CO₂ Capture by Potassium Carbonate Nanocomposites

February 2016

Chiba University Graduate School of Science Division of Fundamental Sciences Department of Chemistry Guang Yang

Contents

Chapter 1: General Introduction	1
1.1 CO ₂ capture and sequestration (CCS)	2
1.1.1 Three approaches of CO ₂ capture	3
1.1.2 Methods of CO ₂ absorption	4
1.1.3 Classification of Solid materials	4
1.2 The dry sorbents for CO ₂ capture	5
1.2.1 Alkaline earth metal-based sorbents	5
1.2.2 Alkali-metal carbonate sorbents	6
1.2.3 Effect of temperature on the carbonation	7
1.3 K ₂ CO ₃ - composites	8
1.4 Carbon aerogel	9
References 1	13
Chapter 2: The basic theory 1	19
2.1 Adsorption and desorption 1	19
2.2 Porosity 1	19
2.3 The adsorption isotherm	21
2.4 Theories of adsorption	23
2.4.1The Langmuir theory 2	24
2.4.2 The Brunauer, Emmett, and Teller (BET) Adsorption Theory 2	25

2.4.3 α_s -Plot method	28
2.5 Characterization methods	29
2.5.1 Thermogravimetric-differential thermal analysis	29
2.5.2 X-Ray Diffraction (XRD)	30
2.5.3 Water adsorption	32
2.5.4 Multi-step CaO solution for CO ₂ precipitation	35
References	37
Chapter 3: CO ₂ capture by carbon aerogel–potassium	
carbonate nanocomposites	39
3.1 Introduction	39
3.2 Experimental Section	40
3.2.1Preparation of CA	41
3.2.2 Preparation of CA-potassium carbonate nanocomposites	42
3.2.3 Measurements and characterization	42
3.3 Results and Discussion	44
3.3.1 BET surface area and pore size distributions	44
3.3.2 Structural changes induced by CO ₂ capture and regeneration	46
3.3.3 Decomposition of xCA–KC nanocomposites	48
3.3.4 Water adsorption	51
3.3.5 CO ₂ capture ability under moist conditions	54
3.3.6 CaO solution-precipitation method	57
3.3.7 The cycling of 7CA-KC composites	59
3.4 Conclusion	61

References	63
Chapter 4: CO ₂ capture by activated carbon fiber–potassium	
carbonate nanocomposites	67
4.1 Introduction	67
4.2 Experimental Section	70
4.2.1 Preparation of ACF-potassium carbonate (KC) nanocomposites	70
4.2.2 Measurements and characterization	70
4.3 Results and Discussion	72
4.3.1 BET surface area and pore size distributions (PSDs)	72
4.3.2 Structural changes induced by CO ₂ capture and regeneration	73
4.3.3 Decomposition of ACF–KC nanocomposites	74
4.3.4 Water adsorption	75
4.3.5 CO ₂ adsorption	77
4.3.6 CO ₂ capture ability under moist conditions	77
4.4 Conclusions	78
References	80
Chapter 5: General Conclusion	82
Appendix	84
References	87
Acknowledgements	89

Chapter 1: General introduction

Greenhouse gases (GHGs) consist of ten primate components, perfluorocarbons (CF₄, C_2F_6), hydrofluorocarbon (CHF₃, CF₃CH₂F, CH₃CHF₂), and sulfur hexafluoride (SF₆) result from industrial processes. Even though the concentration is increased after pre-industrial, the increment is little and does not play an important role in environment changes. However water vapor (H_2O) , carbon dioxide (CO_2) , methane (CH_4) and nitrous oxide (N₂O) have increased greatly due to the human activity in recent years. Carbon dioxide is a principal anthropogenic greenhouse, most of the huge amounts of CO₂ come from the emission of power plants, gas processing industries, petrochemical industries, iron and steel industries, cement industries [1, 2] and 44% of CO₂ emission come from the combustion of fossil fuels [3], which contribute to global warming and anthropogenic climate change. Between 1750 and 1998, the concentration of CO₂ in the atmosphere had increased from 280 ppm to 380 ppm [4-7], and is expected to reach 550 ppm by 2050. It has been anticipated that in 2100 (570 ppm) the average global temperature will increase 5.8°C, and sea level will rise by 0.88 m [8], melt polar caps (average arctic sea ice has shrunk by 2.7% per decade) [9] and other environment issues such as droughts, deserts, permafrost melt, inundation, sea level rise, and ecosystem disruption will significantly affect the survival of mankind.

Fossil fuels still will be the main energy resources in the next decades, due to its large current greenhouse forcing, long persistence in the atmosphere and the advantage such as low cost, high energy density, availability, and feasible technology [8, 10]. Though alternative energy has been investigated, none of them could meet global energy demands for the near future. Carbon capture and sequestration (CCS) produce a concentrated stream of CO₂ at a high pressure and transported readily to a storage site which has been paid increasing attention to reduce levels of CO₂ in the atmosphere and at the same time fossil fuels can be used sequentially. The International Panel on Climate Change (IPCC) classified carbon capture and storage into three-stage strategy for migrating CO₂ emissions, involving 1) separation, 2) transportation, and 3) storage of CO₂ [11]. According to the report that warming will continue beyond 2100 due to the temperature will remain elevated constant levels even though after a complete CO₂ cessation except a large number CO₂ has been captured from the atmosphere [12], so capture and storage CO₂ is emergent. CO₂ can also be recognized as used as a renewable carbon source and industrial syntheses raw material, transforming to carboxylic acids, organic carbonates, urea, and methanol [13].

Figure 1-1: The approaches and technology of CO₂ capture and sequestration [14].

1.1.1 Three approaches of CO₂ capture

As showed in Figure1-1 there are three approaches to capture CO₂ from flue gas, divided into pre-combustion capture, post-combustion capture and oxyfuel combustion. Figure1-2 illustrates the detail processes of three approaches.

a) Pre-combustion capture is the reaction of fuel gas with oxygen or air and in some cases steam to produce synthesis gas which mainly composed of carbon monoxide and hydrogen, and the monoxide further reacted with steam to give carbon dioxide and more hydrogen. This system needs long term development to achieve targeted efficiency and this method involves CO_2 capture at high temperatures (527K-773K) accompanied by the production of hydrogen (water-gas shift reaction).

b) In contrast to pre-combustion, oxy-fuel combustion uses pure oxygen instead of ambient air. Even though this method could get high CO_2 concentration, capital cost is high and enormous energy would be consumed to separate oxygen from air. Oxy-fuel combustion can be applied to several fuels, consist of coal gas, natural gas or blends of biomass and coal [15].

c) Post-combustion capture is CO_2 separation and storage from flue gas after combustion. This system does not require expensive technologies (syngas separation, fuel cell) and can be used directly without change the combustion cycle. So post-combustion is the most important approach to mitigate CO_2 emissions [3, 16-18].

Figure 1-2: Three basic approaches of CO₂ capture [16]

1.1.2 Methods of CO₂ absorption

Carbon dioxide can be removed from flue gas by various methods, and three main technologies include scrubbing solution, membranes and solid sorbent. Currently amine scrubbing is the most available process for CO_2 adsorption, however this method presents several disadvantages, including the nature of corrosive, toxic emissions, limited stability, and high energy consumption in regeneration process inhibit the application [19]. Membrane separation method is a continuous, clean and simple process for CO_2 recovery, however the selectivity of CO_2 from NOx and SOx is very low, and it is not suitable for high flow rate application. This process has been conditioned by some factors such as, 1) high CO_2 permeability, 2) high selectivity for CO_2 separation from flue gases, 3) resistant to aging, 4) resistant to plasticization, and 5) low production cost for different membrane modules [2]. The details of solid sorbents will discuss in the next paragraph.

1.1.3 Classification of solid materials

Wang et al. organized solid sorbents into three types, according to their desorption

temperature [14].

(1) low-temperature sorbents, including graphite/graphene-based, zeolite-based, metal-organic frameworks (MOFs)-based, alkali metal carbonate-based adsorbents. (2) intermediate-temperature sorbents such as MgO-base sorbents, and (3) high-temperature sorbents like CaO-based sorbents. Among the various adsorbents dry alkali metal-based sorbents for capturing CO_2 is considered to be one of the most promising technologies because these sorbents can capture CO_2 at a suitable temperature (313-343 K) and also could be regenerated at an appropriate temperature below 473 K. However a process which is inexpensive, needs low energy demand, and has high CO_2 capture capacity is still under development.

1.2 The dry sorbents for CO₂ capture

The dry sorbents could be divided into alkaline earth metal-based sorbents which contribute to the following formula: $XO+CO_2 \rightleftharpoons XCO_3(X=Mg, Ca)$, and alkali metal-based sorbents which is described as: $M_2CO_3+H_2O+CO_2 \rightleftharpoons 2HKCO_3$ (M=K, Na) [20]. Zhao et al. verified that Na₂CO₃ and K₂CO₃ are suitable to CO₂ capture under post-combustion conditions through the phonon density of states calculations among M₂CO₃, M₂O, and MOH (M=K, Na) phase [21].

1.2.1 Alkaline earth metal-based sorbents

Solid metal oxide can be used as CO_2 capture material, the mechanism is presented as follows [22].

$$MO+CO_2 \rightarrow MCO_3 \tag{1-1}$$

$$MCO_3 \rightarrow MO + CO_2$$
 (1-2)

The forward step (1-1) describe the carbonation reaction that solid metal oxide reacts

with CO₂ gaseous, and when the temperature rising beyond the calcination temperature, occurring the reverse reaction (1-2). Solid metal oxides present tremendous advantages such as directly react with CO₂ under flue gas condition (393 K-1073 K), providing high equilibrium capacities and producing high purity CO₂ streams. However, the maximum carbonation conversion of CaCO₃ is decreased quickly with the increasing regeneration cycles due to the sintering from high calcination temperature. Cupta et al. summarized calcination temperature of various solid metal oxides, investigated CaO from different precursor and found the introduction of mesoporous structure may lead to less susceptible to pore blocking and with a high conversation above 90%. However CO₂ capture capacity of CaO decreased rapidly during the looping process [23], in order to resolve this problem attapulgite had been doped to limestone, and optimal ratio of attapulgite was found to be 15 wt%, which increased CO₂ capture performance and greatly slowed down the decay during recyclability. Sun et al. [24] doped manganese salts to CaCO₃ and found through the modification could get a better carbonation rate and enhance the calcination/carbonation cycles. There have tremendous investigation such as thermal pretreatment, acetic acid modification, doping with KMnO₄ used to enhance CO_2 capture capacity and optimize the recyclability [25-27].

1.2.2 Alkali-metal carbonate sorbents

Capture CO_2 from an actual flue gas mixture which has a significant amount of H_2O is one of the most difficult processes at present. Moisture usually contains as high as 8-17% in the flue gases which could destroy the nanostructure and adversely affects the CO_2 capture capacity, so it is important to be removed before adsorption process to the conventional methods [28, 29]. Alkali metal carbonates such as K_2CO_3 and Na_2CO_3 can be used to capture CO_2 in the moist ambient at relatively low temperature. However

analytical reagent has a very low reaction rate, Liang et al. reported Na₂CO₃ converted to NaHCO₃ at 333 K and 343 K, required 200 min to attain the equilibrium value in a fixed-bed test [5]. The carbonation reaction was also slow for K_2CO_3 and carbonation conversion was only 45% in 100 min [30], however K_2CO_3 calcined from KHCO₃ which owned the hexagonal crystal structure possessed a relative high reaction rate and CO₂ capture capacity [8]. It had been extensively investigated the CO₂ capture capacity and kinetics of alkali metal sorbent, having a conclusion that K_2CO_3 is prior than Na₂CO₃ [4, 6, 31]. So in this research we used K_2CO_3 as the sorbents loaded on the carbon aerogel.

1.2.3 Effect of temperature on the carbonation

Figure 1-3: Effect of temperature on the carbonation [32]

It has been generally recognized that temperature control plays an important role in the carbonation reaction, which has a narrow range because of the dew point of fed gas and thermodynamics of the reversible reaction. Green et al. summarized how temperature affected the carbonation process, as showed in Figure1-3. with the increase in temperature, there was a decrease in kinetics and thermodynamics in CO_2 capture, for 353K the reaction was still proceeding when reactive time beyond 400 min [32].

1.3 K₂CO₃-composites

There are many researches have been studied associate with impregnating K_2CO_3 on porous materials [33]. Zhao et al. compared the analytical-reagent samples of K₂CO₃, $K_2CO_3.1.5H_2O_3$, and $KHCO_3$ with loading them on activated carbon or γ -Al₂CO₃. respectively. It is concluded that the carbonation conversions increased due to combine analytical reagent with porous material [31]. Sevilla et al. [34] reported the relationship between the porous characteristics of the carbon sorbents and their capacity for CO₂ adsorption at 298K and 1 bar, the result showed that CO_2 capture capacity is principally due to the presence of narrow micropores. The nature of the support affected the CO₂ capture capacity of the sorbent, such as AC-K₂CO₃ sorbent possess a disadvantage that has to carry out the pretreatment process by water [20]. Zeolites possess appropriate pore structures for CO₂ adsorption, because of the same magnitude with CO₂ molecules [33], Silica aerogels(SG) have an open pore structure, a high surface area and low density, but through the K₂CO₃ loading process lead to completely collapsed of microscopic structure and CO₂ capture capacity decreased significantly [33, 35]. K₂CO₃ loaded with vermiculite which possessed a large pore size also without a high CO₂ capture capacity was caused by a lower dispersion of K₂CO₃ [36]. And MgO-K₂CO₃ sorbent could capture carbon dioxide at elevated temperature, after CO₂ absorption three phase had been detected which were K₂CO₃, MgO, and K₂Mg(CO)₃ instead of KHCO₃ and MgCO₃. They also reported that the best ratio of Mg to K is 1:3 and the optimal temperature for CO_2 capture is 648 K [37].

The morphological feature after K_2CO_3 loading is various highly depend on the properties like porous structure of support material, such as there was no obvious change in the surface area when loaded on carbon because K_2CO_3 was supported in macropores, on the contrary, K_2CO_3 loaded on silica gel resulted in a drastic decrease in the surface area because of hydrophilicity of silica surface, and impregnated K_2CO_3 in activated cokes lead to block the pore mouth and decrease the surface area [29, 38]. Zhao et al. investigated the active distribution behaviors of CA and Al_2O_3 , and found they had different distribution because of the various properties of support. CA sorbents adsorbed H_2O to turn into K_2CO_3 .1.5 H_2O , however, Al_2O_3 sorbents captured H_2O in the pore at first and then react with CO_2 [31]. Just as above mentioned, a lot of researches about composites have been studied, however these sorbents all possessed disadvantage factors in CO_2 capture process, this study focus on the carbon aerogel which still not be investigated systematically.

