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ABSTRACT 

Soil moisture is a crucial hydrological parameter in studies of Earth’s surface heat budget 

and climate changes. In recent decades, long-term estimation of soil moisture on global 

scales has become possible through satellite remote sensing. Among the existing satellite 

datasets, microwave observations provide the best estimates of soil moisture because the 

dielectric constants differ between soil and water. A successful microwave mission is the 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E), a passive microwave 

detector that provides the global daily moisture levels of surface soils. These data are 

highly important in studies of land–atmosphere interactions. Although the AMSR-E 

product has been widely validated and applied in previous studies, its performance in East 

Asia, the region of the most intensive human activity in the world, has not been thoroughly 

evaluated.  

Consequently, this study addresses two main research objectives. The first is to evaluate 

AMSR-E soil moisture from in situ datasets collected at 109 observation stations in Shanxi 

Province, China, and to analyze the relationships among soil moisture, elevation, 

complexity of topography (standard deviation of elevation), precipitation (hydrological 

factor), NDVI (vegetation factor), and land use types in this province. The second 

objective is to reveal the spatio-temporal characteristics of the soil moisture distribution in 

various areas of East Asia, based on the validation results of AMSR-E soil moisture.  

To compare the in situ soil moisture with the AMSR-E data, we averaged the in situ soil 

moisture at high spatial resolution within a (50 × 50) km2. Comparisons were performed 

from 28th April to 18th September in 2006 and 2007. The data from 64 of the 109 

observation stations were reasonably consistent with the in situ measurements (correlation 

coefficient > 0.5). Thus, the AMSR-E soil moisture measurements were acceptably 

accurate over Shanxi Province of China. High correlation coefficients (>0.7) were found in 

areas with uniform land use types and relatively flat terrain. For the same land use types 
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and similar topographic complexity, the correlation coefficient was higher in areas 

containing more in situ observation stations in the (50 × 50) km2 window area. The average 

AMSR-E soil moisture over the whole Shanxi Province were well correlated with the soil 

moisture averaged over 109 in situ observation stations (correlation coefficient = 0.93). 

The daily AMSR-E soil moisture distribution also well corresponded to the daily 

precipitation in areas of heterogeneous land use type and complex terrain. These results 

demonstrate the high performance of the AMSR-E soil moisture in areas densely installed 

with in situ observation stations.  

The AMSR-E soil moisture tended to increase from northwest to southeast of Shanxi 

Province. This spatial tendency corresponded to the precipitation gradient on annual, 

monthly and daily time scales. However, discrepancies between soil moisture and 

precipitation were also found. These were attributed to the different observation times of 

the satellite overpass and the in situ observations of soil moisture, and to irrigation of the 

agricultural areas in the time series analysis. The AMSR-E soil moisture is also well 

correlated with SPOT/VEGETATION NDVI data. However, soil moisture is difficult to 

estimate in dense forest areas. 

After confirming the performances of the AMSR-E soil moisture, the date set was further 

analyzed in two representative East Asian regions (the middle and lower Yangtze River 

plain and Sichuan Basin) from 2003 to 2009. The characteristics and variations of soil 

moisture distributions depend on various environmental conditions and local land use types. 

The distribution of the AMSR-E soil moisture followed the movement of the Baiu front 

and captured the 2003 flood records at Bengbu near Huaihe River. In Sichuan Basin, the 

precipitation was not directly related to soil moisture distribution, because the latter was 

modified by human activities (irrigation). As the rice farming calendar in Sichuan Basin 

includes two cropping seasons, two soil moisture peaks were observed during each year. 

The increasing and decreasing tendencies of AMSR-E soil moisture are consistent with the 
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rice transplanting and harvest seasons. In addition, after a rainfall event, humid regions 

retain high soil moisture for several days longer than arid and semi-arid regions. These 

trends were inferred in comparisons of three areas (humid, arid, and semi-arid) in China 

from 2002 to 2009. 
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Chapter I. Introduction 

1.1 Previous studies of soil moisture  

Soil moisture (or soil moisture content) plays an important role in the hydrological cycle 

and climate change. Soil moisture can be defined in various ways. The usual definition is 

the water content in the unsaturated soil zone (Hillel, 1998). The amount of water in the 

spaces between the soil particles determines the actual soil moisture. In previous studies, 

soil moisture was variously classified as root-zone soil moisture, surface soil moisture and 

others. The root-zone water content in the upper two meters of soil has been measured by 

volumetric, gravimetric and several other methods (Klemas et al., 2014). The root-zone 

soil moisture largely controls the exchange of water and energy budgets (Sabater et al., 

2007). Surface soil moisture can be detected by satellite remote sensing technologies 

operating at optical, thermal infrared, and microwave (active and passive) wavelength. All 

of these technologies can measure the soil moisture in the upper soil layer (0–5 cm) (Njoku 

et al., 2003). This thinner soil layer is considered as the most different points when 

measuring land surface soil moisture. In this study, we investigate only the surface soil 

moisture of land. 

The importance of soil moisture has been widely reported. Figure 1.1 shows the global 

climate system in 2007 (IPCC, 2007). The system is dominated by a large circulation of 

water, which changes its phase from the atmosphere to underground. Examples of phase 

changes are water vapor, precipitation, soil moisture, and groundwater. The water route and 

volume also change throughout this system. Precipitation infiltrates and sinks into the soil 

water belt. Later, this water can return to the atmosphere through evaporation. Thus, soil 

moisture is a critical boundary between land surfaces and the atmosphere. Soil moisture is 

also monitored for irrigation scheduling of agriculture (Moran, 1994). In continental 

climate systems, soil moisture can predict the land surface conditions and improve weather 
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forecasts. As a hydrologic drought index, it provides early warning in areas vulnerable to 

droughts or floods. In global environmental studies, it can monitor yellow dust, soil 

degradation, global warming, and other important phenomena (Shinoda, 2005). 

 

 

Figure 1. 1 Global climate system (IPCC, 2007). 

 

Although soil moisture is very important, its information is not easily acquired over a 

large area. The first wide-area soil moisture monitoring system was created for harvest 

prediction by the former Soviet Union in the 1930s. Local gravimetric observations of soil 

moisture were obtained three times per month during the warm season and once per month 

during the winter, amounting to over 3000 observations after 20 years. Delworth et al. 

(1988) recognized and evaluated soil moisture in climate variability. However, the results 

of these land-surface process models disagreed with each other and with observed soil 

moisture. In July of 1993, flooding occurred near the Mississippi river in the Midwestern 

USA. This sustained flooding event was linked to high soil moisture, which was retained 

after the spring rains. In a first attempt at predicting flooding from surface wetness, the soil 
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moisture was input to a short-range atmospheric model. The accuracy of the flood forecast 

was noticeably improved (Beljaars et al., 1996). Surface wetness in land models predicts 

precipitation events with strong reproducibility, and could re-simulate the Mississippi flood 

phenomenon. Soil moisture is generally thought to enhance flooding conditions (Seth and 

Giorgi 1998, Bosilovich and sun 1998, Pal and Eltahir 2001). Networks of agricultural 

stations provide distributed point measurements, but are insufficient for estimating soil 

moisture over large areas with spatial and temporal variability (Njoku et al., 2003). 

Recently, soil moisture observation networks for long-term monitoring have been 

established in Australia (Rudiger et al., 2007), and by the Meteorological Automatic 

Network Integrated Application (MANIA) in south-western France (Calvet et al., 2007). 

However, these installations were costly to install and were still restricted to single-point 

observations. Currently, satellite monitoring is considered as the only feasible technique 

for global, long-term observations of soil moisture, because they detect the dielectric 

properties of soil and water (Chaurasia et al., 2011, Wang et al., 2009)  

 

Figure 1. 2 Atmospheric electromagnetic opacity (NASA, 2008). 
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In recent years, soil moisture information has been acquired from many sensors orbiting 

in space. These sensors differ primarily by their wavelength spectra. Figure 1.2 shows the 

electromagnetic opacity in the Earth’s atmosphere (NASA, 2008). Most of the infrared 

spectrum is absorbed by atmospheric gasses. The microwave portion of the 

electromagnetic spectrum ranges from approximately one millimeter to one meter. Because 

of their longer wavelengths (lower frequencies) than visible and infrared waves, 

microwaves possess special properties that are critical for remote sensing. For instance, 

microwave frequencies (50 GHz; λ = 0.6 cm) are easily transmitted through dry air. A large 

water vapor content increases the absorption and reduces the transmittance. Microwave 

radiation can penetrate cloud cover, haze and dust, and is unaffected by atmospheric 

scattering. As microwave sensors receive the electromagnetic energy naturally emitted by 

an observed object, the radiometric temperature of objects at the earth’s surface is called 

the brightness temperature. Conversely, the soil dielectric constant depends on the soil 

moisture and is related to emissivity. The emissivity and brightness temperature are 

negatively correlated. Brightness temperature measurements are the essence of microwave 

remote sensing.  

In this study, land-surface soil moisture is determined by passive microwave remote 

sensing. Some passive microwave sensors that measure soil moisture are outlined below. 

The Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite of 

the National Aeronautics and Space Administration (NASA) operated for over eight years, 

from 26th October 1978 to 20th August 1987. This ten-channel instrument provides 

polarized antenna temperature data at five microwave wavelengths. The Special Sensor 

Microwave/Imager (SSM/I), which has operated on the Defense Meteorological Satellite 

Program (DMSP) satellite since 1987, is a near-polar orbiting satellite. The Tropical 

Rainfall Measuring Mission’s Microwave Imager (TRMM) was launched on 27th 

November, 1997. This imager carries five instruments, one of which is a multi-channel, 
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dual-polarized passive microwave radiometer called the TRMM Microwave Imager (TMI). 

