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ABSTRACT 

Aims: We evaluated whether pathophysiological events in the brain in sepsis are mediated 

by ET-1/ETB receptor axis. 

Main methods: We prepared raw fecal fluid from soft stool of mice. Mice were randomly 

divided into three groups: pre-PBS + raw fecal fluid group (Sepsis, easy stool method 

(ESM) group); pre-BQ788 + raw fecal fluid group (BQ group); and pre-BQ788 + PBS 

group (PBS group). According to each experimental condition, PBS or BQ788 was 

intravenously injected into mice prior to intraperitoneal administration of fecal fluid or 

PBS. All groups of mice were sacrificed at 8 h after administration, and then brain samples 

were prepared. 

Key findings: In the ESM group, an increase of apoptotic neuroblasts was demonstrated in 

the subgranular zone of the hippocampal dentate gyrus, enhanced expression of c-FOS was 

observed in arginine-vasopression-containing neurons in the hypothalamic paraventricular 

nucleus, and various cytokines involving TNF-α were upregulated in the brain, compared 

with those in the PBS group. In the region corresponding to their findings, the number of 

reactive microglia and vascular leakage were markedly increased. BQ788 inhibited the 

induction of c-FOS expression, neuroblast apoptosis, cytokine upregulation and reactive 



microglia without affecting vascular leakage. 

Significance: We demonstrated that BQ788 could protect the brain from the following 

sepsis-associated pathophysiological output: neural cell death, inflammatory response and 

the Hans Selye’s environmental stress reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

Sepsis is a systemic inflammatory response that mainly results from bacterial infection 

(Bone et al. 1997; Levy et al. 2001). To date, severe sepsis and septic shock are still the 

most common cause of death in adult intensive care units, despite advances in critical care 

medicine (Moreno et al. 2008). It is therefore now more important to elucidate the 

mechanism of sepsis than to develop further effective treatment for it. 

It has been reported that endothelin (ET)-1 is associated with severity of 

sepsis/endotoxemia (Pittet et al. 1991; Eakes et al. 1997). Likewise, nonselective ET 

receptor antagonist attenuated organ injury, and decreased mesenteric blood flow in 

endotoxemia/cecal ligation and puncture (CLP), which has been widely accepted as an 

animal model of sepsis (Erdem et al. 2007). In a neonatal sepsis model, blockade of ETA 

attenuated the inflammatory response and prolonged survival time (Goto et al. 2010). On 

the other hand, it is suggested that not ETA but ETB upregulated under polymicrobial septic 

condition plays a key role in alteration of hepatic hemodynamics (Kim et al. 2004; Eum et 

al. 2007). Likewise, nonselective ETA/ETB antagonist but not ETA antagonist markedly 

decreased the mortality rate of LPS-treated rats, and upregulation of both ET-1 and ETB in 

the heart of LPS-treated rats was observed, whereas ETA was markedly downregulated in 



the heart, lung and liver of LPS-treated rats, suggesting a crucial role of ETB in the 

pathogenesis of sepsis (Ishimaru et al. 2001). These previous reports tempt us to consider 

the possibility that ETB rather than ETA might play the pathophysiological role in 

endotoxemia. 

Sepsis-associated encephalopathy (SAE), a global cerebral dysfunction induced by the 

systemic response to inflammation and infection, is associated with increased morbidity 

and mortality (Ziaja. 2013). In patients with sepsis, patients with an acutely altered mental 

status due to sepsis had a higher mortality (49%) than patients with normal mental status 

(26%), indicating that SAE can lead to a 2-fold increase in the risk of death (Sprung et al. 

1990). As a plausible scenario of SAE development, the following events are thought to 

occur sequentially: cerebral endothelial activation starts an inflammatory process by 

releasing inflammatory mediators or by leading inflammatory mediators into the 

parenchyma through the impaired blood-brain barrier (BBB); and inflammatory mediators 

affect cellular metabolism and activity of various types of cells resulting in pathologic 

abnormalities that range from alterations of neurotransmission to apoptosis (Sharshar et al. 

