
Magneto Cosmic-Ray Instability
in Weakly Magnetized Galactic Disk

January 2017

Chiba University

Graduate School of Science

Division of Fundamental Science

Department of Physics

Yuki Kudoh



（千葉大学審査学位論文）

Magneto Cosmic-Ray Instability
in Weakly Magnetized Galactic Disk

January 2017

Chiba University

Graduate School of Science

Division of Fundamental Science

Department of Physics

Yuki Kudoh



i

Abstract

In galactic gas disks, magnetic fields play essential roles in the angular momentum trans-

port, generation of turbulence and formation of hot halos with outflows. The all sky

distribution of radio continuum emission indicates that magnetic fields emerging from the

galactic disk form synchrotron emitting halo. In this thesis, we study the effects of cosmic

rays (non-thermal particles) on the growth of the undular mode of the magnetic buoyancy

instability in galactic gas disks.

The cosmic rays are treated as the fluid by integrating the distribution function of

particles over the momentum space. The derived cosmic ray magnetohydrodynamic (CR

MHD) equations are solved by linearizing the equations and by carrying out nonlinear

simulations. From linear stability analysis, we confirmed that CR diffusion along magnetic

field lines increases the growth rate. We also found that when the ratio of CR pressure

Pcr to gas pressure Pg (β = Pcr/Pg) is larger than 0.2, the growth rate increases as the

ratio of the magnetic pressure PB to gas pressure (α = PB/Pg) decreases, and the most

unstable wavenumber increases. This “Magneto Cosmic-ray Instability” (MCI) is driven

by the CR diffusion along the magnetic field lines, and distinct from the Parker instability

without CR diffusion driven by buoyancy created by sliding the gas along the magnetic

field lines.

To study the non-linear growth of MCI by numerical simulations, we improved the Roe-

type approximate Riemann solver of which the solutions satisfy the Rankine-Hugoniot

relation at any shock and can achieve high order accuracy. We solve fully conservation

form of CR MHD equation. In this approach, CR energy equation containing a source

term is transformed to the conservation equation of CR “number” density ρcr defineded

as ρcr ≡ P 1/γcr
cr where γcr is the specific heat ratio of the CR gas. We found by shock tube

simulations that numerical solutions solved by using CR non-conservation form does not
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converge to the Riemann solution, but the conservation form does.

MCI drives the buoyant escape of magnetic flux from the disk. In weakly magnetized

disks, the growth rate of MCI is larger than that of the Parker instability and the most

unstable wavelength is shorter. By carrying out CR MHD simulations, we found that the

disk gas is uplifted by MCI in weakly magnetized disks and form magnetized corona. The

buoyant escape of the magnetic flux from the disk to the disk halo may limit the magnetic

flux amplified by the disk dynamo and retained in the disk.
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Chapter 1

General Introduction

1.1 Observations of Galactic Magnetic Fields

Galactic magnetic fields can be measured by synchrotron radiation emitted by high energy

electrons gyrating in magnetic fields or by the influence of magnetic fields on the propa-

gation of electromagnetic waves. The synchrotron radiation enables observers to measure

the direction and strength of magnetic field B⊥ perpendicular to the line of sight. Since

the direction of acceleration of the relativistic electrons is orthogonal to the magnetic field,

the radiation is linearly polarized perpendicular to the magnetic field. We assume that

the energy spectrum of relativistic CR electrons have the power law distribution,

N(γ)dγ = N0γ
−pdγ, γ1 < γ < γ2, (1.1)

where, γ, N0 and p denote the Lorentz factor, density per energy interval, and the spec-

tral index, respectively. We assume N0 and p are uniform in the emitting region. The

synchrotron radiation with frequency ν has the intensity (e.g. Rybicki & Lightman 1985)

Iν ∝ N0ν
(1−p)/2B(1+p)/2

⊥ L, (1.2)
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where L is the source size. We assume the equipartition between magnetic energy density

and the CR energy density Wcr defined as,

Wcr ∝
∫ γ2

γ1

γN(γ)dγ ∝ N0

p − 2
. (1.3)

Hence, by determining the power law index p from the dependence of Iν on ν, the magnetic

field strength B⊥ can be estimated as,

B⊥ ∝
(

Iν

L (p − 2)

)2/(p+5)

ν(p−1)/(p+5). (1.4)

The second method to measure cosmic magnetic fields is Faraday rotation. The linearly

polarized radio wave propagating along magnetic field lines rotates polarization plane by

the Faraday effect during its propagation through the thermal plasma. The rotation angle

∆φ can be written as,

∆φ = RM
( c

ν

)2
rad, (1.5)

where c is light speed, and RM is the Rotation Measure defined by,

RM = 8.1 × 10−5

∫ L

0
neB‖dl ∼ 8.1 × 10−5neB‖L rad cm−2, (1.6)

where ne and L are the number density of the thermal electron and the line of sight

length of the interstellar ionized gas, respectively. Faraday rotation angle depends on

the magnetic field direction along the line of sight. The number density ne needs to be

determined by other observation.

Next we overview the all sky survey of magnetic fields of the Milky Way. Fig. 1.1

shows the total intensity (left) and the polarized intensity (right). Galactic equatorial

plane is bright in synchrotron radiation. There are notable diffuse filamentary or loop

like emissions in high latitude. The diffuse emission indicates that galactic magnetic field

and CR electrons emerge from the disk. Synchrotron emission is dominant in frequencies

between 300 MHz and 10 GHz (see, e.g. Draine 2011). Lower frequency is limited by

the thermal gas absorption, and the upper limit is due to the dominance of the Cosmic
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Microwave Background (CMB) radiation.

Fig.1.1 All sky surveys of radio continuum emission. Left panel shows the total
intensity map reported by Haslam et al. (1982) at 408 MHz reprocessed by Re-
mazeilles et al. (2015). Right panel shows the polarized intensity map by WMAP
K-bant 23GHz ( Vidal et al. 2015). Black lines show the magnetic field direction and
their length is proportional to the polarization intensity.

The spectrum of intensity Iν is parameterized by the power law photon index q as

Iν ∝ ν−q. The photon index q is related to the index of CR energy spectrum index p as

2q = p − 1. Observed averaged photon index is q = 0.95 ± 0.15 between 408 MHz and

1.42 GHz for galactic latitude|b| > 5◦ (La Porta et al. 2008), q = 0.73 between 45 and 408

MHz (Guzmán et al. 2011), and q = 0.86 between 408 MHz and 2.3 GHz (Giardino et al.

2002; Platania et al. 2003). Vidal et al. (2015) concluded that photon index determined

by WMAP polarized intensity at 23 and 33 GHz is 0.84 < q < 1.06. The WMAP satellite

covered the frequency from 23 GHz to 94 GHz. Observation of the synchrotron polarized

emission are reported by, e.g. Wolleben et al. (2006); Testori, Reich & Reich (2008);

Rudnick & Brown (2009) at 1.4 GHz, and Planck Collaboration (2016) at 30 GHz Let

us estimate the galactic magnetic field using the synchrotron intensity in optically thin

plasma,

Iν = a(p)
e3

mec2

(
3e

4πm3
ec

5

)(p−1)/2

NB(p+1)/2
⊥ ν−(p−1)/2 (1.7)

where a(p) is the order of unity quantity weakly dependent on the CR spectrum index p

(for detail, see e.g. Rybicki & Lightman 1985). By adopting the mean intensity of the

sky, Iν ∼ 3 × 10−26 at ν =140 MHz, CR spectral index p ∼ 3, and the size of our galaxy
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L ∼ 18 kpc, galactic magnetic field in equation (1.4) can be estimated by

B⊥,av ∼
(

e3

mec2

)− 2
p+1
(

3e

4πm3
ec

5

) 1−p
p+1
(

Iν

L

) 2
p+5

ν(p−1)/(p+5) ∼ 0.8 µG. (1.8)

Fig.1.2 All-sky map of rotation measures (Oppermann et al. 2012). Red denotes
the positive RM corresponding to the magnetic filed toward the observer, and blue
denotes the magnetic field in opposite direction.

Line of sight galactic halo magnetic field B‖ can be estimated by RM using the extra

galactic radio sources. Oppermann et al. (2012) improved the all sky map of RM by Taylor,

Stil & Sunstrum (2009) by statistically analyzing angular power spectrum reconstructed

from the largest catalog of extra galactic sources. All sky distribution of RM are shown

in Fig. 1.2. In the galactic plane, bright spots are mainly point sources. The sign of the

RM is opposite above and below the galactic equatorial plane, indicating bipolar structure

illustrated in the left panel of Fig. 1.3. However, RM has the same sign in the outer region.

In other words, magnetic field around the solar neighbourhood has the quadrupole feature

illustrated in the right panel of 1.3. Number of sources in RM catalog published earlier

work is e.g. several sources in Simard-Normandin & Kronberg (1980), 37,543 sources in

Taylor, Stil & Sunstrum (2009). The proposed Square Kilometre Array (SKA) designed

as multi radio telescope located in one square kilometer is expected to measure 100 low

luminosity sources of polarized radiation per square degree per hour (Rudnick & Owen
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Fig.1.3 Illustration of symmetries in Halo fields.

2014).

1.2 Galactic dynamo

Galactic diffuse magnetic fields are produced by the emergence of magnetic fields from the

galactic disk. The galactic magnetic fields are thought to be amplified and maintained by

the galactic dynamo. For activating the disk dynamo, we assume weak (< 10−3µG) seed

field.

The seed field can be amplified by the differential rotation. However, it is well known as

Cowling’s anti dynamo theorem (Cowling 1934) that axisymmetric magnetic fields cannot

be maintained. We need some processes to generate non-axisymmetric perturbation and

the feedback from azimuthal field to the radial field. In the α − Ω dynamo theory, the

feedback from the toroidal field to the poloidal field is parameterized by the dynamo

parameter α. In this theory, the induction equation is solved by assuming the velocity

field (e.g. rotation and turbulence). This kinematic approach should be consistentwith the

dynamics of the magnetized fluid. Balbus & Hawley (1991) pointed out the importance

of the Magneto-Rotational Instability (MRI) in differentially rotating magnetized disks.

They showed that the angular momentum transport by perturbed magnetic fields drives

magnetohydrodynamic instability through which azimuthal magnetic fields and radial

magnetic fields are amplified. This instability grows in the disk rotation time scale.

Nishikori, Machida & Matsumoto (2006) and Machida et al. (2013) carried out three-

dimensional simulation assuming galactic gravitational potential and studied the time

evolution of disk magnetic fields, and proposed the MRI-Parker dynamo model. Fig. 1.4

(a) shows the generation of radial field by MRI. This mechanism corresponds to the α



Chapter 1 General Introduction 6

effect. Additionally, the radial field produces the azimuthal field by differential rotation (Ω

effect). The radial field produces the toroidal field, which escapes from disk to halo due to

the Parker instability. When the azimuthal field is amplified, the global three-dimensional

MHD simulations revealed that mean toroidal magnetic field reverses quasi-periodically.

Machida et al. (2013) included the disk above and below the equatorial plane into the

simulation region and showed that the disk magnetic fields show transitions between the

dipole and the quadrupole field (see, Fig. 1.3).

Fig.1.4 Illustration of the disk dynamo driven by the Magneto-Rotational Instability (MRI).

Another possible driving mechanism of the disk dynamo is the SuperNova (SN) explo-

sion. The SN model has uncertainties on what kind of energy is injected (e.g. kinetic

energy: Gissinger, Fromang & Dormy 2009; Gressel, Elstner & Ziegler 2013, thermal with

magnetic: Butsky et al. 2016, cosmic ray: Hanasz, Wóltański & Kowalik 2009). In order

to maintain the disk field, the energy of the single SN is not sufficient. Highly efficient

injection of CR particles is necessary to drive dynamo by SN explosions.

1.3 Parker instability

Parker (1966, 1967) pointed out the mechanism of the formation of dense interstellar
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cloud by undular mode of magnetic buoyancy instability (referred to as Parker instabil-

ity). Parker instability, shown in Fig. 1.5, is driven by undular perturbation of galactic

magnetic field. As the gas slides down, the density at the loop top decreases. When the

buoyancy exceeds the restoring magnetic tension, the magnetic field escapes buoyantly

from the galactic disk.

Fig.1.5 A schematic diagram of the Parker instability.

Here we estimate the unstable condition of Parker instability. For simplicity, we neglect

CRs in this section. First, we assume plane parallel stratified atmosphere in magneto

hydrostatic equilibrium under vertical gravity g and horizontal magnetic field,

d

dz

(
Pg +

B2

2

)
= −ρg, (1.9)

where Pg, B, ρ are gas pressure, magnetic field parallel to galactic equatorial plane, and

density, respectively. We assume that g is constant, and the ratio of magnetic pressure to

gas pressure,

α =
|B|2/2

Pg
, (1.10)

is spatially constant. By assuming isothermal gas, we obtain the equilibrium density
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profile,

ρ(z) = ρeq exp
(
− z

HB

)
, HB ≡ (1 + α)a2

γgg
= (1 + α)Hg, (1.11)

where ρeq denotes the density at the equatorial plane z = 0, γg is the specific gas heat

ratio, a is sound speed defined as a2 = γgPg/ρ, Hg is the scale height for no magnetic field.

When undular perturbation ∆z is imposed the density inside the undulating magnetic field

ρin can be approximated by the density distribution with no magnetic field as,

ρin(z + ∆z) ∼ ρeq exp
(
−z + ∆z

Hg

)
. (1.12)

The buoyancy force Fbuoyancy is proportional to the density difference between that in

the perturbed fluid element and unperturbed fluid element,

Fbuoyancy = −
(
ρin(z + ∆z) − ρ(z + ∆z)

)
g (1.13)

∼ −
(

∆z

HB
− ∆z

Hg

)
ρ(z)g = α

∆z

HB
ρ(z)g. (1.14)

Here, we used the first order Taylor series approximation assuming ∆z $ z.

The restoring force is the magnetic tension force Ftension,

Ftension =
B2

R
∼ 32

λ2
B2∆z (1.15)

Here R is the curvature radius, which can be estimated by using the circle in Fig. 1.5.

