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Abstract 

Desertification is a crucial environmental issue in the Horqin Sandy Land, Inner Mongolia 

Autonomous Region of China. The Horqin Sandy Land is an important grain base region of 

northern China, thus there is increasing necessity to monitor the situation for better 

understanding of desertification processes. Therefore, in this study, we analyzed desertification 

from 2000 onward by utilizing remote sensing technology in Ongniud Banner in the western 

part of the Horqin Sandy Land.  

In order to recognize desertification through land use changes, in this research we attempted to 

extract classification categories representing the state of the land, which we subdivided into the 

normal classification categories. For that purpose, we performed the land use classification by 

combining multiple spectral indices that can be calculated from satellite data to each spectral 

band of the Landsat satellite to construct multi-band input data for a Support Vector Machine-

based supervised classification approach. Applying this method to Landsat archive images in 

2000, 2009, and 2015, we made land use maps of the three time periods and clarified the 

desertification situation. Over the past 16 years, irrigated farmlands and salinized areas were 

expanded, whereas water bodies shrank, and exposed sandy lands were replaced by sparse grass 

and moderate grass converted to sparse grass. 

At the same time, we calculated ground surface variations to analyze the state of desertification. 

In addition, we tried comprehensive understanding of land use change accompanied with 

desertification of the research area based on socioeconomic situations and policy of Horqin 

Sandy Land discussed in the study period. As a result, a 3051 km2 area suffered from 

desertification in the study area from 2000 to 2015, and desertification of moderate grass was 

the most common type of desertification (21% of total desertified area), followed by 

desertification of other forest, sparse grass, and forest areas at 19%, 16%, and 15% respectively. 

And less desertification occurred in dense grass (8%) and dry land (6%) areas. New knowledge 

was achieved in this study, such as that the area of sandy land decreased during the analysis 

period, but the deterioration of land was progressing. 
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Chapter 1. Introduction  

1.1 Research background  

Desertification is a crucial environmental issue restricting social, economic, and 

political development in arid and semi-arid areas (Warren, 1988; Chen, 2005). 

Desertification has been defined in several ways, but the most widely accepted one is 

from the Conference on Environment and Development （UNCED）, which was held 

in 1992 and defined desertification as land degradation in arid, semi-arid, and dry sub-

humid areas resulting from various factors, including climate variations and human 

activities (WHO, 1992; Sciortino, 2001; Darkoh, 1998; Secretariat, 1977). 

Desertification has affected about 35 million km2 of land globally and overall, 35% of 

the Earth’s land surface was at risk of undergoing similar changes (Nicholson, 1998).  

In recent years, many problems affecting the environment and population have emerged, 

such as land shortages, environmental deterioration, and reduction of biological and 

economic productivity. Water scarcity, poverty, and migration have all increased due to 

the rapid spread of desertification. These problems have threatened human survival and 

sustainable economic development (Wang, 2004; El-Karouri, 1986; Bullock, 1996). It 

is argued that sustainability will be a great challenge facing human society in coming 

decades in fragile ecological zones, particularly in the transitional and marginal zones 

of agriculture and animal husbandry, which have been affected by intensive and 

irrational human activities (Pink, 2016; Lik, 2015; Hasi, 2010).  

China is a developing country with large population and scarce arable land, and is 

plagued by long-term and large-scale desertification (Wang, 2013). Investigation of 

China’s deserts and sandy lands began in the late 1950s (Zhu, 1989). Desert areas in 
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China are expanding by between 2460 and 10,400 km2 per year. As much as 3.317 

million km2 (34.6 % of the total land area) in China is affected by desertification, and 

up to 400 million people are struggling with unproductive agricultural land and water 

shortages. This is mostly distributed in the arid, semi-arid, and sub-humid areas in the 

western part of northeast China, the northern part of northern China, and most parts of 

northwest China (Plit, 1995; Jun, 2012). 

Since 1994, China’s State Forestry Administration (SFA) has conducted a national 

desertification survey at the country level every 5 years. The 1994 survey indicated that 

the area affected by desertification was 262.23 million km2 in 1994, 267.41 million km2 

in 1999, 263.62 million km2 in 2004, and 262.37 million km2 in 2009. Desertified area 

increased by 10,400 km2 yearly from 1996 to 1999, and decreased by 7,585 km2 yearly 

from 1999 to 2004. The desertification affected area covered 18 provinces and 508 

counties, mainly including Beijing, Tianjian, Heibei, Shanxi, Inner Monglia, Liaoning, 

Jilin, Shandong, Henan, Hainan, Sichuan, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, 

Ningxia, and Xinjiang. The second largest desertification affected area occurred in the 

Inner Mongolia Autonomous Region (SFA, 2011). Desertification mainly occurred in 

five provinces or autonomous regions, whose total desertified area accounts for 95.48% 

of China’s total land area, while the other 13 provinces, autonomous regions, and 

municipalities account for the remaining 4.52% (Wang, 2012). 

The Horqin Sandy Land, one of the four largest sandy lands in northern China, has a 

long history of desertification and land degradation. Feng (2015) reported that socio-

economic factors were the dominant driving forces affecting desertification in this 

region. A rapid increase of population and inappropriate human activities, such as 

agricultural reclamation and dry farmland abundance, overgrazing, excessive fuel wood 

cutting, blind collection of medicinal herbs, poorly managed tourism, over-
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consumption of water resources, mining, and road cutting have induced desertification 

continuously in the Horqin Sandy Land (Huang, 2008; Han, 2010; Duan, 2014). 

Moreover, climate change in recent decades has severely intensified desertification (Fan, 

2001). In addition to global warming, intensive land use and land cover changes 

coupled with frequent long-duration droughts have resulted in a significant decline in 

the groundwater table (Zhao, 2016). 

During the Liao Dynasty (907–1125 A.D.), the Horqin Sandy Land was full of tall 

forests and dense grasslands that sustained nomadic herders. Since the nineteenth 

century, a rapid increase of agricultural migrants into this region started to convert the 

ancient grassland and woodland into agricultural areas, which reduced available grazing 

land and put marginal lands under cultivation. This situation continued into the 

twentieth century, reaching a height of development in the 1950s and 1960s with a rapid 

expansion of human settlements and urban areas. In the beginning of the Great Leap 

Forward (1958–1960) and during the following two decades, expanding cultivation 

forced local nomadic herders to move into the border area, as most of the area was 

managed by agriculturalists. By the early 1980s, the rural reform program had played a 

key role in grassland overgrazing under the “household responsibility” system, and now 

the locally implemented “double responsibility” system may do little to reduce 

overgrazing (Hasi, 2010; Wang, 2013; Wang, 2004). With the development in the 

agricultural and industrial sectors, these essentially uncontrolled activities have resulted 

in destruction of woodland and grassland, degradation of surface soil, and increased 

water consumption (Wang, 2004). Since 2001, a series of large sandstorms have swept 

through much of northern China. The Chinese government and social media started to 

focus on desertification problems (Zhao, 2009). As part of its efforts to control 

desertification in affected regions, the Chinese government implemented a series of 
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ecological engineering programs, including the Three-North Shelter Forest Program 

(1978–2050), National Program on Combating Desertification (1991–2000), Beijing 

and Tianjin Sandstorm Source Treatment Program (2001–2010), Grain to Green 

Program (2003–present), Returning Grazing Land to Grassland Program (2003–

present), and China’s Western Development Strategy that focus on increasing 

vegetation coverage by prohibiting grazing, planting grasses and trees, and constructing 

shelter forest to protect farmland against blowing sand(Li, 2015).However, monitoring 

and assessment has identified that success has been achieved only in a few local regions 

(Zhao, 2005; Wang, 2006; Ellis, 1992; Jaime, 2013; Iqbal, 2014), while inappropriate 

measures have caused further desertification in other desertified areas.  

Desertification in China has been aggravating. It is a major challenge facing humanity, 

because of the problems ranging from the scale of the problem, a shortage of national 

financing, and difficulties in land treatment and vegetation protection (Alatorre, 2009).  

Agricultural expansion and urbanization in this region led to dramatic changes in land 

use/land cover structure.  

Land use/land cover (LULC) change analysis assists decision makers to ensure 

sustainable development and to understand the dynamics of our changing environment 

(Sharma, 2016). To date, however, previous studies on LULC structure spatial-temporal 

change pattern mainly based on spectral information of remote sensing data, improve 

the classification accuracy is necessity. Multitemporal coverage from remote sensing 

images over the large scale of Earth’s surface provides substantial information to 

facilitate the monitoring of environmental problems, such as land degradation trends 

(Ran, 2004). In this study, moderate spatial resolution and multi-temporal Landsat 

archive images are uniquely ideal for identifying changes in LULC structure over time. 

The main objective of this study is analyzing spatiotemporal change patterns in LULC 
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structure in second-level land cover classes in Ongniud Banner. In the LULC mapping 

process, we use the Support Vector Machine to demonstrate the usefulness of multi-

features for improving classification accuracy. The main second-level land cover 

classes mentioned in this study help us realize the desertification situation caused by 

human activities and the climate characteristics in this area. 
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1.2 Review of previous works  

The Horqin Sandy Land is located in a fragile ecotone, such as the transitional zone 

between pastoral and animal husbandry areas, and desertification is a serious ecological 

problem in this region (Kou, 1994). There is an increasing need for monitoring and 

assessment of desertification processes as this can provide essential information for 

sustainable environmental management in arid and semi-arid regions.  

Desertification progress is evaluated by several methods, such as direct observation and 

measurement, mathematical models, parametric equations, remote sensing (RS), and 

other indicators (Sepehr et al., 2007). Previous attempts to reveal the desertification 

status and intensity in the Horqin Sandy Land carried out desertification monitoring 

research from different subjects. Wulantuya (2000) analyzed cropland change related 

to cropland reclamation reform in the Horqin Sandy Land using statistical data from the 

last 50 years, and reported that cropland reclamation reform is an important factor 

affecting desertification. Zhang and Shao (2000) used China’s land use dataset at a 

1:1,000,000 scale to analyze land use change. However, these studies selected the 

prefecture as the study unit, and results did not present when and where the 

desertification process occurred or how it progressed.  

Hasi (2010) used Landsat MSS/TM/ETM+ to analyze LULC change from 1987 to 2007, 

and detected significant LULC change occurring in the Horqin Sandy Land, with the 

population increasing and large areas of grassland and woodland converted to cropland. 

Moreover, sandy land expansion has slowed since 1987. 

The susceptible area for desertification is mapped by combining desertification indices 

(Sepehr, 2007). In this process, desertification indicator selection is a crucial task 

(Rubio, 1998), but the relative contributions of driving forces for desertification remain 

unclear. Wang et al. (2006) proposed that two climate factors, drift potential and sand-
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driving wind frequency, have a much stronger effect on environmental change than has 

been appreciated in previous research. However, the impact of human activity may have 

been overestimated during past the 5 decades. Qi et al. (2015) found that socioeconomic 

forces were dominant factors in desertification, accounting for 79.3% of the effects, 

whereas climate change accounted for 20.6% of the effects from 1983 to 2012. Plit et 

al. (1995) provided the quantity of desert affected area caused by various human 

activities in transitional and marginal zones of agriculture and animal husbandry. These 

activities include fuel wood collection (31.1%), overgrazing (28.3%), reclamation of 

sandy land (25.4%), and other activities (15 percent). Su et al. (2005a) conducted a 

comparative analysis of the effects of grazing and livestock exclusion on soil properties. 