2010). In the sequence of events, activated microglia is hypothesized to play a pivotal role 

in neuroinflammation leading to delirium (van Gool et al. 2010). However, the underlying 



pathophysiology in SAE is still not fully understood. In addition, the correlation between 

SAE and ET/ETR signaling has never been demonstrated.  

In the central nervous system (CNS), ETB is predominantly expressed in astrocytes and 

microglias (Ozawa et al. 1997; Ehninger and Kempermann 2008). Glial cells are strongly 

related to inflammatory response in the CNS via various functions such as 

antigen-presenting capacity, production of proinflammatory cytokines, and maintenance of 

the blood-brain barrier (Yuan et al. 2010). These findings suggest that the ETB-mediated 

signal could participate in inflammatory brain diseases, and that blockade of ETB may 

restore disorder of brain function induced by inflammation. 

Here, we investigated whether BQ788, an ETB-selective antagonist, inhibits 

pathophysiological changes in the brain in response to sepsis, focusing on output of SAE, 

leakage of BBB, activation of glial cells, apoptosis of brain stem/progenitor cells and 

induction of cytokines in the brain. 

 

MATERIALS AND METHODS 

Mice 

Male C57BL/6J mice were purchased from Clea Japan (Tokyo, Japan). We treated 



8~10-week-old mice as subjects, and 10~12-week-old mice as stool donors. Animals were 

housed in the Animal Resource Facility at Chiba University under pathogen-free 

conditions and cared for according to the animal care guidelines of Chiba University. The 

studies were performed according to an animal protocol approved by the Committee of 

Animal Welfare of Chiba University. 

Induction of sepsis 

The intestine including the cecum from donor mice was excised, and soft stool was 

extracted in phosphate-buffered saline (PBS). The extracted stool was centrifuged at 500 g 

for 5 min, and the resulting supernatant was diluted with PBS to obtain turbidity of 0.15 at 

OD600. We have confirmed that intraperitoneal (i.p.) injection of 300 µl of stool fluid can 

induce sepsis in mice, with a pathological profile close to the common sepsis model, CLP 

(Dejager et al. 2011). Colony forming units of 300 µl of stool fluid were 7 x 10
5
/24 h and 

1.7 x 10
7
/24 h under aerobic condition and anaerobic condition, respectively. By an 

analysis of genomic 16S rRNA sequences of each colony randomly picked up, the 

presence of Bacillus, Bacteroides, Escherichia, Eubacterium, Lactococcus, Lactobacillus, 

Proteus and Parabacteroides bacteria was confirmed, indicating that the stool fluid 

contains at least aerobic Gram-negative organisms leading to acute physiological features 



of sepsis in human peritonitis (Parker and Watkins. 2001). Likewise, a comprehensive 

investigation of plasma cytokines/chemokines by western blot (WB) array indicated that 

stool fluid induces a cytokine storm in peripheral blood. Furthermore, all mice died within 

24 h of stool fluid injection, indicating that our ESM induces a severe sepsis. (Naito et al. 

2013; Manuscript in preparation). To evaluate the effect of BQ788 on the brain in sepsis, 

mice were divided into three groups: PBS group, intravenous (i.v.) injection of 500 µl 

BQ788 (10 µg/mouse) 15 min prior to i.p. injection of 300 µl PBS; ESM group, i.v. 

injection of 500 µl PBS 15 min prior to i.p. injection of 300 µl stool fluid; and BQ group, 

i.v. injection of 500 µl BQ788 (10 µg/mouse) 15 min prior to i.p. injection of 300 µl stool 

fluid. Mice were sacrificed after 8 h. We confirmed that an i.v. injection of BQ788 alone 

affects neither plasma levels of cytokines/chemokines nor brain histology under the resting 

state. 