By using the wavelength λ and the similarity of triangle, we obtain 2R : λ/4 = λ/4 : ∆z.

By using equations (1.14) and (1.15), the unstable condition of Parker instability

Fbuoyancy > Ftension gives the critical wavelength λcrit for Parker instability,

λ > λcrit ≡ 8Hg

√
1 + α. (1.16)

In the galactic disks, the typical critical wave length is λcrit ∼ 570 pc for α = 1 when scale

hight Hg = 100 pc. Parker (1979) showed that the typical timescale of the instability is
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the order of Alfvén crossing time τA ∼ Hg/vA ∼ 107 yr for a = 10 km/s and Hg = 100

pc, where vA is the Alfvén speed.

Mirror symmetry 
(even mode)

Glide-reflection symmetry 
(odd mode)

Equatorial
  

plane

Fig.1.6 Illustration of the magnetic field symmetry in the Parker instability. Left
panel shows the mirror symmetry with even parity, and right panel shows the glide-
reflection symmetry with odd parity.

Horiuchi et al. (1988) carried out the linear stability analysis of the Parker instability

under non-uniform gravity and solved the linearized equations as eigenvalue problem.

They showed that the most unstable fundamental mode is the glide-reflection symmetric

mode shown in the right hand side of Fig. 1.6, and the first harmonics is the mirror

symmetric mode shown in the left hand side of Fig. 1.6. These are slow magnetoacoustic

modes modulated by the gravity. The eigen functions have the largest amplitude around

the region of maximum gravity and low temperature. Giz & Shu (1993) pointed out

that linearized differential equation is identical to the Shrödinger equation. Solutions

of the linearized equation can be classified into continuum modes and discrete modes.

Dependence on parameters and gravity distribution is studied by Kim, Hong & Ryu

(1997) and Kim & Hong (1998). Kamaya et al. (1997) studied the dependence of the

solutions on temperature and specific heat ratio.

Two-dimensional MHD numerical simulations of Parker instability were performed by

Matsumoto et al. (1988, 1990). They showed that in the non-linear stage, when the

magnetic field energy satisfies |B|2/2 > 0.3Pg and the perturbation wavelength is long

enough, shock waves are formed in the region where the supersonic down flow along the

magnetic loop hits the gas disk. When the magnetic energy is small (i.e. gas pressure

is dominant) and the perturbation length is short enough, the disk nonlinearly oscillates.
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The nonlinear acoustic gravity waves modulate the magnetic field. Santillán et al. (2000)

reported similar results with different numerical MHD codes and initial perturbations.

1.4 Dynamical Equation of Cosmic Rays

CR energy density is supposed to be in equipartition with the magnetic and thermal

energy density. CR’s dynamical effect is treated by the CR pressure. In this section, we

estimate the energy density of CRs. Next, we focus on the interaction of a CR particle

with plasma wave to introduce the CR dynamical equation.

10-10
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10-6

10-4

10-2

100

100 102 104 106 108 1010 1012

E2 dN
/d

E 
 (G

eV
 c

m
-2

sr
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s-1
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Ekin  (GeV / particle)
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all-particle

electrons

positrons

antiprotons

CAPRICE
AMS

BESS98
Ryan et al.
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Yakutsk
AGASA

HiRes

Fig.1.7 Energy spectrum of charged cosmic ray flux over the range of 1 to 1012 GeV
(Hillas 2006)

Among the energy of various species of CR particles shown in Fig. 1.7, the contribution
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of proton is the largest. Hence, CRs energy density Ecr is roughly estimated by the order

of magnitude estimation using E2dN/dE = 0.1 and ∆E = 1 GeV,

Ecr =
4π

c

∫
E2 dN

dE
d (lnE) ∼ 1.4 × 10−12 erg cm−3. (1.17)

Galactic CR energy spectrum in the range Ekin < 100 GeV is modulated by 5 µG magnetic

field of the heliosphere, since the gyroradius of a CR proton is less than the orbital radius

of the earth, 1013 cm. If it forms the power-law slope in the low energy range, equation

(1.17) underestimates the CR energy density. Energy density of magnetic filed EB and

thermal gas Eg have typical value in the interstellar medium,

EB = 1.0 × 10−12

[
B

5 [µG]

]2
erg cm−3, (1.18)

Eg ∼ 0.5 × 10−12

[
n

0.3 [cm−3]

] [
T

8000 [K]

]
erg cm−3, (1.19)

respectively. Thus, energy density equipartition is approximately satisfied in the inter-

stellar medium.

Next, we discuss a single CR particle motion. When the magnetic field B0 is uniform,

a CR proton moves along it with gyrofrequency Ω and gyroradius rL,

Ω =
e|B0|
γmpc

∼ 0.05
[

B0

5 [µG]

]
Hz, (1.20)

rL =
pcrc

e|B0|
sin θ ∼ 2.0 × 10−7

[
B0

5 [µG]

]−1 [ pcrc

1 [GeV]

]
pc, (1.21)

where pcr and e denote the momentum and charge of protons. The angle between the

CR’s momentum vector and magnetic field is given by θ which is called the pitch angle.

We consider motion of particles in ordered field B0 superposed with the fluctuation

δB with wave length λB ≡ 2π/k. We illustrate the dependence on the gyroradius in

Fig. 1.8. When rL $ λB , the magnetic field is uniform for the CR protons, and they

gyrate around the magnetic field. In the opposite limit rL % λB , they can not follow the

change of magnetic field during the gryration. The most important case is rL ∼ λB . CR

protons are reflected by the fluctuation δB. This relation can be considered as scattering
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(or collision) process. Remarkably, if turbulent waves and particles propagate from left

to right, a CR proton velocity nearly equals to the light speed, but averaged CR protons

velocity is zero and they comove with the background fluid.

Interaction
reflection by the wave

Fig.1.8 A schematic diagram of the interaction between a CR particle and magnetic
fluctuation with wave length λB . Blue lines denote magnetic filed lines. Black lines
denote the trajectory of a CR particle motion.

Let us derive the mean free path and the diffusion coefficient in collision interaction (for

detail of this discussion, see Chapter 12 of Kulsrud (2005)). We consider a CR particle

approaching the fluctuation field δB which is single sinusoidal field traveling the direction

of positive z,

B0 = B0ez, δB = δBex sin (kz − ωt) , (1.22)

where ex and ez are unit vector of x- and z-direction. The gyration of CR proton around

B0 can be written as,

p = pcr sin θ {ex sin (Ωt + φ) + ey cos (Ωt + φ)} + pcr cos θez, (1.23)

where φ is a phase difference between the CR gyromotion and the fluctuation field. For

cos θ > 0, the momentum change δpz of single scattering with collision time τ is,

δpz =
∫

e

γmc
(p × B)z dt (1.24)

= pcr sin θ
eδB

2γmc

[∫
cos φdt −

∫
cos {(kvz,cr − ω + Ω) t + φ} dt

]
(1.25)

∼ pcr sin θ
δB

B0

Ωτ

2
cos φ, (1.26)



Chapter 1 General Introduction 13

where we use the resonance condition (Ω ! ω),

kvz,cr − ω − Ω ∼ 0, (1.27)

and neglect the integration term with high frequency kvz,cr−ω+Ω compared to τ−1. Since

the single collision time is approximately τ = 2π/(kvz,cr − ω) ∼ 2π/Ω, the momentum

variation δpz = δ(pcr cos θ) can be related to the pitch angle variation δθ,

δθ = −π
δB

B0
cos φ (1.28)

On the other hand, for cos θ < 0 when CR particles move in the direction of negative z, the

pitch angle variation is δθ = +π cos φδB/B0 with the resonance condition, kvz,cr−ω+Ω ∼

0. CR particles on the same trajectories are scattered by circularly polarized fluctuating

field. When we assume that electric field is zero, the energy of the fluctuation field and

a CR particle do not change. If a CR particle excites the electric fluctuation field, some

instability should exist in CR’s gyroradius scale.

Suppose that in a time t, the square of the total change is the sum of N(= t/τ) collisions,

the square of the pitch angle variation averaged over pitch angle can be treated in the

same way as the random walk,

〈
(∆θ)2

〉
=

N∑
i=1

〈
(δθi)

2
〉

= N
〈
(δθ)2

〉
(1.29)

Hence the scattering rate νcr can be determined by,

νcr =

〈
(∆θ)2

〉

t
=

π

4
Ω

〈(
δB

B0

)2
〉

, (1.30)

where < cos2 φ >= 1/2 is taken into account.

Scattering process indicates that dynamical equation can be simplified by using the

diffusion approximation. Thus, we estimate the mean free path and diffusion coefficient

by this scattering. The mean free path λmfp and the diffusion coefficient κ‖ depend on
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the gyroradius rL and magnitude δB/B0 as,

λmfp = νcrvz,cr = rL
4
π

(
B0

δB

)2

, (1.31)

κ‖ =
1
3
νcrv

2
z,cr = rLvz,cr

4
3π

(
B0

δB

)2

(1.32)

According to the quasi-linear theory (see, e.g. Berezinskii et al. 1990; Schlickeiser 2002),

the mean free path λmfp taken into account for the turbulence depends additionaly on

the power law index of the turbulence spectrum q, magnitude of fluctuation δB/B0, and

maximum size of turbulence lmax as,

λmfp ∼ rL

(
2πrL

lmax

)1−q (B0

δB

)2

∼ 0.13 pc
[

B0

5 [µG]

]− 1
3
[

lmax

100 [pc]

] 2
3
[

pcrc

1 [GeV]

] 1
3

, (1.33)

where we assumed δB/B0 = O(1) and the power law spectral distribution of fluctuation

of thermal electron density obeys the Kolmogorov spectrum q = 5/3 shown in Fig. 1.9.

The energy density of turbulence is comparable with that of the magnetic field. We can

also evaluate the diffusion coefficient parallel to the magnetic field (see, e.g. Berezinskii

et al. 1990; Schlickeiser 2002),

κ‖ =
cλmfp

3
∼ 1.26 × 1027 cm2s−1

[
B0

5 [µG]

]− 1
3
[

lmax

100 [pc]

] 2
3
[

pcrc

1 [GeV]

] 1
3

. (1.34)

And hence, diffusion time scale is,

τ‖ ∼ 2.3
[

L

100 [pc]

]2
Myr. (1.35)

The thermal gas and CR are tightly coupled with the magnetic field.

Let us consider the CR distribution function defined as the number density of particles

in phase space of position and momentum. Time evolution of the distribution function f

of CR particles can be expressed by the advection-diffusion equation (e.g. Skilling 1975;
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Fig.1.9 Power spectrum of fluctuation of thermal electron number density (Chep-
urnov & Lazarian 2010 and Armstrong, Rickett & Spangler 1995

Schlickeiser & Lerche 1985)

∂f

∂t
+ v · ∇f − ∇ · F4 diff = (∇ · v)

p

3
∂f

∂p
+

1
p2

∂

∂p

(
Dp

∂f

∂p

)
, (1.36)

where F4 diff and Dp denote the spatial diffusion flux and momentum diffusion coefficient,

and v denotes the background thermal gas flow, respectively. The second and third terms

in the left hand side are the advection and diffusion in real space, and the first and the
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second terms in the right hand side denote those in momentum space. In this formula

the distribution function is assumed to be isotropic in momentum space, f(x, p, t) =

4πf(x, p, t), and the energy loss process is ignored. The averaged CR velocity is assumed

to be the thermal gas speed v in advection term. Here, we define the CR energy density

and pressure as,

Ecr(x, t) ≡
∫ p2

p1

εf4πp2
crdpcr, (1.37)

Pcr(x, t) ≡ 1
3

∫ p2

p1

pcr · vcrf4πp2
crdpcr, (1.38)

where ε is the kinetic energy of the CR particle with velocity ucr, momentum pcr, and

Lorentz factor γ,

ε = (γ − 1)mc2, vcr =
pcr

γm
, γ =

√
p2
cr

m2c2
+ 1. (1.39)

To derive the CR energy equation, we multiply equation (1.36) by the CR kinetic energy

ε and integrate over the momentum space,

∂Ecr

∂t
+ v · ∇Ecr + (Ecr − Pcr)∇ · v = ∇ · Fdiff +

4π

3
(∇ · v)

[
fp3

crε
]p2

p1

, (1.40)

where the spatial diffusion flux is,

Fdiff =
∫ p2

p1

εF4 diff 4πp2
crdpcr. (1.41)

The second term in the right-hand of this equation (1.40) vanishes because p1 → 0 and

p2 → ∞ apploximately. Here, we ignore the momentum diffusion. Since equation (1.40)

is not closed, we need additional ad hoc relation for the CR energy and pressure. For this

purpose, we introduce the quantity corresponding to the specific heat ratio in the thermo

dynamics,
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γcr = 1 +
Pcr

Ecr
=

4
3

+
1
3

∫ p2

p1

εfγ−14πp2
crdpcr

∫ p2

p1

εf4πp2
crdpcr

(1.42)

In the ultra-relativistic limit γ → ∞, γcr → 4/3, while in the non-relativistic limit γ → 1,

γcr → 5/3. Thus, the specific heat ratio is 4/3 < γcr < 5/3 and we obtain the CR

advection diffusion equation,

∂

∂t
(Ecr) + ∇ · [(Ecr + Pcr)v] = v · ∇Pcr + ∇ · Fdiff (1.43)
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Chapter 2

Approximate Riemann Solvers for the

Cosmic Ray Magnetohydrodynamical

Equations

The dynamics of CRs are often taken into account by the CR magnetohydrodynamical

(MHD) equations. This fluid approximation is justified because CRs are confined by the

magnetic field and well scattered by small scale magnetic fluctuations (see e.g. Zweibel

2013). CRs are assumed to be an ultrarelativistic gas and hence the pressure is assumed

to be one third of the energy density in the CR MHD equations. The CR MHD or CR

hydrodynamical (HD) equations have been used for numerical simulations of the inter-

stellar and galactic scales (see e.g. Fahr, Kausch & Scherer 2000; Kuwabara, Nakamura &

Ko 2004; Rasera & Chandran 2008; Yang et al. 2012; Hanasz et al. 2013; Salem & Bryan

2014; Vazza et al. 2015).