The results suggest that livestock grazing exclusion is an alternative to grassland 

restoration. Steffens (2007) identified that the physical and chemical properties of 

steppe top soils remained stable after exclusion of livestock grazing and significantly 

recovered after 25 years of livestock exclusion. Su et al. (2005b) found that two types 

of shrub plantation in sandy lands effectively improve soil properties and vegetation 

restoration. Recently, Huang et al. (2008) identified that vegetation cover in the Horqin 

Sandy Land slightly increased with an undulating trend and that desert areas have been 

decreasing in recent decades. Zuo et al. (2008) studied soil properties under grazing and 

restoration. Zhao et al. (2005a) demonstrate through field experiments that long-term 

wind erosion and sand accumulation in farmland can result in an obvious reduction in 

soil infertility, dryness, and coarseness. Zhao et al. (2005b) concluded that the effect of 

little accumulated sand on crop yield is not significant. Crop biomass and seed 

production mainly correlated to soil organic matter, soil moisture, total N, and pH value 

in deteriorated soil environments. Zhang (2013) summarized the soil productivity 

reduction once sandy grassland has been converted to cropland.  
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Li et al. (2014) investigated the effects of soil moisture on sand saltation and dust 

emission, with results showing the potential of stronger saltation processes observed 

under wet soil conditions. Hasi et al. (2010) presented that significant LULC change 

occurred in the Horqin Sandy Land. Niu et al. (2015) experimental analysis revealed 

that land use plays a key role in controlling spatiotemporal changes in soil moisture. 

Zhao et al (2016) detected that significant LULC change and drought leads to 

groundwater resource depletion in desertified regions. Imuamirin et al. (2005) analyzed 

LULC change and clarified that deforestation and farmland policy led to land 

deterioration since 1988. Zhang et al. (2003) evaluate different measures of stabilizing 

sand dune, with placing wheat straw checkboard and planting Artemisia halodendron 

on the dunes as the most promising techniques for vegetation restoration in the Horqin 

Sandy Land. Zhang et al. (2012) discussed a series of ecological protection projects that 

have effectively improved different types of sandy dune.  

More detailed LULC change information is needed to reflect the desertification process 

(Yan, 2005). However, most studies do not cover LULC change analysis in secondary 

sub-classes. Therefore, a time series comparison of the statistical record of 

desertification inventory could not reveal an accurate evolution of deserts because of 

the different inventory methods and survey scopes utilized at different times. On the 

contrary, dynamic change analysis over time thorough remote sensing data on the 

evolutionary history of the desertification process has been confirmed as reliable. In 

this research, detailed LULC change is treated as ecosystem degradation, combination 

of spectral data, spectral indices, spectral transformation, textural measures, and 

topographic to overcome the limitation of spectral based LULC classification to 

produce an accurate and detailed LULC map. At the same time, we calculated ground 

surface variations including surface soil grain size index, ground surface temperature, 
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ground surface water content, and ground water depth index to combine with LULC 

change and analyze the state of desertification in the study area between 2000–2009, 

2009–2015, and 2000–2015. 
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1.3 Definition of Desertification 

At present, the phenomenon known as desertification has attracted widespread attention 

from the public researchers.  

The term desertification was first coined in 1927 by the French scientist and explorer 

Louis Lavauden, and was popularized by the French scientist Andre Aubreville as long 

ago as 1949 (Glantz, 1983; Aubreville, 1949). Others (e.g., Le Houerou) have discussed 

the phenomenon since the late 1950s. 

In fact, Aubreville, a well-known botanist and ecologist, was the first to explain that 

desertification is not an extension of the existing desert. The Food and Agriculture 

Organization was the first international agency to use the word desertification in 1962. 

In 1977, The United Nations Conference on Desertification (UNCOD), held in Nairobi, 

Kenya, defined desertification as “the diminution or destruction of the biological 

potential of land, and (which) can lead ultimately to desert-like conditions.” 

It is an aspect of the widespread deterioration of ecosystems under the combined or 

interacting pressures of adverse and fluctuating climate and excessive exploitation. 

Such pressure has diminished or destroyed the biological potential, i.e., plant and 

animal production, for multiple use purposes at a time when increased productivity is 

needed to support growing populations in quest of development (Verstraete, 1986). 

In February 1990, the UNEP (United Nation Environmental Program) formed an ad hoc 

committee for global evaluation of desertification (UNEP, 1992). It defined 

desertification as “land degradation in arid, semi-arid, and dry humid areas resulting 

mainly from adverse human impact.” 

Finally, this definition was accepted at the Conference on Environment and 

Development (UNCED, Agenda 21) held in Rio de Janeiro in 1992, which described 

desertification as land degradation in arid, semi-arid, and dry sub-humid areas resulting 
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from various factors, including climate variation and human activities. These 

definitions were agreed upon at the Intergovernmental Convention to Combat 

Desertification (ICCD, 1994). 
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1.4 Objective of This Study 

The main objectives of this research regarded deterioration of ecological systems from 

the progress of desertification and presented sub-class LULC change analysis using 

time series Landsat data in spatial and temporal scales over the past 16 years after state 

and local governments implemented a series of policies to mitigate desertification and 

quantify the desertification in Ongniud Banner, in the western part of the Horqin Sandy 

Land. It was analyzed quantitatively and the result verified in conjunction with the land 

use dataset and SPOT-5 with 5 m high resolution image. At the same time, we calculated 

ground surface variations to analyze the state of desertification. In addition, this study 

discussed the links between desertification driving forces such as socio-economic 

factors and climate variations such as temperature and precipitation 

The specific objectives: 

1. Utilize Landsat Thermatic Mapper (TM) data from 2000 and 2009 and Landsat 

Operational Land Imager products acquired in 2015, to produce a LULC map for 

17 categories of land sub-classes, including cropland (dry farm, irrigation land, 

paddy), grassland (dense grass, moderate grass, sparse grass), woodland (forest, 

shrub, other forest), built-up land (urban built-up, rural settlement), water body 

(stream and river, lake, tidal), and unused land (sandy land, bare area, salina, 

swampland).  

2. In the LULC mapping process, estimate multiple features’ (spectral data, spectral 

indices, spectral transformation, textural measures, and topographic) contribution 

using the Support Vector Machine to produce accurate LULC maps.  

3. Analyze 17 categories of land sub-classes LULC change over the past 16 years to 

identify desertification in the study area. 

4. Analyze the state of desertification by thorough study of ground surface variations 
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that can be calculated from Landsat satellite data.  

5. Analyzing socioeconomic data and obvious interannual oscillations of climate 

variations, such as temperature and precipitation, linked to LULC change and 

desertification and understand their impact on desertification. 

The result will be a basic dataset for regional managers to understand the LULC 

dynamic mechanisms. Further, this study aims to provide useful information for 

sustainable management of land resources and restoration of desertified areas in this 

region. 
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Chapter 2. Desertification in Horqin Sandy 

Land  

 Horqin Sandy Land was a desertified region resulted from irrational and intensified 

human activities in the background of uneven climate change. This region ever 

experienced obvious reverse progress during Jin Dynasty to Qing Dynasty due to 

diminution of human activity.  

In this research according to understanding of historical desertification process to carry 

out characterizing of desertification present status of ongniud Banner, western part of  

Horqin Sandy Land and discusses the cause factors of desertification and controlling 

strategies. 

2.1 Cause factor  

Land degradation and desertification have become the increasingly server 

environmental and ecological problems in worldwide. These phenomenon resulting 

from combined insensitive and irrational human activities and the climate change. 

In China, accelerating desertification is caused mainly by previous human activities: 

reckless land conversion to cropland, overgrazing, deforestation and irrational use of 

water resources, etc. (Wu Bo, 2002). 

The percentage of the desertified land calculated according to each driving factors in 

2000, the desertified land caused by excessive gathering of fuel wood, over grazing, 

over cultivation, water resource misuse and industry / mining-induced destruction, 

natural factors accounted for 31.8%, 28.3%, 25.4%, 9% and 5.5%, respectively (T. 

Wang, 2005; Behnke, 2016). 

 

2.1.1 Human causes 

According to UNEP (1992), the anthropogenic causes of desertification are over 
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cultivation, overgrazing, deforestation and poor irrigation practices (Darkoh, 1996). 

These factors are fuelled by local forces such as poverty, population pressure, and 

poorly conceived national policies and external forces such as protectionism and import 

restrictions in developed countries and the state of the world economy. The process may 

be aggravated by climate change, especially prolonged drought and desiccation. 

2.1.1.1Over cultivation   

Excessive cropping in arid and semi-arid region lead to exhaust the soil nutrient, 

agriculture productivity decrease season by season with the reduction of land return. 

Expansion agricultural land required to maintain the same agricultural productivities to 

sustain the large number of population and sustainable economic development, while 

the demand for food increasing with rapid increasing population number. Reducing 

fallow period and introducing irrigation measures are used to maintain output. On the 

other hand, farming expose the bare soils to wind erosion for many years, all these 

cultivation activities lead to further soil degradation and promoting salinization. 

2.1.1.2 Overgrazing 

Overgrazing occurred when the grazing intensity exceeds the carrying capacity of 

grassland because of pastoralists allow too many animals to graze on a fixed area of 

land (R.Z. Wang, 1995; H. L. Zhao, 1997).  

Overgrazing is widely recognized as a one of the major cause factor of desertification 

in the worldwide. In china, there is about 3.9×105 km2 of desertified land, in which 28.3% 

is caused by overgrazing (T.Wang, 2000). 

Land surface vegetation damaged both by the large number of animal overgrazing itself 

and trampling. Specifically, the overgrazing resulted in considerable decreases in the 

plant diversity, vegetation cover, canopy height, standing crop biomass, and root 

biomass, and the proportion of poor quality herbages increased compared with 
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ungrazed grassland in the Horqin Sandy Land (T. Zhang, 2004). 

The overgrazed lands fragile to water erosion and wind erosion as compaction of the 

soils reduces the infiltration, leading to greater runoff, while trampling increases wind 

erosion. Fencing/ enclosure of grassland, which confines animals to specific locations 

and the provision of water points and wells has led to severe localized overgrazing. 

Boreholes and wells also lower the water table, causing soil salinization. 

Overgrazing may lead to a progressive reduction in the vegetation cover and increases 

wind erosion and runoff, which are conductive to desertification []. Another 

consequence of overgrazing is the destruction of native forage plants, which are then 

replaced either by annuals having little forage value or by unpalatable and toxic species 

(Y. Chen, 2005). For example, Cynanchum komarovii, a toxic annual, was associated 

with the rangeland subjected to heavy grazing in the Mu Us Sandy Land, north-central 

China.  

2.1.1.4 Deforestation  

Deforestation is most significant factor contribute to desertification, the removal of 

large area of forest or stand trees where the woodland has been converted to cultivated 

area or urban use and the trees surrounding the urban and rural settlement area stripped 

for firewood. The loss of vegetation cover lead to increase the land surface runoff, and 

the land become vulnerable to wind erosion and water erosion due to loss of root system 

in the land surface. 

The people have continue stripping indigenous woodlands of their trees for use as 

fuel. At the same time, population pressure is forcing people to cut still more trees to 

clear land for agriculture. The disappearance of the trees adds to family labor, erodes 

the productivity of the land, and generally dose mischief to the economy and to people’s 

lives.
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2.1.1.5 Fuel wood collection and blind herb medicine   

Fuel wood gathering is a primary cause factor for land degradation and desertification 

in developing country (Mallo, 2009).There have a linear relationship between fuel 

wood consumption with population growth and rates of fuel wood induced 

deforestation (Cline-Cole, 1990).  

The local people harvested fuel wood for cooking, heating, and for steam engines and 

turbines for generate electricity. The transportation cost of the fuel wood from long 

distance to user household is rising, however the collecting indigenous wood is the 

cheapest compare to the commercial substitutes such as high cost either for the fuel 

itself electricity, kerosene, and energy plantation of wood, and for conversion devices 

for stoves and solar energy (F. David, 1986).The cost of fuel wood is rising as scarcity 

forces it to be transported long distances to users. However, indigenous wood will 

continue to be the cheapest fuel available, dung and crop residues expected. 

Commercial substitutes do exist: electricity, kerosene, coal, solar energy, wood from 

energy plantations. However, these imply a high cost either for the fuel itself (electricity, 

plantation wood, kerosene) or for conversion devices (solar collectors, stoves). 

 

2.1.1.6 Policy for combating desertification  

To combat desertification and implement the UNCCD, the Chinese government enacted 

the Law of Combating Desertification in 2002, and approved the National Plan for 

Combating Desertification in 2005, meanwhile, China launched a series of key national 

ecological engineering projects, such as the Three-North Shelterbelt development 

Project from1978 to 2050, National Program on Combating desertification from 1991 

to 2000, Beijing and Tianjin Sandstorm Source Treatment project from 2001 to 2010, 
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Returning Farmland to Forest Project from 2003 to present and returning grazing land 

to grassland project from 2003 until present.  