To better understand the Earth’s water cycle, the European Space Agency (ESA) mission, 

the NASA hydrosphere states mission and the Soil moisture Active and Passive mission 

(SMAP) launched the Soil Moisture and Ocean Salinity (SMOS) satellite on 2nd November, 

2009. The Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-

E) on the Aqua satellite operated from 4th May, 2002 to 4th October, 2011 (over 9 years). It 

was designed and developed by the Japan Aerospace Exploration Agency (JAXA) in 

collaboration with the U.S. AMSR-E, a modification of AMSR installed on the ADEOS-II 

satellite, observes global-scale water bodies such as ocean ice, surface temperatures and 

soil water. However, the soil moisture obtained by AMSR-E contain uncertainties sourced 

from the instrument calibration, inversion algorithm, geophysical noise and others sources 

(Eymard et al., 1993). Therefore, the accuracy of remote sensing data must be evaluated 

before use. In this paper, we validate and estimate the soil moisture collected by the 

AMSR-E sensor only. 

Table 1.2 summarizes the properties of the AMSR-E instrument. With a swath width of 

approximately 1450 kilometers, AMSR-E observes the whole planet in approximately 2 

days. The Aqua orbit is sun-synchronous with the equator and crosses Japan at 1:30 PM 

and 1.30 AM local time. Worldwide, soil moisture data are analyzed by four main 

algorithms in the world; Njoku et al. (2003) by NASA, Koike et al. (2004) by JAXA, 

Jackson (1993) by the United States Department of Agriculture, and Owe et al. (2001) by a 

collaboration between the University of Amsterdam and JAXA. The accuracies of the soil 

moisture estimated by these algorithms was discussed at the evaluation meeting of the 

JAXA-NASA AMSR/AMSR-E Joint Committee (Koike et al., 2009). The latest AMSR-E 

soil moisture algorithm developed in Japan was reported as the most accurate among these 

main algorithms.  
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Table 1. 1 Characteristics of the AMSR-E instrument (Njoku et al., 2003). 

Center Frequency 

(GHz) 

6.925 10.65 18.7 23.8 36.5 89.0 89.0 

A B 

Band Width (MHz) 350 100 200 400 1000 3000 

Polarization Vertical and Horizontal 

Sampling Interval (km) 9 × 10 4.5 × 4 4.5 × 

6 

Temperature Sensitivity 

(K) 

0.34 0.7 0.7 0.6 0.7 1.2 1.2 

Incidence Angle (°) 55.0 54.5 

Dynamic Range (K) 2.7–340 

Swath Width (km) Approximately 1450 

Integration Time (ms) 2.5 1.2 

Quantization (bit) 12 10 

Scan Cycle (s) 1.5 

 

The Koike soil moisture algorithm proceeds in three main steps. Step One optimizes the 

parameters of the forward model using the radiative transfer equation. Because the AMSR-

E can measure the brightness temperature, we can generate a fully physical radiative 

transfer model. The model is formulated as 

 Tb = exp(-Γc)・Es・Ts ＋(1- ωc)[1- exp(-Γc)]Tc   ,                   (1.1) 

where Tb is the brightness temperature measured by the AMSR-E radiometer, Γc is the 

optical depth of the canopy, and Es is the soil emissivity, which depends on the soil 

moisture type. ωc is the single scattering albedo of the canopy, which is here set to zero. Ts 
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and Tc represent the physical temperatures of the soil and canopy, respectively. The first 

term in the right-hand side of Eq. (1.1) describes the surface emission; the second describes 

the upward radiation from the vegetation layer. The four variables in this equation are the 

soil moisture content, plant water content, vegetation temperature, and soil temperature. 

Step Two is the index generator of the algorithm. Koike et al., (2004) proposed two 

indexes, the soil moisture (ISW) and polarization index (PI), to obtain the soil moisture 

content and the soil moisture content under the assumption of equal vegetation and soil 

temperatures. Originally, the two indexes were defined as follows: 

       ISW= (TbiーTbj) / [(Tbi+Tbj)/2],                       (1.2) 

      PI = (Tbv-Tbh) / [(Tbv+Tbh)/2],                        (1.3) 

where Tb is the brightness temperature of microwaves, i and j indicate high (36 GHz) and 

low (6 GHz) frequency respectively, and v and h represent vertical and horizontal 

polarization, respectively. For smooth surfaces, Tbv generally exceeds Tbh. The frequencies 

36 and 6 GHz are carefully chosen. As the emissivity of water is small at low frequencies, 

a wider range improves the index calculation; on the other hand, receiver data are lost at 89 

GHz, yielding incorrect brightness temperatures. 

Step Three of the algorithm develops a look-up table inversion and soil moisture 

estimation. The look-up table confirms the relationship between ISW and PI (Figure 1.3). 

The soil moisture is estimated by linear interpolation of the brightness temperature or 

indices in the inverted look-up table. According to the transform equation, the soil moisture 

ranges from 0% to 60% and the vegetation water content varies from 0 to 2. The brightness 

temperature is then derived by the forward model. The soil moisture is estimated from the 

lookup table. This algorithm is detailed in Lu et al., (2009). 
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Figure 1. 3 Lookup table of soil moisture, ISW, and PI (provided by Kaihotsu). 

 

AMSR-E soil moisture has been extensively researched in various geographical 

environments throughout the world. Assessment of the AMSR-E soil moisture in India 

identified a need to revisit the retrieval algorithm in different terrain regions (Chaurasia et 

al., 2011). The soil moisture over Australia has been derived from ground-based soil 

moisture collected by AMSR-E (Draper et al., 2009). The data were strongly correlated 

with those of the Murrumbidgee and Gouburn monitoring networks; moreover, the soil 

moisture corresponded to the long-term and short-term precipitation data across Australia. 

The AMSR-E soil moisture derived from the Land Parameter Retrieval Model (LPRM) 

algorithm was evaluated over South America (Rossato et al., 2013). The correlation 

coefficients between the AMSR-E and in situ soil moisture was generally high (0.8 in most 

regions). These reliable soil moisture estimates might provide important information of 

events such as floods. Wangner et al. (2007) derived the near-surface soil moisture from 

AMSR-E over regions of Europe, and reported promising results. The AMSR-E soil 
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moisture product (Ver.5.0 of JAXA) has been estimated in the Mongolian Plateau 

(Kaihotsu et al., 2009). Although the AMSR-E data were overestimated at some stations, 

they generally well-matched the ground-based monitoring data over a (120 × 160) km2 

study area.  

However, because of manpower and material resources consumption, in situ soil 

moisture is limited in scope, they require validation by AMSR-E in many areas. 

Comparisons between satellite and in situ data of soil moisture at each observation station 

are insufficient. To evaluate satellite products without spatial variability errors, sampling 

stations need to be placed at one-pixel intervals (Kaihotsu et al., 2009). Few studies have 

investigated the effects of topography on soil moisture (Wigneron et al., 2003), or the 

influences of land use patterns on soil moisture (Fu et al., 2003). Chapter 3 of this thesis 

attempts to validate and estimate the soil moisture in Shanxi Province of China using an 

AMSR-E product-retrieval algorithm developed by JAXA. The correlations between the 

AMSR-E data and the spatio-temporal variations of soil moisture are discussed in terms of 

precipitation (hydrological factors), complexity of topography, land use and vegetation 

index (NDVI).  

 AMSR-E data are applicable not only to soil moisture, but to water-related phenomena 

around the planet, thus improving our understanding of climate changes. For instance, 

AMSR-E can measure the global distribution of the monthly averaged sea surface 

temperature and wind speed (Konda et al., 2009). Through images of the AMSR-E sea 

surface temperature, fishing industries can designate special areas to increase their 

operational efficiency and reduce cost. AMSR-E data also provide the daily rainfall 

intensity. By investigating the relationship between rainfall intensity and short-wavelength 

data of AMSR-E, researchers have improved the method for estimating precipitation 

retrieval. AMSR-E can analyze the seasonal variation of sea ice concentration in the Arctic 

and Antarctic regions. Through sea ice observation using microwave radiometers, we can 
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detect signals of climate change. The Antarctic snow and ice distribution can be captured in 

a composite AMSR-E image. Multiple-frequency observations with AMSR-E can obtain 

the thermal fluctuations between the surface and deep snow layer on the ice sheet, and 

hence the short-term and long-term temperature changes. Atmospheric dynamics and 

thermodynamics can calculate the temporal changes in atmospheric variables from 

numerical weather predictions. In this way, the future state of the atmosphere can be 

predicted. In numerical weather prediction, heavy-rain forecasts improve when the AMSR-

E perceptible water data are assimilated immediately before the expected downpour. The 

AMSR-E observation data provide more accurate predictions. Combined with sea wind 

data, AMSR-E also provides information on typhoons, enabling the monitoring and 

forecasting of typhoon generation. Such information is indispensable in operational 

weather observations. Furthermore, the soil moisture information provided by AMSR-E is 

relevant to agriculture (Michiura, 2011), and has been applied in monthly predictions of 

wheat, corn, and bean yields. However, paddy fields and growth predictions of food crops 

have not been investigated by these means. In addition, AMSR-E soil moisture has been 

rarely applied to movement of the rainy season. In Chapter Four of this thesis, AMSR-E 

soil moisture will be newly applied to both agriculture and the rainy season. 

1.2 Objectives of this study 

 This thesis serve two main purposes. First, it evaluates the AMSR-E soil moisture product 

in comparisons with in situ data collected in Shanxi Province of China. For this purpose, it 

analyzes the relationships among soil moisture, precipitation, elevation, complexity of 

topography (quantified by the standard deviation of the elevation), vegetation index and 

land use. These analyses are represented in Chapter 3. The second objective is to analyze 

the spatial and temporal characteristics of the soil moisture distribution in different regions 

of East Asia. This objective also uses the AMSR-E soil moisture. Specifically, the growth 

conditions of paddy in Sichuan Basin are estimated by analyzing the daily changes in the 
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AMSR-E soil moisture. In a similar analysis, the soil moisture variation is related to 

natural factors (rainy season and flood records) and human activities. Both analyses are 

presented in Chapter 4.  

1.3 Description of the study area 

The research focuses on East Asia. As this is a large region, several regions are selected. 