The CR MHD equations are similar to the ordinary MHD equations and expressed in the

conservation form except for the energy equation for CRs. The energy of CRs is enhanced

by compression and consumed by work to the thermal gas. Thus the CR energy equation

contains a source term proportional to spatial derivative of either pressure or velocity.

This source term has been evaluated separately from the flux in the numerical simulations

hitherto. However, this treatment does not guarantee that the numerical solutions satisfy
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the Rankine-Hugoniot relation for a shock. Although the Rankine-Hugniot relation and

Riemann solutions have been obtained by Pfrommer et al. (2006) for the CR HD equations,

the approximate Riemann solvers have not been given in the literature. In other words, the

effects of CRs on shocks might not be taken into the simulations properly. Remember that

modern HD and MHD simulations rely on the appropriate approximate Riemann solvers

to reproduce strong shock waves (see e.g. Toro 2009). Good approximate Riemann solvers

capture strong shocks sharply without artificial oscillations of numerical origin.

In this chapter, we rewrite the CR MHD equations into the fully conservation form.

One of them describes the conservation of CR particle number. Here the CR number

density is defined to be the 1/γcr-th power of Pcr, where Pcr and γcr denote the pressure

and specific heat ratio of CRs, respectively. The Rankine-Hugoniot relation is easily

reconstructed from the fully conservation form. We derive the wave properties of the CR

MHD equations such as the characteristics, the corresponding right eigenvectors and wave

amplitudes. They are used to construct the Roe-type approximate Riemann solver (see

e.g. Toro 2009 for the classification of the approximate Riemann solvers). We show that

the approximate Riemann solver works well for 1D shock problems and 2D expansion. The

former is used for comparison with the exact solution and those obtained with conventional

scheme. When the CR pressure is dominant in the post-shocked gas, the solutions obtained

with the conventional schemes do not satisfy the Rankine-Hugoniot relation. On the other

hand, the Roe-type approximate Riemann solver reproduces the pressure balance mode,

a kind of contact discontinuity appearing in the CR MHD equation, as well as the shock.

This chapter is organized as follows. We derive the fully conservation form of the CR

MHD equations in Section 2.2. The Rankine-Hugoniot relation is derived in Section 2.2.1.

The approximate Riemann solution is given in Section 2.2.2. Numerical tests are shown

in Section 2.3. Section 2.3.1 is devoted to the 1D CR HD shock tube problem. Section

2.3.2 is devoted to the linear wave test, while Section 2.3.3 to the advection of the pressure

balance mode. Section 2.3.4 is devoted to the 1D CR MHD shock tube problem, while

Section 2.3.5 is to 2D CR MHD problem. We discuss the shock tube problems solved by

Pfrommer et al. (2006) and Dubois & Commerçon (2016) in Appendix B. We also discuss

possible extension of the CR MHD equations to evaluate the average CR particle energy

before conclusion. This paper is based on our earlier work, Kudoh & Hanawa (2016a),
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but improved to achieve the second-order accuracy.

2.1 System of CR MHD equations

2.1.1 Cosmic Ray Magnetohydrodynamic Equations

First we introduce the CR MHD equations according to Berezinskii et al. (1990) in which

the fluid approximation is applied to CRs. The equation of continuity,

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

and the induction equation,

∂B

∂t
− ∇ × (v × B) = 0, (2.2)

are the same as those of the ordinary MHD equations. Here the symbols, ρ, v, and B

denote the density, velocity, and magnetic field, respectively. The CR pressure, Pcr, is

taken into account in the equation of motion,

∂

∂t
(ρv) + ∇ ·

[
ρvv +

(
Pg + Pcr +

|B|2

2

)
I − BB

]
= 0, (2.3)

where Pg and I denote the gas pressure and the unit tensor, respectively. Accordingly the

equation of energy conservation is altered into

∂

∂t
(E) + ∇ · [(E + Pg) v − (v · B) B] = −v · ∇Pcr, (2.4)

E =
ρ

2
|v|2 +

Pg

γg − 1
+

|B|2

2
, (2.5)

where γg, denotes the specific heat ratio of the gas. The gas is assumed to be an ideal gas

with γg = 5/3 throughout this paper except when otherwise noted.

CRs are approximated to be an ideal gas having the constant specific heat ratio, γcr =
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4/3. Then the CR energy density, Ecr, is evaluated to be

Ecr =
Pcr

γcr − 1
. (2.6)

The CR energy equation is expressed as

∂

∂t
(Ecr) + ∇ · [(Ecr + Pcr) v] = v · ∇Pcr − ∇ · Fdiff, (2.7)

Fdiff = −κ⊥∇Ecr −
(
κ‖ − κ⊥

) (B · ∇Ecr) B

|B|2 , (2.8)

where advection, the work to accelerate the gas, and diffusion are taken into account.

The symbols, κ‖ and κ⊥, denote the diffusion coefficients in the directions parallel and

perpendicular to the magnetic field, respectively.

In the following we analyze the case of no diffusion (κ‖ = κ⊥ = 0). As shown later, the

CR MHD equations are hyperbolic and the characteristic speeds are independent of the

wavelength in this case. Remember that the diffusion is often taken account separately in

numerical simulations by means of the operator splitting. In other words, the diffusion is

not taken into account in the construction of approximate Riemann solutions. Thus our

approach to the CR MHD equation is orthodox.

2.2 Fully Conservation Form

Next we rewrite the CR MHD equations in the fully conservation form. While equations

(2.1), (2.2) and (2.3) are written in the conservation form, equations (2.4) and (2.7) are

not. The sum of equations (2.4) and (2.7) gives us the equation of the total energy

conservation,

∂

∂t
(E + Ecr) + ∇ ·

[(
E + Ecr + Pg + Pcr +

|B|2

2

)
v − (v · B)B

]
= 0. (2.9)

Thus the CR MHD equations are expressed in the fully conservation form if equation (2.7)

is converted into the conservation form.
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For later convenience we introduce the CR number density defined as

ρcr ≡ P 1/γcr
cr , (2.10)

which is equivalent to equation (3.6) in Pfrommer et al. (2006). Equation (2.10) implies

that CRs is approximated by a polytrope gas. Then equation (2.7) is rewritten in the

conservation form,
∂

∂t
ρcr + ∇ · (ρcrv) = 0, (2.11)

when κ‖ = κ⊥ = 0.

Note the similarity between equations (2.1) and (2.11). From these equations we can

derive
d

dt

(
ρcr

ρ

)
= 0. (2.12)

For later convenience we introduce the concentration of CRs defined as

χ =
ρcr

ρ
. (2.13)

When all the variables depend only on t and x (1D), the CR MHD equations are

expressed in the vector form,
∂U

∂t
+

∂F

∂x
= 0, (2.14)

U =





ρ

ρvx

ρvy

ρvz

Bx

By

Bz

ρH − PT +
|B|2

2
ρχ





, (2.15)
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F =





ρvx

ρv2
x + PT +

|B|2

2
− B2

x

ρvxvy − BxBy

ρvxvz − BxBz

0

vxBy − vyBx

vxBz − vzBx

ρHvx + |B|2vx − (v · B)Bx

ρχvx





, (2.16)

H =
v2

2
+

γg

γg − 1
Pg

ρ
+

γcr

γcr − 1
Pcr

ρ
, (2.17)

PT = Pg + Pcr. (2.18)

where U and F denote the state and flux vectors, respectively. We use this vector form

to derive the Rankine-Hugniot relation and Riemann solution.

2.2.1 Rankine-Ugoniot Relation

In this subsection we derive the Rankine-Hugoniot relation, i.e, the jump condition at

a shock front, using the CR MHD equations in the conservation form, equations (2.14),

(2.15) and (2.16). For simplicity we restrict ourselves to a stationary plane shock. In other

words, we observe a small area around a shock wave in the comoving frame. Furthermore,

the wave front is assumed to be normal to the x-direction in the Cartesian coordinates.

Since the temporal change vanishes, then the flux, F , should be continuous across the
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shock front,

[ρvx] = 0, (2.19)
[
ρv2

x + PT +
B2

y + B2
z − B2

x

2

]
= 0, (2.20)

[ρvxvy − BxBy] = 0, (2.21)

[ρvxvz − BxBz] = 0, (2.22)

[vxBy − vyBx] = 0, (2.23)

[vxBz − vzBx] = 0, (2.24)
[
ρHvx +

(
B2

y + B2
z

)
vx − (vyBy + vzBz) Bx

]
= 0, (2.25)

[ρχvx] = 0, (2.26)

where the symbol [·] denotes the jump across the discontinuity. Here, the subscripts, x, y,

and z denote the x-, y-, and z-components, respectively. These conditions are the same

as those obtained by Pfrommer et al. (2006) and almost the same as those for the MHD

equations except for equation (2.26): equations (2.20) and (2.25) are modified to include

Pcr and Ecr. Equation (2.26) denotes the continuity of the CR number flux. Combining

equations (2.19) through (2.26) we obtain

ρcr

ρ
= χ = const., (2.27)

across the shock. This means that the CR pressure changes only through the gas com-

pression or expansion.

2.2.2 Elementary Wave Solutions of the Riemann Problem

First we examine the CR HD equations, since inclusion of CRs changes the equation of

state but does not alter the induction equation. Furthermore we consider a 1D flow in
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which the y- and z-components vanish. Then the state and flux vectors are expressed as

U =





ρ

ρvx

ρH − PT

ρχ




, (2.28)

F =





ρvx

ρv2
x + PT

ρHvx

ρχvx




. (2.29)

As shown later, inclusion of the tangential velocity and magnetic field are straight forward.

CRs increase the total pressure and hence the sound speed. The total pressure is

expressed as

PT = Pg + (χρ)γcr , (2.30)

as shown in the previous subsection. Then the adiabatic sound speed is evaluated to be

a =

[(
∂Pg

∂ρ

)

s

+
(

∂Pcr

∂ρ

)

χ

]1/2

=
(

γgPg + γcrPcr

ρ

)1/2

, (2.31)

s = lnPg − γg ln ρ, (2.32)

where s denotes the entropy, since dχ/dt = 0 ( equation (2.12)). Note that the entropy is

constant
ds

dt
= 0, (2.33)

for a given gas element except for increase at a shock.

The characteristics of the CR HD equations are the eigenvalues of the Jacobian matrix,

A ≡ ∂F /∂U . (2.34)
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We obtain four characteristics,

λ1,4 = vx ± a, (2.35)

λ2,3 = vx. (2.36)

after some algebra. The former denotes the sound wave while the latter does advec-

tion. The additional advection mode corresponds to conservation of the CR concentration

(equation (2.27)) and hence to the pressure balance mode. The others are the same as

those in the ordinary HD equations except for the change in the sound speed.

The spatial derivative of U and F are decomposed into waves. They are expressed as

∂U

∂x
=

4∑

i=1

wiri, (2.37)

∂F

∂x
=

4∑

i=1

λiwiri, (2.38)

where

w1,4 =
1

2a2

(
∂PT

∂x
± ρa

∂vx

∂x

)
, (2.39)

w2 =
∂ρ

∂x
− 1

a2

∂PT

∂x
= −Pg

a2

∂s

∂x
− ρχ−1

a2

(
∂Pcr

∂ρ

)

χ

∂χ

∂x
, (2.40)

w3 =
∂ρcr

∂x
− χ

∂ρ

∂x
= ρ

∂χ

∂x
, (2.41)

r1,4 =





1

vx ± a

H ± avx

χ




, r2 =





1

vx

v2
x

2
+ χζ

χ





, r3 =





0

0

ζ

1




, (2.42)

ζ =
γg − γcr

(γg − 1)(γcr − 1)
dPcr

dρcr
. (2.43)

Here the symbol, wi, denotes the amplitude of the i-th wave. Inclusion of CRs introduces
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a new Riemann invariant, χ, and change the other Riemann invariants only slightly. The

symbol, ζ, denotes the change in the energy density due to the pressure balance mode

(Webb et al. (1995)). The energy density depends on the proportion of Pcr for a given

PT.

Equaions (2.37) through (2.42) are used to construct the Roe (1981) type approximate

Riemann solvers for numerical simulations.

Also the exact Riemann solutions are derived from equations (2.37) through (2.42).

Here the Riemann solution means that the solution of equation (2.14), when the initial

condition is expressed as

U =






UL x < 0

UR x ≥ 0
, (2.44)

at t = 0. The Riemann solution is obtained from the conditions,

wi = 0, (2.45)

except at discontinuities. However, the algorithm to obtain the complete solution is

lengthy even for the ordinary HD equations, as shown in Toro (2009). Pfrommer et al.

(2006) showed the Riemann solution for the case in which a shock propagates rightward

and a rarefaction wave propagates leftward.

Figure 2.1 illustrates an example of the Riemann solution. In this solution a shock wave

travels at the speed, λ1, while the contact discontinuity and the pressure balance mode

at λ2(= λ3). The rarefaction wave has the head and tail. The state vector is uniform

in each region separated by the characteristics except between the head and tail of the

rarefaction wave. We refer to regions 1 through 5 from right to left in the figure. The

Rankine-Hugoniot relation is applied to the jump between regions 1 and 2. The total

pressure and velocity are continuous at the boundary between regions 2 and 3, while the

entropy and CR concentration are not. The velocity gradient in region 4 is obtained from

dvx

dx
=

1
ρa

dPT

dx
, (2.46)
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x

x

Fig.2.1 Illustration of the Riemann solution for a CR HD shock tube problem. The
density, total pressure and CR pressure are shown as a function of x in the upper
half. The lower half denotes the characteristics.

s = const., χ = const., and λ4 = vx − a. The state vector remains at the initial value,

U1 = UR and U5 = UL, in regions 1 and 5. In short the Riemann solution changes only

quantitatively by inclusion of CRs.

Next we consider the Riemann solution of the CR MHD equations. The ordinary MHD

equations have 7 characteristics: three pairs of the fast, slow, and Alfvén waves in addition

to the entropy wave. CRs add the pressure balance mode and modify the phase speeds of

the fast and slow waves through the change in the sound speed. After some algebra, we

have found the following formulae for λi, wi, and ri for the CR MHD equations using the

formulation given by Ryu & Jones (1995) for the ordinary MHD equations.