1.4 Carbon aerogel

Carbon gels have been paid attention for many years, because carbon gels own large specific surface area, and could be readily tailored to appropriate pore structure for various application. The properties of pore structure rely not only on the initial conditions in the synthetic process but also on the drying method and carbonization techniques. According to drying techniques, carbon gels could be classified into a) carbon xerogel, b) carbon cryogel, and c) carbon aerogel [43, 44].

a) Carbon xerogel: the simplest way to convert the hydrogel into a solid gel by drying in an inert atmosphere, however xerogel have a more compact structure than others and display the lowest surface area and pore volume.

b) Carbon cryogel: RF hydrogel are lyophilized free-drying in t-butanol solvent. The value change of t-butanol is much smaller than water in the freezing process. And this process is less expensive and can generate high surface area carbon with easily tailored pore structure. The surface area is higher than the aerogel which is dried under supercritical conditions even the drying shrinkage of the cryogel is a litter larger than the aerogel, however the surface area decrease with time result from instability of intrinsic structural modification [45].

c) Carbon aerogel: supercritical drying with carbon dioxide. Even though this technique is expensive, carbon aerogel is an effective way of obtaining mesoporous RF gels. In the extraction step the temperature and drying time modify the total porosity, Czakkel et al. [46] reported that under 313 K, 80 bar the phase is homogeneous if CO_2 alone is present, and the higher pressures prefer to greater macroporosity, drying time affects the total pore volume. The difference between liquid and super supercritical CO_2 extraction also had been interpreted, verifying there was no shrinkage by using supercritical CO_2 .

Base on the interpretation above we chose carbon aerogel to be the matrix, because of the high surface area and stability with time. There are still other factors affect the final structure of carbon aerogel, such as the nature of the catalyst, pH in the synthesis step, temperature, molar ratios and total concentration. The pH values play an important role on gelation time and primary particles size which affects the final properties of the aerogel. When pH smaller than 0.8, the reactants will lead to precipitation, in the range of 1 to 4 of pH could promote viable gel formation and reduce gelation times. pH 5.5 to

7.5 is the most suitable region for synthesizing RF gel, and once the pH is higher than7.5, there will no porous in the final structure.

D.Faire'n-Jime'nez et al. [41] investigated different catalysts such as alkaline carbonates and acidic catalysts affected the final pore texture in the polycondensation reaction, and found the density of RF gel samples had the order as follow: Acid catalysts > $Na_2CO_3 > K_2CO_3$, and in the acidic conditions usually got two or three fold higher than basic conditions gave rise to the conclusion that a denser solution would generate smaller pore volume and narrow pore sizes distribution. Shaheen A.Al-Muhtaseb et al. [42] reported a review about the effects of synthesis and processing conditions to the final nanostructure of carbon aerogel and carbon xerogel. The variation of concentration ratios also has an important influence in changing the structure properties. Taylor et al. verified that high ratio of R/C would lower the cluster number concentration and longer the gelation time, ultimately generate larger pore size, vice versa.

Figure1-4 shows the process of carbon aerogel. Resorcinol (1, 3-dihydroxybenzene, C_6H_4 (OH) ₂) and formaldehyde (HCHO) RF sol-gels have been synthesized by Pekala and co-workers, usually the process could be classified into two steps, after the formation of hydroxymethyl derivatives (-CH₂OH) of resorcinol, the intermediate products will condensed to form methylene (-CH₂-) and methylene-ether (-CH₂OCH₂-) bridged compounds. A three-dimensional polymer matrix (RF hydrogel) is formed, and through the solvent exchange, drying treatment, carbonation, we can get a solid carbon skeleton [9, 39, 40].

Step 1: Addition reaction

Figure1-4: Reaction mechanism of the sol-gel polymerization of resorcinol with formaldehyde [48].

References

[1] S–Y. Lee, S–J Park, Determination of the optimal pore size for improved CO₂ adsorption in activated carbon fibers, Journal of Colloid and Interface Science, 2003, 389, 230-235.

[2] M. Songolzadeh, M. Soleimani, M. T. Ravanchi, R. Songolzadeh, Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions, the Scientific World Journal, Article ID 828131, 2014, 34 pages.

[3] J. Wang, A. Heerwig, M. R. Lohe, M. Oschatz, L. Borchardt, S. Kaskel, Fungi-based porous carbons for CO₂ adsorption and separation, Journal of Materials Chemistry, 2012, 22, 13911-13913.

[4] S-W. Park, D-H Sung, B-S. Choi, J-W. Lee, H. Kumazawa, Carbonation Kinetics of potassium carbonate by carbon dioxide, Journal of Industrial and Engineering Chemistry, 2006, 12(4), 522-530.

[5] Y. Liang, D. P. Harrison, Carbon dioxide capture using dry sodium-based sorbents, Energy &Fuels, 2004, 18(2),569-575.

[6] S-W Park, D-H Sung, B-S Choi, K-J. Oh, K-H Moon, Sorption of carbon dioxide onto sodium carbonate, Separation Science and Technology, 2006, 41(12), 2665-2684.

[7] D. A. Green, B. S. Turk, R. P. Gupta, W. J. McMichael, D. P. Harrison, Y. Liang, Carbon dioxide capture from flue gas using dry regenerable sorbents, Quarterly Technical Process Report; Research Triangle Institute: Research Triangle Park, NC, April 2002.

[8] C. Zhao, X. Chen, C. Zhao, Y. Liu, Carbonation and hydration characteristics of dry Potassium-Based Sorbents for CO₂ Capture, Energy & Fuels, 2009, 23, 1766-1769. [9] C-W Moon, Y. Kim, S-S Im, S-J. Park, Effect of activation temperature on CO₂ capture behaviors of resorcinol-based carbon aerogels, Bulletin of Korean Chemical Society, 2014, 35(1), 57-61.

[10] L.K.C.de Souza, N. P. Wickramaratne, A. S. Ello, M. J. F. Costa, C. E. F. da Costa,
M. Jaroniec, Enhancement of CO₂ adsorption on phenolic resin-based mesoporous
carbons by KOH activation, Carbon , 2013, 65, 334-340.

[11] B. Metz, O. Davidson , H. Coninck , M. Loos, L. Meyer, IPCC special report on carbon dioxide capture and storage, Cambridge, UK, 2005.

[12] IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of working groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151.

[13] M. Mikkelsen, M. Jorgensen, F. C. Krebs, The teraton challenge, A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3, 43-81.

[14] J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. Hare, Z. Zhong,
Recent advances in solid sorbents for CO₂ capture and new development trends, Energy
& Environmental Science, 2014, 7, 3478-3518.

[15] M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N.M. Dowell et al., Carbon capture and storage update, Energy & Environmental Science, 2014, 7, 130-189.

[16] R. Thiruvenkatachari, S. Su, H. An, X. X. Yu, Post combustion CO_2 capture by carbon fibre monolithic adsorbents, Progress in energy and combustion science, 2009, 35, 438-455.

[17] E. Rubin, H.de Coninck, IPCC special report on carbon dioxide capture and storage,

Tech. Rep., Cambridge University Press, UK, 2005, TNO, Cost Curves for CO₂ Storage, part 2, 2004.

[18] T. F. Wall, Combustion processes for carbon capture, Proceedings of the combustion institute, 2007, 31, 31-44.

[19] N. A. H. Meis, A. M. Frey, J. H. Bitter, K. P. de Jong, Carbon Nanofiber-Supported K₂CO₃ as an efficient Low-Temperature regenerable CO₂ sorbent for post-combustion capture, Industrial & Engineering Chemistry Research, 2013, 52, 12812-12818.

[20] S. C. Lee, J. C. Kim, Dry potassium-based sorbents for CO₂ capture, Catalysis Surveys from Asia, 2007, 11, 171-185.

[21] C. Zhao, X. Chen, E. J. Anthony, X. Jiang, L. Duan, Y. Wu, W. Dong, C. Zhao, Capturing CO₂ in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent, Progress in Energy and Combustion Science, 2013, 39, 515-534.

[22] H. Gupta , L.–S. Fan, Carbonation-Calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas, Journal of Industrial and Engineering Chemistry , 2002, 41, 4035-4042

[23] H. Chen, C. Zhao, W. Yu, Calcium-based sorbent doped with attapulgite for CO₂ capture, Applied Energy,2013, 112, 67-74.

[24] R. Sun, Y. Li, H. Liu, S. Wu, C. Lu, CO₂ capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle, Applied Energy, 2012, 89, 368-373.

[25] V. Manovic, EJ. Athony, Thermal activation of CaO-based sorbent and selfreactivation during CO₂ capture looping cycles, Environmental Science & Technology, 2008, 42, 4170–4174. [26] Y. Li, C. Zhao, L. Duan, C. Liang, Q. Li, W. Zhou, H. Chen, Cyclic calcinations/carbonation looping of dolomite modified with acetic acid for CO₂ capture, Fuel Process Technology, 2008, 89, 1461–1469.

[27] Y. Li, C. Zhao, H. Chen, L. Duan, X. Chen, Cyclic CO₂ capture behavior of KMnO₄-doped CaO-based sorbent, Fuel, 2010, 89(3), 642–649.

[28] N. Shigemoto, T. Yanagihara, Material balance and energy consumption for CO_2 recovery from moist flue gas employing K₂CO₃-on-Activated Carbon and Its evaluation for practical adaptation, Energy&Fuels, 2006, 20, 721-726.

[29] H. Hayashi, J. Taniuchi, N. Furuyashiki, S. Sugiyama, S. Hirano, N. Shigemoto, T. Nohaka, Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic Fixed-Bed operations over K₂CO₃-on-carbon, Industrial & Engineering Chemistry Research, 1998, 37, 185-191.

[30] D. A. Green, B. S. Turk, J. W. Portzer, R. P. Gupta, W. J. McMichael, Y. Liang, T. Moore, D. P. Harrison, Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents: Quarterly Technical Progress Report; Research Triangle Institute: Research Triangle Park, NC, October, 2001.

[31] C. Zhao, X. Chen, C. Zhao, Carbonation and Active-component-distribution behaviors of several potassium-based sorbents, Industrial & Engineering Chemistry Research, 2011,50, 4464-4470.

[32] D. A. Green, B. S.T urk, J. W. Portzer, R. P. Gupta, W. J. McMichael, T. Nelson et al., Carbon dioxide capture from flue gas using dry regenerable sorbents, Topical Report (2000.9-2004.9), Research Triangle Institute, 2004.

[33] C. Zhao, Y. Guo, C. Li, S. Lu, Removal of low concentration CO_2 at ambient temperature using several potassium-based sorbents, Applied Energy, 2014, 124,

241-247.

[34] M. Sevilla, A. B. Fuertes, Sustainable porous carbons with a superior performance for CO₂ capture, Energy & Environmental Science, 2011, 4, 1765-1771.

[35] C. Zhao, X. Chen, C. Zhao, CO₂ absorption using dry potassium-based sorbents with different supports, Energy Fuels, 2009, 23, 4583-4687.

[36] A. G. Okunev, V. E. Sharonov, Y. I. Aristov, V. N. Parmon, Sorption of carbon dioxide from wet gased by K_2CO_3 -in-porous matrix: influence of the matrix nature. Reaction Kinetics and Catalysis Letters, 2000, 71(2), 355-362.

[37] G. Xiao, R. Singh, A. Chaffee, P. Webley, Advanced adsrobents based on MgO and K_2CO_3 for capture of CO_2 at elevated temperatures, International Journal of Greenhouse Gas control, 2011, 5, 634-639.

[38] S. Hirano, N. Shigemoto, S. Yamada, H. Hayashi, Cyclic fixed-bed operation over K_2CO_3 -on-carbon for the recovery of carbon dioxide under moist conditions, Bulletin of the Chemical Society of Japan, 1995, 68, 1030-1035.

[39] R. W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of materials Science, 1989, 24, 3221-3227.

[40] C. Robertson, R. Mokaya, Microporous activated carbon aerogels via a simple subcritical drying route for CO_2 capture and hydrogen storage, Microporous and Mesoporous Materials, 2013, 179, 151-156.

[41] D. Faire'n-Jime'nez, F. Carrasco-Mari'n, C. Moreno-Castilla, Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts, carbon, 2006, 44, 2301-2307.

[42] S. A. Al-Muhtaseb, J. A. Ritter, Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels, Advanced Materials, 2003, 15(2),

101-114.

[43] E. Bahn, O. Czakkel, B. Nagy, K. László, S. V-Rodil, J. M. D. Tascón, F. Demmel,M. T. F. Telling, P, Fouqent, Diffusion of molecular hydrogen in carbon aerogel, Carbon,2016, 98, 572-581.

[44] O. Czakkel, K. Marthi, E. Geissler, K. László, Influence of drying on the morphology of resorcinol-formaldehyde-based carbon gels, Microporous and Mesoporous Materials, 2005, 86, 124-133.

[45] H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Preparation of mesoporous carbon by freeze drying, Carbon, 1999, 37, 2049-2055.

[46] O. Czakkel, E. Székely, B. Koczka, E. Geissler, K. László, Drying of resorcinol-formaldehyde gels with CO₂ medium, Microporous and Mesoporous Materials, 2012, 148, 34-42.

[47] S. J. Taylor, M. D. Haw, J. Sefcik, and A. J. Fletcher, Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering, Langmuir, 2014, 30, 10231-10240.

[48] C. Lin, J. A. Ritter, Effect of synthesis PH on the structure of carbon xerogels, Carbon, 1997, 35(9), 1271-1278.

Chapter 2: The basic theory

2.1 Adsorption and desorption

Sorption consists of adsorption and absorption. Adsorption is the adhesion of ions, atoms, or molecules from a gas, liquid, or dissolved solid to a surface which is a boundary between two phases such as solid-liquid, solid-gas, and liquid-gas phases. Absorption is an adsorbate permeates or dissolved by a liquid or solid. The distinction between adsorption and absorption would vanish when absorbents are porous materials, aggregates and composites made out of nanoparticles. The international union of pure and applied chemistry (IUPAC) term divided adsorption into physical adsorption which is induced by weak van der Waals force (~10–100 meV), and chemical adsorption which has been given rise to a formation of chemical compounds with stronger interaction energy than physical adsorption [1].

2.2 Porosity

The pore structure of a material determined the physical properties such as density, thermal conductivity and strength, and tailored the nanoporous structure play an important role in industrial applications in design of catalysts, industrial adsorbents and so on [16]. Just as showed in Figure2-1 IUPAC classified pores according to the availability to an external fluid.

Closed pores: totally isolated to other pores, as the region (a) showed in Figure 2-1, these types of pores may influence density, mechanical strength and thermal conductivity of porous material.

Open pores: possess a continuous channel and communicate with the external surface. Open pores are further categorized into blind pores like (b) and (f), through pores like type (e). These pores contribute to the physical adsorption and sequestration of gases, hydrogen storage and other industrial field.

Figure 2-1: Schematic cross-section of a porous solid [16]

Porosity is a fraction of the volume of voids to the total volume. Properties of material are important in practical applications such as pore size, pore value, and specific surface area. Just as chapter1 discussed that the nature of porosities play an important role in capturing CO_2 when load Alkali-metal carbonate onto the porous materials. Pore size classification will be different ascribe to geometry reaction of various pore sizes in a different way under same condition. In the paper of Zdravkov et al. [17], they summarized the various categories of pore sizes into four groups. According to the International Union of Pure and Applied Chemistry (IUPAC) recommendation, Table 2-1 showed the pore sizes are classified as micropore (< 2 nm), mesopore (2–50 nm) and macropore (> 50 nm). Micropore had been divided into ultramicropore (<0.7 nm) and supermicropore (0.7-2 nm) [2].

