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ABSTRACT 

Kinesin family member 14 (KIF14), a microtubule-based motor protein, plays an 

important role in chromosomal segregation, congression, and alignment. Considerable 

evidence indicates that KIF14 is involved in cytokinesis, although little is known about its 

role in oral squamous cell carcinomas (OSCCs). In the current study, we functionally and 

clinically investigated KIF14 expression in patients with OSCC. Quantitative reverse 

transcriptase-polymerase chain reaction and immunoblotting analyses were used to assess 

the KIF14 regulatory mechanism in OSCC. Immunohistochemistry (IHC) was performed 

to analyze the correlation between KIF14 expression and clinical behavior in 104 patients 

with OSCC. A KIF14 knockdown model of OSCC cells (shKIF14 cells) was used for 

functional experiments. KIF14 expression was up-regulated significantly (P < 0.05) in 

OSCCs compared with normal counterparts in vitro and in vivo. In addition, shKIF14 cells 

inhibited cellular proliferation compared with control cells by cell-cycle arrest at the 

G2/M phase through up-regulation of G2 arrest-related proteins (p-Cdc2 and cyclin B1). 

As expected, IHC data from primary OSCCs showed that KIF14-positive patients 

exhibited significantly (P < 0.05) more larger tumors compared with KIF14-negative 

patients. The current results suggest for the first time that KIF14 is an indicator of tumoral 

size in OSCCs and that KIF14 might be a potential therapeutic target for development of 

new treatments for OSCCs. 
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1. Introduction 

Kinesins are a family of the ATP-dependent motor proteins that travel unidirectionally 

along microtubule tracks to fulfill their many roles in intracellular transport or cell 

division [1-3]. Kinesins have so far been classified into 14 subfamilies (kinesin-1 family 

to kinesin-14 family) by phylogenetic analysis of the motor domain [1, 4] and are 

additionally composed of 45 kinesin superfamily proteins (KIFs) [1, 5]. KIFs reportedly 

transport organelles or participate in signal transduction, but mainly participate in cell 

mitosis, particularly in spindle formation, chromosomal and nuclear movement, and 

cytokinesis [5]. 

Previous studies also have indicated that KIFs play critical roles in several 

malignancies, including tumoral development and progression [1, 2, 4-10]. Among them, 

KIF14 protein is localized at the spindle midzone (the area formed between retreating 

chromosomes as they segregate toward the spindle poles in anaphase) and the midbody 

(the cytoplasmic bridge that connects two daughter cells at the end of cytokinesis in 

telophase) [11, 12], and is essential for cytokinesis and chromosome segregation. KIF14 

has genomic gain at 1q31.3–1q32.1 with overexpressed gene levels in multiple cancers, 

i.e., breast, retinoblastoma, liver, renal, lung, laryngeal, and ovarian cancers and synovial 

sarcoma [13-28]. However, the relationship between overexpression of KIF14 and clinical 

behavior of oral squamous cell carcinoma (OSCC) has not yet been clarified. 

In the current study, we report that KIF14 expression in OSCCs is functionally and 

clinically linked to tumoral size in vitro and in vivo and show that KIF14 is closely related 

to the cell cycle. Therefore, KIF14 might be a potential therapeutic target for OSCCs. 

 

 



 

 

 

2. Materials and methods 

2.1. Ethics statement 

The Ethical Committee of the Graduate School of Medicine, Chiba University 

approved the study protocol (approval number, 236); the study was performed in 

accordance with the tenets of the Declaration of Helsinki. All patients provided written 

informed consent before participating in this research. 

