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1 Introduction

The present paper deals with some problems on modular representation

theory of finite groups. In particular we study the center of a block of a finite

group over an algebraically closed field of prime characteristic.

LetG be a finite group, O a complete discrete valuation ring with quotient

field K of characteristic 0 and F = O/p its residue field of characteristic p >

0. We assume that K contains all |G|-th roots of unity and F is algebraically

closed. For a block B of the group algebra FG we denote by k(B) and l(B)

the numbers of irreducible ordinary and Brauer characters associated to B,

respectively and we let D be a defect group of B of order pd.

This paper is organized as follows.

In the next chapter we study the Cartan matrix CB of B. It is well-

known that l(B) ≤ k(B) with equality if and only if B is a simple algebra.

In this case k(B) = l(B) = 1 and CB = (1) (e.g. see Nagao-Tsushima [23,

III, Theorem 6.29, 6.37]). So the main purpose of this chapter is to con-

sider blocks with k(B) − l(B) = 1. For example, if all the diagonal entries

of CB are two, then B satisfies this condition (see Michler [21]). In gen-

eral Héthelyi-Kessar-Külshammer-Sambale [9] proved that D is elementary

abelian whenever k(B)− l(B) = 1 by using the classification of finite simple

groups. In this chapter we examine two cases that p = 2, k(B)−l(B) = 1 and

that k(B) = 3. For this purpose we use the fact that blocks of finite groups

are symmetric algebras. By this, we review some basic properties of such

algebras and describe a result of Héthelyi-Horváth-Külshammer-Murray [8]

before the proof of our main theorems.

The third chapter is devoted to improve Brandt’s inequality and Okuyama’s
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formula. In [1] Brandt has proved that

l(B) +
∑
S

dimExt1B(S, S) ≤ k(B)− 1 (1.1)

where S ranges over all the isomorphism classes of irreducible right B-

modules, if |D| > 2. On the other hand Okuyama [26] has characterized

the left side of (1.1) by using the center Z(B) and the second socle soc2(B)

of B as follows:

dim soc2(B) ∩ Z(B) = l(B) +
∑
S

dimExt1B(S, S). (1.2)

Remark that we can obtain (1.1) as a corollary to (1.2) (see Corollary 3.6).

The article [26] is written in Japanese, so see Koshitani [13] for the original

proof. The studies in this chapter are inspired by these facts. We improve

(1.2) and describe relationships between the Loewy structure of B and ideals

of Z(B).

In the last chapter we study the structure of B through the Loewy length

LL(Z(B)) of the center Z(B). A result of Okuyama in [25] states that

LL(Z(B)) ≤ |D| with equality if and only if B is a nilpotent block and D is

cyclic. In this case B is Morita equivalent to the group algebra of a cyclic

group of order pd. In this chapter we improve this inequality. More precisely,

we give three upper bounds for LL(Z(B)) in terms of k(B), l(B), D and B-

subsections. As an application we characterize blocks by using LL(Z(B)).

Our main theorems in this chapter indicate that we can classify all blocks

with |D| − 3 ≤ LL(Z(B)) ≤ |D| − 1 into 8 types.

At the end of this chapter we mention further notation and terminology.

Throughout this paper the sets of all the p-elements (resp. p′-elements) in

G are denoted by Gp (resp. Gp′). In addition Cl(G) (resp. Cl(Gp′)) denote

the sets of all the G-conjugacy classes in G (resp. Gp′). For two subgroups

H,K ≤ G we write H ≤G K if H is G-conjugate to a subgroup of K.
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Similarly h ∈G K means that h is G-conjugate to an element in K where

h ∈ H. Moreover we use H ×K (resp. H ⋊K) to express a direct product

(resp. a non-trivial semi-direct product) of H and K. The exponent of G is

defined to be the least positive integer n > 0 such that gn = 1 for all g ∈ G.

For two integers m,n ≥ 1, Cm denotes a cyclic group of order m and put

Cn
m = Cm × · · · × Cm (n-factors). For instance Cr

p is an elementary abelian

p-group of p-rank r. Unless otherwise noted we let Λ be a finite-dimensional

algebra over F and all Λ-modules are assumed to be finite generated right

Λ-modules.
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2 Ordinary and Brauer characters

The main purpose of this chapter is to prove the following theorems:

Theorem 2.1 (Otokita [27]). Let B be a block of FG and CB its Cartan

matrix. Then the following hold.

(1) If p = 2 and k(B) − l(B) = 1, then all the diagonal entries of CB are

even.

(2) If k(B) = 3, then p is odd.

First of all we note three remarks of this theorem.

• Theorem 2.1 (1) is not true for p ≥ 3 in general. Let us take the

principal block B0 of G = PSL(3, 4) where p = 3 as an example. Then

we have k(B0) = 6, l(B0) = 5 and

CB0 =


5 1 1 1 4

1 2 1 1 2

1 1 2 1 2

1 1 1 2 2

4 2 2 2 5


• We recall a result of Külshammer [17]. If l(B) = 1 and k(B) = 3, then

p = 3 and D ≃ C3. Hence we need only consider the case that l(B) = 2

and k(B) = 3 in Theorem 2.1 (2).

