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Chapter 1

General introduction

1.1 X-ray absorption fine structure

Albert Einstein discovered that the photoelectric effect is a quantum mechanical phe-

nomenon in 1905. The mysterious effect involved the electron excitation caused by lights.

In the case of X-rays that was discovered by Wilhelm Conrad Röntgen in 1895, their high

energy and short wavelength enable the excitation of strongly localized core electrons.

The core-electron binding energy gives the threshold of the excitation, called the absorp-

tion edge or white line, where the absorption intensity suddenly and strongly increases.

The absorption-edge energy substantially differs (100 eV ∼) in the atomic number and

a kind of orbital; however it does not deviate largely (only a few eV) by environmental

changes around the absorbing atom. This important feature provide us the elemental and

orbital selectivities of the X-ray absorption. In addition, the local environmental changes

affect spectral shapes of the X-ray absorption, called X-ray absorption fine structure

(XAFS), because excited final states are correspond to bonding or more extended orbital

in one-electron (quasi-particle) picture. Therefore, the X-ray absorption spectroscopy

(XAS), which is investigation of the dependence of the X-ray absorption intensity on

incident X-ray energies, can directly pick up the local information around the absorbing

atom. The K- and L1-edge X-ray absorption corresponds to the excitation from 1s and

2s orbital to unoccupied p state, respectively, in dipole transition. While, the L2,3-edge

one is from 2p1/2 and 2p3/2 orbital to unoccupied d state, respectively. XAFS is classified

into two energy parts: X-ray absorption near edge structure (XANES) in the energy re-
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gion up to about 100 eV above white line, and extended X-ray absorption fine structure

(EXAFS) above the energy region of XANES. Figure 1.1(a) shows a typical Fe K-edge

XAFS spectrum of iron foils [1].
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Figure 1.1: Observed Fe K-edge XAFS spectra of iron foils [1]. The top (a), middle (b)

and bottom (c) panels show normalized XAFS and χ(k) spectra, and radial distribu-

tion function, respectively. The χ(k) spectrum are multiplied by k3 factor. The radial

distribution function is obtained by using χ(k) from k = 3 to 11 Å−1.

The XANES corresponds to relatively lower energy excitation which is largely affected

by valence electrons. Therefore, XANES spectra give us information of stereo local ge-

ometry and electronic structure around an absorbing atom. In particular, energy shifts

of white line (chemical shift) associated with charge variation is used in many field, for
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instance, evaluation of element oxidation in anodes and cathodes of lithium-ion batteries

[2]. Moreover, main peak intensity near the absorption edge is used to estimate unoc-

cupied d electrons of absorbing Pt atoms in Pt nano particles by comparison with the

pure metal Pt during catalytic reaction [3]. In environmental analysis field, XANES

spectra is used by finger print schemes: XANES spectra of unknown samples are com-

pared with reference spectra to obtain composition of the samples. These analyses do

not need theoretical XANES calculation. By using theoretical calculation, we can extract

much more information about local structure around the absorbing atom. However, the

excitation in relatively low energy region is strongly affected by electron configuration.

This make XANES spectra complicated and difficult to fully understand them by only

one theoretical approach.

EXAFS is well understood by using the concept of photoelectron scattering because the

scattering theory is suitable for describing the continuum state with large wave number.

EXAFS region is far above the threshold of the core excitation energy at least about 100

eV as shown in Fig. 1.1(a), then the excited state is treated as the photoelectron state

dressing many-body effects. EXAFS spectra have the oscillation called EXAFS oscilla-

tion, which provide us with bond lengths between the absorbing atom and neighboring

atoms usually up to the second nearest neighbor by using Fourier transformation and

fitting to the EXAFS formula. Figures 1.1(b) and (c) show the EXAFS oscillation χ(k)

and its Fourier transformation from wave number k = 3 to 11 (radial distribution func-

tion) of iron foils, respectively. The oscillation χ(k) is multiplied by a weight factor k3

to compensate its amplitude decay. Peak positions and heights in the radial distribution

function do not show the inter-atomic distance and coordination number directly. Thus,

we need the fitting procedure by using the EXAFS formula to obtain correct information.

In general, the accuracy of interatomic distances determined by EXAFS is within 0.5-

1.0% [4]. If we obtain high-quality EXAFS oscillation and good model compounds for

analyses of unknown samples, the coordination numbers around the absorbing atom are

determined within 10-30% accuracy [4]. We can obtain vibrational information through

the Debye-Waller factor. Furthermore, by using the cummurant expansion, the anhar-

monicity can be also studied. Bond lengths in various materials are determined by

EXAFS analyses.
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There are several modes to observe XAFS spectra [5]. The most basic measurement is

a transmission mode which detects the intensity of the incident and transmitted X-rays.

A fluorescence mode detects characteristic X-rays instead of the transmitted X-rays for

either dilute or very thin samples. An electron yield mode is similar to fluorescence

yield in terms of using core-hole refilling, but electrons emitted from surface are detected

instead of fluorescent X-rays. Therefore, the electron yield technique is surface sensitive

because of inelastic mean free path, whereas the other modes are bulk sensitive.

1.2 X-ray magnetic circular dichroism

X-ray magnetic circular dichroism (XMCD) is the difference of the absorption of circularly

polarized X-rays between ±helicity. The XMCD intensity ∆I is defined by the X-ray

absorption intensity I(mp,±B) where mp is the helicity of the incident X-rays, and ±B

represents a magnetization direction parallel and antiparallel to the incident X-rays.

∆I = I(+;−B) − I(−;−B) = I(−; +B) − I(−;−B) = I(+;−B) − I(+; +B). (1.1)

These are equivalent because of time reversal symmetry. To obtain XMCD spectra, the

spin-orbit interaction (SOI) plays an important role. A photoelectron receives orbital

moments from the incident circularly polarized X-rays. The incident X-rays can excite

a core electron for up and down spin. Photoelectron spin interacts with systems by

the exchange scheme, and involves information of spin polarization. The SOI couples

photoelectron spin to the orbital moments, and deviate up spin absorption from down

spin one with same helicity (orbital moment). Therefore, XMCD spectra provide us local

magnetic information because we can also use element and orbital selectivity of the X-ray

absorption for XMCD. Indeed, no spin polarization in systems gives no XMCD intensity.

Sum rules for L2,3-edge XMCD provide us with the spin and orbital magnetic moment

separately in d orbital on the absorbing atom [6, 7, 8, 9, 10]. Thole et al. predicted the

sum rules theoretically [9, 10]. After that, Chen at al. confirmed its applicability with

magnetic experiments [7]. Nowadays, the sum rules have been one of the most important

purpose to apply XMCD analyses. For K-edge XMCD, the sum rules give only p orbital

moment since there is no spin-orbit interaction on the core state [8, 9].

While the sum rules is useful technique, integration of XMCD spectra neglects fine
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structure in the spectra. By using theoretical calculation, we could extract much more

information from XMCD spectra.

1.3 Theory for X-ray absorption spectroscopy

Many researchers have been studying the X-ray absorption spectra theoretically to un-

derstand them physically and extract much information from them. EXAFS oscillation

of various materials is well understand by photoelectron scattering picture based on the

scattering theory which has advantage to relatively higher energy excitation to contin-

uum states. On the other hand, many theories have been developed to explain XANES

spectra. Here, I briefly introduce them.

A multiple scattering (MS) theory describe the excitation state as photoelectron one

emitted from an absorbing atom by using Green’s functions [11, 12]. The photoelectron is

affected by electronic and geometric structure surrounding the absorbing site through its

migration in solids. To describe this, total potential is divided into atomic and interstitial

region parts. Usually, we approximate the atomic parts by using spherical averaged

atomic potential. This crude but important approximation is called the muffin-tin (MT)

approximation. This enable us to treat the MS theory more easily. Many-body effects

like plasmon excitation are involved as mean free path and effective potential in solids.

Therefore, we can include long range effects up to about 10 Å from the absorbing site

(of course it depends on systems) in calculated XANES spectra. This theory works well

for K,L1-edge XANES because of the delocalization of unoccupied p state even under

existence of a core hole. The unique point of the MS scheme for XANES is the direct

connection to the EXAFS formula due to the same scattering theory. Main difficulty of

the MS theory is to take into account short range effects like the charge transfer caused

by the core hole creation.

A multiplet theory for XANES spectra involves many-body effects in the absorption

atom or the small calculation cluster by the configuration interaction [13, 14, 15]. This

theory works well for L2,3-edge XANES and XMCD spectra in particular open-shell

transition-metal (TM) systems where the electron correlation is rather large. Moreover,

comparison of the XAS spectral peaks calculated by using different electron configura-
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tions gives physical interpretation of the XAS spectra. The disadvantage of the multiplet

theory is the lack of long range effects further first nearest neighbor atoms because of

tremendous basis sets to construct Slater determinants. This prevents the theory from

including structural effects and the transition to continuum states. The configuration

interaction enables us to consider the electron correlation in relatively localized state.

The multiplet theory hence succeeds the L2,3-edge XAS and XMCD calculation of TM

systems.

Recently, Krüger et al has calculated Ca and Ti L2,3-edge XANES spectra for Ca and

Ti compounds by the multichannel MS theory, respectively [16, 17]. In light elements such

as Ca and Ti, the core hole states at 2p1/2 and 2p3/2 are energetically close and merged

each other. Unoccupied d states in Ca and Ti atoms is relatively delocalized and have

less electron correlation than in TM such as Ni. The multichannel MS theory includes

local multiplet and long-range MS effects simultaneously. Hence, this theory overcomes

both difficulties in the multiplet and MS theory. The calculation showed importance of

both the effects in the system which has delocalized final states with strongly merged

2p3/2,1/2 core hole states.

For other developments, Hatada et al has developed full potential MS theory beyond

the muffin-tin approximation [18, 19, 20]. The potential in solids of dense-structural sys-

tems is well approximated by the muffin-tin approximation owing to the small interstitial

region. In the full potential approach, interstitial region or surface are filled or covered

by Voronoi polyhedron called empty cells. The most remarkable point of this theory is

that potential shapes are exactly taken into account without any spherical harmonics ex-

pansion to avoid a convergence problem of partial waves, called the Gibbs phenomenon.

This theory therefore improves the calculated XANES spectra for molecules and sparse

structural systems such as GeCl4 and α-quartz, respectively [19].

1.4 Outline of this thesis

By the development of XAS techniques and analyses, the local structure around an ab-

sorption atom can be investigated in a tremendous number of materials. However, to

study new and complicate systems, we still need to struggle how to apply XAS methods
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to them. Those novel systems include and make use of impurity, vacancy, surface, inter-

face, complex of light and heavy elements, magnetism and so on. As a typical impurity

system, impurity doped semiconductors are often discussed about its local properties.

Moreover, in rare-earth (RE) doped GaN, detection of vacancies next to doped RE ion

is an important issue. Meanwhile, graphene systems have attracted much attention as

modern spintronic materials; however their interface properties make the analyses of the

graphene complicate. Making the best use of the element and orbital selectivities of XAS

is demanding for those materials.

In the present thesis, I analyze XANES spectra of RE doped GaN crystals to elucidate

the local atomic structure and the nitrogen vacancy around a doped RE ion. In addition,

I also develop the XMCD theory for light element absorption in magnetic systems on

the basis of the MS theory. The organization of the thesis is as follows. In chapter

2, I briefly introduce the MS theory developed by Fujikawa et al [21]. To apply the

MS theory to XMCD, relativistic effects are taken into account within a perturbation

scheme of the Green’s function. The intensity of L2,3-edge XANES, and K,L1-edge

XANES and XMCD are described by the atomic and scattering terms. In chapter 3,

Gd L3-edge XANES spectra of the two GaN:Gd crystals under different crystal growth

conditions are firstly analyzed to investigate the local structure around a doped Gd ion

[22]. The GaN:Gd crystals show different XANES spectra each other. I discuss the shift

of the Gd ion along to space created by nitrogen vacancies. Secondly, Dy L3- and L1-

edge polarization-dependent XANES spectra of the two GaN:Dy crystals are analyzed. I

observed that the spectral shape of GaN:RE does not depend on the RE elements, but on

the crystal growth conditions. The anisotropy of the nitrogen vacancy adjacent to the RE

ion is obtained by the polarization dependence of the spectra. In chapter 4, K,L1-edge

XMCD theory is developed to include the SOI on scatterer sites on the basis of the MS

theory described in chap. 2. The previous and present results for BCC iron are compared

analytically and numerically. The developed theory is also applied for graphene/Ni(111)

systems. I find the importance of the SOI in scattering processes. These results shed

light on a way to study functional materials including vacancies or magnetic species by

using XAS methods.
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Chapter 2

Multiple scattering theory

In this chapter, I will briefly introduce a MS theory [12, 21, 23, 24]. This theory adopts the

relativistic corrections as the perturbation on the Green’s function. Brouder et al. firstly

adopt the idea of the perturbation expansion on the Green’s function to the MS theory for

powder crystal system [25, 26]. Fujikawa et al. improved the theory for arbitrary systems

[21, 23, 24]. To calculate XMCD spectra, the spin-orbit interaction, which comes from

the relativistic theory, is necessary. Thus, the treatment of the relativistic effect is quite

important.

2.1 relativistic X-ray absorption theory

The Dirac hamiltonian hD under the potential VD is written by

hD = cα · p + βc2 + VD =

 V + c2 cσ · p

cσ · p V − c2

 (2.1)

in atomic unit (Hartree). The Pauli matrix is represented by σ. The potential VD and

V are 4×4 and 2×2 matrices, respectively. If we assumed that the potential V does not

include non-diagonal component in spin space, V is written as

V =

 V + 0

0 V −

 , (2.2)
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where V +(−) acts on the up (down) spin state. I define the one-electron Dirac Green’s

function gD by using HD in (2.1).

gD(ε) = (ε + c2 −HD + iη)−1 =

 ε− V + iη cσ · p

cσ · p ε + 2c2 − V + iη

−1

, (2.3)

where ε is the total one-electron energy without the rest energy, and η is the infinitesimal

to determine the boundary condition of GD: here, η → +0 and gD is the out-going

solution. By using the expansion proposed by Gesztesy et al. [29], gD is represented by

gD(ε) = (1 − T )−1

 g gQ

Qg QgQ + 1
2c2

 =
∞∑
n=0

T n

 g gQ

Qg QgQ + 1
2c2

 (2.4)

Here, 2×2 matrices T , X, Y , Q and the one-electron non-relativistic Green’s function g

are defined as follows:

T =

 0 X

0 Y

, X = gQ(V − ε), Y = (QgQ +
1

2c2
)(V − ε),

Q =
σ · p
2c

, g ≡ g(ε) =
1

ε− Te − V + iη
,

(2.5)

where Te is the electron kinetic energy. I abbreviate gD(ε) as gD from here. The explicit

form of T n is obtained by

T n =

 0 XY n−1

0 Y n

 (2.6)

The terms gQ,Qg and X are on the relativistic order of g/c, while the terms QgQ+1/2c2

and Y are on the order of g/c2. We obtain the approximated gD on the order of up to

g/c2.

gD ≈

 g + gQ(V − ε− iη)Qg gQ

Qg QgQ + 1
2c2

 (2.7)

We will see that gQ, Qg and gQ(V − ε− iη)Qg give the relativistic correction for X-ray

absorption intensity soon afterward. In X-ray absorption, the core state |c⟩ which absorbs

the incident X-rays is well localized and energetically deep compared to the valence state.

Thus, |c⟩ is atomic like and written as in 4-spinor

|c⟩ =

 |φc⟩

|χc⟩

 . (2.8)
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The large (small) component |φc⟩ (|χc⟩) is the eigenstate of J2, L2, S2 and Jz. By using

the Pauli spinor ylj,µ and the radial components gc and fc, the components |φc⟩ and |χc⟩

are written as

⟨r|φc⟩ = gjc(r)ylcjc,µc
(r̂), (2.9)

⟨r|χc⟩ = ifjc(r)(σ · r̂)ylcjc,µc
(r̂) (2.10)

The Pauli spinor ylj,µ is obtained by

ylj,µ(r̂) =
∑

ms=±1/2

⟨µ−ms
1

2
ms|jµ⟩Yl,µ−ms(r̂) |ms⟩ , (2.11)

where ⟨l1m1l2m2|l3m3⟩ is the Clebsch-Gordan coefficient. The small component |χc⟩ is

on the order of |φc⟩ /c. In one-electron approximation, the X-ray absorption intensity I

is written by

I(ω) = −2Im ⟨c|∆∗gD(ε)∆|c⟩ , (2.12)

where ∆ is the electron-photon interaction operator. By using (2.7), the intensity I is

written by

I(ω) = T11(ω) + T12(ω) + T21(ω) + U11(ω) + · · · (2.13)

The terms T11(ω), T12(ω), T21(ω) and U11(ω) have forms each other as follows:

T11(ω) = −2Im ⟨φc|∆∗g∆|φc⟩ , (2.14a)

T12(ω) = −2Im ⟨φc|∆∗gQ∆|χc⟩ , (2.14b)

T21(ω) = −2Im ⟨χc|∆∗Qg∆|φc⟩ , (2.14c)

U11(ω) = −2Im ⟨φc|∆∗gQ(V − ε)Qg∆|φc⟩ (2.14d)

Since only T11 survive in the non-relativistic limit (c → ∞), T11 is dominant in the

intensity I. The relativistic correction terms T12, T21 and U11 are the order of (v/c)2

as described above. At the K- and L1-edges, the initial core state is the s state, which

has no spin-orbit interaction. T11 include the relativistic effect only on the core wave

function. Thus it has no contribution to K- and L1-edge. On the other hand, T12, T21

and U11 have contribution to the XMCD because they include the spin-orbit interaction

on the final (or photoelectron) state. At the L2,3-edge, the initial core state is the p state,

and has the spin-orbit interaction. Hence, T11 is dominant for the L2,3-edge XMCD.
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2.2 Theory of XAS

I assume that the spin dependent potential V ±(r) is the sum of the spherical potential

with no overlap between the neighbor sites (muffin-tin approximation).

V ±(r) =
∑
α

v±α (r), (2.15)

vα(r −Rα) = vα(|r −Rα|), (2.16)

where vα(r) is the spherical potential centered at the α atomic site located at Rα. In this

approximation, the Green’s function gs (s is the spin index) is expanded by site t-matrix

expansion (see Appendix A and C).

gs = gsa +
∑
α

gsat
s
αg

s
a +

∑
α ̸=β

gsat
s
αg

s
0t

s
βg

s
a + · · ·, (2.17)

where the decay free propagator gs0 and the propagator gsa including the va at site a is

represented by

g0 =
1

ε− Te + iΓ
, (2.18)

ga = g0 + g0vag0 + g0vag0vag0 + · · · = g0 + g0tag0 =
1

ε− Te − va + iΓ
(2.19)

According to (2.14a), the intensity of linearly or circularly polarized X-ray absorption

with the energy ω is obtained by

I(ω,mp) ≈ T11(ω,mp) = −2Im
∑
s

⟨φc|∆∗
mp

gs∆mp|φc⟩ . (2.20)

The index mp represents the polarization. The circularly polarized X-rays incident to

the z-direction with ± helicity is represented by mp = ±, while the linear polarization in

z-direction is represented by mp = 0. In this definition, we take the quantum- (or spin-

) axis parallel to the incident circularly polarized X-rays or the direction of the linear

polarization. The electron-photon interaction operator ∆mp is written by

∆mp∝ rY1mp(r̂), (mp = 1, 0, − 1) (2.21)

in the dipole approximation. For linearly polarized X-rays, the incident direction does

not matter until we consider the quadrupole transition; however, the quantization axis

is still important and defined parallel to the z-axis. Substitute (2.17) to (2.20), we can



2.2. THEORY OF XAS 13

interpret the first, second and third term as the atomic absorption, the single and double

scattering terms. The higher order terms correspond to the higher order scattering.

The renormalization of the scattering terms provides all scattering including the infinity

scattering.

2.2.1 Atomic term

From (2.11) ∼ (2.21), the spin-dependent atomic term I(0) is written by

I(0)s(ω,mp) = −2Im ⟨φc|∆∗
mp

gsA(ε)∆mp|φc⟩

= −2Im
∑
µc,L

⟨lcµc−ms
1

2
ms|jcµc⟩

2

G(lcµc−ms1mp|L)2σs
l (ε) (2.22)

The spin magnetic quantum number ms is ±1
2

for the spin index s = ±. The azimuthal

quantum number jc for total angular momentum is 1
2

(3
2
) at L2-edge (L3-edge). The

Gaunt integral G(l1m1l2m2|l3m3) is defined by

G(l1m1l2m2|l3m3) =

∫
dr̂Y ∗

l3m3
(r̂)Yl1m1(r̂)Yl2m2(r̂)

=

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
⟨l10l20|l30⟩ ⟨l1m1l2m2|l3m3⟩ (2.23)

The radial integral σs
l (ε) represents infinite scattering inside the absorbing atom.

