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Abstract 

 

Chapter 1 

Hofmann-type Rearrangement of Imides by in-situ generaed Imide-combined 

Hypervalent Iodines 

Aromatic amino acids (e.q., anthranilic acid) and aliphatic  -amino acids were 

prepared from cyclic imides using hypervalent iodine generated in situ from iodoarene, 

TsOH, and m-CPBA. The Hofmann-type rearrangement was induced by nucleophilic 

attack of alcohol first followed by the Hofmann rearrangement. Here, imide-combined 

hypervalent iodine that was a key intermediate of the reaction, and played important 

role under basic conditions in alcohol. 

 

 
 

Chapter 2 

Preparation of Novel Imide-combined Hypervalent Iodines: (Heteroaryl)(aryl)- 

iodonium Imides 

(Heteroaryl)(aryl)iodonium imides were prepared from various heteroaromatics with 

(diacetoxyiodo)benzene (DIB) and bis(sulfonyl)imides. These novel hypervalent 

iodines were stable as white solid, and the unique structure was observed from two 

types of iodane (III), imide-combined 

-iodane and asymmetric diaryliodonium salt 

containing heterocycles. 
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Chapter 3 

Regioselective Bromo-amination of Indoles via (Indolyl)(aryl)iodonium Imides 

N-(3’-Bromo-1’-pivaloyl-1’H-indol-2’-yl)-4-methyl-N-tosylbenzenesulfonamides were 

obtained by bromo-amination of (indolyl)(phenyl)iodonium imides using brominating 

reagents. This reaction is C-H dual-functionalization on one-step with complete 

regioselectivity. 

 

 

 

Chapter 4 

Regioselective Iodo-amination of 2-Methylindoles via (Indolyl)(aryl)iodonium 

Imides 

 

N-((3-iodo-1-pivaloyl-1H-indol-2-yl)methyl)-N-(methanesulfonyl)methanesulfonamide

s were prepared by iodo-amination of 2-methylindole derivatives via  

(2-methylindolyl)(phenyl)iodonium imides using iodinating reagents. This reaction 

transformed both sp
2 

C-H and non-activated sp
3 

C-H bonds to C-I and C-N bonds, 

respectively. 

 

 

 

 

 



3 

 

 

 

Chapter 5 

Ligand Coupling Reaction of (Indolyl)(aryl)iodonium Imides to Form C-N Bond at 

3-Position in Indole Group; Effect of Substitutents of Hypervalent Iodine for 

Reaction Selectivity 

N-(1’-pivaloyl-1’H-indol-3’-yl)-4-methyl-N-tosylbenzenesulfonamides were generated 

by ligand coupling reaction of (indolyl)(aryl)iodonium imides using catalytic amount of 

cupper iodide (I) or under heat conditions. Substitutent on hypervalent iodines 

controlled the reaction with high regioselectivity. 
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General Introduction: 

C-N Bond Formation with I-N Bond-contained Hypervalent Iodines 

The first hypervalent iodine compound, (dichloroiodo)benzene, was discovered by 

Willgerodt in 1886
1
. Since then, various hypervalent iodines were synthesized and a lot 

of unique reactions using iodanes were reported
2
. For example, iodosylbenzene and 

(diacetoxyiodo)benzene (DIB) were prepared in 1892
3
, and 2-iodoxybenzoic acid was 

provided in 1893
4
. These compounds were used as low toxic and powerful oxidant 

instead of heavy metal reagents. Moreover, Dess and Martin developed a very useful 

pentavalent iodane in 1983
5
, which is called Dess-Martin periodinane and widely used 

as an oxidatnt for synthesis of medicinal and biologically active compounds. 

Hydroxy(tosyloxy)iodobenzene reported by Neiland and Karele in 1970 was named 

Koser’s reagent and known to oxidative C-O bond formation reagents
6
.  

All compounds exemplified above are I-O bond-combined polyvalent iodane. On the 

other hands, I-N bond contained hypervalent iodines are not so common. These species 

lack for stability and sensitive to air or moisture. Then, many scientists had studied to 

develop new hypervalent iodines possessing I-N bond and C-N bond formation 

reactions to utilize for synthesis of natural compounds. Since benziodazole (1) was 

released by Wolf and Steinberg in 1965
7
, many types of I-N bond-combined hypervalent 

iodines were prepared and used for oxdative C-N bond formations. Thus in this section, 

the author studied I-N bond-contained hypervalent iodines and their application to the 

C-N bond formation reactions. 

 

 

 

1-1 Azidoiodanes 

Azidoiodanes (2) are useful reagents for azidation reactions, and prepared from 

iodoxybenzene or DIB with trimethylsilyl azide or sodium azide. However, 

azidoiodanes are not stable and usually generated in situ. In 1970, Zbiral group reported 

the first study about azidoiodanes generated with DIB and TMSN3, and succeeded 

azidation of alkene (3) [Eq. 2]
8
. In 1980s, Moriarty group

9
, and Ochiai and Fujita 

group
10 

obtained azide (6) from alkene (5) using iodosylbenzene, NaN3, and acid [Eq. 3], 
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respectively. 

 

 

 

 

 

Kita group reported benzilic sp
3
 C-H azidation of electron rich aromatics (7) with 

PhI(N3)2 generated in situ from [bis(trifluoroacetoxy)iodo]benzene (PIFA) and TMSN3
 

[Eq. 4]
 11

.  

 

 

 

Magnus group studied metal-free sp
3
 C-H azidation of N,N-dimethylaniline (9)

11a
 and 

silyl enol ether (11)
11b

 derivatives, respectively, using iodosylbenzene and TMSN3 in 

high yields [Eq. 5, 6].  
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Telvekar group investigated synthesis of vinyl azide (14) and -azide carbonyl 

compounds (16) with hypervalent iodine and sodium azide [Eq. 7, 8]
12

. 
 

 
 

In 2012, Suna group reported azidation of indole-2-carboxylate derivatives (17) with 

DIB, TsOH, NaN3, and copper catalyst [Eq. 9]
13

. 
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To the focus on synthesis of novel azidoiodanes, Zhdankin group developed thermally 

stable and easily handling azidoiodanes (20, 22) in 1994
14

. Compounds 20 and 22 are 

generated from iodoxole (19, 21) with TMSN3, and able to be isolated [Eq. 10]. 

 

 

 

Benziodoxole azides (22) are widely uesd for C-N bond formation. For example, 

Zhdankin group reported metal-free azidation of various sp
3
 C-H bonds [Eq. 11]

15
. 
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Saito group succeeded metal-free azidation of aldehydes (29) with benziodoxole azides 

22 [Eq. 12]
16

. 

 

 

 

Loh group studied vicinal difunctionalization of styrenes (31) with benziodoxole azides 

(22) and copper catalyst [Eq. 13]
17

.  
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Recently, Greaney group reported direct benzylic C-H azidation with benziodoxole 

azides (22) and photoredox catalyst under irradiation with a visible light [Eq. 14]
18

. 

 

 

 

1-2 Amide and Iminoiodanes 

Amideiodanes are unstable species and rapidly decompose and produce isocyanates by 

the Hofmann rearrangement
19

. However, in 1997, Zhdankin group succeeded in 

preparation of stable amideiodane (37) and demonstrated metal-free amination of sp
3
 

carbon of adamantane (38) and N,N-dimethylaniline derivatives (40), respectively, with 

aminoiodane (37) [Eq. 16, 17]
20

. 
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On the other hands, iminoiodanes (ArI=NR) which are polyvalent iodine possessing 

I=N double bond are excellent reagent for oxidative amination and nitrogen source with 

metal complex. The most popular iminoiodane is PhI=NTs, which is synthesized from 

DIB or PIFA, TsNH2, and bases. In 1975, Yamada group reported preparation of 

iminoiodane and transformation of phosphine and sulfide (42) to phosphorane and 

surfurane (43), respectively [Eq. 18]
21

. 

 

 

 

Since then, many reactions with iminoidanes were reported
22

. In particular, focusing on 

C-N bond formation, Jacobsen
23a

 and Evans
23b

 group developed asymmetric aziridation 
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of olefins (44) with PhINTs and copper catalysts [Eq. 19].  

 

 

 

Zhdankin group reported metal free C-N bond formation of silyl enol ethers (46) with 

iminoiodane [Eq. 20]
24

. In this paper, they developed 2-alkoxyiminoiodanes and applied 

to amination reaction. Most iminoiodanes are less soluble in non-polar organic solvents, 

however, the hypervalent iodines which bear moderate solubility and high reactivity 

were developed. 

 

 

 

In 2012, Zhang group succeeded in amination of 1,3-dicarbonyl compounds (48) with 

PhINTs generated in situ from iodosobenzene, TsNH2, and Lewis acid [Eq. 21]
25

.  