Also, China began the first national desertification survey in 1994 with repeat surveys 

planned at 5-year internals, in 1999, 2004 and 2009. The desertification areas at four 

surveys are, respectively, 2.622, 2.674, 2.636 and 2.634×106 km2. Generally, the 

desertification area in China has kept stable in the past 20 years. Besides, in order to 

strengthen monitoring and research in desert region, the state forestry administration of 

China is now establishing the national desertification monitoring system and the China 

Desert Ecosystem Research Network (CDERN), which consist of 43 research stations 

across the arid, semi-arid and dry sub-humid areas in North China and the karst 

desertification areas in Southwest China. Finally, China has established the national 

desertification monitoring system and data bank, which will play an important role in 

the future (G.Q. Wang, 2012). 

2.1.2 Climate cause 

Land degradation and desertification is the result of combined effects of climate change 

and human activities. Climate change and other reasons (such as topography) can lead 

to precipitation changes which subsequently affect the vegetation productivity which is 

additionally deteriorated by human activities such as forestation or deforestation (Y.Z. 

An, 2014). 

2.2 Consequence  

Desertification brings many adverse impacts, it causes a decrees in farmland availability, 

declining crop productivity, falling incomes, disruptions to communications, and may 

eventually cause out-migration. Desertification also causes in increase in sand storms, 

silting of rivers and reservoirs, and increased soil erosion. 
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Chapter 3. Data sets and Method  

3.1 Study area 

This study was performed in Ongniud Banner, located in the western part of Horqin 

Sandy Land, in the southeastern part of the Inner Mongolia Autonomous Region of 

China. The location map of the study area shown in Figure 1. The study area was extent 

from 117°49′47″to 120°43′58″E, 42°26′42″to 43°25′31″N, and covers an area of 11882 

km2, which stretches 250 km from east to west, 84 km from south to north.  

Ongniud Banner was belongs to transitional zone of pastoral and animal husbandry 

region, between the Inner Mongolia Plateau and the Northeast Plains, which is 

vulnerable to natural changes and anthropogenic activities. It is representative region 

suffering from sever soil erosion and improper industrial structure, mainly caused by 

over consumption and overexploiting land resource. In this region the degradation area 

about 47.91 ha, account for 40.88 percent of the Ongniud Banner. The altitude of this 

region decrease from 2025m in the west to 286m in the east and this region 

characterized by the three typical geomorphological features throughout the study area 

from west to east in the order of high elevation alluvial flats higher than 900m, low 

mountains and hills from 650m to 900m, and low Aeolian dunes lower than 650m (QL. 

Yan, 2011). The monsoon type of climate of this region characterized by temperate, 

semiarid, continental, and with windy and dry winters and springs, and warm and 

relatively rainy summers, and short and cool autumns. The mean annual temperature is 

7 ℃; annual mean precipitation is 300 mm, of which 70 percent of precipitation falls 

between July and September. The mean annual potential evaporation about 2040.9 mm. 

The mean annual wind velocity is 4.2m s-1 (S. Yan, 2010). The windy season lasts from 

early March to late May.  The growing season starts from late April end in late 
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September. The landscape is characterized by a mosaic of farmland and grassland. The 

main vegetation in this region is typical steppe and temperate steppe desert. The Soil 

consists of Aeolian sandy soil and chestnut. Additionally, The Wulanaodu 

Desertification Experiment Station of Chinese Academy of Science which located in 

the center of the Ongniud Banner can provide field survey data source to support the 

further reliable research on this region. Therefore, a comprehensive land cover change 

analysis in second level land cover classes will help reveal the regional sustainable land 

use potential, and promote the sustainable development for environments and social 

economic, and ecological security of northeast China. 

 

Figure 1 Location map of the study area (red polygon) displayed over the Landsat-8 

data based false color composite (FCC) image. 
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3.2 Satellite data and preprocessing   

The long term coverage remote sensing images are collected for almost 

everywhere on the earth, these characteristics promote to use of remote sensing images 

to monitor a wide range of environmental problems at local to global scales (S. Ran, 

2004). The free of charge Landsat achieve products with moderate spatial resolution is 

the best option to monitor changes in land use/land cover over time. 

In this study, the Landsat 5 thermal mapper(TM) datasets (path/row:121/30 and 

122/30) observed in year 2000 and 2009; and Landsat 8 Operational Land Imager / 

Thermal Infrared Sensor (OLI/TIRS) datasets (path/row: 121/30、122/30 and 123/30) 

Observed in 2015 are available from the United Sate Geological Survey (USGS) 

website (http://glovis.usgs.gov/) were used. The time series of Landsat scenes with the 

30m spatial resolution during the highest vegetation growing season (from July to 

September) and without cloud cover were available over the study area in study period. 

The details on the Landsat datasets used in the research are shown in Table 1. 

 

Table 1 Description of satellite data used in study 
 

Datasets Year Path/Row Date acquired Spatial resolution 

Landsat 5 TM 2000 121/30 30-August-2000 Band 1-5 and 7 with 30m; 

Band 6 with 120 m 122/30 6-September-2000 

Landsat 5 TM 2009 121/30 23-August-2009 Band 1-5 and 7 with 30m; 

Band 6 with 120 m 122/30 15-September-2009 

Landsat 8 

OLI/TIRS 

2015 121/30 7-July-2015 Band 1- 7 with 30m; 

Band 10 and 11 with 100 m 122/30 15-August-2015 

123/30 15-September-2015 

 
 First of all, choose the Landsat image (path/row: 122/30) which cover the main 

part of study area as the base image projected the projection system as Universal 

Transverse Mercator and zone number (N50), this work performed for neighbor images 

122/30 and 123/30; Secondly, the co-registration work performed for two adjacent 

http://glovis.usgs.gov/
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images of 2000 by choosing about 20 ground control points (GCPs) from common area. 

GCPs were well dispersed throughout common area of both scene and yielded root-

mean-square errors of less than 0.5 pixels. Similarly, this work performed for year 2009 

and 2015. The images overly pixel by pixel not only between adjacent scene, and also 

between different time periods. Finally, mosaicking work conducted for neighbor 

imagery, and use the administrative boundary to subset the study area. 
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3.3 Reference Data for Mapping and Validation  

In addition to Landsat 5 and 8 products, the Shuttle Radar Topography Mission (SRTM ) 

with 30 m data based Digital Elevation Model (DEM) data available from the United 

Sate Geological Survey (USGS) website (http://glovis.usgs.gov/) and the SPOT-5 with 

2.5 m high resolution image in 2009 provided from Inner Mongolia Key Laboratory of 

Remote Sensing and Geographic Information System, Hohhot, China, Google Earth 

based images, the land use dataset of Inner Mongolia Autonomous Region at 1:10 0000 

in 1995 and 2000, The desert distribution dataset of China at 1:10 0000, The vegetation 

map of China at 1:400 0000, China Soil Map Based Harmonized World Soil Database 

(v 1.1) were provided by Environmental and Ecological Science Data Center for West 

China, National Natural Science Foundation of China (http://westdc.westgis.ac.cn) 

were used for land cover classification and validation process. The additional social-

economic data between 1998 and 2014 from Inner Mongolia Statistical Bureau and 

Climate variations include precipitation and temperature data (1998-2014) of Chifeng 

meteorological station from Japan Meteorological Business Support Center (JMBSC) 

used to analysis driving factors cause land use land cover change and further 

desertification in the study area. According to the daily precipitation data, there were 

rainfall events 2 days preceding the Landsat data acquired date in 2000, however the 

precipitation were less than 3 mm. particularly, without rainfall events in September 

before the Landsat data acquired date in 2009.  

Which proved that the precipitation have little or not at all effect on land surface 

temperature and soil moisture further groundwater after evaporation and infiltration.  

 

http://glovis.usgs.gov/
http://westdc.westgis.ac.cn/
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Chapter 4. Analysis of desertification based on 

LULC change   

4.1 Land Use/Cover Classification Technology 

A wide range of methods for classification of remote sensing image continuously 

proposed. SVMs are particularly popular in the remote sensing field compare to the 

other classification methods such as maximum likelihood method, decision tree method, 

and neural network method. The principle of the SVM was originally introduced and 

improved by Vapnik and Chervonenkis. SVM is a non-parametric classification method 

which can also work with the small amount of training data and produce higher 

classification accuracy (G. Mountrakis, 2011; P. Mantero, 2005).  

The success of the SVM method depends on how well the process is trained. Principally, 

SVM is a binary classifier that set an optimal separating hyperplane during classes to 

correctly separate the data point into two classes (Huang, C. et al, 2002). If the training 

data with k number of samples be represented as  (𝑥1, 𝑦1), ⋯ , (𝑥𝑘, 𝑦𝑘) , where xϵ𝑅𝑛 

is an n –dimensional space, and y ∈ {+1, −1} is class label, then these training data 

will be separated by the two hyperplane parallel to the optimal hyperplane with 

maximum margin into the respective classes shown in equation (1a and 1b).  

 
           W ∙ 𝑥𝑖 + 𝑏 ≥ +1 𝑓𝑜𝑟 𝑦𝑖 = +1, 𝑖 = 1, 2, ⋯ , 𝑘                  (1a) 

 

                 W ∙ 𝑥𝑖 + 𝑏 ≤ −1 𝑓𝑜𝑟 𝑦𝑖 = −1                              (1b) 

 
The original idea of SVM presented in figure 2. 
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Figure 2 Original idea of SVM 
 

SVM can classify the data linearly and nonlinearly, and kernel function is used for 

nonlinear classification. The SVM provide four types of kernels: linear, polynomial, 

and radial basis function (RBF), and sigmoid. According to the previous studies, radial 

basis function kernel works better for remote sensing image classification (Kavzoglu, 

T., 2009). The equation of radial basis function kernel presented as follow (equation 2): 

                    K (xi，xj·) = exp (−g‖xi − xj‖
2

) , g > 0           (2) 

Where, g indicate the gamma term in the radial basis kernel function.  

The supervised classification was conducted using the Support Vector Machine (SVM) 

(T. Kavzoglu, 2003) algorithm. In this study utilized the default parameter provided by 

ENVI software to perform supervised classification on Landsat images. LULC 

classification and mapping was conducted for each years (2000, 2009, and 2015) using 

the above mentioned 25 feature images and the training data collected. The processes 

of Land use land cover mapping and change analysis shown in figure 3. 
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Figure 3 Flow chart of the land use land cover change analysis in this research 

 

 

Training data 

separability 

validation  

Supervised 

Classification 

Method 

LULC mapping 

(2000, 2009 and 2015) 
 

Landsat Archive images: 

• July 2000 

• August 2009 

• August 2015 
 

Re-projection 

Coregistration 

DN to radiance 

Image mosaicking 

Masking study area 
 

Band Ratio  

Principle Component Analysis 

Texture Analysis 

Tasseled Cap Transformation 
 

Scio-economic factors: 

Population number 

Livestock number 

Cultivated area  

Afforested area 

Climate variations:  

Temperature  

Precipitation 

Top Soil Grain Size Index 

Land Surface Temperature 

Soil Moisture Index 

Depth of Groundwater Level  
 

Validation 

LULC change analysis 

(2000-2009, 2009-2015 and 2000-2015) 
 

Landsat Achieve 

Image 
 

Data 

preprocessing 
 

Multiple feature 

calculation 
 

Multi-feature 

contribution 

assessment for 

LULC mapping 

Google Earth 

Land use dataset 

SPOT 5 with 2.5m 

Training data 

collection 

(2000, 2009 and 



 

 

27 

 

4.2 Land Use/Cover Mapping in Study Area 

4.2.1 Land use/cover classification system 

The land use land cove classification system used in this study defined by the Chinese 

Academy of Science through the field survey. This multi-hieratical classification 

system covered the 6 main land cover classes, 31secondary sub-classes, this is the 

highest detail classification system in China. According to the landscape of the study 

area 17 categories of sub-classes land use land cover presented in Ongniud Banner. The 

detail description of land use land cover classes presented in Table 2.  