• Finally, we introduce two results of Héthelyi-Külshammer and Maróti.

Héthelyi-Külshammer [10] has proved that 2
√
p− 1 ≤ |Cl(G)| for all

solvable groups, if p divides |G|. On the basis of this result they conjec-

tured that 2
√
p− 1 ≤ k(B) for all blocks with non-trivial defect groups.

A recent paper Maróti [20] generalizes the first inequality above for all

groups. Namely, it is shown that 2
√
p− 1 ≤ |Cl(G)| for any finite

group G and any prime p which divides |G|. However the conjecture in
[10] for blocks still remains an open problem. If this conjecture is true,

then we obtain from Theorem 2.1 (2) that p = 3 provided k(B) = 3.
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In the proof of Theorem 2.1 we use the fact that blocks of finite groups are

symmetric algebras. Hence we review some basic properties of such algebras.

As mentioned in the first chapter let Λ be a finite-dimensional algebra over

an algebraically closed field F of characteristic p > 0. We now recall the

definitions of Frobenius and symmetric algebras.

Definition 2.2. We say that Λ is a Frobenius algebra if there is an F -linear

map λ : Λ → F such that Ker λ contains no non-zero left or right ideal

of Λ. Moreover, a Frobenius algebra Λ is said to be a symmetric algebra if

λ(ab) = λ(ba) for all a, b ∈ Λ.

Lemma 2.3. Let Λ be a symmetric algebra with an F -linear map λ : Λ → F .

If e is an idempotent in Λ, then eΛe is also a symmetric algebra through the

restriction of λ to eΛe.

Lemma 2.4 (e.g. Külshammer [15] or [16]). The group algebra FG of a finite

group G over F is a symmetric algebra through an F -linear map defined by

FG → F,
∑
g∈G

agg 7→ a1.

As a consequence, blocks of FG are also symmetric algebras from Lemma

2.3.

We prepare some notation and lemmas in order to describe a result of

Héthelyi-Horváth-Külshammer-Murray [8]. In the following we assume that

Λ is a symmetric algebra with an F -linear map λ : Λ → F . We put

[Λ,Λ] =
∑
a,b∈Λ

F (ab− ba),

Tn(Λ) = {a ∈ Λ | apn ∈ [Λ,Λ]} for an integer n ≥ 0, and

T (Λ) =
∞∪
n=0

Tn(Λ).
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Lemma 2.5 (Külshammer [15] or [16]). Let a, b ∈ Λ and let n ≥ 0 be an

integer. Then the following hold.

(1) (a+ b)p
n ≡ ap

n
+ bp

n
mod [Λ,Λ].

(2) If a ∈ [Λ,Λ], then ap
n ∈ [Λ,Λ].

Therefore

[Λ,Λ] = T0(Λ) ⊆ T1(Λ) ⊆ · · · ⊆ Tn(Λ) ⊆ · · · ⊆ T (Λ)

is a chain of F -subspaces of Λ and there exists an integer m ≥ 0 such that

Tm(Λ) = T (Λ). In particular the next lemma holds for blocks of finite groups.

Lemma 2.6 (Külshammer [16]). Let B be a block of FG with non-trivial

defect group D. If the exponent of D is pε, then Tε−1(B) ⊊ Tε(B) = T (B).

For a subspace U of Λ we define

U⊥ = {a ∈ Λ | λ(Ua) = 0}.

Lemma 2.7. Let U be a subspace of Λ. Then the following hold.

(1) U⊥ is also a subspace of Λ and (U⊥)⊥ = U .

(2) dimU⊥ = dimΛ− dimU .

We denote by Z(Λ) the center, by J(Λ) the Jacobson radical and by

soc(Λ) the socle of Λ. We define the Reynolds ideal R(Λ) by

R(Λ) = soc(Λ) ∩ Z(Λ).

Moreover let us denote by l(Λ) the number of isomorphism classes of irre-

ducible Λ-modules.

Lemma 2.8 (Külshammer [15]). The following hold.

(1) J(Λ)⊥ = soc(Λ) and [Λ,Λ]⊥ = Z(Λ).
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(2) T (Λ) = J(Λ) + [Λ,Λ] and T (Λ)⊥ = R(Λ).

(3) l(Λ) = dimΛ/T (Λ) = dimR(Λ).

(4) For each n ≥ 0, Tn(Λ)
⊥ is an ideal of Z(Λ).

We obtain from Lemma 2.8 a chain

R(Λ) = T (Λ)⊥ ⊆ · · · ⊆ Tn(Λ)
⊥ ⊆ · · · ⊆ T1(Λ)

⊥ ⊆ T0(Λ)
⊥ = Z(Λ)

of ideals of Z(Λ). For each n ≥ 0, Külshammer [19] defines an F -semilinear

map ζn : Z(Λ) → Z(Λ) and shows Im ζn = Tn(Λ)
⊥. Here we introduce this

result.

Lemma 2.9 (Külshammer [19]). Let Λ be a symmetric algebra over F with

an F -linear map λ : Λ → F . Then, for any n ≥ 0, there exists an F -

semilinear map ζn : Z(Λ) → Z(Λ) which satisfies the following conditions:

(1) λ(ap
n
z) = {λ(aζn(z))}p

n
for all a ∈ Λ, z ∈ Z(Λ).