 

2.2. OSCC-derived cell lines and tissue specimens 

Human OSCC-derived cell lines (HSC-2, HSC-3, HSC-4, KOSC-2, Ca9-22, Ho-1-N-1, 

Ho-1-u-1, and SAS) were obtained from the Human Science Research Resources Bank 

(Osaka, Japan) or the RIKEN BioResource Center (Ibaraki, Japan). Primary cultured 

human normal oral keratinocytes (HNOKs) were obtained from three healthy donors and 

served as normal controls [29, 30]. All cells were grown in Dulbecco’s modified Eagle 

medium (Sigma-Aldrich Co, St. Louis, MO, USA) supplemented with 10% fetal bovine 

serum (Sigma) and 50 units/ml penicillin and streptomycin (Sigma). Clinicopathologic 

staging was determined by the TNM classification of the International Union against 

Cancer [31].  

 

2.3. Preparation of cDNA and protein 

Total RNA and protein were isolated as described previously [28,29].  

 

2.4. mRNA expression analysis 

Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) 

was conducted as described previously [28,29]. Primers and universal probes were 



 

 

 

designed using the Universal Probe Library Assay Design Center (Roche Diagnostics 

GmbH), which specifies the most suitable set. The primer sequences used for 

qRT-PCR were: KIF14, forward, 5′-CCTGTCTTTTTGCTTATGGTCAG-3′; reverse, 

5′-TCTTCACTAAATCCCATCATCG -3′; and universal probe #21, and the 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), forward, 5’- 

AGCCACATCGCTCAGACAC-3’; reverse, 5’-GCCCAATACGACCAAATCC-3’; 

and universal probe #60.  

 

2.5. Immunoblotting analysis 

 Immunoblotting analysis was performed as described previously [28,29]. The 

antibodies were rabbit anti-KIF14 polyclonal antibody (Cat. No. A300-912A, Bethyl 

Laboratories, Montgomery, AL, USA), mouse anti-GAPDH monoclonal antibody (Cat. 

No. sc-32233, Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit 

anti-phospho-CDC2 polyclonal antibody (Cat. No. sc-101654, Santa Cruz Biotechnology), 

and rabbit anti-cyclin B1 polyclonal antibody (Cat. No. 12231, Cell Signaling Technology, 

Danvers, MA, USA). 

 

2.6. IHC 

IHC using the primary antibody was performed as previously described [32, 33]. To 

quantify the KIF14 protein expression in those components, we used the previously 

described IHC scoring system [32, 33]. To determine the cutoff points of KIF14 IHC 

scores, we analyzed the IHC scores of 104 patients using the receiver operating 

characteristic (ROC) curve. Cases with a score following over 95.0 (Youden Index and 

ROC curve for tumoral tissue) were considered KIF14-positive. Two independent 



 

 

 

pathologists from Chiba University Hospital, neither of whom had knowledge of the 

patients’ clinical status, made these judgments. 

 

2.7. Transfection with shRNA plasmid 

 A total of 1×10
5 

cells from the Ho-1-N-1and SAS cell lines were transfected with 

10 ng/µl KIF14 shRNA (shKIF14) or 10 ng/µl control shRNA (shMock) vectors 

(Santa Cruz Biotechnology) using 1.25 µl Lipofectamine index LTX and 0.5 µl Plus 

Reagents (Invitrogen, Carlsbad, CA, USA). The stable shKIF14 and shMock cells 

were isolated using a culture medium containing 1 µg/ml puromycin (Santa Cruz 

Biotechnology). 

 

2.8. Cellular growth 

To evaluate the effect of KIF14 knockdown on cellular growth, we analyzed 

cellular growth in the shKIF14 and shMock cells. These cells were seeded in 6-cm 

plates at a density of 1×10
4
 viable cells. A cellular growth assay was performed as 

described previously [28,29]. 

 

2.9. Cell-cycle analysis 

To synchronize cells at the G0/G1 or G2/M transition, the cells were cultured in 

serum free media for 48 hours or treated with 200 ng/ml nocodazole (Sigma) for 12 

hours [34, 35]. Cell-cycle analysis was performed as described previously [28]. 

