
∑

i,σ

niσ, (A.1)

1Appendix A is based on T. Kaneko and Y. Ohta, J. Phys. Soc. Jpn. 83, 024711 (2014).
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where c†iσ (ciσ) is the fermion creation (annihilation) operator with spin σ(=↑, ↓) at site i and niσ =
c†iσciσ. t is the hopping integral between nearest-neighbor sites, U (> 0) is the on-site attractive inter-
action, and µ is the chemical potential for maintaining the number of particles in the system.

It is known that the superconducting (superfluid) state is always realized in two and higher dimen-
sions at T = 0 K for all values of U (> 0) and in the entire particle density range, except at half
filling where the superconducting (superfluid) and density-wave states are degenerate [119, 172, 173].
Thus far, focusing on numerical studies, the BCS-BEC crossover of this model has been explored mostly
using the dynamical mean-field theory (DMFT) [174–178], where the correlation effects can be taken
into account only in the infinite dimension. The cellular DMFT somehow improves the effects of finite
dimensionality [179].

A.2.2 Variational Cluster Approximation for Superconductivity

We here employ the VCA based on the SFT [77, 78], where we can take into account the effects of
short-range spatial correlations even in low-dimensional systems, thereby reproducing the momentum
dependences of physical quantities precisely. This method has been shown to be useful for discussing the
spontaneous symmetry breaking of correlated electron models beyond the mean-field theory [82,99,128].
Details of the SFT and techniques of the VCA is written in Sec. 3.3 and Sec. 3.4.

Within the VCA, we can take into account the spontaneous symmetry breakings just by adding
appropriate Weiss fields to the reference system and taking these fields as variational parameters. The
Weiss fields for the superconducting (superfluid) state is given as

Hpair = ∆′∑

i

c†i↑c
†
i↓ + H.c., (A.2)

where ∆′ is the Weiss field for the s-wave pairing. In order to calculate the particle density n cor-
rectly [82], we also introduce the on-site potential defined as

Hlocal = ε′
∑

i,σ

niσ, (A.3)

where ε′ is the variational on-site potential. Therefore, the Hamiltonian for the reference system is given
by

H′ = H+Hpair +Hlocal. (A.4)

Then, we solve the ground-state eigenvalue problem H′|ψ0〉 = E0|ψ0〉 of a finite-size (Lc sites) cluster
and calculate the trial Green’s function by the Lanczos exact-diagonalization method. In our calculation,
a cluster of size Lc = 2 × 2 = 4 is used as a reference system; the effects of on-site correlations within
this cluster are taken into account exactly. We use the Nambu formalism Ψ†i = (c†i↑, ci↓) to solve the
eigenvalue problem of Eq. (A.4); the Green’s function matrix is then defined as

Ĝ′(ω) =
(

G′(ω) F ′(ω)
F ′†(ω) −G′(−ω)

)
, (A.5)

where G′ and F ′ are the Lc ×Lc matrices, and each matrix element is defined as G′ij(ω) = 〈〈ci↑; c
†
j↑〉〉ω

and F ′ij(ω) = 〈〈ci↑; cj↓〉〉ω, respectively. We will denote all the Nambu matrices by a ‘hat’ on top. The
matrix V is given as

V̂ (K) =
(

T (K)− ε′I −∆′I
−∆′I −T (K) + ε′I

)
, (A.6)

where T (K) is the intercluster hopping matrix with Tij(K) = −t
∑

X,x eiK·Xδi+x,jδR+X,R′ , where x
denotes the neighboring site of the i-th site and X denotes the neighboring cluster of the R-th cluster.

Using the matrices Ĝ and V̂ , we can evaluate the functional

Ω = Ω′ − 1
N

∮

C

dz

2πi

∑

K

ln det
[
Î − V̂ (K)Ĝ′(z)

]
, (A.7)

where the K-summation is performed in the reduced Brillouin zone of the superlattice and the contour
C of the frequency integral encloses the negative real axis. The variational parameters ∆′ and ε′ are
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optimized on the basis of the variational principle, i.e., (∂Ω/∂∆′, ∂Ω/∂ε′) = (0, 0). The solution with
∆′ 6= 0 corresponds to the superconducting state. The average particle density n (= 〈niσ〉) is expressed
as

n =
1

NLc

∮

C

dz

2πi

∑

K

Lc∑

i=1

Gii(K, z), (A.8)

whereby the chemical potential µ is determined to maintain the particle density n at quarter filling,
2n = 〈ni↑〉+ 〈ni↓〉 = 0.5. G in Eq. (A.8) is the diagonal term (Lc×Lc matrix) of Ĝ(K, ω) =

[
Ĝ′−1(ω)−

V̂ (K)
]−1.