(2) ζn ◦ ζm = ζn+m for all m,n ≥ 0.

(3) ζn(z
pn

1 z2) = z1ζn(z2) for all z1, z2 ∈ Z(Λ).

(4) Im ζn = Tn(Λ)
⊥.

In the following we focus on T1(Λ)
⊥.

Lemma 2.10 ([8, Theorem 2.3]). (T1(Λ)
⊥)2 ⊆ R(Λ).

We express the entries of the Cartan matrix of Λ by using primitive

idempotents in Λ. Two idempotents e and f in Λ are said to be Λ-conjugate

if e = u−1fu for some u ∈ Λ×. For such idempotents, eΛ and fΛ are

isomorphic as Λ-modules. Thus we can take representatives {ei}1≤i≤l(Λ) for

the Λ-conjugacy classes of primitive idempotents in Λ and we may assume

that {eiΛ}1≤i≤l(Λ) form a complete set of isomorphism classes of projective
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indecomposable Λ-modules. Moreover we can define the Cartan matrix CΛ =

(cij)1≤i,j≤l(Λ) by

cij = dimHomΛ(eiΛ, ejΛ)

= dim eiΛej.

Here we note a lemma on dual bases of symmetric algebras.

Lemma 2.11. Let Λ be a symmetric algebra over F with an F -linear map

λ : Λ → F and let {ai}1≤i≤n be its F -basis, where n = dimΛ. Then there

exists an F -basis {bi}1≤i≤n such that

λ(aibj) =

1 if i = j

0 if i ̸= j.

We choose an F -basis {aj}l(Λ)+1≤j≤n of T (Λ), where n = dimΛ. Then

{ai}1≤i≤n form an F -basis of Λ, where ai = ei for all 1 ≤ i ≤ l(Λ). Let

{bi}1≤i≤n be a dual basis of {ai}1≤i≤n and put ri = bi for 1 ≤ i ≤ l(Λ).

Thereby {ri}1≤i≤l(Λ) form an F -basis of R(Λ) since r1, . . . , rl(Λ) ∈ T (Λ)⊥ =

R(Λ) and l(Λ) = dimR(Λ). Hence it follows from Lemma 2.10 that we can

write ζ1(1)
2 as an F -linear combination of r1, . . . , rl(Λ). In particular the next

lemma holds.

Lemma 2.12 ([8, Lemma 3.4]). If p = 2, then

ζ1(1)
2 =

∑
1≤i≤l(Λ)

ciiri.

Finally, we define the Higman ideal and projective center of Z(Λ). Let

{ai}1≤i≤n and {bi}1≤i≤n be a pair of dual bases of Λ. We define an F -linear

map

τ : Λ → Λ, x 7→
∑

1≤i≤n

bixai.

Then the next lamme holds.
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Lemma 2.13 ([8, Lemma 4.1]). The F -linear map τ : Λ → Λ defined above

satisfies the following conditions:

(1) τ is independent of the choice of dual bases.

(2) Im τ ⊆ R(Λ) and T (Λ) ⊆ Ker τ .

The Higman ideal of Z(Λ) is defined by H(Λ) = Imτ . This definition

does not depend on the choice of dual bases from the lemma above.

Now let e1, . . . , el(Λ) and r1, . . . , rl(Λ) be as in Lemma 2.12.

Lemma 2.14 ([8, Lemma 4.3]). We have

τ(ei) =
∑

1≤j≤l(Λ)

cijrj

for each 1 ≤ i ≤ l(Λ).

Secondly, we define the projective center of Z(Λ). We denote by Λ◦ the

opposite algebra and by Λ◦⊗
F Λ the enveloping algebra of Λ. Then Λ is a

right Λ◦⊗
F Λ-module by the following action:

x(a⊗ b) = axb for x ∈ Λ and a⊗ b ∈ Λ◦
⊗
F

Λ.

Furthermore

EndΛ◦ ⊗
F Λ(Λ) → Z(Λ), ρ 7→ ρ(1)

is an algebra isomorphism. The projective center Zpr(Λ) is defined by

Zpr(Λ) = {ρ(1) | ρ ∈ EndΛ◦ ⊗
F Λ(Λ) factors through a projective Λ◦

⊗
F

Λ-module}.

Lemma 2.15 (Broué [3]). Let Λ be a symmetric algebra over F . Then

H(Λ) = Zpr(Λ).

Now we prove Theorem 2.1.
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Proof of Theorem 2.1. Let S(B) be a set of representatives for theG-conjugacy

classes of B-subsections. Brauer shows that k(B) =
∑

(u,b)∈S(B) l(b) so S(B)

consists of two elements, say (1, B) and (u, b) where u is a non-trivial element

in D and b is a Brauer correspondent of B in CG(u). In particular it follows

that all the non-trivial elements in D are G-conjugate and thus the exponent

of D is 2. Hence we have T1(B) = T (B) and R(B) = T1(B)⊥ by Lemma 2.6.