The AMSR-E soil moisture is validated by in situ measurements of soil moisture collected 

in the Shanxi Province of China. Furthermore, the soil moisture changes described in 

Chapter 4 are analyzed in the middle and lower Yangtze River Plain and Sichuan Basin. 

East Asia lies to the east of Eurasia, and includes Mongolia, China, North Korea, South 

Korea and Japan. The area covers approximately 11.7 million square kilometers. In this 

study, the AMSR-E soil moisture data set extends from 20°N to 55°N and 72°E to 136°E. 

As well as East Asia, this scope encompasses the south of Russia, part of India, and 

Bangladesh. Over such large-scale latitudes and longitudes, the natural environmental 

features will widely vary. Topographically, the area is lower in the east than in the west 

(Figure 1.4). The elevation ranges from −152 m to 8752 m under complicated geological 

conditions. At mid-latitudes, the huge coastal region is strongly affected by monsoon. In 

the western continental areas with less rainfall, there are the Gobi and Taklamakan deserts, 

the Himalayan Ranges, and the Tibet, and Mongolian Plateaus. From east to west of the 

continental region (covering ocean-sized distances), the climate changes are very obvious. 

The east coastal region of China is separated by two long rivers; the Yangtze River with a 

subtropical southern climate, and the Yellow River with a temperate northern climate. In 

addition, there are many mountains in North Korea, South Korea, and Japan. The total 

yield of paddy production exceeds 40% of the global production. Therefore, before 

analyzing the variation of soil moisture, we must understand the special regional 

characteristics of the area. 
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Figure 1.4 Elevation map of the study area. 

 

Given that an in situ dataset of soil moisture (detailed in the next chapter) is available for 

Shanxi Province, we must clarify the terrain characteristics of this area. Shanxi Province is 

covered with yellow loess, which locates between longitudes 110.14°E and 114.33°E and 

latitudes 34.34°N to 40.43°N in north China. Figure 1.5 shows the 108 in situ soil moisture 

observation stations (black points) and the elevation of the study area, which is north-

bounded by the Great Wall and Inner Mongolia. The south and west are bounded by 

Yellow River, Henan Province and Shaanxi Province. To the east lie the Taihang 

Mountains and Hebei Province. The east-to-west and north-to-south distances are 

approximately 370 km and 670 km, respectively, and the whole area is 156,266 km2. A 

small percentage (1.64%) of this area is occupied by 11 small cities. The elevation ranges 

from 171 m to 3072 m, with 80% of the region occupied by mountains and hilly areas. 

Some basins are also present. The climate is temperate continental, with an annual mean 

temperature of 6.4°C and ranging from −11.3° in January to 21.8° in July. The annual mean 
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rainfall is between 400 mm and 650 mm (Niu et al., 2008). The in situ observation stations 

(black dots in Figure. 1.5) are concentrated on Taiyuan Basin in the central region, Linfen, 

Yuncheng Basin in the south and Changzhi Basin in the east. 

 

 

 

Figure 1. 5 Elevation and in situ soil moisture stations of Shanxi Province. 
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Chapter Ⅱ. Data and Methods 

2.1 Data 

Six datasets were analyzed in this study: 1) AMSR-E soil moisture dataset retrieved from 

the brightness temperatures, 2) in situ soil moisture obtained by the oven drying method, 3) 

a precipitation dataset freely downloaded from APHRODITE’s Water Resources, 4) 

Normalized Difference Vegetation Indexes (NDVIs) from Spot/Vegetation satellite data, 5) 

Chinese 1 km mesh land use from China National Resources and Environment, and 6) 

ASTER GDEM (Digital Elevation Model) freely downloaded from NASA/ASTER 

satellite data. The second and third datasets are used to validate the AMSR-E soil moisture; 

the other datasets are used in regional-scale evaluations of the spatial and temporal 

variability of the soil moisture. 

 

2.1.1 AMSR-E soil moisture data set 

AMSR-E is a passive microwave radiometer (sensor) operated by JAXA. It was launched 

on the AQUA satellite of NASA in May of 2002, and its antenna stopped spinning in 

October of 2011. AMSR-E offers two main advantages; first, it measures weak, multi-

frequency, dual-polarized microwaves from the Earth’s surface and atmosphere; second, 

microwaves can detect soil moisture under all conditions (day and night, sunshine and rain). 

The AMSR-E algorithm (Version 5.31) calculates the ISW and PI from the brightness 

temperatures, then obtains the soil moisture dataset from a look-up table (Koike et al., 

2002). The unit is volume of water content (m3/m3). The resolution (footprint) is 50 km by 

50 km with resampling at 0.1° (10 km) intervals. In this study, we examine the descending 

pass of the daily AMSR-E soil moisture collected from July 2002 to May 2010. 
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2.1.2 In situ soil moisture data set 

Within the study area, 109 in situ soil moisture locations are distributed across Shanxi 

Province They were installed by the Institute of Atmospheric Physics, Chinese Academy of 

Science. Each observation station records the longitude, latitude, elevation, and moisture 

content of the near-surface soil (depth 0–10 cm) by the oven drying method. The unit is the 

volumetric water content (m3/m3). The observing period excludes the winter months. They 

are April 8th, 18th, 28th, May 8th, 18th, 28th, June 8th, 18th, 28th, July 8th, 18th, 28th, Aug 8th, 

18th, 28th, September 8th, 18th, 28th in both 2006 and 2007.  

 

2.1.3 Precipitation data set 

The daily precipitation dataset was obtained from APHRODITE’s Water Resources (Asia 

Precipitation-Highly Resolved Observational Data Integration towards Evaluation of the 

Water Resources) project, which provides high-resolution grid data by setting rain gauges 

throughout the Asian region. The data were created by spatially interpolating between the 

satellite precipitation data and the in situ data, and were released in 2009 (Yatagai et al., 

2009；Yatagai et al., 2012). In this study, we used the daily precipitation product 

(Version.V1003R1) of Monsoon Asia in 2006 and 2007, which is resolved to 0.25°.  

 

2.1.4 Vegetation data set (SPOT Vegetation NDVI)  

The vegetation index is a simple parameter based on the characteristics of light reflection. 

The commonest and most representative vegetation index is the NDVI, which evaluates the 

growth situation of vegetation. Here, the NDVI was derived from SPOT/VEGETATION 

and calculated as NDVI = (near-infrared band − visible band) / (near-infrared band + 

visible band). The NDVI value is expressed on a scale ranging from −1 to +1. In this study, 
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we used the Southeast Asia D 10 (10-day period synthesis) data, which is freely 

downloadable from the VITO website (Flemish Institute for Technological Research). 

These products provide a standard geometric sampling with a raw data resolution of 

approximately 1 km. 

 

2.1.5 Land use dataset (Chinese 1 kilometer mesh land use) 

The Chinese 1 kilometer mesh land use data were obtained from a project undertaken by 

China National Resources Environment Remote Sensing, which combines macro research 

and a dynamic information service system. The dataset contains 25 space layers (on the 

basis of Chinese National Standard GB/T21010-2007), each layer dedicated to the spatial 

distribution of a specific land use type. The spatial data are modeled as a 1 km mesh 

dataset. Any mesh area of 1 km2 in each space layer is recognized as a percentage (%) of 

land use area. As an example, Figure. 2.1 displays the arable field ratio in the 2000s. Black 

areas contain no arable land. In the arable land areas, the ratio of arable field occupancy is 

indicated by the intensity of the blue color (the more intense the color, the higher the ratio). 

This dataset includes two periods; 1980s and 2000s. In this study we classified the main 

categories in the 2000s land use dataset, for correspondence with the in situ observation 

periods. 



 

 

17 

 

 

Figure 2. 1 Arable field distribution from Chinese 1 km mesh land use in the 2000s. 

 

2.1.6 Elevation data set (ASTER Global DEM)  

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model (GDEM) was publicly released in 2009. The product was 

developed by NASA and Japan’s Ministry of Economy, Trade, and Industry (METI). 

ASTER is a high-resolution 30-m imaging instrument installed on the Terra satellite. Its 

coverage is almost completely global (83°N–83°S). The whole area is covered with 

226,000 tiles, each of (1° latitude × 1° longitude) containing at least 0.01% of the land area. 

To capture the terrain complexity, we obtained not only the elevation information of the 

study area but also the standard deviation of the elevaton in a (1 × 1) km2 window. 
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2.2 Methods  

2.2.1 Comparison of AMSR-E and in situ soil moisture 

The AMSR-E soil moisture was validated against data from 108 observation locations 

(one location in Wutai Mountain is missing). As the resampling interval is 10 km, the 

footprint of the AMSR-E sensor is 50 km2. A window size of five grids × five grids (50 km 

× 50 km) was selected. The average in situ soil moisture in the study area was calculated as 

 

where SM is the soil moisture (m3/m3), and N is the number of observation stations.  

The satellite soil moisture was then extracted and analyzed by their correlations between 

on the two datasets on the 8th, 18th and 28th from April to September in 2006 and 2007. 

 

2.2.2 Spatial and temporal variation of AMSR-E soil moisture 

Because frozen soil or snow obscures the real values of soil moisture (Koike et al., 2004), 

this research investigates only the no-snow period (April to September) over Shanxi 

Province. Moreover, as the data are collected on a daily basis and the scanning width of the 

orbit is constrained, datasets are missing from some areas. Therefore, it is important to 

capture the short-time variation in soil moisture. This change is large after a rainfall, 

especially in arid and semi-arid areas (Shinoda, 2005). To determine the spatio-temporal 

moisture changes over Shanxi Province, we average the AMSR-E soil moisture over the 

first ten days of July, August and September in 2006 and 2007, and also the monthly 

maxima from April to September over the 2003–2009 period. 