 

 

 

Saito group investigated the reaction of alkynes (50) with iminoiodane and Lewis acid 

in nitriles, and obtained imidazoles (51) under metal-free conditions [Eq. 22]
26

.  
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Recently, Lamar group reported metal-free C-N bond formation at sp
3
 carbon with 

PhINNs (Ns : 4-nitrobenzenesulfonyl) under irradiation with a visible light [Eq. 23]
27

. 

 

 

 

1-3 Imide-combined Iodanes 

Imides, such as phthalimide and succinimide, possess electron-deficient nitrogen atom, 

and can be used for ligand of hypervalent iodines. In 1983, Hadjiarapoglou group 

succeeded in synthesis of imide-combined hypervalent iodines possessing two 

phthalimide groups
28

. However, phenyliodane (III) bis(phthalimidate) is soluble in only 

high polar solvents, such as DMSO, and sensitive to moisture. In 2011, Chang
29a

 group 

and DeBoef
29b,c

 group reported metal-free intermolecular amination of methylarenes (54, 

57) with phthalimide-combined hypervalent iodine generated in situ from DIB and 

phthalimide under heating or MW irradiation conditions [Eq. 24, 25]. 

 



13 

 

 

 

 

 

Minakata group developed benziodoxole-type imide-combined iodane (59) (III), and 

applied to amination of tertiary alkylamine (60) [Eq. 26]
30

. 59 is soluble in various 

organic solvents. 

 

 

Zhdankin group succeeded in preparation of -aminoketones with silyl enol ether (63) 

and saccharine-combined hypervalent iodine (62) [Eq. 27]
31

. 
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On the other hands, Muñis group reported enantioselective metal-free 1,2-diamination 

of styrenes (65) with ArI(OAc)NMs2 which was generated in situ from 

(diacetoxyiodo)arene and bis(mesyl)imide [Eq. 28]
32

.  

 

 

 

Bis(sulfonyl)-type imide-combined hypervalent iodines (67) are easy to prepare from 

only (diacetoxyiodo)arene and bis(sulfonyl)imides at room tempareture, and are soluble 

in various organic solvents. Muñis group also investigated C-N bond formation 

reactions of allylic compounds (68)
33a

, alkynes (70)
33b

, allenes (72)
33c

, and so on, with 

67 [Eq. 29]
33d,e

.   
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In 2014, Minakata group reported decarboxylation-amination of unsaturated carboxylic 

acids (75) with imide-combined hypervalent iodines [Eq. 30]
34

 .  

 

 

 

Conclusion  

Various hypervalent iodines possessing I-N bond were prepared and applied to C-N 

bond formation. However, some of them are unstable and require careful treatment and 

operation. Moreover, their synthetic utilities to substrates are limited. Thus, the author 

studied about the following programs: development of new synthetic method for 

phthalimide-combined hypervalent iodines (chaper 1), preparation of novel 

imide-combined iodanes (chapter 2), and discovery of C-N bond formation reaction 

with novel trivalent iodanes (chapters 1, 3, 4, 5).  
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Chapter 1 

Hofmann-type Rearrangement of Imides by in-situ generated Imide-combined 

Hypervalent Iodines 

 

Abstract 

Aromatic amino acids (e.q., anthranilic acid) and aliphatic  -amino acids were 

prepared from cyclic imides using hypervalent iodine generated in situ from iodoarene, 

TsOH, and m-CPBA. The Hofmann-type rearrangement was induced by nucleophilic 

attack of alcohol first followed by the Hofmann rearrangement. Here, imide-combined 

hypervalent iodine that was a key intermediate of the reaction, and played important 

role under basic conditions in alcohol. 

     

Introduction 

Amino acids are one of the most important compounds in living bodies, and some 

amino acid-like chemicals possess biological activity. Especially, aromatic amino acids 

are found in a lot of medicinal compounds
1
. However, synthetic methods of substituted 

anthranilic acids required many steps, with heavy metals
2
. On the other hands, 

Hofmann-type rearrangement of phthalimide is attractive strategy for preparation of 

anthranilic acid derivatives. Nevertheless, useful synthetic studies of anthranilic acid by 

Hofmann-type rearrangement have not been reported
3
.  

The Hofmann rearrangement is useful reaction to obtain amines from carboxyamides. 

Many types of haloganation reagents were used for the Hofmann rearrangement, and 

hypervalent iodines are also useful and efficient oxidants for the reaction
4
. The groups 

of Zhdankin
5
 and Ochiai

6
 reported that iodine (III) could be finitely employed for the 

Hofmann rearrangement of aliphatic amides. 

The author developed the first Hofmann-type rearrangement of cyclic imides by use of 

hypervalent iodine compounds generated in situ from iodoarenes, TsOH, and m-CPBA
7
, 

and discovered imide-combined hypervalent iodine as the key intermediate of the 

reaction. This method transformed cyclic imides to aromatic and aliphatic  -amino 

acids in high yields, respectively.  

 

Results and Discussion 

First, the author screened a series of bases, sulfonic acids, and substituted groups of 

iodoarenes on Hofmann-type rearrangement of phthalimide (Table 1). Trivalent iodines, 

HTIB analogue, were generated in situ from iodoarene, m-CPBA, and surfonic acid in 

chloroform. Then, the iodane (III), HTIB analogue, was treated with phthalimide, bases, 
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and Na2SO4 in methanol. The Hofmann-type rearrangement product was not obtained 

without base (entry 1), however, the yield was increased to 93 % by using K2CO3 (entry 

2). Other bases were not effective for the reaction (entries 3-6). Although phthalimide 

was also transformed to the product with methansulfonic acid and 

p-chlorobenzenesulfonic acid instead of p-toluenesulfonic acid (entries 7, 8) under the 

same conditions, the yield of anthranilic acid derivative (2a) was decreased without 

sulfonilic acid (entry 9). In addition, p-chloroiodobenzene, which has an 

electron-withdrawing group on iodobenzene, reduced the yield of the product, as 

compared with iodobenzene and t-butyliodobenzene (entries 10, 11).  

 

 

 

Next, the author examined Hofmann-type rearrangement of various phthalimides based 

on the optimized conditions, and DBU was used as a base instead of K2CO3 (Table 2). 

4-Substituted phthalimides bearing Me (1b), t-Bu (1c), Br (1d), or NO2 (1e) were 

transformed to the corresponding substituted anthranilic acid derivatives (2b-2e) in high 

yields, respectively. Strong electron-donating 4-methoxy phthalimide (1f) was 

converted into the product (2f) in good yield, and 3-fluoro phthalimide (1g) gave the 
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desired product (2g) in high yield.  

4,5-Dimethylphenyl (1h), 4,5-dichlorophenyl (1i), naphthyl (1j), and biphenyl (1k) 

imides provided the corresponding di-substituted products (2h-2k) in high yields, 

respectively. Amino-isonicotinic acid derivative (2l) was obtained from 3,4-pyridine 

dicarboximide (1l) in excellent yield. In addition, treatment of 1a with other alcohols, 

such as ethanol and 2,2,2-trifluoroethanol, instead of methanol for Hofmann-type 

rearrangement produced the anthranilic acid derivatives bearing ester and carbamate 

(2m, 2n) in good yields, respectively. 4,4’-Oxybisphthalimide (1o) was transformed to 

an oxybisanthranilic acid derivative (2o) in 60% yield using double amount of each 

reagents. Almost all substrates provided the small amount of by-product (3, X=H), 

however, 3a was easily converted to desired product (2a) with methylchloroformate in 

quantitative yield. Unfortunately, a mixture of two regioisomers was obtained with 

phthalimide (1b-1g, 1l, 1o) derivatives in law selectivity, and the ratios of 

regioselectivity were shown in experimental section. 
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The author also studied the application of Hofmann-type rearrangement to aliphatic 

cyclic imides to obtain - and -amino acid derivatives (Table 3). Succinimide (4a) and 

mono-substituted succinimides (4b-d) produced -amino acid derivatives in high yields, 

respectively, using the same reaction conditions as those of aromatic cyclic imides. 2,3- 

or 2,2- dimethylsuccinimide (4e, f) also provided desired products in good yields, 

respectively.  Moreover, glutarimide (4g) gave -amino acid derivatives, and 

3-isobutylglutarimide (4i) directly produced Pregabalin precursor. This precursor was 

easily transformed by hydrolysis to Pregabalin, which is used for neuropathic pain
8
. The 

result showed that Hofmann-type rearrangement is useful synthetic strategy for amino 

acid-like medicinal compounds. 