On the other hand R(B) is contained in the Jacobson radical J(Z(B)) of

Z(B) since it is a proper ideal. Therefore (T1(B)⊥)2 ⊆ R(B) · J(Z(B)) = 0

and thus the first claim follows from Lemma 2.12. We next prove (2). Seek-

ing a contradiction, we assume p = 2. If l(B) = 1, then |D| = 3 and p = 3

by [17], so we may assume l(B) = 2 and we can write CB =

(
c1 c2

c2 c3

)
where c1, c3 ≥ 2, c2 ≥ 1. From (1), c1 and c3 are even. Since the determi-

nant of CB is a power of 2, c2 is also even and hence Zpr(B) = H(B) = 0

by Lemma 2.14. Consequently, we obtain from Kessar-Linckelmann [11] that

dimZpr(B) = l(B)−1, a contradiction. We have thus completely proved.
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3 Diagonal entries of Cartan matrices

In this chapter we study some relationships between the Loewy structure

of a block B and ideals of its center Z(B). Now let us briefly review the

motivation of this chapter.

In [1] Brandt has proved that

l(B) +
∑
S

dimExt1B(S, S) ≤ k(B)− 1 (3.1)

where S ranges over all the isomorphism classes of irreducible B-modules, if

|D| > 2. On the other hand Okuyama [26] has characterized the left side of

(3.1) by using Z(B) and the second socle soc2(B) of B as follows:

l(B) +
∑
S

dimExt1B(S, S) = dim soc2(B) ∩ Z(B). (3.2)

In this chapter we improve these results. For an integer n ≥ 1 we let socn(B)

be the n-th socle of B and set Rn(B) = socn(B) ∩ Z(B). Then R1(B) is

known as Reynolds ideal of Z(B) as mentioned in the previous chapter and

its dimension is equal to l(B). Moreover the dimension of R2(B) is given by

(3.2) in relation to the Loewy structure of B.

In the following, for a B-module M and an irreducible B-module S, we

denote by c(M,S) the multiplicity of S as composition factors in M . In this

chapter we prove the following theorems.

Theorem 3.1 (Otokita [28]). Let B be a block of FG. Then the following

hold.

(1) For each integer n ≥ 1,

dimRn(B) ≤
∑
S

c(PS/PSJ
n, S) (3.3)

where S ranges over all the isomorphism classes of irreducible B-modules,

PS is the projective cover of S and J is the Jacobson radical of B.
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(2) If B has non-trivial defect groups, then there exists an integer 2 ≤ m ≤
LL(B) (the Loewy length of B) such that

dimRn(B) =
∑
S

c(PS/PSJ
n, S), (3.4)

dimRn′(B) <
∑
S

c(PS/PSJ
n′
, S) (3.5)

for all 1 ≤ n ≤ m < n′ ≤ LL(B).

As a consequence,

dimR2(B) = l(B) +
∑
S

dimExt1B(S, S). (3.6)

In the proof of these theorems we use some basic facts on symmetric alge-

bras. So we prepare some lemmas. Let Λ be a finite-dimensional symmetric

algebra over F with an F -linear map λ : Λ → F . We put

AnnΛ(U) = {a ∈ Λ | Ua = 0},
U⊥ = {a ∈ Λ | λ(Ua) = 0}.

Lemma 3.2. Let U, V be subspaces of Λ. Then the following hold.

(1) (U⊥)⊥ = U ,

(U + V )⊥ = U⊥ ∩ V ⊥,

(U ∩ V )⊥ = U⊥ + V ⊥.

(2) If V ⊆ U , then U⊥ ⊆ V ⊥.

(3) dimU⊥ = dimΛ− dimU .

(4) If U is an ideal of Λ, then AnnΛ(U) = U⊥.

We define the commutator subspace of subspaces U and V of Λ by

[U, V ] =
∑

u∈U,v∈V

F (uv − vu).

By the definition above the next lemma is clear.

13



Lemma 3.3. Let U, V and W be subspaces of Λ. Then we have

[U + V,W ] = [U,W ] + [V,W ],

[U, V +W ] = [U, V ] + [U,W ].

Now let {ei}1≤i≤l(B) be representatives for the B-conjugacy classes of

primitive idempotents inB. Then {Si = eiB/eiJ}1≤i≤l(B) and {Pi = eiB}1≤i≤l(B)

form complete sets of isomorphism classes of irreducible B-modules and their

projective covers, respectively. Furthermore we have

cij = c(Pi, Sj)

= dimHomB(Pi, Pj)

= dim eiBej

where CB = (cij)1≤i,j≤l(B) is the Cartan matrix of B and the right side of

(3.3) is equal to
∑

i dim eiBei/eiJ
nei.

Here we consider the basic algebra eBe of B where e = e1+· · ·+el(B). eBe

is also a symmetric algebra and is Morita equivalent to B since B = BeB.

Hence the next lemma holds.

Lemma 3.4. For an ideal I of B, eIe is that of eBe and

dimAnnB(I) ∩ Z(B) = dimAnneBe(eIe) ∩ Z(eBe).

Finally we define a subspace

B(n) =
∑

1≤i≤l(B)

eiJ
nei +

∑
1≤i̸=j≤l(B)

eiBej

of eBe for each n ≥ 1. Since eBe =
∑

i,j eiBej and B(n) are direct sums we

deduce the next lemma from Lemma 3.2 (3).