A.3 Results

A.3.1 Order Parameter

We first calculate the U dependence of the superconducting order parameter ∆ = U〈ci↓ci↑〉. Within
the framework of the VCA, the anomalous expectation value Φ = 〈ci↓ci↑〉 is defined as

Φ =
1

NLc

∮

C

dz

2πi

∑

K

Lc∑

i=1

Fii(K, z), (A.9)

where F is the off-diagonal term of the Green’s function Ĝ(K, ω). We also evaluate the binding energy
of the pair EB from the single-particle excitation gap. For comparison with the results of the VCA,
we also evaluate the order parameter in the mean-field (MF) theory, which gives ∆ as a solution of the
self-consistent equations.

The results for Φ and EB calculated using the VCA and MF theory are shown in Fig. A.1. In the
MF theory, the order parameter ∆MF increases exponentially with U , thereby satisfying the relation
EMF

B = 2∆MF in the weak-coupling limit. In the strong-coupling limit, on the other hand, ∆MF =
U

√
n(1− n) =

√
3U/4 (ΦMF =

√
3/4) and EMF

B = U at n = 0.25, regardless of the spatial dimension.
We find that the result of the VCA exhibits the same behavior as that of the MF theory in the weak-
coupling limit: ∆ increases exponentially with U , satisfying the relation EB = 2∆, which recovers the
exponential behavior of the BCS mean-field theory. In the intermediate-coupling region, we find that
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Figure A.1: (a) Anomalous expectation values Φ = 〈ci↓ci↑〉 calculated using the VCA (squares) and MF
theory (dashed line) as a function of U/t at quarter filling (n = 0.25). The horizontal line indicates the
Φ in the MF theory in the strong-coupling limit, ΦMF =

√
3/4. The inset shows the Φ values calculated

using the VCA (open squares) and MF theory (dashed line) in the strong-coupling region as a function
of t/U . (b) Binding energies of a pair EB/U calculated using the VCA (circles) and MF theory (dashed
line) as a function of U/t at quarter filling (n = 0.25). The horizontal line indicates the EB/U in the
MF theory in the strong-coupling limit, EB = U . The inset shows the EB/U values calculated using the
VCA (open circles) and MF theory (dashed line) in the strong-coupling region as a function of t/U [117].
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Φ and EB are significantly suppressed in comparison with those of the MF theory, which is due to the
quantum fluctuations of the system. In the strong-coupling limit, EB converges to the result of the MF
theory, EB = EMF

B = U [see the inset of Fig. A.1 (b)], but Φ is suppressed in comparison with the result
of the MF theory, Φ ∼ 0.405 < ΦMF at U →∞ [see the inset of Fig. A.1 (a)].

In the strong-coupling limit, the attractive Hubbard model can be mapped onto the spin-1/2 Heisen-
berg model in a magnetic field,

Heff = J
∑

〈i,j〉
Si · Sj − h

∑

i

Sz
i , (A.10)

where we use the particle-hole transformation ai↑ = ci↑ and ai↓ = (−1)ic†i↓ [180], and define Si =
1
2

∑
a†iασαβaiβ , J = 4t2/|U |, and h = 2µ + |U |. The superconducting state in the original model at

quarter filling (n = 0.25) corresponds to the antiferromagnetic state in the xy plane in the effective
model with the magnetization m =

∑〈Sz
i 〉/N = 0.25. It is known that, in the two-dimensional square

lattice, strong quantum fluctuations caused by the low dimensionality of the system suppress the long-
range staggered magnetic order in the xy plane in comparison with those of classical approximation [172,
181]. Therefore, because the VCA takes into account the short-range spatial correlations and quantum
fluctuations in the low-dimensional systems, it is reasonable that the order parameter Φ obtained using
the VCA is significantly suppressed in comparison with the result of the MF theory.

To compare the result of the VCA with those of the DMFT calculations, which are justified in the
infinite dimension, we notice that our result for Φ in the strong-coupling limit is quite different: Φ in
the DMFT increases to the constant value obtained in the MF theory [175,177], whereas in the VCA, it
converges to a significantly smaller value, as shown in Fig. A.1 (a). The MF theory for the Heisenberg
model is exact in the infinite dimension. Therefore, the results of the DMFT calculations are consistent
with the results of the MF theory in the strong-coupling limit. The difference between the DMFT and
the VCA results is thus caused by the effects of spatial quantum fluctuations in low-dimensional systems,
which the DMFT cannot take into account.