 

Table 2 Land use land cover classification system and description 
 

1st  level classes   2nd level classes Descriptions 

Cropland  Cultivated lands for crops. Including mature 

cultivated land, newly cultivated land, 

fallow, shifting cultivated land; 

intercropping land such as crop-fruiter, 

crop-mulberry, and crop-forest land in 

which a crop is a dominant species; 

bottomland and beach that cultivated for at 

least 3 years. 

 Paddy land Cropland that has enough water supply and 

irrigation facilities for planting paddy rice, 

lotus etc., including rotation land for paddy 

rice and dry farming crops. 

 Dry land Cropland for cultivation without water 

supply and irrigating facilities; cropland 

planting vegetables; fallow land. 

 Irrigation land cropland that has water supply and 

irrigation facilities and planting dry farming 

crops; 

Woodland  Lands growing trees including arbor, shrub, 

bamboo and for forestry use.  

 Forest Natural or planted forests with canopy 

cover greater than 30%. 

 Shrub Lands covered by trees less than 2 m high, 

the canopy cover > 40%. 

 Woods  Lands covered by trees with canopy cover 

between10-30%. 

Grassland  Lands covered by herbaceous plants with 

the coverage of shrub canopies less than 

10%. 

 Dense grass Grassland with canopy coverage greater 

than 50%. 
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 Moderate Grass Grassland with canopy coverage between 

20% and 50%. 

 Sparse grass Grassland with canopy cover between 5% 

and 20%. 

Water body  Lands covered by natural water bodies or 

lands with facilities for irrigation and water 

reservation. 

 Stream and rivers  Lands covered by rivers including canals. 

 Lakes Lands covered by lakes. 

 Reservoir and ponds Man-made facilities for water reservation. 

 Bottomland  Lands between normal water level and 

flood level. 

Built-up land  Lands used for urban and rural settlements, 

factories and transportation facilities. 

 Urban built-up  Lands used for urban. 

 Rural settlements  Lands used for settlements in villages. 

Unused land  Lands that are not put into practical use or 

difficult to use. 

 Sandy land  Sandy land covered with less than 5% 

vegetation cover. 

 Salina Lands with salina accumulation and sparse 

vegetation. 

 Swampland Lands with a permanent mixture of water 

and herbaceous or woody vegetation that 

cover extensive areas. 

 Bare land Bare exposed soil with less than 5% 

vegetation cover; Bare exposed rock with 

less than 5% vegetation cover. 

 

In this study, desertification regraded as natural vegetation coverage degradation 

between 6 categories of general land use land cover and within 17 categories of sub-

classes land use and land cover in semi-arid desertification area primarily destroyed by 

unsustainable human social –economic activities such as irreversible land resource 

exploitation for variety of utility combined with the effect of significant interannual 

change of climate variations including temperature and precipitation.   

4.2.2 The Classification Scheme and Training Data 

Collection of the highly representative training data is one of the major factors 

determining to what degree the classification rules can be generalized to unseen samples 

(Paola and Schowengerdt, 1995). A previous study showed that this factor could be 

more important for obtaining accurate classifications than the selection of classification 

algorithms (Hixson et al. 1980).  
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In this research, following the land cover classification system defined by the Chinese 

Academy of Sciences, training data belonging to 17 categories of secondary land cover 

classes were collected for each year 2000, 2009 and 2015. Existing land use and 

vegetation maps, false color composite images prepared from Landsat 5 and 8 data, 

Google Earth images, and high resolution Spot-5 images were used as the reference 

datasets while collecting the training and validation data. The classification scheme 

used in the research and the number of training data (polygons/pixels) collected are 

listed in Table 2. 

We carefully examined the reference data and spectral signatures of each land cover 

classes across the image of study area to collect the training site from three period 

images. Spectral feature of the 17 categories of sub-class land use land cove presented 

in figure 4. In order to ensure the training data they were the representative of the entire 

image, a sufficient number of pixels for each land cover class must be collected. To 

enhance the comparability of land cover classification results between three periods we 

tried to use the same training sites as much as possible when no change had occurred. 

The reliability of the training data over the entire study area was further ensured by 

using the Jeffries-Matusita transformed divergence index to assess the separability of 

training data for each year 2000, 2009 and 2015. We confirmed that land cover classes 

water, sandy with the high separability, but other land cover classes with the much lower 

separability.  
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Figure 4 spectral feature of 17 categories of sub-class LULC 
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Table 3 LULC classification system and the number of training data (polygons/pixels) 

used in the research for year 2000, 2009 and 2015 
 

1st level 

classes 

2nd level classes Color composition 

(Red-Green- Blue) 

Training data(polygon/pixel) 

   2000 2009 2015 

Cropland Paddy 139-90-0 18/3641 21/2969 17/3684 

Dry land 235-180-0 43/7489 57/9793 64/10792 

Irrigation land 255-100-0 35/3919 51/4643 57/7686 

Woodland Forest 45-139-87 50/4113 39/4347 52/7150 

Shrub 97-181-140 29/2852 30/8171 27/6396 

Other forest 150-255-171 26/4194 27/3969 31/5370 

Grassland Dense grass 0-139-0 34/5085 31/3573 29/5936 

Moderate grass 0-205-0 32/3005 32/3005 26/5933 

Sparse grass 0-255-0 33/2369 34/2671 35/8244 

Water body Rivers and lakes 0-0-255 24/5379 18/4682 21/6118 

Tidal 110-180-238 20/1181 19/1340 25/1835 

Built-up 

land 

Urban built-up 139-0-0 15/1877 10/3312 10/4385 

Rural settlements 238-0-0 40/3846 37/3527 40/4548 

Unused 

land 

Sandy land 238-238-142 31/7993 31/9423 46/16651 

Salina 255-255-255 22/3121 22/3121 19/2913 

Swampland 216-191-216 11/1588 9/560 5/742 

Bare 210-181-155 43/1837 50/3283 37/3909 

 
4.2.3 Feature calculation and combination  

 

The study area is mixed of the diverse types of LULC. Considering the spectral 

complexity such as same object with different spectra, different objects with same 

spectrum of ground object, we calculated multi-feature such as NDVI (Normalized 

Difference Vegetation Index), NDBI (Normalized Difference Built-Up Index), NDBaI 

(Normalized Difference Bareness Index), NDWI (Normalized Difference Water Index)，

NDSI (Normalized Difference Salinity Index), tasseled cap transformation features 

(Greenness, Brightness, Wetness), topography feature (Elevation, Slope and Aspect).  

The six spectral bands of the Landsat data were used for the principal component 

analysis, and the first principal component which included more than 90% spectral 

information was used to calculate textural features. Eight textural measures (Mean, 

Variance, Homogeneity, Contrast, Dissimilarity, Entropy, Second moment, and 

Correlation) were calculated using the Gray Level Co-occurrence Matrix (GLCM) with 
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the moving window size of 3 by 3 pixels, moving direction 45℃ and moving distance 

1 pixel as ancillary information support the higher accuracy land cover classification.  

4.2.3.1 NDVI (Normalized Difference Vegetation Index) 

The NDVI is one of the first successful vegetation indices based on band ratioing. It 

was calculated using the equation 3: 

                       NDVI =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                           (3) 

Where, 

Landsat 5 :( band 4-band 3) / (band 4+band 3) 

Landsat 8: (band5-band4) / (band 5 +band 4) 

 

4.2.3.2 NDBI (Normalized Difference Built-Up Index) 

NDBI (Normalized Difference Built-Up Index), Zha et al. (2003) calculated with 

following equation 4: 

𝑁𝐷𝐵𝐼 =
(𝑀𝐼𝑅−𝑁𝐼𝑅)

(𝑀𝐼𝑅+𝑁𝐼𝑅)
                        (4) 

 

Where MIR indicate mid infrared band in Landsat TM, NIR indicate near infrared band 

in Landsat TM. 

NDBI derived image show that buil-up area have the higher reflectance in MIR 

wavelength range than in NIR wavelength range. 

4.2.3.3 NDBaI (Normalized Difference Bareness Index) 

Recognize different types of bare area is crucial task for accurate land use land cover 

classification. The primary bare area are area there no vegetation cover existed due to 

physiographic factors such as climate, hydrology; the humus bare lands were mainly 

influenced by anthropogenic disturbance such as heavily farming and urban 

construction. Therefore, normalized difference bareness index (H.M. Zhao, 2005) 

proposed to distinguish the different types of bare areas as follows (equation 5): 
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𝑁𝐷𝐵𝑎𝐼 =
(𝑆𝑊𝐼𝑅−𝑇𝐼𝑅)

(𝑆𝑊𝐼𝑅+𝑇𝐼𝑅)
                             (5) 

Where, 

SWIR is indicate band 5 of Landsat TM; 

TIR is indicate band 6 of Landsat TM. 

4.2.3.4 NDSI (Normalized Difference Salinity Index) 

The concept of Normalized difference soil salinity index (NDSI) shown in equation 6 

is designed to suppressing the vegetation and highlight the saline zones. NDSI is the 

ratio of difference of red band and near infrared band and divided by the accumulation 

of red band and near infrared band. 

                𝑁𝐷𝑆𝐼 =
(𝑅𝑒𝑑−𝑁𝐼𝑅)

(𝑅𝑒𝑑+𝑁𝐼𝑅)
× 100                        (6)  

Where, 

Landsat 5: (band 3-band 4) / (band 3+band 4) 

Landsat 8: (band4-band5) / (band 4 +band 5) 

 

4.2.3.5 NDWI (Normalized Difference Water Index) 

NDWI (Normalized Difference Built-Up Index) proposed by McFeeters (1996) to 

delineate open water features, which is expressed as follows (equation 7) 

 

                      𝑁𝐷𝐵𝐼 =
(𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅)
                            (7) 

Where Green is indicate a green band of Landsat TM, and NIR is indicate a near infrared 

band of Landsat TM. 

This index enhanced the water body with positive reflectance value and suppressed the 

vegetation and soil with zero or negative reflectance value. 

4.2.3.6 Tasseled Cap Transformation 
 

The tasseled cap index was calculated from the related six Landsat bands, the parameter 

for the first three tasseled cap component such as Tasseled Cap Brightness (TCB), 

Tasseled Cap Greenness (TCG) and Tasseled Cap Wetness (TCW) for each band of 

Landsat 5 and Landsat 8 products presented in table 4 (Crist,1986; Baig,2014).  

Brightness, measure of soil; Greenness, measure of vegetation; Wetness, 



 

 

34 

 

interrelationship of soil and canopy moisture, the wetness component contrast the sum 

of the visible and near-infrared bands with the sum of the longer-infrared bands to 

determine the amount of moisture being held by the vegetation or soil. 

The tasseled cap transformation of the first three tasseled cap component of the Landsat 

imagery carried out using the tasseled cap function of the Environment for Visualizing 

Images (ENVI 4.8) image processing software.  

 

Table 4 Tasseled Cap Transformation parameter for Landsat imagery 

 

  

Landsat 5 

(TM) 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

TCB 0.2909 0.2493 0.4806 0.5568 0.4438 0.1706 

TCG  -0.2728 -0.2174 -0.5508 0.7220 0.0733 -0.1648 

TCW 0.1446 0.1761 0.3322 0.3396 -0.6210 -0.4186 

Landsat 8 

(OLI) 

 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

TCB 0.3029 0.2786 0.4733 0.5599 0.508 0.1872 

TCG -0.2941 -0.243 -0.5424 0.7276 0.0713 -0.1608 

TCW 0.1511 0.1973 0.3283 0.3407 -0.7117 -0.4559 

 

The combination of the multiple features (spectral, spectral indices, spectral 

transformations, textures, and topographic) calculated from the satellite data were used 

to improve the accuracy of the LULC classification. The list of spectral features used 

in the research are shown in table 5. Altogether, 25 feature images were used as an input 

dataset in the research. These features were calculated separately for each years (2000, 

2009, and 2015) using the satellite data of the corresponding years. 
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Table 5 List of feature images used in the research. 