σs
l (ε) =

∫
gjc(r)gsA,l(r, r

′; ε)gjc(r
′)r3r′3drdr′, (2.24)

gsA,l(r, r
′; ε) ∼

∫
R̃s

A,l(pr)R̃s
A,l(pr

′)

ε− εp + iη
p2dp, (2.25)

where gA,l is the l component of gA in angular momentum representation. The radial

wave function of the large component gjc is described at (2.9). The radial wave function

R̃A,l(pr) is the real part of the regular solution of the Schrödinger equation in the atomic

(or muffin-tin) sphere at the absorbing site. After the integration by the photoelectron

momentum p, σs
l (ε) is written by the radial integral ρsc(l) (=

∫
R̃s

l (kr)gjc(r)r3dr) as

Imσs(l) = −2kρsc(l)
2 (2.26)
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2.2.2 Infinite scattering term

At first, I calculate the single scattering term. When r ∈ α, r′ ∈ A in gA(r, r′), the

Green’s function gA(r + Rα, r
′) is represented by

gA(r + Rα, r
′) = gA(r′, r + Rα)

= 2
∑
L′L

il
′−leiδ

A
l GL′,L(kRα)jl′(kr)YL′(r̂)R̃l(kr

′)Y ∗
L (r̂′), (2.27)

where the complex wave number of the photoelectron is defined by k =
√

2(ε + iΓ) in

atomic unit. The free decay propagator GL,L′(kRα) is written by

GL′L(kRα) = − 4πik
∑
L1

il1hl1(kR)YL1(R̂)G(L1L
′|L),

As a result, the single scattering term is written by∑
α

⟨φc|∆∗
mp

gsA(ε)tsα(ε)gsA(ε)∆mp |φc⟩

= 2
∑
µc

∑
L,L′

il
′−lei(δ

As
l +δAs

l′ )ρsl (ε)ρ
s
l′(ε) ⟨lcµc −ms

1

2
ms|jcµc⟩ (2.28)

×G(lcµc −ms1mp|L)G(lcµc −ms1mp|L′)Ĝs
L′,L(ε)

The propagator Ĝs
L1,L is defined as

Ĝs
L1,L(ε) =

∑
α,L′

GL1L′(−kRα)tαsl′ (k)GL′L(kRα). (2.29)

The propagator Ĝs
L1,L describes that the photoelectron goes from the absorbing atom

A, and returns to the A site after the scattering at the site α. The site t-matrix tαsl

is represented in orbital moment representation at the site α for the spin s. This site

t-matrix written by the phase shift δα,s with l-th partial wave as

tαsl (k) = −exp(2iδαsl − 1)

2ik
(2.30)

The similar procedure enable us to consider the infinite scattering term. As a result,

ĜL1,L in the single scattering term is replaced by ZL1,L to obtained the infinite scattering

term. The spin index s is omitted here. The infinite scattering propagator is described

by

ZL1L = [GtG]AA
L1L

+ [GtGtG]AA
L1L

+ · · ·

= [G(tG)0]AA
L1L

+ [G(tG)1]AA
L1L

+ [G(tG)2]AA
L1L

+ · · ·

= [G(1 −X)−1]AA
L1L

(2.31)
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Xαβ
L′L′′ = tαl′(k)GL′L′′(kRα − kRβ)(1 − δαβ)

The terms in the braket [· · · ]AA
L1L

describe the photoelectron migration from the A site with

the angular momentum L to the A site after the MS. The element Xαβ
L′L′′ means that the

photoelectron goes from α to β, and is scattered by α. When α = β, GL′L′′(kRα−kRβ) =

0. Since [G]AA = 0, Z can be written by the inverse matrix by adding [G]AA = 0. The

t-matrix and the free decay propagator G involve electronic and geometric structures,

respectively. According to (2.17), the infinite scattering term arises from g − gA,

I(∞)s(ω,mp) = −2Im
∑
α

⟨φc|∆∗
mp

(gs(ε) − gsA(ε))∆mp|φc⟩

= −4Im
∑
µc

∑
L,L′

il
′−lei(δ

As
l +δAs

l′ )ρsl (ε)ρ
s
l′(ε) ⟨lcµc −ms

1

2
ms|jcµc⟩

2

×G(lcµc −ms1mp|L)G(lcµc −ms1mp|L′)Zs
L′,L(ε) (2.32)

2.3 Formula of XANES

In this section, I derive more explisit expresion for XANES spectra. The incident linearly

polarized X-rays are assumed, which corresponds to mp = 0.

2.3.1 L2,3-edge XANES

• L2-edge (jc = 1/2)

From (2.22), if we neglect the s state (l = 0) contribution, the atomic XANES spectrum

at the L2-edge is written by

I
(0)+
L2

(ω, 0) = −2Imσ+
2 (ε)

(
⟨ 10

1

2

1

2
| 1

2

1

2
⟩
2

G(1010|20)2

+ ⟨ 1 − 1
1

2

1

2
| 1

2
− 1

2
⟩
2

G(1 − 110|2 − 1)2
)

= −2Im
σ+
2 (ε)

6π
, (2.33)

I
(0)−
L2

(ω, 0) = −2Imσ−
2 (ε)

(
⟨ 11

1

2
− 1

2
| 1

2

1

2
⟩
2

G(1110|21)2

+ ⟨ 10
1

2
1

1

2
| 1

2
− 1

2
⟩
2

G(1010|20)2
)

= −2Im
σ−
2 (ε)

6π
. (2.34)
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Although the unoccupied density of state of the s state is small compared to that of the

d state in most of cases, the justification of this approximation is depend on the system.

From (2.32), the scattering part of the L2-edge XANES spectrum is given by

I
(∞)+
L2

(ω, 0) = −4Im
[
e2iδ

A+
2 ρ+2 (ε)2

(
⟨ 10

1

2

1

2
|1
2

1

2
⟩
2

G(1010|20)2Z+
20,20(ε)

+ ⟨ 1 − 1
1

2

1

2
|1
2
− 1

2
⟩
2

G(1 − 110|2 − 1)2Z+
2−1,2−1(ε)

)]
= −4Im

[
e2iδ

A+
2 ρ+2 (ε)2

1

30π

(
2Z+

20,20(ε) + 3Z+
2−1,2−1(ε)

)]
(2.35)

I
(∞)−
L2

(ω, 0) = −4Im
[
e2iδ

A−
2 ρ−2 (ε)2

(
⟨ 11

1

2
− 1

2
|1
2

1

2
⟩
2

G(1110|21)2Z−
21,21(ε)

+ ⟨ 10
1

2
− 1

2
|1
2
− 1

2
⟩
2

G(1010|20)2Z−
20,20(ε)

)]
= −4Im

[
e2iδ

A−
2 ρ+2 (ε)2

1

30π

(
2Z−

20,20(ε) + 3Z−
21,21(ε)

)]
(2.36)

Here, the infinite scattering terms including s state (l = 0) terms are neglected again.

The symmetrical relation of the propagator is

ZL,L′ = (−1)l+m+l′+m′
ZL̄′,L̄,

(L = (l,m), L̄ = (l,−m)).
(2.37)

Thus, we obtain the relation Z2+1,2+1 = Z2−1,2−1. To summarize the L2-edge XANES

formula, the total spin-dependent L2-edge absorption IL2 = I
(0)
L2

+ I
(∞)
L2

is given by

I±L2
(ω, 0) = −2Im

[
1

6π
σ±
2 (ε) + e2iδ

A±
2 ρ±2 (ε)2

1

15π

(
2Z±

20,20(ε) + 3Z±
21,21(ε)

)]
(2.38)

• L3-edge (jc = 3/2)

We can obtain the formula of the L3-edge XANES spectrum through the same procedure

as the L2-edge.

I
(0)+
L3

(ω, 0) = −2Im

[
σ+
2 (ε)

(
⟨ 11

1

2

1

2
| 3

2

3

2
⟩
2

G(1110|21)2

+ ⟨ 10
1

2

1

2
| 3

2
− 1

2
⟩
2

G(1010|20)2

+ ⟨ 1 − 1
1

2

1

2
| 3

2
− 1

2
⟩
2

G(1 − 110|2 − 1)2
)]

= −2Im
σ+
2 (ε)

3π
, (2.39)
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I
(0)−
L3

(ω, 0) = −2Im

[
σ−
2 (ε)

(
⟨ 11

1

2
− 1

2
| 3

2

1

2
⟩
2

G(1110|21)2

+ ⟨ 10
1

2
− 1

1

2
| 3

2
− 1

2
⟩
2

G(1010|20)2
)

+ ⟨ 1 − 1
1

2
1 − 1

2
| 3

2
− 3

2
⟩
2

G(1 − 110|2 − 1)2
)]

= −2Im
σ−
2 (ε)

3π
. (2.40)

I
(∞)+
L3

(ω, 0) = −4Im
[
e2iδ

A+
2 ρ+2 (ε)2

(
⟨ 11

1

2

1

2
|3
2

3

2
⟩
2

G(1110|21)2Z+
21,21(ε)

+ ⟨ 10
1

2

1

2
|1
2

1

2
⟩
2

G(1010|20)2Z+
20,20(ε)

+ ⟨ 1 − 1
1

2

1

2
|3
2
− 1

2
⟩
2

G(1 − 110|2 − 1)2Z+
2−1,2−1(ε)

)]
= −4Im

[
e2iδ

A+
2 ρ+2 (ε)2

1

15π

(
2Z+

20,20(ε) + 3Z+
2+,2+(ε)

)]
(2.41)

I
(∞)−
L3

(ω, 0) = −4Im
[
e2iδ

A−
2 ρ−2 (ε)2

(
⟨ 11

1

2
− 1

2
|3
2

1

2
⟩
2

G(1110|21)2Z−
21,21(ε)

+ ⟨ 10
1

2
− 1

2
|3
2
− 1

2
⟩
2

G(1010|20)2Z−
20,20(ε)

+ ⟨ 1 − 1
1

2
− 1

2
|3
2
− 3

2
⟩
2

G(1 − 110|2 − 1)2Z−
2−1,2−1(ε)

)]
= −4Im

[
e2iδ

A−
2 ρ+2 (ε)2

1

15π

(
2Z−

20,20(ε) + 3Z−
21,21(ε)

)]
(2.42)

I±L3
(ω, 0) = −2Im

[
1

3π
σ±
2 (ε) + e2iδ

A±
2 ρ±2 (ε)2

2

15π

(
2Z±

20,20(ε) + 3Z±
21,21(ε)

)]
(2.43)

If we neglect the relativistic effect (spin-orbit coupling) on the core radial wave function,

which means |φ2p
1/2⟩ = |φ2p

3/2⟩, the branching ratio L3/L2 is just L3/L2 = 2 because the

local correlation effect such as the multiplet effect is not included. The relatively localized

d orbital in strong correlated 3d TM systems deviate the branching ratio from L3/L2 = 2.

Krüger and Natoli developed the multichannel theory which involves the MS and the

multiplet, simultaneously [16]. This theory improved calculated spectra of TiO2 at L2,3-

edge [17]. The 2p1/2 and 2p3/2 energies of Ti are quite close. Therefore, the created core

hole at L2− or L3−edge is merged with the other. Even the strong correlation system,

the multichannel theory works very well due to the inclusion of the long (MS) and short

(multiplet) range effects. In addition, the branching ratio on heavy elements also differs
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from L3/L2 = 2 due to the splitting of the d-orbital energy by the jj-coupling. In the

above I±L3
, the relativistic effect is only included at the core state. The spin-orbit splitting

of the 2p core radial wave function changes the branching ratio, but the change is not

large. I only consider the relativistic effect as a perturbation: the correction terms up to

the order of (v/c)2 affect the XANES spectra negligibly. Nevertheless, this perturbation

technique is useful when we do not care about the branching ratio cased by the spin-orbit

interaction on the photoelectron state. To go beyond that situation, we should obtain

the photoelectron wave function by solving the Dirac equation directly.

The radiation field effect also improves the calculated branching ratio reported by

Ankudinov et al [30]. Fujikawa included the radiation field screening in the MS theory

for XAS and XMCD spectra [31, 32]. In the present thesis, we do not refer the branching

ratio problem any further.

2.3.2 K, L1-edge XANES

I
(0)+
K,L1

(ω, 0) = −2Im

[
σ+
1 (ε) ⟨ 00

1

2

1

2
| 1

2

1

2
⟩
2

G(0010|10)2
]

= −2Im
σ+
1 (ε)

4π
, (2.44)

I
(0)−
K,L1

(ω, 0) = −2Im

[
σ−
1 (ε) ⟨ 00

1

2
− 1

2
| 1

2
− 1

2
⟩
2

G(0010|10)2
]

= −2Im
σ−
1 (ε)

4π
, (2.45)

I
(∞)+
K,L1

(ω, 0) = −4Im

[
e2iδ

A+
1 ρ+1 (ε)2

(
⟨ 00

1

2

1

2
|1
2

1

2
⟩
2

G(0010|10)2Z+
10,10(ε)

)]
(2.46)

= −4Im

[
e2iδ

A+
1 ρ+1 (ε)2

1

4π
Z+

10,10(ε)

]
, (2.47)

I
(∞)−
K,L1

(ω, 0) = −4Im

[
e2iδ

A−
1 ρ−1 (ε)2

(
⟨ 00

1

2

1

2
|1
2

1

2
⟩
2

G(0010|10)2Z−
10,10(ε)

)]
(2.48)

= −4Im

[
e2iδ

A−
1 ρ−1 (ε)2

1

4π
Z−

10,10(ε)

]
(2.49)

I±K,L1
(ω, 0) = −2Im

[
1

4π
σ±
1 (ε) + e2iδ

A±
2 ρ±1 (ε)2

1

2π
Z±

10,10(ε)

]
(2.50)

The K,L1-edge XMCD theory is discussed in Chap. 4.



19

Chapter 3

XANES analyses for vacancies in

GaN:RE

3.1 Introduction

Intentional formation of vacancies as well known in the classic F-center [33] or modern

vacancy centers [34] is sometimes addressed in fundamental and application fields. Im-

perfections including vacancies make crystal quality poor, while, in some cases, they have

advantages to supply the carriers such as electrons and holes in semiconductors. It is

well known that the nitrogen vacancy in GaN behaves as a donor. Recently, a nitrogen-

vacancy center in the nitrogen-doped diamond has attracted much interest as a source of

single-photon emission, for instance, in quantum dots [34].

GaN:Gd was formerly the first candidate in the room-temperature-operative dilute

magnetic semiconductors [35]. After that, a colossal magnetic moment as large as

4000µB/Gd was reported in low Gd doped samples [36, 37]. However, theoretical conclu-

sive results have not been obtained to explain this extremely high moment [38, 39, 40].

In addition, X-ray magnetic circular dichroism (XMCD) [41] and electron paramagnetic

resonance (EPR) [42] measurements have indicated that the GaN:Gd system is param-

agnetic at room temperature. The magnetic behavior of GaN:RE is therefore not clear.

Meanwhile, RE-compounds or RE-doped materials present the luminescence involving the

interesting properties originating in intra-4f transitions. RE-doped GaN (GaN:RE) also

has rather strong and sharp intra-atomic luminescence lines as well as exciton-involved
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luminescence. The energy of the intra-4f luminescence is insensitive on temperature

since the well localized 4f -orbitals are shielded by the outer 5s and 5p shells, resulting

in the weak affect of crystal field. These properties enable us to use GaN in multi- or

full-color light emitted diodes (LED) by doping various RE ions. To understand deeply

the physical properties of RE-doped GaN, and to feed back to the fine processing of the

crystal growth, the knowledge of the local geometry around the doped RE-ion is strongly

desired.

While the GaN:Gd system has been well studied due to its historical aspects and

colossal magnetic moments, the GaN:RE doped by other RE elements has been rela-

tively unexplored. A few authors have investigated the properties of GaN:Dy quantum

wells [43, 44, 45]. Dy atoms has the largest magnetic moment (10.6 µB) among the RE

elements. The GaN:Dy/GaN double-barrier magnetic tunnel junction showed ferromag-

netism at room temperature [44]. The double-barrier structure for spintronic materials

was originally found in (Ga,Mn)As systems. It showed a current rectification depend-

ing on the mangetic alignment, which can be switched with a very low current-junction

threshold at zero field [46]. The GaN:Dy/GaN double-barrier structure had a middle

free magnetic GaN:Dy layer sandwiched by top and bottom magnetic tunnel junctions

GaN/GaN:Dy/GaN. Interestingly, the thickeness of the middle GaN:Dy layer affected

the in-plane and out-of-plane easy-axes, indicating the interaction between the GaN:Dy

layers beyond GaN layers [44]. Thus, GaN:RE dilute magnetic semiconductors could

provide a novel functional materials.

Two different types of the GaN:Gd crystals have been found under the Ga- and N-

rich crystal growth conditions [22]. This definition is more clearly described in following

Sections. Figure 3.1 shows XRD profiles from the Ga-rich (Type-1) and N-rich (Type-2)

samples [22]. No diffraction from Gd metal and GdN was observed. The Type-1 reflection

shows two peaks caused from a GaN template (higher angles) and a GaN:Gd sample layer

(lower angles). In many alloys, diffraction peak energies linearly shift from a pure metal

one to another pure metal one with their composition, which is well known as Vegard’s

law [47]. The such peak shift also observed in InGaN systems [48]. The peak shift of the

Ga-rich sample therefore implies that the doped Gd ion caused the lattice expansion of

the matrix GaN in the Ga-rich sample layer. On the other hand, the N-rich one has only
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the GaN template peak. Thus, the same lattice constant seems to be maintained as the

undoped crystal in spite of the Gd doping. One possibility of this origin is relaxation of

the lattice expansion due to vacancies, especially nitrogen ones adjacent to the doped Gd

ions. The positron annihilation is the most possible candidate to detect atomic defects

based on their size; however, it has difficulty to determine the configuration around the

vacancy, for instance, whether adjacent to a doped ion or not [49, 50]. EXAFS analyses

based on the substitution at a Ga site by a Gd ion determined the RE-N and -Ga distances

[51]. However, EXAFS spectra show no prominent difference between the Ga- and N-rich

crystals except for amplitude of EXAFS oscillation. The coordination number around

RE ions in thin GaN:RE crystals is hardly obtained by EXAFS because of short available

k range due to noises [51]. In addition we have few appropriate model compounds for

GaN:RE crystals: RE nitride has the rock-salt structure [52, 53], while GaN:RE probably

has local tetragonal structure around the RE ion [22, 41, 54, 55]. Alternatively, XANES

spectra provide us the stereo local structural information around the absorbing atom. It

is worth studying vacancies adjacent to the doped RE ion by using XANES analyses at

RE absorbing edge.
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Figure 3.1: Observed XRD profiles of the Ga-rich (Type-1) and N-rich (Type-2) GaN:Gd

samples. Reprinted from [22] with permission from the Surface Science Society of Japan.

RE L1-edge XANES spectra are found in only a few cases. The RE L1-edge spectra

for RE phosphate glasses have been reported by Mountjoy et al. [56]. Usually, RE L3-

edge absorption is adopted in the investigation related to RE elements because the RE
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K-edges are too high to receive the possibly analytical spectra. The lowest case is 40443

eV at Ce K-edge. The RE L1-edge XANES spectra slightly overlaps with a RE L2-

edge EXAFS spectra, which disturbs L1-edge EXAFS analyses. While the RE L2-edge

EXAFS oscillation, which oscillates slowly and weakly at L1-edge energy, might affect

less to L1-edge XANES analyses. At the L1-edge absorption, a 2s core electron is excited

to an unoccupied p state in dipole selection, whereas a 2p core electron is mainly excited

to an unoccupied d state at L3-edge. This difference in the final state provides us with

the different structural information in some systems. Mountjoy et al. found the local

atomic geometry around the RE ion to be non-centrosymmetric by the pre-edge of RE

L1-edge XANES spectra. Although the RE L1-edge XANES analyses provide us with

the useful information about the local geometry, such reports for the GaN:RE spectra

are not found in literatures as far as we know.

For analyses of XANES spectra, a real-space MS theory [11, 12] is useful for the absorp-

tion edge whose final (unoccupied) state is delocalized, such as K, L1-edge and heavier

element L2,3-edge. This theory has advantage for impurity systems because of no require-

ment of the periodic boundary condition. While, a multiplet theory is a powerful tool

to analyze TM L2,3- and RE M4,5-edge XANES spectra, particularly in strong correlated

systems [57]. Generally, if multiplet splitting is small relative to band width, we can

neglect its effect on XANES spectra, and adopt MS calculations.