λ1,8 = vx ± cf , (2.47)

λ3,6 = vx ± cs, (2.48)

λ4,5 = vx, λ2,7 = vx ± vAx, (2.49)
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w1 + w8 =
αf

c2
f

(
∂PT

∂x
+ By

∂By

∂x
+ Bz

∂Bz

∂x

)

+

[
αs

√
ρ

a2cf

{
(γg − 1) c2

s − (γg − 2) a2

}

+
αf

c2
f

(γg − 2)
√

B2
y + B2

z

](
βy

∂By

∂x
+ βz

∂Bz

∂x

)
,

(2.50)

w1 − w8 =
αf

cf
ρ
∂vx

∂x
− αscs

cfa
ρ sgn (Bx)

(
βy

∂By

∂x
+ βz

∂Bz

∂x

)
, (2.51)

w3 + w6 =
αs

a2

(
∂PT

∂x
+ By

∂By

∂x
+ Bz

∂Bz

∂x

)

+

[
αf

√
ρ

a2cf

{
(γg − 2) a2 − (γg − 1) c2

f

}

+
αs

a2
(γg − 2)

√
B2

y + B2
z

](
βy

∂By

∂x
+ βz

∂Bz

∂x

)
,

(2.52)

w3 − w6 =
αsvAx

cfa
ρ
∂vx

∂x
+

αf

a
ρ sgn (Bx)

(
βy

∂By

∂x
+ βz

∂Bz

∂x

)
, (2.53)

w4 =
∂ρ

∂x
− αf (w1 + w8) − αs(w3 + w6), (2.54)

w5 = ρ
∂χ

∂x
, (2.55)

w2,7 =
1
2

[
∓ ρ

(
βz

∂vy

∂x
− βy

∂vz

∂x

)
sgn (Bx)

+
√

ρ

(
βz

∂By

∂x
− βy

∂Bz

∂x

)]
,

(2.56)
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r1,8 =





αf

αf (vx ± cf )

αfvy ∓ αsβyvAxsgn(Bx)

αfvz ∓ αsβzvAxsgn(Bx)
αsβycf√

ρ
αsβzcf√

ρ

R1,8

αfχ





, (2.57)

r3,6 =





αs

αs(vx ± cs)

αsvy ± αfβyasgn(Bx)

αsvz ∓ αfβzasgn(Bx)

−αfβya2

cf
√

ρ

−αfβza2

cf
√

ρ

R3,6

αsχ





, (2.58)

r2,7 =





0

0

∓βzsgn(Bx)

±βysgn(Bx)

βz/
√

ρ

−βy/
√

ρ

R2,7

0





, r4 =





1

vx

vy

vz

0

0

R4

χ





, r5 =





0

0

0

0

0

0

ζ

1





, (2.59)

where,

R4 =
|v|2

2
+ χζ, R2,7 = ∓ (βzvy − βyvz) sgn(Bx), (2.60)
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R1,8 = αf

{
R4 ± cfvx +

c2
f

γg − 1
+

γg − 2
γg − 1

(
c2
f − a2

)
}

∓ αsvAx sgn(Bx) (βyvy + βzvz) ,

(2.61)

R3,6 = αs

{
R4 ± csvx +

c2
s

γg − 1
± γg − 2

γg − 1
(
c2
s − a2

)}

± αfa sgn(Bx) (βyvy + βzvz) ,

(2.62)

v2
Ax =

B2
x

ρ
, a2

∗ = a2 +
B2

x + B2
y + B2

z

ρ
, (2.63)

c2
f,s =

1
2

(
a2
∗ ±

√
a4
∗ − 4a2v2

Ax

)
, (2.64)

αf =

√
c2
f − v2

Ax
√

c2
f − c2

s

, αs =

√
c2
f − a2

√
c2
f − c2

s

, α2
f +

v2
Ax

c2
f

α2
s = 1, (2.65)

βy =
By√

B2
y + B2

z

, βz =
Bz√

B2
y + B2

z

, β2
y + β2

z = 1. (2.66)

The above formulae are also used to construct the Roe type approximate Riemann

solutions. It is difficult to obtain the exact CR MHD Riemann solution although it may

not be impossible.

2.3 Numerical Tests

We derive the Roe-type approximate Riemann solver for the CR MHD equations from

equations (2.47) through (2.66). They show that the spatial difference is decomposed

into eight waves. When the wave speeds (λi) and eigenvectors (ri) are evaluated by the

Roe-average defined as
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ρ̄ = √
ρj+1ρj , v̄x =

√
ρj+1vx,j+1 + √

ρjvx,j
√

ρj+1 + √
ρj

,

H̄ =
√

ρj+1Hj+1 + √
ρjHj

√
ρj+1 + √

ρj
,

P̄T =
√

ρj+1PT,j + √
ρjPT,j+1

√
ρj+1 + √

ρj
,

B̄y =
√

ρjBy,j+1 + √
ρj+1By,j

√
ρj+1 + √

ρj
, B̄z =

√
ρjBz,j+1 + √

ρj+1Bz,j
√

ρj+1 + √
ρj

,

ρ̄cr =
√

ρj+1ρcr,j + √
ρjρcr,j+1

√
ρj+1 + √

ρj
.

(2.67)

the spatial difference is decomposed into the linear combination at the waves completely

(see e.g. Toro (2009)). Here the subscripts, j and j + 1, specify the cells at the centre of

which the variables are evaluated. As a results of ∆U = A∆F , we determine the sound

wave,

ā2 = (γg − 1)

(
H̄ −

v̄2
x + v̄2

y + v̄2
z

2
+

B̄2
x + B̄2

y + B̄2
z

ρ̄
− δb2 − ρ̄cr

ρ̄
ζ

)
, (2.68)

where,

δb2 =
γg − 2
γg − 1

(By,j+1 − By,j)
2 + (Bz,j+1 − Bz,j)

2

2
(√

ρj+1 + √
ρj

) , (2.69)

ζ =
γg − γcr

(γg − 1)(γcr − 1)
Pcr,j+1 − Pcr,j

ρcr,j+1 − ρcr,j
. (2.70)

The Roe-type numerical flux is given by

F Roe
j+1/2 =

1
2

(
Fj+1 + Fj −

∑

i

wi|λi|ri

)
, (2.71)

where the subscript j +1/2 denotes the value on the surface between the j-th and j +1-th

cells.

We use the explicit scheme of the second order accuracy in space and time except

when otherwise noted. The second order accuracy in space is achieved by the Monotone

Upstream-Centered Schemes for Conservation Laws (MUSCL) with characteristics (van
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Table. 2.1 The initial state in the CR HD shock tube problem.

ρ vx Pg Pcr

left (x < 0) 1.0 0.0 2.0 1.0
right (x ≥ 0) 0.2 0.0 0.02 0.1

Leer 1979; and see e.g. Toro 2009). When we solve equation (2.7), we interpolate the

primitive variables, ρ, Pg, Pcr, vx, vy, vz, Bx, By, and Bz. When we solve the fully

conservative form of the CR MHD equations, we interpolate the wave amplitudes, wi,

instead of the primitive variables. The interpolated variables are chosen to achieve the

second order accuracy in solving the pressure balance mode. The second order accuracy in

time is achieved by the two stage Runge-Kutta method. All the test problems are solved

on a uniform cell width and with a constant time step.

2.3.1 CR HD Shock Tube Problem

In this subsection, we solve a CR HD shock tube problem with four different schemes. Two

of them solve equation (2.11) while the others two not. The initial state is summarized in

Table 2.1. The left side has a higher pressure and hence the shock wave runs rightward

with the speed, 2.369. The head of the rarefaction wave runs leftward with the speed,

−2.160. The spatial resolution is ∆x = 1/128 and the time step is fixed at ∆t = 2.0×10−3.

Accordingly the Courant- Friedrich-Lewy (CFL) number is 0.780 in the simulations shown

below.

First we solve the CR HD equations in the fully conservation form, in which the state

and flux vectors are given by equations (2.28) and (2.29), with the Roe-type approximate

Riemann solver. The solution at t = 0.1 is shown in Figure 2.2. The top panels show the

density, velocity, and entropy from left to right, respectively. The bottom left panel shows

Pg by the red curve and PT by the black curve. The bottom central panel denotes Pcr by

the yellow green while the bottom right panel does CR concentration (χ) by the green.

The plus symbols denote the data points. The black curves without symbols denote the

Riemann solution, while the dashed lines do the initial state.

The shock front and rarefaction wave are reproduced well in Figure 2.2. The contact

discontinuity (x = 0.156) is also reproduced well. Note that CR concentration, χ, is
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Fig.2.2 The numerical solution of the CR HD shock tube problem compared with
the analytic Riemann solution (thin black solid) and the initial state (dashed). The
numerical solution (symbols) is of the second order accuracy and obtained with the
Roe-type Riemann solver. Top: ρ, vx and s from left to right. Bottom: Pg, PT, Pcr

and χ from left to right.

constant across the shock and changes at the contact discontinuity.

Figure 2.3 compares this solution with three other solutions obtained with different

schemes. Each panel shows the enlargement around the interval between the shock front

and contact discontinuity where the differences are large. The top left and right panels

denote Pg and s at t = 0.1, respectively, while the bottom left and right ones Pcr and χ,

respectively. The red curves denote the solution shown in Figure 2.2.

The green curves denote the solution obtained with the HLL scheme (see, e.g., Toro

(2009)) applied to the fully conservation form of the CR HD equations. The maximum

and minimum characteristics are evaluated to be vx ± a in the HLL scheme. It provides

a good approximation around the shock while the deviation from the Riemann solution

is large around the contact discontinuity.

The blue curves denote the solution of equation (2.7). The source term, the right

hand side, is evaluated by the central difference. The other equations are solved with the

HLL scheme. This scheme is named vdP scheme after the source term. Similar schemes

are employed in Kuwabara, Nakamura & Ko (2004). This solution is different from the

Riemann solution between the shock front and contact discontinuity. The gas pressure is

lower and cosmic ray pressure is higher.



Chapter 2 Approximate Riemann Solvers for the Cosmic Ray Magnetohydrodynamical Equations35

vdP
Pdv
HLL
Roe

vdP
Pdv
HLL
Roe

vdP
Pdv
HLL
Roe

vdP
Pdv
HLL
Roe

Fig.2.3 Comparison of the numerical solutions with the 2nd order accuracy in the
CR HD shock tube problem. The green and red curves denote the solutions obtained
with the CR HD equations in the conservation form while the blue and purple curves
do those obtained with the equations with source terms. Top: the gas pressure (left)
and the entropy (right). Bottom: the CR pressure (left) and the CR concentration
(right). See the main text for further details.
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Fig.2.4 The same as Figure 2.3 but for the numerical solution of the 1st order accuracy.
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The purple curves denote solution obtained by solving

∂

∂t
(Ecr) + ∇ · (Ecrv) = −Pcr∇ · v, (2.72)

which is derived from equation (2.7). The right hand side is evaluated by the central

difference and the other equations are solved with the HLL scheme, which we call Pdv

scheme in the following. Similar schemes are employed in Hanasz & Lesch (2003), Yang

et al. (2012), and Dubois & Commerçon (2016). This solution is also quite different from

the Riemann solution between the shock front and contact discontinuity.

When we solve equation (2.7) instead of equation (2.11), we cannot reproduce the

Riemann solution. The difference comes in part from the MUSCL approach. Figure 2.3 is

the same as Figure 2.4 excepts that the solution is of the first order accuracy in space and

time. All the solutions of the first order accuracy are very diffusive around the contact

discontinuity as expected.

The Roe-type approximate Riemann solver is, however, still close to the Riemann so-

lution. The HLL scheme produces a hump in Pg and a dump in Pcr around the contact

discontinuity in the first order solution. The hump and dump are much smaller in the

second order solution. This implies that they are due to numerical diffusion. We will

discuss the origin of the hump and bump in section 3.3. The numerical solutions are still

acceptable in the first order accuracy when we solve the fully conservation form.

The solution obtained with the vdP scheme shows serious enhancement in χ at the

shock front. The entropy has a dip at the shock front and the shock propagation speed

is underestimated. The CR pressure is overestimated while the gas pressure is underes-

timated. The vdP scheme diffuses the pressure balance mode seriously. This is because

the source term diverges at the pressure balance mode in the vdP scheme.

Also the Pdv scheme overestimates the CR pressure and underestimates the gas pres-

sure. However the difference from the Riemann solution is smaller in the solution of the

first order accuracy than in that of the second order accuracy. The solution of the second

order accuracy depends a little on the choice of variables to be interpolated. However,

we could not find any good solution of the second order accuracy when we solve equation

(2.11). The source term is extremely large and formally diverges at the shock front in the
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Table. 2.2 The initial states in the linear wave propagation tests

sound entropy pressure
balance

ρ0 1.0 1.0 1.0
Pg,0 1/3 1/3 1/3
Pcr,0 1/3 1/3 1/3
vx,0 0.0 0.5 0.5
ερ (10−6) 1.0 1.0 0.0
εg (10−6) γg/3 0.0 -1.0
εcr (10−6) γcr/3 0.0 1.0
εv (10−6) 1.0 0.0 0.0

Pdv scheme. Accordingly the Rankine-Hugoniot relation is not satisfied. The numerical

solution around the shock is not improved by the MUSCL approach.

2.3.2 Linear Wave Test

We examine the propagation of 1D plane waves of a small amplitude in order to confirm

the accuracy of our scheme. In the following we follow a sound wave, entropy wave, and

the pressure balance mode. The initial state at t = 0 is taken to be

ρ = ρ0 + ερ cos
(

2πx

λ

)
, (2.73)

Pg = Pg,0 + εg cos
(

2πx

λ

)
, (2.74)

Pcr = Pcr,0 + εcr cos
(

2πx

λ

)
, (2.75)

vx = vx,0 + εv cos
(

2πx

λ

)
, (2.76)

where λ denotes the wavelength. The other parameters are summarized in Table 2.2.

Note that the sound speed is set to be a = 1.0 in all the models. The time step is taken

to be ∆t = 0.5∆x/a. The size of the computation box is the same as the wavelength and

the periodic boundary condition is applied.