Term		Pore size (nm)
Micropore	Ultramicropore	w < 0.7
	Supermicropore	0.7 < w < 2
Mesopore		$2 \le w \le 50$
Macropore		w>50

 Table 2-1: The classification of pores

2.3 The adsorption isotherm

A solid material is exposed in a closed space to a gas at definite pressure lead to adsorb the gas and accompany by an increase in the weight of the solid and a decrease in the pressure of the gas [3]. The amount of gas adsorption could be calculated when the pressure and weight increase become cease from volumetric mothed or gravimetric mothed by the increase in weight. The adsorption of a gas by a solid can receive valuable information such as pore structure and specific surface area, and nitrogen adsorption at 77 K (boiling point) is the most commonly used for investigating the porosity. As Figure2-2 shows that adsorption isotherms could be grouped into six types by IUPAC. The brief description of the isotherms will be introduced as follows [18]:

Figure 2-2: The IUPAC classification for adsorption isotherms [3, 4].

Type I isotherms

Type I isotherms which also has been called Langmuir isotherm are characterized by a plateau which is nearly horizontal and may show a cut or tail in the relative pressure close to 1, representing the adsorption of microporous solid. Because the pore size is not very much greater than the molecular diameter of the sorbate molecule, the potential fields will overlap and interaction energy between the solid and gas molecule will be enhanced cause a complete filling of the pores at a low relative pressure. Many Type I isotherms exhibit no hysteresis at all which can be yield from titania, alumina and so on.

Type II isotherms

Type II isotherms well known as BET-type isotherms [5] are typically obtained in case of monolayer-multilayer adsorption on a non-porous or macroporous adsorbent. The curve where emerges a suddenly steep indicates the completion adsorption of the first layer, with the increase of relative pressure, the multilayer has been completed.

Type III isotherm

Type III isotherm is characteristic of weak gas-solid interactions, could be yield from a nonporous or macroporous solid. The weakness of the solid-gas forces will lead to a small uptake at the low relative pressures, but once a molecule has been adsorbed, the interaction force will be promoted, result in a further adsorption. So the isotherms will become convex to the pressure and persists throughout their course.

Type IV isotherm

Type IV isotherms are typical for mesoporous solids. There is a flat in the high relative pressure, indicating the completion of mesopores adsorption. Near the $P/P_0=1$ appear a steep because of the adsorption of macropores. Different from other isotherms Type IV isotherms have an adsorption hysteresis which could not be reversible associate with capillary condensation taking place in mesopores. Usually desorption isotherm is above to the adsorption isotherm.

Type V isotherm

Type V isotherms indicate adsorption by a mesoporous or microporous solid and possess the convexity towards to relative pressure axis. In comparison with Type III isotherm, Type V isotherm has a point of inflection at high relative pressure, so the isotherm bends over and reaches a plateau in the multilayer region.

TypeVI isotherm

Type VI isotherm, this kind of isotherms is obtained from stepwise multilayer adsorption is called step-wise isotherm, typically obtained from nonporous adsorbates which possesses a nonpolar and uniform surface. For instance, graphitized carbon black which possesses a high uniform surface absorbs krypton at 90K.

2.4 Theories of adsorption

23

2.4.1 The Langmuir theory [6]

The simplest theoretical model for monolayer adsorption is Langmuir equation which was originally developed to represent chemisorption on distinct localized adsorption sites. This theory also has some disadvantages such as parameters vary from site to site (temperature, pressure), ignores the interactions between adsorbate and adsorbate. There are four basic assumptions when use Langmuir theory:

- 1) Molecules are adsorbed at a fixed number of well-defined localized sites.
- 2) Each site can hold one adsorbate molecule.
- 3) All sites are energetically equivalent.
- 4) There is no interaction between molecules adsorbed on neighboring sites.
- 2.4.1.1 Kinetic derivation

The velocity (μ) of adsorption can be presented by absolute temperature (T), pressure of gas (*P*), molecular weight of adsorbed gas (M), and gas constant (R).

$$\mu = \frac{P}{(2\pi M R T)^{1/2}}$$
(2-1)

The sum between the vacant surface sites (θ_0) , and occupied surface sites (θ) is 1. If there is a partial (*a*) conflict to the surface of adsorbent, so *a* will be in proportion to the $\alpha\mu$ and vacant surface sites (θ_0) , and the adsorption velocity of *a* can be presented by the equation (2-2), and desorption velocity (υ_d) has been derived by adsorption process and showed in formula (2-3),

$$v_a = k_a \theta_0 \mu \tag{2-2}$$

$$v_d = k_d \theta \tag{2-3}$$

When the adsorption process achieve to the equilibrium, adsorption velocity is equal to the desorption velocity and from $\theta_0+\theta=1$, we can get (2-4),

$$\theta = \frac{k_a a \mu}{(k_d + k_a a \mu)} \tag{2-4}$$

According to the basic assumptions, if the number of site is N₀, and the number of occupied surface site is N₁ we can get $\theta = N/N_0$, and use A replace N, a substitute $k_a a/k_d (2\pi MRT)^{1/2}$, and definite $N_0 = b$. Langmuir formula can be represented by follow.

$$A = \frac{abp}{(1+a_P)}$$
(2-5)

2.4.2 The Brunauer, Emmett, and Teller (BET) Adsorption Theory [4, 7]

Figure2-3: The model of BET multilayer adsorption

Brunauer, Emmett, and Teller developed a simple model isotherm to account for multilayer adsorption and used this model to extract the monolayer capacity and specific surface area (SSA) which is a scientific value that can be used to determine the type and properties of a material. BET theory has three hypotheses: 1) gas molecules physically adsorb on a solid in layer infinitely; 2) there is no interaction between each adsorption layer; and 3) the Langmuir theory can be applied to each layer. Figure 2-2 presents the BET multilayer model, where *i* is the number of layers, and s_i is the sites formed *i*-numbers molecular layers.

For the first layer adsorption which is expansion from Langmuir equation just as descripted above. When the adsorption system at an equilibrium status, the relationship can be presented by:

$$a_1 P s_0 = b_1 s_1 \exp(-Q_1 / RT)$$
(2-6)

Where Q_1 is the molecular adsorption energy of first layer, a_1 and b_1 are the constant, and p is pressure of gas. There is an assumption that the adsorption energy not depend on the number of adsorbed molecules and then the BET theory assumes that there has an energy equivalent on every layers.

Similarly, for *i*-layers at equilibrium status, the formula can be changed to:

$$a_i P s_{i-1} = b_i s_i \exp(-Q_i / RT)$$
 (2-7)

 s_0 is the adsorption capacity of all the adsorbed molecules (v) is presented by $v = \sum_{i=0}^{\infty} i s_i$, and then, the monolayer adsorption capacity can be derived as $v_m = \sum_{i=0}^{\infty} s_i$. Because the hypothesis that the adsorption energy above second layers is equivalent to liquid cohesive energy (Q_L) , so the equation can be given:

$$Q_2 = Q_3 = \dots \dots Q_i = Q_L \tag{2-8}$$

Above the second layers, the interaction between molecules adsorbed is significantly

smaller than the interaction between the first layer and the solid surface. So the ratio of a_i , b_i is also regarded as constant (g).

$$b_2/a_2 = b_3/a_3 = \dots = b_i/a_i = g$$
 (2-9)

Additionally, x and c are replace by

$$(p/g)\exp(Q_L/RT) = x \tag{2-10}$$

$$(a_1g/b_1)\exp[(Q_1 - Q_L)/RT] = C$$
(2-11)

Because,

$$v/v_m = \sum_{i=0}^{\infty} i s_i / \sum_{i=0}^{\infty} s_i \tag{2-12}$$

We can get the equation

$$\frac{v}{v_m} = \frac{Cx}{(1-x)(1-x+Cx)}$$
(2-13)

Substitute x=1, $p=p_0$ into equation (2-10), then compare with it, we can know x indicates a relative pressure.

$$\mathbf{x} = P/P_0 \tag{2-14}$$

By formula (2-14), (2-13) could be rewritten as formula (2-15), this equation is called BET adsorption isotherm.

$$v = \frac{v_m CP}{(P_0 - P)(1 + (C - 1)(P/P_0))}$$
(2-15)

The BET equation can be written as

$$\frac{P}{v(P_0 - P)} = \frac{1}{v_m C} + \frac{C - 1}{v_m C} \times \frac{P}{P_0}$$
(2-16)

Figure 2-4 shows the relationship between the relative pressure and $P/v(P_0-P)$, plotting

along abscissa and ordinate respectively. The value of intercept and slope of the line are used to calculate the monolayer adsorption capacity (v_m) and the BET constant C. Generally, the linear relationship of this equation is maintained in the range of p/p_0 from 0.05 to 0.35, where the coverage rate $(\theta=v/v_m)$ is from 0.5 to 1.5. Specific surface area (A_s) can be determined by BET theory through the following equation:

$$A_s = (v_m N a_m / M) \times 10^{-18}$$
 [m²/g] (2-17)

Where N is Avogadro constant (6.022×10⁻²³), a_m is molecular cross-section area and M presents the molecular weight of adsorbed molecule.

Figure2-4: BET plot [the relationship between $P/v(P_0 - P)$ and P/P_0]

2.4.3 α_s -Plot method

 α_s -Plot was recommended by K. S. W. Sing [8] which is similar to t-plot and is not restricted to nitrogen. This method do not need consider the numerical thickness since the object is merely to compare the shape of the isotherm with the standard adsorption

isotherm, it is not necessary to involve the number of molecular layers or the monolayer capacity, and it is available for other adsorbate besides nitrogen. Sing defined the α_s value as the relative adsorption amount of a standard sample, so $\alpha_s=A/A_{0.4}$, where A present the adsorption capacity of the sample, and $A_{0.4}$ is the adsorption amount at relative pressure P/P₀=0.4. If a straight line through the origin results, one may infer that the isotherm is identical in shape with the standard, and the slope of the isotherm is equivalent to V_{0.4}.

To estimate the specific surface area (A_s) of a test sample, we can use the follow equation which is calculated from the slope (*S*) of the α_s -plot:

$$A_{s} = [S(sample)/S(standard)] \times A(standard)A_{s}$$
(2-18)

2.5 Characterization methods

2.5.1 Thermogravimetric-differential thermal analysis (TG-DTA)

Thermogravimetric analysis (TGA) is an essential laboratory tool used for material characterization in which changes in physical and chemical properties of materials are measured as a function of increasing temperature, or as a function of time. TGA can provide information about physical phenomena and chemical phenomena [9], which is applicable to most industries, such as environmental, food science, pharmaceutical, and petrochemical through the Thermogravimetric analysis [10].

TGA is commonly used to determine selected characteristics of materials that exhibit either mass loss or gain due to decomposition, oxidation, or loss of volatiles. Common applications of TGA are (1) materials characterization through analysis of characteristic decomposition patterns, (2) studies of degradation mechanisms and reaction kinetics, (3) determination of organic content in a sample, and (4) determination of inorganic content in a sample.

TGA instruments can be divided into two general types: vertical and horizontal balance. Vertical balance instruments have a specimen pan hanging from the balance, it is important to calibrate these instruments in order to compensate for buoyancy effects stem from the variation in the density of the purge gas which is change with temperature, as well as the type of gas. However, horizontal balance instruments normally have two pans (sample and reference), which are considered free from buoyancy effects [11]. In this research, the thermal stability of CAs, decomposition temperature of composites, and CO_2 capture capacity had been measured by TG-DTA method.

2.5.2 X-Ray Diffraction (XRD)

X-Ray Diffraction is a tool used for identifying the atomic and molecular structure of a crystal, in which the crystalline atoms cause a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities, which could measure the average spacings between layers or rows of atoms, determine the orientation of a single crystal or grain, find the crystal structure of an unknown material, measure the size, shape and internal stress of small crystalline regions and discern materials that appear similar by other experiments [12].

English physicists Sir W. H. Bragg and his son Sir W. L. Bragg developed a relationship in 1913 to explain why the cleavage faces of crystals appear to reflect X-ray beams at certain angles of incidence [13]. X-ray diffraction can be explained by the Bragg's Law: $n\lambda = 2d\sin\theta$, in this equation d represent the distance between atomic layers in a crystal, λ delegate the wavelength of the incident X-ray beam, θ is angle of

incidence of reflect X-ray beam and n is an integer. Figure 2-5 shows the details of Bragg's Law. In this dissertation, the structure of carbonation and decarbonation of composites before and after CO₂ adsorption had been measured by X-Ray diffraction.

Figure 2-5: X-Ray Diffraction-Bragg's Law [13]

K₂CO₃ will convert to K₂CO₃.1.5H₂O in few minutes in the atmosphere result from the deliquescent property that K₂CO₃ would capture water quickly in the air. After we used TG-DTA device to decompose the composites who were loaded with K₂CO₃, it is difficulty to forbid composites contact with water in the air because we have to bring the sample from three floors to eight floors, and the process of setting the sample into the glass plate also increase the chance of contacting with air. Even though the vacuum XRD will evacuate water from composites, it is still cannot be removed completely. So in order to avoid this affect the experimental data, just as Figure 2-6 showed we putted the ribbon heater into the cavity which is exactly below the measured samples, and increase the temperature to 453 K gradually, the heating rate cannot be controlled and remain stability, it is dangerous to increase the heater to destination temperature, we should pay attention to the interval increment, such as 50 degree gradual rise. When the heater reached the set point, the temperature was maintained for 2 hours for pretreatment.

Figure 2-6: In-situ X-Ray diffraction

2.5.3 Water adsorption

The isolated water molecule has an O-H bond length of 0.9575 Å, with the two H atoms and the lone pairs arranged approximately tetrahedrally around the central oxygen, with an HOH bond angel of 104.5 degree [14]. Water adsorption by porous materials play an important role in many application that require absorb and release of water, such as dehumidification, gas storage and separation, and thermal batteries [15]. The adsorption capacity of water has a closed connection with the properties of porous materials which possess a hydrophilic surface or a hydrophobic surface. Water adsorption model has been intensively studied by many researches, McCallum et al. investigated water adsorption model on activated carbon from simulation and experiment, provided two simplification models which showed in Figure 2-7, A is regular sites allocation and B corresponds to a random array of sites. The process was
classified into 5 steps, water molecules adsorbed onto surface sites, all sites were occupied, and then water-water adsorption by H-bonding, the formation of water cluster, in the last stage pore would be filled by water molecules. They also used 4 kinds of pore sizes to adsorb water in simulation, and found that the smaller pore size display greater adsorption at low pressure, and pore filling also occur at a low relative pressure [19]. A cluster growth mechanism was elucidated by Kaneko et al. when the hydrophobic nanopores were free of surface functional groups, water vapor rarely be absorbed below $P/P_0=0.5$, when relative pressure exceeded to 0.6, isolated water molecules would associate with each other to form clusters and the give rise to an extraordinary aggregation of these water cluster. There are two reason can affect the existence of hysteresis and the hysteresis shape between the adsorption and desorption isotherm of water, which are pore size of micropores (width of pore above 0.7 nm will produce remarkable hysteresis), and surface functional groups could influence the hysteresis shape because of the various interaction capacity with water [20, 21].