 

 

The author examined several reactions to clarify the mechanism of Hofmann-type 

rearrangement with hypervalent iodine (Scheme 2). N-methylphthalimide (6) was not 

converted into desired product (7) in optimized conditions, and the tratment of 

phthalimide with  [hydroxy(tosyloxy)iodo]benzene (HTIB) and K2CO3 in methanol 

gave 349.9663 peak on high resolution ESI-MS analysis, which is assigned to 

[PhI(phthalimidate)]
+
 (8), calculated MS : 349.9672). These results suggested that first 

phthalimide-combined hypervalent iodine species was formed in the presence of base, 

and then methanol attacked carbonyl group. On the other hands, treatment of 

phenyliodine(III) bis[phthalimidate] (9)
9
 in the presence of K2CO3 in methanol provided 

both 43 % yield of anthranilic acid derivatives (2a) and 45 % yield of phthalimide (1a). 
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Moreover, addition of HTIB to the above methanol solution of 9 under the same 

reaction conditions increased the desired product (2a or 3a) to 83 % yield and 1a was 

decreased to 16 % yield. This result suggests that 9 was a key intermediate of the 

reaction, and re-oxidized phthalimide by HTIB was converted into the product. 

 

 

 

According to some blank experiments shown in Scheme 2, the author proposed the 

mechanism of Hofmann-type rearrangement, as shown in Scheme 3. HTIB is formed 

from PhI, m-CPBA, and TsOH•H2O
7a

. This compound reacts with cyclic imide in the 

presence of base, and generates imide-combined hypervalent iodine intermediate (9 or 

A). The intermediates 9 or A is attacked by methanol followed by the Hofmann 

rearrangement to give isocyanate (B). Finally, isocyanate B is transformed to carbamate 

product 2 by methanol.  
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In conclusion, the author developed the new synthetic method of anthranilic acid and - 

and -amino acid derivatives from cyclic imides with Hofmann-type rearrangement 

using hypervalent iodines. This reaction produces wide range of aromatic and aliphatic 

amino acid under mild conditions without any metal reagents. In addition, it is the first 

report to prepare imide-combined hypervalent iodine species in situ from iodoarene.  
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Experimental 

1. General Methods. 
1
H NMR spectra were measured on a JEOL ECS-400 (400 MHz) 

spectrometer at ambient temperature. Data were recorded as follows: chemical shift in 

ppm f      te   l tet   ethyls l  e    the δ sc le,   lt pl c ty (s = s  glet; d = d  blet; 

t = triplet; q = quartet; sep = septet; m = multiplet; br = broad), coupling constant (Hz), 

integration, and assignment. 
13

C NMR spectra were measured on a JEOL ECS-400 (100 

MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent resonance 

employed as the internal standard (deuterochloroform at 77.0 ppm). High-resolution 

mass spectra were recorded by Thermo Fisher Scientific Exactive Orbitrap mass 

spectrometers. Infrared (IR) spectra were recorded on a JASCO FT/IR 4100 

spectrometer. Single crystal X-ray diffraction data were collected at 173 K on a Bruker 

SMART APEX    CCD d ff  ct  ete  w th M  Kα (λ = 0.71073) radiation and graphite 

monochromeater. For thin-layer chromatography (TLC) analysis throughout this work, 

Merck precoated TLC plates (silica gel 60GF254 0.25 mm) were used. The products 

were purified by column chromatography on neutral silica gel (Kanto Chemical Co., Inc. 

silica gel 60N, Prod. No. 37560-84; Merck silica gel 60, Prod. No. 1.09385.9929). 

Visualization was accomplished by UV light (254 nm), anisaldehyde, KMnO4, and 

phosphomolybdic acid. In experiments that required dry solvents such as chloroform 

and methanol were distilled in prior to use. 

 

2. General procedure for the Hofmann-type rearrangement of imides (1) using 

hypervalent iodine generated from iodoarene, m-CPBA, and p-toluenesulfonic acid 

in situ. 

T  p ep  e hype   le t   d  es (0.33    l) we e  sed   d be  e e (36.4 μL, 0.33 

mmol), m-CPBA (94.9 mg, 0.36 mmol), and p-TsOH·H2O (68.0 mg, 0.36 mmol) in 

CHCl3 (1 mL), and the solution was stirred at room temperature for 2 h under argon 

atmosphere. The solvents were removed in vacuo, and the desired product was obtained 

in situ as a white solid. Then Na2SO4 (0.50 mmol, 71.0 mg) and MeOH (2 mL) was 

added, and the solution was stirred at 0 °C for 10 min. To the solution were added 1a 

(36.8 mg, 0.25 mmol) and K2CO3 (138.2 mg, 1.0 mmol) at 0 °C, and the obtained 

mixture was stirred at room temperature for 2 h. Saturated NaHCO3 aqueous solution 

(10 mL) was added to the reaction mixture, and the product was extracted with AcOEt 

(15 mL × 3). The combined extracts were washed by brine (10 mL) and dried over 

Na2SO4. The organic phase was concentrated under reduced pressure and the crude 

product was purified by silica-gel column chromatography (eluent: hexane/AcOEt = 

5/1), to give the desired product 2a (40.5 mg, 79% yield) and 3a (5.0 mg, 14% yield). 
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Methyl 2-[(methoxycarbonyl)amino]benzoate (2a): 
1
H NMR (400 MHz, CDCl3) δ 

3.79 (s, 3H), 3.92 (s, 3H), 7.03 (td, J = 8.2, 1.2 Hz, 1H), 7.53 (td, J = 8.0, 1.2 Hz, 1H), 

8.01 (dd, J = 8.0, 1.6 Hz, 1H), 8.43 (dd, J = 8.2, 1.2 Hz, 1H), 10.51 (brs, 1H). 
13

C NMR 

(100 MHz, CDCl3) δ 52.2 (2C), 114.5, 118.8, 121.5, 130.8, 134.6, 141.7, 154.1, 168.5. 

IR (neat) 3299, 1740, 1690, 1600, 1535, 1459, 1272 cm
–1

. MS (APCI) calcd for 

C10H12NO4 [M+H]
+
 210.0761, found 210.0761. 

 

Methyl anthranilate (3a): 
1
H NMR (400 MHz, CDCl3) δ 3.86 (s, 3H), 5.71 (b s, 2H), 

6.63 (t, J = 8.2 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 7.25 (td, J = 8.2, 1.6 Hz, 1H), 7.85 (dd, 

J = 8.2, 1.6 Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 51.4, 110.7, 116.2, 116.6, 131.2, 

134.0, 150.4, 168.5. IR (neat) 3480, 3372, 1691, 1616, 1436, 1247 cm
–1

. MS (APCI) 

calcd for C8H10NO2 [M+H]
+
 152.0706, found 152.0702. 

 

Methyl 2-[(methoxycarbonyl)amino]methylbenzoate (2b, 4- and 5-isomers): In 

Table 2, 4-:5- = 56:44. The 4-isomer and 5-isomer were separeted by recrystallization. 

4-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 2.39 (s, 3H), 3.78 (s, 3H), 3.89 (s, 3H), 6.84 

(dd, J = 8.2, 1.1 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 8.26 (s, 1H), 10.51 (brs, 1H). 
13

C 

NMR (100 MH , CDCl3) δ 22.1, 52.1, 52.2, 112.0, 119.1, 122.6, 130.8, 141.7, 145.7, 

154.1, 168.5. 5-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 2.32 (s, 3H), 3.78 (s, 3H), 3.91 (s, 

3H), 7.34 (dd, J = 8.7, 1.6 Hz, 1H), 7.80 (d, J = 1.6 Hz, 1H), 8.30 (d, J = 8.7 Hz, 1H), 

10.36 (b s, 1H). 13C NMR (100 MH , CDCl3) δ 20.1, 52.2 (2C), 114.4, 118.8, 130.9, 

131.0, 135.3, 139.3, 154.1, 168.5. IR (KBr) 3273, 1740, 1688, 1594, 1533, 1440, 1249 

cm
–1

. MS (APPI) calcd for C11H13NO4  [M]
+
 223.0839, found 223.0841. 

 

Methyl tert-butyl-2-[(methoxycarbonyl)amino]benzoate (2c, 4- and 5-isomers): In 

Table 2, 4-:5- = 54:46. 4-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 1.34 (s, 9H), 3.79 (s, 

3H), 3.89 (s, 3H), 7.05 (dd, J = 8.5, 1.8 Hz, 1H), 7.91 (t, J = 8.5 Hz, 1H), 8.54 (d, J = 

1.8 Hz, 1H), 10.52 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 30.8 (3C), 35.3, 52.1 (2C), 

111.8, 115.7, 118.8, 130.5, 141.6, 154.1, 158.5, 168.3. 5-Isomer: 
1
H NMR (400 MHz, 

CDCl3) δ 1.31 (s, 9H), 3.77 (s, 3H), 3.91 (s, 3H), 7.57 (dd, J = 9.1, 2.5 Hz, 1H), 8.00 (d, 

J = 2.5 Hz, 1H), 8.34 (d, J = 9.1 Hz, 1H), 10.39 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) 

δ 31.1 (3C), 34.1, 52.0 (2C), 114.1, 118.6, 127.1, 131.8, 139.2, 114.3, 154.1, 168.5. IR 

(neat) 3302, 1739, 1693, 1582, 1524, 1438, 1260 cm
–1

. MS (APCI) calcd for 

C14H20NO4 [M+H]
+
 266.1387, found 266.1377. 