 

(2.1) 
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2.2.3 Relationship between AMSR-E soil moisture and NDVI 

 The surface soil moisture is also affected by the vegetation distribution (Njoku et al., 

2003), which is commonly evaluated by the NDVI. In this research, the NDVI is evaluated 

for several reasons. First, very few soil moisture data were acquired over large areas during 

the 1980s and 1990s. Second, the NDVI can replace the soil moisture evaluation. Third, 

both NDVI and soil moisture content increase with increasing vegetation. Therefore, we 

here discuss the relationship between NDVI and soil moisture. To this end, the NDVI 

distribution map over Shanxi Province, created on July, August, and September of 2006 

and 2007, was compared with the soil moisture variation over the same time scale (the first 

ten days of July, August, and September in 2006 and 2007). Because the resolutions differ 

between the two datasets, we converted the average NDVI pixel values to areas in five 

representative areas (for details, see Chapter 3): 

 

where NDVI is the normalized difference vegetation index, and N is the number of pixels. 

The NDVIs can now be properly compared with the AMSR-E soil moisture. 

(2.2) 
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Chapter III. Evaluation over Shanxi Province of China 

3.1 Comparisons between AMSR-E and in situ soil moisture  

To avoid snow cover artefacts in the analysis, we analyzed the ground-based observations 

from 28th April to 18th September in 2006 and 2007. Figure 3.1 shows the correlation 

coefficients (R) between the AMSR-E soil moisture and in situ soil moisture in both years 

(excluding the winter period) over Shanxi Province. The size of the black dots indicates the 

strength of the correlation. Throughout the region, the correlation coefficients range from 

0.05 to 0.96. Higher values (>0.7) are concentrated in Taiyuan Basin (37°27’–38°25’N, 

111°30’–113°09’E), Linfen Basin (36°04’–36°45’N, 111°3’–113°49’E), Yuncheng Basin 

(34°40’–35°38’N, 110°15’–110°46’E), Changzhi Basin (35°50’–37°08’N, 113°01’–

113°40’E), and Yangquan Basin (37°27’–37°93’N, 113°10’–113°58’E). In Xinzhou, west 

Lvliang and the Linfen area, the correlation coefficients range are within the medium range 

(0.3–0.7). In these areas, the correlations are degraded by several anomalies. First, the 

ground-based datasets are point values with different spatial resolutions from the satellite 

data. Second, the correlations are biased by the different timings between the ground-based 

datasets and AMSR-E soil moisture monitoring. Third, the field data collection is 

influenced by various regional-scale natural and human factors. Therefore, the ideal 

correlation coefficients are difficult to achieve. The correlation coefficients in the northern 

parts (Datong and Shuozhou) were low (<0.3) in both years. Moreover, the validation 

results are limited to pixels, or (50 km × 50 km) areas, which contain different numbers of 

situ observation stations. Therefore, we also summarize the total in situ observation 

stations in each pixel. Figure 3.2 relates the correlation coefficients to the number of in situ 

observation stations in one grid during 2006 and 2007. The number of in situ observation 

stations per grid ranges from one to seven. The correlation coefficients improve with 

increasing density of in situ observation stations. Moreover, for the same number of 



 

 

21 

 

stations, the correlation coefficients could take high or low values, depending on site. For 

example, at one site with two in situ observation stations, the correlation coefficient was 

0.1 (indicating no correlation); at another site with two observation stations, the correlation 

coefficient exceeded 0.8 (indicating very good correlation). These variations may result 

from complex topography, variable land use, and other factors.  

 

 

 

Figure 3. 1 Correlation coefficients between AMSR-E soil moisture and in situ soil 

moisture in 2006 and 2007 (28th April to 18th September). 
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Figure 3. 2 Relationship between correlation coefficients and in situ observations 

stations in single grids. 

 

3.1.1 Complexity of topography  

To elucidate why the correlation coefficients differ at sites with the same number of in 

situ observation stations, we analyze the complexity of the topography in this section, and 

the land use in the succeeding section. Figure 3.3 presents the standard deviation of the 30-

m resolution DEM in the (1 × 1) km2 window, which represents the complexity of the 

terrain. The standard deviation is small in the basin areas and large throughout the 

mountainous areas to the east of Datong, Shuozhou and Xinzhou. In general, high 

correlation coefficients are associated with small standard deviations (relatively flat 

terrain). Figure 3.4 relates the correlation coefficient to the elevation and its standard 

deviation at the 108 in situ stations. Larger blue dots indicate higher correlation 

coefficients. Higher correlation coefficients (>0.7) are concentrated in two areas; one 

elevated at 400–600 m, the other at 800–1000 m. In both areas, the standard deviation of 

the elevation is approximately 10 m. The two areas are located in the south (Linfen Basin 
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and Yuncheng Basin) and the central region (Taiyuan Basin).  

 

 

Figure 3. 3 Standard deviation of elevation throughout the study area. 
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Figure 3. 4 Relation among correlation coefficient, elevation, and standard deviation 

of elevation at 108 in situ stations. 

 

3.1.2 Land use type 

Next we investigate the land use types in Shanxi Province. Figure 3.5 shows the land use 

map over Shanxi Province in the 2000s, derived from the China 1 km mesh land use 

dataset. The six major land use types documented in the dataset are forest, grassland, field, 

rural residence, urban, and water. The western parts of the study area are mostly covered 

with field. All of the basins (Datong, Taiyuan, Xinding, Changzhi, Linfen, and Yuncheng) 

are dominated by mixed rural residence and urban. Forest and high coverage grassland are 

distributed through Changzhi, Jincheng and east of Lvliang. The eastern part of Xinzhou 

features some grassland. In the northern parts (Datong and Shouzhou), where the land use 

types were quite mixed, the correlation coefficients between the AMSR-E and in situ soil 

moisture were as low as 0.3 in 2006 and 2007. Therefore, we consider that land use types 

also affect the relationship between the two soil-moisture datasets. Conversely, in areas of 
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single land use (Linfen, Yuncheng, and Changzhi Basins), the correlation coefficients were 

relatively high (>0.7).  

 

 

Figure 3. 5 Chinese 1 km mesh land use map of Shanxi Province in the 2000s. Circles 

enclose four representative areas. 

 

3.1.3 Validation results 

The density of the ground-based observation stations varies throughout the study area, as 

seen in Figure. 3.2. Therefore, we analyzed the correlation coefficients at four 

representative sites, whose locations are indicated in Figure 3.5. Areas 1 and 2 both host a 

single in situ observation station and their land use types are uniform. Area 1 is dominated 

by fields (68% land use), whereas area 2 contains extensive grasslands (56% land use). The 

wide range in correlation coefficients reflects the different topographical complexities in 

3 

4 

1 

2 



 

 

26 

 

the two areas. The standard deviation of the elevation is 27.76 m in Area 1 and 5.94 m in 

Area 2. Areas 3 and 4 also have the same number of situ observation stations (seven), but 

the complexities of their topographies are very similar (with elevation standard deviations 

of 9.86 m and 5.64 m, respectively). Moreover, the land use types are various in Area 3 

(30% field, 28% grassland, 39% rural residence and urban, 3% other) but uniform in Area 

4. Here, the wide range in correlation coefficients arises from the different land use types 

in the two areas. 

Comparing Areas 2 and 4, both with uniform land use type and similar topographical 

complexity (5.94 m and 5.64 m, respectively), we observe high correlation coefficients 

(>0.80) in Area 4 (with seven in situ observation stations), and relatively low correlation 

coefficient in Area 2 (with only one station). Therefore, when comparing the AMSR-E and 

ground-based soil moisture, the number of in situ observation stations should be 

considered. In the study area, the observations are denser in the north (average 5–7 stations 

per 50 km by 50 km area) than in the south (average 1–2 stations per 50 km by 50 km area). 

The small station densities at some sites will probably bias the average soil moisture when 

comparing with AMSR-E data.  

As an alternative approach, we also considered the whole of Shanxi Province, and 

averaged the AMSR-E soil moisture and (separately) in situ soil moisture in all 108 

observation stations on each ground-based observation day. For this analysis, we selected 

only full coverage images, discarding observation days in which the AMSR-E soil 

moisture did not cover the whole Shanxi Province. The comparison results are presented in 

Figure. 3.6. The AMRS-E data well agree with the in situ soil measurements (coefficients 

of determination up to 0.93). Therefore, the soil moisture variability over Shanxi Province 

is adequately represented by the data from 108 in situ stations). This indicates that as the 

ground-based observation points become denser, the correlation between the AMSR-E and 

in situ soil moisture will improve. Low density is probably the most important cause of the 
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low correlation coefficients (<0.3). We conclude that AMSR-E accurately determines the 

variation in surface soil moisture when the in situ observation stations are closely spaced. 

This implies that in the comparison with in situ datasets over Shanxi Province, the 

accuracy of the AMSR-E soil moisture product is guaranteed. 

 

 

 

Figure 3. 6 Comparisons between AMSR-E and in situ soil moisture over Shanxi 

Province (SMave denotes average value of soil moisture).  
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The 108 in situ observation stations over Shanxi Province differed in their elevations, 

standard deviations of elevation, average precipitations and land use types. Therefore, after 

the analysis, we selected five (a–e) representative areas from Datong in the north, Taiyuan 

and Yangquan Basins in the center, and Linfen and Changzhi Basins in the south. The 

essential information of each representative area, with a scope of (50 × 50) km2, is 

summarized in Table 3.1. Figure 3.7 relates the AMSR-E soil moisture to the in situ soil 

moisture in the 5 areas. Although the AMRS-E data are sometimes overestimated by 

around 10%, most of the data scatter near the 1:1 line, indicating good agreement between 

the two datasets. Kaihotsu et al. (2009) showed that microwaves detect very thin soil layers 

(depth 1–2 cm) in regions with high water content. On the other hand, in situ soil moisture 

is averaged over soil depths of 0 to 10 cm. After a rainfall, the AMSR-E data are affected 

by both surface soil moisture and vegetation surface water, leading to overestimation. The 

validation results are improved in the no rain periods of the observation time.  

 

 Table 3. 1 Characteristics (latitude, longitude, elevation, standard deviation of 

elevation, annual mean precipitation, and land use) in five representative areas of 

Shanxi Province. 