Immunofluorescent study of brain sections 

After fixation followed by dehydration, the brains were frozen in Tissue Tek OCT 

compound (Sakura Finetek, Torrance, CA). Freshly cut brain sections (30 μm) were 

subjected to reaction with rabbit anti-c-Fos antibody (Merck&Co., Inc., New Jersey), 

mouse anti-AVP antibody (Santa Cruz Biotech, Santa Cruz, CA), goat anti-doublecortin 



(DCX) antibody (Santa Cruz Biotech), rabbit anti-cleaved/active caspase 3 antibody (Cell 

Signaling Technology, Framingham, MA), rabbit anti-ionized calcium binding adaptor 

molecule 1 (Iba1) antibody (WAKO, Tokyo, Japan) or mouse Cy3-conjugated anti-glial 

fibrillary acidic protein (GFAP) antibody (Sigma-Aldrich, St. Louis, MO). Sections reacted 

with anti-c-Fos, AVP, DCX, cleaved/active caspase 3 or Iba1 antibody were further stained 

with an appropriate fluorescein-conjugated second antibody. Nuclei were stained with 

4’6-diamino-2-phenylindole (DAPI). In all experiments, coronal sections fitting to the 

same atlas images from each group (PBS, ESM and BQ; 6 mice/each group) were 

subjected to immunofluorescent study and observed under a fluorescence microscope 

(Axio Imager A2, Carl Zeiss, Oberkochen, Germany). In some experiments, fluorescence 

profiles were analyzed by an Image Gauge V4.21 (a densitometry software, FUJIFILM, 

Tokyo, Japan) to quantify the fluorescence intensity of Iba1-LI/Iba1
+
 cell or 

GFAP-LI/GFAP
+
 cell. 

Detection of ET-1-like immunoreactivity in the brain 

According to a previous report (Yoshimi et al. 1991), the fraction containing ET-1 was 

prepared from the brain at 8 h of PBS and ESM groups (3 mice/each group). After 

concentrating by a SEPAK C18 column (Sep-Pak® Waters Co., Milford, MA), the 



resulting samples were lyophilized and dissolved in PBS. Then, the aliquots were subjected 

to an Endothelin-1 ELISA kit (Enzo Life Sciences, Inc., Farmingdale, NY) for detection of 

ET-1-like immunoreactivity (LI). 

Detection of cerebral vascular leakage 

The fluorescein-conjugated dextran (FITC-dextran, Sigma-Aldrich) of 10-kDa average 

molecular weight was used as the permeability tracer. The FITC-dextran solution (250 µl 

of 10 mg /ml in PBS) was intravenously injected into mice from the caudal vein 15 min 

prior to the treatment of each group. At a designated time, mice were intracardially 

perfused with PBS, and the brains were dissected out. After fixation followed by 

dehydration, freshly cut brain sections (30 μm) were observed under a fluorescence 

microscope. The resulting fluorescence profile of section was analyzed by an Image Gauge 

V4.21 to quantify the fluorescence intensity of FITC-dextran in each section. 

Expression of cytokines in the brain 

Mice at 8 h of each group were intracardially perfused with PBS, and the brains were 

dissected out. A 3 mm-thick coronal slice (-0.6 mm to bregma ~ +2.4 mm to bregma, 

covering the specific sites of brain where inflammation-associated pathophysiological 

features were observed) was prepared from each brain. After removing the cortex, the slice 



was homogenized in the tissue lysis buffer (Tokuhara et al. 2010) and centrifuged at 9000 g 

for 15 min at 4˚C. The resulting supernatant was used as a protein sample. The mixture 

(250 + 250 µg protein) of two samples from each group was subjected to Proteome Profiler 

Mouse Cytokine Array Kit (ARY 006, R&D systems, Inc., Minneapolis, MN). The array 

was performed twice according to the manufacturer’s instructions. We confirmed the 

reproducibility of changes in expression of cytokines under each condition (PBS, ESM and 

BQ). Then, each cytokine signal was normalized to the positive internal control 

included in the array membrane by using an Image Gauge V4.21. 