 
Features Descriptions Total 

Spectral Blue, Green, Red, Near Infrared, Shortwave Infrared, 

and Thermal Infrared 

6 

Spectral indices Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Built-Up Index (NDBI), 

Normalized Difference Bareness Index (NDBaI), 

Normalized Difference Salinity Index (NDSI), 

Normalized Difference Water Index (NDWI)  

5 

Spectral 

transformations 

Tasseled cap-wetness, Tasseled cap-Greenness, 

Tasseled cap-brightness 

3 

Textural Mean, Variance, Homogeneity, Contrast, Dissimilarity, 

Entropy, Second moment, Correlation 

8 

Topographic Slope, altitude, aspect 3 

Total 25 

 
The above mentioned multi-features combined to basic spectral data of Landsat 5 and 

Landsat 8 one by one. The combination of the multiple features with basic spectral data 

shown in table 6. 

Table 6 Multi-feature contribution scheme in the research 
 

  Spectral data (Landsat 5 or Landsat 8) Additional feature 

Group 1  band 1-5,7 or band 1-7  

Group 2 band 1-5,7 or band 1-7 DEM 

Group 3 band 1-5,7 or band 1-7 Slope 

Group 4 band 1-5,7 or band 1-7 Aspect 

Group 5 band 1-5,7 or band 1-7 NDVI 

Group 6 band 1-5,7 or band 1-7 NDWI 

Group 7 band 1-5,7 or band 1-7 NDSI 

Group 8 band 1-5,7 or band 1-7 NDBI 

Group 9 band 1-5,7 or band 1-7 NDBaI 

Group 10 band 1-5,7 or band 1-7 Greenness 

Group 11 band 1-5,7 or band 1-7 Brightness 

Group 12 band 1-5,7 or band 1-7 Wetness 

Group 13 band 1-5,7 or band 1-7 Mean 

Group 14 band 1-5,7 or band 1-7 Variance 

Group 15 band 1-5,7 or band 1-7 Homogeneity 

Group 16 band 1-5,7 or band 1-7 Contrast 

Group 17 band 1-5,7 or band 1-7 Dissimilarity 

Group 18 band 1-5,7 or band 1-7 Entropy 

Group 19 band 1-5,7 or band 1-7 Second moment 

Group 20 band 1-5,7 or band 1-7 Correlation 
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LULC classification and mapping was conducted for each years (2000, 2009, and 2015) 

using the above mentioned 25 feature images and its combination method and the 

training data collected. The supervised classification was conducted using the Support 

Vector Machine (SVM) algorithm. 
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Chapter 5. Analysis of desertification based on 

physical properties’ change  

Desertification resulted in reduction of productivity in a desert steppe thorough affect 

the soil physical and chemical properties directly and UN -directly. Remote sensing 

techniques not only used for detecting changes in land use and land cover category, but 

also identify the physical properties changes of the land surface by utilizing associated 

indices.   

5.1 Top Soil Grain Size Index 

In arid and semiarid area, wind erosion strongly affects the land surface soil physical 

properties. Therefore, spectral reflectance of the land surface soil can be potentially 

used as an indicator to land degradation. So it is possible to monitor land desertification 

by topsoil grain size index change in arid and semiarid area using remote sensing 

technique (Xiao, J., 2005).  

Increasing of the spectral reflectance of land surface soil imply land degradation or 

desertification. Xiao et al (2005) introduced the top soil grain size index that manifest 

the physical properties (grain size composition) of top soil very well. This index was 

not like normalized difference vegetation index, bare soil index, and percentage grass 

coverage which has large spatial and temporal variability and uncertainty in arid regions 

due to these indices very sensitive to precipitation. GSI was proposed to monitoring 

desertification process in arid region. 

However, this index designed to monitoring the change in surface soil texture by 

analyzing the correlation between soil grain size distribution and surface soil 

reflectance data. The GSI calculate by using bellowing equation (8): 
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             GSI =
𝜌𝑟𝑒𝑑−𝜌𝑏𝑙𝑢𝑒

𝜌𝑟𝑒𝑑+𝜌𝑏𝑙𝑢𝑒+𝜌𝑔𝑟𝑒𝑒𝑛
                            (8) 

Where, R, B, and G are the reflectance of the red, blue and green bands of the Landsat 

TM or ETM + and Landsat 8 products that band 3, band 1 and band 2 for Landsat 

TM/ETM+ and band 4, band 2 and band 3 for Landsat 8, respectively. 

In general, within visible and near infrared wavelength range the spectral reflectance 

value increasing with the fine sand percentage increase in top soil, while the reflectance 

value decreasing with the clay and silt content increasing.  

In principle, in the GSI formula, the difference value between red band and blue band 

designed to distinguish the area covered with vegetation or water and bare soil. The 

difference value between red band and blue band will be close to 0 in vegetated area, 

and the deference value will be negative for water body; while the difference value large 

for bare soil. The accumulation reflectance value of the red, green and blue bands 

designed to distinguish the topsoil with different grain size composition. The 

accumulation value of visible bands reflectance is positively correlated to fine sand 

content of the topsoil. There are no explicit upper limit for GSI value. 

 

In this study, the experimental result showed that GSI index negatively related to 

vegetation coverage, so GSI index possible to monitor land desertification in arid and 

semiarid area using remote sensing technique.  
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5.2 Land Surface Temperature Derivation 

Satellite TIR sensors measure top of the atmosphere (TOA) radiances, from which 

brightness temperatures (also known as blackbody temperatures) can be derived using 

Plank’s law (Dash et al., 2002). 

The TOA radiance are the mixing result of three fractions of energy: 

(1) Emitted radiance of the Earth’s surface, (2) upwelling radiance from the atmosphere, 

and (3) down welling radiance from the sky. 

The difference between the TOA and land surface brightness temperatures ranges 

generally from 1 to 5 K in the 10-12 micrometer spectral region, subject to the influence 

of atmosphere effects, including absorption, upward emission, and downward 

irradiance reflected from the surface (Franca & Cracknell, 1994), must be corrected 

before land surface brightness temperatures are obtained. These brightness temperature 

should be further corrected with spectral emissivity values prior to the computation of 

LST to account for the roughness properties of the land surface, the amount and nature 

of vegetation cover, and the thermal properties and moisture content of the soil (Friedl, 

2002). 

Two approaches have been developed to recover LST from multispectral TIR imagery 

(Schmugge et al., 1998). The first approach utilizes a radiative transfer equation to 

correct the at-sensor radiance to surface radiance, followed by an emissivity model to 

separate the surface radiance into temperature and emissivity (Schmugge et al., 1998). 

The second approach applies the split-window technique for sea surfaces to land 

surfaces, assuming that the emissivity in the channels used for the split window is 

similar (Dash et al., 2002). In other words, a set of thermal responses for a specific 

landscape phenomenon or process measured using a specific TIR sensor cannot be 

extrapolated to predict the same TIR measurements either from other sensors, or from 
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images recorded at different times using the same sensor (Quattrochi & Goel, 1995). 

5.2.1 Convert digital number (DN) to spectral radiance 

The Landsat thermal infrared (TIR) band 6 of Landsat 5 and Landsat thermal infrared 

sensors (TIRS) band 10 and band 11 of Landsat 8 were converted to top of atmosphere 

(TOA) spectral radiance using the radiometric rescaling coefficients, multiplicative 

rescaling factor and additive rescaling factor provided in the metadata file (MTL file), 

the detail process described as below (equation 9): 

                      𝐿𝜆 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿                     (9) 

Where: 

𝐿𝜆  is indicate TOA spectral radiance  (Watts/( m2 * srad * μm)) 

𝑀𝐿 is band-specific multiplicative rescaling factor from the metadata 

(radiance_mult_band_10/11) 

𝐴𝐿 is band-specific additive rescaling factor from the metadata 

(radiance_add_band_10/11) 

𝑄𝑐𝑎𝑙 is quantized and calibrated standard product pixel values (DN). 

The values of 𝑀𝐿 and 𝐴𝐿 for Landsat imagery for our study area is extracted from 

the metadata. 

5.2.2 Conversion to at-satellite Brightness temperature 

TIRS band data can be converted from spectral radiance to brightness temperature using 

the thermal constants provided in the metadata file (equation 10): 

                     T =
𝐾2

ln(
𝐾1
𝐿𝜆

+1)
                        (10) 

Where: 

T is at-satellite brightness temperature (K) 

𝐿𝜆 is the TOA spectral radiance (Watts/ (m2 * srad * μm)) 
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𝐾1 is Band-specific thermal conversion constant from the metadata  

𝐾2 is Band-specific thermal conversion constant from the metadata  

5.2.3 Fractional Vegetation Coverage 

Fractional vegetation cover (FVC) was estimated for a pixel. FVC for an image was 

calculated by according to (Carlson & Ripley, 1997) (Valor, 1996) (equation 11): 

𝑃𝑉 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2

                           (11) 

Where 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 = 0.5 and 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 = 0.2. 

Where,  

𝑁𝐷𝑉𝐼𝑆  NDVI reclassified for soil  

𝑁𝐷𝑉𝐼𝑉  NDVI reclassified for vegetation 

5.2.4 Land Surface Emissivity 

To calculate the LST it is essential to understand the emissivity knowledge of ground 

object. Previous researchers introduced different methods to calculate LSE such as: the 

temperature and emissivity separation (TES) method (Gillespie, 1985), temperature-

independent spectral indices (TISI) (Becker & Li, 1990), spectral ratio method (Watson, 

1992), Alpha residual method (Kealy & Gabell, 1990), method based on NDVI image 

(Valor & Caselles, 1996), method based on classification image (Snyder et al., 1998), 

and the temperature and emissivity separation (TES) method (Gillespie et al., 1998). 

In which, an alternative, operative method is to obtain the land surface emissivity from 

NDVI, the NDVI threshold method shows a good working in comparison to a reference 

method as the one based on TISI indices (Becker & Li, 1990), as is pointed by Sobrino 

et al. (2001). In this study, assume that the pixel is composed by a mixture of vegetation 

and bare soil, and the land surface emissivity equation provided as bellow: 

ε = 0.004𝑃𝑉 + 0.986 

Where,  
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𝜀𝑉  is the vegetation emissivity and 𝜀𝑆  is the soil emissivity, 𝑃𝑉 is the vegetation 

proportion  

 

Derivation of Land surface temperature from Landsat 5 and Landsat 8 imagery  

The LST were derived from the Landsat 5 Thermal Infrared band 6 (10.40-12.50 μm) 

collected at 120 m and Landsat 8 Thermal Infrared Sensor (TIRS) bands 10 (10.60-

11.19 μm) and band 11 (11.50-12.51μm) collected at 100 meters, these band resampled 

to 30 meters to match multispectral bands. The local time of satellite overpass was in 

the morning (approximately 11:14 AM) (this was the best image available), so that the 

chance for detecting a weaken UHI is maximized. However, (Roth et al., 1989) has 

demonstrated that satellite detection of land surface temperature using thermal infrared 

sensors the heat island intensity is greatest in the daytime and in the warm season. 

The Landsat 5 and Landsat 8 image used in this research is therefore appropriate 

although not optimal. The following equation was used to convert the digital number 

(DN) of Landsat 5 TIR band and Landsat 8 TIRS band into spectral radiance (equation 

12):  

𝑇𝐵 =
𝐾2

ln(
𝐾1
𝐿𝜆

+1)
                          (12) 

Where 𝑇𝐵 is effective at-satellite temperature in K, 𝐿𝜆 is spectral radiance in W/ (m2 

ster Am); and 𝐾2  and 𝐾1  are pre-launch calibration constants.  The values of 

calibration constant for Landsat imagery shown in table 7 (Chander, 2003). 
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Table 7 the calibration constants of thermal band for Landsat imagery 
 

 K1 (W m-2 sr-1μm -1)  K2 (Kelvin) 

Landsat 5 TM 607.76 1260.56 

Landsat 7 ETM+ 666.09 1282.71 

Landsat 8 TIRS Band 10 774.89 1321.08 

Band 11 480.89 1201.14 

 

The temperature values obtained above are referenced to a black body. Therefore, 

corrections for spectral emissivity (e) became necessary according to the nature of land 

cover. Each of the LULC categories was assigned an emissivity value by reference to 

the emissivity classification scheme by Snyder et al. (1998). The emissivity corrected 

land surface temperatures were computed as follows (Artis & Carnahan, 1982) 

(equation 13): 

𝑆𝑡 =
𝑇𝐵

1+(𝜆+𝑇𝐵 𝜌⁄ ) ln 𝜀
                      (13) 

Where: 𝜆 is wavelength of emitted radiance (for which the peak response and the 

average of the limiting wavelengths (11.5) (Markham & Barker, 1985) will be used), 
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5.3 Land Surface Soil Moisture  

This suggests that the surface soil particle size distribution can be changed by soil 

moisture. Under wet soil conditions, the particles appear to have a larger size, and hence 

more potential saltating particles are available. This explains the occurrence of stronger 

saltation processes observed under wet soil conditions (X.L. Li, 2014). 