 

 

 

 

Code Name Lat° Lon° Elevation (m) Std Dev (m) Pave (mm) Main land use 

a Datong Xian 40.00 113.60 1023 14 388 Grassland 

b Meng Xian 38.00 113.35 1177 29 482 Forest land 

c Qingxu Xian 37.50 112.35 755 9 470 Field 

d Guandao Kou 36.00 112.88 991 19 631 Grassland 

e Xu Cun 35.75 111.37 456 11 539 Grassland 
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Figure 3. 7 Average annual rainfall and the relations between AMSR-E and in situ soil 

moisture at five representative areas. 

 

3.2 Spatial and temporal distribution of soil moisture 

Above, we confirmed that AMSR-E soil moisture data are applicable to Shanxi Province. 

In this section, we analyze the spatio-temporal variation of soil moisture over the study 

area using the AMSR-E data. Figure 3.8 shows the monthly maximum mean soil moisture 

from April to September over a 7 years period (2003–2009). The soil moisture is low over 

the entire region in April, then increases from May, reaches its maximum in August and 

decreases in September. This pattern corresponds to the seasonal changes of precipitation. 

Spatially, the soil moisture value is low in Datong and Shuozhou, west of Xinzhou, 

Lvliang and Linfen, and highly variable (0.05–0.6 m3/m3) in Changzhi, Jincheng and 

Yuncheng. Over Shanxi Province, the soil moisture tends to increase from northwest to 
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southeast, following the annual mean precipitation distribution in Fig. 3.7. Overall, the soil 

moisture matches the climatological distribution of precipitation. Therefore, AMSR-E is 

very helpful for estimating surface soil moisture over large regions. 

 

 

Figure 3. 8 Monthly (April to September) maximum means of AMSR-E soil moisture 

from 2003 to 2009 with grid size is (30 by 30) km2. 

 

After analyzing the long-term variation in soil moisture, we plotted the mean AMSR-E 

soil moisture over the first ten days of July, August and September in 2006 and 2007. 

Temporally, the soil moisture increases from July to August, then gradually decreases 

toward September. Spatially, the soil moisture is higher in the south (Yuncheng, Changzhi, 
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and Jincheng) than in the north (Datong, Shuozhou, and Xinzhou), and higher in the east 

(Yangquan, Jinzhong, and Changzhi) than in the west (Lvliang and Linfen). Especially, the 

soil moisture in Yuncheng Basin remained high throughout the observation period. 

Succinctly, there are good short-term correspondences between the soil moisture collected 

by AMSR-E and in situ measuring instruments. 

 

 

Figure 3. 9 AMSR-E soil moisture averaged over the first ten days of July, August, 

September in 2006 and 2007 with grid size is (30 × 30) km2. 

 

Among various parameters, soil moisture is most closely linked to precipitation. 

Therefore, to understand the variation in AMSR-E soil moisture, we must reveal the 

rainfall situation of Shanxi Province. The cumulative precipitation throughout the early 
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tend days of July, August, and September in 2006 and 2007 is shown in Figure 3.10. 

During July of those years, the rainfall was low (<30 mm) in Taiyuan, Yangquan, and the 

western part of Xinzhou, but high (>60 mm) in Yuncheng and Jincheng; in August, the 

rainfall was low in the western parts of Lvliang and Linfen and high in the northern parts 

(Datong and Shuozhou); in September, the low and high rainfall areas were the northern 

(Datong, Shuozhou and Xinzhou) and southern (Linfen, Yuncheng) parts, respectively.. 

Comparing these results with the soil moisture variations (Figure. 3.9) over the same time 

scale, we find that the AMSR-E soil moisture well corresponds with precipitation. This 

confirms that the AMSR-E soil moisture captures the wetness of the Earth's surface in 

APHRODITE’s precipitation measurements. However, there are discrepancies in some 

areas. For instance, during the first 10 days of August in both years (2006 and 2007), the 

rainfall was low in the southern part (Changzhi and Jincheng) while the soil moisture 

values were high. However, the soil moisture in this two southern areas were lowered 

during the middle ten days of August. The main reason for these discrepancies is the 

different observation timings. Moreover, Yellow River was exploited for agricultural 

irrigation, as discussed later. 
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Figure 3. 10 Integrated APHRODITE precipitations over the first ten days of July, 

August and September in 2006 and 2007. 

 

3.3 Relationship between precipitation and soil moisture  

Above we clarified the average annual rainfall over the long-term, and the spatio-

temporal variation between soil moisture and APHRODITE precipitation in the early days 

of July, August and September of 2006 and 2007. In this section, we discuss the 

relationship between AMSR-E soil moisture and precipitation over short (daily) time scales, 

and present time series of the AMSR-E soil moisture, in situ soil moisture and precipitation. 

The analyses are developed in 3.3.1 and 3.3.2, respectively. 
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3.3.1 Daily changes of precipitation and soil moisture 

Daily surface soil moisture, which is closely linked to precipitation, changes excessively 

in arid and semi-arid region. In such regions, it rapidly increases after a daily rain event, 

but is rapidly lost by evaporation during the following dry period (Shinoda, 2005). As an 

example, Figure. 3.11 shows the variation between AMSR-E soil moisture and 

APHRODITE precipitation on 28th and 29th July 2006. On 28th July, the rainfall and 

AMSR-E soil moisture were both high in the west of Shuozhou and Xinzhou (18 mm and 

0.2 m3/m3, respectively), but had rapidly reduced by the next day. On the other hand, the 

north of Shuozhou, east of Xinzhou and Jincheng were dry on 28th July, but the soil 

moisture increased after precipitation on 29th July. Comparing the precipitation and AMSR-

E soil moisture in regions of high and low soil moisture on 28th and 29th July, we find a 

strong correspondence, indicating that AMSR-E soil moisture can determine the surface 

wetness over small spatio-temporal scales. 
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Figure 3. 11 Variation between AMSR-E soil moisture and APHRODITE 

precipitation on 28th and 29th July 2006. 
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3.3.2 Time series of precipitation and soil moisture in representative 

areas 

Figure 3.12 presents the time series variation in the AMSR-E soil moisture, in situ soil 

moisture and precipitation data from April to September in 2006 and 2007 at five 

representative areas; Datong Xian (a), Meng Xian (b), Qingxu Xian (c), Guandao Kou (d) 

and Xu Cun (e); see also Table 3.1. Despite some missing data, the precipitation and soil 

moisture followed the same trends during both years. Their peak values were especially 

consistent. Although there were significant changes in the AMSR-E soil moisture, the 

ground-based soil moisture varied very little. Furthermore, the soil moisture content 

remained nearly constant (at 5%) during periods of no or very low (<5 mm) rainfall. 

However, after rainfalls exceeding 5 mm, the soil moisture did not always increase, or 

increased several days later. Considering the special topographical features of water 

concentration, the time lag scales at each station need further analysis, and is left as a 

future research topic. When the soil moisture failed to respond to the rainfall, the 

observation timings of the soil moisture and precipitation were different. Because the 

AMSR-E soil moisture is instantaneously sampled during the satellite’s passage, the daily 

precipitation can occur before or after the satellite observation time (1:00–2:00 p.m. around 

the equator). Figure 3.13 highlights the inconsistency between the precipitation and 

AMSR-E soil moisture in areas (c) and (d). At Qingxu Xian (c), there was low 

precipitation and high soil moisture on 21th August 2006. Because this area contains crop 

fields, it is irrigated for crop growth. Therefore, the high surface soil moisture is 

attributable to agricultural water. At Guandao Kou (d), the summed precipitation was 10.85 

mm on 7th August 2006, but the soil moisture content was very low. This suggests a 

precipitation event after the satellite passage.  
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Figure 3. 12 Time series variations in AMSR-E soil moisture, in situ soil moisture and 

APHRODITE precipitation in five representative areas. 

 

 

Figure 3. 13 Inconsistencies between APHRODITE precipitation and AMSR-E soil 

moisture in areas c and d (expanded from Figure. 3.12). 

 

3.4 Relationship between NDVI and soil moisture  

The NDVI indirectly affects the vegetation conditions. As the surface vegetation affects 

the soil moisture, the NDVI should correlate with the soil moisture. This section 

investigates the spatial and temporal distributions of this relationship, and compares the 

NDVI and soil moisture at representative areas. 
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3.4.1 Spatial and temporal distributions of NDVI and soil moisture 

Figure 3.14 presents SPOT NDVI images in the early days of July, August, and 

September in 2006 and 2007. Averaged over all areas, the NDVI increased over the three 

months, being 0.49, 0.56, and 0.61 in June, July, and August respectively. The NDVI was 

low in Taiyuan Basin, west of Lvliang, Linfen Basin, and Yuncheng Basin, but high in 

Changzhi and Jincheng. Following the spatial distribution of the soil moisture (Figure 3.9), 

the NDVI gradually increased from north to south and from west to east. Nevertheless, the 

NDVI deviates from the soil moisture at some sites. For example, the eastern part of 

Lvliang is covered by dense forest and grassland, but the AMSR-E soil moisture was 

relatively low. Koike et al., (2004) suggested that AMSR-E soil moisture is not easily 

assessed in dense vegetation areas. 
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Figure 3. 14 Spatial variation of maximum SPOT/VEGETATION NDVI during the 

first ten days of July, August, and September in 2006 and 2007. 

 

3.4.2 Comparisons between NDVI and soil moisture in representative 

areas 

Figure 3.15 plots the AMSR-E soil moisture versus NDVI at five representative areas in 

2006 and 2007. In Meng Xian (b), where the land use type is forest, the correlation 

coefficient is high (0.92) and the NDVI is large. The grassland areas Datong Xian (a), 

Guandao Kou (d) and Xu Cun (e) also exhibit good correlations (correlation coefficients 
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ranging from 0.67 to 0.78). In Qingxu Xian (c), corn is grown as a main agricultural crop. 

As the growing season lasts from May to September, the low correlation coefficient (0.41) 

can be attributed to large changes in NDVI.  