( π, π )

( π, π )

( π, 0 )

( 0, 0 )

-10 -5 1050

N
 (ω

)

0.0

0.2

0.4

A(k,ω)

|F(k,ω)|

U / t = 2.5 U / t = 5 U / t = 10(a) (b) (c)

(d) (e)

( g ) (h)

(ω-µ) / t (ω-µ) / t (ω-µ) / t
-5 1050 -5 1050

( π, π )

( π, π )

( π, 0 )

( 0, 0 )

(f )

-10 -10

( i )

Figure A.2: (a)-(c) Densities of states N(ω), (d)-(f) single-particle spectra A(k, ω), and (g)-(i) Bogoli-
ubov quasiparticle spectra F (k, ω) calculated at U/t = 2.5 (left), U/t = 5 (center), and U/t = 10
(right) at quarter filling (n = 0.25). The densities of state and quasiparticle dispersions evaluated in the
MF theory (solid and dashed lines) are also shown in (a)-(c) and (d)-(f), respectively. The Lorentzian
broadening of η/t = 0.05 is used for N(ω), and η/t = 0.1 is used for A(k, ω) and F (k, ω) [117].
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A.3.2 Spectra and Momentum Distributions

The single-particle and anomalous Green’s functions are calculated using the CPT with the optimized
variational parameters, which are defined as

Gcpt(k, ω) =
1
Lc

Lc∑

i,j=1

Gij(k, ω)e−ik·(ri−rj), (A.11)

Fcpt(k, ω) =
1
Lc

Lc∑

i,j=1

Fij(k, ω)e−ik·(ri−rj), (A.12)

from which we calculate the single-particle and Bogoliubov quasiparticle spectra defined respectively as

A(k, ω) = − 1
π

Im Gcpt(k, ω + iη), (A.13)

F (k, ω) = − 1
π

Im Fcpt(k, ω + iη), (A.14)

where η is the artificial Lorentzian broadening. We also calculate the density of states defined as

N(ω) =
1
N

∑

k

A(k, ω). (A.15)

In Fig. A.2, we show the calculated results for A(k, ω), F (k, ω), and N(ω) from the weak-coupling
region to the strong-coupling region. In the weak-coupling region (at U/t = 2.5), A(k, ω) [or N(ω)]
shows a tiny superconducting gap at the Fermi momentum kF, together with coherence peaks at the
edges of the gap, indicating the existence of weakly bound Cooper pairs. The gap width and peaks of
A(k, ω) are consistent with quasiparticle spectra in the MF theory. Note that the Fermi momentum kF

is defined as εkF = µ (at U = 0), where εk = −2t(cos kx + cos ky). F (k, ω) has a sharp peak at kF and
its intensity rapidly decreases as the momentum goes away from kF. With increasing U , each of the
pairs becomes more strongly bound and the superconducting gap becomes larger. In accordance with
the EB shown Fig. A.1 (b), N(ω) exhibits a spectral gap that is suppressed in comparison with the
results of the MF theory, as shown in Figs. A.2 (b) and A.2 (c). At U/t = 5, F (k, ω) still has a strong
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Figure A.3: (a)-(c) Fermion momentum distribution function N(k) and (d)-(f) condensation amplitude
F (k) calculated at U/t = 2.5 (left), U/t = 5 (center), and U/t = 10 (right) at quarter filling (n = 0.25).
The dashed line indicates the Fermi momentum [117].
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peak at approximately kF. In comparison with the spectra at U/t = 2.5, F (k, ω) has strong peaks even
as the momentum goes away from kF. In the strong-coupling region (at U/t = 10), the spectra show a
large superconducting gap, and the peaks of F (k, ω) spread out over the entire Brillouin zone.

In order to see the character of the Cooper pairs in more detail in momentum space, we also calculate
the fermion momentum distribution function and condensation amplitude, which are defined respectively
as

N(k) =
∮

C

dz

2πi
Gcpt(k, z), (A.16)

F (k) =
∮

C

dz

2πi
Fcpt(k, z). (A.17)

The calculated results for N(k) and F (k) are shown in Fig. A.3. In the weak-coupling region (at
U/t = 2.5), N(k) shows the typical form known from the BCS theory, i.e., momenta inside of kF are
mostly occupied (N(k) ' 1) and N(k) slightly broadens at kF, dropping from 1 to 0 over the energy
scale of the order parameter. Corresponding to N(k), F (k) exhibits a sharp peak at kF (|F (kF)| ' 0.5)
and decreases rapidly as the momentum goes away from kF. The sharp peak of F (k) in the k-space
indicates that the radius of the pair is large in real space (weakly bound pairs). With increasing U ,
N(k) and F (k) become broader in momentum space, indicating that the radius of the pair becomes
smaller in real space. In the strong-coupling region (at U/t = 10), F (k) is spread out over the Brillouin
zone; therefore, the pairs are tightly bound in real space.