Figure 2-7: Two possible mechanisms for water adsorption onto activated carbon walls

[19].

In CO₂ capture process, just as mentioned in the previous chapter, water adsorption is often detrimental for CO₂ capture. If we want to invest a prominent material which is stable to water, and the porous structure will not be changed by capturing and releasing H₂O, it is important to investigate the water sensitivity to adsorbents because water adsorption acts as a strong competitor when using hydrophilic material in CO₂ capture process. And in this research, we used the device which is showed in Figure 2-8 to measure the water adsorption capacity of CAs, composites, and K₂CO₃, according increase or decrease the pressure of water, measuring the mass change of samples in the glass basket. We putted samples in (2), and recorded the scale position before and after pretreatment that vacuum the device by the order from open (4) and the rotary knob of (3) and (2) little by little to avoid the blow off of samples. After the vacuum indicator did not change anymore, we would operate diffusion vacuum by closing (4), opening the (5) and (6), maintain this process for 2 hours and then close the diffusion vacuum by the reverse order. Liquid nitrogen was installed in (3), precipitating water in the vacuum process and avoid water entering into pump (7). (8) is contact with atmosphere, after measurement we open (8) gradually to make the water line change to the same pressure with atmosphere.

Figure 2-8: the equipment of water adsorption

2.5.4 Multi-step CaO solution for CO₂ precipitation

In CO₂ capture process, it is complicated to measure the CO₂ uptake from composites, sometimes it will be overestimated the capacity of CO₂ capture by using TG-DTA experiment, because porous materials may prefer adsorb H₂O to CO₂. So we used CaO solution to verify the amount of CO₂ adsorption. Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. CaO is difficult dissolve in water, and lower temperature of water, the higher solubility. The reactions have been showed as (2-19) and (2-20) equations:

$$CaO (s) + H_2O (l) \rightarrow Ca(OH)_2 (l)$$

$$(2-19)$$

Firstly, prepare the saturated Calcium hydroxide solution by adding excess Calcium oxide into water, and filtering the white precipitation contribute to the dissolved residual CaO.

$$Ca (OH)_2 (l) + CO_2 (g) \rightarrow CaCO_3 (s) + H_2O (l)$$
 (2-20)

Calcium hydroxide solution had been used to capture CO_2 which is released from composites after carbonation by TG-DTA experiment. And then weigh the precipitation elaborately. We designed the device of this process, which is showed in Figure 2-9, by using multi-step for completely adsorption.

Figure 2-9: The device of multi-steps Cao solution for CO₂ precipitation

References

[1] IUPAC manual of symbols and terminology for physicochemical quantities and units.Pure and Applied Chemistry, 1972, 31(4), 577-638

[2] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solid, Academic press, London, 1999.

[3] S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity. 1991

[4] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Roquerol,

T. Siemieniewska, Pure and Applied Chemistry, 1985, 57, 603-619

[5] S. Brunauer, P. H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, Journal of The American Chemical society, 1938, 60, 309–319

[6] D. M. Ruthven, Principles of adsorption and adsorption processes, University of New Brunswich, Fredericton

[7] K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 54(11), 2201-2218

[8] K. S. W. Sing, Proceedings of the conference on porosity and carbon materials: measurements and applications, Carbon, 1989, 27(1), 1-170

[9] https://en.wikipedia.org/wiki/Thermogravimetric_analysis

[10]http://www.perkinelmer.com/cmsresources/images/4474556gde_tgabeginnersguide. pdf

[11]http://www.uzaktanegitimplatformu.com/UEP/uep_ylisans/ey2/ey2_download/Pract ice%20Guide_Section%202_TGA.pdf

[12] https://en.wikipedia.org/wiki/X-ray_crystallography

[13]http://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0 CB8QFjAAahUKEwiuveeOut_IAhXMF5QKHcyxABw&url=http%3A%2F%2Fweb.pd x.edu%2F~pmoeck%2Fphy381%2FTopic5a-XRD.pdf&usg=AFQjCNGy7zZnnBpLrlIP Vbji6_YcLQSlpg

[14] A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces, Surface Science Reports, 2009, 64, 381-451

[15] H. Furukawa, F. Gandara, Y-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, Journal of The American Chemical society, 2014, 136, 4369-4381

[16] Recommendations for the characterization of porous solids, Pure and Applied Chemistry, 1994, 66(8), 1739-1758.

[17] B. D. Zdravkov, J. J. Čermák, M. Šefara, J. Janků, Pore classification in the characterization of porous materials: A perspective, Central European Journal of Chemistry, 2007, 5(2), 385-395.

[18] K. Kaneko, Determination of pore size and pore size distribution 1. Adsorbents and catalysts, Journal of Membrane Science, 1994, 96, 59-89.

[19] C. L. McCallum, T. J. Bandosz, S. C. McGrother, E. A. Müller, and K. E. Gubbins, A molecular model for adsorption of water on activated carbon: comparison of simulation and experiment, Laugmuir, 1999, 15, 533-544.

[20] K.Kaneko, Y. Hanzawa, T. Iiyama, T. Kanda, and T. Suzuki, Cluster-mediated water adsorption on carbon nanopores, Adsorption, 1999, 5, 7-13.

[21] T. Ohba, H. Kanoh, and K.Kaneko, Water cluster growth in hydrophobic solid nanospaces, Chemistry-A European Journal, 2005, 11, 4890-4894.

Chapter 3:CO₂ capture by carbon aerogel–potassium carbonate nanocomposites

3.1 Introduction

Carbon dioxide (CO₂) is the principal greenhouse gas. It has been continuously released into the environment through the burning of fossil fuels and has led to global warming and anthropogenic climate change, such as droughts, desertification, permafrost melt, inundation, rising sea levels, and ecosystem disruption, and it is expected to substantially affect the future of mankind. Although alternative energy sources have been extensively investigated, no single alternative source can satisfy global energy demands; fossil fuels are therefore expected to remain the primary energy resource for the next several decades because of their advantages of low cost and high energy density. The atmospheric CO₂ concentration was 384 ppm in 2007 and is expected to reach 550 ppm by 2050; hence, mitigating the atmospheric CO₂ capture capacity and low cost, alkali metal carbonates (M₂CO₃, M = K, Na) have been recognized as potential sorbents for CO₂ sorption according to the following reaction [3]:

$$M_2CO_3(s) + H_2O(g) + CO_2(g) \rightleftharpoons 2MHCO_3(s).$$
 (3-1)

The forward reaction is a bicarbonate formation reaction (the theoretical CO_2 capture capacity is 7.24 mmol- CO_2/g - K_2CO_3), whereas the reverse reaction is an endothermic regeneration process that begins at 445.3 K and ends at 548.1 K when the heating rate is 20 K/min [4].

In recent years, to solve problems such as the slow reaction rate of bicarbonate formation and high energy consumption during regeneration, researchers have extensively investigated various composites containing alkali metal carbonates [5-8]. The regeneration behaviors of alkali metal carbonates change when they are supported on nanoporous structural materials such as activated carbon, Al₂O₃, or carbon nanofibers or when they are combined with MgO, TiO, or FeOOH, which can themselves capture CO_2 . Because of the antagonistic relationship between the effects of high regeneration temperatures and low capture capacities, suitable materials have not been developed. Zhao et al. reported that K₂CO₃ sorbents exhibit better CO₂ capture performance than Na₂CO₃ sorbents and that the selection of a support material with appropriate characteristics is important for carbonation and regeneration [9]. We also previously reported a detailed reaction mechanism for CO₂ occlusion by K₂CO₃ under moist conditions [10, 11]. Therefore, in the present study, we focus on impregnating K₂CO₃ into the nanopores of carbon aerogels (CAs) prepared by pyrolysis of a dried organic aerogel followed by carbonation, leading to the formation of vitreous black monoliths with highly cross-linked micropores and mesopores [12, 13]. The CAs provide a suitable mesoporous reaction field for forming K₂CO₃ nanocrystals because the CAs' surface area, pore structure, and size are easily controlled through manipulation of the molar ratios among reagents or the pH [14, 15]. In the present paper, the CO₂ capture ability of K₂CO₃ nanocrystals incorporated into mesopores of CAs is studied from the viewpoint of lowering the regeneration temperature while achieving high selectivity and high capture capacity.

3.2 Experimental Section

3.2.1. Preparation of CA

All reagents were purchased from Wako Pure Chemical Industries, Ltd. Resorcinol– formaldehyde (RF) solutions were synthesized under the following experimental conditions. The resorcinol-to-sodium carbonate (R/C) and resorcinol-to-formaldehyde (R/F) molar ratios were fixed at 500 and 0.5, respectively, and the molar ratio of resorcinol to deionized water (R/W) was varied among 0.14, 0.28, and 0.7 to produce RF gels with different pore sizes. For a given R/W ratio, the required resorcinol was weighed out and added to deionized water; the resulting mixture was then stirred until the resorcinol was completely dissolved. Formaldehyde and sodium carbonate were added to the mixture, resulting in yellowish homogeneous RF solutions that were subsequently sealed and placed in a thermostated bath at 303 K for 2 weeks for polymerization [12].

Water entrained within the gel network of the polymer was removed through solvent exchange; the gel was successively soaked in mixed solutions of acetone and water at a ratio of 1:1 and 3:1 and in pure acetone for 15 min each. Finally, the gel was immersed in acetone for 1 day at room temperature. To preserve the structure of the nanoporous material, the wet gel was dried using a supercritical drying process. The wet gel was then placed in a supercritical drying chamber, and CO_2 was slowly introduced to bleed the air from the chamber. CO_2 was introduced to a pressure of 10 MPa at 318 K and was maintained at this temperature for 3 h. Carbonization of the organic aerogels was conducted at 1173 K for 3 h under Ar flowing at 100 cm³/min. As described later, the porosities of the three different CAs were characterized by N₂ gas adsorption measurements at 77 K; the three CAs were observed to have pore widths of 7, 16, and 18 nm; these CAs are denoted as 7CA, 16CA, and 18CA, respectively.

3.2.2. Preparation of CA-potassium carbonate (KC) nanocomposites

CA–KC nanocomposites were prepared by impregnating the nanopores of the CAs with a 0.15 mol/dm³ K₂CO₃ (99.5% chemical purity) aqueous solution [3]. The mixture was then stirred with a magnetic stirrer for 24 h at room temperature. The aqueous solution was dried at 378 K in a vacuum evaporator. The samples were subsequently dried again in a furnace under an Ar ambient atmosphere at 573 K for 2 h. The nanocomposites are denoted as *x*CA–KC, where *x* represents the pore width of the CAs. 3.2.3. Measurements and characterization

The porosities of the CAs and the *x*CA–KC nanocomposites were characterized by N_2 adsorption at 77 K using an Autosorb-MP1 (Quantachrome Instruments). CO₂ adsorption was measured using a Belsorp-Mini (MicrotracBEL Corp.). The CA and *x*CA–KC nanocomposites were pretreated by heating to 423 K under vacuum for 2 h before the gas adsorption measurements because K₂CO₃ is partially converted into KHCO₃ under an ambient atmosphere containing CO₂ and H₂O. Water adsorption isotherms were obtained by a gravimetric method at 303 K; the equilibration time was 2 h.

The Brunauer–Emmett–Teller (BET) method was used to analyze the specific surface areas (S_{BET}) on the basis of linear plots over the relative pressure (P/P_0) range 0.05–0.35 for the N₂ adsorption isotherm data. The total volume (V_T) was obtained at a relative pressure of 0.99, and the Dubinin–Radushkevich equation was used to calculate the micropore volume (V_{mic}). The mesopore diameters (D_{mes}) were estimated by the Barrett-Joyner-Halenda method.

The amount of K₂CO₃ impregnated into the mesopores of CA was determined by thermogravimetry–differential thermal analysis (TG–DTA, Shimadzu DTG-60AH),

where the samples were heated to 1073 K. Because the residue consisted of K_2CO_3 , the impregnated amounts of K_2CO_3 were calculated on the basis of the final TG curves to be 18.5, 21.3, and 18.8 wt% for 7CA–KC, 16CA–KC, and 18CA–KC, respectively.

After the *x*CA–KC nanocomposites were heated to 473 K at 10 K/min under an N₂ atmosphere and maintained at 473 K for 5 min to ensure complete formation of K₂CO₃, the temperature was decreased to 313 K, and CO₂ and H₂O were introduced into the sample chamber of the TG–DTA apparatus for 2 h by flowing CO₂ through distilled water. The *x*CA–KC nanocomposites reacted with CO₂ and H₂O to form *x*CA–KHCO₃. The crystal structures before and after the CO₂ capture were measured through ex situ X-ray diffraction (XRD) on an X-ray diffractometer (MAC Science, M03XHF) equipped with a Cu *K* α radiation source (40 kV, 25 mA, λ = 0.15406 nm). We heated the *x*CA–KHCO₃ nanocomposites to 473 K in order to study the regeneration process under the same conditions used in the aforementioned experiments.

We used the CaO solution–precipitation method to accurately determine the amount of CO₂ captured by the *x*CA–KC samples. The detail process was demonstrated in the previous chapter. The CaO solution was prepared by dissolving 0.6 g of CaO in 100 cm³ distilled water. Any insoluble precipitate was filtered to yield a saturated solution. The clear solution was bubbled with N₂ gas to remove any dissolved CO₂ from air. The nanocomposites, which captured CO₂ under moist conditions in the TG–DTA chamber at 313 K, were heated at 573 K, and the desorbed CO₂ was recaptured by the CaO solution, leading to the immediate formation of a white precipitate. XRD analysis indicated that the precipitate was CaCO₃. Before the *x*CA–KC experiments, the reliability of the CaO solution–precipitation method was evaluated using analytical grade KHCO₃ powder, which indicated 92% precision with respect to the theoretical value.

3.3 Results and Discussion

3.3.1 BET surface area and pore size distributions (PSDs) of the CAs and xCA-KCs

Figure 3-1: N₂ adsorption isotherms of (a) CAs and xCA–KC samples at 77 K. Pore widths: black, 7 nm; green, 16 nm; red, 18 nm.

The pore structures were characterized using N₂ adsorption isotherms volumetrically measured at 77 K after pretreatment at 423 K for 2 h; the obtained isotherms are presented in Figure 3-1. The isotherms of the composites are categorized as type IV (IUPAC classification) with hysteresis between the adsorption and desorption branches which ascribed to the capillary condensation phenomenon. When the relative pressure (P /P₀) was larger than 0.8, the adsorption amount increase sharply, these isotherms indicate the presence of mesopores, although the increased adsorption at low relative pressures also indicates the presence of micropores. Zhao et al. examined the effects of the pore structure of Al_2O_3 supports on the ability of K_2CO_3 to capture CO_2 and observed that K_2CO_3 could quickly convert to $K_2CO_3 \cdot 1.5H_2O$ because of the mesoporous structure of the Al_2O_3 support; they also observed that the micropores of the Al_2O_3 support facilitated the rapid conversion of $K_2CO_3 \cdot 1.5H_2O$ to KHCO₃. Thus, mesoporous structures can enhance CO_2 adsorption [8]. In the present study, the N_2 adsorption amount decreased for all samples after they were subjected to the K_2CO_3 impregnation treatment, indicating that K_2CO_3 was successfully incorporated into the micropores and mesopores of the CAs.