 

Methyl bromo-2-[(methoxycarbonyl)amino]benzoate (2d, 4- and 5-isomers): In 
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Table 2, 4-:5- = 55:45. 4-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 3.79 (s, 3H), 3.91 (s, 

3H), 7.16 (dd, J = 8.7, 2.0 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 8.69 (d, J = 2.0 Hz, 1H), 

10.53 (brs, 1H). 
13

C NMR (100 MH , CDCl3) δ 52.4, 52.5, 113.1, 121.7, 124.8, 129.6, 

131.9, 142.6, 153.9, 168.0. 5-Isomer: 
1
H NMR (400 MH , CDCl3) δ 3.79 (s, 3H), 3.92 

(s, 3H), 7.61 (dd, J = 9.1, 2.5 Hz, 1H), 8.12 (d, J = 2.5 Hz, 1H), 8.36 (d, J = 9.1 Hz, 1H), 

10.42 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 52.40, 52.45, 113.8, 116.0, 120.5, 133.3, 

137.3, 140.8, 153.8, 167.3. IR (KBr) 3259, 1739, 1689, 1593, 1519, 1433, 1249 cm
–1

. 

MS (APPI)  calcd for  C 1 0 H1 0 BrNO 4  [M]
+
 286.9788,  found 286.9789. 

 

Methyl 2-[(methoxycarbonyl)amino]nitrobenzoate (2e, 4- and 5-isomers): In Table 

2, 4-:5- = 42:58. The 4-isomer and 5-isomer were separeted by column chromatography. 

4-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 3.84 (s, 3H), 3.99 (s, 3H), 7.82 (dd, J = 8.9, 

2.1 Hz, 1H), 8.17 (d, J = 8.9 Hz, 1H), 9.35 (d, J = 2.1 Hz, 1H), 10.57 (brs, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 52.7, 53.0, 113.8, 115.6, 118.7, 132.1, 142.7, 151.3, 153.7, 

167.0. 5-Isomer: 1H NMR (400 MHz, CDCl3) δ 3.84 (s, 3H), 4.00 (s, 3H), 8.37 (dd, J = 

9.4, 2.8 Hz, 1H), 8.67 (d, J = 9.4 Hz, 1H), 8.91 (d, J = 2.8 Hz, 1H), 10.87 (brs, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 52.9, 53.0, 114.1, 118.8, 127.0, 129.3, 141.2, 146.9, 153.5, 

167.0. IR (KBr) 3263, 1751, 1692, 1516, 1439, 1352, 1251 cm
–1

. MS (APCI) calcd for 

C10H9N2O6 [M–H]
–
 253.0455, found 253.0463. 

 

Methyl methoxy-2-[(methoxycarbonyl)amino]benzoate (2f, 4- and 5-isomers): In 

Table 2, 4-:5- = 63:37. The 4-isomer and 5-isomer were separeted by column 

chromatography. 4-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 3.79 (s, 3H), 3.869 (s, 3H), 

3.873 (s, 3H), 6.55 (dd, J = 8.9, 2.7 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 8.06 (d, J = 2.7 

Hz, 1H), 10.72 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 51.9, 52.2, 55.4, 102.3, 107.1, 

109.0, 132.4, 143.9, 154.1, 164.5, 168.3. 5-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 3.77 

(s, 3H), 3.81 (s, 3H), 3.92 (s, 3H), 7.12 (dd, J = 9.2, 3.2 Hz, 1H), 7.49 (d, J = 3.2 Hz, 

1H), 8.33 (d, J = 9.2 Hz, 1H), 10.19 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 52.2, 

52.3, 55.6, 114.4, 115.4, 120.4, 121.3, 135.4, 153.8, 154.2, 168.1. IR (KBr) 3258, 1740, 

1687, 1598, 1533, 1431, 1278 cm
–1

. MS (APPI) calcd for C11H13NO5 [M]
+
 239.0788, 

found 239.0790. 

 

Methyl fluoro-2-[(methoxycarbonyl)amino]benzoate (2g, 3- and 6-isomers): In 

Table 2, 3-:6- = 61:39. The 3-isomer and 6-isomer were separeted by column 

chromatography. 3-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 3.79 (s, 3H), 3.92 (s, 3H), 

7.18 (td, J = 8.2, 5.0 Hz, 1H), 7.33 (t, J = 8.2 Hz, 1H), 7.73 (dd, J = 8.2, 1.2 Hz, 1H), 
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8.38 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 52.4, 52.7, 106.0 (d, JC–F = 14.4 Hz), 

110.1 (d, JC–F = 24.0 Hz), 114.8 (d, JC–F = 3.8 Hz), 134.4 (d, JC–F = 10.5 Hz), 141.8 

(d, JC–F = 2.9 Hz), 153.9, 162.2 (d, JC–F = 258.7 Hz), 167.1 (d, JC–F = 3.8 Hz). 
19

F 

NMR (471 MHz, CDCl3) δ -116.5. 6-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 3.79 (s, 

3H), 3.96 (s, 3H), 6.79 (ddd, J = 11.0, 8.2, 1.2 Hz, 1H), 7.45 (td, J = 8.7, 6.1 Hz, 1H), 

8.17 (d, J = 8.7 Hz, 1H), 9.96 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 52.5, 52.9, 

120.9 (d, JC–F = 21.1 Hz), 123.7 (d, JC–F = 1.9 Hz), 125.1 (d, JC–F = 8.6 Hz), 125.9 

(d, JC–F = 3.8 Hz), 127.5 (d, JC–F = 13.4 Hz), 154.0, 156.2 (d, JC–F = 252.9 Hz), 

166.8 (d, JC–F = 3.8 Hz). 
19

F NMR (471 MHz, CDCl3) δ -105.4. IR (KBr) 3345, 1739, 

1702, 1512, 1445, 1280, 1238 cm
–1

. MS (APPI) calcd for C10H10NO4F [M]
+
 227.0588, 

found 227.0579.  

 

Methyl 2-[(methoxycarbonyl)amino]-4,5-dimethylbenzoate (2h): 
1
H NMR (400 

MHz, CDCl3) δ 2.22 (s, 3H), 2.30 (s, 3H), 3.77 (s, 3H), 3.89 (s, 3H), 7.74 (s, 1H), 8.21 

(s, 1H), 10.36 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 19.0, 20.5, 52.0, 52.1, 112.2, 

119.7, 129.9, 131.3, 139.6, 144.4, 154.1, 168.5. IR (KBr) 3253, 1733, 1690, 1592, 1524, 

1432, 1226 cm
–1

. MS (APPI) calcd for C12H15NO4 [M]
+
 237.0996, found 237.0096. 

 

Methyl 4,5-dichloro-2-[(methoxycarbonyl)amino]benzoate (2i): 
1
H NMR (400 MHz, 

CDCl3) δ 3.80 (s, 3H), 3.93 (s, 3H), 8.07 (s, 1H), 8.66 (s, 1H), 10.43 (b s, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 52.6, 52.7, 114.0, 120.5, 125.1, 132.0, 139.0, 140.7, 153.7, 

166.9. IR (KBr) 3256, 1736, 1694, 1580, 1503, 1311, 1220 cm
–1

. MS (APPI) calcd for 

C10H9NO4 [M]
+
 276.9903, found 276.9903. 

 

Methyl 3-[(methoxycarbonyl)amino]2-naphthoate (2j): 
1
H NMR (400 MHz, CDCl3) 

δ 3.82 (s, 3H), 3.97 (s, 3H), 7.38 (t, J = 8.0 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.79 (d, J 

= 8.0 Hz, 2H), 8.59 (s, 1H), 8.79 (s, 1H), 10.42 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) 

δ 52.2, 52.5, 115.4, 115.5, 125.1, 127.4, 127.9, 128.9, 129.2, 133.2, 136.4, 136.6, 154.3, 

168.4. IR (KBr) 3295, 1733, 1696, 1547, 1448, 1292, 1213 cm
–1

. MS (APPI) calcd for 

C14H13NO4 [M]
+
 259.0839, found 259.0839. 

Crystal data for 2j: Formula C14H13NO4, colorless, crystal dimensions 0.30 × 0.30 × 

0.20 mm
3
, tetragonal, space group P4 (3), a = 8.0618(11) Å, b = 8.0618(11) Å, c = 

37.917(5) Å, α = 90.00 °, β = 90.00 °, γ = 90.00 °, V = 2464.4(6) Å3, Z = 8, ρcalc = 1.398 

g cm
–3
, F(000) = 1088, μ(M Kα) = 0.103 mm

–1
, T = 173 K. 13721 reflections collected, 

5515 independent reflections with I > 2σ(I) (2θmax = 27.56°), and 347 parameters were 

used for the solution of the structure. The non-hydrogen atoms were refined 
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anisotropically. Flack x = 0.1643. R1 = 0.0481 and wR2 = 0.1060. GOF = 1.023. 