Statistical analysis 

Data are expressed as mean ± S.E.M. Statistical analysis was conducted using Graphpad 

Prism Version 6 (GraphPad Software Inc., San Diego, CA). Statistical significance was 

determined by Student’s t test or analysis of variance (ANOVA) followed by Tukey test, 

and p values < 0.05 were considered to be significant. 

 

 

RESULTS  

Elucidation of initial encephalopathic events induced by ESM 



To elucidate whether ESM induces histopathological changes in the brain, we first 

investigated profiles of Iba1
+
 microglia or GFAP

+
 astrocyte in the brain. As shown in Fig. 

1A, an immunoreactivity of Iba1 in the brain from the ESM group specificically increased 

in the dentate gyrus (DG) of the hippocampus, the thalamus and the hypothalamus 

compared with that from the PBS group. An increase in immunoreactivity of GFAP in the 

ESM group was observed in the corresponding area where Iba1-LI increased. Under these 

situations, ET-LI in the brain was significantly elevated by ESM (Fig. 1B). As the 

breakdown of BBB is one of typical events in SAE, a time-dependent vascular leakage was 

monitored by FITC-dextran. As shown in Fig. 1C, ESM induced the breakdown of BBB in 

the hippocampus within 1 h. Then, to address to whether ET-1/ ETB system is involved in 

the inflammation-associated changes in the brain, effect of BQ788 on ESM-induced 

pathophysiological changes in the specific sites was elucidated. A single i.v. injection of 

BQ788 was employed in the present study because the delivery of BQ788 to the brain 

parenchyma through the impaired BBB was expected (Fig. 1C). Likewise, it has been 

demonstrated that a single i.v. injection of BQ788 could exert its inhibitory effect at least 

for 5 h (Piechota-Polañczyk and Gorąca. 2012). 

ESM-induced pathophysiological changes in the DG 



As shown in Fig. 2A, ESM markedly induced both Iba1- and GFAP-LI in the hilus of the 

hippocampal DG compared with the case of the PBS group. Administration of BQ788 

suppressed the ESM-induced Iba1- and GFAP-LI. Quantitative analyses showed that the 

number and the fluorescent intensity/cell of Iba1
+
 cells and GFAP

+
 cells were significantly 

increased by ESM. These parameters were significantly BQ788 treatment-sensitive (Fig. 

2B & C). In such situations, active caspase 3
+
DCX

+
 cells were typically observed in the 

subgranular zone (SGZ) of the hippocampal DG in the ESM group but not the PBS group, 

which was inhibited by BQ788 treatment (Fig. 2D). Changes in the number of active 

caspase 3
+
DCX

+
 cells in the three groups are shown in Fig. 2E. On the other hand, the 

intensity of FITC-dextran in the hippocampus in the ESM group was markedly increased 

compared with that in the PBS group, which was not suppressed by BQ788 treatment (Fig. 

2F). 

ESM-activated neuroendocrine cells in the paraventricular nucleus of the hypothalamus 

Typical profiles of c-FOS-LI observed in the paraventricular nucleus (PVN) of the 

hypothalamus in three groups were shown in Fig. 3A. The marked induction of c-FOS by 

ESM was significantly inhibited by BQ788 treatment (Fig. 3B). Most of c-FOS-LI induced 

by ESM were overlapped with AVP-LI in the PVN of the hypothalamus (Fig. 3C). In the 



corresponding areas, the number of Iba1
+
 and GFAP

+
 cells was increased by ESM, which 

was sensitive to BQ788 treatment (Fig. 3D). BQ788 did not affect ESM-induced 

impairment of the BBB, the same as the case for the hippocampus (Fig. 3E). 