The pore structure parameters are compiled in Table 3-1, which shows that the surface area and pore volume of the *x*CA–KC nanocomposites decreased compared with those of the original CAs, this is consistent with the results of N₂ adsorption isotherms, which indicate a partial filling or blocking of the pores by impregnated K_2CO_3 [6]. The results in Table 3-1 indicate that 16CA possessed the highest surface area and exhibited the greatest decrease in surface area after the K_2CO_3 impregnation. This is in agreement with the result that 16CA–KC contained a larger amount of impregnated K_2CO_3 compared with other the *x*CA–KCs.

	S_{BET}	V_{T}	V_{mic}	$D_{\rm mes}$
	(m^{2}/g)	(cm^3/g)	(cm^3/g)	(nm)
7CA	517	0.43	0.25	7.0
7CA-KC	357	0.30	0.14	4.0
16CA	635	0.75	0.29	16
16CA-KC	459	0.55	0.20	12
18CA	523	0.88	0.24	18
18CA-KC	457	0.63	0.18	14

Table 3-1: Pore parameters of the xCA and xCA-KC samples

3.3.2. Structural changes induced by CO₂ capture and regeneration

We loaded K_2CO_3 into carbon aerogel, and Figure 3-2 showed the XRD pattern of matrix CA, there are two broadened peaks located at ca. 20 of 25° and 43° which demonstrated that amorphous carbon was formed and the wide peaks could be recognized as the disorder structure of carbon aerogels. The (002) and (001) reflection correspond to the crystal planes of graphite carbon peak, and Yan et al. reported the property effects to carbon aerogels by using three catalysts which were Ca(OH)₂, NaOH, and Na₂CO₃, and found Na₂CO₃ could produce the largest graphitization extent, that is the (002) peak showed the highest intensity among the three catalysts [26], and highest specific surface area, relatively narrower pore size. After loading composites xCA-KC showed additional peaks which reflect the success of K_2CO_3 impregnation. The XRD pattern of carbonation and regeneration phase described as follow.

Figure 3-2: XRD pattern of carbon aerogel. Pore width: black, 7 nm; green, 16 nm; red, 18 nm

The structural changes of the *x*CA–KCs that accompanied CO₂ capture and regeneration (the reverse reaction), which are represented as reaction (1) in the Introduction, were examined by XRD analysis, as shown in Figure 3-3. Figure 3-3 (a)

Figure 3-3: XRD patterns after CO₂ capture and regeneration: (a) xCA–KC nanocomposite after CO₂ capture under moist conditions; (b) xCA–KC nanocomposites placed under ambient atmosphere after being regenerated at 473 K for 2 h; (c) in situ XRD pattern of (b). Pore width: black, 7 nm; green, 16 nm; red, 18 nm. $\mathbf{\nabla}$: KHCO₃, \Box : K₄H₂(CO₃)₃·1.5H₂O, ∇ : K₂CO₃, $\mathbf{\diamond}$: K₂CO₃.1.5 H₂O.

KHCO₃ nanocrystals were introduced into the mesopores of the *x*CAs through the impregnation process. Although peaks attributable to $K_4H_2(CO_3)_3 \cdot 1.5H_2O$ as well as to KHCO₃ were observed in the patterns of 16CA–KC and 18CA–KC, all the peaks in the pattern of 7CA–KC were assigned to KHCO₃. The patterns in Figure 3-3 (b) indicate almost complete regeneration because most of the main peaks were assigned to $K_2CO_3 \cdot 1.5H_2O$ instead of KHCO₃. This suggests that K_2CO_3 was formed by heat treatment at 473 K. Although $K_2CO_3 \cdot 1.5H_2O$ could be formed because of the deliquescent nature of K_2CO_3 under ambient conditions during the ex situ XRD experiment, K_2CO_3 impregnated into the mesopores of *x*CAs was exposed to the ambient atmosphere and more easily reacted with atmospheric water.

Figure 3-3 (c) is the result from in situ X-Ray diffraction experimental data, the process was elucidated in chapter 2, increasing the temperature of vacuum XRD by ribbon heater, avoiding the effect of water in the atmosphere. The main peaks could be recognized as K_2CO_3 , there were still $K_2CO_3.1.5H_2O$ diffraction peaks existed which may be arise from the inadequate pretreatment, all water had not been vacuumed completely. So in order to improve the procedure of in situ XRD, we could increase the time of thermal treatment, or elevate the pretreatment temperature.

3.3.3 Decomposition of xCA–KC nanocomposites

The decomposition of analytically pure potassium bicarbonate had been investigated two circles by TG-DTA, mass change to 68.6% which is approximate to theoretical value 69% after heat treatment to 473 K under the nitrogen atmosphere and the heating rate is 10 K/ min. The amount of CO_2 capture was decreased apparently in the second circle, and from Figure 3-4 (b) the decomposition temperature started from 423K for bulk KHCO₃. Figure 3-4 (c) represents the decomposed KHCO₃ capture CO_2 in the moisture ambient, the equilibrium can be obtained after one hour which is consistent with other researches, the conversion rate is slow and cannot transit to KHCO₃ completely, the first circle was close to 98% of original KHCO₃, but the second circle was just approximate 96%.

Figure 3-4: (a) KHCO₃ regeneration at 473 K in the N_2 atmosphere by two circles; (b)

KHCO₃ decomposition temperature, solid line is the first circle and dash line is the second circle; (c) CO₂ capture by decomposed K_2CO_3 in the moisture ambient in the first circle.

The *x*CA–KC nanocomposites were regenerated by at heating to 473 K under an N₂ atmosphere. The changes in weight and temperature are shown in Figure 3-5; these results reflect characteristic thermal decomposition. In the TG traces of the *x*CA–KCs, the first weight loss is attributed to the desorption of water and the second is attributed to the decomposition of KHCO₃ to K₂CO₃, which is accompanied by the evolution of CO₂ and H₂O. The blue line shows the decomposition process of bulk KHCO₃, which began to decompose at >423 K. By contrast, the *x*CA–KCs clearly decomposed at lower temperatures with decreasing pore size of the original CAs: the decomposition onset temperature decreased to 420, 390, and 380 K for 18CA–KC, 16CA–KC, and 7CA–KC, respectively. Thus, 7CA–KC exhibits an effective decrease in the required regeneration temperature. We concluded that nanocrystals of K₂CO₃ impregnated into the nanopores of CA exhibited high reactivity, resulting in easier regeneration at lower temperatures. The regeneration temperature for 7CA–KC is lower than that for other potassium-based sorbents, and the regeneration behaviors are changed when K₂CO₃ is loaded onto different sorbents, mainly depending on the properties of the support material [16].

Figure 3-5: TG–DTA traces for the nanocomposites. Blue: KHCO₃, black: 7CA–KC, green: 16CA–KC, red: 18CA–KC.

3.3.4 Water adsorption

Water adsorption analysis is important for the xCA-KC nanocomposites because K_2CO_3 sorbs water from the ambient atmosphere. Zhao et al. reported that even though K₂CO₃- silica gel (SG) exhibits a relatively high pore volume, the total CO₂ sorption is only 34.5% because of the strong hygroscopicity of SG, easily leading to hydration of K_2CO_3 to $K_2CO_3 \cdot 1.5H_2O$ [8, 17]. This hydration should influence the CO₂-sorption amount of K₂CO₃ under moist conditions [18]. Because the CO₂ capture process of xCA-KCs involves both occlusion and physical adsorption, understanding the effects of water on CO_2 sorption of the original CA and the xCA–KCs is important. Figure 3-6 shows water sorption isotherms of K₂CO₃ at 303 K. Almost no water was adsorbed below a relative pressure P/P_0 of 0.2, whereas the sorption amount increased with increasing pressure and reached a maximum value of 9.6 mmol/g, corresponding to the water content in $K_2CO_3 \cdot 1.5H_2O$ (10.9 mmol/g). The desorption did not return to the original point because K₂CO₃·1.5H₂O hardly releases water molecules at ambient temperature, as demonstrated in the XRD experiments (Figure 3-3). Such a large hysteresis is likely observed because the hydrate formation from K₂CO₃ to $K_2CO_3 \cdot 1.5H_2O$ is extremely slow.

The water sorption isotherms of the CAs and *x*CA–KCs differ from those of K_2CO_3 , as shown in Figure 3-5. Water vapor was rarely adsorbed in CAs below P/P₀=0.3, because the CAs are less hydrophilic than K_2CO_3 , the physical adsorption of water is attributed to the micropores of the CAs that mesopores did not adsorb water vapor, and the saturated amount of adsorbed water was close to the micropore volume [19] [25],

thus, the three CAs should exhibit water uptake amounts corresponding to their micropore volume, as indicated in Figures 3-1 (a) and 3-7 (a) and in Table 3-1. Pore filling pressure and pore capacity depend strongly on pore width, so the 7CA shows the greatest water adsorption. Pore filling pressure was consistent with the report from McCallum et al. [24] that the material possess much smaller pore size result in pore filling occurs at a lower relative pressure. So the pore filling of 16CA occurred at a lower relative pressure than 7CA, because 16CA process more micropores which also verified by nitrogen adsorption isotherm. The desorption isotherms did not exhibit adsorption hysteresis; they returned to the starting point reversibly, as shown in Figure 3-7 (a).

By contrast, the water sorption behavior of the *x*CA–KCs was observed gradually from low relative pressure regime and more complicated because both hydration of K_2CO_3 and physical adsorption by the micropores of the nanocomposites contributed to water sorption. Figure 3-7(b) shows remarkable increases in the water sorption uptakes of the *x*CA–KCs in the high relative pressure region. Notably, the amounts of sorbed water were greater than the sum of the water sorption amounts of K_2CO_3 and CAs. This phenomenon may be attributable to the nanocrystals of K_2CO_3 incorporated into nanopores of the CAs being more reactive and deliquescent under high humidity conditions than bulk K_2CO_3 . The CO₂ sorption isotherms of the CAs and *x*CA–KCs are shown in Figures 3-7 (c) and 3-7 (d), respectively. Because of their diminished pore volumes, all the nanocomposites exhibited smaller CO₂ uptake after K_2CO_3 impregnation, and all the *x*CA–KCs exhibited a CO₂ capture capacity of approximately 2.4 mmol CO₂/g-sorbent at 0.1 MPa. Thus, the *x*CA–KCs do not exhibit good CO₂ capture ability for under dry conditions.

Figure 3-6: Water adsorption isotherms for K_2CO_3 . Filled symbols: sorption; open symbols: desorption.

Figure 3-7: Water sorption and CO₂ sorption isotherms. Water sorption isotherms at 303 K for CAs (a) and xCA-KCs (b). CO₂ adsorption isotherms at 273 K under dry conditions for CA (c) and for xCA-KCs (d). Pore widths: black \Box , 7 nm; green \triangle , 16 nm; red \bigcirc , 18 nm.

3.3.5 CO₂ capture ability under moist conditions

The amount of K_2CO_3 impregnated into the mesopores of CA was determined by thermogravimetry–differential thermal analysis (TG–DTA, Shimadzu DTG-60AH), where the samples were heated to 1073 K. Because the residue consisted of K_2O , the impregnated amounts of K_2CO_3 were calculated on the basis of the final TG curves to be 18.5, 21.3 and 18.8 wt% for 7CA–KC, 16CA–KC, and 18CA–KC, respectively, as shown in Figure 3-8.

Figure 3-8: TG–DTA traces of xCA–KCs under N₂/O₂ gas flow. Black: 7CA–KC; green: 16CA–KC; red: 18CA–KC. Yellow: Temperature change.

The CO₂ sorption capacity of the *x*CA–KCs was calculated on the basis of their mass change resulting from reaction (3-1), one mole of K_2CO_3 occludes a stoichiometric amount of one mole each of CO₂ and H₂O, and the two values were calculated as the total CO₂ sorption capacity (A_C; mmol-CO₂/g-sorbent) and the CO₂ occlusion capacity of K₂CO₃ (R_C; mmol-CO₂/g-K₂CO₃). They are denoted as

$$A_{\rm c} = \frac{1000 \text{ nM}_{\rm CO_2}}{44 \text{m}}$$
(3-2)

$$R_{c} = \frac{A_{c}}{\alpha}$$
(3-3)

where n (mmol) is the total amount of CO₂ captured, as obtained from TG data; M_{CO_2} (g/mol) is the molar mass of CO₂, m (g) is the mass of the sorbent; and α is the impregnation rate of K₂CO₃ into the nanocomposites.

CO₂ sorption was conducted at 313 K at a flow rate 100 cm³/min in a saturated mixed gas of CO₂ and water, as shown in Figure 3-9. The increase in weight (%) corresponds to the conversion of K₂CO₃ to 2KHCO₃. Sample 7CA–KC exhibited the greatest weight change (~17%), and bicarbonate formation reached equilibrium after 30 min for all the *x*CA–KC nanocomposites. Green et al. [20] reported that K₂CO₃ exhibits 45% CO₂ sorption in 100 min, and Luo et al. [11] verified that the carbonation of K₂CO₃ is low. The reaction rate of the *x*CA–KC nanocomposites was faster than that of bulk K₂CO₃, indicating the effect of nanostructured K₂CO₃.

The CO₂ capture capacity results are summarized in Table 3-2; the results indicate that 7CA–KC exhibits the highest CO₂ sorption capacity, $A_C = 2.68 \text{ mmol/g-sorbent}$ ($R_C = 14.5 \text{ mmol/g-K}_2CO_3$), which is substantially higher than the theoretical amount of 7.24 mmol/g-K₂CO₃. The capture capacity results reported in Table 3-2 were estimated simply from the weight increase attributed to the sorption of CO₂ and H₂O. However,

Figure 3-9: TG–DTA traces of carbonation reaction for xCA–KCs. Pore widths: black 7 nm; green 16 nm; red 18 nm.

the mechanism is complicated and still under study. To more precisely determine the amount of CO_2 captured by the *x*CA–KC nanocomposites, we used another method to measure the net amount of CO_2 captured, as described in section 3.3.6.