Crystallographic data (excluding structure factors) for the structure reported in this 

paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. CCDC-855556. Copies of the data can be obtained free 

of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. 

code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk]. 

 

 

Figure S1. OPTEP drawing of 2j. 

 

Methyl 2’-amino-(1,1’-bipheyl)-2-carboxylate (3k): 
1
H NMR (400 MHz, CDCl3) δ 

4.19 (s, 3H), 7.10 (d, J = 8.5 Hz, 1H), 7.35 (dd, J = 8.2, 7.4 Hz, 1H), 7.49 (dd, J = 8.5, 

7.4 Hz, 1H), 7.61 (dd, J = 8.2, 7.3 Hz, 1H), 7.81 (dd, J = 8.2, 7.6 Hz, 1H), 8.24-8.28 (m, 

2H), 8.50 (d, J = 7.6 Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 55.9, 114.9, 118.6, 122.0, 

123.4, 123.7, 124.8, 128.4, 128.7, 129.7, 133.6, 134.0, 134.2, 153.9. IR (KBr) 3439, 

1763, 1664, 1607, 1440, 1329, 1238 cm
–1

. MS (APCI) calcd for C14H12NO4 [M–H]
+
 

226.0863, found 226.0862. 

 

Methyl [(methoxycarbonyl)amino]nicotinate (2l, 3- and 4-isomers): In Table 2, 3-:4- 

= 83:17. The 3-isomer and 4-isomer were separeted by column chromatography. 

3-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 3.83 (s, 3H), 3.97 (s, 3H), 8.35 (d, J = 6.0 Hz, 

1H), 8.58 (d, J = 6.0 Hz, 1H), 9.12 (s, 1H), 10.59 (brs, 1H). 13C NMR (100 MHz, 

CDCl3) δ 52.5, 52.8, 110.3, 112.2, 148.1, 152.5, 153.4, 154.3, 167.8. 4-Isomer: 
1
H 

NMR (400 MHz, CDCl3) δ 3.82 (s, 3H), 3.97 (s, 3H), 7.76 (d, J = 5.2 Hz, 1H), 8.38 (d, 

J = 5.2 Hz, 1H), 9.78 (s, 1H), 10.05 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 52.7, 52.9, 

120.3, 122.5, 136.3, 142.5, 143.0, 153.6, 167.2. IR (KBr) 3255, 1743, 1695, 1597, 1519, 

1442, 1302, 1229 cm
–1

. MS (APPI) calcd for C9H11N2O4 [M+H]
+
 211.0713, found 

211.0712. 
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Ethyl 2-[(ethoxycarbonyl)amino]benzoate (2m): 
1
H NMR (400 MHz, CDCl3) δ 1.32 

(t, J = 7.1 Hz, 3H), 1.41 (t, J = 7.1 Hz, 3H), 4.23 (q, J = 7.1 Hz, 2H), 4.38 (q, J = 7.1 Hz, 

2H), 7.02 (td, J = 8.0, 1.2 Hz, 1H), 7.52 (td, J = 8.7, 1.6 Hz, 1H), 8.02 (dd, J = 8.0, 1.6 

Hz, 1H), 8.44 (dd, J = 8.7, 1.2 Hz, 1H), 10.51 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 

14.2, 14.5, 61.1, 61.2, 114.7, 118.7, 121.3, 130.8, 134.4, 141.9, 153.7, 168.1. IR (neat) 

3256, 1727, 1693, 1595, 1533, 1452, 1244 cm
–1

. MS (APPI) calcd for C12H15NO4 [M]
+
 

237.0096, found 237.0096. 

 

2”,2”,2”-Trifluoroethyl 2-{[(2’,2’,2’-trifluoroethoxy)carbonyl]amino}benzoate 

(2n): 
1
H NMR (400 MHz, CDCl3) δ 4.58 (q, J = 8.5 Hz, 2H), 4.70 (q, J = 8.5 Hz, 2H), 

7.13 (td, J = 8.2, 1.2 Hz, 1H), 7.62 (td, J = 8.2, 1.6 Hz, 1H), 8.08 (dd, J = 8.2, 1.6 Hz, 

1H), 8.42 (dd, J = 8.2, 1.2 Hz, 1H), 10.41 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 

60.9 (q, JC–F = 37.4 Hz), 61.0 (q, JC–F = 37.4 Hz), 113.4, 119.1, 122.6, 122.87 (q, 

JC–F = 278.8 Hz), 122.92 (q, JC–F = 278.8 Hz), 131.2, 135.8, 141.3, 151.4, 166.2. 
19

F 

NMR (471 MHz, CDCl3) δ -73.9, -73.4. IR (KBr) 3289, 1752, 1704, 1599, 1535, 1452, 

1285, 1178 cm
–1

. MS (APPI) calcd for C12H8F6NO4 [M–H]
–
 344.0352, found 

344.0365. 

 

Dimethyl oxybis{2-[(methoxycarbonyl)amino]benzoate} (2o, 4,5’-, 4,4’-, and 

5,5’-isomers): In Table 2, 4,5’-:4,4’-:5,5’- = 61:22:17. 4,5’-Isomer: 
1
H NMR (400 MHz, 

CDCl3) δ 3.75 (s, 3H), 3.80 (s, 3H), 3.89 (s, 6H), 6.53 (dd, J = 8.9, 3.0 Hz, 1H), 7.29 

(dd, J = 9.0, 2.5 Hz, 1H), 7.73 (d, J = 3.0 Hz, 1H), 7.95 (d, J = 8.9 Hz, 1H), 8.06 (d, J = 

2.5 Hz, 1H), 8.48 (d, J = 9.0 Hz, 1H), 10.42 (brs, 1H), 10.64 (brs, 1H). 
13

C NMR (100 

MHz, CDCl3) δ 52.26 (2C), 52.29, 52.4, 106.8, 108.8, 110.1, 112.1, 120.5, 122.4, 127.0, 

132.8, 138.6, 143.8, 148.7, 153.8 (2C), 162.9, 167.6, 168.0. 4,4’-Isomer: 
1
H NMR (400 

MHz, CDCl3) δ 3.76 (s, 6H), 3.90 (s, 6H), 6.69 (dd, J = 8.9, 2.3 Hz, 2H), 8.01 (d, J = 

8.9 Hz, 2H), 8.16 (d, J = 2.3 Hz, 2H), 10.64 (brs, 2H). 
13

C NMR (100 MHz, CDCl3) δ 

52.1 (2C), 52.4 (2C), 109.0 (2C), 110.1 (2C), 115.7 (2C), 132.9 (2C), 143.8 (2C), 154.0 

(2C), 160.9 (2C), 168.0 (2C). 5,5’-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 3.79 (s, 6H), 

3.88 (s, 6H), 7.21 (dd, J = 9.2, 3.0 Hz, 2H), 7.59 (d, J = 3.0 Hz, 2H), 8.41 (d, J = 9.2 Hz, 

2H), 10.33 (brs, 2H). 
13

C NMR (100 MHz, CDCl3) δ 52.1 (2C), 52.3 (2C), 110.1 (2C), 

120.2 (2C), 120.6 (2C), 125.2 (2C), 137.5 (2C), 151.0 (2C), 154.1 (2C), 167.7 (2C). IR 

(KBr) 3290, 1741, 1694, 1595, 1526, 1436, 1249 cm
–1

. MS (APCI) calcd for 

C20H21N2O9 [M+H]
+
 433.1242, found 433.1239. 

 

N-(Methoxycarbonyl)-β-alanine methyl ester (5a): 
1
H NMR (400 MHz, CDCl3) δ 
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2.55 (t, J = 6.1 Hz, 2H), 3.45 (q, J = 6.1 Hz, 2H), 3.66 (s, 3H), 3.70 (s, 3H), 5.23 (brs, 

1H). 
13

C NMR (100 MHz, CDCl3) δ 34.2, 36.5, 51.8, 52.1, 156.9, 172.8.  R ( e t) 3346, 

1725, 1533, 1441, 1256 cm
–1

. MS (ESI) calcd for C6H11NO4Na [M+Na]
+
 184.0580, 

found 184.0580. 

 

Methyl [(methoxycarbonyl)amino]methylpropanoate (5b, 2- and 3-isomers): In 

Table 3, 2-:3- = 56:44. 2-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 1.18 (d, J = 7.3 Hz, 

3H), 2.67-2.75 (m, 1H), 3.26-3.42 (m, 2H), 3.66 (s, 3H), 3.70 (s, 3H), 5.24 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 14.6, 39.8, 43.3, 51.7, 52.0, 157.0, 175.6. 3-Isomer: 
1
H 

NMR (400 MHz, CDCl3) δ 1.24 (d, J = 6.8 Hz, 3H), 2.48-2.58 (m, 2H), 3.66 (s, 3H), 

3.69 (s, 3H), 4.01-4.18 (m, 1H), 5.07 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 20.3, 

40.2, 44.0, 51.5, 51.9, 156.1, 171.8. IR (neat) 3342, 1727, 1532, 1440, 1255 cm
–1

. MS 

(ESI) calcd for C7H14NO4 [M+H]
+
 176.0917, found 176.0920. 