In this chapter, I firstly analyze Gd L3-edge XANES spectra of GaN:Gd using the real-

space MS calculations (FEFF8.4 code) [27, 28] on the Ga- and N-rich GaN:RE crystals

to study the stereo structure around doped RE ions. Secondly, I perform Dy L3- and

L1-edge polarization-dependent XANES measurements and calculations for the Ga- and

N-rich GaN:Dy crystals. Finally, results for GaN:Dy are feedbacked to the discussion for

nitrogen vacancies in GaN:Gd.

3.2 GaN:Gd

3.2.1 Experimental

Figure 3.2 shows a schematic image of a sample structure. The Gd-doped samples were

prepared on (0001)-plane sapphire substrates laminated with an n-type GaN template by
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a radio frequency molecular beam epitaxy. The Gd cell temperature is selected at 1100◦C

to contain the favorable Gd concentration (∼1.0 at%) for the crystals. The Ga vapor

pressures were 1.8×10−7 and 0.7×10−7 Torr for the Ga- and N-rich GaN:Gd crystals,

respectively. The crystal layers were grown along the c-axis of the wurtzite GaN. The

GaN:Gd layers about 150 nm thick were finally covered by a 3-nm-thick GaN cap layer.

The Gd concentration in the GaN:RE sample layer was estimated to be about 1.0 at%

(∼ Ga99Gd1N100) by a fluorescent X-ray analysis method.

GaN template

Sapphire

GaN:RE

GaN (~ 3 nm)

~ 150 nm

Figure 3.2: A schematic image of a sample structure. Layers of GaN template and

sapphire are sufficiently thicker than a GaN:RE layer.

The Gd L3-edge XANES measurements of GaN:Gd were performed at a beamline

BL9A in PF, KEK: the edge energy in literature is 7252 eV [58]. The Lα1,2 fluorescence

line of Gd (Lα1 :6057.2 eV and Lα2 :6025.0 eV [59]) was detected by using a solid-state

detector (SSD, Ge:Li) with 19 elements to obtain the L3-edge spectra with a fluorescence

mode. The X-ray energy was calibrated at the pre-edge of the Cu foil (12.7185◦). The

incident X-ray is linearly polarized in the horizontal direction normal to the crystal

growth direction, in other words, parallel to the c-axis of the wurtzite structure. The

measurements were performed at room temperature.

3.2.2 Calculation

Multiplet effects

Before introducing a basic MS calculation models in this chapter, I discuss multiplet

effects on RE L2,3-edge XANES spectra of GdN as a general RE nitrogen compound.
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GdN is one of spintronic materials with a rock-salt structure to show semiconductor-metal

transition and huge negative magnetoresistance [60]. X-ray photoemission spectroscopic

measurements showed trivalent ionic behavior of Gd due to itinerant character of its 5d

and 6s electrons [60]. The behavior of Gd3+ was also found in GdX (X = Bi, Sb, As,

P) [61]. Thus, Gd atoms in a solid is often mentioned as Gd3+. The unoccupied d-band

width of Gd in GdN is about 7 ∼ 8 eV in according to the calculated l-projected density

of states [62]. I employ the CTM4XAS5.5 code [63] to calculate XANES spectra with

a multiplet scheme. Since this code cannot treat the p-d dipole transition of RE ions

directly, Sc3+ are chosen as a basis of the RE3+ calculation. The Coulomb and exchange

integrals F k and Gk are obtained by using the MCDFGME code [64]. The exchange

integral between 4f and 5d orbitals are approximated by applied magnetic fields ( ∼ 1

eV). The crystal field parameter 10Dq is estimated from the l-projected density of states

[62] and set to 5 eV. The half width at half maximum of the Lorentzian function is 2 eV

as the lifetime broadening at L3-edge of Gd [65]. I adjust the spin-orbit interaction on the

2p core orbital to obtain the L2- and L3-edge splitting about 700 eV in reported spectra

[66] Figure 3.3 shows the calculated Gd L3-edge XANES spectra of Gd3+. The crystal

parameter 10Dq splits the spectrum of the only 2p SOI term to t2g and eg configurations.

The Coulomb and exchange integrals FG between 2p and 5d, and the 4f exchange M also

split SOI + 10Dq; however that effects is smaller than the crystal field one and buried by

the lifetime broadening. Although the SOI on 5d orbital is not included, it is too small

to overcome the 10Dq and lifetime effects. Moreover, the observed Gd L3-edge XANES

spectra of GdN has only single peak [66]. This could be explained by band effects which

broaden the spectra with the band width about 7 eV [62]. The band broadening also

buries the multiplet effects. Therefore, we safe to use ordinary MS calculations for RE

nitride. From this result, we could analyze RE L3-edge XANES spectra by using the MS

theory.
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Figure 3.3: The calculated Gd L3-edge XANES spectra of Gd3+ ion. The crystal field

parameter is represented by 10Dq, and FG shows the Coulomb and exchange integrals

between 2p and 5d orbitals. The approximated exchange integral as magnetic fields show

by M. The spectra of SOI (2p), SOI + 10Dq, SOI + 10Dq + FG and SOI + 10Dq +

FG + M are shown by red, orange, green and blue lines, respectively. Peak energies are

shifted to set the SOI (2p) term at zero. No-broadened line spectra are also shown.

N
a

Ga
a

N
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Ga
cd

Ga
cu

RE
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Figure 3.4: Coordination around a RE ion in the basic model cluster shown up to the

near Ga shell. The nitrogen sites next to the RE ion are defined as Nc on the c-axis, and

Na not on the c-axis. The Ga sites close to the RE ion are defined as Gacu and Gacd in

the c-axis direction, and Gaa in normal direction to the c-axis.
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MS cluster models

In this section, I introduce model clusters to calculate XANES spectra by the FEFF8.4

code [27, 28]. The model clusters are constructed referring to GaN structures, wurtzite

structure, P63mc(C
4
6v) [68]. For all the models, I employ a cluster less than 8 Å radii

including about 165 atoms around the Gd ion, which occupies a Ga ion site in GaN to

consider the substitution. Other researchers also reported the Gd substitution in GaN:Gd

[41, 54, 55]. Figure 3.4 shows the basic model cluster for the Gd XANES calculation in

this chapter. The nitrogen sites next to the RE ion are defined as Nc on the c-axis, and

Na not on the c-axis. Moreover, the Ga sites close to the RE ion are defined as Gacu and

Gacd in the c-axis direction, and Gaa in normal direction to the c-axis. The distance of

the first and second nearest N and Ga ions from the RE ion in Fig. 3.4 is referred by the

results of EXAFS analyses with assuming the RE substitution [43, 51]. The coordination

from the RE ion further the Ga ions is kept as the GaN matrices.

In the previous result [22], the lattice constant of GaN reported as a = 3.18907(8) and

c = 5.1855(2) in the ideal wurtzite structure (u = 0.3750) was used [67]. In this thesis, I

adopt later reported lattice constant and u parameter [68] (a = 3.18940(8) c = 5.18614(2)

with u = 0.3789 ). This difference changes bond lengths of Ga-Nc and Ga-Na: Ga-Nc

1.945 Å is shorter than Ga-Na 1.955 Å in u = 0.375, while Ga-Nc 1.965 Å is longer than

Ga-Na 1.945 Å in u = 0.3789. Generally, effects of bond length changes in the order of

0.01 Å are negligible for XANES spectra, but we unify parameters to later ones to keep

consistency with GaN:Dy section.

To investigate the Ga-rich GaN:Gd sample involving lattice expansion, I introduce

bond expansion between the centered Gd ion and neighboring nitrogen ions: Gd-Na

2.224 Å and Gd-Nc 2.247 Å have the same ratio between Ga-Na 1.945 Å and Ga-Nc 1.965

Å in GaN, as shown in Table 3.1. For comparison, Table 3.1 represents atomic distances

in GdN [53]. Moreover, expanded distances between the Gd ion and neighboring Ga ions

are also considered: Gd-Gaa 3.314 Å and Gd-Gacu and -Gacd 3.305 Å have the same

ratio between Ga-Gaa 3.189 Å and Ga-Gacu and -Gacd 3.180 Å in GaN. These distances

are also shown in Table 3.1. Their averaged Gd-N and -Ga distances 2.23 and 3.31 Å

were determined by EXAFS analyses with a Gd substitution at a Ga site in GaN [51].

Therefore, other models which a Gd ion locates at an interstitial site may not be
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Table 3.1: Atomic distances in Gd systems and GaN.

Atomic pairs GaN:Gd (Å) [51] GaN (Å) [68] GdN (Å) [53]

Gd(Ga)-Na 2.224 1.945 2.499

Gd(Ga)-Nc 2.247 1.965 2.499

RE(Ga)-Gaa(RE) 3.314 3.189 3.534

RE(Ga)-Gac(RE) 3.305 3.180 3.534

N
c Vc

N
a

N
a

N
a

N
a

Va N
a

(a) (c)

Figure 3.5: Calculated models (a) and (c) which have nitrogen vacancies Va and Vc at a

Na and the Nc, respectively. The arrows show that the Gd ion shifts 0.0, 0.3, 0.5 and 1.0

Å to nitrogen vacancies.

N
a

V
c

N
c

N
a

V
a

V
a

V
a

N
a

(ac)(aa)

Figure 3.6: Calculated models (aa) and (ac) which have two nitrogen vacancies. The

model (aa) has two Va vacancies, while the model (ac) has one Va and Vc. The arrows

show that the Gd ion shifts 0.0, 0.3, 0.5 and 1.0 Å to bisection of two nitrogen vacancies.
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dominant. This model is defined as the expansion model. For analyses of the N-rich

XANES spectra, we adopt vacancy models. All the vacancy models have the same coor-

dination as GaN except for the Gd ion and nitrogen vacancies. I consider four configu-

ration of nitrogen vacancies: (a) one Na vacancy (Va); (c) one Nc vacancy (Vc); (aa) two

Va; (ac) one Va and one Vc. Then, the models (a) and (c) ((aa) and (ac)) are classified

as one vacancy (two vacancies) models. Figures 3.5 and 3.6 shows the models up to ni-

trogen sites next to the Gd ion. The nitrogen sites Na has three equivalent ones, so that

I obtain calculated spectra involving Na vacancies by averaging the Va sites. To consider

the lattice relaxation conceived from the XRD profiles of N-rich GaN:Gd [22], the Gd ion

is shifted 0.0, 0.3, 0.5 and 1,0 Å toward the space due to the vacancy creation as shown

in Figs. 3.5 and 3.6. Note that these vacancy models are based on the non-expansion

structure to consider no lattice expansion.

3.2.3 Results and Discussion

Figure 3.7 shows the observed L3-edge XANES spectra of the Ga- and N-rich GaN:Gd

samples. The Ga-rich spectrum has a shoulder and hump at about 7252 eV and 7268 eV,

respectively. This spectrum is similar to other reported spectra [54, 55]. On the other

hand, the N-rich spectrum shows no shoulder and hump. The spectrum looks like the one

of free atoms, but free Gd ions in GaN:Gd crystals are not feasible. Thus, the Ga- and

N-rich GaN:Gd crystals show the difference of XANES spectra as well as XRD profiles

[22].

To investigate the Ga-rich spectrum, I calculate XANES spectra by using no vacancy

models described above to consider the lattice expansion. Figure 3.8 shows the calculated

XANES spectra with and without the Gd-N and -Ga distance expansion. The observed

Ga-rich spectrum is also shown for comparison. The expansion spectra show better

agreement with the observed one than the no-expansion one. In the no-expansion model,

the Gd-N distances are too short and not realistic because of the larger Gd ion radius

than the Ga ion one. Thus, the discrepancy of the no-expansion model is reasonable.

The observed spectral features are well represented by the expansion spectra, especially

the hump. Moreover, the Gd-Ga distance expansion improves the intensity ratio between

the main peak and shoulder compared with the model with only the Gd-N expansion.
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Figure 3.7: The observed Gd L3-edge XANES spectra of the Ga-rich (Type-1) and N-rich

(Type-2) GaN:Gd samples [22]. Reprinted from [22] with permission from the Surface

Science Society of Japan.

The expansion spectra are similar to the calculated spectra reported before [41, 54, 55].

Therefore, I conclude that doped Gd ions substitute Ga sites of wurtzite GaN in the

Ga-rich GaN:Gd crystal. I also check the effect of a Ga vacancy on the spectral shape.

Releasing the distortion around doped Gd ions by Ga vacancies could be more difficult

than nitrogen ones adjacent to the Gd ions. Hence, Ga vacancies does not contradict

with the lattice expansion suggested by XRD profiles. Figure 3.9 shows the calculated

spectra with a vacancy occupied at the Gaa, Gacu and Gacd site described in Fig. 3.4. I

average the calculated Ga vacancy spectra for each equivalent Ga site. For comparison,

the experimental and calculated no Ga vacancy spectra are also shown in Fig. 3.9.

Remarkably, the Gacd vacancy normal to the polarization direction change the intensity

ratio between the main peak and shoulder though Gaa and Gacu vacancies does not affect

on the spectra. However, the spectral change by Gacd does not improve the calculated

result substantially, and is small to conclude the existence of the Ga vacancy. In addition,

creation energy of a Ga vacancy is higher than that of a nitrogen vacancy adjacent to a

doped Gd ion [69]. Hence, I do not put stress on Ga vacancies in the present thesis.
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Figure 3.8: The calculated Gd L3-edge XANES spectra by using the no vacancy model

with no expansion, only the Gd-N bond expansion, and the Gd-N and -Ga distance

expansion. The observed Ga-rich spectrum is also shown for comparison.

For the N-rich spectrum, I calculate XANES spectra by using the vacancy models.

Figures 3.10(i) and (ii) show the XANES spectra calculated with the one vacancy models

(a) and (c) in various Gd ion shifts, respectively. The Gd ion shift decrease the calculated

shoulder intensity in both the one vacancy models because space around the Gd ion

increase to approach the free atom state. The calculated tail above the shoulder is also

improved by the Gd ion shift. In Fig. 3.10(i), the main peak intensity shows complicate

changes as increasing shifted distances in contrast to that in Fig. 3.10(ii). This may

reflect the local site symmetry around the Gd ion: the C3v symmetry is broken in the

model (a), but kept in the model (c). Note that Gd-Ga distances (∼ 2.43 Å) are closer

than Gd-N ones (∼ 2.46 Å) in the Gd ion shifts 1.0 Å, so that the shifts should be less

than 1.0 Å to keep consistency with the EXAFS result (Gd-N 2.23 Å [51]). The calculated

shoulder in the model (a) is weaker than that in the model (c) with Gd ion shift less than

1.0 Å.

Figures 3.11(i) and (ii) show the XANES spectra calculated with the two vacancies
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Figure 3.9: The calculated Gd L3-edge XANES spectra by using the one Ga vacancy

model with the Gd-N and -Ga distance expansion. The Ga site indices are defined in

Fig. 3.4. The observed Ga-rich spectrum is also shown for comparison.

models (aa) and (ac) in various Gd ion shifts, respectively. In the case of the models (aa)

and (ac), the Gd ion is shifted to bisection between the two nitrogen vacancies as shown

in Fig. 3.6. The Gd ion shift changes the calculated spectra in both the two vacancies

models in the same tendency as in the one vacancy models. The calculated main peak

width in the two vacancies models shows better agreement than that in the one vacancy

model. The calculated shoulder in the model (aa) is weaker than that in the model (ac)

with Gd ion shift less than 1.0 Å.

If I focus on agreement of the calculated shoulder intensity with the observed one,

I conclude that a nitrogen vacancy preferentially occupies at a Na site than at the Nc

site in the N-rich GaN:Gd sample. In particular, the calculated spectra by using the

model (aa) with 0.5 Å shifts show the smooth spectral shape similar to the observed

one. However, two nitrogen vacancies creation seems not to be feasible in terms of their

creation energy. Furthermore, a first principle calculation suggests that the Gd ion shift

due to the vacancy creation is small and the change of bond lengths is less than 1.5 % [69].
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I also find that large Gd ion shifts in the order of 0.1 Å are required to change a calculated

spectral structure substantially. This indicates that nitrogen vacancies adjacent to doped

Gd ions does not relate to lattice-expansion relaxation, and could not explain the XRD

profile of the N-rich GaN:Gd crystal [22]. Therefore, it is difficult to determine the best

calculation model by shoulder intensity in XANES spectra of GaN:Gd crystals with only

horizontal X-ray polarization. Alternatively, I performe polarization-dependent XANES

analyses to obaing more information about vacancies in the next section.
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Figure 3.10: The calculated Gd L3-edge spectra by using the model (a) and (c) ((i) and

(ii), respectibely) with Gd shifts 0.0, 0.3, 0.5 and 1.0 Å toward the vacancy. The observed

N-rich spectrum also shown.
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Figure 3.11: The calculated Gd L3-edge spectra by using the model (aa) and (ac) ((i)

and (ii), respectibely) with Gd shifts 0.0, 0.3 0.5 and 1.0 Å toward the bisection between

the two vacancies. The observed N-rich spectrum also shown.
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3.3 GaN:Dy

3.3.1 Experimental

The Ga-rich and N-rich GaN:Dy samples were prepared under the same condition as

the GaN:Gd ones described in Sec. 3.2.1. I observed Dy L3- and L1-edge polarization-

dependent XANES spectra of the Ga- and N-rich GaN:Dy samples, and DyN as a ref-

erence at a beamline BL9A in PF, KEK The Dy L3- and L1-edge energies in literature

are 7850 and 9083 eV, respectively [58]. The Lα1,2 fluorescence lines of Dy (Lα1 :6057.2

eV and Lα2 :6025.0 eV [59]) were detected by using a solid-state detector (SSD, Ge:Li)

with 19 elements to obtain the L3-edge spectra with a fluorescence mode. In the same

way as the L3-edge, the Lβ3,4 fluorescence line of Dy (Lβ3 :7203.9 eV and Lβ4 :7370.2 eV

[59]) were detected for the L1-edge spectra. The synchrotron radiation storage ring ran

at electron energy of 2.5 GeV and in an electron current of 450 mA in top-up operation.

The beamline BL9A was installed with a Si (111) double-crystal monochromator and a

pseudo-conical shape mirror to collimate incident X-rays. Monochromatized synchrotron

radiation was focused on the sample by a second pseudo-conical shape mirror with a 1

mm×1 mm beam size. The X-ray energy was calibrated at the pre-edge of the Cu foil

(12.7185◦). Figure 3.12 shows a schematic image of experimental settings. The spectra

were recorded by using a solid-state detector (SSD, Ge:Li) with 19 elements. A high

purity (99.95%) aluminum pipe with a length of about 250 mm and a diameter of about

30 mm was introduced just before and after the sample and ion chamber I0, respectively,

to prevent the detector from counting X-rays scattered by air in the incident X-ray path

to the sample. The typical sample size is 5 mm in width and 10 mm in length. A sample

was set on a stand surface angled 7◦ to the incident X-ray beam to widely expose the

sample to X-rays. The incident X-ray is linearly polarized in the horizontal direction

parallel to the ground. To obtain the polarization dependence of the XANES spectra,

the sample stand moves around the incident X-ray path in a crescent (semicircular) arc

centered on the X-ray beam and sample position. Rotating the crystal in the crescent

(semicircular) arc enables us to change polarization angles to the crystal surfaces and

perform polarization-dependent measurements. Figure 3.13 shows the crescent arc and

definition of polarization angles.
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Figure 3.12: A schematic image of experimental settings from side (upper part) and top

(lower part) views.

0 degrees

90 degrees

E

E

Figure 3.13: A crescent arc to obtain polarization-dependent XANES spectra. The polar-

ization direction of incident X-rays and definition of polarization angles are also shown.
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Incident X-rays were linearly polarized parallel to the ground. The polarization angle 0◦

is defined as parallel to the sample surfaces or normal to the c-axis of the crystal layers.

Other angles, such as 30◦, 60◦, and 90◦, indicated hereafter give the rotating angles from

the 0◦ on the crescent arc. Thus, defined angles differed slightly from the actual angles

between the polarization and the c-axis because of the slope of the stand surface. XANES

spectra were recorded in 0.35 eV energy steps accumulated over 10 s per point at room

temperature.