We measure the numerical error at the epoch at which the wave propagates by a wave-
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Fig.2.5 The L1 norm of the numerical error is shown as a function of the cell width
in unit of the wavelength. The crosses denote the errors in the solution of the first
order accuracy, while the circles denote those of the second order accuracy. The
green, blue and red symbols are for the sound wave, pressure balance mode, and the
entropy wave, respectively.

length, i.e., t = λ/a for the sound wave and t = λ/v0 for the other waves. We use the L1

norm defined as

δq(t) =
1

Nεq

∑

j

|qnumerical(xj , t) − qexact(xj , t)| , (2.77)

where the symbol, q, denotes a physical quantity. The numerical and exact solutions are

denoted by qnumerical(xj , t) and qexact(xj , t), respectively. The symbols, N and εq, denote

the number of cell in a wavelength and the wave amplitude in the variable, q.

Figure 2.5 denote δρ(λ/a) in the sound wave as a function of ∆/xλ ≡ 1/N by the green

crosses and circles, the former and latter of which are obtained with the first and second

order schemes, respectively. The red crosses and circles are the same as the green ones but
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for δPcr (λ/vx,0) in the pressure balance mode. We denote the error in the entropy mode,

δρ (λ/vx,0) /2, by the blue crosses and circles. The factor, 1/2, is introduced to avoid the

overlap with the red symbols. Our second order schemes solve all these hydrodynamical

waves with the second order accuracy in space.

Also the Pdv and vdP scheme provide the solutions of the second order accuracy for

the test problems examined in this subsection. As far as the wave amplitude is small, all

the schemes provide nearly the same results as expected.

2.3.3 Advection of the Pressure Balance Mode

The pressure balance mode produces some unphysical features such as spurious enhance-

ment in the gas pressure and dent in the CR pressure as shown in Figure 2.4. It also emit

spurious sound waves as shown later in this subsection. We identify the origin and provide

a remedy. The initial state of the test problem is summarized in Table 2.3. The velocity

should remain constant in this problem since the total pressure has the same value in

the both sides. The cell width and time step are taken to be ∆x = 0.1 and ∆t = 0.025,

respectively. Accordingly the CFL number is 0.585 in the simulations shown below.

The spurious sound wave appears from the beginning irrespectively of the numerical

scheme applied. Figure 2.6 shows the solutions at the first three time steps, i.e., at

t = 0.000, 0.025, and 0.050 from top to bottom. The left and central panels show Pg

and PT, respectively, while the right panels show vx. The green and red curves with the

symbols denote the solutions obtained with the HLL scheme and the Roe-type Riemann

solver, respectively, while the black lines denote the exact solution. The accuracy of these

solutions are the first order in space and in time. The total pressure is enhanced at the

second time step (t = 0.025) and the velocity perturbation appears at the the third time

step (t = 0.050).

Figure 2.7 is the same as Figure 2.6 but for the solutions of the second order accuracy.

The velocity perturbation appears from the first step, t = 0.025. The amplitude of the

perturbation is nearly the same as that in the solutions of the first order accuracy. As

shown later, the perturbation can suppressed if the initial state is slightly modified.

Figure 2.8 shows the later stages of the solutions obtained with the first order Roe
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Table. 2.3 The initial state in the test problem of the advection of pressure balance mode.

ρ vx Pg Pcr

left (x < 0) 1.0 1.0 0.1 1.0
right (x ≥ 0) 1.0 1.0 1.0 0.1

scheme. The top, middle and bottom panels show the density, the total pressure and the

velocity, respectively. The color denotes the epoch. The velocity perturbation observed

in Figure 2.6 evolves into sound waves propagating rightward and leftward of which phase

velocity are vx + a = 2.342 and vx − a = −0.225 for the former and latter, respectively.

In addition to the sound waves, the density profile has a dent around the contact discon-

tinuity. The dent grows in depth and in width. We need to suppress the sound waves of

the numerical origin and growth of the dent.

This artificial wave excitation is due to the numerical diffusion of CR numbers. If we

take account of numerical diffusion, equation (2.11) is rewritten as

∂

∂t
ρcr + ∇ · (ρcrv) = ∇ · (η∇ρcr) , (2.78)

where η denotes the effective diffusion coefficient. Hence equation (2.7) is rewritten as

∂

∂t
(Ecr) + ∇ · [(Ecr + Pcr) v − η∇ (Ecr)]

= v · ∇Pcr −
η

γcrPcr
|∇Pcr|2 ,

(2.79)

where the second term in the right hand side denotes the net loss in the CR energy. Figure

2.9 illustrates this mechanism of the loss in the CR energy

The loss in the CR energy is compensated by the gain in the gas energy, since the total

energy is conserved. We can evaluate the change in the total pressure as follows. Given

the CR pressure decrease by ∆Pcr, the CR energy decreases by

∆Ecr =
∆Pcr

γcr − 1
, (2.80)
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Fig.2.6 Test for the advection of the pressure balance mode. The top panels denote
the gas pressure, the CR pressure, the total pressure and the velocity in the initial
state from left to right. The middle and bottom panels denote those at the first time
step, t = ∆t and at the second time step, t = 2∆t, respectively. The green and
red curves denote the solutions obtained with HLL and Roe-type numerical fluxes,
respectively. The black line denotes the exact solution.

Fig.2.7 The same as Figure 2.6 but for the 2nd order accuracy.
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ρ
P T

v x

Fig.2.8 Late stages of the test problem shown in Fig. 6 The panels denote ρ, PT,
and vx fro the top to the bottom. The symbols and curves denote the the solution
at t = 0.025, 0.125, 0.250, 1.0, and 2.0.

and the gas energy increases by the same amount. Hence the gas pressure increases by

∆Pg = − (γg − 1)∆Ecr = − γg − 1
γcr − 1

∆Pcr. (2.81)
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Fig.2.9 Illustration of the mechanism for the decrease in Pcr due to numerical diffu-
sion by advection of the pressure balance mode. The left panel denotes the numerical
solution of the CR number conservation, while the right does that of the advection
equation.

Then the total pressure increases by

∆PT =
γcr − γg

γcr − 1
∆Pcr, (2.82)

since γcr < γg and ∆Pcr < 0.

The emission of the sound waves result in the decrease in the density. Thus, also the

dent is due to the numerical diffusion of the CR pressure.

Although the numerical diffusion is inevitable, the effects can be alleviated by modifying

the initial transition less sharp. If the initial profile is modified to be

q(x) =
qR + qL

2
+

qR − qL

2
tanh

(x

h

)
, (2.83)

where q and h denote a physical variable and the thickness of the transition layer, respec-

tively. The subscripts, R and L, denote the values at the right and left states, respectively.

Figure 2.10 shows the effects of the modified initial profile. All the curves denote the so-

lutions of the advection test at t = 2.000. The red and orange curves denote the solutions

of which initial profile is given by equation (2.83) with h = ∆x = 0.1. The red solution is

obtained with the second order Roe scheme, while the orange is with the first order Roe

scheme. The black and grey curves denote the solutions of which initial state is denoted

by a step function (h = 0). The black and grey solutions are obtained with the second and

first order Roe schemes, respectively. Adoption of a second order scheme alone cannot
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Fig.2.10 Compared are the numerical solutions of the advection test problem at
t = 2.0. The initial state is expressed by equation (78) in the solutions denoted by
red and black, while it is by the step function in the solutions denoted by orange and
grey. The red and orange curves denote the solutions of the second order accuracy,
while the black and grey do those of the first order accuracy. All the solutions are
obtained with the Roe-type Riemann solver.

suppress the numerical diffusion effectively. Only when h ! ∆x, the numerical diffusion

is suppressed sufficiently.

The Pdv scheme does not produce the spurious wave, since the source term vanishes in

this test problem. The vdP scheme suffers from the spurious wave since the source term

diverge at the front of the pressure balance mode. We have not tried to improve the vdP

scheme to suppress the spurious wave excitation, since the vdP scheme can not solve a

shock wave properly.

We encounter a similar problem when solving the advection of the tangential shear. The

shear velocity is smeared by numerical diffusion and hence a part of the kinetic energy is

lost. The loss is compensated by the increase in the internal energy and hence the gas

pressure increases spuriously around the shear. This problem is also alleviated by the

same recipe.
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Fig.2.11 An example of CR MHD shock tube problem. Top: the density, CR pres-
sure, gas pressure, total pressure, and entropy from left to right. Middle: the ve-
locity, magnetic field, and CR concentration from left to right. Bottom: the x- and
y-components of the momentum density, and the total energy density from left to
right.

2.3.4 1D MHD Shock Tube Test

In this subsection we demonstrate that the 1D MHD shock tube problem can be solved

with the Roe-type approximate Riemann solver. The initial state of the problem is sum-

marized in Table 2.4. This problem is similar to the well-known one tested by Brio &

Wu (1988). The resolution, the time step, and CFL number are taken to be ∆x = 1/256,

∆t = 8 × 10−4, and 0.843, respectively.

Figure 2.11 shows the numerical solution at t = 0.08. The left panels denote ρ, vx, and

ρvx, respectively. The solid curves with the open squares denote the numerical solution

while the dashed ones do the initial state. The top central panel denote PT (red), Pg

(purple), and Pcr (yellow green), while the middle central one does vy (brown) and By

(black) and the bottom central one dose ρvy. The right panels denote s, χ, and E + Ecr,

respectively.

The solution shows the fast rarefaction wave, the slow shock, the contact discontinuity

(the pressure balance mode), the slow compound, and the fast rarefaction, from right
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Table. 2.4 Initial left- and right-state in the shock tube problem of modified Brio &
Wu (1988).

ρ Bx By Bz Pg Pcr

Left (x < 0) 1.0 1.0 1.0 0.0 1.0 0.4
Right (x ≥ 0) 0.125 1.0 -1.0 0.0 0.1 0.04

Table. 2.5 Initial inside- and outside-state in the 2D MHD expansion.

ρ Br Bϕ Bz Pg Pcr

Inside 1.0 0.0 0.0 0.4472 2.0 1.0
Outside 0.2 0.0 0.0 0.4472 0.02 0.1

Fig.2.12 Expansion of a high pressure sphere. Top: the density, entropy, and CR
concentration in HD expansion problem from left to right. Bottom: the density,
entropy, CR concentration, and electric current density in MHD problem. The initial
states are the same except for the initial magnetic field. The black curves denote the
magnetic field in the bottom panels.

to left. Note that the contact discontinuity and the pressure balance mode are solved

sharply. The CR concentration, χ, changes only at the contact discontinuity.

2.3.5 2D MHD Expansion

In this subsection we consider an expansion of a hot sphere. We use the cylindrical

coordinates, (r,ϕ, z), and assume the symmetry around the z-axis. The gas pressure is

higher inside the sphere of
√

r2 + z2 = 0.5 in the initial state. It is assumed to have the
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profile,

Pg(r, z) = Pg,in +
(Pg,out − Pg,in)

2

×
[
tanh

(√
r2 + z2 − 0.5

0.01

)
+ 1

]
,

(2.84)

where the subscripts, in and out, denote the values inside and outside the sphere,
√

r2 + z2 = 0.5. Also the CR pressure and density are assumed to have similar profiles.

The parameters are summarized in Table 2.5. The velocity is assumed to vanish in

the initial state. The spatial resolution, time step, and CFL number are taken to be

∆x = ∆z = 1/200, ∆t = 5 × 10−4, and 0.340 respectively.

We construct two models having the same initial ρ, Pg, and Pcr. The magnetic field

vanishes in the first model while it is uniform and has only the z-component in the second

model. The plasma beta is β = 20 inside and 2 outside the sphere in the second model.

We solved this model with the Roe-type approximate Riemann solver.

Figure 2.12 denotes the stage at t = 0.19. The top panels denote ρ, s, and χ in the

first model from left to right. The values are shown by color and the color bars are shown

in the right of each panel. They show spherical shock wave propagating outward and

rarefaction propagating inward. The contact discontinuity and pressure balance mode are

clearly resolved.

The bottom panels denote ρ, s, χ, and the electric current density, jϕ. The color denote

the values while the black contours do the magnetic field lines. The expansion is aspherical

due to the magnetic field. The model shows three shock waves: a fast shock wave and

two slow shock waves. The magnetic field is bent sharply at the shock fronts. Note that

the electric current density is confined at the shock fronts and in the rarefaction wave.

This example demonstrates that the multi-dimensional CR MHD equations can be solved

successfully if we employ the fully conservation form.
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Chapter 3

Magneto Cosmic Ray Instability

3.1 Introduction of Magnetic Buoyancy Instability

Parker (1966) pointed out that the growth rate of Parker instability is enhanced by CRs

when the cosmic ray pressure becomes uniform along magnetic field lines. He showed that

when the gravity is uniform and α = PB/Pg, β = Pcr/Pg and sound speed a = (γgPg/ρ)1/2

are constant, the instability grows for long wavelength perturbations along the magnetic

field line when

(Hkx)2 <
(1 + α + β) (1 + α + β − γg)

2αγg
− 1

4
(3.1)

where H = (1 + α + β)a2/(γgg) is the pressure scale height and g is gravity. Parker

instability with CRs under the non-uniform gravity was investigated by Kim, Hong &

Ryu (1997). Kim & Hong (1998) studied the dependence of the growth rate on α, β and

γg assuming B ·∇Pcr = 0, which means that CR pressure is uniform along the magnetic

filed lines.

Ryu et al. (2003) studied the CR diffusion effects by linear stability analysis using the

CR equation (1.43) assuming uniform gravity. They showed that the maximum wave

number for the instability changes between models with CR diffusion along magnetic field
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lines and those without CR diffusion (i.e., κ‖ = 0) as

H2k2
x <






(1 + α + β) (1 + α + β − γg)
2αγg

− 1
4

for κ‖ > 0

(1 + α + β) (1 + α + β − γg − γcrβ)
2α(γg + γcrβ)

− 1
4

for κ‖ = 0.

(3.2)

Note that the criterion for κ‖ > 0 coincides with that for κ‖ → ∞ in equation (3.1).