Table 3-2: CO₂ capture capacity, as measured by TG–DTA and TPD

Composite	Loading	TG-DTA		CaO soln-ppt	
	amount	A_{C}	R _C	A_{C}	R _C
7CA-K ₂ CO ₃	18.5 wt%	2.68 (118)	14.5 (638)	2.45 (106)	13.0 (574)
16CA-K ₂ CO ₃	21.3 wt%	2.45 (106)	11.4 (500)	2.1 (91)	9.77 (430)
18CA-K ₂ CO ₃	18.8 wt%	2.1 (92)	11.1 (489)	1.7 (76)	9.18 (404)

 $\begin{array}{lll} A_C: \mbox{ mmol-CO}_2/g\mbox{-sorbent} & (Ac): \mbox{ mg-CO}_2/g\mbox{-sorbent} \\ R_C: \mbox{ mmol-CO}_2/g\mbox{-}K_2CO_3 & (Rc): \mbox{ mg-CO}_2/g\mbox{-}K_2CO_3 \end{array}$

Figure 3-10: XRD measurement for multi-step CaO solution verification, black: the result of this study, red: CaCO3, green: Ca(OH)2, blue: CaO

3.3.6 CaO solution-precipitation method

Before the Cao solution-precipitation experiment of samples, we heated $KHCO_3$ to make CO_2 react with CaO solution and then did the XRD experiment to verify the resultant which is showed in Figure 3-10, the precipitation completely changed to CaCO₃. To accurately determine the amount of CO₂ captured by the *x*CA-KC composites, the CaO solution–precipitation method described in experimental section 3.2.3 was used. We measured the mass of the CaCO₃ precipitate to estimate the CO₂ uptake, the results indicated sorption capacities of $A_C = 2.45$, 2.1, and 1.7 and occlusion capacity of $R_C = 13.0$, 9.77, and 9.18 mmol/g-K₂CO₃ for 7CA–K₂CO₃, 16CA–K₂CO₃, and 18CA–K₂CO₃, respectively, which is also reported in Table 3-2. Although the amounts of CO₂ uptake are lower than those obtained from the TG measurements, these are net values of CO₂ capture capacity. Because the impregnated amount insufficient, A_C is relatively low. If the impregnation of K₂CO₃ into the mesopores of CA can be improved, more CO₂ will be captured and the sorbents will be easily regenerated. The values of A_C and R_C exhibit a dependence on the pore size of the original CA. In the case of impregnation of 7 nm mesopores of CA, a higher value of A_C (per g-sorbent) is obtained. It may be because a smaller particle should be more reactive and show a higher efficiency for the CO₂ occlusion reaction with water vapor.

Figure 3-11: TG curves of the carbonation reaction of xCA. Pore widths: black 7 nm; green 16 nm; red 18 nm.

The CO₂ capture amounts are higher than the theoretical values in all *x*CA-KCs, as shown in Table 2. This can be also because the remaining pores should be efficient for chemical absorption and physical adsorption of CO₂ such as the formation of H₂CO₃ in the pores, as Figure 3-11 indicates the CO₂ adsorption of *x*CAs by TG-DTA under the same condition as that for the *x*CA-KCs. From this figure, the 7CA-KC is also found to possess a better CO₂ sorption capacity (approximate to 17% mass change) than *x*CAs.

The CO₂ capture amounts in the present study are excellent compared with those reported for other K₂CO₃-loaded composites [16, 21, 22]. Although dry potassium-based sorbents such as K₂CO₃-MgO exhibit excellent CO₂ capacities (9.0-14.9 mmol-CO₂/g-K₂CO₃) that are substantially higher than the theoretical value, these sorbents produce many other byproducts, leading to a higher temperature of 623 K for regeneration. Lee et al. [5, 21] reported that $Al_2O_3-K_2CO_3$ generates $KAl(CO_3)_2(OH)_2$ during the synthesis process and this byproduct does not completely convert to K_2CO_3 at temperatures below 563 K, and observed that K₂CO₃-AC and K₂CO₃-TiO₂ can be regenerated at relatively low temperatures of 473 and 403 K, respectively. However, these two composites exhibit lower CO₂ capture capacities of 6.5 and 6.3 mmol-CO₂/g-K₂CO₃, respectively. AC-K₂CO₃ is considered a promising CO₂ capture sorbent because of its low regeneration energy requirement and high CO₂ capture capacity. However, to maintain these features, H₂O activation is required to convert K₂CO₃ to an activated form (K₂CO₃·1.5H₂O) [18]. ZrO₂-K₂CO₃ has a capacity of 6.2-6.9 mmol- $CO_2/g-K_2CO_3$ when the reaction temperature within 323–333 K under an ambient atmosphere of 9% H₂O, 1% CO₂, and balance N₂ [5, 23].

3.3.7 The cycling of 7CA-KC composites

7CA-KCs shows the lowest regeneration temperature and highest CO₂ capture

capacity. Cyclabilty of 7CA-KC in the adsorption / desorption were studied to check the stability for 3 cycles of sorption/desorption, as show in Figure 3-12. The results showed that the regeneration temperature was 20 K higher than the first cycle but retained a similar temperature for the second and third cycles, which is still lower than that of bulk KHCO₃. We repeated the TG decomposition experiment in the first cycle by using a fresh sample, and found that the result was reproducible. The blue and yellow line in Figure 3-13 were the first and second carbonation of the fresh sample 7CA-KC, respectively. The results indicate in the CO₂ capture under moist conditions, the uptake amount was decreased gradually with the cycle number but still higher than the theoretical value of K_2CO_3 .

In order to study the reason that the CO_2 capture amount was decreased in the adsorption / desorption process, we compared the porosity of 7CA-KC after the third cycle with that of the original sample by the N₂ adsorption measurement. We found that the specific surface area and micropore volume a little decreased after the third cycle in Figure 3-14. This may be attributed to sintering of nanoparticles of K₂CO₃. In order to avoid this behavior, we will improve the preparation condition of composites.

Figure 3-12: TG–DTA curves of 3 cycles for 7CA-KC.

Figure 3-13: TG–DTA curves of carbonation reaction for 7CA–KCs. Black: the data from 7CA-KC; Blue: the first adsorption of fresh sample; yellow: the second adsorption of fresh cycle.

Figure 3-14: N₂ adsorption isotherms of 7CA-KC. black, the first circle of 7CA-KC; pink, the third circle of 7CA-KC

3.4 Conclusion

 $CA-K_2CO_3$ nanocomposites (*x*CA-KC) were prepared by impregnation of K_2CO_3 nanocrystals into the mesopores of three CAs with different pore sizes of 7, 16, and 18

nm for the development of an excellent CO₂ sorbent with a high capacity, high selectivity, and low energy cost for regeneration. The performance of the nanocomposites is attributed to both chemical and physical capture being involved in the CO₂ capture. The xCA-KCs can be completely regenerated at temperatures below 423 K; 7CA–K₂CO₃ in particular exhibited excellent results, where regeneration began at 390 K and was completed at 420 K. These results were attributed to the high reactivity of nanostructured K₂CO₃, which rendered the K₂CO₃ crystals unstable and reduced the regeneration temperature. These xCA-KC nanocomposites exhibited excellent CO₂ capture capacity and can be considered a promising material for CO₂ capture from the viewpoints of economic effectiveness and energy efficiency. We also concluded that CAs can be used as a porous support for the preparation of nanocomposites with low sorbent regeneration temperatures. There are some disadvantages such as the instability of decomposition temperature in the adsorption / desorption cycles, and the adsorption amount was decreased with the cycle number. So we think it is important to overcome these drawbacks in the further research to become a potential adsorbent for CO₂ capture.

References

J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare and Z. Zhong, Recent advances in solid sorbents for CO₂ capture and new development trends, Energy & Environmental Science, 2014, 7, 3478–3518.

[2] Q. Wang, J. Luo, Z. Zhong, and A. Borgna, CO₂ capture by solid adsorbents and their applications: current status and new trends, Energy & Environmental Science, 2011, 4, 42–55.

[3] S. C. Lee, Y. M. Kwon, C. Y. Ryu, H. J. Chae, D. Ragupathy, S. Y. Jung, J. B. Lee, C.
K. Ryu, and J. C. Kim, Development of new alumina-modified sorbents for CO₂ sorption and regeneration at temperatures below 200°C, Fuel, 2011, 90(4), 1465–1470.

[4] S.-W. Park, D.-H. Sung, B.-S. Choi, J.-W. Lee, and H. Kumazawa, Carbonation kinetics of potassium carbonate by carbon dioxide, Journal of Industrial and Engineering Chemistry, 2006, 12(4), 522–530.

[5] S. C. Lee and J. C. Kim, Dry potassium-based sorbents for CO₂ Capture, Catalysis Surveys Asia, 2007, 11(4), 171–185.

[6] N. N. A. H. Meis, A. M. Frey, J. H. Bitter, and K. P. de Jong, Carbon nanofiber-supported K_2CO_3 as an efficient low-temperature regenerable CO_2 sorbent for post-combustion capture, Industrial & Engineering Chemistry Research, 2013, 52(36), 12812–12818.

[7] B.-T. Zhang, M. Fan, and A. E. Bland, CO₂ separation by a new solid K–Fe sorbent, Energy &Fuels, 2011, 23, 1919–1925.

[8] C. Zhao, X. Chen, and C. Zhao, CO₂ adsorption using dry potassium-based sorbents with different supports, Energy Fuels, 2009, 23, 4683–4687.

[9] C. Zhao, X. Chen, and C. Zhao, Carbonation and Active-component-distribution

behaviors of several potassium-based sorbents, Industrial & Engineering Chemistry Research, 2011, 50(8), 4464–4470.

[10] H. Chioyama, H. Luo, T. Ohba, and H. Kanoh, Temperature-dependent double-step CO_2 occlusion of K_2CO_3 under moist conditions, Adsorption Science & Technology, 2015, 33(3), 243–250.

[11] H. Luo, H. Chioyama, S. Thürmer, T. Ohba, and H. Kanoh, Kinetics and structural changes in CO_2 capture of K_2CO_3 under a moist condition, Energy & Fuels, 2015, 29(7), 4472–4478.

[12] R. W. Pekala and C. T. Alviso, Carbon aerogels and xerogels, Material Research Society Symposium process, 1992, 270, 3–14.

[13] R. W. Pekala, C. T. Alviso, F. M. Kong, and S. S. Hulsey, Aerogels derived from multifunctional organic monomers, Journal of Non-Crystalline Solids, 1992, 145, 90– 98.

[14] S. J. Taylor, M. D. Haw, J. Sefcik, and A. J. Fletcher, Gelation mechanism of resorcinol–formaldehyde gels investigated by dynamic light scattering, Langmuir, 2014, 30(34), 10231–10240.

[15] D. Fairen-Jimenez, F. Carrasco-Marin, and C. Moreno-Castilla, Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts, Carbon, 2006, 44(11), 2301–2307.

[16] C. Zhao, X. Chen, and C. Zhao, K₂CO₃/Al₂CO₃ for capturing CO₂ in flue gas from power plants.Part2: Regeneration Behaviors of K₂CO₃/Al₂O₃,Energy & Fuels, 2012, 26, 1406–1411.

[17] C. Zhao, X. Chen, E. J. Anthonyb, X. Jiang, L. Duana, Y. Wu, W. Dong, and C. Zhao, Capturing CO_2 in flue gas from fossil fuel-fired power plants using dry

regenerable alkali metal-based sorbent, Progress in Energy and Combustion Science, 2013, 39(6), 515–534.

[18] C. Zhao, X. Chen, C. Zhao, and Y. Liu, Carbonation and hydration characteristics of dry potassium -based sorbents for CO₂ capture, Energy& Fuels, 2009, 23, 1766–1769.

[19] Y. Hanzawa and K. Kaneko, Lack of a predominant adsorption of water vapor on carbon mesopores, Langmuir, 1997, 13(22), 5802–5804.

[20] D. A. Green, B. S. Turk, J. W. Portzer, R. P. Gupta, W. J. McMichael, Y. Liang, T. Moore, and D. P. Harrison, Carbon dioxide capture from flue gas using dry regenerable sorbents, Quarterly Technical Progress Report, 2003.

[21] S. C. Lee, B. Y. Choi, T. J. Lee, C. K. Ryu, Y. S. Ahn, and J. C. Kim, CO₂ absorption and regeneration of alkali metal-based solid sorbents, Catalysis Today, 2006, 111,(3-4), 385–390.

[22] S. C. Lee, H. J. Chae, S. J. Lee, B. Y. Choi, C. K. Yi, J. B. Lee, C. K. Ryu, and J. C. Kim, Development of regenerable MgO-based sorbent promoted with K₂CO₃ for CO₂ capture at low temperatures, Environmental Science & Technology, 2008, 42(8), 2736-2741.

[23] S. C. Lee, H. J. Chae, S. J. Lee, Y. H. Park, C. K. Ryu, C. K. Yi, and J. C. Kim, Novel regenerable potassium-based dry sorbents for CO₂ capture at low temperatures, Journal of Molecular Catalysis B: Enzymatic, 56 (2-3), 179–184.

[24] C. L. McCallum, T. J. Bandosz, S. C. McGrother, E. A. Müller, and K. E. Gubbins, A molecular model for adsorption of water on activated carbon: comparison of simulation and experiment, Laugmuir, 1999, 15, 533-544.

[25] K. Kaneko, Y. Hanzawa, T. Iiyama, T. Kanda, and T. Suzuki, Cluster-mediated

water adsorption on carbon nanopores, Adsorption, 1999, 5, 7-13.

[26] M-F Yan, L-H Zhang, R. He, Z-F Liu, Synthesis and characterization of carbon aerogels with different catalysts, Journal of Porous Materials, 2015, 22(3), 699-703.

Chapter 4:CO₂ capture by activated carbon fibers– potassium carbonate nanocomposites

4.1 Introduction

Activated carbon fiber (ACF) is one of the most important carbon nanoporous materials, because it possesses many advantages over other commercial porous materials such as very high surface area and pore volume, chemical inertness, good mechanical stability, and possess a larger adsorption capacity and greater rate of adsorption-desorption process. ACF is a promising microporous material with a fiber morphology (Figure4-1), quite pure because of low quantity of inorganic impurities and well-defined porous structure with uniform slit-shape pores [1, 2]. So they can be used in various applications, like polarizable electrodes, catalysis applications, CO₂ capture [13], SOx and NOx removal, gas separation, cigarette filters, water purification and molecular sieves. The applications in the gas phase are mainly due to the porous structure [3].

Figure 4-1: SEM images of the surface of activated carbon fibers [4] Just as showed in Figure 4-2, Activated carbon fiber (ACF) is the combination of

activated carbon and carbon fibers, in producing carbon fibers adding a thermal treatment. ACFs are generally fabricated from pitches, celluloses, phenol resin and polyacrylonitrile resin, and the selection of precursor carbon fiber, activation method and experimental conditions play an important role for tailoring pore size distribution and porous structures. Compare to other porous material such as silicas, zeolites whose CO₂ capacity will be hinder by the presence of water and metal-organic frameworks (MOF). ACF provide properties like low cost, a high hydrophobicity, and chemical stability [5].

Figure 4-2: The classification of activated carbon fibers among carbon materials [6].