ESM-induced expression of cytokines in the brain 

To elucidate the relationships between the inflammation-associated pathophysiological 

output and inflammatory mediators, WB array analysis of cytokines in the specific sites of 

the brain was performed. Typical changes in expression of cytokines in three groups were 

shown in Fig. 4A, ESM obviously upregulated the expression of various cytokines, which 

was mostly sensitive to BQ788 treatment. A densitometric analysis of two experiments 

revealed that expression of 13 proteins exhibiting over 2-fold induction by ESM was 

reduced more than 30% by BQ788 treatment. Those 13 proteins’ names were indicated 

with the correct location in the membrane map (Fig. 4A), and each signal expressed as an 

average intensity of two experiments was shown in Fig. 4B. 

 

DISCUSSION 

Sepsis is associated with marked brain inflammation, and the resulting brain dysfunction 

including neuronal apoptosis and neuroendocrine system damage affects sepsis-induced 



organ dysfunction in a positive feedback manner (Sharshar et al. 2005). However, 

sepsis-associated apoptosis of brainstem/progenitor cells has not been clarified. Likewise, 

the correlation between the neuroendocrine cells-mediated hypothalamic-pituitary-adrenal 

(HPA) axis, a part of Hans Selye’s environmental stress reaction, and sepsis remains to be 

elucidated. Furthermore, the involvement of the ETB-mediated signal in these 

sepsis-associated events has never been investigated. In the present study, we clearly 

showed that sepsis-associated encephalopathic events such as an increased number of 

reactive microglia and induction of various proinflammatory mediators could be regulated 

by ET-1/ETB axis in our ESM model mice. In particular, among the ESM-induced 

cytokines sensitive to BQ788 (Fig. 4B), TNF-α in concert with activated microglia plays a 

crucial role in the development of brain dysfunction after systemic infection (van Gool et 

al. 2010; Clark et al. 2010). In addition, we also found that ESM increased the number of 

active caspase 3
+
DCX

+
 cells in the SGZ and c-FOS

+
AVP

+
 cells in the hypothalamic PVN 

in the areas where an increase in both reactive microglias and astrocytes were observed. 

Furthermore, those events were significantly suppressed by BQ788. 

The SGZ as well as subventricular zone (SVZ) is recognized as the major source of new 

neurons in the adult brain (Burtrum and Silverstein 1994). A sepsis-induced increase of 



neurogenesis in the SVZ but not SGZ has been shown (Bakirci et al. 2011). This finding 

suggests that sepsis may not affect either apoptosis or neurogenesis in the SGZ, 

considering the context of apoptosis and neurogenesis in the adult brain (Chambers et al. 

2004). In our sepsis model, however, typical inflammation-associated pathophysiological 

features were observed in the hippocampal DG. Then, active caspase 3
+
DCX

+
 cells in the 

SGZ were evaluated. Caspase 3, which is often activated in the apoptotic pathway, is a 

reliable marker for apoptotic cells (Maurya et al. 2013). DCX is a microtubule-associated 

protein expressed by neuronal precursor cells and immature neurons in embryonic and 

adult cortical structures, indicating that DCX is a marker for neuroblasts (Gleeson et al. 

1998). Hence, the changes in number of active caspase 3
+
DCX

+
 cells in three groups (PBS, 

ESM and BQ) suggest that the ETB signal mediates sepsis-induced neural progenitor 

apoptosis in the SGZ. Apoptotic mediators for neural stem or progenitor cells in the 

hippocampus under pathophysiological conditions remain to be elucidated. It has reported 

that LPS-induced apoptosis in hippocampus-derived neural stem cells could be protected 

by imipramine, a tricyclic antidepressant drug, through upregulation of brain-derived 

neurotrophic factor (BDNF) (Peng et al. 2008). Likewise, the administration of imipramine 

to maternal deprivation stress model rats significantly suppressed the levels of TNF-α 

http://en.wikipedia.org/wiki/Microtubule
http://en.wikipedia.org/wiki/Neurons


having a counter effect on BDNF in the serum and cerebrospinal fluid of rats (Réus et al. 

2013). In line with these findings, TNF-α may be a prominent candidate for the neural 

progenitor apoptosis in the SGZ. 