 

2.10. Statistical analysis 

In comparisons of KIF14 expression levels, statistical significance was evaluated 



 

 

 

using the Mann-Whitney U-test. Relationships between the KIF14-IHC scores and 

clinicopathological profiles were evaluated using the Mann-Whitney U-test. P < 0.05 

was considered significant. The data are expressed as the mean ± standard error of the 

mean (SEM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

3. Results 

3.1. Evaluation of KIF14 expression in OSCC-derived cell lines 

To investigate the expression status of KIF14, we performed qRT-PCR and 

immunoblotting analyses using eight OSCC-derived cell lines (HSC-2, HSC-3, HSC-4, 

KOSC-2, Ca9-22, Ho-1-N-1, Ho-1-u-1, and SAS) and HNOKs. KIF14 mRNA was 

up-regulated significantly (P < 0.05) in all OSCC-derived cell lines compared with the 

HNOKs (Fig. 1A). Representative results of immunoblotting analysis are shown in Fig. 

1B. The KIF14 protein expression was up-regulated significantly (P < 0.05) in all 

OSCC-derived cell lines compared with the HNOKs.  

 

3.2. Evaluation of KIF14 expression in primary OSCCs 

Representative IHC results for KIF14 protein in primary OSCCs and adjacent 

normal oral tissue are shown in Fig. 2A and B, respectively. Strong KIF14 

immunoreactivity was detected in the nucleus of OSCC tissues, whereas the normal 

tissues showed almost negative immunostaining. We analyzed the KIF14 protein 

expression in primary OSCCs from 104 patients using the IHC scoring system [36, 37]. 

The KIF14 IHC scores in OSCCs and adjacent normal oral tissues ranged from 70 to 

230 (median, 150) and 10 to 135 (median, 65), respectively. The IHC scores in primary 

OSCCs were significantly (P < 0.05) higher than in normal oral tissues (Fig. 2C). To 

determine an optimal cutoff point of the identified IHC scores, we used the Youden 

Index and ROC curve analyses. In addition to the data from the Youden Index 

(sensitivity, 79.8%; specificity, 90.4%, P < 0.05), ROC curve analysis showed that 

the cutoff value was 95.0 (Fig. 2D, E). 

 



 

 

 

3.3. Establishment of KIF14 knockdown cells 

Since frequent up-regulation of KIF14 occurred in OSCC-derived cells (Fig. 1), the 

OSCC-derived cells (Ho-1-N-1 and SAS) were transfected with KIF14 shRNA and 

shMock as controls. To confirm the efficiency of shKIF14 transfection, we performed 

qRT-PCR and immunoblotting analyses (Fig. 3A, B). KIF14 mRNA expression in 

shKIF14 cells was significantly (P < 0.05) lower than in the shMock cells (Fig. 3A). 

The KIF14 protein level in the shKIF14 cells also decreased compared with the shMock 

cells (Fig. 3B). 

 

3.4. Cellular proliferation of KIF14 knockdown cells 

To evaluate the effect of KIF14 knockdown on cellular growth, we performed a 

cellular proliferation assay (Fig. 3C). We found a significant (P < 0.05) decrease in 

cellular growth in shKIF14 cells compared with shMock cells. Therefore, the assays 

showed that KIF14 knockdown decreased cellular growth. 

 

3.5. Cell-cycle analysis of KIF14 knockdown cells 

To investigate the mechanism by which KIF14 is related to cellular proliferation, we 

performed cell-cycle analysis of KIF14 knockdown cells using Ho-1-N-1 and SAS. The 

percentage of the shKIF14 cells in the G2/M phase was significantly (P < 0.05) higher 

than in the Mock cells (Fig. 4A). We also assessed the expression levels of the G2 

arrest-related proteins, p-Cdc2 and cyclin B1. As expected, these were up-regulated in 

shKIF14 cells (Fig. 4B). These results indicated that shKIF14 cells inhibited cellular 

proliferation by cell-cycle arrest at the G2/M phase. 