ACF could be used as porous substrate by tailoring their surface chemistry and porous texture to form nanocomposites, adapting to some explicit applications. Guo et al. reported that impregnated TiO₂ on ACF to enlarge the visible light photocatalytic activity [7]. Sun et al. modified ACFs with carbon nanotubes (CNTs) to capture dye through the electrochemical degradation [8], and Kitagawa et al. also reported CO₂ capture by ACFs in the proceedings of Nippon Kagakukai. N-enriched activated carbon fibers have been used as CO₂ adsorbents, and get a high uptake 3.4 mmol CO₂/g at 25°C
and 1atm [5]. Shen et al. also reported the hierarchical activated carbon fibers for CO₂ capture, and this material possessed a high surface area above 2000 m^2/g , showed the excellent CO₂ capture amount in the moisture ambience (7.0 mmol/g and 4.8 mmol/g at 273 K and 298 K) [13]. In recent years, in order to enlarge the performance for porous materials, various surface modification studies have been extensively researched, such as nitrogen-doped, cation exchange, amine-modified method. The influence of nitrogen doping on the porous structure had been investigated, and verified that CO₂ capture capacities (1.9-3.5 mmolCO₂/g) of N-doped fibers were twice higher than then N-free fibers [14]. Bai et al. demonstrated that introduced oxygen-containing functional groups such as carboxylic and hydroxyl groups by liquid oxidation to increase CO₂ capture amount, the mechanism presented in Figure 4-3 CO₂ molecules were appealed to the surface groups because of the electron-rich properties that generated attractive forces with electrons in the CO_2 molecules [15]. In this research, we loaded K_2CO_3 into ACFs, even though this process would lead to a severe decrease in surface area, pore volume like amine modification whose CO₂ capture capacity dramatically decreased after incorporation, but we think the chemical adsorption of CO₂ will compensate the loss of structure change. So in this study, in addition to fabricate the CA-KC composites, we also investigated the ACF composites for CO_2 capture by impregnating K_2CO_3 to ACF-W15. ACF-15 is a kind of commercial material whose specific surface area is 1275 m²/g, total pore volume approximate 1.2 m²/g, and the average pore size is 3.2 nm.

Figure 4-3: mechanism for the CO₂ adsorption properties of liquid-oxidized activated carbon fiber [15].

4.2 Experimental Section

4.2.1 Preparation of ACF-potassium carbonate (KC) nanocomposites

Before the preparation of composites, activated carbon fibers had been grinded into granule in order to facilitate the impregnating process. ACF–KC nanocomposites were prepared by impregnating the nanopores of the ACFs with a 0.15 mol/dm³ K₂CO₃ (99.5% chemical purity) aqueous solution [9]. The mixture was then stirred with a magnetic stirrer for 24 h at room temperature. The aqueous solution was dried at 378 K in a vacuum evaporator. The samples were subsequently dried again in a furnace under an Ar ambient atmosphere at 573 K for 2 h. The nanocomposites are denoted as ACF–KC.

4.2.2 Measurements and characterization

The porosities of the ACF-W15 and the ACF-KC nanocomposite were characterized by N_2 adsorption at 77 K using an Autosorb-MP1 (Quantachrome Instruments). CO_2 adsorption was measured using a Belsorp-Mini (MicrotracBEL Corp.). The ACF and ACF-KC nanocomposite were pretreated by heating to 423 K under vacuum for 2 h before the gas adsorption measurements because K_2CO_3 is partially converted into KHCO₃ under an ambient atmosphere containing CO₂ and H₂O. Water adsorption isotherms were obtained by a gravimetric method at 303 K, the equilibration time was 2 h.

The Brunauer–Emmett–Teller (BET) method was used to analyze the specific surface areas (S_{BET}) on the basis of linear plots over the relative pressure (P/P_0) range 0.05–0.35 for the N₂ adsorption isotherm data. The total volume was obtained at a relative pressure of 0.99, and the Dubinin–Radushkevich equation was used to calculate the micropore volume. The mesopore diameters were estimated by the Barrett-Joyner-Halenda method.

The amount of K_2CO_3 impregnated into the mesopores of CA was determined by thermogravimetry–differential thermal analysis (TG–DTA, Shimadzu DTG-60AH), where the samples were heated to 1073 K, just as introduced in chapter 3. The loading amount was determined as 18.5 %.

After the ACF–KC nanocomposite was heated to 473 K at 10 K/min under an N₂ atmosphere and maintained at 473 K for 5 min to ensure complete formation of K₂CO₃, the temperature was decreased to 313 K, and CO₂ and H₂O were introduced into the sample chamber of the TG–DTA apparatus for 2 h by flowing CO₂ through distilled water. The ACF–KC nanocomposite reacted with CO₂ and H₂O to form ACF–KHCO₃. The crystal structures before and after the CO₂ capture were measured through ex situ X-ray diffraction (XRD) on an X-ray diffractometer (MAC Science, M03XHF) equipped with a Cu *K* α radiation source (40 kV, 25 mA, λ = 0.15406 nm). We heated the ACF–KHCO₃ nanocomposites to 473 K in order to study the regeneration process under the same conditions used in the aforementioned experiments.

4.3 Results and Discussion

4.3.1. BET surface area and pore size distributions (PSDs) of the ACF and ACF-KC

Figure 4-4: N₂ adsorption isotherms at 77 K under dry conditions for ACF-W15 and ACF-KC. Black: ACF, red: ACF-KC

The pore structures were characterized using N₂ adsorption isotherms volumetrically measured at 77 K after pretreatment at 423 K for 2 h; the obtained isotherms are presented in Figure 4-4 ACF-W15 has the saturated amount of adsorption over 24 mmol/g, possesses a clear hysteresis loop close to the IUPAC H2, verifying ACF-W15 has a mesoporous structure in addition to the microporous. The adsorption amount of ACF with smaller pore width should possess a larger uptake in the low relative pressure region, however Figure 4-4 showed that ACF-W15 without a high uptake amount in the low pressure, from other dissertation [10] we can consider this nanomaterial has a larger micropores relatively. In this study, the N₂ adsorption amount decreased after K₂CO₃ impregnation treatment (S_{BET} reduced from 1123 to 758 m²/g and V_{mic} decreased from 0.43 to 0.29 cm³/g), indicating that K₂CO₃ was successfully incorporated into the micropores and mesopores of the ACF-W15.

4.3.2. Structural changes induced by CO₂ capture and regeneration

The structural changes of the ACF–KC that accompanied CO₂ capture and regeneration were examined by XRD analysis, as shown in Figure 4-5. The black line shows the XRD patterns of the ACF–KC nanocomposite after the CO₂ capture under moist conditions. The diffraction peaks of KHCO₃ are present, verifying that the KHCO₃ nanocrystals were introduced into the mesopores of the ACF-W15 through the impregnation process. The red line presented the XRD pattern after regeneration, indicating almost complete regeneration because most of the main peaks were assigned to K₂CO₃·1.5H₂O instead of KHCO₃. This suggests that K₂CO₃ was formed by heat treatment at 473 K. Although K₂CO₃·1.5H₂O could be formed because of the deliquescent nature of K₂CO₃ under ambient conditions during the ex situ XRD experiment, K₂CO₃ impregnated into the mesopores of ACF which possess a high specific surface area was exposed to the ambient atmosphere and more easily reacted with atmospheric water.

Figure 4-5: XRD patterns after CO₂ capture and regeneration: black, ACF-KC after CO₂ capture under moist conditions; red, ACF-KC nanocomposite placed under ambient

atmosphere after being regenerated at 473 K for 2 h. $\mathbf{\nabla}$: KHCO₃, \Box : K4H₂(CO₃)₃·1.5H₂O, ∇ : K₂CO₃, $\mathbf{\diamond}$: K₂CO₃.1.5 H₂O.

4.3.3 Decomposition of ACF–KC nanocomposites

The ACF-KC nanocomposite was regenerated by at heating to 473 K under an N₂ atmosphere. Figure 4-6 showed the changes in weight and temperature of *x*CA–KCs and ACF-KC. In the TG traces, the first weight loss is attributed to the desorption of water and the second is attributed to the decomposition of KHCO₃ to K₂CO₃, which is accompanied by the evolution of CO₂ and H₂O. The blue line shows the decomposition process of bulk KHCO₃, which began to decompose at >423 K. Even through ACF-KC started to decompose at a lower temperature than bulk KHCO₃, it is still higher than the 16CA-KC and 7CA-KC composites, and just as showed in Figure 5-5, ACF-KC started to decompose at 420K and finish at 440K.

Figure 4-6: TG–DTA traces for the nanocomposites. Blue: KHCO₃, black: 7CA–KC, green: 16CA–KC, red: 18CA–KC, yellow: ACF-KC.

4.3.4. Water adsorption

Figure 4-7 shows water sorption isotherms of ACF and ACF-KC at 303 K. the black line represented the ACF, which has a small water adsorption at the low relative pressure and the sorption amount increased with increasing pressure, the total value of water adsorption is above 40 mmol/g. Monge et al. reported the position of the beginning of the isotherm and the knee are located at lower values of relative pressure the smaller the micropore size [2]. There was no obvious hysteresis was observed which is differ from those of K₂CO₃ adsorption isotherm (chapter 3). The desorption isotherms did not exhibit adsorption hysteresis, and returned to the starting point reversibly. By contrast, the water sorption behavior of the ACF-KC was more complicated because both hydration of K_2CO_3 and physical adsorption by the micropores of the nanocomposites contributed to water sorption. The desorption did not return to the original point because K₂CO₃·1.5H₂O hardly releases water molecules at ambient temperature, as demonstrated in the XRD experiments in chapter 4. Red line showed the ACF-KC water adsorption whose result was reverse to the xCA-KCs composites, because there was a remarkable increase in the water sorption uptakes of the xCA-KCs in the high relative pressure region which was discussed in the previous chapter. However, ACF-KC composite showed decreased uptake amount, this phenomenon may be attributable to the great reduce of V_{mic} , which is more effective than the deliquescent property of K₂CO₃.

Figure 4-7: Water adsorption isotherms for ACF (black) and ACF-KC (red). Filled symbols: sorption; open symbols: desorption.

Figure 4-8: CO_2 adsorption isotherms at 273 K (a) and 313K (b) under dry conditions, black: ACF, red: ACF-KC

4.3.5 CO₂ adsorption

The CO₂ sorption isotherms of the ACF and ACF–KC at 273K (a) and 313K (b) are showed in Figure 4-8 respectively. The reduction of pore volumes, lead to the smaller CO₂ uptake after K₂CO₃ impregnation in the 273K. ACF-KC exhibited a CO₂ capture capacity of approximately 2.0 mmol CO₂/g-sorbent at 0.1 MPa. Which elucidated it does not exhibit good CO₂ capture ability under dry conditions. The result in the 313K showed the same trend, the amount of uptake is higher for ACF. However, the total water adsorption for 313K is less than 273K.

4.3.6 CO₂ capture ability under moist conditions

The CO₂ sorption capacity of the ACF-KC was calculated on the basis of their mass change resulting from reaction (3-1): one mole of K_2CO_3 occludes a stoichiometric amount of one mole each of CO₂ and H₂O, and the two values were calculated as the total CO₂ sorption capacity (AC; mmol-CO₂/g-sorbent) and the CO₂ occlusion capacity of K_2CO_3 (RC; mmol-CO₂/g-K₂CO₃). The calculation was used equation (3-2) and (3-3) which were detailed interpreted in the chapter 3.

 CO_2 sorption was conducted at 313 K and 323K at a flow rate 100 cm³/min in a saturated mixed gas of CO_2 and water, respectively. The black line presented 313K, and red line showed the results of 323K. The increase in weight (%) corresponds to the conversion of K₂CO₃ to 2KHCO₃. Sample ACF-KC exhibited the high weight change (~15%) which was smaller than 7CA-KC, and bicarbonate formation reached equilibrium after 40 min. Ever through bicarbonate rate is higher than bulk K₂CO₃[11, 12], it is still lower than xCA-KC nanocomposites in this study. The CO₂ capture capacity results are summarized in Table 4-1, the results indicated that with the increase

of temperature the CO₂ adsorption amount was decreased which in accordance with other researches. ACF-KC exhibited the higher CO₂ sorption capacity in 313K, $A_C = 2.56$ mmol/g-sorbent, the loading amount was 18.5 wt % calculated by the same way in the chapter 3. So $R_C = 13.8$ mmol/g-K₂CO₃, the capture value was substantially higher than the theoretical amount of 7.24 mmol/g-K₂CO₃.

Figure 4-9: TG–DTA traces of carbonation reaction for ACF–KCs at 313K (black) and 323K (red).

Table 4-1: CO₂ capture capacity for ACF-KC at 313K and 323K

ACF-KC	A _C	R _C
Temperature	(mmol CO ₂ / g sorbent)	$(mmol CO_2 / g K_2CO_3)$
313K	2.56 (113)	13.8 (610)
323K	1.9 (85)	10.4 (459)

Ac: mmol-CO₂/g-sorbent (Ac): mg-CO₂/g-sorbent Rc: mmol-CO₂/g-K₂CO₃ (Rc): mg-CO₂/g-K₂CO₃

4.4 Conclusion

In this chapter, we investigated the characterization of ACF-W15 and ACF-KC by nitrogen adsorption isotherm, the specific surface area and micropore value were decreased dramatically after incorporate K_2CO_3 into ACF. In the result of TG-DTA, ACF-KC composite changed to a lower start decomposition temperature than bulk KHCO₃ and possessed a higher bicarbonate rate than K_2CO_3 ascribed to the K_2CO_3 loading. However, it was still less effectivity than 7CA-KC composite whose decomposition temperature started at 380 K and finished at 420 K. The CO₂ capture capacity is 13.8 mmol CO₂ / g K_2CO_3 higher than the theoretical value of K_2CO_3 and 16CA-KC, 18CA-KC. So we think the pore width play an important role in composites material, and the CO₂ capture amount was highly depend on the properties of matrix.

References

[1] T. Lee, C-H. Ooi, R. Othman, F-Y. Yeoh, Activated carbon fiber- the hybrid of carbon fiber and activated carbon, Reviews on Advanced Materials Science, 2014, 36, 118-136.

[2] J. Alcan⁻iz-Monge, A. Linares-Solano, B. Rand, Mechanism of adsorption of water in carbon micropores as revealed by a study of activated carbon fibers, The Journal of Physical Chemistry B, 2002, 106, 3209-3216.

[3] J.M. Valente Nabais, P. J. M. Carrott, Chemical characterization of activated carbon fibers and activated carbons, Journal of Chemical Education, 2006, 83(3), 436-438.

[4] M. B. Va'zquez-Ssantos, F. Sua'rez-Garci'a, A. Marti'nez-Alonso, J. M. D. Tasco'n, Activated carbon fibers with a high heteroatom content by chemical activation of PBO with phosphoric acid, Langmuir, 2012, 28, 5850-5860.

[5] N. Di'ez, P. A'lvarez, M. Granda, C. Blanco, R. Santamari'a, R. Mene'ndez, N-enriched ACF from coal-based pitch blended with urea-based resin for CO₂ capture, Microporous and Mesoporous Materials, 2015, 201, 10-16.

[6] T. J. Mays, Chapter 3- Active Carbon Fibers (Elsevier Science Ltd, Oxford, 1999).

[7] X. Guo, J. Dai, K. Zhang, X. Wang, Z. Cui, J. Xiang, Fabrication of N-doped TiO / activated carbon fiber composites with enhanced photocatalytic activity, Textile Research Journal, 2014, 13, doi: 10.1177/0040517514532159.