Lemma 3.5. The right side of (3.3) is equal to dimB(n)⊥

Now we prove our main theorems in this chapter.
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Proof of Theorem 3.1. We first prove (1). It is clear that eiBej ⊆ [eBe, eBe]

whenever i ̸= j since we can write x = xej − ejx for all x ∈ eiBej. Therefore

we have B(n) ⊆ eJne + [eBe, eBe] and hence AnneBe(eJ
ne) ∩ Z(eBe) ⊆

B(n)⊥ using Lemma 2.8 and 3.2. So Lemma 3.4 gives us that dimRn(B) =

dimAnnB(J
n) ∩ Z(B) ≤ dimB(n)⊥. Thus our claim follows from Lemma

3.5.

We next prove (2). Remark that 2 ≤ LL(B) by our assumption. Now

we define m ≤ LL(B) as the largest non-negative integer which satisfies

[eiBej, ejBei] ⊆ eiJ
mei + ejJ

mej for all 1 ≤ i, j ≤ l(B). We follow three

steps.

Step 1: We prove 2 ≤ m.

In the case that i ̸= j, eiBej = eiJej and thus

[eiBej, ejBei] ⊆ eiJejJei + ejJeiJej ⊆ eiJ
2ei + ejJ

2ej.

If i = j, then

[eiBei, eiBei] = [Fei + eiJei, Fei + eiJei] ⊆ eiJ
2ei

since eiBei is local. So we have 2 ≤ m as claimed.

Step 2: Proof of (3.4).

First of all we obtain

[eBe, eBe] =
∑

1≤i,j,s,t≤l(B)

[eiBej, esBet]

⊆
∑

1≤i,j≤l(B)

[eiBej, ejBei] +
∑

1≤i ̸=j≤l(B)

eiBej

since etei = 0 or ejes = 0 according to i ̸= t or j ̸= s, respectively. From the

proof of (1), equality occurs in (3.3) if and only if [eBe, eBe] ⊆ B(n). Hence

our claim follows for n from the definitions of B(n) and m.

Step3: Proof of (3.5).
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By the maximality of m, we have that [eiBej, ejBei] ⊈ eiJ
n′
ei + ejJ

n′
ej

for some 1 ≤ i, j ≤ l(B) and thus [eiBej, ejBei] ⊆ [eBe, eBe] ⊈ B(n′).

Hence equality cannot occur for n′ in (3.3) (see Step 2).

Thus the first part is completely proved. The last part is clear by the fact

that
∑

S dimExt1B(S, S) =
∑

i dim eiJei/eiJ
2ei.

At the end of this chapter we show a corollary to Theorem 3.1 in [26].

Corollary 3.6 (Okuyama [26]). (3.1) is a corollary to (3.2).

Proof. Suppose R2(B) = Z(B). Then the unit element of B is contained in

soc2(B) and hence B = soc2(B). This implies LL(B) ≤ 2, a contradiction.

Thus R2(B) ̸= Z(B). Since J(Z(B)) is the unique maximal ideal of Z(B),

it follows that R2(B) ⊆ J(Z(B)) and (3.1) holds by (3.2).
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4 Loewy lengths of centers

In this chapter we study the structure of the center Z(B) of B. For this

purpose we use its Loewy length LL(Z(B)). The results in this chapter are

based on Otokita [29].

The next proposition is clear by the fact that Z(B) is local in the sense

that J(Z(B)) has co-dimension 1.

Proposition 4.1. The following are equivalent.

(1) D is trivial.

(2) LL(Z(B)) = 1.

Moreover we give an upper bound for LL(Z(B)) by using k(B) and l(B).

Proposition 4.2.

LL(Z(B)) ≤ k(B)− l(B) + 1.

Proof. Let us denote by soc(B) and soc(Z(B)) the socles of B and Z(B),

respectively. Then

k(B) = dimZ(B), l(B) = dim soc(B) ∩ Z(B) and

soc(B) ∩ Z(B) ⊆ soc(Z(B))

are known to hold. Thus we have

LL(Z(B))− 1 ≤ dimZ(B)− dim soc(Z(B))

≤ dimZ(B)− dim soc(B) ∩ Z(B) = k(B)− l(B)

as required.

Let bD be a root of B, that is, a block of F [DCG(D)] such that (bD)
G = B.

We denote by NG(D, bD) the inertial group of bD in NG(D), by I(B) =

NG(D, bD)/DCG(D) the inertial quotient group and by e(B) = |I(B)| the
inertial index of B. In the case D is cyclic the Loewy length LL(Z(B)) is

given in Koshitani-Külshammer-Sambale [14].
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Proposition 4.3 ([14, Corollary 2.8]). If D is cyclic, then

LL(Z(B)) =
|D| − 1

e(B)
+ 1.

For any algebra Λ over F we denote by LL(Λ) its Loewy length. In

particular we set t(P ) = LL(FP ) where FP is the group algebra of a finite

p-group P , following Wallace [35].

Lemma 4.4. If D is normal in G, then LL(Z(B)) ≤ t(D). In particular

LL(Z(B)) ≤ pm + pn − 1 in the case of D ≃ Cpm × Cpn.