A.3.3 Pair Coherence Length

In order to see the spatial extension of the Cooper pair directly, we evaluate the pair coherence
length ξ defined as

ξ2 =
∑

r r2|F (r)|2∑
r |F (r)|2 =

∑
k |∇kF (k)|2∑

k |F (k)|2 , (A.18)

where F (r) = 1√
L

∑
r′〈cr′+r↓cr′↑〉 is the condensation amplitude for a Cooper pair with a distance r in

real space [116]. The k-summation was performed with 500× 500 k points in the first Brillouin zone.
In Fig. A.4, we show the results for ξ calculated using the VCA and MF theory. We find that,

corresponding to the calculated results for F (k) [see Figs. A.3 (d)-A.3 (f)], the pair coherence length ξ
is much larger than the lattice constant a in the weak-coupling region. With increasing U , ξ decreases
smoothly to much smaller values than the lattice constant in the strong-coupling region, indicating
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Figure A.4: Pair coherence length ξ/a calculated using the VCA (circles) and MF theory (dashed line)
as a function of U/t for quarter filling (n = 0.25). The inset shows ξ/a calculated using the VCA (open
circles) and MF theory (dashed line) in the strong-coupling limit [117].
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Figure A.5: (a) Double occupancy Docc. = 〈ni↑ni↓〉 calculated using the VCA as a function of U/t for
quarter filling (n = 0.25). (b) Calculated total energy ET (squares), kinetic energy EK (triangles), and
potential energy EU (circles) of the superconducting (SC) and normal (NR) ground states as a function
of U/t at quarter filling (n = 0.25). The inset shows the energy differences between the superconducting
and normal ground states [117].

that a smooth crossover occurs from the weakly paired BCS-like state (ξ À a) to the BEC state of
tightly bound pairs (ξ ¿ a). Note that ξ is already of the size of the lattice constant at U/t ∼ 3.5. In
comparison with the results of the VCA and MF theory, ξ evaluated by the VCA is significantly larger
than the results of the MF theory, which is due again to the quantum fluctuations of the system, just
as in EB shown in Fig. A.1 (b). In the strong-coupling limit (U →∞), ξ evaluated using the VCA and
MF theory converges to 0 (ξ → 0).

A.3.4 Ground State Energy

Finally, we calculate the ground-state energies of the attractive Hubbard model in the superconduct-
ing and normal states. The total ground-state energy ET is given as ET = Ω + 2µn. Using the double
occupancy defined as Docc. = 〈ni↑ni↓〉 = dET /dU , we obtain the potential energy EU as EU = −UDocc.

and the kinetic energy EK as EK = ET −EU . The calculated results are shown in Fig. A.5, where the
difference ∆E denotes the energy of the superconducting state minus the energy of the normal state.

First, let us consider the behavior of EU and EK . In Fig. A.5 (a), we show the calculated double
occupancy Docc.. In the noninteracting limit, Docc. is given by n2 = 0.0625 since 〈ni↑ni↓〉 = 〈ni↑〉〈ni↓〉 =
n2 in the uncorrelated fermion systems. In the strong-coupling limit, on the other hand, all the fermions
are tightly bound to form composite bosons and hence Docc. is given by the particle density as Docc. =
n = 0.25. The calculated result for Docc. shows a smooth crossover from the weakly paired BCS state
(Docc. ' n2) to the tightly paired BEC state (Docc. ' n). Therefore, with increasing U , EU decreases
owing to the pair formation and EK increases owing to the gap opening, resulting in a gradual decrease
in ET , irrespective of whether the ground state is superconducting or normal; the effects of the presence
of the order parameter are found to be rather small.