 

Methyl butyl-[(methoxycarbonyl)amino]propanoate (5c, 2- and 3-isomers): In 

Table 3, 2-:3- = 59:41. 2-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 0.89 (t, J = 7.0 Hz, 3H), 

1.23-1.39 (m, 4H), 1.44-1.56 (m, 2H), 2.57-2.67 (m, 1H), 3.25-3.34 (m, 1H), 3.37-3.46 

(m, 1H), 3.66 (s, 3H), 3.70 (s, 3H), 5.14 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 13.8, 

22.4, 28.2, 29.1, 42.0, 45.4, 51.7, 52.0, 157.0, 175.5. 3-Isomer: 
1
H NMR (400 MHz, 

CDCl3) δ 0.89 (t, J = 7.0 Hz, 3H), 1.24-1.39 (m, 5H), 1.56-1.67 (m, 1H), 2.54 (t, J = 5.2 

Hz, 2H), 3.66 (s, 3H), 3.68 (s, 3H), 3.89-4.00 (m, 1H), 5.19 (brs, 1H). 
13

C NMR (100 

MHz, CDCl3) δ 13.9, 22.3, 29.3, 34.0, 38.8, 48.0, 51.6, 51.9, 156.4, 172.0. IR (neat) 

3342, 1729, 1533, 1441, 1254 cm
–1

. MS (ESI) calcd for C10H20NO4 [M+H]
+
 218.1387, 

found 218.1389. 

 

Methyl benzyl-[(methoxycarbonyl)amino]propanoate (5d, 2- and 3-isomers): In 

Table 3, 2-:3- = 57:43. 2-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 2.77-2.84 (m, 1H), 

2.90-2.99 (m, 2H), 3.27-3.35 (m, 1H), 3.36-3.46 (m, 1H), 3.61 (s, 3H), 3.65 (s, 3H), 

5.32 (brs, 1H), 7.12-7.32 (m, 5H). 
13

C NMR (100 MHz, CDCl3) δ 35.6, 41.7, 47.0, 51.6, 

51.9, 126.4, 128.3(2C), 128.6(2C), 138.0, 156.1, 174.4. 3-Isomer: 
1
H NMR (400 MHz, 

CDCl3) δ 2.42-2.55 (m, 2H), 2.77-2.84 (m, 1H), 2.90-2.99 (m, 1H), 3.61 (s, 3H), 3.63 (s, 

3H), 4.16-4.25 (m, 1H), 5.43 (brs, 1H), 7.12-7.32 (m, 5H). 
13

C NMR (100 MHz, CDCl3) 

δ 37.2, 40.0, 49.2, 51.5, 51.8, 126.5, 128.3(2C), 129.1(2C), 137.4, 156.8, 171.8. IR 

(neat) 3341, 1728, 1532, 1442, 1259 cm
–1

. MS (ESI) calcd for C13H18NO4 [M+H]
+
 

252.1230, found 252.1230. 
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Methyl 3-[(methoxycarbonyl)amino]-2-methylbutanoate (5e): 
1
H NMR (400 MHz, 

CDCl3) δ 1.16 (d, J = 6.8 Hz, 3H), 1.20 (d, J = 7.3 Hz, 3H), 2.59-2.68 (m, 1H), 3.36 (s, 

3H), 3.70 (s, 3H), 3.85-3.98 (m, 1H), 5.36 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 

14.3, 19.3, 43.9, 48.8, 51.6, 51.9, 156.6, 175.5. IR (neat) 3336, 1724, 1530, 1453, 1246 

cm
–1

. MS (ESI) calcd for C8H16NO4 [M+H]
+
 190.1074, found 190.1075. 

 

Methyl [(methoxycarbonyl)amino]dimethylpropanoate (5f, 2- and 3-isomers): In 

Table 3, 2-:3- = 70:30. 2-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 1.20 (s, 6H), 3.30 (d, J 

= 6.6 Hz, 2H), 3.66 (s, 3H), 3.69 (s, 3H), 5.21 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 

22.9 (2C), 44.0, 48.7, 51.4, 51.9, 157.3, 177.4. 3-Isomer: 
1
H NMR (400 MHz, CDCl3) δ 

1.40 (s, 6H), 2.69 (s, 2H), 3.62 (s, 3H), 3.68 (s, 3H), 5.21 (brs, 1H). 
13

C NMR (100 

MHz, CDCl3) δ 27.2 (2C), 43.5, 51.2, 51.4, 52.0, 155.5, 171.6. IR (neat) 3358, 1725, 

1530, 1469, 1257 cm
–1

. MS (ESI) calcd for C8H16NO4 [M+H]
+
 190.1074, found 

190.1076. 

 

Methyl 4-[(methoxycarbonyl)amino]butanoate (5g): 
1
H NMR (400 MHz, CDCl3) δ 

1.80-1.88 (m, 2H), 2.37 (t, J = 7.3 Hz, 2H), 3.23 (q, J = 6.5 Hz, 2H), 3.66 (s, 3H), 3.68 

(s, 3H), 4.93 (brs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 25.1, 31.2, 40.3, 51.6, 52.0, 

157.1, 173.7. IR (neat) 3345, 1724, 1535, 1442, 1260 cm
–1

. MS (ESI) calcd for 

C7H14NO4 [M+H]
+
 176.0917, found 176.0917. 

 

Methyl 3-{[(methoxycarbonyl)amino]methyl}-5-methylhexanoate (5h): 
1
H NMR 

(400 MHz, CDCl3) δ 0.88 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H), 1.07-1.23 (m, 

2H), 1.65 (sep, J = 6.6 Hz, 1H), 2.08-2.19 (m, 1H), 2.29 (d, J = 6.6 Hz, 2H), 2.96-3.12 

(m, 1H), 3.16-3.32 (m, 1H), 3.36 (s, 3H), 3.67 (s, 3H), 5.02 (brs, 1H). 
13

C NMR (100 

MHz, CDCl3) δ 22.5(2C), 25.1, 33.5, 37.1, 41.4, 44.7, 51.5, 51.9, 157.2, 173.6. IR 

(neat) 3347, 1731, 1536, 1439, 1254 cm
–1

. MS (ESI) calcd for C11H22NO4 [M+H]
+
 

232.1543, found 232.1543. 

 

Phenyliodine (III) bis[phthalimidate] (7): 
1
H NMR (400 MHz, DMSO-d6) δ 7.23 (t, J 

= 8.0 Hz,2H), 7.44 (t, J = 7.6 Hz, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.87 (s, 8H). 
13

C NMR 

(100 MHz, DMSO) δ 122.9 (5C), 127.7, 130.7 (2C), 132.6 (4C), 134.3 (4C), 137.1 (2C), 

169.2 (4C). IR (Nujol) 1736, 1692, 1670, 1611, 1279, 1117 cm
–1

. MS (ESI) calcd for 

C14H9INO2 [M–Phthalimidate]
+
 349.9668, found 349.9672. 

 

3. General procedure for Methoxycarbonylation of Methyl anthranilate 3a. 
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To a solution of methyl anthranilate 3a (37.8 mg, 0.25 mmol) in toluene (1 mL) was 

added  ethyl chl   f    te (38.4 μL, 0.50    l)  t      te pe  t  e   de    g   

atomosphere, and the solution was refluxed for 8 h. After removal of the solvent under 

reduced pressure, the pure methyl 2-[(methoxycarbonyl)amino]benzoate 2a was 

obtained as a colorless crystal (51.0 mg, >99% yield) without further purification by 

collumn chromatography. 

 

4. In Situ HRMS-ESI Study. 

To the solution of PhI(OH)(OTs) (39.1 mg, 0.10 mmol) and phthalimide 1a (14.7 mg, 

0.10 mmol) in MeCN (1 mL) was added K2CO3 (13.8 mg, 0.10 mmol), and the mixture 

stirred at room temperature for 3 h. The reaction mixture was diluted with 

MeCN/MeOH prior to the injection into the mass spectrometer. 
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Chapter 2 

Preparation of Novel Imide-combined Hypervalent Iodines: Heteroaryl(aryl)- 

iodonium Imides 

 

Abstract 

(Heteroaryl)(aryl)iodonium imides were prepared from various heteroaromatics with 

(diacetoxyiodo)benzene (DIB) and bis(sulfonyl)imides. These novel hypervalent 

iodines were stable as white solid, and the unique structure was observed from two 

types of iodane (III), imide-combined 

-iodane and asymmetric diaryliodonium salt 

containing heterocycles. 