Proof. By a result of Külshammer [18], B is Morita equivalent to a twisted

group algebra Fα[D⋊I(B)] for some 2-cocycle α of D⋊I(B). Hence Z(B) ≃
Z(Fα[D ⋊ I(B)]) as algebras and

LL(Z(B)) = LL(Z(F α[D ⋊ I(B)])) ≤ LL(F α[D ⋊ I(B)]).

By Lemmas 1.2, 2.1 and Proposition 1.5 in Passman [30],

J(Fα[D ⋊ I(B)]) = J(FD) · F α[D ⋊ I(B)] = F α[D ⋊ I(B)] · J(FD)

and thus LL(F α[D ⋊ I(B)]) = t(D). Moreover, by Theorem (3) in Motose

[22], we have t(D) = pm + pn − 1.

Now we consider the case that p = 2.

Proposition 4.5. If D ≃ C2m ×C2n for some m,n ≥ 1 and d = m+n, then

one of the following holds:

(1) B is nilpotent; in this case LL(Z(B)) = t(D) = 2m + 2n − 1.

(2) m = n and B is Morita equivalent to F [D⋊C3]; in this case LL(Z(B)) ≤
t(D) = 2m+1 − 1. In particular LL(Z(B)) = 2 provided m = n = 1.

(3) m = n = 1 and B is Morita equivalent to the principal block of FA5

where A5 is the five degree alternating group; in this case LL(Z(B)) =

2.
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Furthermore, if 2d − 3 ≤ LL(Z(B)) ≤ 2d − 1 then D ≃ C2
2 or C4 × C2.

Proof. Without loss of generality, we may assume m ≥ n. We first calculate

the order of automorphism group Aut(D) of D as follows.

|Aut(D)| =

3 · 24m−3 if m = n

2m+3n−2 if m > n.

We remark that e(B) divides the odd part of |Aut(D)|.

Case 1: e(B) = 1.

By Broué-Puig [4] and Puig [31], B is nilpotent and Morita equivalent to

FD. Therefore LL(Z(B)) = t(D) = 2m + 2n − 1.

In the following we may assume e(B) = 3 and m = n.

Case 2: m = n = 1 and e(B) = 3.

By a result of Erdmann [6], B is Morita equivalent to FA4 or the principal

block of FA5. In both cases LL(Z(B)) = 2 by Proposition 4.2 since k(B)−
l(B) = 1.

Case 3: m = n ≥ 2 and e(B) = 3.

B is Morita equivalent to F [D⋊C3] by Eaton-Kessar-Külshammer-Sambale

[5]. Thus (2) follows from Lemma 4.4.

The last part of the proposition is clear by the first part.

Finally, we study the case that p = 3 and D ≃ C3n × C3 for some n ≥ 1.

Proposition 4.6. If D ≃ C3n × C3 for some n ≥ 1 and d = n + 1, then

LL(Z(B)) ≤ 3n + 2. In particular LL(Z(B)) ≤ 3d − 4.

Proof. We first obtain

|Aut(D)| =

16 · 3 if n = 1

4 · 3n+1 if n ≥ 2.
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Case 1: e(B) ≤ 4.

If e(B) = 1, then LL(Z(B)) = 3n + 2 by the same way to Case 1 in the

proof of Proposition 4.5. If 2 ≤ e(B) ≤ 4, then B is perfectly isometric to its

Brauer correspondent B̃ in NG(D) by Usami [34] and Puig-Usami [32], [33].

Hence LL(Z(B)) = LL(Z(B̃)) ≤ 3n + 2 by Lemma 4.4.

Since e(B) divides the 3′-part of |Aut(D)|, we may assume n = 1 in the

following.

Case 2: n = 1 and 5 ≤ e(B).

I(B) is isomorphic to one of the following groups:

C8, D8(dihedral group of order 8), Q8(quaternion group of order 8),

SD16(semi-dihedral group of order 16).

We first suppose I(B) is isomorphic to D8 or SD16. By the results of

Kiyota [12] andWatanabe [36], k(B)−l(B) is at most 4 and thus LL(Z(B)) ≤
5 by Proposition 4.2. Finally, suppose I(B) is isomorphic to C8 or Q8.

Kiyota [12] has not determined the invariants k(B) and l(B) in general.

However, we can compute k(B)− l(B) as follows. Since I(B) acts on D\{1}
regularly, the conjugacy classes of B-subsections are (1, B) and (u, bu) for

some u ∈ D\{1} where bu is a Brauer correspondent of B in CG(u). Moreover

I(bu) ≃ CI(B)(u) is trivial and thus bu is nilpotent, k(B)− l(B) = l(bu) = 1.

Hence LL(Z(B)) = 2 as claimed.

The last part of the proposition is clear.

Now we recall a result of Okuyama [25], the motivation of this chapter.