 



 

 

 

3.6. Correlation between KIF14 expression and clinical classifications in primary 

OSCCs 

The correlations between the clinicopathological characteristics of the patients with 

OSCC and the status of KIF14 protein expression using the IHC scoring system are 

shown in Table 1. Among the clinical parameters, significant (P = 0.019) differences in 

tumoral size in KIF14-positive patients with OSCC were seen compared with 

KIF14-negative patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4. Discussion 

The current study provided the first evidence that KIF14 overexpression occurs in 

OSCCs and is positively correlated with tumoral size. In other cancers, KIF14 

expression was associated with lymph node metastasis, stage, and grade [38, 39]. 

Therefore, we assumed that KIF14 may have different functions in difference cancer 

types. In addition, our KIF14 knockdown experiments showed that KIF14 controlled 

cellular proliferation by arresting cell-cycle progression at the G2/M phase, suggesting 

that KIF14 plays a significant role in tumoral size in human OSCCs. 

Genomic amplifications, 1q31.3-1q32.1, are observed in several types of cancer, 

leading to overexpression of KIF14 mRNA and protein [13-24, 28]. In addition, 

overexpressed KIF14 mRNA and protein were reported as potential prognostic markers 

and therapeutic targets in retinoblastoma and breast, lung, and ovarian cancers [15, 16, 

24, 28, 40]. In contrast, low expression of KIF14 was associated with poor overall 

survival in patients with lung adenocarcinoma [38]. Therefore, KIF14 plays pivotal 

roles in development and progression of several types of cancers. 

Transient KIF14 knockdown cervical cancer cells showed significantly decreased 

proliferative and colony forming capabilities [39, 41]; however, the reasons for the 

cellular behaviors are unknown. Our previous study reported that KIF4A is closely 

related to the spindle assembly checkpoint (SAC) [36]; therefore, we speculated here 

that KIF14 is associated with cytokinesis and has a critical role in cell-cycle arrest [11, 

12]. Consistent with our hypothesis, our KIF14 knockdown models showed cell-cycle 

arrest at the G2/M phase by activation of G2 arrest-related proteins. Interestingly, KIF14 

did not participate in the SAC (data not shown), whereas KIF14 and KIF4A are similar 

kinesin superfamily proteins. 



 

 

 

Radiation therapy is a major adjuvant treatment for patients with OSCC. The cells in 

the G2/M phase are highly radiosensitive, whereas the cells in the G0 and G1/S phases 

have low radiosensitivity. Since KIF14 knockdown led to cell-cycle arrest at the G2/M 

phase, combination radiation therapy with KIF14 inhibition seems critical for patients 

with OSCC. 

In the current study, we found that KIF14 plays an important role in OSCC growth; 

therefore, KIF14 expression is likely to be a biomarker of proliferation and a potential 

therapeutic target for development of anticancer therapy for OSCC. 
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Legends 

Fig. 1. Evaluation of KIF14 expression in OSCC-derived cell lines. (A) Quantification of 

KIF14 mRNA expression in OSCC-derived cellular lines by qRT-PCR analysis. 

Significant up-regulation of KIF14 mRNA is seen in eight OSCC-derived cellular lines 

compared with the HNOKs (P < 0.05, Mann-Whitney U-test). Data are expressed as the 

means ± SEM of triplicate results. (B) Immunoblotting analysis of KIF14 protein in the 

OSCC-derived cell lines and HNOKs. KIF14 protein expression is up-regulated in the 

OSCC-derived cell lines compared with that in the HNOKs. Densitometric KIF14 protein 

data are normalized to GAPDH protein levels.  

 

Fig. 2. Evaluation of KIF14 expression in primary OSCCs. (A, B) Representative IHC 

results for KIF14 protein in primary OSCCs and normal oral tissue (Scale bars, 10 μm). 

Strong KIF14 immunoreactivity is detected in the nuclei of primary OSCCs; normal oral 

tissues show almost negative immunostaining. (C) The state of KIF14 protein expression 

in primary OSCCs (n=104) and the normal counterparts. The KIF14 IHC scores for 

normal oral tissues and OSCCs range from 10 to 135 (median, 65) and 70 to 230 (median, 

150), respectively. KIF14 protein expression levels in OSCCs are significantly (P < 0.05, 

Mann-Whitney’s U test) higher than in normal oral tissues. (D) Youden Index analysis 

shows that the optimal cutoff point is 95.0. (E) ROC curve analysis shows that the 

optimal cutoff point is 95.0. 