 

 

Figure 3. 15 Relationships between AMSR-E soil moisture and NDVI at five 

representative areas of Shanxi Province. 
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3.5 Conclusions  

This chapter evaluated the AMSR-E soil moisture product (Version.5.31) over the Shanxi 

Province of China from 28th April to 18th September in two consecutive years (2006 and 

2007). In general, the AMSR-E soil moisture product accurately estimated the soil 

moisture over Shanxi Province. In a correlation analysis between the in situ and satellite 

datasets, 64 out of 108 ground-based observation points were well or reasonably correlated 

with the satellite data (correlation coefficients > 0.5). This result demonstrates the high 

accuracy of AMSR-E soil moisture estimation. During the 2-year study epoch, high 

correlation coefficients (>0.7) were found over Taiyuan Basin in the central study region, 

Linfen Basin, Yuncheng Basin, Changzhi Basin, and Jincheng in the south, and the 

Yangquan areas in the east. Low values (>0.3) were found in the northern parts (Datong 

and Shuozhou). Values between 0.3 and 0.7 were recognized as moderate correlations. 

Next, we identified a positive relationship between the correlation coefficients and number 

of in situ observation stations. However, for the same density of in situ observation stations, 

the correlation coefficients ranged from large to small. To understand the reason for this 

variability, we analyzed the topographic complexity and land use types in Shanxi Province. 

Comparing the in situ and AMSR-E soil moisture at specific sites, we found good 

agreement between the two datasets in areas of uniform land use type and relatively flat 

terrain. In two areas with uniform land use types and similar topographic complexities, 

high and low correlation coefficients were associated with dense (7) and sparse (1) in situ 

observation stations, respectively. Although the topographic complexity and land use types 

influence the correlation coefficients to some extent, the main influencer in the northern 

mountainous areas appears to be the low density of in situ sites (average 1–2 per (50 × 50) 

km2 area).  

Furthermore, when considering Shanxi Province as a whole element, the daily average 

AMSR-E soil moisture was well matched with the daily averages of the 108 in situ soil 
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moisture observations. The correlation coefficient of this analysis was very high (0.93), but 

could be further improved by densifying the in situ observation stations as much as 

possible (enabling a proper validation). The low correlation coefficient areas were 

attributed to the small number of in situ observation stations. It was recommended that 

more ground-based stations, especially in regions of heterogeneous land use type and 

complex terrain, be erected for future research. The daily distribution of the AMSR-E soil 

moisture also agreed with the daily precipitation in the north of Shanxi Province, where 

there are heterogeneous land use types and complex terrains. 

 In summer, the large variations and spatio-temporal distributions of the AMSR-E soil 

moisture were associated with seasonal changes in the APHRODITE precipitation 

measurements. Furthermore, the surface wetness increased from the northwest to the 

southeast of Shanxi Province. These two results verified that AMSR-E soil moisture can 

correctly capture the surface wetness conditions over this large region. 

On all time scales (daily, monthly, and annual) and over all spatial distributions, the 

AMSR-E soil moisture responded to the APHRODITE precipitation in Shanxi Province. 

Furthermore, the time series variations in the AMSR-E soil moisture, in situ soil moisture 

and precipitation data were reasonably well synchronized in five representative areas. 

However, the observation times and recording depths differed between the AMSR-E soil 

moisture and the APHRODITE precipitations. The AMSR-E soil moisture was 

instantaneously observed when the satellite passed over the area. In contrast, the 

APHRODITE instrument summed the daily precipitation. Therefore, if the precipitation 

occurred after the satellite overpass, the AMSR-E soil moisture would likely remain low 

while the APHRODITE precipitation increased. Another notable aspect was the limited 

depth inspection capability of AMSR-E (0–5 mm below the land surface). When the land 

was irrigated (disturbed by human activity), the land surface was covered with water and 

the AMSR-E soil moisture was likely to be overestimated. For these reasons, the AMSR-E 
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soil moisture was sometimes inconsistent with the APHRODITE precipitation.  

Across the study area, the spatial and temporal distributions of the AMSR-E soil moisture 

were reasonably related to the vegetation index (NDVI). The correlation between these two 

variables was high in areas covered by vegetation. However, the AMSR-E soil moisture 

was difficult to assess in dense forest areas. The relationship between AMSR-E derived 

soil moisture and NDVI in areas with many vegetative species should be explored in future 

research.  

In this chapter, we investigated the AMSR-E soil moisture in Shanxi Province of China, 

and related them to the land and climate variables. Using these findings, we characterize 

the soil moisture distributions and variations in flat areas (middle and lower Yangtze River 

plain and Sichuan Basin) of East Asia over daily, monthly and annual scales in the next 

chapter. This work is connected to the applicability of the AMSR-E data. 
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Chapter Ⅳ. Spatio-temporal characteristics of soil moisture in East Asia 

This chapter describes an application of the AMSR-E soil moisture. In Chapter III, the 

accuracy of the AMSR-E soil moisture was confirmed on areas of flat terrain and uniform 

land use. Using these findings and features of the AMSR-E soil moisture in Shanxi 

Province, we now characterize the soil moisture distribution and variation in two 

representative flat areas of East Asia (the middle and lower Yangtze River Plain and 

Sichuan Basin). In the first two sections, we investigate the daily, monthly, and annual time 

scales of the soil moisture; in the third section, we clarify the soil moisture distributions 

and variation features over the whole of East Asia, taking the monthly averages of seven 

years. The fourth section presents time-series comparisons between AMSR-E soil moisture 

and precipitation in a humid, arid and semi-arid region from 2003 to 2007, which are 

connected to soil moisture memory. These results reveal the spatial and temporal variations 

in the soil moisture. 

 

4.1 Regional investigation of the middle and lower Yangtze River Plain 

The middle and lower Yangtze River Plain is situated near the southeast of China (Figure 

4.1), with latitude 24–35° N and longitude 108–123° E. The region experiences a 

subtropical humid monsoon climate, with high temperatures and much rainfall in summer, 

and warm temperatures and low rainfall in winter. The average temperature of most cold 

months is about 0° C. The rainy season is an important component of precipitation in this 

region. It starts from late May in the north of Hunan Province, moves to Yangtze River, 

and arrives at Jiangsu Province early in July. The rainy season is characterized by high 

frequency and large volume of precipitation, and high relative humidity. The duration of a 

typical rainy season is 20–30 days (Ren et al., 1986). The bottom panel of Figure. 4.1 
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shows the complex terrain of this area, which is the flatness of the land (the standard 

deviation of elevation is less than 10 m almost everywhere).  

 

 

 

Figure 4.1 Overview of middle and lower Yangtze River Plain (upper panel is an 

elevation map of the study area; in the lower panel, the standard deviation of 

elevation is < 10 m, indicating flat terrain). 
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To understand the soil moisture changes, we first check the daily-scale distribution and 

variation of the soil moisture in the middle and lower Yangtze River Plain. Figure 4.2 

shows the daily variation of the AMSR-E soil moisture and precipitation at Bengbu (32°52′ 

N, 117°23′ E) near Huaihe River from June to July of 2003. In June, the precipitation was 

maintained at 10 mm/day, increasing to more than 20 mm/day by the end of the month. 

Accordingly, the AMSR-E soil moisture exceeded 0.4 m3/m3 at the end of June. In July, 

there were two rainfall events; one lasting from 30 June to 2 July, the other from 8–10 July. 

Over the three consecutive days of the first and second rainfall events, the total 

precipitation was 123 mm and 158 mm, respectively. On the other hand, the book Huaihe 

Storm and Flood (published in 2003) recording flooding at Bengbu after the continuous 

July rains. Other flood information was reported on China’s weather news. As shown in 

Figure. 4.2, the soil moisture follows the same pattern as the precipitation. After a large 

quantity of rainfall, the soil moisture remained as high as 0.6 m3/m3 until mid-July. After a 

large rainfall, the surface soil moisture remains high and stable over a short time. Therefore, 

after a large short-term precipitation, the soil moisture in the middle and lower Yangtze 

River Plain would remain high for several days. The AMSR-E soil moisture in this area 

ranged from zero to 0.6 m3/m3. The maximum AMSR-E soil moisture (0.6 m3/m3) may 

underestimate the real soil moisture, which is maximized under the soil saturation 

conditions.
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Figure 4.2 Daily changes of AMSR-E soil moisture and precipitation from June to 

July in 2003 at Bengbu (32°52′N, 117°23′E) near Huaihe River. 

 

Satellite images from Landsat 7 ETM confirmed a flood area near Huaihe River until July 

30 of 2003. Therefore, the unique subtropical humid monsoon climate (precipitation) is 

largely responsible for the soil moisture variation in the middle and lower Yangtze River 

Plain. The variable AMSR-E soil moisture can capture the flood records, which can be 

input to weather forecasting models in future research.  

As another example, Fig. 4.3 shows the daily weather map and soil moisture distribution 

in the middle and lower Yangtze River Plain in June and July of 2005. The five left panels 

represent the 9 a.m. weather maps on the 6th, 20th, and 28th June, and on the 6th and 15th of 

July 2005, obtained from the Japan Meteorological Agency. The Baiu front gradually 

moved from south to north over the five time scales. It was located in the south of Yangtze 

River on 5th June, moved northward through 20–28 June, and remained in the north of 

Yangtze River through 6–15 July. The five right panels present the AMSR-E soil moisture 

distributions on the same dates. Like the precipitation, the soil moisture gradually moved 

from south to north of the middle and lower Yangtze River Plain during June and July. The 
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soil moisture distribution and the track of the Baiu front exhibit the same tendencies over 

time. In general, the AMSR-E soil moisture well matches the movement of the rainy 

season. In this analysis, the weather maps on the 6th and 21st June show no front near 

Yangtze River, but the Baiu front can be readily tracked in the weather maps of 5th and 20th 

June. 
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Figure 4.3 Weather maps (black lines are isobars, and H and L denote anticyclone 

and depression, respectively. Blue lines with triangles and semicircles represent the 
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Baiu front. Right panels show the soil moisture distributions in the middle and lower 

Yangtze River Plain on the corresponding dates of the weather maps (5th, 26th, 28th 

June, 6th, 15th July, 2005). 