Theorem 4.7 (Okuyama [25]). Let D be a defect group of B. Then

LL(Z(B)) ≤ |D|. (4.1)

Equality occurs in (4.1) if and only if B is nilpotent and D is cyclic.
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We improve Theorem 4.7 in this chapter. Here we use a set S(B) of

representatives for the G-conjugacy classes of B-subsections. Namely, for

each (u, b) ∈ S(B), u is a p-element in G and b is a Brauer correspondent

of B in CG(u). In the following, |u| denotes the order of u and b̄ denotes

the unique block of F [CG(u)/⟨u⟩] dominated by b. First of all we give an

upper bound for LL(Z(B)) in terms of S(B). The proof below is inspired by

Okuyama [25].

Theorem 4.8.

LL(Z(B)) ≤ max{(|u| − 1)LL(Z(b̄)) | (u, b) ∈ S(B)}+ 1. (4.2)

Proof. We denote by t the first part of the right side of (4.2). Remark that

J(Z(B)) = J(Z(FG)) ·1B where 1B is the block idempotent of B. We follow

three steps.

Step 1: For each (u, b) ∈ S(B), (u− 1)J(Z(b))t = 0.

Let τ : FCG(u) → F [CG(u)/⟨u⟩] be the natural epimorphism. Then

τ(J(Z(b))LL(Z(b̄))) ⊆ J(Z(b̄))LL(Z(b̄)) = 0

and thus

J(Z(b))LL(Z(b̄)) ⊆ Ker τ = (u− 1)FCG(u).

Thereby

J(Z(b))t ⊆ J(Z(b))(|u|−1)LL(Z(b̄)) ⊆ {(u−1)FCG(u)}|u|−1 = (u−1)|u|−1FCG(u).

Hence the claim follows.

Step 2: Take an element a =
∑

agg in J(Z(B))t. Then axy = ay for all

p-elements x in G and p′-elements y in CG(x).

Let us denote by Br⟨x⟩ : Z(FG) → Z(FCG(x)) the Brauer homomor-

phism. If Br⟨x⟩(1B) = 0, then Br⟨x⟩(a) = 0 and hence axy = ay = 0
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as required. So we may assume Br⟨x⟩(1B) ̸= 0. Then there exists a B-

subsection (u, b) ∈ S(B) and t ∈ G such that x = t−1ut. Since a ∈ Z(FG),

axy = at−1uty = autyt−1 and ay = atyt−1 . Therefore we need only prove the

claim above for u and p′-element v in CG(u). Since Br⟨u⟩ maps nilpotent

elements to nilpotent elements, we have Br⟨u⟩(J(Z(FG))) ⊆ J(Z(FCG(u)))

and thus Br⟨u⟩(J(Z(B))t) ⊆
∑

J(Z(b))t where Br⟨u⟩(1B)1b ̸= 0. Hence it fol-

lows from Step 1 that (u− 1)Br⟨u⟩(a) = 0. This implies auv = av as asserted.

Step 3: Completion of the proof.

We denote by Zp′ the F -subspace of Z(FG) spanned by all p′-section

sums. It suffices to prove that J(Z(B))t ⊆ Zp′ since J(Z(FG)) · Zp′ = 0

(see Brauer [2] or Okuyama [24]). Take an element a =
∑

agg ∈ J(Z(B))t.

We want to show ag = ah for all g, h ∈ G, if the p′-parts of them are G-

conjugate. However, it is an immediate consequence of the claim in Step 2

since a ∈ Z(FG). Thus the theorem is completely proved.

In addition we give an upper bound for the right side of (4.2) in terms of

the defect groups of B.

Corollary 4.9. Let pd and pε be the order and the exponent of a defect group

D of B, respectively. Then

max{(|u| − 1)LL(Z(b̄)) | (u, b) ∈ S(B)} ≤ pd − pd−ε. (4.3)

If equality occurs in (4.3), then D ≃ Cpε × Cpd−ε.

As a consequence, we have

LL(Z(B)) ≤ pd − pd−ε + 1. (4.4)

Proof. We may assume D is non-trivial. Fix (u, b) ∈ S(B) associated to

the left side of (4.3). We let D′ be a defect group of b of order pd
′
and put

|u| = pε
′
. Then D′ is contained in D up to G-conjugacy since bG = B, ε′ ≤ ε

and we may assume that a defect group of b̄ is D̄′ = D′/⟨u⟩ (see [7, Chapter
V, Lemma 4.5]). Hence we obtain from (4.1) that

(|u| − 1)LL(Z(b̄)) ≤ (pε
′ − 1)pd

′−ε′ ≤ (pε
′ − 1)pd−ε′ = pd − pd−ε′ ≤ pd − pd−ε
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as claimed. We next suppose equality holds in (4.3). Then we have d =

d′, ε = ε′ and D̄ is cyclic. Since ⟨u⟩ is contained in the center of D′, D′ is

abelian. Therefore we deduce D ≃ D′ = ⟨u⟩ ×H where H ≃ D̄′.

As a corollary to the theorems above we consider a problem of classifying

blocks according to LL(Z(B)). If LL(Z(B)) = |D|, then B is a nilpotent

block with cyclic defect group by Theorem 4.7 and thus B is Morita equiv-

alent to the group algebra F [Cpd ]. Hence we study other three cases that

|D| − 3 ≤ LL(Z(B)) ≤ |D| − 1. We remark that the notation given in

Corollary 4.9 will be used throughout this chapter.