 

 

Figure 5 The scatterplot in Ts- NDVI space and the definition of SMI 

 

The line from point A to point C in Figure 5 represents the driest conditions, namely 

“dry edge”, under different vegetation coverage. The line from points B to point D in 

Fig. 2 represents the wettest conditions, namely “wet edge”, under different vegetation 

coverage. Ts is positively correlated with NDVI along the wet edge (from point B to 

point D) and negatively correlated with NDVI along the dry edge (from point A to point 

C). The Ts and NDVI relationships along the dry edge and wet edge (Figure 5) assured 

our confidence that soil moisture could be estimated with the Ts-NDVI space. We thus 

propose a soil moisture index (SMI) in Ts-NDVI space to estimate soil moisture. The 
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soil moisture index (SMI), whose value is 0 along “dry edge” and 1 along the “wet 

edge”, is defined as following (equation 14): 

 

𝑆𝑀𝐼 =
𝑇𝑠𝑚𝑎𝑥−𝑇𝑠

𝑇𝑠𝑚𝑎𝑥−𝑇𝑠𝑚𝑖𝑛

                    (14) 

Where𝑇𝑠𝑚𝑎𝑥
, 𝑇𝑠𝑚𝑖𝑛

 are the maximum and minimum surface temperature for a given 

NDVI. 𝑇𝑠 is the remotely-sensed data derived surface temperature at a given pixel for 

a given NDVI. In other words, SMI is the ratio of two temperature difference (𝑇𝑠𝑚𝑎𝑥
−

𝑇𝑠) and (𝑇𝑠𝑚𝑎𝑥
− 𝑇𝑠𝑚𝑖𝑛

) at a given pixel for a given NDVI. For example, (𝑇𝑠𝑚𝑎𝑥
− 𝑇𝑠) at 

the point E in Fif.2 is the temperature difference between point M and point E, and 

(𝑇𝑠𝑚𝑎𝑥
− 𝑇𝑠𝑚𝑖𝑛

) is the temperature difference between point M and point N (equation 

15a and 15b). 

 

𝑇𝑠𝑚𝑎𝑥
= 𝑎1𝑁𝐷𝑉𝐼 + 𝑏1                    (15a) 

 𝑇𝑠𝑚𝑖𝑛
= 𝑎2𝑁𝐷𝑉𝐼 + 𝑏2                    (15b) 

Where, 𝑎1, 𝑎2, and 𝑏1, 𝑏2 are empirical parameters that can be obtained by linear 

regression of known remotely-sensed data for both the dry and wet edges. 
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5.4 The depth of ground water table derivation 

The groundwater table is one of the most important input parameter for regional 

ecological and hydrological modeling, especially in arid and semi-arid region 

characterized by scarce precipitation and insufficient surface water resources. Which is 

subject to irrigation, drainage, water consumption and land reclamation measures. The 

monitoring of groundwater level change is assist to understanding the desertification 

with the significant land use land cover change caused by irrational human activity and 

uneven climate change occurred in Horqin Sandy Land cover the study area Ongniud 

Banner (Zhao, 2016).  

It is critical to estimate the groundwater levels at the regional scale to assess the 

potential suitable distribution. The optical satellite data have the advantages of spatial, 

spectral, and temporal availability and the ability to obtain data covering large and 

inaccessible areas in a short period of time. Therefore, (Yan Y. et al 2015) developed 

the empirical model through field survey and laboratory experiment.  

The principle of the groundwater level calculation model as follow: 

First, based on the surface soil moisture derived from remote sensing data, create the 

correlation between the tasseled cap wetness derived from Landsat data and the soil 

water content to calculate the soil water content (SWC) image by using the correlation 

between Soil water content (SWC) and Tasseled Cap Transformation Wetness (TCW) 

(equation 16): 

SWC=0.1099 TCW+9.3522                  (16) 

 

Next, consider the well-known principle of how the groundwater affects the surface 

soil moisture to develop the relationship of surface soil moisture and groundwater level; 
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finally, the relationship between tasseled cap wetness and the groundwater levels were 

developed based on field survey and laboratory analysis to produce the groundwater 

table image for study area (equation 17).  

 

𝐻 = 𝒹 + 𝐻𝑚 ×
𝑊𝑚𝑎𝑥

2 −(0.1099𝑇𝐶𝑊+9.3522)2

𝑊𝑚𝑎𝑥
2 −𝑊𝑚𝑖𝑛

2            (17) 

𝑊𝑚𝑎𝑥 = 10.6%  Maximum soil moisture 

𝑊𝑚𝑖𝑛 = 1.8%  Minimum soil moisture 

𝐻𝑚 = 5.8𝑚  The rising of the capillary edge, it is related to the soil physical and 

chemical properties, especially the soil texture. 

 

Considering the applicability of empirical model established based on Landsat TM 

imagery, in this study calculate the ground water level for year 2000 and 2009. 
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Chapter 6. The main driving factors cause land 

degradation and desertification  

6.1 Climate variations 

In the arid and semi-arid regions, temperature and precipitation are important 

climatic factors of the land degradation and desertification. The analysis of the mean 

annual precipitation and mean annual temperature in the study area shown in figure 6.  

Figure 6 shows that mean annual precipitation has the oscillation change trend from 

1998 to 2014. The mean annual precipitation value with the decreasing rates of 47.25 

mm per year from 1998 to 2001, while its value with the growing rates of 28 mm per 

year from 1998 to 2005. Between 2005 and 2009, its value with the decreasing rate 

30mm per year, while increasing from 2011 to 2014 with the 14.88 mm.  

The lowest mean annual precipitation value of 253 mmm occurred in year 2009, 

while the highest mean annual precipitation value of 532 mm occurred after one year 

in 2010. 

Simultaneously, the fluctuation characteristics of mean annual temperature change 

also detected from 1998 to 2014. From 1998 to 2000, the mean annual temperature 

decreasing with rate of 0.31℃ per year, while its value increasing with rate of 0.17 ℃ 

from 2000 to 2007. In which, the mean annual temperature reached the highest value 

of 8.825℃ in 2007. The mean annual temperature dropped down with the rate of 0.42 ℃ 

per year, whereas the lowest mean annual temperature of 6.3℃ observed in 2012.  

Finally, the analysis result show that the mean annual temperature and mean annual 

precipitation with the significant innterannual fluctuation change from 1998 to 2014. 
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Figure 6 Temporal change pattern of mean annual climate variations (mean annual 

precipitation and mean annual temperature) in Ongniud Banner from 1998 to 2014. 
 

 

A minimum 30 year data series is needed. A double 30-year period or longer period 

would be better to be used to analysis climate change (Ren, 2015). In this study, 

innterannual change of precipitation and temperature is considered to the climate cause 

factor of driving land use and land cove change and desertification. 
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6.2 Socio-Economic factors  

The primary cause of desertification in Horqin Sandy Land is identified as irrational 

and intensified human economic activities with a rapidly increasing of population 

number. The increase of the population and livestock numbers and expanding of 

cultivated area in the study are the major proxies of anthropogenic activities. 

According to the Inner Mongolia Statistical Yearbook record, the total population 

number of Ongniud Banner increased from 473,460 in 1999 to 482,114 in 2014 as 

shown in Figure 14; and the population density increased from 35.6 persons per km2 in 

1986 to 41 persons per km2 in 2014. 

In order to meet the demand of basic food, meat, shelter, and energy for the ever 

growing population a large amount of grain production, household necessary for sustain 

large number of population using limited natural resources.  

 

 
Figure 7 Evolution of the population number in Ongniud Banner from 1999 to 2014 

(source: Inner Mongolia Autonomous Region Bureau of Statistics, People’s Republic 

of China, 2015) 
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Figure 8 Evolution of the livestock number in Ongniud Banner from 1999 to 2014 

(source: Inner Mongolia Autonomous Region Bureau of Statistics, People’s Republic 

of China, 2015) 

 
Beside the increase in population number, the increase in livestock number is another 

cause of irrational human -induced land deterioration through overgrazing on limited 

grassland. The total number of livestock increasing steadily from 62.46 in 1999 to 

134.12 in 2014, it is two times greater than 1999. In which large animal number slightly 

increasing or with non-significant change between 1999 and 2014, in contrast, the 

number of sheep and coats increasing significantly over the whole study period, the 

total number of both animal population and sheep and goats reached the largest number 

of 138.54 and 97.63 respectively, in 2005.  
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Figure 9 Evolution of the cultivated area in Ongniud Banner from 1999 to 2014 (source: 

Inner Mongolia Autonomous Region Bureau of Statistics, People’s Republic of China, 

2015) 

 

 
Figure 10 Evolution of the grain yield in Ongniud Banner from 1999 to 2014 (source: 

Inner Mongolia Autonomous Region Bureau of Statistics, People’s Republic of China, 

2015) 
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According to the statistical results recorded that shown in figure 9, the total area of 

cultivated land steadily increasing from 144,270 km2 in 1999 to 2070,000 km2 in 2014, 

in which irrigation land increasing of same change pattern with total area of cultivated 

land. The area of sown area reached the maximum value 57713 km2 in 2006, drop down 

to 34614 km2 one year after in 2007, while the lowest value of sown area occurred in 

2000. But the amount of chemical fertilizer used for cropland is steadily increasing with 

the expansion of cultivated land. With the increasing of the area of sown area, grain 

yield with the increasing trend except drop down in year 2007 and 2009 (figure 10). 

This result indicate that innter annual change of mean annual precipitation and the mean 

annual temperature were affected the area change of the cropland and grain yield from 

1998 to 2014.   
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Chapter 7. Results and discussion 

7.1 LULC classification results  

The LULC classification maps of year 2000, 2009, and 2015 produced in the research 

are displayed in figures 11, 12, and 13 respectively. Each of these maps includes 17 

secondary classes in the study area.  

 

 

Figure 11 LULC classification map of year 2000 in the study area. 
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Figure 12 LULC classification map of year 2009 in the study area. 

 

 
Figure 13 LULC classification map of year 2015 in the study area. 

 

The areal coverage and proportion of 17 LULC secondary classes for each year (2000, 
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2009, and 2015) are presented in Figure 14 and Table 8. 

 

 
Figure 14 Areal coverage of the 17 LULC secondary classes of years 2000, 2009, and 

2015 in the study area. 

 

According to the LULC classification maps of each year (2000, 2009 and 2015) and 

statistical figure present clearly dry land, irrigation land, sparse grass, urban built-up, 

and rural settlement and tidal expanding continuously over the study period from 2000 

to 2015. Meanwhile, moderate grass, water, swampland, and sandy shrank from 2000 

to 2015. 
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Table 8 the areal coverage and proportion of the 17 LULC secondary classes of years 

2000, 2009, and 2015 in the study area. 
 