 

In this area, the soil moisture is chiefly affected by the humid monsoon climate 

(precipitation) in the middle and lower Yangtze River Plain. We now check the AMSR-E 

soil moisture distribution and variation over monthly and annual scales. Figure 4.4 shows 

the monthly mean AMSR-E soil moisture in the middle and lower Yangtze River Plain 

from 2003 to 2009. The soil moisture remained high (ranging from 0.06 to 0.10 m3/m3 

even in winter, with a tendency to increase from March to September and decrease from 

October to February.  

Obvious changes in the soil moisture, with a peak in July, appear around Yangtze River. 

No data were available for the Yangtze River its tributary and the surrounding lakes (black 

areas in Figure. 4.4; see also Figure. 4.1). The soil moisture is larger near these areas than 

in other areas. For example, there was high soil moisture content adjacent to Doting Lake 

of Hunan Province and Poyang Lake in Jiangxi Province. In August, the soil moisture 

suddenly declined in the north of Anhui and Jiangsu Province. According to the monthly 

mean precipitation in this region (Fig. 4.5), the southern part of the middle and lower 

Yangtze River Plain received large rainfall in May and June. In July, high precipitation 

appears in the north, revealing the track of the rainy season from south to north. Once the 

rainy season had passed, the soil moisture rapidly decreased in the north of Anhui and 

Jiangsu Provinces in August. Therefore, the location of the Baiu front affects the soil 

moisture changes in different months. The AMSR-E soil moisture is consistent with the 

precipitation distribution in the middle and lower Yangtze River Plain. 
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Figure 4.4 Monthly mean AMSR-E soil moisture in the middle and lower Yangtze 

River Plain from 2003 to 2009. 
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Figure 4.5 Monthly mean precipitation in the middle and lower Yangtze River Plain 

from 2003 to 2007. 
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4.2 Regional investigation of Sichuan Basin  

Sichuan Province is located in the southwest of China, at latitudes and longitudes of 26–

34° N latitude and 92–108° E, respectively. The elevation is high (7000 m) in the west and 

low (50 m) in the east (see Fig. 4.6). The east of Sichuan Province hosts the relatively flat 

Sichuan Basin, one of the four largest basins in China and famous for its rice cultivation. 

There are three distinct features of this region. First, the area is characterized by warm 

winters (average January temperatures of 2–4° C) and long summers (4.5 months, with 

maximum temperatures above 40° C in most places). Second, because of the basin 

topography, many days throughout the year are covered with cloud and fog. Under such 

conditions, the surface soil moisture is more effectively inferred by the passive microwave 

sensor of AMSR-E than by an optical sensor. Third, the surface soil comprises purple red 

sandstone and shale deposits from the Mesozoic period. Sichuan Basin has a subtropical 

humid monsoon climate, with an annual mean precipitation of 1000–1300 mm. 

 

 

Figure 4. 6 Overview of Sichuan Province. 
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Although Sichuan Basin occupies the same latitude and climate zone as the middle and 

lower Yangtze River Plain, its soil moisture variations and distribution are distinctly 

different.  

Sichuan Basin is famous for its rice cultivation. We are interested in the land use of this 

area, because land use types reflect the topographical features and influence the spatio-

temporal characteristics of the surface soil moisture distribution. Figure 4.7 shows the land 

use of Sichuan Province in the 2000s. The eastern part of Sichuan Basin is dominated by 

cultivated fields (paddies and fields), whereas the western and edge parts are covered with 

forest and shrubs. The agricultural crops on the paddies (rice) and fields (corn and wheat), 

revealed in the land use map of Sichuan Basin, should be closely linked to the soil 

moisture fluctuations in this region.  

 

 

Figure 4. 7 Land use of Sichuan Province in the 2000s. 
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To reveal the relationship between agricultural crops and soil moisture variation, we 

extracted the characteristics of the soil moisture in the paddy areas. Figure 4.8 shows the 

extraction results of the soil moisture on a paddy area in 2006. The soil moisture was stable 

from January to the end of April and from November to December, but peaked during May 

and October (green curves in Fig. 4.8). The 2006 time series of SPOT NDVIs in the paddy 

area is presented in Fig. 4.9. The NDVIs were highly variable throughout the year, with 

frequent large changes and no obvious peaks. This graph cannot reflect the true growing 

conditions of paddy in Sichuan Basin, which are affected by the weather situation (cloud). 

However, as microwave remote sensing can penetrate cloud, haze, and dust, AMSR-E 

provides more accurate soil moisture information at the land surface than optical sensors. 

 

 

 

Figure 4.8 AMSR-E soil moisture patterns in a paddy of Sichuan Basin in 2006 (top) 

and views of rice transplanting and rice harvesting seasons (bottom).  
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Figure 4.9 2006 time series of SPOT NDVI in a paddy of Sichuan Basin. 

 

In the farming calendar, rice is doubly cropped in Sichuan Basin and its growth cycle is 

approximately 100 days. After completion of the first rice harvest, the second rice 

transplanting is performed as soon as possible (Sun et al., 2013). During the rice 

transplanting seasons (May and August), irrigation is necessary for crop growth. The 

irrigated land surface is covered with water, so the surface soil moisture increases in May 

and August. After canopy closure (July and October), the soil moisture begins to decrease. 

This is a new and important discovery of this research. In summary, the daily AMRS-E soil 

moisture on paddy areas of Sichuan Basin are influenced by human activity (irrigation), 

and the variations can be compared with the farming calendar of rice cultivation in Sichuan 

Basin. 

Figure 4.10 shows the monthly mean AMSR-E soil moisture in Sichuan Basin from 2003 

to 2009. The soil moisture content remained high over the basin even in winter (>0.06 

m3/m3), and large variations (~0.45 m3/m3) occurred from April to October. The soil 

moisture continually increased from January to May, remained high in June and July, and 

declined in August. The average soil moisture over the southern Sichuan Basin exhibited 

the same growth tendency up to September, but decreased from October to December. 
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To evaluate the effects of precipitation on soil moisture, we calculated the variation in the 

monthly mean precipitation (Fig. 4.11). As the APHRODITE precipitation dataset 

terminated in 2007, we present the time series of the monthly mean precipitation from 

2003 to 2007. In winter, the precipitation was small (<30 mm) over the whole area. In 

spring and autumn, it was higher in the east than in the west. However, no regular 

precipitation distribution was observed in summer. The AMSR-E soil moisture distribution 

was not directly related to precipitation in this area. For example, the northern part of 

Sichuan Basin receives large rainfall in July, but the soil moisture is high at the west of the 

basin. Therefore, precipitation does not decisively affect the soil moisture distribution in 

Sichuan Basin. As mentioned previously, in production areas of main food crops, surface 

soil moisture is influenced by both precipitation and irrigation. The same results are 

observed on Sanjiang Plain, an important paddy field in the northeast of China.  
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Figure 4. 10 Monthly mean AMSR-E soil moisture in Sichuan Basin from 2003 to 

2009. 
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Figure 4. 11 Monthly mean precipitation in Sichuan Basin from 2003 to 2007. 
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4.3 Distribution and variation features of soil moisture in East Asia 

Based on the validation results in Shanxi Province, this section analyzes the soil moisture 

in representative regions of East Asia. The analysis is limited to the available observation 

scope of AMSR-E (20–50°N and 72–136° E). Figure 4.12 shows the monthly (May to 

September) mean AMSR-E soil moisture from 2003 to 2009. At a glance, the soil moisture 

is high in the east coastal region of East Asia, and low in the west continental region. To 

characterize the soil moisture changes, we separate the whole area into the following 

regions: 

Northeast of China (Heilongjiang Province, Jilin Province, and Liaoning Province): In 

May, the soil moisture maintain low everywhere except the eastern Sanjiang Plain and the 

western Northeast Plain. In both of these areas, the soil moisture increases in June. 

Although there are missing data in some parts, both plains present a high soil moisture 

content. The average soil moisture decreases in August and increases in September, for 

reasons which will be discussed later.  

North China Plain (Beijing, Tianjin, Hebei Province, Henan Province, and Shandong 

Province): The soil moisture in this region remains stable throughout May and June, and 

increases from July to September, particularly in Shandong Province. 

Middle and lower Yangtze River areas (Hunan Province, Hubei Province, Jiangxi 

Province, Anhui Province, Jiangsu Province, Zhejiang Province and Shanghai): This region 

is a relatively humid area with high AMSR-E soil moisture throughout the year. Even in 

winter, the soil moisture exceeds 0.06 m3/m3 at least, and summer values are as high as 0.6 

m3/m3 in some areas.  

Southeast coastal hills (Guangdong Province, Guangxi Province, and Fujian Province): 

Soil moisture varies more widely in coastal regions than in the inland region of southern 

China. In Guangdong and Guangxi Provinces, the soil moisture fluctuates largely in both 

coastal and inland regions. Unusually, the soil moisture in Fujian Province are stable 
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everywhere except the coastal areas. 

Mongolian plateau (Inner Mongolia and Outer Mongolia): The average elevation of this 

region is 1580 meters. The soil moisture obviously varies from east to west and from south 

to north from June to September. 

The loess plateau (Shanxi Province, Shaanxi Province, and Ningxia): This area contains 

semi-arid and arid terrains. In August and September, the soil moisture is more variable in 

Shaanxi Province than in other areas. In June, small variations appear in the southeast of 

Shanxi Province, as detailed in the previous chapter. 

Yungui plateau (Yunnan Province and Guizhou Province): The soil moisture in Guizhou 

Province varies slightly throughout the whole year. 

Tibetan plateau (Qinghai Province and Tibet): At a glance, we observe many black areas 

of no data collection in Figure. 4.12, which correspond to lakes. One of the biggest lakes 

(Qinghai Lake) is located in Qinghai Province. The soil moisture varies more widely 

around the lakes than in other regions. 