Then, let us see the effects of the order parameter, the results of which are shown in the inset of
Fig. A.5 (b). In the weak-coupling region, we find that the superconducting state occurs owing to the
loss of kinetic energy (∆EK > 0) and gain in potential energy (∆EU < 0). This means that, in the BCS
weak-coupling limit, the decrease in the potential energy due to the Cooper pair formation overwhelms
the loss of kinetic energy due to the broadening of the Fermi edge. Thus, in the weak-coupling region,
the superconducting state is driven by the gain in potential energy. In our calculation, the BCS features
(∆EK > 0 and ∆EU < 0) vanish at U/t ∼ 4.

In the strong-coupling region, on the other hand, the roles are interchanged, i.e., the superconducting
state is characterized by ∆EK < 0 and ∆EU > 0. This means that, in the BEC strong-coupling limit,
tightly bound composite bosons gain in kinetic energy because they condense at k = 0 in momentum
space, simultaneously when the order parameter becomes nonzero. The loss of the potential energy arises
because the motion of composite bosons is accompanied necessarily by the breaking of on-site pairs.
Thus, in the strong-coupling region, the superconducting state is driven by the gain in kinetic energy.
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In our calculation, the BEC features (∆EK < 0 and ∆EU > 0) appear at U/t ∼ 6. These behaviors of
the kinetic and potential energies in the attractive Hubbard model are qualitatively consistent with the
results of the previous DMFT calculations [176,179].

A.4 Summary

We have studied the superconducting ground state in the two-dimensional attractive Hubbard model
by the VCA. We have calculated the U dependence of the order parameter and have shown that the
order parameter is suppressed in comparison with that obtained using the MF theory owing to spatial
fluctuations in the low-dimensional system. In order to discuss the character of the BCS-BEC crossover,
the CPT has been used to calculate the single-particle and anomalous Green’s functions. We have shown
that the single-particle spectra and densities of states clearly exhibit the behavior of the superconducting
gap and that the Bogoliubov quasiparticle spectra and condensation amplitude characterize the Cooper
pairs in momentum space that changes continuously from the BCS state to the BEC state. From the
calculated condensation amplitude, we have evaluated the pair coherence length ξ, which demonstrates
the smooth crossover in real space from the weakly paired BCS state (ξ À a) to the BEC state of tightly
bound pairs (ξ ¿ a). We have also calculated the kinetic and potential energies in the superconducting
and normal ground states and have shown that the superconducting state is driven by the gain in
potential energy in the BCS state, but by the gain in kinetic energy in the BEC state.

91



Appendix B

Description of Multipoles in
Excitonic Insulators

In Chap. 7, we discussed the charge and spin density distributions in excitonic phases. In this
Appendix, we consider the electronic density distribution of the excitonic phases when the valence and
conduction bands are composed of the orbitals in a single ions. In particular, we present on the multipole
expansion of the electronic density in excitonic insulators.

The field operator of a multi-orbital system in a single ion is given by

Ψ(r) =
∑
α

φα(r)cα, Ψ†(r) =
∑
α

φ∗α(r)c†α, (B.1)

where φα(r) is the wave function and cα（c†α）is the annihilation (creation) operator of an electron in
the α orbital [60,138]. In this Appendix, we consider the wave functions of the orbitals in a single unit
cell and therefore we omit the site and spin indices for simplicity. The wave function of the α orbital is
then given by

φα(r) = φnαlαmα(r) = Rnαlα(r)Ylαmα(r̂), (B.2)

where Rnl(r) is the radial wave function and Ylm(r̂) = Ylm(θ, ϕ) is the spherical harmonics. nα, lα, and
mα are the principal, azimuthal, magnetic quantum numbers of the α orbital, respectively. Using the
field operator in Eq. (B.1), the electronic density is given by

ρ(r) ≡ 〈Ψ†(r)Ψ(r)〉 =
∑

α,β

φ∗α(r)φβ(r)〈c†αcβ〉. (B.3)

From this equation, we find that the modification of the electronic density ρ(r) is given by the sponta-
neous orbital hybridizations 〈c†αcβ〉 6= 0 due to the excitonic ordering.

Now, let us describe the character of the excitonic phases in terms of the multipole moments. In
general, the multipole moments are characterized by the projection onto the spherical harmonics [139–
141]. Using the spherical harmonics, the multipole moment is defined as

Qlm ≡
∫

drrlZ∗lm(r̂)ρ(r), (B.4)

where we define Zlm(r̂) ≡
√

4π/(2l + 1)Ylm(r̂) and Z∗lm(r̂) = (−1)mZl−m(r̂). l is the rank of the
multipole moments, and the moment of each rank is called the monopole (l = 0), dipole (l = 1),
quadrupole (l = 2), octupole (l = 3), hexadecapole (l = 4), dotriacontapole (l = 5), etc. Using the
density in Eq. (B.3), the multipole moment is given by