[8] Y. Sun, G. Wang, Q. Dong, B. Qian, Y. Meng, J. Qiu, Electrolysis removal of methyl orange dye from water by electrospun activated carbon fibers modified with carbon nanotubes, Chemical Engineering Journal, 2014, 253, 73-77.

[9] S. C. Lee, Y. M. Kwon, C. Y. Ryu, H. J. Chae, D. Ragupathy, S. Y. Jung, J. B. Lee, C.K. Ryu, and J. C. Kim, Development of new alumina-modified sorbents for CO₂

sorption and regeneration at temperatures below 200°C, Fuel, 2011, 90(4), 1465–1470.

[10] M. E_L-Merraoui, H. Tamai, H. Yasuda, T. Kanata, J. Mondori, K. Nadai, K. Kaneko, Pore structures of activated carbon fibers from organometallics / pitch composites by nitrogen adsorption, Carbon, 1998, 36(12), 1769-1776.

[11] D. A. Green, B. S. Turk, J. W. Portzer, R. P. Gupta, W. J. McMichael, Y. Liang, T. Moore, and D. P. Harrison, Carbon dioxide capture from flue gas using dry regenerable sorbents, Quarterly Technical Progress Report, 2003.

[12] R. W. Pekala and C. T. Alviso, Carbon aerogels and xerogels, Material Research Society Symposium process, 1992, 270, 3–14.

[13] W. Shen, S. Zhang, Y. He, J. Li, and W. Fan, Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO₂ capture, Journal of Materials Chemistry, 2011, 21, 14036-14040.

[14] N. Díez, P. Álvarez, M. Granda, C. Blanco, R. Santamaría, R. Menéndez, CO₂ adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods, Chemical Engineering Journal, 2015, 281, 704-712.

[15] B. C. Bai, E. A. Kim, C. W. Lee, Y-S. Lee, J. S. Im, Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO₂ adsorption, Applied Surface Science, 2015, 353, 158-164.

Chapter 5: General conclusion

CO₂ capture and storage is an agent problem has to be resolved in the near future, just like the prediction which detail described in chapter 1, the CO₂ emission result from human activities will change the environment dramatically. So in this study, we want to find a way that possesses a high CO₂ capacity and economic efficiency. CO₂ adsorption is closely associated with the properties of the porous material, we focus on the change of characterization of carbon aerogel by adjusting the ratio in the preparation process and impregnating K₂CO₃ nanocrystals into the mesopores of three CAs with different pore sizes of 7, 16, and 18 nm for the development of an excellent CO₂ sorbent with a high capacity, high selectivity, and low energy cost for regeneration. The performance of the nanocomposites is attributed to both chemical and physical capture being involved in the CO₂ capture. In chapter 3 from TG-DTA data that the xCA–KCs can be completely regenerated at temperatures below 423 K, 7CA-K₂CO₃ in particular exhibited excellent results, where regeneration began at 380 K and was completed at 420 K. These results were attributed to the high reactivity of nanostructured K_2CO_3 , which rendered the K₂CO₃ crystals unstable and reduced the regeneration temperature. These xCA-KC nanocomposites exhibited excellent CO₂ capture capacity, 13.0, 9.77, 9.18 mmol CO₂/g K₂CO₃ for 7CA-K₂CO₃, 16CA-K₂CO₃, 18CA-K₂CO₃ composites, which all surpassed the theoretical value, respectively. We also concluded that CAs can be used as a porous support for the preparation of nanocomposites with low sorbent regeneration temperatures.

In chapter 4, we discussed the composite of impregnating the K_2CO_3 into the ACF-W15, which possess high surface area and pore volume, chemical inertness, and good mechanical stability. Even though ACF-KC also presented low regeneration

temperature, it still higher than $7CA-K_2CO_3$ who regenerated at 380K, and did not get a higher CO_2 capacity compare to $7CA-K_2CO_3$ by TG-DTA experiment.

The property of possessing micropore play an important role in increasing CO_2 capacity and reducing regeneration temperature, so we think maybe it is possible to decrease the pore size to more smaller than 7nm, getting a promising result in the future study. And in order to enhance the CO_2 capture amount, we think it is important to increase the loading amount of K_2CO_3 in the preparation process. There are still other aspects we have to consider such as maintain the adsorption capacity in the process of recycling, with the result of desorption / adsorption, we found that the K_2CO_3 sintering contributed to the inefficiency of xCA-KC composites, so we think this problem may be avoided by separating K_2CO_3 by smaller pore size in the further study.

Appendix

	Fixed bed	1vol%CO ₂ , 9vol% H ₂ O	90.0	473	333	30	
d bed	Fixe	1vol% CO ₂ , 9vol% H ₂ O	83.0	>403	333	30	TiO ₂ -K ₂ CO ₃
l bed	Fixed	1vol.% CO ₂ , 9vol%H ₂ O,1atm	87	423	333	30	
ed bed	Fluidiz	15vol%CO ₂ , 15vol%H ₂ O	81.8	473	333	30.4	
bed	Fixed	1vol%CO ₂ ,9vol%H ₂ O	128	473	333	60	
d bed	Fluidize	10vol% CO ₂ , 14 vol% H ₂ O	41-107	623	333	12.8-36.8	
bed	Fixed	1vol% CO ₂ ,9vol% H ₂ O	85.0	673	333	30	
bed	Fixed	5000pmCO ₂ , 1.8%H ₂ O,1atm	51.9	623	293	28.5	
bed	Fixed	1vol.% CO ₂ , 9vol%H ₂ O,1atm	89.0	623	333	30	
d bed	Fluidize	15vol%H ₂ O,15vol%CO ₂	99.4	473	333	35.9	
bed	Fixed	11.8vol% CO ₂ ,10vol %H ₂ O	46	433	363	26.4	
bed	Fixed	1vol% CO ₂ , 9vol% H ₂ O,1atm	86.0	>403	333	30	AC-K ₂ CO ₃
bed	Fixed	5000pmCO ₂ ,1.8%H ₂ O,1atm	38.3	473	293	12.49	
bed	Fixed	1 vol.%CO ₂ ,9vol%H ₂ O,1 atm	86.3	>473	333	30	
bc	Metho	Conditions	A _C	R(T)	C (T)	Loading amount	samples

samples	Loading	C (T)	R(T)	Ac	Conditions	Method	Reference
aAl ₂ CO ₃ -K ₂ CO ₃	30	333	473	95	1vol%CO ₂ , 9vol%H ₂ O	Fixed bed	[17]
7-0 7 0-7	30	333	473	76.3	1vol.% CO ₂ , 9vol%H ₂ O,1atm	Fixed bed	[1]
	30	323	423	91.6	1vol% CO ₂ , 9vol% H ₂ O	Fixed bed	[5]
	30	323	>623	178.6	1vol.%CO ₂ ,11vol%H ₂ O,1atm	Fixed bed	[1]
MgO-K ₂ CO ₃	30	323	>623	197.6	1vol.%CO ₂ ,11vol%H ₂ O,1atm	Fixed bed	[2]
	30	333	>623	119.0	1vol% CO ₂ ,9vol% H ₂ O	Fixed bed	[6]
CaO-K ₂ CO ₃	30	333	>473	49.0	1vol.% CO ₂ , 9vol%H ₂ O,1atm	Fixed bed	[1][6]
SiO ₂ -K ₂ CO ₃	30	333	>473	10.3	1vol.% CO ₂ , 9vol%H ₂ O,1atm	Fixed bed	[1]
5A-K ₂ CO ₃	11.2	293	623	15.0	5000pmCO ₂ , 1.8%H ₂ O,1atm	Fixed bed	[3]
13X-K ₂ CO ₃	16.2	293	473	23.3	5000pmCO ₂ , 1.8%H ₂ O,1atm	Fixed bed	[3]
SG-K ₂ CO ₃	37.5	293	473	6.6	5000pmCO ₂ , 1.8%H ₂ O,1atm	Fixed bed	[3]
K ₂ CO ₃ -MgO-Al ₂ O ₃	Al:30, Mg:10	333	753	1096	$10 \text{ vol}\% \text{ CO}_2, 12 \text{ vol}\% \text{H}_2\text{O},$	Fluidized bed	[4]
USY-K ₂ CO ₃	30	333	I	18.9	1vol%CO ₂ , 9vol% H ₂ O	Fixed bed	[6]
CsNaX-K ₂ CO ₃	30	333	I	59.4	1vol%CO ₂ , 9vol% H ₂ O	Fixed bed	[6]

3	Li4SiO4-K2CO	Y ₂ O ₃ -K ₂ CO ₃	TiO2-doped K2CO3/Al2O3	K ₂ CO ₃ -FeOOH	SUFD KASS		CNF -K ₂ CO ₃	SiO ₂ -K ₂ CO ₃	samples
	30	26.2	Ti:3, K:36.8	33.33	35	35	16-29	30	Loading
	853	-	333	333	333	343	373	333	C (T)
	973	423- 523	473	398	473	503	423	I	R(T)
	230	28	101-109	49	Ι	90.0	52.8-70.4	10.3	Ac
	4vol%CO ₂ , 96vol%N ₂	In the air	10vol%CO ₂ , 12vol%H ₂ O	1 vol%CO ₂ , 10 vol%H ₂ O,	10vol%CO ₂ ,12.2vol H ₂ O	14.4vol %CO ₂ ,7vol %H ₂ O	5vol% CO ₂ , 12vol%H ₂ O	1vol% CO ₂ , 9vol%H ₂ O	Conditions
	TG-DTA		Fluidized bed	Fixed bed	Fluidized bed	Fluidized bed	Quartz nlug-flow	Fixed bed	Method
	[16]	[15]	[14]	[13]	[10]	[9]	[7]	[6]	Reference

 A_C : CO₂ capture capacity (CO₂ mg/g sorbent)

R (**T**): Regeneration temperature **C** (**T**): Carbonation temperature

References

[1] S. C. Lee, J. C. Kim, Dry potassium-based sorbents for CO₂ capture. Catalysis Surveys from Asia, 2007, 11, 171-185.

[2] S. C. Lee, H. J. Chae, S. J. Lee, B. Y. Choi, C.K.Yi, J. B. Lee, C.K. Ryu, J. C. Kim, Development of regenerable MgO-based sorbent promoted with K₂CO₃ for CO₂ capture at low temperatures, Environmental Science & Technology, 2008, 42, 2736-2741.

[3] C. Zhao, Y. Guo, C. Li, S.Lu, Removal of low concentration CO_2 at ambient temperature using several potassium-based sorbents, Applied Energy, 2014, 124, 241-247.

[4] L. Li, Y. Li, X. Wen, F. Wang, N. Zhao, F. Xiao, W. Wei, Y. Sun, CO₂ capture over $K_2CO_3/MgO/Al_2O_3$ dry sorbent in a fluidized bed, Energy &Fuels, 2011, 25, 3835-3842.

[5] S. C. Lee, H. J. Chae, S. J. Lee, Novel regenerable potassium-based dry sorbents for CO₂ capture at low temperatures, Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 179-184.

[6] S. C. Lee, B. Y. Choi, T. J. Lee, C. K. Ryu, Y. S. Ahn, J. C. Kim, CO₂ absorption and regeneration of alkali metal-based solid sorbents, Catalysis Today, 2006, 111, 385-390.

[7] N. N. A. H. Meis, A. M. Frey, J. H. Bitter, K. P. de Jong, Carbon nanofiber-supported K_2CO_3 as an efficient low-temperature regenerable CO_2 sorbent for post-combustion capture, Industrial & Engineering Chemistry Research, 2013, 12812-12818.

[8] S. C. Lee, Y. M. Kwon, Y. H. Park, W. S. Lee, J. J. Park, C. K. Ryu, C. K. Yi, J. C. Kim, Structure effects of potassium-based TiO₂ sorbents on the CO₂ capture capacity, Topics in Catalysis, 2010, 53, 641-647.

[9] C-K. Yi, S-H. Jo, Y. Seo, J-B. Lee, C-K Ryu, Continuous operation of the potassium-based dry sorbent CO_2 capture process with two fluidized-bed reactors, International Journal of Greenhouse Gas Control, 2007, 1(1), 31–36.

[10] Y. Seo, S. H. Jo, H. J. Ryu, D. H. Bae, C. K. Ryu, C. K. Yi, Effect of water pretreatment on CO_2 capture using a potassium-based solid sorbent in a bubbling fluidized bed reactor, Korean Journal of Chemical Engineering, 2007, 24(3), 457-460.

[11] C. Zhao, X. Chen, C. Zhao, Y. Wu, W. Dong, K_2CO_3/Al_2O_3 for Capturing CO₂ in Flue Gas from Power Plants. Part 3:CO₂ Capture Behaviors of K_2CO_3/Al_2O_3 in a Bubbling Fluidized-Bed Reactor, Energy fuels, 2012, 26, 3062-3068.

[12] S. C. Lee, Y. M. Kwon, C. Y. Ryu, H. J. Chae, D. Ragupathy, S. Y. Jung, J. B. Lee,
C. K. Ryu, J. C. Kim, Development of new alumina-modified sorbents for CO₂ sorption and regeneration at temperatures below 200^oC, Fuel, 2011, 90, 1465-1470.

[13] B-T. Zhang, M. Fan, A. E. Bland, CO₂ separation by a new solid K-Fe sorbent.Energy Fuels, 2011, 25, 1919-1925.

[14] W. Dong, X. Chen, Y. Wu, TiO₂-Doped K₂CO₃/Al₂CO₃ sorbents for CO₂ capture, Energy Fuels, 2014, 28, 3310-3316.

[15] V. S. Derevschikov, J. V. Veselovskaya, T. Y. Kardash, D. A. Trubitsyn, A. G. Okunev, Direct CO₂ capture from ambient air using K_2CO_3/Y_2O_3 composite sorbent, Fuel, 2014, 127, 212-218.

[16] M. Seggiani, M. Puccini, S. Vitolo, Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration, International Journal of Greenhouse Gas Control, 2013, 17, 25-31.

Acknowledgements

First and foremost I would like to express my deepest gratitude to my advisor Professor Hirofumi Kanoh, for his invaluable guidance, consistent encouragement, and support. I learned many qualities from him, such as dedication, optimism, care to students who may have a dilemma in their research or life. I also became more enthusiastic in doing my research, learning professional knowledge, improving language skills, and helping other people. I wish to express my deep and sincere gratitude to Associate professor Tomonori Ohba for the precious comments and invaluable discussion. I want to thanks Mr. Ohazama who has taught me about how to use Belsorp to measure CO_2 adsorption and data analysis, Mr. Okuno who always help me when I have troubles in my research like device damage, assemble instrument, and Mr. Yamamoto who spend much time to teach me about how to use the water line.

I would like to thank all members of Molecular Chemistry group & Molecular Nanochemistry group of Chiba University for being important in my study and life. During this work, their supports and encourages have been very helpful in my research activities and make me feel part of their warm family. Thanks to all for your helps and kindness during my stay in Japan and teaching me about hard work, respectful and many other good values.

Finally, I would like to thank my family for great understanding, encouragement and support in my life and study.

February, 2016

Guang Yang