3.3.2 Calculation

To investigate the local structure around a doped Dy ion from the XANES analyses, four

structure models are examined. Figure 3.14 shows the nitrogen sites next to a Dy ion in

the no-vacancy (n) and three one-vacancy models. The models (a) and (c) have one Va

and Vc (c) vacancy, respectively. Since there are three equivalent Va sites, we average

the calculated results for each Va sites in the model (a). The average model (av) uses

the averaged XANES spectra obtained by

σ(av) =
3

4
σ(a) +

1

4
σ(c) (3.1)

where σ(a), σ(c) and σ(av) are those for the one-vacancy models (a), (c) and (av). The

average is taken on the assumption that the Na and Nc vacancies can be found with

the same probability. All the models are based on the wurtzite structure of GaN. The

lattice constant and atomic coordination of the GaN unit cell are obtained from XRD

measurements [68] . One Dy atom substitutes a Ga site at the center of the model clusters,

which is composed of about 165 atoms. Table 3.2 shows the Dy-Na and -Nc distances are

2.240 and 2.263 Å, respectively. Their averaged distance is 2.246 Å, which is determined

by EXAFS analyses [43]. Similarly, in Table 3.2 the Dy-Gaa and -Gac distances in the

second Ga shell are chosen as 3.306 and 3.297 Å, respectively: their average distance is

3.302 Å by EXAFS analyses [43]. The structures beyond the third shell in the cluster

are set to be the same as those of GaN [68]. In the calculations, polarizations of 0◦ and

90◦ designated the linear polarization normal (0◦) and parallel (90◦) to the c-axis.
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Table 3.2: Atomic distances in Dy systems and GaN.

Atomic pairs GaN:Dy (Å) [43] GaN (Å) [68] DyN (Å) [52]

Gd(Ga)-Na 2.240 1.945 2.450

Gd(Ga)-Nc 2.263 1.965 2.450

RE(Ga)-Gaa(RE) 3.306 3.189 3.464

RE(Ga)-Gac(RE) 3.297 3.180 3.464

(n) (a)

(c) (av)

Nc

NaNa

Na

Va

Vc

Va

Va

c

Figure 3.14: Nitrogen and its vacancy sites next to a Dy ion in calculation models: no

vacancy (n); one Va (a) and one Vc (c) vacancies. In the model (a), the calculated spectra

are averaged for three equivalent Va sites. The calculated spectra averaged for all the

nitrogen vacancies corresponds to the average model (av) one.

3.3.3 Results

The observed DyL3-edge XANES spectra of the Ga- and N-rich samples are compared

with the Gd ones for the polarization normal to the c-axis in Figure 3.15. For the

comparison, the energy position of the spectra is shifted. Fig. 3.15 shows that the Dy

spectra reproduce the Gd ones. This indicates that the spectral difference between the

Ga- and N-rich crystals is not sensitive to the RE elements. Therefore, we can discuss
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GaN:Dy spectral feature in the same way as the GaN:Gd ones, and vice versa. The small

spectral difference supports that multiplet effects are not dominant as described in Sec.

3.2.2 because the difference of the number of 4f electrons has only small contribution to

the spectra.
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Figure 3.15: Observed Gd and Dy L3-edge XANES spectra of the Ga- and N-rich GaN:RE

samples for the polarization normal to the c-axis. The main peak energy of both the N-

rich samples is adjusted to 10 eV. The energy interval between the Ga- and N-rich spectra

is kept. All the spectra are normalized to the intensity at 40 eV.

The observed Dy L3-edge XANES spectra of the all samples are shown for the polar-

ization 0◦ and 90◦ in Figure 3.16(i), which are normalized to the intensity at 7814 eV.

DyN has a NaCl structure, and should show no polarization dependence. Unfortunately, I

observed Dy L3-edge spectra only for the polarization 0◦, and show it in Fig. 3.16(i). The

Ga-rich spectra gives a shoulder around 7797 eV and a hump around 7815 eV, whereas

the N-rich one gives no shoulder and only a tiny hump around 7815 eV. These samples

show different energy positions of a main peak. Spectral differences are also observed in

the L1-edge XANES spectra. Figure 3.16(ii) shows the observed XANES spectra at Dy

L1-edge in the same way as Fig. 3.16(i). The L1-edge spectra are normalized to the main
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Figure 3.16: Observed Dy (i) L3- and (ii) L1-edge XANES spectra of the Ga- and N-rich

GaN:Dy samples, and DyN crystal.
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peak intensity at 9000 eV. Owing to somewhat rippled background below 9030 eV (not

shown), I do not take the background subtraction. Therefore, it is hard to discuss the

change of spectral intensities in these spectra. Furthermore, the Dy L1-edge spectra of

DyN show polarization dependence that should not be appears for the rock-salt structure.

I thus focus on the behavior in the shaded region where effects of the background and

the DyN polarization dependence are small in Fig. 3.16(ii). Remarkable features in the

Ga- and N-rich spectra are prominent pre-edge peaks at about 9047 eV: comparing with

the Ga-rich spectra, we notice that the pre-edge peak of the N-rich spectra is smaller.

On the other hand, the observed DyN spectrum shows a negligibly small pre-edge peak.

The appearance of the pre-edge peaks can be interpreted by a simple molecular or-

bital picture. The X-ray absorption at L1-edge is generally assigned to electron dipole

and quadrupole transitions from the 2s core orbital. The dipole (quadrupole) transi-

tions give rise to the excitation from the 2s core orbital to an unoccupied p (d) orbital.

Pre-edge peaks typically correspond to the transitions to bound states, and reflect the

local electronic structure through the orbital hybridization within the framework of the

molecular orbital picture. If local tetrahedral symmetry is assumed around a trivalent

Dy ion doped in GaN, the structure has no centrosymmetry and induces the orbital hy-

bridization between the 5d and 6p orbitals through the static crystal field. Although the

electron-phonon interaction providing strong temperature dependence also contributes to

the orbital hybridization, the vibrational effect should be weaker than the symmetrical

one [70]. Since the dipole transition is dominant in comparison with the quadrupole

one (usually, 100 ∼ 1000 times less than the dipole), the p-d hybridization enhances the

pre-edge peak intensity in K and L1-edge XANES spectra. The enhancement has been

reported for trivalent iron chloride compounds, which have the local tetrahedral structure

[71]. The pre-edge peak in the iron K-edge spectra of those systems was assigned to the

1s-3d dipole forbidden transition because the p-d orbital hybridization partially allows

the parity forbidden transitions. In addition, the almost zero occupancy of 5d electron in

trivalent Dy ion also enhances the pre-edge intensity. Thus, we can assign the observed

strong pre-edge peak to the 2s-(5d+6p) dipole transition.

The final state effect related to pre-edge peaks in K-edge XANES spectra has been well

studied for various Cu compounds which have a plane or a linear structure [72, 73, 74].
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However, doped RE ions hardly take such low dimensional structures in the wurtzite

GaN. In addition, the localized 4f orbital in RE ions never contribute to direct dipole

and quadrupole transitions, has negligible orbital hybridization owing to its strong atomic

character. Thus, I conclude that the 5d-6p hybridization gives rise to the prominent pre-

edge peak for the Ga- and N-rich GaN:Dy crystals. On the other hands, the rock-salt

DyN has centrosymmetry and the 5d-6p hybridization is caused only by electron-phonon

interaction. This interaction only induces a weak transition moment. Consequently, the

L1-edge DyN spectrum has a negligible pre-edge peak. These interpretations from the

pre-edge only indicate non inversion symmetry of Dy ion sites accutually, which suggests

that Dy ions are successfully doped in wurtzite GaN. However, EXAFS analyses provided

us acceptable results by using the local quasi-tetrahedron centered by a Dy ion [43]. The

L1 pre-edge result hence has no contradiction to and supports Dy ion substitution at Ga

sites in GaN, which occupies the center of a quasi-tetrahedron. This conclusion agrees

with the GaN:Gd case described above, and the previous reports [22, 41].

Polarization dependences are observed in the L3- and L1-edge XANES spectra in Fig.

3.16(i) and (ii), respectively. For the L3-edge XANES spectra, the polarization depen-

dence is clearly observed for the Ga-rich sample, and slightly for the N-rich one. For

L1-edge XANES spectra, the similar polarization dependence is also observed. This po-

larization dependence is not broken at the polarization angles 30◦ and 60◦ (not shown),

and analyzed by using multiple scattering calculations in the next section.

3.3.4 Discussion

As described in 3.3.2, I study the four calculation models (n), (a), (c) and (av), which

involve the two nitrogen vacancy sites on Na sites, and on the Nc site. Figures 3.17(i) and

(ii) show the calculated Dy L3- and L1-edge XANES spectra normalized to the intensities

at 7814 and 9062 eV, respectively. The observed Ga-rich spectra are also shown in Fig.

3.17.

In Fig. 3.17(i), all of the calculated spectra show a shoulder and a hump similarly

to the observed Ga-rich spectra. In Fig. 3.17(ii), the spectral shapes of all the L1-edge

spectra calculated at 0◦ are similar to those of the observed ones. In particular, all

the calculated L1-edge spectra show the prominent pre-edge structure below 9050 eV.
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Figure 3.17: The calculated Dy L3- (i) and L1-edge (ii) spectra by using the models (n),

(a), (c) and (av) compared with the observed one for the Ga-rich sample.
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The MS calculations here do not include the quadrupole transition, the electron-phonon

interaction and the final state effects, which give rise to pre-edge peaks in some particular

transition metal compounds [72, 73, 74]. The present calculations only include the local

geometrical effect to enhance the pre-edge peak. The above result suggests that the

observed pre-edge peak should originate from local structural symmetry around a doped

Dy ion. Hence, the MS calculations support the pre-edge consideration described in the

previous section: a Dy ion is located at a center of local quasi-tetrahedron.

The calculated polarization dependence gives information of the nitrogen vacancy site

in GaN:Dy. The spectra calculated with the model (c), which has a nitrogen vacancy on

the c-axis, as shown in Figs. 3.17(i) and (ii) show the different polarization dependence

compared with the observed Ga-rich spectra. In Fig. 3.17(i), the main peak at 7790

eV is nearly the same for both polarizations, and the intensity at about 7795 eV at 0◦

is too strong in the calculated XANES for the model (c). Moreover, in Fig 3.17(ii),

the calculated spectra (c) show too large polarization dependence. These features differ

from the observed ones. The model including only the Nc vacancy therefore cannot

explain the observed spectral feature for the Ga-rich crystal. On the other hand, the

calculated spectra (a), (c) and (av) show the comparatively good agreement with the

observed Ga-rich spectra. The models for (n) and (a) have no-vacancy and one Na-

vacancy, respectively, while for (av) has some weights of (a) and (c) averaged over the Na

and Nc vacancy sites. The model (av) represents a randomly occupied nitrogen vacancy

next to a doped Dy ion, i.e. contribution of Va to XANES spectra is 3 times as large as

that of Vc because of three equivalent Va sites. I conclude eventually that a Na site is

more plausible than the Nc site as a position of a nitrogen vacancy if it exists adjacent to

a doped RE ion in the Ga-rich GaN:RE crystal. This vacancy anisotropy reflects Ga-N

bond distances. The nitrogen site Na connects with Dy, Gaaand Gacd, while Nc with Dy

and Gacu.

The N-rich sample was expected to be nitrogen-vacancy rich by the consideration from

XRD profiles of N-rich GaN:Gd [22, 77]; a GaN substrate reflection was only observed

in the XRD profile and appears to arise from cancellation of local atomic disorder by

lattice relaxation through vacancies. However, in Figs. 3.17(i) and (ii), all the calculated

spectra show clear polarization dependence which is influenced by a nitrogen vacancy.
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Figure 3.18: The observed and calculated Dy L3- (a) and L1-edge (b) spectra averaged

over the Ga-rich GaN:Dy sample and DyN. The observed N-rich spectra also shown for

comparison.
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The N-rich crystal gives rise to the weak polarization dependence as shown in Fig. 3.16(i).

One possibility of the origin of the weak dependence is mixture of spectra for isotropic

structural compounds. To explain the observed spectral features shown in Fig. 3.16 for

the N-rich crystal, I focus on effects of DyN segregation to the XANES spectra. Figure

3.18(a) (3.18(b)) shows the L3-edge (L1-edge) XANES spectra mixed with the Ga-rich

GaN:Dy and DyN ones with the same weights. The experimental mixed spectra used

the sum of the observed Ga-rich GaN:Dy and DyN spectra; however the DyN spectra

for 0◦ was only chosen to construct the mixed spectra because of the absence of the

DyN L3-edge spectra for 90◦. The calculated mixed spectra used the calculated DyN

spectra and Na-vacant model (model (a)) ones as the Ga-rich. They show good agreement

with the observed N-rich spectra: they have the small polarization dependence at L3-

and L1-edges. The weak polarization dependence is well explained by the mixture of

the DyN spectra because I assume the DyN spectra have no polarization dependence,

which is justified in principle for the rock-salt structure. Although the DyN L1-edge

spectra slightly have polarization dependence as shown in Fig. 3.16, the deviation is

sufficiently small to reduce the polarization dependence. Moreover, the N-rich crystal

growth condition seems to support the DyN generation. Figures 3.19(a) and (b) show the

calculated DyN spectra, which well agree with the observed ones. Thus, the discrepancy,

which is small but remain, between the observed and calculated mixed spectra is mainly

caused by the calculated Ga-rich (model (a)) spectra. However, perfect agreement of

calculated results is impossible and not realistic because I do not include complicate

distortions, other structural small contribution and anharmonic oscillation arisen from

vacancies. In addition, segregated DyN crystals in the N-rich GaN:Dy sample may deviate

from pure DyN ones. The present calculations sufficiently provide us information about

dominant contribution to the observed XANES spectra.

I also consider the meaning of the 1:1 superposition of the Ga-rich GaN:Dy and DyN

spectra. In this discussion, the followings are assumed for simplicity: i) the Dy ion

doped in the GaN matrix substitute a Ga site without volume changes in the supercell

of Ga99DyN100; ii) the state of GaN:Dy (N-rich) before DyN segregation is the same as

that of GaN:Dy (Ga-rich); iii) the total volume of GaN:Dy (N-rich) and the number of

the Dy ions are conserved before and after the segregation.



48 CHAPTER 3. XANES ANALYSES FOR VACANCIES IN GAN:RE

Table 3.3: Volume of a unit cell and the number of atoms.

Compound Volume of a unit cell (Å3) Atoms in a unit cell

GaN 45.672 Ga2N2

GaN:Dy (Ga-rich) 2283.6 (50 GaN cells) Ga99Dy1N100

DyN 117.65 Dy4N4

Figure 3.20: A schematic image of segregated DyN nanocrystals in the N-rich sample.

Table 3.3 gives the volume of a unit cell of GaN, GaN:Dy (Ga-rich) and DyN, and

the number of atoms in the unit cell. The same weight of the GaN:Dy (Ga-rich) and

DyN corresponds to the same number of Dy ions in the two phases. From Table 3.3, the

volumes occupied by one Dy ion in GaN:Dy (N-rich) before the segregation and in DyN

are 2283.6 and 29.412 Å3, respectively. Therefore, the volume of the segregation of DyN

is 0.643 % of the total volume of GaN:Dy (N-rich). This percentage is nearly the same

as that of a 1 nm3 cube in a 1 nm × 1nm × 150 nm pillar: 0.666 %. The height 150 nm

corresponds to the thickness of the present GaN:Dy sample layer. A schematic image of

the segregation is depicted in Figure 3.20. The EXAFS analysis and the XRD profiles

show no clear segregation in GaN:RE crystals [22, 43]. Therefore, I could conclude that
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DyN disperses as nanocrystals in the N-rich sample. The segregation may lower the

crystal quality, and broaden the reflection intensity from the sample layers. It is known

that crystal growth of high quality GaN under N-rich conditions is more difficult than

under Ga-rich or stoichiometric conditions. In addition, deviation of reflection peak

energy from a GaN template one according to Vegard’law [47] is reduced because RE

ions in GaN:RE phase are drained by RE nitride phase. These effects may bury the

N-rich crystal reflection in a GaN substrate one.

I discuss energetic aspects of DyN segregation by using the law of mass action. I

consider following equilibrium states.

Ga99Dy1N100 + ∆G � 99 GaN + DyN, (3.2)

where ∆G is the Gibbs free energy increase. From the law of mass action,

[GaN]99[DyN]

[Ga99Dy1N100]
= e−

∆G
RT , (3.3)

where [· · · ] is amount of substance for each compound, and R is the gas constant

(R=8.3145). For simplicity, I approximate ∆G by a sum of standard enthalpies of forma-

tion. Table 3.4 shows each standard enthalpies of formation ∆H0
f and estimated bond-

dissociation energies∆H0
b , for instance, ∆H0

b,GaN = −∆H0
f,GaN/2 because of 4 bonds per

atom in GaN. By using ∆H0
b,GaN , I also estimate ∆H0

f of Ga99Dy1N100 defined as

∆H0
f,GaDyN = 100 ∆H0

f,GaN + 4 ∆H0
b,GaN − 4 ∆H0

b,DyN . (3.4)

The obtained ∆H0
f,GaDyN is also shown in Table 3.4. The approximated ∆G is then

written as

∆G = 99 ∆H0
f,GaN + ∆H0

f,DyN − ∆H0
f,GaDyN . (3.5)

For RE = Dy, ∆GDy = -75.648 kJ/mol is obtained within the approximation. I assume

that final amount of substance of DyN is x mol, and initial amount of substance of

GaN:Dy is 1.0 mol. In other words, final amounts of substance of GaN and GaN:Dy are

99x and 1-x mol, respectively. Thus, a desired equation is

99x100

1 − x
= e−

∆G
RT . (3.6)
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Table 3.4: standard enthalpies of formation and bond-dissociation energies.

Compound ∆H0
f (kJ/mol) ∆H0

b (kJ/mol)

GaN -129.29 [75] 64.6445

GdN -157.88 [76] 52.6267

DyN -160.92 [76] 53.6400

Ga99Gd1N100 -12880.9

Ga99Dy1N100 -12885.0

The positive real solution x ∼ 1.0 for RE = Dy is obtained at T = 298.15 K, indicating

that GaN:Dy inherently prefer the DyN segregation. The contribution of the entropy

to the Gibbs energy of formation ∆G0
f,GaN is 30.548 kJ/mol at 298.15 K [75], which is

the order of 10−1 with respect to ∆H0
f,GaN . Therefore, the contribution of the entropy

to ∆GDy is the order of 1 kJ/mol. Furthermore, this rough estimate does not include

effects of vacancies, pressure of nitrogen gas and and so on. However, even if those

contributions is the same order of ∆H0
f,GaN , exp(−∆G/RT ) >> 1 at 298.15 K, leading

to the same conclusion of x ∼ 1. Indeed, x is 0.93002 when exp(−∆G/RT ) = 1. In

addition, GaN:RE samples are prepared by the molecular beam epitaxy technique in

non-equilibrium processes because GaN:Dy is unstable compared with GaN in terms of

∆H0
f . Therefore, I only mention that DyN could segregate in GaN:Dy.

3.4 Discussion for GaN:Gd

The previous section 3.2.3 shows that large Gd shifts (∼ 0.5 Å) to space created by

vacancies are needed to explain the no-shoulder spectrum of the N-rich GaN:Gd sample.

The such large shifts may not be feasible from energetic aspects [69]. In the GaN:Dy

section 3.3.4, I have discussed polarization dependence and DyN segregation in GaN:Dy

samples. Now I go back to the spectrum of the N-rich GaN:Gd crystal to consider nitrogen

vacancies and GdN segregation.

To discuss the N-rich GaN:Gd spectra, I adopt the same procedure as the N-rich

GaN:Dy ones: the Ga-rich GaN:Gd and GdN spectra are mixed. The calculated GdN

spectrum is obtained by using the lattice constant 4.998 Å [53].
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Figure 3.21: Mixed calculated Gd L3-edge XANES spectra of the Ga-rich GaN:Gd and

GdN. For comparison, the observed N-rich GaN:Gd spectrum and the calculated model(a)

and GdN spectra are also shown.

Figure 3.22: Observed PL spectra from the GaN/AlGaN (dotted line) and

GaGdN/AlGaN MQWs (solid line) at 10 K. Reprinted from [77] with permission from

Elsevier.
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Figure 3.21 shows the mixed calculated Gd L3-edge XANES spectra with the Ga-rich

GaN:Gd and GdN. For comparison, the observed N-rich GaN:Gd and calculated Ga-

rich GaN:Gd (model (a): Va) and GdN spectra are also shown. In Fig. 3.21, the

calculated mixed spectrum well agrees with the observed N-rich spectrum in the same

way as the GaN:Dy case. I also estimate GdN segregation in GaN:Gd by using Table

3.4. The calculated amount of substance of GdN is almost 1.0 mol if the initial amount

of substance of GaN:Gd 1.0 mol. Therefore, the same conclusion as GaN:Dy is obtained:

the N-rich GdN sample has the solid solution and GdN phases.