Equation (3.2) indicates that the CR pressure without CR diffusion has stabilizing effect

on the Parker instability. When γg = 1, γcr = 4/3, β = 1, and κ‖ = 0, the instability

disappears when α ! 0.6. Ryu et al. (2003) also showed that the perpendicular diffusion

κ⊥ = 0.02κ‖ does not contribute to the growth of the instability. Linear and Nonlinear

studies of the CR Parker instability for non-uniform gravity were performed by Kuwabara,

Nakamura & Ko (2004). They showed by linear analysis that CR pressure increases the

growth rate when CR diffusion is taken into account. But they did not study models with

weak magnetic field.

Numerical studies of magnetic buoyancy instability including CR effects were carried out

by Hanasz & Lesch (2000, 2003). They simulated three-dimensional growth of the Parker

instability induced by CRs injected by supernova. Kuwabara, Nakamura & Ko (2004)

carried out two-dimensional simulations, assuming equatorial symmetry. They showed

that the dependence of numerical results on the CR diffusion agree with the results of

linear analysis. Rodrigues et al. (2016) studied the dependence on the pressure ratio and

magnetic Prandtl number by three-dimensional simulations assuming the same symmetry

as Kuwabara, Nakamura & Ko (2004). Their simulations assumed that magnetic pressure

dominates the CR pressure (α > β).

In this chapter, we present the results of linear and non-linear analysis of the CR MHD

when the magnetic field is weak (α ≤ 1 and α ≤ β). We present the equilibrium model

and assumptions in Section 3.2. The linear analysis of the magnetic buoyancy instability

including CRs are shown in Section 3.3. In section 3.4, we present results of numerical

simulations obtained by applying the new scheme described in Chapter 2.
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3.2 Models and initial conditions

3.2.1 Gravitational field, cosmic ray diffusion, and normalizations

We adopt the local cylindrical coordinate (x, y, z) = (φ,−r, z), and assume that radial

gravity balances with the centrifugal force.

Vertical gravitational field is modeled by the anti-symmetric function of z,

gz(z) = g tanh
(

z

0.5[kpc]

)
, (3.3)

where the maximum gravity is g = 5.0 × 10−9 cm s−2. For simplicity, the effects of

disk rotation and self-gravity from the gas are neglected. The gravitational field given by

equation (3.3) is similar to the realistic gravitational field around the solar neighborhood

at galactic radius r ∼ 8kpc and |z| < 5 kpc. The magnetic buoyancy instability depends

on the magnitude of gravitational field |gz| and sign of the gradient dgz/dz (see, Giz &

Shu 1993; Kim & Hong 1998).

Galactic CRs are taken into account by CR pressure Pcr(x, t). CR specific heat ratio

is assumed to be approximately constant, γcr = 4/3, and CR diffusion coefficient along

the magnetic field is assumed to be constant, κ‖ = 6.172 × 1028 cm2 s−1. Strong &

Moskalenko (1998) showed that this value can explain the CRs energy spectrum at solar

neighborhood. On the other hand, CR perpendicular diffusion can be ignored (e.g. Ryu

et al. 2003), because the typical time scale of Parker instability, H0/vA ∼ 30 [Myr] (Parker

1979, P355) is an order of magnitude smaller than the timescale of perpendicular diffusion

evaluated as,

τ⊥ = 176.8 Myr
[

κ⊥
6.172 × 1026[cm2s−1]

]−1 [ L

100 [pc]

]2
, (3.4)

Here we adopted κ⊥ = 0.01κ‖ and typical length L = 100 pc.

We normalized the physical quantities as summarized in Table 3.1
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Table. 3.1 Normalization unit. kB is the Boltzmann constant, and m is the mass of Hydrogen.

Quantity Unit Normalization value
Length H0 3.086 ×1020 cm
Velocity v0 1.000 × 106 cm s−1

Time H0/v0 3.086 ×1014 s
Density ρ0 1.600 ×10−24 g cm−3

Pressure ρ0v2
0 1.600 ×10−12 dyn cm−2

Magnatic Field
√

ρ0v2
0 1.265 µG

Temperature v2
0/(γgkB/m) 1.211 ×104 K

Diffusion Coefficient H0v0 3.086 ×1026 cm2 s−1

3.2.2 Equilibrium state

The equilibrium state is assumed to be in magnetohydrostatic equilibrium in z-direction,

d

dz

(
Pg0 + Pcr0 +

B2
0

2

)
= −ρ0gz(z) . (3.5)

Here, the initial magnetic field is assumed to be parallel to the equatorial plane, B =

(B0, 0, 0), and the subscript 0 denotes the unperturbed state. We assume that the initial

pressure ratio α and β are spatially constant.

We adopted the two layer model (Shibata et al. 1989) for the initial temperature,

Tz(z) = T0 + (Thalo − T0)
1
2

[
tanh

(
|z|− zhalo

wtr

)]
, (3.6)

where the disk temperature is T0 = 1 , Thalo = 25T0 is the Coronal temperature, zhalo = 10

is the height of the disk-halo interface, wtr = 0.5 is the width of the transition layer.

3.3 Linear Analysis

We linearize the CR MHD equations (2.1), (2.2), (2.3) and (2.7) by assuming that per-

turbed quantities are proportioned to exp (ikxx + ikyy + σt). Here, kx and ky are the

wave numbers in the x- and y-directions, and σ is the growth rate, respectively. The



Chapter 3 Magneto Cosmic Ray Instability 52

linearized perturbation equations for adiabatic plasma are given by,

σδρ = −ρ0

(
ik · δv +

d

dz
δvz

)
− δvz

dρ0

dz
, (3.7)

σρ0δvx = −ikxδPT + ikxB0δBx + δBz
dB0

dz
, (3.8)

σρ0δvy = −ikyδPT + ikxB0δBy, (3.9)

σρ0δvz = − d

dz
δPT + ikxB0δBz − δρgz (3.10)

σδBx = ikxB0δvx − B0

(
ik · δv +

d

dz
δvz

)
− δvz

dB0

dz
, (3.11)

σδBy = ikxB0δvy, (3.12)

σδBz = ikxB0δvz, (3.13)

σδPg = −Tzρ0

(
ik · δv +

d

dz
δvz

)
− δvz

dPg0

dz
, (3.14)

σδPcr = −γcrPcr0

(
ik · δv +

d

dz
δvz

)
− δvz

dPcr0

dz
+ κ‖

(
ikx

δBz

B0

dPcr0

dz
− k2

xδPcr

)
, (3.15)

where k = (kx, ky, 0) is the wave number vector, δPT = δPg + δPcr + B0δBx is the per-

turbed total pressure, Tz = γgP0/ρ0 is the normalized temperature, respectively. After

some algebra, linearized equations (3.7)-(3.15) are expressed as the simultaneous differen-
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Table. 3.2 Wave number when the growth rate is largest

Parameter Wave number kx Growth rate σ
α = 1.0, β = 0 0.260 0.16812
α = 0.1, β = 0 0.198 0.03307
α = 1.0, β = 1 0.333 0.26300
α = 0.1, β = 1 0.984 0.54175

tial equation,

d

dz



 y1

y2



 =



 A11 A12

A21 A22







 y1

y2



 , (3.16)

where

y1 ≡ ρ0δvz, y2 ≡ σδPT, (3.17)

A11 = − γg

1 + α + β

gz

Tz
− dlnTz

dz
+

σ2

ΞΣ2

gz

Tz
, (3.18)

A12 = −
k2

x + k2
y

Σ2
− 1

ΞTz

(
σ2

Σ2

)2

, (3.19)

A21 = −Σ2 + gz

(
gz

ΞTz
− γg

1 + α + β

gz

Tz
− dlnTz

dz

)
, (3.20)

A22 = − gz

ΞTz

σ2

Σ2
, (3.21)

Σ2 = σ2 + 2
α

γg
Tzkx

2, K‖ = κ‖
kx

2

σ
, Ξ = 1 +

γcr

γg

β

1 + K‖
+ 2

α

γg

σ2

Σ2
. (3.22)

For a given parameter α and β and the boundary condition, we obtain the solutions of

equation (3.16) by seeking the eigenmodes which satisfy the boundary conditions at z = 0

and z = zmax.

3.3.1 Dispersion relation

The growth rates of the fundamental mode in which ρvz is symmetric to the equatorial

plane (z = 0) are shown in Fig. 3.1. We founded that when the magnetic field is weak, the
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Fig.3.1 Linear growth rate (σ) of the magnetic buoyancy instability for the diffusion
coefficient κ‖ = 200. Dashed curves show the model for no CR pressure (β = 0), and
solid curves show models including CR pressure (β = 1)
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Fig.3.2 Eigenfunctions of fundamental mode of the instability. Left panel shows
those without CRs. Right panel shows the case with CR pressure. Solid and dashed
curves denote the profiles of ρ0δvz and ρ0δvx, respectively.
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Fig.3.3 (a) Dependence of the growth rate on α and β in fundamental mode of the
undulate mode of the magnetic buoyancy instability. Color shows the growth rate.
(b) Dependence of the wavenumber on α and β.

maximum growth rate and the critical wave number for the instability strongly depend

on the ratio of CR pressure to gas pressure (i.e., β). The growth rate when α = 0.1 and

β = 1 (red solid curve) is larger than the model with α = β = 1. This result is in contrast

to the model without CRs (dashed curves) in which the maximum growth rate decreases

for weak magnetic field (Horiuchi et al. 1988).

3.3.2 Eigen functions and equatorial plane symmetry

Fig. 3.2 shows the eigenfunctions for the fundamental mode of δvx and δvz for the same

parameters as those in Fig 3.1. The parity around z = 0 is assumed to be odd for δvx

and even for δvz. When the CR pressure is neglected (left panel of Fig 3.2), the height

where δvx has maximum amplitude approaches to z = 0 as magnetic field becomes weak.

When the CR pressure is taken into account the height where δvz has the largest amplitude

increases as the magnetic pressure decreases. Table 3.2 summarizes the wavenumber when

the growth rate is largest.

Left panel of Fig. 3.3 shows the dependence of the growth rate on the pressure ratio α

and β. The maximum growth rate increases as α decreases when β > 0.2. This result is
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Fig.3.4 The same as Fig. 3.2, but for the 1st harmonic mode.

Table. 3.3 The same as Table 3.2, but for the 1st harmonic mode

Parameter Wave number kx Growth rate σ
α = 1.0, β = 0 0.285 0.13744
α = 1.0, β = 1 0.344 0.25090
α = 0.1, β = 1 0.984 0.54174

in contrast to the model without CRs in which the growth rate increases as α increases.

Fig. 3.4 shows the eigenfunction for the 1st harmonic mode in which vz is antisymmetric

to z = 0. When β = 0, no unstable mode appears in the weak magnetic field models

(α = 0.1). The eigenfunction for the 1st harmonic mode when β = 1 and α = 0.1 (red

curve in the right panel of Fig. 3.4) does not show significant difference from that in

the right panel of Fig. 3.2. This degeneracy originates from the small amplitude of the

eigenfunction around the equatorial plane. Since the eigenfunctions below and above the

equatorial plane do not interfere in weakly magnetized models, the difference between the

glide-reflection symmetric mode and the symmetric mode almost disappear. Table 3.3

summarizes the wavenumber for the 1st harmonic mode when the growth rate is largest.

Let us compare the pure Parker instability model (α,β) = (1.0, 0) and CR Parker model

when (α, β) = (0.1, 1), Fig. 3.5 shows the configuration of perturbed quantities. From

the velocity field of Fig. 3.2 and Fig. 3.4, the most unstable mode has glide-reflection

symmetry (right panels of Fig. 3.5), and the 1st harmonic mode has mirror symmetry.
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Mirror symmetry
(even mode)

Glide-reflection symmetry
(odd mode)

Fig.3.5 Configuration of linear eigenfunctions. Top panels show eigenfunction for
Parker instability. Bottom panels are the magnetic buoyancy instability in weakly
magnetized disks with CRs. Color shows the density distribution, arrows and black
curves are the velocity vectors and magnetic field lines, and red and blue curves show
contour of gas and CR pressure, respectively. The amplitude of the perturbation is
δρ/ρ0 = δPg/Pg,0 = δPcr/Pcr,0 = 0.8 and δBx/Bx,0 = δBz/Bx,0 = 0.2.
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Fig.3.6 Dependence of linear growth rate on CR diffusion coefficient (κ‖) in weakly
magnetic disks, α = Pg/

`
0.5× B2

x

´
= 0.1. Growth rate for κ‖ = 0.2, 2, 20, 200, 2000

are shown.

3.3.3 CR Diffusion

Let us show the dependence of the growth rate on the CR diffusion coefficient. Fig. 3.6

shows the dispersion relation for a weakly magnetized (α = 0.1) disk for various κ‖. As

κ‖ increases, the maximum growth rate enhanced by the CR diffusion approaches to a

constant value σ ∼ 0.54. The maximum wave number for the presence of unstable mode

kx,max ∼ 1.97 is independent of the CR diffusion so long as κ "= 0

Fig. 3.7 shows the dependence of the maximum growth rate on κ‖ for models with

β = 1. When α ! 0.5, the unstable mode exists when κ‖ → 0. When the magnetic field

is weak, the maximum growth rate becomes smaller when κ‖ is small. It should be noted

that in weakly magnetized disks without CR diffusion, Parker instability is stabilized. As

we discussed in section 3.1, the critical wavelength for the instability differs for models

with κ "= 0 from κ‖ = 0.

Figure 1.6 shows that the CR diffusion coefficient κ‖ does not change the critical wave-

length for the instability but significantly affects the growth rate. We note that when

α = 0.1 and κ‖ > 20, the growth time of the instability is 1/σmax $ 2 − 5 which corre-

sponds to 2 − 5 × 107 yr, which means that the MHD CR instability grows in time scale
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Fig.3.7 Dependence of the maximum growth rate on κ‖. The symbols plus, cross,
and circle show the growth rate when α = 1.0, 0.5, and 0.1, respectively. Red symbols
show the maximum growth rate when CR diffusion is neglected.

shorter than the rotation time of the disk. When κ‖ < 2, the CR diffusion time scale

becomes longer than the time scale of the Parker instability, so that the growth rate of

the instability is reduced.