Others areas (Sichuan Basin, Xinjiang, and Gansu Province): Sichuan Basin, located in 

the east of Sichuan Province, presented clear variations in the average AMSR-E soil 

moisture. In contrast, the soil moisture in Xinjiang and Gansu Province regions showed 

little monthly variation, but slightly varied over a long north-to-south distance, as they 

were influenced by other factors.  

Russian areas (southern Russia only): The northernmost part of the study area (the 

Siberian region) is characterized by cold weather conditions. In some areas, the soil 

moisture begins increasing from May, remains high throughout the next three months, and 

then rapidly declines in September. 

West of Japan (Kyushu, Shikoku, Chugoku, and part of Kansai): In contrast to the inland 

region of China, the AMSR-E soil moisture remain high in west Japan throughout the year. 

The same soil moisture pattern appears in Taiwan.  



 

 

63 

 

Indo-Gangetic plain (India and Bangladesh): A striking contrast appears between the 

northern and southern sides of the Himalayan Ranges. In Bangladesh, the soil moisture 

peaks (at 0.6 m3/m3) from May to September. On account of these regional characteristics, 

significant spatio-temporal changes in soil moisture present over the large region. 
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Figure 4. 12 Monthly (May to September) mean values of AMSR-E soil moisture in 

East Asia from 2003 to 2009. 
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4.4 Temporal variation of AMSR-E soil moisture and precipitation in a 

humid region, arid region and semi-arid region 

Above, we reported a macro-scale soil moisture analysis of five sections covering a huge 

regions. Here we estimate the micro-scale changes in soil moisture. For this purpose, we 

choose three representative areas with different land types (Figure. 4.13). Figure 4.14 

shows the time series of AMSR-E soil moisture and APHRODITE precipitation over 

different regions of China from 2002 to 2009. As the APHRODITE precipitation dataset 

terminated in 2007, only the AMSR-E soil moisture is available for 2008 and 2009. Overall, 

the soil moisture and precipitation are well matched in all four regions.  

 

 

 
Figure 4. 13 Location and images of three representative regions in the micro-scale 

soil moisture analysis. 
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Tazhong (39° N, 83° E) occupies part of the Taklimakan Desert in northwest China. 

Taklimakan is the largest desert in China, and received an average annual rainfall of 30.8 

mm from 2003 to 2007. Because of the low rainfall and high evaporation rate, the soil 

moisture was almost constant over the five years. A rainfall event in this region causes a 

sudden spike in the AMSR-E soil moisture. 

Heshun (37.3° N, 113.6° E) is a semi-arid region located in the center of China. The 

average annual rainfall (2003–2007) was 569.4 mm. The moisture variation is smaller than 

Shunxi’s and larger than Tazhong’s. Over the long-term, it remains stable at approximately 

0.05 m3/m3. In summer, it increases rapidly with rainfall, but always remains under 0.5 

m3/m3. 

Shunxi (30° N, 119° E) is located in the southeast of China, near the middle and lower 

Yangtze River. Being a humid region, Shunxi receives a large amount of rainfall. The 

average annual rainfall in 2003–2007 was 1212.4 mm, with more than 100 mm/day on 

some days. The soil moisture exhibited a relatively stable pattern in this area. Following a 

precipitation event, the soil moisture largely fluctuated even in winter, with slow increases 

and decreases.  
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Figure 4.14 Time series of AMSR-E soil moisture and APHRODITE precipitations 

over different regions (Tazhong, Heshun, and Shunxi,) of China from 2003 to 2007. 
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In the arid and semi-arid regions (Heshun and Tazhong), the daily soil moisture rapidly 

increased after a rain event, then rapidly decreased as the water evaporated and was not 

replaced (Shinoda, 2005). On the other hand, the soil moisture in the humid region 

(Shunxi) was stored for a few days after the rainfall. Therefore, whereas the soil moisture 

spikes in relatively dry regions, it ascends and descends rather more slowly in humid 

regions. These characteristics, which are also seen in Figure. 4.14, highlight the need for 

measuring soil moisture variation on daily scales. (Koster et al., 2001) proposed that soil 

moisture has a “memory;” that is, the soil can “remember” wet and dry conditions. This 

memory causes an anomaly long after the conditions have been forgotten by the 

atmosphere. It is also linked to another phenomenon, namely, that soil moisture reflects the 

impact of the precipitation regime (Orth and Seneviratne, 2012). In summary, the soil 

memory is small in arid regions and large in humid regions.  

 

4.5 Conclusions 

This chapter summarized the spatial and temporal variations and distributions (also called 

the dynamic behaviors) of the soil moisture in East Asia. Because of the monsoon climate 

in East Asia, the soil moisture was high in summer and low in winter. Generally, the soil 

moisture was higher in the east coastal areas than in west continental regions. In a nine-

year analysis, the characteristics of the AMSR-E soil moisture showed regional differences. 

In addition, the macro-scale changes in soil moisture were analyzed in representative areas 

from 2003 to 2009. The main conclusions are presented below: 

 In the middle and lower Yangtze River Plain, the soil moisture content remained above 

0.06 m3/m3 even in winter, and peaked at 0.6 m3/m3 in summer. During the rainy season 

(June and July), the AMSR-E soil moisture closely followed the Baiu front on both daily 

and monthly timescales. Moreover, in a daily soil moisture analysis at Bengbu near Huaihe 

River in July 2003, the AMSR-E soil moisture captured the flood record, and remained 
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high for several days after a large rainfall event in humid regions.  

 In Sichuan Basin, the monthly mean soil moisture was directly related to the monthly 

mean precipitation. In the land use map, most of the areas were covered by paddy fields. 

The soil moisture in a paddy area peaked twice in one year; during transplanting, and again 

during canopy closure. Therefore, the farming calendar of paddy exerts an important 

influence on soil moisture in this region. A negative relationship between AMSR-E soil 

moisture and NDVIs was observed in September and October; the soil moisture declined 

during the growing season for rice. The AMSR-E soil moisture appeared to estimate the 

double-cropping pattern of paddy in this region, providing a route for agricultural 

production and evaluation. 

 Additionally, we analyzed the micro-scale soil moisture variations in three areas with 

different climates (humid region, arid region, and semi-arid region). The representative 

areas (Shunxi, Tazhong, and Heshun) were selected by comparing many candidate areas. 

The soil moisture varied much more widely in the humid area (Shunxi) than in the arid and 

semi-arid areas (Heshun and Tazhong, respectively). We concluded that soil moisture is 

retained for several days after a rainfall event in humid regions, but is rapidly lost by 

evaporation in arid and semi-arid regions. This feature of soil moisture was connected to 

the memory of the soil moisture in the area. In conclusion, daily satellite imaging of soil 

moisture by AMSR-E captures the spatial and temporal features and variations of soil 

moisture over large regions. 
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Chapter Ⅴ. General conclusions 

This study evaluated an AMSR-E soil moisture product, namely, a satellite-based dataset 

of surface soil moisture, in comparisons with ground-based data collected over Shanxi 

Province of China. From the AMSRE-E data, we spatio-temporally characterized the 

distributions and variations of soil moisture over East Asia.  

The major results of the evaluation are summarized below. 

(1) The AMSR-E soil moisture product was evaluated at high spatial resolution (50 × 50) 

km2 over Shanxi Province, China. Good evaluation results in 2006 and 2007 were obtained 

over most areas. The AMSR-E soil moisture product (Version.5.31) proved very effective 

for surface soil moisture monitoring. 

(2) The AMSR-E and ground-based datasets were well correlated (correlation coefficient 

> 0.7) in regions with uniform land use type and relatively flat terrain. The density of the 

situ observation stations was also important. The correlation coefficients were low in areas 

with only one or two stations, and high in areas averaging 5–7 stations. Increasing the 

number of in situ observation stations would certainly improve the evaluations. Therefore, 

the number of in situ observation stations must be considered in the validation results.  

(3) The soil moisture in Shanxi Province tended to increase from northwest to southeast, 

concordant with the APHRODITE precipitation dataset. The soil moisture well 

corresponded to the precipitation over Shanxi Province on all timescale (annual, monthly, 

and daily). Divergences between soil moisture and precipitation were attributed to different 

observation timings and the influence of irrigation on agricultural areas. 

(4) The AMSR-E soil moisture were highly correlated with the SPOT/VEGETATION 

NDVI, over the whole Shanxi Province and in five representative areas. The average NDVI 

generally increased with soil moisture. However, AMSR-E soil moisture was difficult to 

evaluate in dense forest areas. 
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The AMSR-E soil moisture product also revealed the following dynamic behaviors of the 

soil moisture throughout East Asia. 

(5) Soil moisture was mainly affected by rainfall in the middle and lower Yangtze River 

Plain. In this area, the AMSR-E soil moisture were consistent with the APHRODITE 

precipitation data. The AMSR-E soil moisture data captured the flood records at Bengbu 

near Huaihe River in 2003, and the movement of the rainy season in June and July of 2005 

(identified in a weather map).  

(6) In Sichuan Basin, a region famous for its rice cultivation in China, the relationship 

between soil moisture and precipitation was less obvious. When evaluated over a paddy 

area throughout 2006, the AMSR-E soil moisture exhibited two obvious peaks. 

Comparison with the farming calendar (rice transplanting and harvest seasons) confirmed 

that these soil moisture variations were linked to irrigation (human activity).  

(7) In arid and semi-arid regions, the AMSR-E soil moisture sharply spiked after a rainfall 

event, whereas in humid regions, a rainfall event caused a slow rise and fall of the soil 

moisture. Specifically, the AMSR-E soil moisture remained for several days after the 

rainfall in humid regions, but quickly evaporated in dry regions. Furthermore, the monthly 

and annual analysis of variations in the surface soil moisture indirectly reflect the local 

memory span of the soil moisture. 

Many phenomena remain to be investigated in AMSR-E soil moisture researches. 

Examples are the relationship between the ground conditions (surface soil moisture) and 

frequency of dust events in East Asia, and the effect of vegetation phenology on the soil 

moisture variation in Outer Mongolia. Thus, a rich body of new insights is expected to 

emerge from future researches on AMSR-E soil moisture. 
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