Recently, photoluminescence (PL) spectra from the GaN(1 nm) / AlGaN and GaGdN(1

nm) / AlGaN multi-quantum wells (MQW) were compared [77]. The stoichiometry

of AlGaN and GaGdN is Al0.12Ga0.88N and Ga0.88Gd0.02N, respectively. Figure 3.22

shows PL spectra from those MQWs at 10 K. The GaN(1 nm) / AlGaN MQWs showed

blue shift of the main peak (exciton peak) at 3.664 eV relative to the GaN template

(3.483 eV) because of the quantum confinement effect of the 1 nm thick GaN layers.

The GaGdN(1 nm) / AlGaN MQWs had the exciton peak at 3.598 eV: it also showed

the blue shift relative to the GaN template, but red shift relative to the GaN(1 nm) /

AlGaN MQWs. This red shift supports existence of the Gd-VN complex because the blue

shift is originated from interlayer compression, which may be released by VN partially.

Furthermore, temperature dependence of the exciton peak energy in the GaGdN / AlGaN

MQWs was larger than that in the GaN / AlGaN ones. The red shifts of exciton peak

from 50 to 300 K were 42 and 46 meV in the GaN/AlGaN and GaGdN / AlGaN MQWs,

respectively. This temperature dependence is arisen from compressive effects by thermal

expansion. The slightly larger red shift in GaGdN / AlGaN indicates that the Gd-

VN complex absorbs the a certain amount of the compression. The small relaxation (4

meV) of the compression in the GaGdN / AlGaN consistent with the small shift of the

substituted Gd ion to VN under no compressive condition. Combining this with the result

of XANES analyses for GaN:RE, the existence of Va are plausible.
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3.5 Conclusion

I perform Gd L3-edge XANES analyses, and Dy L3- and L1-edge polarization-dependent

XANES measurements and calculations. The observed XANES spectra of GaN:RE are

not sensitive to kinds of the RE elements. Large shift value of a RE ion is required

to explain the N-rich spectra by only using the RE ion shift, which seems to be not

feasible. A pre-edge peak of L1-edge XANES spectra are more sensitive to local inversion

symmetry around an absorbing atom than spectral shapes at L3-edge, and can be used

to detect it. Calculated spectra with only GaN:RE phase show good agreement with the

observed Ga-rich ones. I find the anisotropy of a nitrogen vacancy next to a doped RE

ion by using polarization-dependent spectra: Na nitrogen sites are preferentially selected.

For the reason of the weak polarization dependence of the N-rich sample, I propose RE

nitride segregation: the mixture of Ga-rich and RE nitride spectra show good agreement

with the observed N-rich spectra. XANES analyses at several edges with different X-ray

polarization direction are useful to investigate vacancies around impurity atoms.
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Chapter 4

SOI at scatterer sites for K-edge

XMCD spectra

4.1 Introduction

The K-edge XMCD is a useful technique to obtain information about the local magnetic

structure. We can obtain sensitive M-H curve without the diamagnetic term. In partic-

ular the transition metal, the energy at K-edge is located at hard X-ray region, which

does not need vacuum conditions to measure X-ray absorption spectra. BCC iron and

Fe0.5Co0.5 under extremly high pressures causes a phase transition to HCP structures and

looses its ferromagnetism confirmed by K-edge XMCD spectra [78, 79, 80]. For other

purposes, magnetic properties of light elements composing of magnetic materials are also

investigated [81]. The magnetic moment on light elements relies on their p orbital. The

X-ray absorption at K-edge has the information on unoccupied p state which is more or

less related ground state ones.

There are several reports for light element XMCD spectra. The O K-edge XMCD

spectra were reported for adsorbing oxygen atoms on thin film of transition meal on

Cu substrate [82, 83, 84]. Nevertheless the smallness of the SOI of oxygen atoms, the

XMCD spectra showed rather large intensity compared with well known BCC iron. Sorg

et al. addressed that the hybridization between O 2pz and TM 3d enhances the XMCD

intensity [82, 83, 84]. From the sign of the XMCD signal, they concluded that the

magnetic moment on O atoms is parallel to that on TM surface [83]. Band calculations



56 CHAPTER 4. SOI AT SCATTERER SITES FOR K-EDGE XMCD SPECTRA

support the magnetic order with the strong orbital hybridization. Leuenberger et al.

reported the N K-edge XMCD spectra for a bulk GdN crystal [60]. They mentioned

that usual band theory could not reproduce the XMCD spectra. Other calculated results

showed that the inclusion of the spin-orbit interaction on Gd atoms through the N 2p-Gd

(4f ,5d) hybridizaton play crucial roles [85]. The C K-edge XMCD spectra were reported

for graphene on TM substrate [86]. Similarly to the O K-edge case, the smallness of the

spin-orbit interaction confuses us to interpret the XMCD spectra.

Several relativistic MS codes are implemented. The FEFF9 code [87] treats full rel-

ativistic core functions and semi-relativistic photoelectron states. The SPR-KKR code

[88] is based on relativistic MS theory in reciprocal space. The FDMNES code [89] also

include relativistic effect. However, there is no intensive work to investigate effects of

SOI on each site as far as I know.

Here, I develop the MS theory including the spin-orbit interaction on scatterer atoms.

I also study XMCD spectra of BCC iron as a simple system, and graphene/Ni(111) as a

complicate system with the developed MS theory.

4.2 Theory

At first, I briefly introduce a K,L1-edge XMCD theory based on MS described at Chap.

2. [24, 21]. In the XMCD theory, the relativistic effects on a photoelectron state is

taken into account as a perturbation via an expansion of a relativistic Green’s function

with non-relativistic Green’s function developed by Gesztesy et al [29]. The core-state

wave function which emits a photoelectron is obtained by the Dirac equation, and fully

includes relativistic effects.

Next, I describe how the spin-orbit interaction on scatterer sites is included. The

previous method [21, 23, 24] considered the spin-orbit interaction only on the absorbing

atom. This interpretation was conceived from a result of a single scattering calculation

for BCC iron in MEXAFS energy region (100 eV ∼) [23]. However, the privious scatterer-

site SOI terms have less site T -matrices than the absorbing-atom SOI term: the order

of the site T -matrix is not same. Furthermore, in XMCD energy region, inclusion of MS

is inevitable. I therefore take the SOI on scattering sites into account, and calculate its
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effects carefully.

4.2.1 K, L1-edge XMCD

For the K, L1-edge, T11 defined in eq. (2.14a) does not contribute to XMCD intensity

owing to no SOI, while the other terms T12, T21, U11 provide XMCD spectra.

T12(ω) = −2Im ⟨φc|∆∗gQ∆|χc⟩ , (2.14b)

T21(ω) = −2Im ⟨χc|∆∗Qg∆|φc⟩ , (2.14c)

U11(ω) = −2Im ⟨φc|∆∗gQ(V − ε)QG∆|φc⟩ (2.14d)

Q =
σ · p
2c

(2.5)

I firstly focus on U11. If we assume the total potential V is superposition of each spherical

site potential, the operator Q(V − ε)Q gives the SOI (see Appendix B). Then,

U11(ω) = −2Im ⟨φc|∆∗g(ε)Q(V − ε)Qg(ε)∆ |φc⟩

= −2Im
∑
α

⟨φc|∆∗g(ε)δvαg(ε)∆ |φc⟩ , (4.1)

where δvα is the SOI on the site α. The propagator g can be represented by the site

T -matrix expansion.

g = gA + gA
∑
α(̸=A)

tαgA + gA
∑

β( ̸=α,A)

tβg0
∑
α(̸=A)

tαgA + · · · (4.2)

= gA + gBvBgA + gB
∑

α(̸=A,B)

tαgA + gB
∑

β(̸=α,B)

tβg0
∑
α(̸=A)

tαgA + · · · (4.3)

= gA + gAvBgB + gA
∑

α( ̸=A,B)

tαgB + gA
∑

β(̸=α,A)

tβg0
∑

α( ̸=B)

tαgB + · · · . (4.4)

The extra term gBvBgA only appears when A ̸= B. In both the expansion, we can write

g as gA + (g − gA). Then, U11 becomes:

U11 = −2Im
∑
α

⟨φc|∆∗{gA + (g − gA)}δvα{gA + (g − gA)}∆ |φc⟩ (4.5)

= −2Im
∑
α

(⟨φc|∆∗gAδvαgA∆ |φc⟩ + ⟨φc|∆∗(g − gA)δvαgA∆ |φc⟩ (4.6)

+ ⟨φc|∆∗gAδvα(g − gA)∆ |φc⟩ + ⟨φc|∆∗(g − gA)δvα(g − gA)∆ |φc⟩) (4.7)
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Furthermore, I separate U11 into U11,A and U11,sc in terms of δv.

U11 = −2Im
[
⟨φc|∆∗gAδvAgA∆ |φc⟩ + 2 ⟨φc|∆∗(g − gA)δvAgA∆ |φc⟩

]
− 2Im

∑
B(̸=A)

[
⟨φc|∆∗gAδvBgA∆ |φc⟩

+ ⟨φc|∆∗(g − gA)δvBgA∆ |φc⟩ + ⟨φc|∆∗gAδvB(g − gA)∆ |φc⟩
]

− 2Im
∑
α

⟨φc|∆∗(g − gA)δvα(g − gA)∆ |φc⟩ (4.8)

≡ U11,A + U11,sc (4.9)

where

U11,A = −2Im[⟨φc|∆∗gAδvAgA∆ |φc⟩ + 2 ⟨φc|∆∗(g − gA)δvAgA∆ |φc⟩] (4.10)

≡ U
(0)
11,A + U

(∞)
11,A, (4.11)

U11,sc = −2Im
∑

B(̸=A)

[
⟨φc|∆∗gAδvBgA∆ |φc⟩

+ ⟨φc|∆∗(g − gA)δvBgA∆ |φc⟩ + ⟨φc|∆∗gAδvB(g − gA)∆ |φc⟩
]

− 2Im
∑
α

⟨φc|∆∗(g − gA)δvα(g − gA)∆ |φc⟩ . (4.12)

In the case of (g − gA)δvAgA, the order inversion term has the same value. On the other

hand, that is not always guaranteed for (g−gA)δvBgA. In the previous theory [23, 21, 24],

U11,A was only taken into account. I discuss the neglected term U11,sc in the next section.

To obtain the explicit form of U11,A, the expansion of eq. (4.2) is adequate.

U11,A

When photoelectron positions r and r′ in site A (r, r′ ∈ A), gA is written by

gA(r, r′; k) =
∑
L

glA(r, r′; k)YL(r̂)Y ∗
L (r̂′), (4.13)

gl±A (r, r′; k±) = −2ik±R±
l (k±r<)f̂±

l (k±r>) (4.14)

(r< =min(r, r′), r> = max(r, r′)).

The regular (irregular) solution Rl (f̂l) has asymptotic form (r → ∞):

Rl(kr) ≈ eiδlsin(kr − lπ/2 + δl)/kr, (4.15)

f̂l(kr) ≈ i−l−1exp(ikr)/kr. (4.16)
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The large component of the 1s core state is obtained by eqs. (2.9) and (2.11):

|φ±
c ⟩ = gjc(r)ylcjc,µc

(r̂) |±⟩ = g1s(r)y01/2,±1/2(r̂) |±⟩ = g1s(r)Y00 |±⟩ . (4.17)

The atomic absorption term U
(0)
11 is written by

U
(0)
11,A(mp) = −2Im ⟨φc|∆∗

mp
gAδvAgA∆mp |φc⟩ =

2mp

π

∑
s

sImks2δρs0, (4.18)

δρ±0 =

∫
g1s(r)r3dr

∫
R±

A,1(r<)f±
A,1(r>)ξ±A(r′)r′2dr′

×
∫

R±
A,1(r

′
<)f±

A,1(r
′
>)g1s(r

′′)r′′3dr′′. (4.19)

Therefore, The atomic XMCD intensity ∆U
(0)
11,A is written by

∆U
(0)
11,A(ω) = U

(0)
11,A(ω,+) − U

(0)
11,A(ω,−)

=
4

π
Im[k+2δρ+0 (ε) − (+spin→− spin)]. (4.20)

The SOI ζ mixes spin and orbital state, and provide difference of the absorption with

±helicity. The single scattering term U
(1)
11,A is written by

U
(1)
11,A(mp) = −4Im

∑
α( ̸=A)

⟨φc|∆∗
mp

gAtαgAδvAgA∆mp |φc⟩

= −2mp

π

∑
s

sImρs>,1Ĝ
(1)s
1mp,1mp

δρs, (4.21)

δρ± =

∫
R±

A,1(r)ξ±A(r)r2dr

∫
R±

A,1(r<)f̂±
A,1(r>)g1s(r

′)r′3dr′ (4.22)

The single scattering XMCD ∆U
(1)
11,A becomes:

∆U
(1)
11,A(ω) = U

(1)
11,A(ω,+) − U

(1)
11,A(ω,−) (4.23)

= − 4

π
Im
[
ρ+>,1(ε)δρ

+(ε)Ĝ
(1)+
11,11(ε) − (+spin→− spin)

]
(4.24)

The infinite scattering XMCD ∆U
(∞)
11,A is obtained by the replacement of Ĝ to Z described.

∆U
(∞)
11,A(ω) = − 4

π
Im
[
ρ+>,1(ε)δρ

+(ε)Z+
11,11(ε) − (+spin→− spin)

]
(4.25)

From these results, I drive ∆U11,A.

∆U11,A(ω) = ∆U
(0)
11,A(ω) + ∆U

(∞)
11,A(ω) (4.26)

=
4

π
Im
[(
k+2δρ+0 (ε) − ρ+>,1(ε)δρ

+(ε)Z+
11,11(ε)

)
− (+spin→− spin)

]
(4.27)
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T12 and T21

The intensity T12 and T21 are the same value, so I discuss only the former. From eqs.

(2.10) and (B.20), T12 in eq. (2.14b) are represented by using the orbital moment operator

L.

T12(mp) = −2Im ⟨φc|∆∗gQ∆ |χc⟩ (2.14b)

= −2Im
∑
s

∫
g1s(r)Y00rY

∗
1mp

(r̂)dr

×
∫

gs(r, r′)Q(σ · r′)r′Y1mp(r̂′)if1s(r
′)Y00dr

′

∼ 1

c
Im
∑
s

∫
g1s(r)Y00rY

∗
1mp

(r̂)dr

×
∫

gs(r, r′)(σ · L′)r′Y1mp(r̂′)f1s(r
′)Y00dr

′ (4.28)

Similarly to U11,A, I separate T12 to the atomic term T
(0)
12 and the scattering term T

(∞)
12 .

T
(0)
12 (mp) = −2Im ⟨φc|∆∗gAQ∆ |χc⟩ (4.29)

∼ mp

2πc

∑
s

sIm

[
ik

∫
g1s(r)r3dr

∫
Rs

A,1(r<)f̂ s
A,1(r>)f1s(r

′)r′3dr′
]

=
mp

2πc

∑
s

sIm
[
ikρs><,1

]
, (4.30)

∆T
(0)
12 (ω) = T

(0)
12 (ω,+) − T

(0)
12 (ω,−) (4.31)

=
1

πc
Im
[
ikρ+><,1(ε) − (+spin→− spin)

]
, (4.32)

ρ±><,1 =

∫
g1s(r)r3dr

∫
R±

A,1(r<)f̂±
A,1(r>)f1s(r

′)r′2dr′. (4.33)

The scattering terms T
(1)
12 (mp) and T

(∞)
12 (mp) become:

T
(1)
12 (mp) = −2Im

∑
α

⟨φc|∆∗gAtαgAQ∆ |χc⟩ (4.34)

= −mp

2πc

∑
s

sImρs>,1Ĝ
(1)s
1mp,1mp

ρs<,1, (4.35)

T
(∞)
12 (mp) = −mp

2πc

∑
s

sImρs>,1Z
s
1mp,1mp

ρs<,1, (4.36)

∆T
(∞)
12 (ω) = T

(∞)
12 (ω,+) − T

(∞)
12 (ω,−) (4.37)

= − 1

πc
Im
[
ρ+>,1(ε)ρ

+
<,1(ε)Z

+
11,11(ε) − (+spin→− spin)

]
, (4.38)

ρ±<,1 =

∫
R±

A,1(r)f1s(r)r2dr. (4.39)
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We obtain the XMCD intensity ∆T12.

∆T12(ω) = ∆T
(0)
12 (ω) + ∆T

(∞)
12 (ω) (4.40)

=
1

πc
Im
[(
ikρ+><,1(ε) − ρ+>,1(ε)ρ

+
<,1(ε)Z

+
11,11(ε)

)
− (+spin→− spin)

]
(4.41)

4.2.2 Including spin-orbit interaction on scatterer sites

Here, I discuss the scattering term U11,sc in (4.12) constituted by the five ingredients.

U11,sc = −2Im
∑

B(̸=A)

[
⟨φc|∆∗gAδvBgA∆ |φc⟩

+ ⟨φc|∆∗(g − gA)δvBgA∆ |φc⟩ + ⟨φc|∆∗gAδvB(g − gA)∆ |φc⟩
]

− 2Im
∑
α

⟨φc|∆∗(g − gA)δvα(g − gA)∆ |φc⟩ . (4.12)

I firstly summarize partial wave expansions of propagators. The position vector r is inside

an atomic site, while R describes position of an atomic site.

g0(r + Rβ,r
′ + Rα) = g0(r + Rβα, r

′) (4.42)

= 2
∑
LL′

il−l′GLL′(kRβα)jl(kr)YL(r̂)jl′(kr
′)YL′(r̂′) (4.43)

= 2
∑
LL′

il−l′GLL′(kRαβ)jl(kr)YL(−r̂)jl′(kr
′)YL′(−r̂′) (4.44)

= g0(r
′, r + Rβα), (4.45)

gA(r + Rβ, r
′ + RA) = 2

∑
LL′

il−l′eiδ
A
l′GLL′(kRβA)jl(kr)YL(r̂)R̃A,l′(kr

′)YL′(r̂′) (4.46)

= gA(r′ + RA, r + Rβ), (4.47)

gA(r, r′) (r, r′∈A) = −2ik
∑
L

eiδ
A
l R̃A,l(kr<)f̂A,l(kr>)YL(r̂)YL(r̂′), (4.48)

where

GLL′(kR) = −4πik
∑
L′′

il
′′
h
(1)
l′′ (kR)YL′′(R̂)G(L′′L|L′), (4.49)

GLL′(−kR) = (−1)l+l′GLL′(kR), (4.50)

GL̄L̄′(kR) = (−1)m+m′
GL′L(kR). (4.51)



62 CHAPTER 4. SOI AT SCATTERER SITES FOR K-EDGE XMCD SPECTRA

The scatterer site term U11,sc is obtained from eq. (4.12).

U11,sc = −2Im
∑

B( ̸=A)

[⟨φc|∆∗gAδvBgA∆ |φc⟩

+ ⟨φc|∆∗(g − gA)δvBgA∆ |φc⟩ + ⟨φc|∆∗(g − gA)δvBgA∆ |φc⟩]

− 2Im
∑
α

⟨φc|∆∗(g − gA)δvα(g − gA)∆ |φc⟩ . (4.12)

By using eq. (4.4), the second ingredient is classified to the single scattering at B site,

and the semi infinite scattering.

⟨φc|∆∗(g − gA)δvBgA∆ |φc⟩

= ⟨φc|∆∗gAvBgBδvBgA∆ |φc⟩

+ ⟨φc|∆∗gA

 ∑
α( ̸=A,B)

tα +
∑

β(̸=α,A)

tβg0
∑

α( ̸=B)

tα + · · ·

 gBδvBgA∆ |φc⟩ (4.52)

Similarly, the third ingredient in eq. (4.12) is separated to three components by using

the expansions of eqs. (4.3) and (4.4).

⟨φc|∆∗(g − gA)δvα(g − gA)∆ |φc⟩

= (1 − δAα)

[
⟨φc|∆∗gAvαgαδvαgαvαgA∆ |φc⟩

+ ⟨φc|∆∗gA

 ∑
β( ̸=A,α)

tβ +
∑

γ(̸=β,A)

tγg0
∑
β(̸=α)

tβ + · · ·

 gαδvαgαvαgA∆ |φc⟩

+ ⟨φc|∆∗gAvαgαδvαgα

 ∑
β( ̸=A,α)

tβ +
∑

γ(̸=β,α)

tγg0
∑
β(̸=A)

tβ + · · ·

 gA∆ |φc⟩

]

+ ⟨φc|∆∗gA

 ∑
β( ̸=A,α)

tβ +
∑

γ(̸=β,A)

tγg0
∑
β(̸=α)

tβ + · · ·


× gαδvαgα

 ∑
β′ (̸=A,α)

tβ +
∑

γ′ (̸=β′,α)

tγg0
∑

β′( ̸=A)

tβ + · · ·

 gA∆ |φc⟩ (4.53)
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We divide U11,sc into UGG
11,sc, U

Z′G
11,sc and UZ′Z′

11,sc in terms of photoelectron scattering processes.