The HPA axis is activated during bacterial and viral infections (Webster and Sternberg 

2004). Expression of c-FOS is often used as a marker of neuronal cell activation (Kovács 

1998). Our finding that ESM-induced c-FOS expression was mostly overlapped with AVP
+
 

cells in the hypothalamic PVN strongly suggest the ESM-induced activation of 

neuroendocrine cells (Harbuz. 2002). The relationships between cytokines and HPA axis 

activation are well defined. In particular, IL-1α/β leads to a potent and prolong activation 

of HPA axis, and TNF-α also plays an activator for HPA axis (Dunn. 2000). The 

ESM-induced IL-1α and TNF-α expression sensitive to BQ788 suggest that the ET-1/ETB 

system-upregulated IL-1α and TNF-α might affect HPA axis (Figs. 3 & 4B). 

Monitoring BBB function by FITC-dextran showed that the cerebral vascular leakage was 

induced at least from 1h to 8 h after ESM application (Figs. 1C, 2F & 3E). The 

ESM-induced BBB breakdown was observed in the corresponding areas where the 

inflammation-associated pathophysiological output. However, BQ788 can block neural 

progenitor cell death and HPA axis activation associated with inflammatory changes in the 



brain parenchyma in response to sepsis without affecting sepsis-induced impairment of the 

BBB. Previous report has clearly demonstrated that not ETA but ETB on endothelial cells 

plays a crucial role in the impairment of BBB function in concert with endogenous ET-1 

(Reijerkerk ei al. 2012). The BQ788-insensitive ESM-induced BBB breakdown in the 

present study may be explained by the finding that a high concentration of BQ788 is 

needed to express its inhibitory effect on BBB damage compared with the case of ETB 

shRNA (Reijerkerk ei al. 2012) or by the possibility that ESM-induced insult in BBB may 

be far beyond the effect of BQ788. In any case, our finding that sepsis-associated various 

proinflammatory mediators in the brain was clearly sensitive to BQ788 regardless of the 

state of BBB suggest that ET-1/ETB-mediated CNS inflammation might be independent of 

systemic cytokines. This notion is supported by a previous report that TLR4 function in 

CNS-resident cells, independent of systemic cytokine effects, is required for sustained 

CNS-specific inflammation during endotoxemia (Chakravarty and Herkenham. 2005). 

Under our current experimental condition of ESM, treatment of mice in sepsis with BQ788 

could not increase the survival rate of mice. As a next step, to evaluate the possibility that 

BQ788 is used for treatment of sepsis, an electroencephalographic study and a survival rate 

analysis are needed under a moderate condition controlling the insult intensity of ESM. 



 

CONCLUSION 

We newly demonstrated that ETB-mediated signaling participates in pathophysiological 

features of SAE. 
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FIGURE LEGENDS  

Figure 1 ESM-induced pathophysiological output in the brain. A) Iba1-LI and GFAP-LI in 

the PBS and ESM groups. Coronal sections fitting to the same atlas images from each 

group (8 h after treatment) were immunostained with anti-Iba1 (green) and anti-GFAP 

(red). All sections were stained with DAPI (blue). Arrow heads indicate matching areas 

between two groups. Similar results were obtained in independent experiments (n=6). B) 

ESM induces ET-1 expression in the brain. The brain from each group (8 h after treatment) 

was subjected to ET-1 extraction and concentration followed by EIA. Data are shown as 

mean with S.E.M (n=3). *P < 0.05 (Student’s t test). C) ESM induces cerebral vascular 

leakage. Hippocampi of coronal sections fitting to the same atlas images from the 

FITC-dextran-loaded brains of each group (indicated time after treatment) were observed 

under a fluorescence microscope. The fluorescence intensity of FITC was analyzed by a 

densitometer. Data are shown as mean with S.E.M (n=4). *P < 0.05 (ANOVA followed by 

Tukey test). LV, lateral ventricle; D3V, dorsal third ventricle; 3V, third ventricle. 