 Area (Square kilometers) Proportion (%) 

LULC types 2000 2009 2015 2000 2009 2015 

Bare  370.32 691.94 398.99 3.12 5.82 3.36 

Dry land 1123.82 1241.67 1310.58 9.46 10.45 11.03 

Dense grass 390.56 321.36 526.04 3.29 2.70 4.43 

Forest 650.07 277.11 654.82 5.47 2.33 5.51 

Irrigation land 430.31 674.35 693.33 3.62 5.67 5.83 

Moderate grass 1537.22 1520.58 1169.51 12.93 12.79 9.84 

Other forest 1370.81 1407.63 989.34 11.53 11.84 8.32 

Paddy 313.58 138.46 341.18 2.64 1.16 2.87 

Rural settlement 421.63 477.35 548.19 3.55 4.02 4.61 

Salina 175.09 419.46 85.02 1.47 3.53 0.72 

Sandy land 1684.27 1245.83 1051.09 14.17 10.48 8.84 

Shrub 728.48 1078.00 790.45 6.13 9.07 6.65 

Sparse grass 2135.63 2001.15 2971.38 17.97 16.84 25.00 

Tidal 124.93 108.95 162.29 1.05 0.92 1.37 

Urban built-up 60.22 67.63 74.36 0.51 0.57 0.63 

Water 250.60 76.84 67.47 2.11 0.65 0.57 

Swampland 118.35 137.56 51.87 1.00 1.16 0.44 

 

The main LULC classes of the study area in the year 2015 were found to be grassland 

(dense grass, moderate grass and sparse grass), woodland (forest, shrub, and other 

forest), and cropland (dry farmland, irrigated farmland, and paddy) with the coverage 

of 39.3%, 20.5%, 19.7% of the study area respectively. 
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7.2 Validation of LULC Map   

The LULC classification was carried out for each year by accounting the 

contribution of each of the additional features (spectral indices, spectral transformations, 

textural, and topographic) to the basic Landsat based spectral features (Landsat 6 bands). 

The one by one performance of these additional features is shown in table 9. Based on 

this analysis, only highly performed features were chosen for the production of the 

LULC maps. The exclusion of the less contributed features could reduce the data 

volume for further processing.  

 
Table 9 Contribution of the additional features for the LULC classification in the study 

area. 
 

Additional features Contribution  

DEM Improve discrimination among irrigation land, swampland, and paddy 

Slope Improve discrimination of grassland and forest, and bare area and tidal 

Aspect Less contribution 

NDVI Improve discrimination between grassland and forest 

NDWI Improve discrimination between irrigated land and swampland 

NDSI Improve discrimination between salina land and sandy land 

NDBI Enhance discrimination of built-up and rural settlement area 

NDBaI Improve discrimination between bare area and salinized area 

Greenness Less contribution 

Brightness Less contribution 

Wetness Less contribution 

Mean 
Improve discrimination between rural settlements and urban built-up 

area 

Variance Less contribution 

Homogeneity 
Improve discrimination between rural settlements and urban built-up 

area 

Contrast Less contribution 

Dissimilarity Improve discrimination between cropland and built-up area 

Entropy Improve discrimination between artificial grassland and cropland 

Second moment Enhance discrimination of the tidal and rural settlement 

Correlation Less contribution 

 

The performance of the resulted LULC maps assessed through the confusion matrix 

based analysis using the validation data is shown in Table 110. 
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Table 10 Confusion matrix of the LULC classification for each years in the study area 
 

 

The overall accuracy (Kappa coefficient) obtained for 17 secondary classes in the 

study area were 0.86(0.85), 0.89(0.88), and 0.82(0.81) for years 2000, 2009, and 2015 

respectively. 

Accuracy of LULC map in 2009 higher than both LULC map in 2000 and in 2015. 

The LULC map in 2000 with the higher accuracy than LULC map in 2015 due to the 

high resolution SPOT 5 image provide the high quality training data for 2009. Visual 

interpretation land use dataset of 2000 provide the high quality training data for 2000. 

Lack of ground truth reference data for 2015 resulted in LULC map of 2015 with 

relatively low accuracy. But, the comparison between previous LULC classification 

result [13] cover the study area with the overall accuracy of 86.83% and the result of 

this research confirmed that this research successfully produce the accurate and reliable 

 Year 2000 Year 2009 Year 2015 

Classes 
User’s 

accuracy 

Producer’s 

accuracy 

User’s 

accuracy 

Producer’s 

accuracy 

User’s 

accuracy 

Producer’s 

accuracy 

Bare 0.88 0.61 0.86 0.77 0.88 0.56 

Dryland 0.74 0.8 0.88 0.75 0.86 0.57 

Dense grass 0.96 0.76 0.88 0.92 0.8 0.83 

Forest 0.94 0.86 0.88 0.86 0.8 0.85 

Irrigation land 0.94 0.82 0.92 0.81 0.96 0.65 

Moderate grass 0.92 0.88 0.92 0.87 0.84 0.84 

Other forest 0.74 0.93 0.92 0.92 0.68 0.92 

Paddy 0.88 1 0.94 0.96 0.64 1 

Rural 

settlements   
0.8 0.89 0.82 0.8 0.76 0.79 

Salina 0.84 0.98 0.88 0.96 0.74 0.97 

Sandy land 0.82 0.91 0.98 0.88 0.96 0.91 

Shrub 0.86 0.88 0.92 0.92 0.86 0.84 

Sparse grass 0.92 0.7 0.9 0.87 0.84 0.76 

Tidal 0.86 0.93 0.82 0.89 0.82 0.91 

Urban built-up 0.62 1 0.78 1 0.76 1 

Water 1 1 0.96 1 1 1 

Swampland 0.84 0.93 0.86 0.98 0.78 0.98 

Overall accuracy 0.86 0.89 0.82 

Kappa 

coefficient 
0.85 0.88 0.81 
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LULC map for further analysis of LULC change and desertification in study area.    
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7.3 Spatio-temporal changes of LULC.  

The annual rate of change (%) of the 17 LULC secondary classes between 2000-2009, 

2009-2015, and 2000-2015 are presented in Table 11.  

 

Table 11 The annual rate of change (%) of the 17 LULC secondary classes between 

2000-2009, 2009-2015, and 2000-2015 in the study area. Positive (negative) value 

indicates increasing (decreasing) trend over the time period. 
 

LULC classes 
Annual rate of change (%) 

2000-2009 2009-2015 2000-2015 

Bare  9.65 -7.06 0.52 

Dry land 1.17 0.92 1.11 

Dense grass -1.97 10.62 2.31 

Forest -6.37 22.72 0.05 

Irrigation land 6.30 0.47 4.07 

Moderate grass -0.12 -3.85 -1.59 

Other forest 0.30 -4.95 -1.86 

Paddy -6.20 24.40 0.59 

Rural settlement 1.47 2.47 2.00 

Salina 15.51 -13.29 -3.43 

Sandy land -2.89 -2.61 -2.51 

Shrub 5.33 -4.45 0.57 

Sparse grass -0.70 8.08 2.61 

Tidal -1.42 8.16 1.99 

Urban built-up 1.37 1.66 1.57 

Water -7.70 -2.03 -4.87 

Swampland 1.80 -10.38 -3.74 

 

As shown in table 11, significant changes in the LULC secondary classes over the past 

16 years (2000 -2015) have been detected in the study area. Over this period (2000 -

2015), dry land, irrigated land, urban built-up areas, and rural settlement were expanded 

with an annual rate of 1.11 %, 4.07%,  1.57% and 2.00%, respectively, in which 

irrigation land expanding most fast. However, at the same period (2000 -2015), water, 

swampland, sandy land, and moderate grass were reduced at an annual rate of 4.87%, 

3.74%, 2.51%, and 1.59 % respectively, in which, water shrank fast. 

The fluctuation trend of the LULC classes was also detected in the study area. During 
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the period 2000-2009, bare, salina, and shrub expanded significantly (positive annual 

changes) with an annual rate of 9.65%, 15.51%, and 5.33%; however, they decreased 

(negative annual changes) in next 6 years (2009-2015). On the other hand, dense grass, 

forest, paddy, sparse grass and tidal decreased between 2000 and 2009; however, these 

classes expanded during 2009-2015. 

The increase of the salinized area and bare area between 2000 and 2009; and the 

decrease of dense grasses, and swamp land between 2000 and 2009 can be linked to the 

climatic variation such as increasing temperature and low precipitation. On the other 

hand, between 2009 and 2014, the decrease of annual mean temperature and the 

increase of annual mean precipitation could also be linked to the climatic variations 

because the sparse grasses increased between 2009 and 2015. The decrease of the 

precipitation and soil moisture in warm and dry climate restrict the growth of vegetation 

resulting exposed soil, shrinkage of water body, and the increase of barren and tidal 

areas. In contrast, the increase of the precipitation is favorable to the growth of 

vegetation and biodiversity with high soil moisture and less soil erosion. 

 

Desertification phenomenon represented by different types of land degradation 

processes include water erosion, wind erosion, soil fertility decline, water logging, 

salinization, lowering of water table, deforestation, grassland degradation, soil 

destruction by mining and urban and industrial encroachment onto agricultural land.   

The Ongniud Banner region located in the western part of the Horqin Sandy Land is a 

typical transition zone of agricultural and animal husbandry. Over the past five decades, 

this region is affected by land degradation and desertification due to climate change and 

irrational human activities. 
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Figure 15 Changes in water bodies between 2000 and 2015 in the study area. 

 
In this study the most evident spatial-temporal change of the water bodies, irrigation 

lands, sandy lands, and salina (salinized lands), grassland over the period of 2000-2015 
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considered to be desertification phenomenon occurred in study area, the desertification 

maps are presented in figures 16-23 respectively.  

 

 
Figure 16 Changes in water bodies between 2000 and 2015 in the study area. 

 

 
Figure 17 Changes in irrigated lands between 2000 and 2015 in the study area. 
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Figure 18 Changes in sandy lands between 2000 and 2015 in the study area. 

 

 
Figure 19  Changes in salina between 2000 and 2015 in the study area. 
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Figure 20 Changes in moderate grass between 2000 and 2015 in the study area. 

 

 
Figure 21 Degradation of moderate grass between 2000 and 2015 in the study area. 
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Figure 22 Conversion of sparse grass to other land cover types from 2000 to 2015 

  

 
Figure 23 Reversion of Sandy from 2000 to 2015 

 
Form the above mentioned land cover type changes, we can identify the main land 

degradation and desertification process from 2000 to 2015 appeared in salinization in 

irrigation land; moderate grass degraded to sparse grass, dry land, bare and shrub; 
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sparse grass degraded to bare, sandy land and shrub. In contrast, small area of sandy 

land reversed to sparse grass and moderate grass. 

 

As shown in figure 15 the desertification map based on desertification definition 

defined in this study that produced result confirmed that, a 3051 km2 area suffered from 

desertification in the study area from 2000 to 2015, and desertification of moderate 

grass was the most common type of desertification (21% of total desertified area), 

followed by desertification of other forest, sparse grass, and forest areas at 19%, 16%, 

and 15% respectively. And less desertification occurred in dense grass (8%) and dry 

land (6%) areas. 
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7.4 Desertification analysis based on Top Soil Grain Size Index  

This study applies the proposed GSI to produce three top soil grain size index 

distribution maps for Ongniud Banner in the year 2000, 2009 and 2015 respectively. 

The top soil grain size distribution maps of year 2000, 2009 and 2015 presented in 

figure 24, figure 25, and figure 26.  

 

 
Figure 24 Top soil grain size distribution of 2000 
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Figure 25 Top soil grain size distribution of study area in 2009 

 

 
Figure 26 Top soil grain size distribution of study area in 2015 
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Figure 27 Fine sand mask of study area 

 

As we can see from figure 24, figure 25 and figure 26, the result show that a high GSI 

value area concentrated in the northeast flat area of the Ongniud Banner, and GSI value 

increasing from the southwest to the northeast direction, it means the fine sand content 

of the topsoil is increasing from southwest to northeast direction. This distribution is 

coherent with the Land cover category change from grassland in mountain area to 

cropland in hilly area to sandy land in flat area. 

The attempt made to understanding the soil physical change in desertified area we 

produce the top soil grain size index change maps from the year 2000 to 2009, from 

year 2009 to 2015 and from year 2000 to 2015 through differentiating the top soil grain 

size maps in the year 2000, 2009 and 2015. The topsoil grain size change maps 

presented in figure 21, figure 22 and figure 23.  
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Figure 28 Top Soil Grain Size change of Ongniud Banner between 2000 and 2009 

 
From 2000 to 2009, the GSI value increased significantly in the whole study area except 

the small area covered by irrigation farming area and paddy, especially surrounding of 

water body distributed in the center of study area, indicate that soil grain size of top soil 

to increase significantly with salinization area appeared while water body shrank. In 

study area, vegetation coverage decreased, large area of soil surface less protected by 

grass and exposed to wind erosion. Desertification developed in study area which lead 

to water body shrinking and salinization increasing. 
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Figure 29 Top Soil Grain Size change of Ongniud Banner between 2009 and 2015 

 
During the period 2009-2015, the GSI value of top soil increased significantly around 

the urban built-up area, this result linked to the intensity and irrational human activities 

such construction of household for increasing urban population, and cleaned out the 

forest land convert to cultivated land to satisfy the demand for food. Soil grain size in 

sandy land and hilly mountain area restored duo to the local people planted artificial 

shrub and grassland in sandy land to protect the sandy desertification. 
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Figure 30 Top Soil Grain Size change of Ongniud Banner between 2000 and 2015 

 

Change value of top soil grain size index between 2000 and 2015 in Ongniud Banner 

presented in table 12. 