3.4 Numerical simulations

3.4.1 Numerical set up

We carried out numerical simulations of the magnetic buoyancy instability by solving

the CR MHD equation in the two dimensional Cartesian coordinate (x, z) where x is

azimuthal direction and z is vertical direction . We set the equatorial plane at z = 0, and

include the region above and below the equatorial plane in the computational domain.

Table 3.4 summarizes the models. We set the boundary conditions in which the left and

right boundaries for x-direction are periodic. We imposed wave dumping boundaries in

which the physical quantity approach the initial values around the top and bottom in

z-direction.

The CR MHD equations are solved by applying the Roe method described in Chapter

2 (Kudoh & Hanawa 2016b). Diffusion terms are discretized by the implicit difference
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Table. 3.4 Model parameters.

Model α β Domain (Lx, Lz) Grid points (Nx, Nz)
P1 1.0 0 (42, 100) (420, 1000)
P0 0.1 0 (64, 100) (360, 1000)
C1 1.0 1 (36, 100) (1440, 4000)
C0 0.1 1 (16, 100) (640, 4000)

procedure (see, Yokoyama & Shibata 2001), and solved by the BiConjugate Gradients

stabilized (BiCGstab) method. The fifth order accuracy in space is achieved by the

Monotonicity Preserving interpolation (MP5, see Suresh & Huynh 1997). The third order

accuracy in time is achieved by the time integration of the three stage strong stability

preserving (SSP) Runge-Kutta scheme (e.g. Suresh & Huynh 1997; Gottlieb & Shu 1998).

The CFL number for time integration is fixed to be 0.2.

We made some alternations to the methods described in Chapter 2. First, we adopt

the hyperbolic divergence cleaning method (Dedner et al. 2002) in which numerical error

induced by ∇ · B "= 0 is dumped. Numerical solutions are controlled by the floor value

when the CR pressure or gas pressure become negative. We set the lowest CR pressure

to be 10−6. Lower limit for gas pressure is 5 × 10−3|B|2.

In all models, we imposed small velocity perturbation given by the sinusoidal function

with even parity in z-direction as,

δvx = 0.01 sin
(

2πx

λ

)
×
[
tanh

(
z − zu

0.5

)
− tanh

(
z − zd

0.5

)

− tanh
(

z + zu

0.5

)
+ tanh

(
z + zd

0.5

)]
(3.23)

where zu = 3 and zd = 1 are the parameter to restrict the perturbation in region 1 <

|z| < 3, and λ is the perturbation wavelength. We set the horizontal domain size Lx to

be twice of the wavelength λ.

3.4.2 Dependence on the magnetic field strength

Fig. 3.8 compares the horizontal velocity vx obtained from numerical simulation (solid

curves) and linear analysis (dashed curves). The growth rate of the instability in the

nonlinear solution is consistent with results of the linear analysis. Each model conform
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Fig.3.8 The time evolution of vx in linear regime. Left panel shows the Parker
instability without CR pressure β = 0, right panel shows the magnetic buoyancy
instability when β = 1. Dashed lines denote the linear growth rate. Solid curves
show the simulation results at the position of z = 4 for the left panel, and of z = 8
for the right one.

nearly to the results of the fundamental mode in linear analysis. When CR pressure is

neglected, the growth rate decreases as α decreases. When CR pressure is comparable to

the gas pressure (β = 1), growth rate for models with smaller magnetic field (α = 0.1) is

larger than that for moderate magnetic fields (α = 1).

The density distributions in the nonlinear regime are shown in Fig. 3.9. In models

C1 and C0, dynamical effects of CR pressure enhance the buoyancy of magnetic loop

and uplift the gas frozen to the magnetic field. On the other hand, when CR pressure is

negligible (models P1 and P0), the loop top is evacuated. Thus, the density decreases in

side the loop. For models C0 and C1, the density only slightly decreases around the loop

top.

The vertical distribution of the density and the vertical mass flux are shown in Fig.

3.10. For model P1, low density region is formed around the loop top in the non-linear

stage. In model C0, the mass flux is an order of magnitude larger than that for P1.

In the presence of CRs, the buoyancy instability uplifts the disk gas to the disk corona

in the nonlinear stage. Black curves in the mass flux in model C0 has peak around |z| < 4

and the mass flux becomes small around the equatorial plane.

To determinate the converging and diverging motion, we decompose the velocity field
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Model P1 (α=1.0, β=0) Model C1 (α=1.0, β=1)

Model P0 (α=0.1, β=0) Model C0 (α=0.1, β=1)

Fig.3.9 Spatial distributions of the density. Left panels show the results for models
P0 and P1 without CRs. Top panels show models P1 and C1 with moderate magnetic
pressure (α = 1), and the bottom panels show P0 and C0 with α = 0.1.

into components perpendicular and parallel to the magnetic field,

v = v‖ + v⊥, (3.24)

v‖ =
v · B
|B|2 B. (3.25)

We adopted this analysis according to Isobe et al. (2006) and Takahashi et al. (2009). In

Fig. 3.11, red and blue show positive and negative value of ∇ · v, ∇ · v‖, and ∇ · v⊥. Left

panels are for model P1 at t = 37, and right panels are for models C0 at t = 20. Without

CR pressure, the velocity field is dominated by parallel component v‖. The compression

region (blue color) appears around the foot points of the loop. Expanding region where
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Fig.3.10 Distribution of the density and the vertical mass flux ρvz at x = λ/2. Left
panel shows those for model P1 without CRs at t = 22, 27, 32, and 37. Right panel
shows results for the model C0 at t = 15.0, 17.5, 20.0, and 22.5. Dashed lines in the
density show the initial distribution.

∇ · v‖ > 0 appears around the loop top. For model C0, perpendicular component v⊥

dominates except for the compression region. The result of panel (f) agrees with the

vertical mass flux shown in the right panel of Fig. 3.10.

Fig. 3.12 shows the distribution of α and β for model C0. Strongly magnetized CR

pressure dominant regions are formed around the loop top. Nonlinear expansion of these

regions form dense outflows from the disk. Shock waves are formed inside the magnetic

loops where the supersonically expanding region collide.

3.4.3 Dependence of the mass outflow rate on the CR diffusion

We carried out local two dimensional CR magnetohydrodynamic simulations including

CR diffusion to study how much mass is ejected from the disk by this instability. Fig.

3.13 shows the density distribution for models with κ‖ = 0.2(blue), 2(red), and200(black).

It should be noted that the density distribution is almost independent of κ‖ except that

the time scale for the formation of the outflow strongly depends on κ‖.

Fig. 3.14 shows the distribution of the vertical velocity vz. The vertical velocity strongly

depends on κ‖. When the diffusion coefficient is small (κ‖ ≤ 2), the vertical speed dose

not exceed the sound speed of the disk gas and decreases in the non-linear stage. When
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Model P1 (α=1.0, β=0) Model C0 (α=0.1, β=1)

Fig.3.11 Divergence of velocities for the model P1(left panels) and model C0 (right
panels). Color shows the divergence of velocity and arrows show the velocity field.
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Fig.3.12 Distribution of the pressure ratio in the model C0. White contours show
the isocontours of the gas pressure.

CR diffusion is large (κ‖ = 200), the vertical velocity exceeds the sound speed. This

supersonic outflow transports the disk gas from the disk to the corona. When κ‖ is large,

the disk gas is expeled from the disk in time scale of 20H/a ∼ 2 × 107 yr. Since this

time scale is shorter than the rotation time of the disk, the CR diffusion driven outflow

can affect the magnetic field amplification by magneto-rotational instability (MRI) which

grows in time scale of rotation of the disk.
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Fig.3.13 Density distribution in the nonlinear stage of the instability when the ex-
panding flow is formed. Solid curves show the vertical distribution of density for
models with κ‖ 0.2 (blue), 2 (red), and 200 (black).

Fig.3.14 Dependence of the vertical velocity distribution on CR diffusion in weakly
magnetized disk. Blue, red, and black show results when κ‖ = 0.2, 2, and 200,
respectively.
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Chapter 4

Summary and Discussion

4.1 New scheme of CR MHD solver

We have succeeded in rewriting the CR MHD equations in the fully conservation form

as shown in Chapter 2. We discuss the advantages of the fully conservation form in this

section.

First the Rankine-Hugoniot relation is automatically fulfilled when the CR MHD equa-

tions are integrated in the fully conservation form. Thus, the jumps in the density and

pressure at MHD shocks are evaluated correctly in the solutions. When we integrate the

CR MHD equations in the original form, the numerical solution may violate the Rankine-

Hugoniot relation as shown in Section 2.3.3 of Chapter 2.

One might think that any shock tube problems could be solved without using the fully

conservation form. Dubois & Commerçon (2016) have succeeded in solving a CR shock

tube problem posed by Pfrommer et al. (2006) by evaluating Pdv as the source term.

However, the success is in part due to the fact that CR pressure is smaller than the

gas pressure in the post-shocked gas. Table 4.2 summarizes the pressure and density

distributions in the test problem. The number in the first column specifies the intervals

where the density and pressure are constant in the Riemann solution (see Fig. 2.2). The

values in regions 2 and 3 are given by the Riemann solution. The CR pressure is dominant

in regions 3 and 5 while it is not in region 2, i.e., in the post-shocked gas. Therefore the

source term has a minor contribution at the shock front. See Appendix B for more details

on these test problems.
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Table. 4.1 The shock tube problem of Dubois & Commerçon (2016). The adiabatic
indexes are taken to be γg = γcr = 1.4 in this test problem.

Region ρ Pg Pcr

1 0.100 0.066 0.034
2 0.204 0.192 0.093
3 0.408 0.097 0.187
5 1.000 0.340 0.660

Table. 4.2 The shock tube problem of Pfrommer et al. (2006).

Region ρ Pg (×104) Pcr (×104)
1 0.200 0.024 0.024
2 0.796 5.141 0.147
3 0.400 1.455 3.832
5 1.000 6.700 13.000

Pfrommer et al. (2006) also succeeded in solving a shock tube problem with their

smoothed particle hydrodynamics (SPH) code, although their solution shows small os-

cillations around shock front and contact discontinuity. Table 4.2 shows the solution of

the shock tube problem in Fig. 1 of Pfrommer et al. (2006). Note that the CR pressure

is much smaller than the gas pressure in the post-shocked gas (region 2).

The violation of the Rankine-Hugoniot relation is serious when the CR pressure dom-

inates in the post-shocked gas. A clear example is shown in Section 2.3.3 of Chapter

2.

Another advantage of the fully conservation form is that we can easily implement higher

order scheme. Various standard higher order schemes are available, when differential

equations are written in the fully conservation form (see e.g. Toro (2009) for the methods

to achieve higher order accuracy). Remember that the source terms and numerical fluxes

have been evaluated separately. Thus the source term can be another source of numerical

oscillation when it is evaluated to be of higher order accuracy in space.

The fully conservation form may be useful when we take account of injection of CRs.

CRs can be generated from supernova explosions and diffusive shock acceleration. The

generation can be taken into account in the CR MHD equations, if it is modeled success-

fully (see e.g. Zank, Webb & Donohue (1993); Jubelgas et al. (2008); Vazza et al. (2012)).

Thus far, only the energy injection rate of cosmic ray number density is taken into account
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in the literature. However, we can take account of both the energy injection rate, SE ,

and the injection rate in number, Sρ, in the fully conservation form. In the following we

assume that Ecr and ρcr are related by

Ecr =
Kργcr

cr

γcr − 1
, (4.1)

where K denotes the CR entropy and has been assumed to be K = 1 thus far. If the

injection is taken into account, the change in K should be described as

1
K

dK

dt
=

SE

Ecr
− γcr

Sρ

ρcr
(4.2)

=
Sρ

Ecr

(
SE

Sρ
− γcr

Ecr

ρcr

)
, (4.3)

where dK/dt denotes the Lagrangian derivative. Equation (4.3) follows the change in the

average energy of CRs, Ecr/ρcr. The average CR energy gives us important information

to estimate the diffusion coefficient.

This paper has proved the usefulness of CR number conservation, equation (2.11). It

is derived from and equivalent to the CR energy equation, equation (2.7). However, the

former is written in the fully conserved form, while the latter is not. The former is more

suitable for numerical analysis than the latter, since the approximate Riemann solutions

are given explicitly and hence shock waves are reproduced without numerical oscillations.

The derived approximate Riemann solutions are only slightly different from those for

the ideal MHD equations: the sound speed is modified by inclusion of the CR pressure

and a new mode, the pressure balance mode, is added. Thus we can construct higher

order scheme by applying the methods developed for the ideal MHD equations. We have

also suggested to extend the CR MHD equations by introducing the CR entropy. This

extension enables us to evaluate the average CR energy. It should be useful to estimate

the diffusion and emission from CRs.
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4.2 Magneto CR instability

We have studied the magnetic buoyancy instability taking into account CRs by the linear

analysis and numerical simulations in Chapter 3.

Fig.4.1 Illustration of Magneto Cosmic-ray Instability (MCI) and Parker instability.

We showed the dependence of the growth rate and eigenfunctions on the magnetic field

strength α by solving the eigenvalue problem of the linearized equations. We showed that

the most unstable mode has the glide-reflection symmetry with respect to the equatorial

plane. In weakly magnetized disks (α < 1), when the cosmic ray pressure is comparable

to the gas pressure, the eigen function of the linearized equations approach to zero around

z = 0, and the height where the amplitude of the eigenfunction becomes maximum shift

to higher z region where gz(z)/T (z) is largest. We found that the growth rate of the mag-

netic buoyancy instability with CR diffusion (β > 0) increases as the magnetic pressure

decreases. This is in contrast to the Parker instability when β = 0, in which the growth

rate decreases as α decreases. The critical wavenumber for the instability increases as

α decreases, and becomes larger than that without CRs. We also showed that the dif-

ference of the growth rate and the eigenfunction between the fundamental mode (with
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glide-reflection symmetry) and the 1st harmonic mode (with equatorial mirror symmetry)

becomes smaller.