 

Fig. 3. Establishment of KIF14 knockdown cells and cellular proliferation of KIF14 

knockdown cells. (A) qRT-PCR shows that KIF14 mRNA expression in the shKIF14 cells 

(Ho-1-N-1-and SAS-derived transfectants; 2 clones each) is significantly (P < 0.05, 



 

 

 

Mann-Whitney U-test) lower than in the shMock cells. (B) Immunoblotting analysis 

shows that the KIF14 protein levels in shKIF14 cells (Ho-N-1- and SAS-derived 

transfectants; 2 clones each) also have decreased markedly compared with that in the 

shMock cells. (C) To determine the effect of shKIF14 on cellular proliferation, shKIF14 

and shMock cells were seeded in six-well plates at a density of 1×10
4 

viable cells/well. 

Both transfectants were counted on seven consecutive days. The cellular growth of 

shKIF14 cells (Ho-1-N-1- and SAS-derived transfectants; 2 clones each) are significantly 

(P < 0.05, Mann-Whitney U test) inhibited compared with the shMock cells after 72 

(Ho-1-N-1) and 96 (SAS) hours. The results are expressed as the means ± SEM of values 

from three assays.  

 

Fig. 4. Cell-cycle analysis of KIF14 knockdown cells. (A) Flow cytometric analysis was 

performed to investigate the cell cycle in shKIF14 and shMock cells. The percentage of 

the G2/M phase in shKIF14 cells (Ho-N-1- and SAS-derived transfectants; 2 clones each) 

has increased markedly compared with the shMock cells (P < 0.05, Mann-Whitney U-test). 

(B) shKIF14 cells show up-regulation of p-Cdc2 and cyclin B1 (Ho-N-1- and 

SAS-derived transfectants; 2 clones each) compared with shMock cells (P < 0.05, 

Mann-Whitney U test).  

 

 

 

 

 

 



 

 

 

Table 1. Correlation between KIF14 expression and clinical classification in OSCCs  

Clinical classification 
  Results of immunostaining 

No of patients (%) 

  

  

  Total 
KIF14  
negative 

KIF14 
positive 

P value 

Age at surgery (years) 
      <60 18 9 (50)    9 (50) 

0.382   ≧60, <70 24  8 (35)   16 (65) 

  ≧70 62 23 (37)   39 (63) 
Gender 

      Male 65 24 (37)   41 (63) 
0.438 

  Female 39 16 (41)   23 (59) 

T-primary tumor 
      T1 6  4 (67)    2 (33) 

0.019＊
   T2 54 25 (46)   29 (54) 

  T3 20  6 (30)   14 (70) 
  T4 24  5 (22)   19 (78) 
N-regional lymph node 

     negative 62 22 (35)   40 (65) 
0.121 

  positive 42 18 (44)   24 (56) 
Stage 

      I 5  3 (60)    2 (40) 

0.563 
  II 42 17 (37)   25 (63) 
  III 19  6 (32)   13 (68) 
  IV 38 14 (39)   24 (61) 
Vascular invasion 

    negative 85 36 (43) 49 (57) 
0.439 

positive 19  4 (21) 15 (79) 
Histopathologic type     
  Well 64 24 (38)   40 (62) 

0.512   Moderately 33 13 (40)   20 (60) 
  Poorly 7  3 (43)    4 (57) 
Tumoral site 

      Gingiva 30 15 (50)   15 (50) 

0.471 
  Tongue 58 20 (35)   38 (65) 

  Buccal mucosa 10  4 (40)    6 (60) 

  Oral floor 6  1 (17)    5 (83) 
＊P < 0.05 was considered significant. 
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