 
Table 12 Change of top soil grain size index between 2000 and 2015 in Ongniud Banner 
 

 
Top soil grain 

Size index 

Minimum  Maximum Mean Standard 

deviation 

 
2000 -1.3333 0.04201 -0.122940 0.169946 

Ongniud 

Banner 

2009 -3.320755 0.50000 -0.124731 0.174216 

 
2015 -0.455951 0.312278 0.012907 0.047310 

 
During the past 16 years such as from 2000 to 2015, GSI value of topsoil coarsening 

continuously in Ongniud Banner, in which around the farming area and the water body 

due the destruction of natural vegetation cover in large scale lead to expose the bare 

area eroded by wind easily and salina appeared with the water shrank duo to the over 

consumption of water resource and high temperature and less precipitation situation. 

The top soil grain size index value extracted from sandy land in each year 2000, 2009 

and 2015 to eliminate the water and vegetation effect. The top soil grain size index 
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value in sandy land presented in table 13. 

 

However, in the desertified sandy land even the area of sandy land decreasing from 

1684.3 km2 in 2000, 1245.8 km2  in 2009 to 1051.1 km2 in 2015 , but the top soil grain 

size index present increasing trend, the top soil grain size index with the positive change 

trend in sandy land. It is indicating the ecology protecting measures launched by state 

and local government effectively control the sandy encroachment in study region, 

exposed sandy replaced by sparse grass (figure 18 and 23). But the top soil grain size 

index present increasing trend, this result indicates that sandy soil physical properties 

worsening, soil organic matter and silt and clay transported over the great distance by 

wind-blown, desertification severity accelerating over the study period.  

 

Table 13 Change of top soil grain size index between 2000 and 2015 in sandy land 
 

 
Top soil 

grain size 

index 

Minimum  Maximum Mean Standard 

deviation 

 
2000 -0.308943 0.04201 -0.092246 0.0331083 

Sandy 

land  

2009 -0.544304 0.290837 -0.115455 0.0302483 

 
2015 -0.176482 0.233134 0.006959 0.029958 
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7.5 Land Surface Temperature and LULC 

In this study calculate the land surface temperature of study area using the Landsat 

image for each year 2000, 2009 and 2015. The different parameter used form metadata 

of Landsat 5 and Landsat 8. The snap short land surface temperature images shown in 

from figure 31 to figure 35.  

 

 
Figure 31 Land surface temperature of study area in 2000 

 

 
Figure 32 Land surface temperature of study area in 2009 
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Figure 33 Land surface temperature of study area in 2015(band 10) 

 

 
Figure 34 Land surface temperature of study area in 2015 (band 11) 
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Figure 35 Average Land surface temperature of study area in 2015 

 
The land surface temperature image for year 2000, 2009 and 2015 show that surface 

soil temperature in high in exposed sandy land, dry farmland and area with low 

vegetation cover area. Land surface temperature linear positively correlated to 

vegetation coverage. Land surface temperature as much as high the top soil become dry, 

all these factor lead to the soil grain size coarsening. 
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7.6 Desertification analysis based on Land Surface Soil Moisture  

Our repeated experiment show that the scatterplot of remotely sensed surface 

temperature (Ts) and normalized difference vegetation index (NDVI) forms a typical 

trapezoid in the Ts-NDVI space (Figure. 2) being very similar to the one described by 

Lambin (1996).   

 

 

NDVI 

Figure 36 NDVI－temperature distribution in study area 
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Figure 37 Soil moisture index of study area in 2000 

 

 
Figure 38 Soil moisture index of study area in 2000 
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Figure 39 Change of soil moisture index between 2000 and 2015 

 
The soil moisture derived image show that high soil moisture value occurred in river, 

lake, irrigation farming land and high coverage vegetation area due to water and water 

supply sufficiently.  

Comparison of the statistical result of table 13 and figure 39 indicate that, sandy land 

with the increasing top soil grain size index value present the soil moisture decreasing. 

With the moderate grass degradation presented in figure 20 the soil moisture decreasing 

in degraded area. 
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7.7 Desertification analysis based on Groundwater Level Change   

In this study, the groundwater level maps calculated by utilizing the experimental model 

based on the Landsat TM imagery of year 2000 and 2009.  

Groundwater table image throughout the study area in year 2000 and 2009 shown in 

figure 40 and 41. 

 
 

Figure 40 Groundwater table of study area in 2000 

 

 
 0-2 2-4 4-6 >6 No data 

0-2 2-4 4-6 >6 No data 
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Figure 41 Groundwater table of study area in 2009 

 
The groundwater level in study region is consistent with the soil moisture distribution 

in figure 40 and 41. In groundwater table in river, lake and irrigation farming land and 

paddy land ranging from 0-2; in dry farmland the groundwater table ranging from 2 to 

4; in grassland area the groundwater table ranging from 4 to 6 and in exposed sandy 

land and shrub the groundwater table more than 6. 

 
Figure 42 Groundwater level change between 2000 and 2009 in Ongniud Banner 
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Figure 43 Groundwater level change between 2000 and 2009 in sandy land 

 

The comparison of the map 14-15 and the figure 35-36, the result showed that ground 

water level declining in moderate grass decreased to sparse grass or other land cover 

types such as bare and in exposed sandy land with the surface soil moisture decreasing 

and the soil physical properties coarsening.  

The previous researcher identified that the groundwater level in Horqin Sandy Land 

draw down due to the significant Land use land cover change coupled with persistent 

drought phenomenon (Zhao, Z.Z., 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

85 

 

Chapter 8. Conclusion 

Ongniud Banner is located in the western part of the Horqin Sandy Land, which belongs 

to a transitional zone of pastoral and animal husbandry regions and is vulnerable to 

anthropogenic activities and natural changes. It is representative of regions 

experiencing desertification, mainly caused by unsustainable human socioeconomic 

activities and significant interannual change in climate variations such as temperature 

and precipitation. 

In this study, we attempted to understand desertification by analyzing changes of 17 

categories of land sub-class LULC between 2000 and 2015 in Ongniud Banner. We 

studied changes in 17 categories of sub-class LULC to identify the desertification 

situation from 2000 to 2015. The analysis of land cover change based on “change to” 

categories between 2000 and 2015 images revealed that desertification extended to 

3051 km2 after 2000 due to a series of policies implemented to mitigate desertification 

in the Horqin Sandy Land. Desertification in moderate grasslands was the most 

common type (21% of total desertified area), followed by desertification in other forest, 

sparse grass, and forest areas at 19%, 16%, and 15%, respectively. Less desertification 

occurred in dense grass (8%) and dry land (6%) areas. 

At the same time, we calculated ground surface variations including surface soil grain 

size index, ground surface temperature, ground surface water content, and ground water 

depth index to combine with LULC change and analyze the state of desertification in 

the study area between 2000–2009, 2009–2015, and 2000–2015. 

Integration of physical properties indices, such as the surface soil grain size index, 

ground surface temperature, soil moisture index, and ground water depth index, with 

LULC change data revealed key findings: 

Physical property indices are limited by only representing short land surface 
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phenomena change, but results successfully identified that the area of sandy land 

decreased during the analysis period. However, the deterioration of the sandy land was 

processing, while the LULC change is difficult to detect desertification processing 

occurred. 

In addition, we discussed the driving causal forces of LULC change and 

desertification in the study area, such as socioeconomic situation, policy, and 

interannual oscillation of climate variations in the Horqin Sandy Land in the study 

period. 

8.1 Advantages of the method used in this study  

Previous studies in the Horqin Sandy Land utilized only the spectral bands of the 

satellite data used for change analysis of general LULC classes. In this study, we used 

a combination of multi-features (spectral indices, spectral transformations, textural, and 

topographic) of the LULC mapping process. The verification of the contribution of each 

feature in the research showed that using only the spectral features from Landsat data 

is not enough for improving the classification accuracy, as the misclassification between 

the secondary classes, such as irrigated land and swampland, swampland and paddy, 

bare area and tidal, cropland and bare area, bare area and urban, and grassland and forest 

were significant. The additional features (spectral indices, spectral transformations, 

textural, and topographic) could support production of a reliable LULC map. 

8.2 Accuracy of LULC map change and cause factor 

The overall accuracy (Kappa coefficient) obtained for 17 categories of land sub-

class LULC in the study area were 0.86(0.85), 0.89(0.88), and 0.82(0.81) for the years 

2000, 2009, and 2015 respectively. 

The overall accuracy of LULC mainly depended on the expert knowledge of LULC 

interpretation based on available reference data. The accuracy of the 2009 LULC map 

is higher than the 2000 and 2015 LULC maps. The 2009 LULC map has the best overall 
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accuracy due to the high-resolution SPOT-5 image used as evidence of LULC in the 

study area providing high quality training data for 2009. The 2000 LULC map had 

better overall accuracy than 2015 due to the visual interpretation land use dataset of 

2000 providing high quality training data for 2000. A lack of high-resolution ground 

truth reference data for 2015 resulted in a LULC map of 2015 with relatively lower 

accuracy than the 2000 and 2009 maps. But the comparison between previous LULC 

classification results [13] covers the study area with an overall accuracy of 86.83% and 

our results confirmed that this research successfully produced an accurate and reliable 

LULC map with 17 categories of land sub-classes for further analysis of LULC change 

and desertification in the study area.  

8.3 LULC change between 2000 and 2015 

The secondary class level LULC change analysis performed in the research provides 

very detailed information on LULC changes over the past 16 years. The high resolution 

(30 m) LULC change analysis in this study showed a significant LULC change in 

Ongniud Banner in the western part of the Horqin Sandy Land in Inner Mongolia. We 

also detected different LULC change trends over three periods, 2000–2009, 2009–2015, 

and 2000–2015. Over the past 16 years, irrigated farming lands and salinized areas 

expanded, whereas water bodies shrank, and exposed sandy lands were replaced by 

sparse grass and moderate grass converted to sparse grass. 

8.4 The Ground surface variations and LULC change and 

desertification indicator 

Additional physical property indices of ground surface variations, such as surface soil 

grain size index, ground surface temperature, soil moisture index, and ground water 

level depth revealed LULC change and desertification in this study. The top soil grain 

size index identified that soil physical properties were still worsening based on the 
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average GSI value (−0.09 in 2000 to 0.007 in 2015), whereas the area of sandy land 

decreased from 1684.3 km2 in 2000 to 1051.1 km2 in 2015. The increase of the top soil 

grain size index was accompanied by a ground surface temperature increase, whereas 

soil moisture and groundwater level depth decreased. The results show that ground 

surface condition indicators proved useful for monitoring desertification process for 

quantitative and qualitative changes.  

8.5 Driving cause of LULC change and desertification  

Human activities are the primary cause of 17 categories of LULC change and 

desertification. There was a significant change of interannual climate variations, 

including temperature and precipitation, which played a key role for changes in land 

use.  

8.6 Perspective of this study  

The satellite remote sensing-based detailed LULC change analysis performed in the 

study is important for assessing the performance of ecological protection and 

restoration programs.  

Spatiotemporal change analyzes of detailed secondary classes in the research are 

expected to contribute to policy makers for the protection and sustainable management 

of environmentally sensitive ecological resources in the Horqin Sandy Land. This 

research has confirmed the expansion of irrigated farming lands and salinized areas 

over the past 16 years, whereas water bodies and sandy lands decreased. This trend 

implies an increasing demand for water. Therefore, a continuous and long-term 

monitoring of LULC changes related to water resources and salinization is suggested 

to promote sustainable development and the ecological security of northeast China. 
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