CR diffusion along the magnetic field lines enhances the growth of the undular mode of

the magnetic buoyancy instability even when the magnetic field is weak. This instability

is driven by the buoyancy force by CRs as shown in Fig. 4.1. We call this instability as

Magneto Cosmic-ray Instability (MCI). The mechanism of MCI is similar to the magneto-

thermal instability (MTI) driven by thermal conduction along the magnetic field lines

(Parrish & Stone, 2005). In MCI, cosmic ray diffusion along the magnetic field lines

drives the buoyant rise of the magnetic loop.

The critical wavelength for MCI can be derived as follows; We assume an isothermal

disk in the uniform gravity in which alpha and beta are constant in unperturbed state.

When the undular perturbation Δ z is imposed, the total pressure inside the undulating

magnetic field should be in the pressure equilibrium with the surrounding medium,

Pg,in(z + ∆z) + PB,in(z + ∆z) + Pcr,in(z + ∆z) = (1 + α + β)Pg(z) exp
(
−∆z

H

)
.(4.4)

where subscript (-in) denotes the quantity inside the magnetic loop. Let us assume that

CR pressure diffuses along the magnetic field lines instantly,

Pcr,in(z + ∆z) ∼ Pcr(z) = βPg(z). (4.5)

By denoting the scale height of the magnetic pressure inside the magnetic loop as HB ,

the magnetic pressure inside is,

PB,in(z + ∆z) ∼ PB(z) exp
(
−∆z

HB

)
= αPg(z) exp

(
− ∆z

HB

)
. (4.6)

We assume that the gas pressure changes adiabatically,

Pg,in(z + ∆z) = Pg(z)
(

ρin(z + ∆z)
ρ(z)

)γg

. (4.7)
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We introduce the density perturbation δ(< 0) defined by,

1 + δ =
ρin(z + ∆z)

ρ(z)
. (4.8)

Hence, the pressure balance equation (4.4) can be written as

(1 + δ)γg + α exp
(
−∆z

HB

)
+ β = (1 + α + β) exp

(
−∆z

H

)
. (4.9)

Using the Taylor series for |δ| " 1, ∆z/HB " 1, and ∆z/H " 1, we obtain

δ =
∆z

γg

(
α

HB
− 1 + α + β

H

)
(4.10)

The buoyancy force Fbuoyancy can be evaluated as,

Fbuoyancy = (ρin(z + ∆z) − ρ(z + ∆z))g (4.11)

∼ −
(

δ +
∆z

H

)
ρ(z)g (4.12)

=
∆z

γg
ρ(z)g

[
1 + α + β − γg

H
− α

HB

]
. (4.13)

By estimating the the magnetic tension force using equation (1.15), the critical wavenum-

ber for the instability is,

H2k2
x <

π2

8

[
(1 + α + β)(1 + α + β − γg)

2αγg
− (1 + α + β)

2γg

H

HB

]
(4.14)

This equation coincides with equatoin (3.2) if we replace π2/8 with 1, and the last term

in the right hand as 1/4.

On the other hand when CR diffusion is neglected (κ‖ = 0), we can evaluate the CR

pressure inside the magnetic loop as,

Pcr,in(z + ∆z) = Pcr(z)
(

ρin(z + ∆z)
ρ(z)

)γcr

. (4.15)

By using the pressure balance equation (2.4), the density fluctuation δ can be estimated
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as,

δ =
∆z

γg + βγcr

(
α

HB
− 1 + α + β

H

)
. (4.16)

The critical wave number can be evaluated as

H2k2
x <

π2

8

[
(1 + α + β)(1 + α + β − γg − βγcr)

2α(γg + βγcr)
− 1 + α + β

2(γg + βγcr)
H

HB

]
(4.17)

We presented the results of two-dimensional CR+MHD simulations of the magnetic

buoyancy instability in magnetized galactic gas disks. We showed that the MCI enables

the buoyant rise of the magnetic loops from weakly magnetized disk with CRs. The growth

rate of MCI is larger than that of the Parker instability in weakly magnetized disks, and

the most unstable wavelength of MCI is smaller than the Parker instability. Since the

disk gas is frozen to the magnetic field, the disk gas is uplifted as the magnetic loops rise.

Let us discuss the influence of MCI on galactic dynamo. Magnetic fields in disk galaxies

can be amplified and maintained by MRI driven dynamo. When CRs are negligible, the

buoyant escape of the magnetic flux by Parker instability limits the strength of disk

magnetic fields and drives cyclic dynamo whose period is about 10 rotation period of the

disk (e.g., Nishikori, Machida & Matsumoto 2006; Machida et al. 2013). We can compere

time scale with τdynamo in which magnetic field is amplified by MRI,

τdynamo = 10 × 2.7 × 107

[
r

1kpc

] [
vrot

220km/s

]−1

yr, (4.18)

where r is the radius and vrot is the rotation speed, respectively. Our results of linear

analysis show τParker ∼ 5.8×107 yr in the pure Parker instability. Obviously, time scale for

Parker instability is shorter than that for MRI in strong magnetic field α = 1. However,

when the magnetic field is weak (e.g. α < 0.1) in early stage of galactic evolution, since

the growth rate decreases, the magnitude of these two time scales is reversed. When the

magnetic field is weak and the CR diffusion is taken into account, the growth time of

MCI is τMCI ∼ 1.9× 107yr for κ‖ = 200 and τMCI ∼ 8.4× 107 yr for κ‖ = 0.2. The CR

diffusion time scale is small enough to drive the buoyant rise of magnetic flux in time scale
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shorter than the growth time of magnetic field by MRI. Therefore, the CR diffusion and

MCI should affect the MRI driven dynamo in galactic gas disks. Linear analysis of MRI

with CRs have been carried out by Khajenabi (2012) and Kuwabara & Ko (2015). They

showed that the effects of CRs on MRI is not large. However, since MCI enhances the

escape of magnetic flux from the disk, it will affect the saturation level of the MRI driven

dynamo. For example, when the magnetic field is weak, the nonlinear growth of the Parker

instability without CRs leads to oscillation rather than the continuous escape of magnetic

flux from the disk (Matsumoto et al. 1990). However, MCI will drive buoyant escape of

magnetic flux even in weakly magnetized disks. It will be our future work to study the

nonlinear growth of the MRI-MCI driven dynamo in galactic gas disks. We found that in

weakly magnetize disks, cosmic ray diffusion drives outflows when the diffusion coefficient

κ‖ is large. The mass outflow rate can be 5.1× 103 M"/Myr at z = 1.5 kpc estimated by

the right panel of Fig. 3.10. It is also our future work to study the effect of this outflow

on the evolution of galaxy and galactic halo.



75

Appendix A

Analytic Solution of Riemann Problem

in CRHD System

We describe the algorithm to obtain analytic Riemann solutions of the 1D CR HD shock-

tube problem. The solutions have four patterns depending on the initial state (see, e.g.,

Toro 2009). Here, we restrict ourselves to case (a) of Toro (2009) in which a shock wave

propagates rightward and rarefaction wave does leftward as illustrated Figure 2.1.

All the variables depend on x/t in a Riemann solution. According to Toro (2009) we

consider five regions numbered from right to left. The state vector U is expressed as

U =






U1 = UR x/t < SHR

U2 SHR ≤ x/t < STR

U3 STR ≤ x/t < S∗

U4 S∗ ≤ x/t < SR

U5 = UL x/t ≥ SR,

(A.1)

where SHR and STR denote the speeds for the head and tail of rarefaction wave, respec-

tively. The symbols, S∗ and SR, denote the velocity at the contact discontinuity and the

wave speed of the shock traveling rightward, respectively.

First we consider the Rankine-Hugniot relation for the shock wave at x/t = SR. They
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are expressed as

ρ2v̂x2 = ρ1v̂x1 ≡ Q̂, (A.2)

ρ2v̂
2
x2 + PT2 = ρ1v̂

2
x1 + PT1, (A.3)

ρ2H2v̂x2 = ρ1H1v̂x1, (A.4)

ρ2χ2v̂x2 = ρ1χ1v̂x1, (A.5)

in the comoving frame, where the symbols with hat denote the values in the comoving

frame. They are expressed as

v̂x2 = vx2 − SR, (A.6)

v̂x1 = −SR, (A.7)

since vx1 = 0.

We obtain

Q̂ = −ρ1ρ2
v̂1 − v̂2

ρ1 − ρ2
, (A.8)

Q̂2 = −ρ1ρ2
PT1 − PT2

ρ1 − ρ2
, (A.9)

from equations (A.2) and (A.3). We obtain

v̂2
x2 =

ρ1

ρ2

PT1 − PT2

ρ1 − ρ2
, (A.10)

v̂2
x1 =

ρ2

ρ1

PT1 − PT2

ρ1 − ρ2
, (A.11)

vx2 = vx1 −

√

(PT1 − PT2)
(

1
ρ2

− 1
ρ1

)
, (A.12)

by eliminating Q̂ from equations (A.8) and (A.9). We obtain

Pcr2 = Pcr1

(
ρ2

ρ1

)γcr

, (A.13)
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from equation (A.5). We also obtain

v̂2
x1

2
+

Pg1

ρ1 (γg − 1)
+

Pcr1

ρ1 (γcr−1)
=

v̂2
x2

2
+

Pg2

ρ2 (γg − 1)
+

Pcr2

ρ1 (γcr−1)
, (A.14)

from equation (A.4). By solving equation (A.14) for Pg2 we obtain

Pg2 =
r + 1 + γg(r − 1)
r + 1 − γg(r − 1)

Pg1

−
[
r + 1 − γcr(r − 1)
r + 1 − γcr(r − 1)

rγcr−1 − r + 1 + γcr(r − 1)
r + 1 − γg(r − 1)

]
γg − 1
γcr − 1

Pcr1,

(A.15)

r =
ρ1

ρ2
. (A.16)

Equation (A.15) shows that the gas pressure in region 2, Pg2, can be expressed as a

function of ρ2 since ρ1, Pg1, and Pcr1 are given. Similarly the CR pressure in region 2,

Pcr2, is expressed as a function of ρ2 in equation (A.13). Then equation (A.12) evaluate

vx2 as a function of ρ2.

Since the velocity and the total pressure are constant across the contact discontinuity,

we obtain

vx2 = vx3 = S∗, (A.17)

PT2 = PT3. (A.18)

In the following we show that vx3 and PT3 can be expressed as a function of ρ3, ρ5 = ρL,

Pg5 = PgL, and Pcr5 = PcrL. Regions 3 through 5 are connected by the Riemann invariants

for the rarefaction. The gas and CR pressure distributions are expressed

Pg3 = Pg5

(
ρ3

ρ1

)γg

, (A.19)

Pcr3 = Pcr5

(
ρ3

ρ1

)γcr

, (A.20)
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since the entropy and CR concentration are constant. Equation (2.39) provides us

vx3 = vx5 −
∫ ρ3

ρ1

a

ρ
dρ = STR, (A.21)

a2 ≡ γgPg5

ρ5

[(
ρ

ρ5

)γg−1

+
γcrPcr5

γgPg5

(
ρ

ρ5

)γcr−1
]

. (A.22)

The integral in equation (A.21) has an analytic expression when γcr = 4/3. It is trans-

formed into

I(ρ) ≡
∫ ρ3

ρ5

a

ρ
dρ

=

√

15
Pg5

ρ5

∫ 1
3 ln(

ρ3
ρ5

)

0

√

e2t +
4Pcr5

5Pg5
et dt, (A.23)

by the variable transformation t = ln (ρ/ρ1)
1/3. The integral in equation (A.23) is evalu-

ated by the mathematical formula,

∫ x√
et(et + C) dt =

√
et(et + C) + Cln

[
(et/2 +

√
ex + C)

]
, (A.24)

where C denotes a constant.

By try and error, we search for ρ2 and ρ3 which satisfy equation (A.17) and (A.18)

simultaneously. Then the Riemann solution is obtained.
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Appendix B

CR HD shock tube problem

We reexamine the shock tube problems examined in earlier works.

Fig. B.1 shows the solutions of the shock tube problem of Dubois & Commerçon (2016)

of which initial state is summarized in Table 4.1. We have solved the problem on the

uniform cell width of ∆x = 1/128 with the time step, ∆t = 2.45×10−3. The blue and red

curves denote the solutions at t = 0.245 obtained with Pdv scheme and ours, respectively.

The exact solution is denoted by the black. The upper panels denote ρ, vx and s as a

function of x from left to right, while the lower panels do Pg, Pcr, and χ. Only the region

of −0.05 ≤ x ≤ 0.50 is shown. The Pdv scheme gives an apparently good approximation

for ρ, vx, s, Pg, and Pcr but not for χ. Our scheme provides a better approximation.

The spurious sound wave emission is not observed in this test problem since γg = γcr =

1.4. This is because the spurious increase in the pressure is proportional to γg − γcr as

shown in equation (2.82).

Fig. B.2 shows the solutions of the shock tube problem Pfrommer et al. (2006) of which

initial state is given in Table 4.2. Also this problem has been solved on the uniform cell

width of ∆x = 1/128 with the time step, ∆t = 8.0× 10−6. The solution at t = 4.4× 10−4

obtained with the Pdv scheme is denoted by the blue curves, while that obtained with

our scheme is by the red ones. The black curves denote the exact solution. Each panel

shows ρ, vx, s, log Pg, log Pcr, and log χ. In this example, both the schemes provide a good

approximation. This is mainly because the CR pressure is by a factor of 10 lower than the

gas pressure between the contact discontinuity and the shock front (0.1942 ≤ x ≤ 0.2612).
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sv x

P g P c
r

Fig.B.1 The CRHD shock tube problem of Dubois & Commerçon (2016). The grey
dotted lines denote the tail of rarefaction (x = 4.218 × 10−3), contact discontinuity
(x = 0.2380), and shock (x = 0.4660) at t = 0.245 from left to right. The CFL
number is taken to be 0.743.

sv x
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g 

P g
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g 

P c
r

Fig.B.2 The CRHD shock tube problem of Pfrommer et al. (2006). The grey dotted
lines denote the tail of rarefaction (x = 3.232 × 10−3), contact discontinuity (x =
0.1942), and the shock (x = 0.2612) at t = 4.4 × 10−4 from left to right. The CFL
number is taken to be 0.794.
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