UGG
11,sc = −2Im

∑
B(̸=A)

[⟨φc|∆∗gAδvBgA∆ |φc⟩

+2 ⟨φc|∆∗gAvBgBδvBgA∆ |φc⟩ + ⟨φc|∆∗gAvBgBδvBgBvBgA∆ |φc⟩] , (4.54)

UZ′G
11,sc = −2Im

∑
B(̸=A)

[
⟨φc|∆∗gA

 ∑
α( ̸=A,B)

tα + · · ·

 gBδvB (gA + gBvBgA) ∆ |φc⟩

× ⟨φc|∆∗ (gA + gAvBgB) δvBgB

 ∑
α(̸=A,B)

tα + · · ·

 gA∆ |φc⟩

]
(4.55)

UZ′Z′

11,sc = −2Im
∑
α

⟨φc|∆∗gA

 ∑
β(̸=A,α)

tβ + · · ·


× gαδvαgα

 ∑
β′( ̸=A,α)

tβ′ + · · ·

 gA∆ |φc⟩ . (4.56)

UGG
11,sc

• ⟨φc|∆∗gAδvBgA∆ |φc⟩

From ⟨φs|φs̄⟩ = 0 (s = ±, s̄ = −s) and eq.(B.16), only diagonal terms survive in spin

space.

⟨φc|∆∗gAδvBgA∆ |φc⟩

= ⟨φ+
c |∆∗g+Aξ

+
BL

B
z g

+
A∆ |φ+

c ⟩ + ⟨φ+
c |∆∗g+Aξ

+
BL

B
−g

−
A∆ |φ−

c ⟩

+ ⟨φ−
c |∆∗g−Aξ

−
BL

B
+g

+
A∆ |φ+

c ⟩ − ⟨φ−
c |∆∗g−Aξ

−
BL

B
z g

−
A∆ |φ−

c ⟩

= ⟨φ+
c |∆∗g+Aξ

+
BL

B
z g

+
A∆ |φ+

c ⟩ − ⟨φ−
c |∆∗g−Aξ

−
BL

B
z g

−
A∆ |φ−

c ⟩ (4.57)

=
∑
s

s ⟨φs
c|∆∗gsAξ

s
BL

B
z g

s
A∆ |φs

c⟩ . (4.58)

Since site potentials are assumed as diagonal in spin space, propagators conserve spin

states. The other terms also satisfy this spin diagonal. By using abbreviation GLL′(kRαβ) ≡



64 CHAPTER 4. SOI AT SCATTERER SITES FOR K-EDGE XMCD SPECTRA

Gαβ
LL′ , the explicit form is obtained.

⟨φc|∆∗gAδvBgA∆ |φc⟩

=
∑
s

s

∫
g1s(r)Y00rY

∗
1mp

(r̂)2
∑
L1L′

1

il1−l′1GAB
L1L′

1
eiδ

A
l1 R̃A

l1
(kr)YL1(r̂)dr

×
∫

jl′1(kr
′)Y ∗

L′
1
(r̂′)ξsB(r′)LB

z 2
∑
L2L′

2

il2−l′2GBA
L2L′

2
jl2(kr

′)YL2(r̂
′)dr′

×
∫

e
iδA

l′2 R̃A
l′2

(kr′′)Y ∗
L′
2
(r̂′′)r′′Y1mp(r̂′′)g1s(r

′′)Y00dr
′′

= 4Y 2
00

∑
s

s
∑
L1L′

1

∑
L2L′

2

il1−l′1+l2−l′2e
i(δAl1

+δA
l′2
)

×
∫

g1s(r)rR̃A
l1

(kr)r2dr

∫
Y ∗
1mp

(r̂)YL1(r̂)dr̂

×m2G
AB
L1L′

1

(∫
jl′1(kr

′)ξsB(r′)jl2(kr
′)r′

2
dr′
∫
Y ∗
L′
1
(r̂′)YL2(r̂

′)dr̂′
)
GBA

L2L′
2

×
∫

R̃A
l1

(kr′′)r′′g1s(r
′′)r′′

2
dr′′
∫

YL1(r̂
′′)Y1mp(r̂′′)dr̂′′

=
1

π

∑
s

sρ>,1
2
∑
L

mGAB
1mp,L[ξsB]jjl G

BA
L,1mp

, (4.59)

where

[ξsB]ϕ1ϕ2

l =

∫
ϕ1,l(kr)ξsB(r)ϕ2,l(kr)r2dr. (4.60)

• ⟨φc|∆∗gAvBgBδvBgA∆ |φc⟩

The major difference of gAvBgBδvBgA from gAδvBgA is that gB propagates only in B site

by the expression of eq.(4.48).

⟨φc|∆∗gAvBgBδvBgA∆ |φc⟩

=
∑
s

∫
drdr′dr′′dr′′′g1s(r)Y00rY

∗
1mp

(r̂)

×2
∑
L1L′

1

il1−l′1GAB
L1L′

1
Rs

A,l1
(kr)YL1(r̂)jl′1(kr

′)Y ∗
L′
1
(r̂′)

×vB(r′)(−2ik)
∑
L

Rs
B,l(kr<)f̂ s

B,l(kr>)YL(r̂′)Y ∗
L (r̂′′)

×sξsB(r′′)LB
z 2

∑
L2L′

2

il2−l′2GBA
L2L′

2
jl2(kr

′′)YL2(r̂
′′)Rs

A,l′2
(kr′′′)Y ∗

L′
2
(r̂′′′)

×r′′′Y1mp(r̂′′′)g1s(r
′′′)Y00
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= 4Y 2
00

∑
s

s
∑
L1L′

1

∑
L2L′

2

∑
L

il1−l′1+l2−l′2

×
∫

g1s(r)rR̃A
l1

(kr)r2dr

∫
Y ∗
1mp

(r̂)YL1(r̂)dr̂ m2G
AB
L1L′

1

×
(∫

jl′1(kr
′)vB(r′)(−2ik)Rs

B,l(kr<)f̂ s
B,l(kr>)ξsB(r′′)jl2(kr

′′)r′
2
r′′

2
dr′dr′′

)
×GBA

L2L′
2

∫
Y ∗
L′
1
(r̂′)YL(r̂′)dr̂′

∫
Y ∗
L (r̂′′)YL2(r̂

′′)dr̂′′

×
∫

Rs
A,l′2

(kr′′′)r′′′g1s(r
′′′)r′′′

2
dr′′′

∫
YL′

2
(r̂′′′)Y1mp(r̂′′′)dr̂′′′

=
1

π

∑
s

sρ>,1
2
∑
L

mGAB
1mp,L

(
−2ik[(vξ)sB]jjl

)
GBA

L,1mp
, (4.61)

= ⟨φc|∆∗gAδvBgBvBgA∆ |φc⟩ (4.62)

where

[(vξ)sB]ϕ1ϕ2

l =

∫
ϕ1,l(kr)vB(r)Rs

B,l(kr<)f̂ s
B,l(kr>)ξsB(r′)ϕ2,l(kr

′)r2r′
2
drdr′ (4.63)

• ⟨φc|∆∗gAvBgBδvBgBvBgA∆ |φc⟩

Similar expansion from gAδvBgA to gAvBgBδvBgA, we obtain the last term of UGG
11,sc in eq.

(4.55).

⟨φc|∆∗gAvBgBδvBgBvBgA∆ |φc⟩

=
1

π

∑
s

sρ>,1
2
∑
L

mGAB
1mp,L

(
−4k2[(vξv)sB]jjl

)
GBA

L,1mp
(4.64)

where

[(vξv)sB]jjl =

∫
jl(kr)vB(r)r2dr

∫
Rs

B,l(kr<)f̂ s
B,l(kr>)ξsB(r′)r′

2
dr′

×
∫

Rs
B,l(kr

′
<)f̂ s

B,l(kr
′
>)vsB(r′′)jl(kr

′′)r′′
2
dr′′. (4.65)

Therefore, the single scattering term UGG
11,sc becomes:

UGG
11,sc(mp) = − 2

π
Im
∑
s

sρ>,1
2
∑

B(̸=A)

∑
l>0

{
[ξsB]jjl − 4ik[(vξ)sB]jjl − 4k2[(vξv)sB]jjl

}
×
∑
m(̸=0)

mGAB
1mp,LG

BA
L,1mp

. (4.66)
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UZ ′G
11,sc

• ⟨φc|∆∗gA

(∑
α( ̸=A,B) tα +

∑
β(̸=α,A) tβg0

∑
α(̸=B) tα + · · ·

)
gBδvBgA∆ |φc⟩

We firstly consider the first order of t. Comparison with gAδvBgA, the photoelectron

migration from B to A via α is added. This change corresponds to GAB → G(1)AB. Notice

that gB in gAtαgBδvBgA propargates between different sites α and B by the expression

of eq. (4.46).

⟨φc|∆∗gA
∑

α( ̸=)A,B

tαgBδvBgA∆ |φc⟩ =
1

π

∑
s

sρ>,1
2
∑
L

mĜ
(1)AB
1mp,L

[ξsB]Rj
l GBA

L,1mp
. (4.67)

To expand this term to the infinite scattering, we replace G(1) to Z ′.

Ĝ
AB(1)
L1,L2

→ Z ′AB
L1,L2

= tAl1(k)−1
[
(1 −X)−1 − 1

]AB

L1L2
−GAB

L1L2
= Ĝ

AB(1)
L1L2

+ Ĝ
AB(2)
L1L2

+ · · · ,

(4.68)

where

tαl (k) = 2

∫
drr2jl(kr)tαl (r, r′)jl(kr

′) (4.69)

Ĝ
αβ(1)
L1,L2

=
∑
L

∑
γ(̸=A,B)

Gαγ
L1,L

tγl (k)Gγβ
L,L2

= tαl1(k)−1
[
X2
]αβ
L1L2

(4.70)

Xαβ
L1L2

= tαl1(k)Gαβ
L1L2

(1 − δαβ) (4.71)

The free propagator GAB should be subtracted in Z ′AB because of GAB ̸= 0 for A ̸= B.

When A = B, Z ′AA is equal to Z owing to GAA = 0. We obtain the infinite scattering

term with Z ′.

⟨φc|∆∗gA

 ∑
α( ̸=A,B)

tα +
∑

β(̸=α,A)

tαg0
∑

α(̸=B)

tβ + · · ·

 gBδvBgA∆ |φc⟩

=
1

π

∑
s

sρ>,1
2
∑
L

mZ ′AB
1mp,L[ξsB]Rj

l GBA
L,1mp

, (4.72)

⟨φc|∆∗gAδvBgB

 ∑
α(̸=A,B)

tα +
∑

β(̸=α,B)

tαg0
∑
α(̸=A)

tβ + · · ·

 gA∆ |φc⟩

=
1

π

∑
s

sρ>,1
2
∑
L

mGAB
1mp,L[ξsB]Rj

l Z ′BA
L,1mp

(4.73)

where [ξ]jR = [ξ]Rj.
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• ⟨φc|∆∗gA

(∑
α(̸=A,B) tα +

∑
β(̸=α,A) tβg0

∑
α( ̸=B) tα + · · ·

)
gBδvBgBvBgA∆ |φc⟩

Similarly to the extension from (4.59) to (4.72), the first order term of t is obtained from

(4.61).

⟨φc|∆∗gA
∑

α( ̸=A,B)

tαgBδvBgBvBgA∆ |φc⟩

=
1

π

∑
s

sρ>,1
2
∑
L

mG
(1)AB
1mp,L

(
−2ik[(ξv)sB]Rj

l

)
GBA

L,1mp

=
1

π

∑
s

sρ>,1
2
∑
L

mG
(1)AB
1mp,L

(
−2ik[(vξ)sB]jRl

)
GBA

L,1mp
(4.74)

The infinite order term of t is obtained by replacement of G(1)AB to Z ′.

⟨φc|∆∗gA

 ∑
α( ̸=A,B)

tα +
∑

β(̸=αA)

tβg0
∑

α(̸=B)

tβ + · · ·

 gBδvBgBvBgA∆ |φc⟩

=
1

π

∑
s

sρ>,1
2
∑
L

mZ ′AB
1mp,L

(
−2ik[(vξ)sB]jRl

)
GBA

L,1mp
(4.75)

⟨φc|∆∗gAvBgBδvBgB

 ∑
α(̸=A,B)

tα +
∑

β( ̸=αB)

tβg0
∑
α( ̸=A)

tβ + · · ·

 gA∆ |φc⟩

=
1

π

∑
s

sρ>,1
2
∑
L

mGAB
1mp,L

(
−2ik[(vξ)sB]jRl

)
Z ′BA

L,1mp
(4.76)

where [(ξv)]Rj = [(vξ)]jR

Therefore, the multiple scattering term UZ′G
11,sc is given by

UZ′G
11,sc(mp) = − 2

π
Im
∑
s

sρ>,1
2
∑

B(̸=A)

∑
l>0

{
[ξsB]Rj

l − 2ik[(vξ)sB]jRl

}
×
∑
m( ̸=0)

m
(
Z ′AB

1mp,LG
BA
L,1mp

+ GAB
1mp,LZ

′BA
L,1mp

)
. (4.77)

If we approximate Z ′G + GZ ′ as 2Z ′G, UZ′G
11,sc becomes

UZ′G
11,sc(mp) = − 2

π
Im
∑
s

sρ>,1
2
∑

B( ̸=A)

∑
l>0

{
2[ξsB]Rj

l − 4ik[(vξ)sB]jRl

}
×
∑
m(̸=0)

mZ ′AB
1mp,LG

BA
L,1mp

. (4.78)

UZ ′Z ′
11sc

• ⟨φc|∆∗gA

(∑
β( ̸=A,α) tβ + · · ·

)
gαδvαgα

(∑
β′ (̸=A,α) tβ′ + · · ·

)
gA∆ |φc⟩
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The lowest order term is obtained by small changes of (4.72). The photoelectron migra-

tion from A to α via β′ relaces GαA and [ξ]Rj with G(1)αA and [ξ]RR, respectively. The

replacement of G(1) by Z ′ provides the infinite order term.

⟨φc|∆∗gA

 ∑
β( ̸=A,α)

tβ + · · ·

 gαδvαgα

 ∑
β′ (̸=A,α)

tβ′ + · · ·

 gA∆ |φc⟩

=
1

π

∑
s

sρ>,1
2
∑
L

mZ ′Aα
1mp,L[ξsα]RR

l Z ′αA
L,1mp

(4.79)

The infinite multiple scattering term UZ′Z′
11,sc is obtained by (4.56).

We summarize the results as

UGG
11,sc(mp) = − 2

π
Im
∑
s

sρ>,1
2
∑

B(̸=A)

∑
l>0

{
[ξsB]jjl − 4ik[(vξ)sB]jjl − 4k2[(vξv)sB]jjl

}
×
∑
m( ̸=0)

mGAB
1mp,LG

BA
L,1mp

, (4.66)

UZ′G
11,sc(mp) = − 2

π
Im
∑
s

sρ>,1
2
∑

B(̸=A)

∑
l>0

{
[ξsB]Rj

l − 2ik[(vξ)sB]jRl

}
×
∑
m( ̸=0)

m
(
Z ′AB

1mp,LG
BA
L,1mp

+ GAB
1mp,LZ

′BA
L,1mp

)
, (4.78)

UZ′Z′

11,sc(mp) = − 2

π
Im
∑
s

sρ>,1
2
∑
α

∑
l>0

[ξsα]RR
l

∑
m(̸=0)

mZ ′Aα
1mp,LZ

′αA
L,1mp

. (4.80)

In the summation of m, the homogeneous terms of G and Z ′ satisfy:

∑
m

mGAB
1mp,LG

BA
L,1mp

=
∑
m

mGBA
L,1mp

GAB
1mp,L

=
∑
m

(−1)mGAB
1mp,L

GBA
L,1mp

= −
∑
m

mGAB
1mp,LG

BA
L,1mp

, (4.81)

∑
m

mZ ′AB
1mp,LZ

′BA
L,1mp

= −
∑
m

mZ ′AB
1mp,LZ

′BA
L,1mp

. (4.82)
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Furthermore, ∑
m

mZ ′AB
1mp,LG

BA
L,1mp

= −
∑
m

mGAB
1mp,LZ

′BA
L,1mp

, (4.83)

∑
m

m
(
Z ′AB

1mp,LG
BA
L,1mp

+ GAB
1mp,LZ

′BA
L,1mp

)
= −

∑
m

m
(
Z ′AB

1mp,LG
BA
L,1mp

+ GAB
1mp,LZ

′BA
L,1mp

)
(4.84)

≈ −2
∑
m

mZ ′AB
1mp,LG

BA
L,1mp

. (4.85)

By using this relation, we obtain the XMCD intensity by the difference between up and

down spin components with same helicity of incident X-rays.

∆U11,sc = U11,sc(mp = +1) − U11,sc(mp = −1) = 2U11,sc(mp = +1) (4.86)

= 2(U↑
11,sc(mp = +1) − U↓

11,sc(mp = +1)) (4.87)

If the incident X-rays are linearly polarized (for instance, mp = 0 with polarization

parallel to the z-axis), U11,sc vanish. For instance, from (4.81),

∑
m

mGAB
1mp,LG

BA
L,1mp

=
l∑

m>0

m
(
GAB

1mp,LG
BA
L,1mp

−GAB
1mp,LG

BA
L,1mp

)
, (4.88)

and this becomes zero when mp = 0. The other relations (4.82) and (4.84) give the same

result.

The radial integrals [· · · ]ϕ1,ϕ2 are also summarized here with photoelectron wave func-

tions ϕ1 and ϕ2, which are either the spherical Bessel function j corresponding to the free

photoelectron solution, or the numerical regular solution R.

[ξs]ϕ1ϕ2

l =

∫
ϕ1,l(r)ξs(r)ϕ2,l(r)r2dr, (4.89)

[(vξ)s]ϕ1ϕ2

l =

∫
ϕ1,l(r)vs(r)r2dr

∫
Rs

l (r<)f̂ s
l (r>)ξs(r′)ϕ2,l(r

′)r′
2
dr′, (4.90)

[(vξv)s]ϕ1,ϕ2

l =

∫
ϕ1,l(r)vs(r)r2dr

∫
Rs

l (r<)f̂ s
l (r>)ξs(r′)r′

2
dr′

×
∫

Rs
l (r

′
<)f̂ s

l (r′>)vs(r′′)ϕl,1(kr
′′)r′′

2
dr′′. (4.91)

where the scattering site index is omitted. The MS factor Z ′αA includes single or more

scatterings in a photoelectron path from A to α sites: GBA is not included. The single

scattering UGG
11,sc has three different radial integrals include the SOI on a scattering site.
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The scattering factor GABGBA corresponds to the single scattering between A and B

sites, while Z ′ABGBA describes the infinite MS after the propagation from A to B sites.

The scattering factor Z ′AαZ ′αA

The single, semi infinite, and infinite scattering terms UGG
11,sc, UZ′G

11,sc and UZ′Z′
11,sc are

calculated in the next section, respectively.

4.3 Fe K-edge for BCC iron

Firstly, I apply the present XMCD theory to the BCC iron system to compared with the

previous one [23, 21].

4.3.1 Calculation

The calculation cluster radius is about 7 Å, including 113 Fe atoms. The lattice constant

2.87 Å is adopted. The each site potential and electron density are calculated by using the

STUTTGART-TB-LMTO-ASA program [90, 91] with von Barth-Hedin local exchange

correlation [92, 93]. The linear muffin-tin orbital (LMTO) method use the muffin-tin ap-

proximation, and has similarity to the MS calculation. The calculated magnetic moment

of BCC iron with no hole is 2.217 µB which is very close to the observed one (2.216 µB)

[94]. The partial wave in MS matrix is taken up to l = 3, which provide converged results

in XAS and XMCD energetic region. In this calculation, photoelectron damping effects

are not considered to show spectral structure clearly.

4.3.2 Results & Discussion

Figures 4.1(a) and (b) show calculated Fe K-edge XAS and XMCD spectra for BCC iron,

respectively. The experimental results [79] are also shown in Fig. 4.1. The XAS spectra

are normalized to main peak intensity. XMCD intensity is obtained in percentage of the

main peak of the corresponding XAS spectrum.