 

Figure 2 ESM-induced pathophysiological output in the hippocampal DG. A) Typical 

profile of Iba1
+
 and GFAP

+
 cells in the DG in three groups (PBS, ESM and BQ788). 



Coronal sections fitting to the same atlas images from each group (8 h after treatment) 

were immunostained with anti-Iba1 (green) and anti-GFAP (red). All sections were stained 

with DAPI (blue). B) The number of cells expressing Iba1 or GFAP in the hilus of the DG 

in three group. Data are shown as mean with S.E.M (n=6). *P < 0.05 (ANOVA followed 

by Tukey test). C) The intensity of Iba1-LI/Iba1
+
 cell and GFAP-LI /GFAP

+
 cell in the 

hilus of the DG in three group as an index of reactive microglia and astrocyte by a 

densitmetric analysis. Data are shown as mean with S.E.M (n=6). *P < 0.05 (ANOVA 

followed by Tukey test). D) Typical profile of active caspase 3
+
/DCX

+
 cells in the DG in 

three groups (PBS, ESM and BQ788). Coronal sections fitting to the same atlas images 

from each group (8 h after treatment) were immunostained with anti-active caspase 3 

(green) and anti-DCX (red). All sections were stained with DAPI (blue). E) The number of 

cells coexpressing active caspase 3 and DCX in the hilus of the DG in three group. Data 

are shown as mean with S.E.M (n=6). *P < 0.05 (ANOVA followed by Tukey test). F) 

ESM induces cerebral vascular leakage in the hippocampus. Hippocampi of coronal 

sections fitting to the same atlas images from the FITC-dextran-loaded brains of each 

group (8 h after treatment) were observed under a fluorescence microscope. The 

fluorescence intensity of FITC was analyzed by a densitometer. Data are shown as mean 



with S.E.M (n=4). *P < 0.05 (ANOVA followed by Tukey test). 

 

Figure 3 ESM activates neuroendocrine cells in the hypothalamic PVN. A) Typical profile 

of c-FOS
+
 cells in the hypothalamic PVN in three groups (PBS, ESM and BQ788). 

Coronal sections fitting to the same atlas images from each group (8 h after treatment) 

were immunostained with anti-c-FOS (red). All sections were stained with DAPI (blue). B) 

The number of cells expressing c-FOS in the hypothalamic PVN in three group. Data are 

shown as mean with S.E.M (n=6). *P < 0.05 (ANOVA followed by Tukey test). C) 

ESM-induced c-FOS-LI is mostly localized in AVP
+
 cells. Coronal sections from ESM 

group (8 h after treatment) were immunostained with c-FOS (red) and anti-AVP (green). 

All sections were stained with DAPI (blue). D) The number of cells expressing Iba1 or 

GFAP in the hypoyhalamic PVN in three group. Data are shown as mean with S.E.M (n=6). 

*P < 0.05 (ANOVA followed by Tukey test). E) ESM induces cerebral vascular leakage in 

the hypothalamus. Hypothalami of coronal sections fitting to the same atlas images from 

the FITC-dextran-loaded brains of each group (8 h after treatment) were observed under a 

fluorescence microscope. The fluorescence intensity of FITC was analyzed by a 

densitometer. Data are shown as mean with S.E.M (n=4). *P < 0.05 (ANOVA followed by 



Tukey test). 

 

Figure 4 ESM-induced proinflammatory mediators in the specific sites of brain. A) 

Typical profiles of protein array for 40 cytokines in three groups (PBS, ESM and BQ788). 

13 molecules (> 200% induction, ESM vs. PBS; > 30% reduction, BQ788 vs. ESM) 

showing reproducible profile in two experiments were selected by a densitometric analysis 

and indicated with the correct location in the membrane map. B) Densitometric analysis of 

the 13 molecules in three groups. Signal intensity is expressed as arbitrary units 

relative to the positive internal control. 
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