Theorem 4.10. Let D be a defect group of B. Then LL(Z(B)) = |D| − 1

if and only if one of the following holds:

(1) D ≃ C3 and I(B) ≃ C2.

(2) B is nilpotent and D ≃ C2
2 .

Proof. In the case D is cyclic, (1) follows by Proposition 4.3. So we may

assume that ε < d. Then, since

LL(Z(B)) = pd − 1 ≤ pd − pd−ε + 1 < pd,

we have D ≃ C2 × C2d−1 by Corollary 4.9. Furthermore we have d = 2 and

(2) holds by Proposition 4.5.

The next problem is the case of LL(Z(B)) = |D| − 2.

Theorem 4.11. Let D be a defect group of B. Then LL(Z(B)) = |D| − 2

if and only if one of the following holds:

(1) D ≃ C5 and I(B) ≃ C2.

(2) D ≃ C2
2 and B is Morita equivalent to FA4.

(3) D ≃ C2
2 and B is Morita equivalent to the principal block of FA5, where

A4 and A5 are four and five degree alternating groups, respectively.
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Proof. As same reason to the proof of Theorem 4.10, we may assume ε < d

and

LL(Z(B)) = pd − 2 ≤ LL(Z(b̄)) (pε
′ − 1) + 1 ≤ pd − pd−ε + 1 ≤ pd − 1.

Case 1: LL(Z(B)) = pd − pd−ε + 1.

By Corollary 4.9, D ≃ C3 ×C3d−1 . However, this case cannot occur from

Proposition 4.6.

Case 2: LL(Z(b̄)) (pε
′ − 1) + 1 = pd − pd−ε + 1 = pd − 1.

We have D ≃ C2 × C2d−1 and thus (2) or (3) holds by Proposition 4.5.

Case 3: LL(Z(B)) = LL(Z(b̄)) (pε
′ − 1) + 1 and pd − pd−ε + 1 = pd − 1.

We obtain p = 2, d− ε = 1 and LL(Z(b̄)) = 2d−3
2ε

′−1
. Since

LL(Z(b̄)) ≤ |D̄′| = 2d
′−ε′ ≤ 2d−ε′ ,

d − ε′ = 1 (remark that 0 < d − ε ≤ d − ε′) and so LL(Z(b̄)) = 1 or 2.

Thus we have ε′ = 1 and d = 2. In this case (2) or (3) holds by Proposition

4.5.

Finally, we consider the case of LL(Z(B)) = |D| − 3.

Theorem 4.12. Let D be a defect group of B. Then LL(Z(B)) = |D| − 3

if and only if one of the following holds:

(1) D ≃ C5 and I(B) ≃ C4.

(2) D ≃ C7 and I(B) ≃ C2.

(3) B is nilpotent and D ≃ C4 × C2.

Proof. We may assume D is not cyclic, ε < d and

LL(Z(B)) = pd − 3 ≤ LL(Z(b̄)) (pε
′ − 1) + 1 ≤ pd − pd−ε + 1 ≤ pd − 1.

Case 1: LL(Z(B)) = pd − pd−ε + 1.
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By Corollary 4.9, we have D ≃ C4 ×C2d−2 and hence we obtain d = 3 by

using Proposition 4.5.

Case 2: LL(Z(B)) = LL(Z(b̄)) (pε
′ − 1) + 1, pd − pd−ε + 1 = pd − 2.

Clearly, p = 3, d−ε = 1 and LL(Z(b̄)) = 3d−4
3ε

′−1
. However, this case cannot

occur since this is not an integer.

Case 3: LL(Z(B)) = LL(Z(b̄)) (pε
′ − 1) + 1, pd − pd−ε + 1 = pd − 1.

We first obtain p = 2, d − ε = 1 and LL(Z(b̄)) = 2d−4
2ε

′−1
. Since 2ε

′ − 1 is

odd, we have ε′ = 1. Hence

2d − 4 = LL(Z(b̄)) ≤ |D̄′| ≤ 2d−1

and thus d = 3 (remark LL(Z(B)) ≥ 2). Moreover, since we have D̄′ ≃ C4

and d = d′, D′ is abelian by the same reason to Corollary 4.9 and thus

D ≃ D′ = C4 × C2.

Case 4: LL(Z(b̄)) (pε
′ − 1) + 1 = pd − pd−ε + 1 = pd − 2.

In this case, D ≃ C3×C3d−1 . However, LL(Z(B)) ̸= pd−3 by Proposition

4.6.

Case 5: LL(Z(b̄)) (pε
′ − 1) + 1 = pd − 2, pd − pd−ε + 1 = pd − 1.

We have p = 2, d− ε = 1 and LL(Z(b̄)) = 2d−3
2ε

′−1
. Since

LL(Z(b̄)) ≤ |D̄′| = 2d
′−ε′ ≤ 2d−ε′ ,

we deduce d− ε′ = 1 and LL(Z(b̄)) = 1 or 2. Thus we obtain d = 2, but this

case cannot occur.

Case 6: LL(Z(b̄)) (pε
′ − 1) + 1 = pd − pd−ε + 1 = pd − 1.

We have D ≃ C2 × C2d−1 by Corollary 4.9 and hence d = 3 in this case

using Proposition 4.5.
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