In Fig. 4.1(a), the calculated spectrum is obtained by T11 in eq. (2.14a), and shows

features of the experimental one. In Fig. 4.1(b), the three calculated spectra are obtained

by ∆I = ∆U11 + 2∆T12 (all), ∆U11,A + 2∆T12 (non-scattering) and ∆U11,sc (scattering).

Note that the non-scattering term ∆U11,A +2∆T12 includes usual MS, but not the SOI in
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scattering process. The experimental result is shown as tenfold one for comparison. The

most important point is the comparable scattering term to the non-scattering one. In

addition, the total XMCD term ∆I is improved by the scattering term though the scale

factor is still needed. These results indicate that the SOI in scattering processes is still

important for K-edge XMCD spectra of TM. This contradicts to the previous analysis

with single scattering calculations: the SOI on scatterer sites was negligible [23]. Figure

4.2 shows ∆U11,sc and its components ∆UGG
11,sc, ∆UZ′G

11,sc and ∆UZ′Z′
11,sc . The all components

are comparable in intensity: the single scattering term ∆UGG
11,sc neglected before still has

contribution.

To investigate the discrepancy, I check the integrants of UGG
11,sc, U

Z′G
11,sc and UZ′Z′

11,sc . Figures

4.3(a) and (b) show the radial integrals [ξ]jj and −4ik[(ξv)]jj, and −4k2[(vξv)]jj in the

single scattering term UGG
11,sc with l = 1 and 2, respectively. The integral [ξ]jj is real value,

while the others are complex. In Fig. 4.3, −4k2[(vξv)]jj shows dominant contribution.

On the other hand, [ξ]jj and [(ξv)]jj are negligible compared with [(vξv)]jj. In particular,

the negligible intensity of [ξ]jj agrees with the previous result. In eqs. (4.89) and (4.90),

[ξ]jj and [(ξv)]jj have a direct overlap between the free solution j and SOI ξ. Because

the intensity of the SOI ξ is proportional to the gradient of the site potential v, ξ is

strong only near the nucleus. The free photoelectron described by the spherical Bessel

function j with l ̸= 0 has small amplitude near the nucleus. Thus, the direct overlap is

negligible. In eq. (4.91), [(vξv)]jj has the indirect j-ξ overlap mediated by site potential

v, the numerical solution R and f̂ . Since the solutions R and f̂ are already affected by

site attractive potential v, they have larger amplitudes near the nucleus and overlap with

ξ than the free solution j. This makes [(vξv)]jj as the dominant contribution to the UGG

terms. Note that dispersion peaks of [(vξv)]jj with l = 2 in Fig. 4.3(b) is resonance of

photoelectron d-wave corresponding to a step of phase shift with no singular point.

I also check the radial integrals of UZ′G and UZ′Z′
. Figure 4.4 shows the radial integral

[ξ]Rj and −4ik[(vξ)]jR in UZ′G. In Figs. 4.4(a) and (b) (l = 1 and 2), the integral

−4ik[(vξ)]jR is dominant. Similarly to [(vξ)v]jj, the potential v mediates between j and

ξ in [(vξ)]jR. As described above, the direct overlap between R and ξ has substantial

intensity since the numerical solution R is attracted to the nucleus by v. That result is

also obtained from the radial integral [ξ]RR in UZ′Z′
in Figure 4.5.
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I conclude that the SOI at scatterer sites are still important to understand XMCD

spectra. Moreover, when a photoelectron is affected by the SOI, the site potential also

affects it simultaneously. Otherwise, the SOI at scatterer sites only has negligible contri-

bution.
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Figure 4.1: Calculated Fe K-edge (a) XAS and (b) XMCD spectra for BCC iron. The

calculated XAS spectrum is obtained by T11 averaged in ±helicity of incident lights.

The non-scattering and scattering XMCD spectra correspond to U11,A + 2T12 and U11,sc,

respectively. The total calculated XMCD spectrum is the sum of the non-scattering and

scattering ones. The observed results are also shown for comparison [79]
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Figure 4.2: The scattering term U11,sc and its components: UGG
11,sc, U

Z′G
11,sc and UZ′Z′

11,sc .
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Figure 4.3: The components of UGG
11,sc with partial waves l = 1 (a) and 2 (b) at a scatterer

Fe site. The terms GG1, 2 and 3 are [ξ]jj, −4ik[(ξv)]jj and −4k2[(vξv)]jj, respectively.

The lines and points show for up and down spin, respectively.
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Figure 4.4: The components of UZG
11,sc with partial waves l = 1 (a) and 2 (b) at a scatterer

Fe site. The terms ZG1 and 2 are [ξ]Rj and −4ik[(vξ)]jR, respectively. The lines and

points show for up and down spin, respectively.
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Figure 4.5: The component [ξ]RR of UZZ
11,sc with partial waves l = 1 (a) and 2 (b) at a

scatterer Fe site. The terms ZZ shows [ξ]RR. The lines and points show for up and down

spin, respectively.
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4.4 C K-edge for graphene/Ni(111)

4.4.1 Introduction

Graphene is an almost 2-dimensional material composed of carbon atoms. Its charac-

teristic band structure, called the Dirac cone, provides extremely high electron mobility

in principle because of linear band dispersion indicating that electrons obey relativistic

theory. The graphene’s Dirac cone where valence and conduction bands contact at point

is originated from the honey comb structure: two carbon atoms in a unit cell have C-C

bonds with only the counterpart sites. To control band gaps at Dirac cones, structural

changes or other perturbation to disturb symmetry are required. Many researchers have

been struggling to control the Dirac cone in particular opening and closing band gaps

at the Dirac cone. For spintronic fields, a theoretical work indicates that graphene on

ferromagnetic metal (Ni and Co) interface acts as a spin filter [95]. In addition, since the

SOI on carbon is small, long spin relaxation times on graphene was expected. However,

short relaxation (50 ∼ 200 ps) involved with contact-induced relaxation was reported

in the graphene/Co system [96]. The low spin injection efficiency (∼ 1 %) due to the

conduction mismatch between graphene and ferromagnetic metal is also problem [96].

The problems of the spin relaxation and injection efficiency is improved to 400-600 ps

and 26 ∼ 30 %, respectively, at 300 K by tunnel contact with MgO tunnel barrier [96].

To understand fundamental physical properties of these systems for further applica-

tion development, many experimental measurements and ab-initio calculations have been

performed in particular the graphene on Ni(111) system. STM and low-energy electron

diffraction (LEED) results show small lattice mismatch (about 1.3 %) between graphene

and Ni substrate [97, 98]. Thus, a well-ordered p(1×1) overstructure with graphene can be

relatively easily obtained on Ni surface than other transition metal one. Impact collision

ion scattering spectroscopy, LEED and angle-scanned photoelectron diffraction (PED)

experiments indicate the distance between the graphene and Ni surface about 2.11 Å

[97, 99, 100]. This distance is shorter than an ordinary physisorption one (cf. ∼ 3.3 Å for

graphene on Cu [101]). XAS measurements for graphene/Ni(111) confirmed the orbital

orientation and hybridization at the surface and interface [86, 98]. The depth-resolved

Ni L2,3-edge XMCD spectra indicates that the first and deeper Ni layers have the out-of-
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and in-plane easy-axis, respectively [86]. The XMCD experimental setting is shown in

Figure 4.6. Auger electrons which accompany with X-ray absorption were detected with

their emission angles θ by an imaging type detector composed of a phosphor screen and a

micro-channel plate. The XMCD intensity was obtained by fixing circular polarization of

incident X-rays in remanence, and changing the direction of pulsed magnetic fields. The

incident angle α of the X-rays and magnetic field is defined with respect to the sample

surface. Moreover, in Figure 4.7, C K-edge XAS and XMCD spectra of graphene on

Ni(111) was also obtained by using the same setting with a partial electron yield mode

[86]. The similar spectra were also reported in another paper [98]. From the α sensitivity,

the A1 and A2 (A3 and A4) peaks are assigned as excitation to π∗ (σ∗) states. Remark-

ably, the C K-edge XMCD intensity with the order of 10 % (cf. 0.2 % for Fe K-edge

XMCD of BCC iron) clearly appears at the π∗ peak region in spite of the small SOI on

carbon atoms. This result suggests that carbon atoms have large orbital moments due

to strong hybridization with Ni d orbitals; however theoretical studies for the XMCD

spectra have not been done yet .

Figure 4.6: The schematic figure of the set-up of the XAS and XMCD measurements for

the graphene/Ni(111) system [86] - Reproduced by permission of The Royal Society of

Chemistry.

Ab-initio calculations for the graphene/Ni(111) systems have attracted much attention

because the adsorption mechanism of graphene on Ni(111) surface is still ambiguous

due to the interface distance about ∼ 2.1 Å described above: it is difficult to decide

whether the physisorption or chemisorption (cf. ∼ 3.3 and 1.9 Å for graphene on Cu,

and Nickel carbides [102], respectively). To discuss the adsorption, construction of the

structural model for graphene on Ni(111) is quite important. Figures 4.8 and 4.9 show
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Figure 4.7: C K-edge XAS (µ+: light green, µ−: black) and XMCD (dark green) spectra

[86] - Reproduced by permission of The Royal Society of Chemistry. The upper and lower

panels show α = 30◦ and 60◦, respectively, defined in Fig. 4.6.

the proposed structural models, which neglect the lattice mismatch to keep the unit cell

small and reduce the calculation cost. Ni atoms in the first (green), second (yellow) and

third (red) layers are designated as top, hcp and fcc sites, respectively. Carbon atoms are

above any Ni sites for top-hcp, top-fcc and hcp-fcc structures in Fig. 4.8, while one C-C

bond is above a Ni site and C atoms locate above between two any nonequivalent Ni sites

for bridge-top, bridge-hcp and bridge-fcc in Fig. 4.9. The earlier LEED result suggests

that the top-fcc structure is most preferable. After that, many studies have been done on

the basis of the top-fcc structure [86, 95, 98, 100]. The earlier density functional theory

(DFT) calculation support the LEED results and indicated that the top-fcc structure is

more stable than the top-hcp and hcp-fcc [103]. That calculation also suggested that two

different carbon atoms in an unit cell have opposite spin magnetic moments each other.

On the other hand, possibility of the bridge-top structure was discussed by using DFT

calculations [104]. The bridge-top structure provides the parallel spin polarization on

graphene carbon and Ni atoms at the Fermi energy, which agrees with spin polarized
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Figure 4.8: Structures of graphene/Ni(111) defined as (a) top-hcp, (b) top-fcc and (c)

hcp-fcc. The upper and lower panels show the top and side views of them, respectively.

Ni atoms in the first (green), second (yellow) and third (red) layers are designated as

top, hcp and fcc sites, respectively. The dashed lines show the correspondence between

carbon (black) and Ni sites. Reprinted figure with permission from [104] Copyright(2008)

by the American Physical Society.

Figure 4.9: Structures of graphene/Ni(111) defined as (a) bridge-top, (b) bridge-hcp and

(c) bridge-fcc. The dashed lines show the correspondence between a C-C bond and a

Ni site. Reprinted figure with permission from [104] Copyright(2008) by the American

Physical Society.
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metastable deexcitation spectroscopy measurements [105] Recently, DFT calculations

including van der Waals interaction has been performed: the top-fcc and bridge-top

structures are nearly degenerate [106, 107]. LEED, XPD, XPS and STM measurements

support the updated result and indicates the coexistence of the several structures [97,

106, 108]. Furthermore, a comprehensive DFT study on the partial density of state with

various structures shows that two nonequivalent carbons with the top-fcc and bridge-top

structures have antiparallel and parallel spin polarization each other, respectively, at the

Fermi energy [106]. This coincides with the previous calculated results [103, 105].

In this section, I calculate C K-edge XMCD spectra for graphene on Ni(111) by using

the theory described in the previous section. The SOI at Ni sites shows the dominant

contribution to the XMCD spectra.

4.4.2 Calculation

I employ the top-fcc and bridge-top structures as shown in Figs. 4.8 and 4.9 for calculation

clusters. Two nonequivalent carbon sites above the first and third layer Ni atoms in the

top-fcc structure are defined as C(top) and C(fcc), respectively. While, the carbon sites

C(hcp) (C(fcc)) in the bridge-top structure is located between the first and second (first

and third) layer Ni atoms viewed from the top. Distances between graphene and the

first Ni layers are set to 2.11 and 2.07 Å, and between the first and second Ni layers

are 1.98 and 2.00 Å in the top-fcc and bridge-top structures, respectively, obtained by

DFT calculations [106]. The lattice constant 3.52 Å is used for FCC Ni. Then, the Ni

interlayer distance bellow the second Ni layer is about 2.03 Å. The lattice constant of

graphene on Ni(111) is commensurate to Ni(111) surface for simplicity. Empty spheres

(ES) are put above the graphene to consider the surface potential. In the first ES layer,

the ES-C distance is the same as the C-C bond. Each ES interlayer distance is set to

the same as the one between the first ES layer and graphene. For MS calculations, the

cluster radii are about 10 Å, which is not enough to obtain the size convergence of the

calculated spectra for free-standing graphene systems [109]. Note that the requirement

of the huge cluster radius is particular for graphene because of its honeycomb structure

and long core hole lifetime of carbon. However, in the graphene on Ni system, the C-Ni

distance is close and may partially break the pure graphene symmetry, which would assist
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the cluster-size convergence. Thus, the cluster size convergence is interesting at the 10

Å radius. Moreover, qualitative discussion about effects of the scattering site SOI on

XMCD spectra could be available.

The each site potential and electron density to calculate XAS and XMCD spectra are

obtained by using the STUTTGART TB-LMTO-ASA program [90, 91] in the same way

as Sec. 4.3.1. The site potential VC at the absorbing carbon and its nearest carbon sites

in the system with a core hole is obtained by follows:

VC(gNi; c) =
VC(gNi)

VC(fg)
× VC(fg; c). (4.92)

The potential VC(gNi) and VC(fg) means the one in graphene on Ni and free-standing

graphene commensurate to the Ni(111) surface, respectively. The additional symbol c

represents the core hole. The potential at Ni, ES and farther C sites are chosen as the one

in graphene on Ni systems with no core hole. I have already checked that the core hole

effect on potential and electron density is important only on the absorbing site and the

first nearest neighbors in bulk Ni and free-standing graphene, respectively. The number

of vacuum (ES) and Ni layers in calculation slabs are 5 and 9 layers (about 7.5 and 20 Å),

respectively, as shown in Figs. 4.8 and 4.9. I employ a 36 × 36 × 2 k-point grid. For the

free-standing graphene calculation, the configuration of ESs are the same as graphene on

Ni surface, i.e. graphene sheets are sandwiched by ES layers.

4.4.3 Results & Discussion

Before analyses for XMCD spectra, I calculate the spin-resolved projected density of

states (PDOS) of carbon atoms and the first Ni layer in the top-fcc and bridge top-fcc

structural systems with the no core hole ground state, as shown in Figure 4.12. For

comparison, the total and p component of DOSs of free-standing graphene carbon are

also shown with no spin polarization. All the calculated results of graphene/Ni DOS

without Van der Waals interaction are similar to the reported calculation [106], indicating

that Van der Waals interaction largely influences only on structural optimization. The

calculated free-standing graphene DOS reproduce its linear energy-band dispersion near

EF . Every carbon atom has strong hybridization with Ni states at about 0.5 eV in Fig.

4.12. For the top-fcc, the carbon site C(fcc) has large spin polarization parallel to the
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2.11

1.24

1.98

2.03

C(top)

C(fcc)

Figure 4.10: Side (left, right) and top (center) views of the top-fcc structural model of

graphene on Ni(111) surface. The right figure shows the slab for the LMTO calculation.

The nonequivalent carbon and Ni atoms shown by red, orange and grey balls, respectively.

The ESs are represented by light green, light blue, blue and purple balls. The ES in

the graphene layer (light green) is beneath the second ES layer (blue). The interlayer

distances C-C and Ni-Ni near the surface are obtained from Ref. [106].

.

2.07

1.24

2.00

2.03

C(hcp)

C(fcc)

Figure 4.11: Side (left, right) and top (center) views of the bridge-top structural model

of graphene on Ni(111) surface in the same way of Fig. 4.10.

.
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Ni one at EF , whereas C(top) has hybridization states at about -2.5 eV alternatively.

Magnetic moments -0.01 and 0.006 µB on C(top) and C(fcc) are obtained, respectively.

The magnetic moment are estimated by the difference between majority and minority

spin electrons in the atomic sphere. The plus sign of magnetic moments are defined as

parallel to Ni one. The first, second and deeper layer Ni atoms have 0.12, 0.66 and 0.59

µB, respectively. The magnetic moment of deeper Ni layers is close to the calculated

and observed ones of FCC nickel (0.6070 and 0.6155 µB) [94]. For the bridge-top, both

C(hcp) and C(fcc) have the same DOS structure ,and spin polarization parallel to the

Ni one at EF in Fig. 4.12, which is consistent with the previous result [105]. The two

DOSs indicate that hybridization characters with Ni atoms are similar between C(hcp)

and C(fcc). Moreover, a sharp peak of free-standing graphene at -2.5 eV merges with

Ni states, and disperses for the bridge-top structure. Their magnetic moments -0.001

(C(hcp)) and -0.003 (C(fcc)) µB antiparallel to the Ni one are obtained though the

values are negligibly small. The first, second and deeper layer Ni atoms have 0.17, 0.60

and 0.57 µB, respectively, which shows the similar trend for the top-fcc case. By using

the potential which provide these calculated results, I calculate XMCD spectra.

Figure 4.13 shows calculated C K-edge XAS and XMCD spectra for the top-fcc and

bridge-top graphene/Ni systems with the incident X-ray angles α = 30 and 60◦. The

observed spectra [86] which normalized by the XAS spectra at about 292 eV (σ∗ peak)

also shown for comparison. The π∗ and σ∗ peaks of the observed XAS spectra at about

285 and 292 eV are assigned by the polarization (incident X-ray angle α) dependence.

The calculated spectra are shifted to adjust their σ∗ peak position, and normalized in

the same way as the observed ones. In Fig. 4.13, one notices the α dependence of the

calculated spectra similar to the observed ones. Incident circularly polarized X-rays with

α = 30◦ relatively has out-of-plane polarization compared with the X-rays with α = 60◦.

The out-of-plane polarization component mainly excites π∗ orbitals. Therefore, π∗ peaks

and components with 30◦ are larger than those with 60◦. In Fig 4.13, from α dependence,

I assign the calculated XAS spectra from 285 to 295 eV as π∗ states though this range is

larger than the observed one (from 285 to 290 eV). Top Ni atoms under carbon σ bonds

in the bridge-top structure hybridize with C pz orbital as well as C px,y orbitals which

form σ bonds. Since σ∗ and π∗ states merge, this hybridization results the weak π∗ peak
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Figure 4.12: The calculated spin-resolved PDOS of the carbon atoms and the first Ni

layer in the top-fcc and bridge-top structure. Energies are relative to the Fermi energy.

For comparison, the total and p component DOSs of free-standing graphene carbon are

also shown.
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at about 285 eV, the enhancement of peaks between the π∗ and σ∗ energy region, and

the strong α dependence at 294 eV for the bridge-top structure. On the other hand, this

dependence at 294 eV is negligible in the calculated top-fcc spectra. Top Ni atoms in the

top-fcc structure is under the C(top) sites, i.e. C(top) pz and Ni(top) 3d orbitals form a

strong bonding state as shown by the C(top) PDOS at about -2.5 eV in Fig. 4.12. Note

that XAS spectra does not correspond to the PDOS shown in Fig. 4.12 directly because

of its absence of a core hole. Furthermore, the large π∗ peak in C(fcc) XAS spectra well

corresponds to the observed one. For the observed XAS spectra, the α dependence of π∗

is large; however changes of the σ∗ peak is negligibly small. From these calculated and

observed α dependence, I conclude that the top-fcc structure is dominant in graphene/Ni

samples which show substantial XMCD intensity. This result consists with the findings

from STM images: the ratio of the top-fcc, bridge-top and top-hcp structure is about

65, 22 and 13 % for the reported sample [106]. Although the structural ratio, of course,

can be deviated by sample preparing conditions, the majority structure does not change

according to reports which determine the graphene-Ni interface distance [97, 99, 100].

The calculated spectra show strong oscillation, indicating the cluster size convergence is

not obtained by using at 10 Å cluster radii in spite of the close distance between graphene

and Ni surface. This implies that we should use larger clusters (∼ 25 Å indicated by

ref. [109]) even if a graphene sheet locates on other compounds for MS calculations.