Qlm =
∑

α,β

[∫
drφ∗α(r)rlZ∗lm(r̂)φβ(r)

]
〈c†αcβ〉 =

∑

α,β

Γαβ
lm〈c†αcβ〉, (B.5)

where we define the integral part of the wave functions as

Γαβ
lm ≡

∫
drφ∗α(r)rlZ∗lm(r̂)φβ(r). (B.6)
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From Eq. (B.5), we find that the multipole moment becomes finite, Qlm 6= 0, when both the integral
part of the wave functions Γαβ

lm and the expectation value 〈c†αcβ〉 satisfy Γαβ
lm 6= 0 and 〈c†αcβ〉 6= 0. The

expectation value 〈c†αcβ〉 is given by the symmetry-broken solution of the effective multi-orbital models,
but Γαβ

lm depends on the character of the wave functions of the orbitals in the valence and conduction
bands.

In this Appendix, we investigate the integral part Γαβ
lm in detail and we evaluate which rank of

multipole moments becomes finite when the orbitals are hybridized. Using Eq. (B.2), Γαβ
lm becomes

Γαβ
lm =

[∫
r2drRnαlα(r)rlRnβlβ (r)

] [∫
dΩY ∗

lαmα
(r̂)Z∗lm(r̂)Ylβmβ

(r̂)
]

, (B.7)

where dΩ = sin θdθdϕ. Defining the integrals of the radial and angular parts respectively as

Λl(nαlα, nβlβ) ≡
∫

r2drRnαlα(r)rlRnβlβ (r), (B.8)

Θlm(lαmα, lβmβ) ≡
∫

dΩY ∗
lαmα

(r̂)Z∗lm(r̂)Ylβmβ
(r̂), (B.9)

we can divide the integral Γαβ
lm into the radial and angular parts as

Γαβ
lm = Λl(nαlα, nβlβ)Θlm(lαmα, lβmβ). (B.10)

The radial part is always nonzero, Λl(nαlα, nβlβ) 6= 0, and thus we can classify whether Γαβ
lm is finite or

not from the angular part Θlm(lαmα, lβmβ). The integral of the angular part is given as

Θlm(lαmα, lβmβ) =
∫

dΩY ∗
lαmα

(r̂)Z∗lm(r̂)Ylβmβ
(r̂) = (−1)m

∫
dΩY ∗

lαmα
(r̂)Zl−m(r̂)Ylβmβ

(r̂). (B.11)

From Ylm(r̂) ∝ eimϕ and the integral over ϕ, we find Θlm(lαmα, lβmβ) is nonzero when m, mα, and
mβ satisfy the following relation [182],

−m = mα −mβ . (B.12)

Using the relation in Eq. (B.12), we define the integral of the spherical harmonics as

cl(lαmα, lβmβ) ≡
∫

dΩY ∗
lαmα

(r̂)Zlmα−mβ
(r̂)Ylβmβ

(r̂), (B.13)

and Θlm(lαmα, lβmβ) becomes

Θlm(lαmα, lβmβ) = (−1)mβ−mαcl(lαmα, lβmβ)δm,mβ−mα . (B.14)

The calculated cl(lαmα, lβmβ) are summarized in the text book written by Kamimura et al. [182], where
we know that cl(lαmα, lβmβ) is nonzero when l, lα, and lβ satisfy the following relations [182],

l + lα + lβ = (even), |lα − lβ | ≤ l ≤ lα + lβ . (B.15)

Ylm(r̂) and Zlm(r̂) are complex for |m| > 0 and it is useful to apply the real spherical harmonics,
which are sometimes called the tesseral harmonics, when the wave functions φα(r) are real. The spherical
harmonics with m = 0 are real. For |m| > 0, the spherical harmonics can be taken to be real with1

Y
(c)
lm (r̂) =

1√
2

[Yl−m(r̂) + (−1)mYlm(r̂)] , (B.16)

Y
(s)
lm (r̂) =

i√
2

[Yl−m(r̂)− (−1)mYlm(r̂)] . (B.17)

For example, Y
(c)
11 (r̂) corresponds to px orbital and Y

(s)
22 (r̂) corresponds to dxy orbital. We summarize

the correspondence between the tesseral representation and the orthogonal coordinate representation in
Table B.1.