 

Introduction 

Heteroaryl-contained hypervalent iodine is attractive reagent to obtain various 

heteroaryl substituted compounds
1,2

. In particular, C-N bond formation with hetroaryl 

hypervalent iodine is much important to use for synthesis of amino-heteroaryl rings, 

which are included in a lot of biological active and medicinal compounds
3
. Nevertheless, 

synthesis of heteroaryliodane containing I-N bond had been less studied. Recently, Suna 

group reported (indolyl)(phenyl)iodonium azide and azidation of indole
4
, however, the 

iodonium azide was not stable and required heavy metal for C-N bond formation.  

On the other hands, imide-combined hypervalent iodine was used as oxidative C-N 

bond formation. Muñis group reported useful C-N bond introduction to alkene, alkyne, 

and so on, using imide-combined hypervalent iodine
5
, and the author also reported 

Hofmann-type rearrangement via imide-combined hypervalent iodine (Chapter 1)
6
. 

Here, the author reported preparation of novel imide-combined hypervalent iodines, 

heteroaryl(aryl)iodinum imides, which were stable as white solid and easily obtained 

from heteroaryl compounds. 

 

Results and Discussion 

First, the author used indole as a model compound, and screened the reaction conditions 

for preparation of (indolyl)(aryl)iodonium imide (2) (Table 1). MeCN and a mixture of 

MeCN/DCE(2:1) were effective solvents (entries 1-8), however, PhI(OAc)NR2 

generated in situ from hypervalent iodines and bis(sulfonyl)imids were sometimes 

precipitated in MeCN and the yield was not reproducible. DIB is the best hypervalent 

iodine reagent (entries 9, 10). Using t-butoxycalbonyl (Boc), benzoyl (Bz), and tosyl 

(Ts) as a N-protecting group, desired products (2) were obtained in good yield (entries 

11-13). On the other hands, BzTsNH and PhTsNH instead of Ts2NH did not give 2 
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(entries 14, 15). From these results, the author believed that the active hypervalent 

iodine compound, PhI(OAc)NR2, is not formed from the reaction with BzTsNH or 

PhTsNH, and treatment of N-Pivalpylindole (1) with DIB(1.2 equiv.) and Ts2NH (1.2 

equiv.) in MeCN/DCE(2:1) at 50 ˚C (entry 7) is the best conditions.  

 

 

 

Next, the author examined the preparation of (indolyl)(aryl)iodonium imides (2) from 

various substituted N-protected indoles (1) under optimized reaction conditions (Table 

2). The reaction of 5-substituted indole bearing Me (1b), MeO (1c), F (1d), Cl (1e), 

PivO (1i), and PhthN (1j) groups gave the corresponding 5-substituted 

(indolyl)(aryl)iodonium imides (2b-2e, 2i, 2j) in high yields, respectively. 

(Indolyl)(aryl)iodonium imides bearing an electron-withdrawing group, such as Br (1f), 

CO2Me (1g), and CN (1h), were also converted into desire products in good yields 

(2f-2h), respectively. (Indolyl)(aryl)iodonium imides bearing other monosubstituted 

indoles at different position were also transformed into the corresponding products in 
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good to high yields (2k-2m), respectively. In all substrates that the author examined, 

iodonium imides bonded at 3-position of indoles were observed and those imides 

bonded at 2-position of indoles were not observed at all. 

 

 

Then, the author also screened various bis(sulfonyl)imides and (diacetoxyiodo)arenes to 

optimized reaction conditions (Table 3). The formation of 2 proceeded with high 

conversion and the desired products were obtained in high yields (2n-2ac), respectively. 

In addition, the product 2 with methyl 1-pivaloylindole-2-carboxylate, Ms2NH or 

(BnSO2)2NH could be isolated using 1-(diaceetoxyiodo)-3,5-dichlorobenzene or 

1-(diacetoxyiodo)-2-methoxybenzene instead of DIB, although 2 with DIB could not be 

isolated
7
 (2ae-af). 
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The crystal structure of (indolyl)(phenyl)iodonium imide (2a) is depicted in Figure 1. It 

displays that the bond distance of I-N, I-C (aryl) and I-C (het) are 2.831 Å, 2.111 Å, and 

2.085 Å, respectively. Both I-C bond lengths are the same as I-C (aryl) bond length of 

the previously reported hypervalent iodines
4
.
 
I-N bond length is similar to that of OTf, 

OCOCF3, N3 group in diaryliodonium salt
3h,8

.
 
The author believes as follows, the above 

result suggest that Ts2N group may be easily removable, electron density on iodine atom 

is extremely low, and therefore, nucleophilic attack to iodine atom followed by 

amination with imide may occur smoothly.   
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Moreover, the author succeeded in the preparation of heteroaryl(aryl)iodonium imide 

with heteroaromatic derivatives instead of indole derivatives (Table 4). The treatment of 

pyrrole derivatives, such as 4,5,6,7-tetrahydroindole (3a) and 

3,5-dimethyl-1-ethoxycarbonylpyrrole (3b), with DIB and Ts2NH gave desired products 

(4a,b) in high yields, respectively. The same treatment of 3,5-dimethylpyrrazole 

provided heteroaryl(aryl)iodonium imide (4c) in high yield using 

1-(diacetioxyiodo)-2-methoxybenzene. Indazole (3d) was transformed to 4d without 

any N-protection group. Sulfur-containing heteroaryl(aryl)iodonium imides (4e,f) were 

also obtained from thiophene derivatives (3e,f), respectively. In addition, the same 

treatment of 1,3,6-trimethyluracil (3g) and 2-methyl-4-quinolinol (3h) provided desired 

products (4g,h) in high yields, respectively. 
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In conclusion, the author succeeded in the preparation of heteroaryl(aryl)iodonium 

imides from heteroaromatics, (diacetoxyiodo)arene, and bis(sulfonyl)imides. These 

novel imide-combined hypervalent iodines were easily prepared, isolated, and stable 

solid at room temperature in air. The author believes that those heteroaryl(aryl)iodonium 

imide possesses high reactivity for new C-N bond formation at the heteroaryl group. 
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Experimental 

1. General Methods. 
1
H NMR spectra were measured on a JEOL ECA-500 (500 MHz) 

spectrometer at ambient temperature. Data were recorded as follows: chemical shift in 

ppm from internal tetramethylsilane on the δ sc le,   lt pl c ty (s = s  glet; d = d  blet; 

t = triplet; q = quartet; sep = septet; m = multiplet; br = broad), coupling constant (Hz), 

integration, and assignment. 
13

C NMR spectra were measured on a JEOL ECA-500 

(125 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent 

resonance employed as the internal standard (deuterochloroform at 77.0 ppm). 

High-resolution mass spectra were recorded by Thermo Fisher Scientific Exactive 

Orbitrap mass spectrometers. Infrared (IR) spectra were recorded on a JASCO FT/IR 

4100 spectrometer. Single crystal X-ray diffraction data were collected at 173 K on a 

   ke  SMART APEX    CCD d ff  ct  ete  w th M  Kα (λ = 0.71073) radiation and 

graphite monochrometer. For thin-layer chromatography (TLC) analysis throughout this 

work, Merck precoated TLC plates (silica gel 60GF254 0.25 mm) were used. 

Visualization was accomplished by UV light (254 nm), anisaldehyde, KMnO4, and 

phosphomolybdic acid.  

 

2. 1 General Procedure Using Method A for Preparation of Indolyl(aryl)iodonium 

Imides (2)  

To prepare PhI(OAc)NTs2 were used DIB (96.6 mg, 0.30 mmol) and Ts2NH (97.6 mg, 

0.3 mmol) in MeCN (1.4 ml) and dichloroethane (0.7 ml). The mixture was stirred at 

room temperature for 30 min. under argon atmosphere. Then, N-pivaloylindole (50.3 mg, 

0.25 mmol) was added, and the solution was stirred at 50 ˚C for 3 h. The solvent was 

removed under reduced pressure. Then, AcOEt (5 ml) and ether (3 ml) were added. The 

mixture was sonicated until precipitation occurred as the white solid, and ether (3 ml) 

was added to the mixture. The solid was filtrated and washed with AcOEt/ether (2:1) 

(15 ml), to give desired product 2a (163.9 mg, 90 % yield). 

 

2. 2 General Procedure Using Method B for Preparation of Indolyl(aryl)iodonium 

Imides (2)  

To prepare PhI(OAc)NTs2 were used DIB (96.6 mg, 0.30 mmol) and Ts2NH (97.6 mg, 

0.3 mmol) in MeCN (1.4 ml) and dichloroethane (0.7 ml). The mxture was stirred at 

room temperature for 30 min. under argon atmosphere. Then, 

5-methoxy-N-pivaloylindole (57.8 mg, 0.25 mmol) was added, and the solution was 

stirred at 50 ˚C for 7 h. The solvent was removed under reduced pressure. Then, AcOEt 

(5 ml) and ether (3 ml) were added. The mixture was sonicated until precipitation 
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occurred as the white solid, and and ether (3 ml) was added to the mixture. The solid 

was filtrated and washed with AcOEt/ether (2:1) (15 ml). The crude product was 

purified by recrystalization from CHCl3/AcOEt, to give desired product 2c (174.5 mg, 

92 % yield). 