Fortunately, calculated graphene XANES spectra by using FPMS with 10 Å cluster radii

showed similar π∗ and σ∗ peaks to those with 30 Å cluster radii [109], indicating that

main spectral features are possessed even for small cluster radii. The major spectral

difference for 30 Å cluster radii was the absence of spectral oscillations that are not

observed. If a cluster size is not sufficiently large, a photoelectron feels cluster edges

or boundaries which behave like walls of a quantum well. Then, unnatural oscillations

may be observed in calculated spectra with a small size cluster as some resonant states.

While, a strong spectral peak would be attributed to a resonant state, which is less

influenced by effects of cluster edges than non resonant states corresponding to flat or

smooth parts of spectra. Hence, calculated π∗ and σ∗ peaks may still survive even if the

cluster radius is 10 Å. Compared with calculations by using the MT approximation, the

FPMS calculated results for free-standing graphene improved π∗ and σ∗ peak positions
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and fine spectral shapes following above π∗ and σ∗ peaks. However, the MS calculations

with the MT approximation also provide us similar π∗ and σ∗ peaks to those calculated

by using FPMS schemes. Thus, we could discuss XAS and XMCD spectra for graphene

on Ni systems at π∗ and σ∗ peak energy positions by using the calculated results in this

thesis.

In Fig. 4.13, the observed XMCD spectra mainly show their intensity at the π∗ peak

energy, and rippled background. The calculated prominent π∗ peak of the XMCD spectra

absorbed at the C(fcc) site in the top-fcc structure show good agreement with the observed

one. While, one notices calculated XMCD spectral oscillations or dispersion shapes in

the π∗ energy region absorbed at the other carbon sites, which do not correspond to the

observed spectral structure. Thus, the C(fcc) site in the top-fcc structure has a dominant

contribution for XMCD spectra of graphene/Ni systems. This can be interpreted by the

hybridization of the C(fcc) pz orbital with Ni(top) d orbitals as shown by the PDOS

near the Fermi energy in Fig. 4.12. Since the C(fcc) site locates above the center of the

triangle consisted by three Ni(top) sites, the hybridized C(fcc) pz orbital could borrows

Ni 3dzx,zy orbital moments which provide the substantial XMCD intensity. For the other

carbon sites, the peak energy of the hybridized pz state deviates from the observed π∗

energy dut to their stronger hybridization with Ni 3d than the top-fcc C(fcc) one. This

results less importance of carbon sites except for the top-fcc C(fcc) for XMCD spectra.

XMCD spectra absorbed at the C(hcp) may be similar to those at the C(fcc) because

the local geometry of the C(hcp) and C(fcc) sites is similar. However, the configuration

ratio of the top-hcp structure is sufficiently lower than that of the top-fcc [106].

To investigate the origin of the calculated XMCD intensity, contribution of the SOI

at scattering sites to XMCD spectra is shown in Figure 4.14 with the total calculated

spectra. The scattering site SOI and total terms are represented by solid lines and

points, respectively. Because their terms are almost perfectly same, contribution of the

absorbing atom, i.e. carbon atoms can be neglected. Hence, the calculated XMCD

intensity is produced by the SOI at Ni sites. This indicates that the scattering-site

SOI has a dominant contribution to light-element XMCD spectra for systems in which

absorbing atoms surrounded by TM or heavier magnetic atoms.
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Figure 4.13: The calculated C K-edge XAS and XMCD spectra of graphene on Ni(111)

surface systems with the top-fcc and bridge-top structures. Desplayed angles 30 and 60 ◦

are the incident X-ray angles α relative to the surface as shown in Fig. 4.6. The observed

spectra are also shown for comparison [86]. All the XMCD spectra are multiplied by ten.
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Figure 4.14: The calculated XMCD spectra of total (points) and the scattering SOI term

(solid line) for the top-fcc and bridge-top structure with α= 30◦ and 60◦. The spectra

are multiplied by ten.

4.5 Conclusion

I derive the XMCD theory including the SOI at scattering sites, which was either ne-

glected or not studied deeply. The scattering-site SOI has substantial contribution to

calculated XMCD spectra for not only light atoms adjacent to TM atoms but bulk TM.

This is resulted by photoelectron scattering by the SOI and site potential at the same

time. On the other hand, the contribution of photoelectron scattering only by the SOI is

negligibly small in the same way as the previous result for MEXAFS. The inclusion of the

scattering-site SOI improves calculated results of BCC iron though scale factors are still

needed to compare the calculated XMCD spectra with the observed ones. For graphene
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on Ni surface systems, the SOI at Ni sites yields the calculated C K-edge XMCD inten-

sity. In addition, the absorption at the top-fcc C(fcc) site has dominant contribution to

the π∗ peak in C K-edge XAS and XMCD spectra. This conclusion is achieved by com-

bining XMCD and PDOS analyses indicating the hybridization of the carbon 2p orbital

with the Ni 3d ones. Therefore, both spectroscopic and electron structural approaches

are needed to fully understand complicated systems.





91

Chapter 5

Conclusion

In this thesis I investigated the applicability of XAS technique for RE doped GaN and a

graphene sheet on Ni surface as functional materials which include complicate structures,

such as impurities, vacancies, surface, interface, and light and heavy element complexes.

To extract information about local structure, I performed theoretical calculations by

using a MS theory mainly, and a multiplet theory partially.

RE L3- and L1-edge XANES spectra were measured for GaN:RE systems to explore

existence of nitrogen vacancies adjacent to doped RE ions. In addition, polarization-

dependent measurements were performed for GaN:Dy systems. I observed Dy L1-edge

XANES spectra for GaN:Dy for the first time as far as I know. The prominent pre-edge

peak in the L1-edge spectra indicates non inversion symmetry around doped Dy ion,

which has no discrepancy with the Dy ion occupying at a Ga site in GaN. The observed

spectra and their polarization dependences are analyzed with structural models which

include nitrogen vacancies. As a result, the large displacement of doped RE ions from

its occupied lattice site toward space created by nitrogen vacancies is not so prominent.

This indicates that the orbital mixing between RE and N, or Ga is substantial, and its

bonding characters does not change very much by the vacancies. On the basis of small

multiplet effects on XANES spectra of RE nitride, the band effects on XANES spectra of

GaN:RE spectra are dominant, indicating the itinerant character of RE d (and of course

s) electrons. Moreover, small structural difference of GaN:RE among the RE elements

suggests that various doped RE ions could be embedded in GaN without any singular

behaviors.
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The spectral polarization dependence is quite useful condition to judge which plausible

models are reasonable in addition to the spectral structure when we compare observed

spectra with calculated ones. This reduces errors of analyses of XANES spectra with ab-

initio calculations. From the polarization dependence analysis for the Ga-rich GaN:Dy

(solid solution phase), I reveal the anisotropy of the nitrogen vacancy position next to

doped RE ions: a Na site is more plausible than the Nc site if the vacancy exists. The

N-rich GaN:Dy spectra show smaller polarization dependence than those of the Ga-

rich ones, which could be explained by the segregation of RE nitride. It is known that

crystals grown under the N-rich condition have lower quality compared with the Ga-rich

or stoichiometric condition. Moreover, GaN:RE inherently prefers to dissolve to GaN

and RE nitride in terms of the thermodynamic stability. The segregation of RE nitride

therefore seems to be reasonable. Note that the N-rich GaN:Dy sample also has the solid

solution phase and includes a nitrogen vacancy adjacent to doped Dy ions.

The XRD profile of GaN:RE grown under the N-rich condition shows only a peak

assigned to the reflection from a GaN template. Two possibilities lay: the RE doped GaN

has the same XRD profiles as GaN, or negligible contribution. The concept of segregated

RE nitride could adapt to both the possibilities. The reduction of the amount of RE

ions in the solid solution by the segregation shift energies of the GaN:RE peak to GaN

template in according to the Vegald’s law, and also decrease its intensity. Moreover, the

segregation may make the crystal quality of the GaN:RE layer worse, which broadens the

XRD peak from the GaN:RE layer. One problem of the concept of the segregation is that

there are no report of the segregation of bulk RE nitride crystals by XRD and EXAFS

measurements. If RE nitride segregates as nanocrystals, its XRD peaks will be broadened

and its EXAFS oscillations suppressed. Then, these would be buried by signals of GaN or

the solid solution phase. In contrast, XANES spectra less suffer effects of Debye-Waller

factor compared with EXAFS spectra since the photoelectron wavenumber is relatively

low. This suggests that the contribution of nanocrystals of RE nitride to XANES spectra

would be survive. The volume ratio of RE nitride crystals with respect to total sample

layers is roughly estimated less than 0.7 % on the basis of XANES analyses. Note that I

neglected anharmonic effects enhanced by the nitrogen vacancy, which would displace the

doped RE ion toward the vacancy from its equilibrium position. Since I only measured
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the XANES spectra at room temperature, further experiments or theoretical studies are

required to consider such vibrational effects.

I also investigated the SOI effect of scattering sites on XMCD spectra within MS the-

ory in which the first order of the SOI as a perturbation is taken into account. The

scattering site SOI had not been studied in detail, and considered as negligible in accord-

ing to the previous report for MEXAFS. I modify the MS XMCD theory to include the

scattering-site SOI, and classify it in terms of processes of photoelectron scattering. As

a result, I found that the previous MEXAFS calculation neglected the single scattering

process in which the photoelectron is influenced by the SOI and site potential at the same

time. I confirm that the term neglected before has dominant contributions and improves

calculated results by Fe K-edge XMCD calculation. The other MS processes in the same

as the important single scattering one also show substantial contribution to the calcu-

lated XMCD spectra. This indicates that a site potential enhances the overlap between a

photoelectron and the SOI in a atomic sphere. I also calculated C K-edge XMCD spectra

of graphene on Ni(111) surface systems to show the importance of surrounding magnetic

atoms contributions for XMCD on light elements. I found that graphene on Ni(111)

systems still require huge cluster radii (∼ 30 Å) for well converged MS calculations, in

spite of their close interlayer distance with respect to the physisorption. However, major

spectral features could be discussed by using relatively smaller cluster radii(∼ 10 Å). The

calculated XAS and XMCD spectra show that the absorption at the C(fcc) site in the

top-fcc structure well agree with the observed ones. By dividing the contribution to C

K-edge XMCD spectra into the atomic and scattering terms, I reveal that the scattering-

site SOI at Ni atoms dominates the calculated XMCD intensity. Combining with PDOS

results, I conclude that the hybridization of the top-fcc C(fcc) pz orbital with the Ni(top)

dzx,zy orbitals is essential to yield the observed XMCD spectra. This suggests that XAS

and XMCD analyses can be used for the confirmation of the theoretical prediction such

as calculated PDOSs. However, for the absorption of light elements, the surrounding

atoms such as TM atoms contribution to XMCD spectra should be checked carefully.
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Appendix A

Site t-matrix expansion

The total T-matrix describes the infinite scattering by the total potential.

T = V + V g0T = V + V g0V + V g0V g0V + V g0V g0V g0V + · · ·

We assume that the total potential V (r) can be represeted by the summation of each site

potential vi(ri) (ri = r−Rı).

V (r) =
∑
i

vi(ri),

T =
∑
i

vi +
∑
ij

vig0vj +
∑
ijk

vig0vjg0vk + · · · .

The indice i, j, k in the summation include same sites. The site t-matrix tα at α site is

defined by

tα = vα + vαg0vα + vαg0vαg0vα + · · · = vα + vαg0tα.

To show the site t-matrix expansion, we define some tools as follows:

α =
∑
α

vα , αα =
∑
α

vαg0vα , αβ =
∑
α ̸=β

vαg0vβ = βα,

αββ =
∑
α̸=β

vαg0vβg0vβ = βαα , αβγ =
∑

α̸=β ̸=γ

vαg0vβg0vγ,

αβα′ =
∑
αα′

∑
β( ̸=α,α′)

vαg0vβvα′ = αβα + αβγ = αβ(α + γ).

The same characters indicate to take same summation, while the different characters mean

individual summations with no same indice. The relation between with and without prime
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is individual summations allowed to take same indice. This rule is adopted for higher

oreder characters. When we consider the terms in the total T -matrix up to the forth

order of V , ∑
i

vi = α,

∑
ij

vig0vj = αα + αβ (= αα′),

∑
ijk

vig0vjg0vk = ααα + αβγ + (ααβ + αβα + αββ)

= ααα + (ααβ + αββ) + αβα′,∑
ijkl

vig0vjg0vkg0vl = αααα + αβγδ + (αααβ + ααβα + αβαα + αβββ)

+ (ααββ + αββα + αβαβ)

+ (αβγγ + αββγ + ααβγ + αβγβ + αβαγ + αβγα)

= αααα + (αααβ + αβββ + ααββ)

+ (ααβα′ + αβα′α′ + αββα′) + αβα′ᾱ′,

where

αβα′ᾱ′ = αβγ(α + β + δ) + αβα(β + γ).

The charater ᾱ′ include same sites with α and β but not with α′. We therefore obtain

the T -matrix up to the forth order.

T (4) = {α + αα + ααα + αααα} + {(α + αα)(β + ββ) + αααβ + αβββ}

+ {αβα′ + ααβα′ + αβα′α′ + αββα′} + {αβα′ᾱ′}

This represetation is expanded to the infinite order.

T = (α + αα + · · · ) + (α + αα + · · · )(β + ββ + · · · )

+ (α + αα + · · · )(β + ββ + · · · )(α′ + α′α′ + · · · )

+ (α + αα + · · · )(β + ββ + · · · )(α′ + α′α′ + · · · )(ᾱ′ + ᾱ′ᾱ′ + · · · ) + · · ·

=
∑
α

tα +
∑
α

tαg0
∑
β( ̸=α)

tβ +
∑
α

tαg0
∑
β(̸=α)

tβg0
∑

α′( ̸=β)

tα′

+
∑
α

tαg0
∑
β(̸=α)

tβg0
∑

α′( ̸=β)

tα′g0
∑

ᾱ′( ̸=α′)

tᾱ′ + · · · .
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The total T -matrix is expressed by the site t-matrix t describing inner-atomic infinite

scattering and the free propagator g0 between different sites.
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Appendix B

Spin-orbit interaction

The Pauli matrix σ has the relationship between arbitrary vectors A and B.

(σ ·A)(σ ·B) = A ·B + iσ · (A×B) (B.1)

By using this relation, Q(V − ε)Q in eq. (2.14d) becomes:

Q =
σ · p
2c

, (B.2)

p = −i∇, (B.3)

Q(V − ε)Q =
1

4c2
{(σ · p)V (σ · p) − ε(σ · p)2} =

1

4c2
{(σ · p)V (σ · p) − εp2} (B.4)

= − 1

4c2
{(σ · ∇)V (σ · ∇) − ε∇2} (B.5)

= − 1

4c2
{(σ · ∇V )(σ · ∇) + V (σ · ∇)2 − ε∇2} (B.6)

= − 1

4c2
{∇V · ∇ + iσ · (∇V ×∇) + V∇2 − ε∇2} (B.7)

= − 1

4c2
{∇V · ∇ + (V − ε)∇2} +

1

4c2
σ · (∇V × (−i∇)) (B.8)

= − 1

4c2
{∇V · ∇ + (V − ε)∇2} +

1

4c2
σ · (∇V × p). (B.9)
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We assume the total potential V as superposition of spherical (muffin-tin) site potential

v.

∇V (r) =
∑
α

∇vα(rα) =
∑
α

∇αvα(rα) =
∑
α

1

rα

dv(rα)

drα
rα, (B.10)

1

4c2
∇V (r) × p =

1

4c2

∑
α

1

rα

dvα(rα)

drα
rα × pα =

1

4c2

∑
α

1

rα

dvα(rα)

drα
Lα (B.11)

=
∑
α

ξα(rα)Lα, (B.12)

ξ(r) ≡ 1

4c2
1

r

dv(r)

dr
. (B.13)

The last term of Q(V −ε)Q describes the spin-orbit interaction. The other terms are not

important for XMCD intensity.

Q(V − ε)Q ∼
∑
α

ξασ · Lα =
∑
α

δvα, (B.14)

δvα ≡ ξασ · Lα = ξα

 Lα
z Lα

−

Lα
+ −Lα

z

 , (B.15)

Strictly, the site potential is 2×2 matrix in spinor representation. In the present thesis,

the potential v is assumed diagonal in the spin space.

vα =

 v+α 0

0 v−α

 , ξα =

 ξ+α 0

0 ξ−α

 , δvα =

 ξ+αL
α
z ξ+αL

α
−

ξ−αL
α
+ −ξ−αL

α
z

 (B.16)

In addition, the operator Q has another representation multiplied by (σ · r).

Q(σ · r) =
1

2c
(σ · p)(σ · r) =

1

2c
((p · r) + iσ · (p× r)) (B.17)

=
1

2c
(−3i + (r · p) − iσ · (r× p)) (B.18)

=
1

2c
(−3i + (r · p) − iσ · L) (B.19)

Only the last term contributes to XMCD intensity. Then,

Q(σ · r) ∼ − i

2c
σ · L. (B.20)

This relation is important for the XMCD intensity from T12 and T21, which include the

small compotent χc.
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Appendix C

Expansion of g with gA and/or gB

The propagator gA includes the infinite inner scattering at the A site, respectively.

gA = g0 + g0tAg0 = g0 + g0vAg0 + g0vAg0vAg0 + · · ·

By using these propagator and the site T -matrix expansion, the full propagator g

involved the infinite scattering by the total potential V becomes:

g = g0 + g0V g = g0 + g0
∑
α

vαg = g0 + g0Tg0

(
̸= g0 + g0

∑
α

tαg0

)
= g0 + g0

∑
α

tαg0 + g0
∑
β(̸=α)

tβg0
∑
α

tαg0 + g0
∑
γ(̸=β)

tγg0
∑
β(̸=α)

tβg0
∑
α

tαg0 + · · ·

= g0 +

g0tAg0 + g0
∑
α(̸=A)

tαg0

+

g0
∑
β(̸=A)

tβg0tAg0 + g0
∑
β( ̸=α)

tβg0
∑
α( ̸=A)

tαg0


+

g0
∑
γ(̸=β)

tγg0
∑
β( ̸=A)

tβg0tAg0 + g0
∑
γ(̸=β)

tγg0
∑
β(̸=α)

tβg0
∑
α(̸=A)

tαg0

+ · · ·

= (g0 + g0tAg0) + g0
∑
α(̸=A)

tα(g0 + g0tAg0) + g0
∑
β( ̸=α)

tβg0
∑
α( ̸=A)

tα(g0 + g0tAg0) + · · ·

= gA + g0
∑
α(̸=A)

tαgA + g0
∑
β(̸=α)

tβg0
∑
α(̸=A)

tαgA + · · · , (C.1)

or

g = gA + gA
∑
α(̸=A)

tαg0 + gA
∑
β(̸=A)

tβg0
∑
α(̸=β)

tαg0 + · · · . (C.2)

These expansions terminated by g0 and gA is useful for photoemission phenomena. For
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X-ray absorption spectra, we terminate each side of g by gA and/or gB.

g = gA + g0
∑
α(̸=A)

tαgA + g0
∑
β(̸=α)

tβg0
∑
α(̸=A)

tαgA + · · ·

= gA +

g0tBgA + g0
∑

α(̸=A,B)

tαgA


+

g0tBg0
∑

α(̸=A,B)

tαgA + g0
∑

β(̸=α,B)

tβg0
∑
α(̸=A)

tαgA

+ · · ·

= gA + g0tBgA(1 − δAB) + (g0 + g0tBg0)
∑

α(̸=A,B)

tαgA

+ (g0 + g0tBg0)
∑

β(̸=α,B)

tβg0
∑
α(̸=A)

tαgA + · · · . (C.3)

Therefore, we obtained the expansion of g propargating from A to B.

g = gA + gBvBgA(1 − δAB) + gB
∑

α(̸=A,B)

tαgA + gB
∑

β(̸=α,B)

tβg0
∑
α(̸=A)

tαgA + · · · (C.4)

= gA + gAvBgB(1 − δAB) + gA
∑

α( ̸=A,B)

tαgB + gA
∑

β(̸=α,A)

tβg0
∑

α( ̸=B)

tαgB + · · · , (C.5)

where

g0tBgA = g0vBgA + g0vBg0vBgA + · · · = (g0 + g0vBg0 + · · · ) vBgA

= gBvBgA (C.6)

These expansion with A ̸= B is useful to calculate XMCD intensity arisen from the SOI

on scatterer sites. When we calculate XANES spectra, the expansion with A = B is only

needed.

g = gA + gA
∑
α(̸=A)

tαgA + gA
∑

β( ̸=α,A)

tβg0
∑
α(̸=A)

tαgA + · · · . (C.7)
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