1Θlm can be taken to be real with Θ
(c)
lm = [Θl−m + (−1)mΘlm] /

√
2 and Θ

(s)
lm = [Θl−m − (−1)mΘlm] /(

√
2i).
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l m (c) and 0 (s)
0 0 1 –
1 0 z

1 x y

2 0 3z2 − r2 –
1 zx yz

2 x2 − y2 xy

3 0 z(5z2 − 3r2) –
1 x(5z2 − r2) y(5z2 − r2)
2 z(x2 − y2) xyz

3 x(x2 − 3y2) y(3x2 − y2)
4 0 35z4 − 30z2r2 + 3r4 –

1 zx(7z2 − 3r2) yz(7z2 − 3r2)
2 (x2 − y2)(7z2 − r2) xy(7z2 − r2)
3 zx(x2 − 3y2) yz(3x2 − y2)
4 x4 − 6x2y2 + y4 xy(x2 − y2)

Table B.1: Correspondence between the tesseral representation and the orthogonal coordinate represen-
tation.

Next, let us evaluate Θlm in the tesseral representation. Here, we consider an example where α is
the d3z2−r2 ([lαmα] = [20]) orbital and β is the dx2−y2 ([lβmβ ] = [22c]) orbital. Using lα = lβ = 2 and
the relation in Eq. (B.15), we find that possible ranks of the multipoles are l = 0, 2, 4 in this example.
Using the tesseral harmonics, Θlm(d3z2−r2 , dx2−y2) becomes2

Θlm(d3z2−r2 , dx2−y2) = (−1)m

∫
dΩY20Zl−mY

(c)
22 =

1√
2
cl(20, 2± 2)δm,±2. (B.18)

We find that Θlm 6= 0 at m = ±2. Therefore, l = 2, 4 are possible and Θ2±2 and Θ4±2 are given as3,

Θ2±2(d3z2−r2 , dx2−y2) =
1√
2
c2(20, 2± 2) = −

√
2

7
, (B.19)

Θ4±2(d3z2−r2 , dx2−y2) =
1√
2
c4(20, 2± 2) =

√
15

21
√

2
. (B.20)

Applying the tesseral representation to Θl±2, we find Θ(s)
l2 (d3z2−r2 , dx2−y2) ∝ [Θl−2 −Θl2] = 0 and

Θ(c)
22 (d3z2−r2 , dx2−y2) =

1√
2

[Θ2−2 + Θ22] = −2
7
, (B.21)

Θ(c)
42 (d3z2−r2 , dx2−y2) =

1√
2

[Θ4−2 + Θ42] =
√

15
21

. (B.22)

Due to Θ(c)
22 6= 0 and Θ(c)

42 6= 0, the quadrupole moment Q
(c)
22 = Qx2−y2 and the hexadecapole moment

Q
(c)
42 = Q(x2−y2)(7z2−r2) become finite when the d3z2−r2 and dx2−y2 orbitals are hybridized spontaneously

due to excitonic ordering. In the same way, we evaluate the relations between the orbitals and multipole
moments from s (l = 0) to d (l = 2) orbitals, which are summarized in Table. B.2.

Finally, let us consider the multipole expansion for the product of the wave functions in the electronic
density given in Eq. (B.3),

Fαβ(r) = φ∗α(r)φβ(r). (B.23)

2In Eq. (B.18), we have
Z

dΩY20Zl−mY
(c)
22 =

1√
2

Z
dΩ[Y20Zl−mY2−2 + Y20Zl−mY22] =

1√
2
[cl(20, 2− 2)δm,−2 + cl(20, 22)δm,2].

3We use c2(20, 2± 2) = −2/7、c4(20, 2± 2) =
√

15/21 in Eq. (B.20) [182].
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Figure B.1: Schematic picture of the multipole expansion of the product of the wave functions Fαβ(r) =
φα(r)φβ(r), where we assume α = d3z2−r2 and β = dx2−y2 .

Using the relation
∑

l,m(2l + 1)Z∗lm(r̂′)Zlm(r̂) = 4πδ(r̂ − r̂′), we have4

Y ∗
lαmα

(r̂)Ylβmβ
(r̂) =

∑

l,m

(
2l + 1

4π

)
Θlm(lαmα, lβmβ)Zlm(r̂). (B.24)

Therefore, from Eqs. (B.2) and Eq. (B.24), the multipole expansion of Fαβ(r) is given by

Fαβ(r) = Rnαlα(r)Rnβlβ (r)
∑

l,m

(
2l + 1

4π

)
Θlm(lαmα, lβmβ)Zlm(r̂). (B.25)

Using the multipole expansion in Eq. (B.25), the electronic density in Eq. (B.3) is given by

ρ(r) =
∑

α,β

Rnαlα(r)Rnβlβ (r)


∑

l,m

(
2l + 1

4π

)
Θlm(lαmα, lβmβ)Zlm(r̂)


 〈c†αcβ〉. (B.26)

In the previous example with α = d3z2−r2 and β = dx2−y2 , we note Θ(c)
22 6= 0 and Θ(c)

42 6= 0, so that we
can expand Fαβ(r) into the quadrupole and hexadecapole as

Fαβ(r) =
5
4π

R2
32(r)Θ

(c)
22 (d3z2−r2 , dx2−y2)Z(c)

22 (r̂) +
9
4π

R2
32(r)Θ

(c)
42 (d3z2−r2 , dx2−y2)Z(c)

42 (r̂). (B.27)

In Fig. B.1, we show the schematic picture of the multipole expansion in this example. As in Fig. B.1,
the product of the wave functions Fαβ(r) is generally given by the sum of the multipoles.

4In Eq. (B.24), we have

Y ∗lαmα
(r̂)Ylβmβ

(r̂) =

Z
dΩ′

2
4X

l,m

„
2l + 1

4π

«
Z∗lm(r̂′)Zlm(r̂)

3
5Y ∗lαmα

(r̂′)Ylβmβ
(r̂′)

=
X

l,m

„
2l + 1

4π

«»Z
dΩ′Y ∗lαmα

(r̂′)Z∗lm(r̂′)Ylβmβ
(r̂′)

–
Zlm(r̂) =

X

l,m

„
2l + 1

4π

«
Θlm(lαmα, lβmβ)Zlm(r̂).
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α [lαmα] β [lβmβ ] l = 0 l = 1 l = 2 l = 3 l = 4
s [00] s [00] [00] – – – –
s [00] pz [10] – [10] – – –

px [11c] – [11c] – – –
py [11s] – [11s] – – –

s [00] d3z2−r2 [20] – – [20] – –
dzx [21c] – – [21c] – –
dyz [21s] – – [21s] – –
dx2−y2 [22c] – – [22c] – –
dxy [22s] – – [22s] – –

pz [10] pz [10] [00] – [20] – –
px [11c] – – [21c] – –
py [11s] – – [21s] – –

px [11c] px [11c] [00] – [20], [22c] – –
py [11s] – – [22s] – –

py [11s] py [11s] [00] – [20], [22c] – –
pz [10] d3z2−r2 [20] – [10] – [30] –

dzx [21c] – [11c] – [31c] –
dyz [21s] – [11s] – [31s] –
dx2−y2 [22c] – – – [32c] –
dxy [22s] – – – [32s] –

px [11c] d3z2−r2 [20] – [11c] – [31c] –
dzx [21c] – [10] – [30], [32c] –
dyz [21s] – – – [32s] –
dx2−y2 [22c] – [11c] – [31c], [33c] –
dxy [22s] – [11s] – [31s], [33s] –

py [11s] d3z2−r2 [20] – [11s] – [31s] –
dzx [21c] – – – [32s] –
dyz [21s] – [10] – [30], [32c] –
dx2−y2 [22c] – [11s] – [31s], [33s] –
dxy [22s] – [11c] – [31c], [33c] –

d3z2−r2 [20] d3z2−r2 [20] [00] – [20] – [40]
dzx [21c] – – [21c] – [41c]
dyz [21s] – – [21s] – [41s]
dx2−y2 [22c] – – [22c] – [42c]
dxy [22s] – – [22s] – [42s]

dzx [21c] dzx [21c] [00] – [20],[22c] – [40], [42c]
dyz [21s] – – [22s] – [42s]
dx2−y2 [22c] – – [21c] – [41c], [43c]
dxy [22s] – – [21s] – [41s], [43s]

dyz [21s] dyz [21s] [00] – [20], [22c] – [40], [42c]
dx2−y2 [22c] – – [21s] – [41s], [43s]
dxy [22s] – – [21c] – [41c], [43c]

dx2−y2 [22c] dx2−y2 [22c] [00] – [20] – [40], [44c]
dxy [22s] – – – – [44s]

dxy [22s] dxy [22s] [00] – [20] – [40], [44c]

Table B.2: Correspondence between the orbitals and nonvanishing multipole moments. [lmc] and [lms]
indicate Y

(c)
lm (r̂) (Z(c)

lm (r̂)) and Y
(s)
lm (r̂) (Z(s)

lm (r̂)), respectively.
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