 

2. 3 General Procedure Method C for Preparation of Indolyl(aryl)iodonium Imides 

(2) 

To prepare PhI(OAc)NTs2 were used DIB (96.6 mg, 0.30 mmol) and Ts2NH (97.6 mg, 

0.3 mmol) in MeCN (1.4 ml) and dichloroethane (0.7 ml) The mixture was stirred at 

room temperature for 30 min. under argon atmosphere. Then, 6-chloro-N-pivaloylindole 

(58.9 mg, 0.25 mmol) was added, and the solution was stirred at 50 ˚C for 7 h. The 

solvent was removed under reduced pressure. Then, AcOEt (5 ml) and ether (3 ml) were 

added. The mixture was sonicated until precipitation occurred as the white solid, and 

ether (3 ml) was added to the mixture. The solid was filtrated and washed with 

AcOEt/ether (2:1) (15 ml). The crude product was purified by recrystalization from 

acetone/hexane, to give desired product 2k (133.6 mg, 70 % yield). 

 

2. 4 General Procedure Using Method D for Preparation of 

4-Methyl-N-((4-methoxyphenyl)(1-pivaloyl-1H-indol-3-yl)-
3
-iodanyl)-N-tosylbenz

enesulfonamide (2r)  

To prepare ArI(OAc)NTs2 were used 1-(diacetoxyiodo)-4-methoxybenzene (105.6 mg, 

0.3 mmol) and Ts2NH (97.6 mg, 0.3 mmol) in MeCN (1.4 ml) and dichloroethane (0.7 

ml). The mixture was stirred at room temperature for 30 min. under argon atmosphere. 

Then, N-pivaloylindole (50.3 mg, 0.25 mmol) was added, and the solution was stirred at 

50 ˚C for 7 h. The solvent was removed under reduced pressure. Then, AcOEt (3 ml) 

was added. The mixture was added dropwise to ether until the solvent changed clear 

solution to pale white, followed by sonication. Then, ether (1 ml) was added to the 

mixture. The solid was filtrated and washed with AcOEt/ether (1:1) (15 ml), to give 

desired product 2r (141.2 mg, 74 % yield). 

 

2. 5 General Procedure Using Method E for Preparation of 

N-((1-Benzoyl-1H-indol-3-yl)(phenyl)-
3
-iodanyl)-4-methyl-N-tosylbenzenesulfona

mide (2ah) 

To prepare PhI(OAc)NTs2 were used DIB (96.6 mg, 0.30 mmol) and Ts2NH (97.6 mg, 

0.3 mmol) in MeCN (1.4 ml) and dichloroethane (0.7 ml). The mixtue was stirred at 

room temperature for 30 min. under argon atmosphere. Then, N-benzoylindole (55.3 mg, 
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0.25 mmol) was added, and the solution was stirred at 50 ˚C for 7 h. The solvent was 

removed under reduced pressure. Then, AcOEt (3 ml) was added. The mixture was 

added dropwise to ether /hexane (1:1) until the solvent changed clear solution to pale 

white, followed by sonication. Then, ether (1 ml) was added to the mixture. The solid 

was filtrated and washed with AcOEt/hexane (2:1) (15 ml), to give desired product 2ah 

(127.3 mg, 68 % yield). 

 

2. 6 General Procedure Using Method F for Preparation of 

4-Methyl-N-(1-pivaloyl-(3-trifluoromethylphenyl)-1H-indol-3-yl)-
3
-iodanyl)-N-tos

ylbenzenesulfonamide (2aa)  

To prepare ArI(OAc)NTs2 were used 1-(diacetoxyiodo)-3-trifluoromethylbenzene 

(117.0 mg, 0.3 mmol) and Ts2NH (97.6 mg, 0.3 mmol) in MeCN (1.4 ml) and 

dichloroethane (0.7 ml). The mixture was stirred at room temperature for 30 min. under 

argon atmosphere. Then, N-pivaloylindole (50.3 mg, 0.25 mmol) was added, and the 

solution was stirred at 50 ˚C for 7 h. The solvent was removed under reduced pressure. 

Then, AcOEt (3 ml) was added. The mixture was added dropwise to ether /hexane (1:1) 

until the solvent changed clear solution to pale white. The solution was stored overnight 

at -10 ˚C. The solid was filtrated and washed with AcOEt/hexane (2:1) (15 ml), to give 

desired product 2aa (159.1 mg, 85 % yield). 

 

2. 7 General Procedure Using Method G for Preparation of 

N-((5-(1,3-Dioxyindolin-2-yl)-1-pivaloyl-1H-indol-3-yl)(phenyl)-λ
3
-iodanyl)-4-meth

yl-Ntosylbenzenesulfonamide (2j)  

To prepare ArI(OAc)NTs2 were used DIB (96.6 mg, 0.30 mmol) and Ts2NH (97.6 mg, 

0.3 mmol) in MeCN (1.4 ml) and dichloroethane (0.7 ml). The mixture was stirred at 

room temperature for 30 min. under argon atmosphere. Then, 

2-(N-pivaloyl-1H-indol-5-yl)isoindoline-1,3-dione (86.6 mg, 0.25 mmol) was added, 

and the solution was stirred at 50 ˚C for 7 h. The solvent was removed under reduced 

pressure. Then, AcOEt (5 ml) was added, and the mixture was filtrated and washed with 

AcOEt (5 ml). The filtrate was evaporated. Then AcOEt (3 ml) was added. The mixture 

was added dropwise to ether until the solvent changed clear solution to pale white, 

followed by sonicated. Then, ether (1 ml) was added to the mixture. The solid was 

filtrated and washed with AcOEt/ether (1:1) (15 ml), to give desired product 2j (166.0 

mg, 76 % yield). 

 

4-Methyl-N-(phenyl(1-pivaloyl-1H-indol-3-yl)-
3
-iodanyl)-N-tosylbenzenesulfonam
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ide (2a) (Isolated Method : A) : mp. 164 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) 

δ1.44 (s, 9H), 2.20 (s, 6H), 6.87 (d, J=8.0 Hz, 4H), 7.27 (t, J=7.5 Hz, 2H), 7.33 (t, J=7.5 

Hz, 1H), 7.39-7.48 (m, 7H), 8.03 (d, J=7.5 Hz, 2H), 8.45 (d, J=8.3 Hz, 1H), 8.85(s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.4 (3C), 41.7, 86.0, 115.4, 117.6, 119.4, 

125.1, 126.76 (4C), 126.81, 127.7, 128.5 (4C), 131.5 (3C), 134.9 (2C), 135.5, 136.3, 

140.8 (2C), 141.0 (2C), 177.1. IR (neat) 1703, 1444, 1281, 1134, 1281, 1077, 1034 cm
–1

. 

MS (ESI) calcd for C33H33N2O5INaS2 [M+Na]
+
 751.0768, found 751.0754. 

 

Crystal data for 2a: Formula C33H33N2O5S2·2CHCl3, colorless, crystal dimensions 

0.30 × 0.20 × 0.10 mm
3
, prismatic, space group P2 (1), a = 18.254(3) Å, b = 9.5283(15) 

Å, c = 23.967(4) Å, α = 90.00 °, β = 97.187(2) °, γ = 90.00 °, V = 4157.7(11) Å3, Z = 4, 

ρcalc = 1.545 g cm
-3

, F(000) = 1944, μ(M Kα) = 1.298 mm
-1

, T = 173 K. 22389 

reflections collected, 9335 independent reflections with I > 2σ(I) (2θmax = 27.56°), and 

539 parameters were used for the solution of the structure. The non-hydrogen atoms 

were refined anisotropically. R1 = 0.0678 and wR2 = 0.1797. GOF = 1.061. 

Crystallographic data (excluding structure factors) for the structure reported in this 

paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. CCDC-1023214. Copies of the data can be obtained free 

of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. 

code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk]. 

 

 

Figure 1. OPTEP drawing of 2a. 

 

4-Methyl-N-(phenyl(5’-methyl-1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylbenz
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enesulfonamide (2b) (Isolated Method : A) : mp. 173 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.44 (s, 9H), 2.23 (s, 6H), 2.43 (s, 3H), 6.88 (d, J=8.0Hz,4H), 7.19 (s, 

1H), 7.24 (d, J=8.6 Hz, 1H), 7.42-7.48 (m, 1H), 7.45 (d, J=8.0 Hz,4H), 8.06 (d, J=7.8 

Hz, 2H), 8.32 (d, J=8.6 Hz, 1H), 8.78 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.26 

(2C), 21.33, 28.4 (3C), 41.7, 85.4, 115.4, 117.4, 119.0, 126.8 (4C), 127.8, 128.4, 128.5 

(4C), 131.6, 131.7 (2C), 134.5, 134.6 (2C), 135.2, 135.4, 140.7 (2C), 140.9 (2C), 176.9. 

IR (neat) 1699, 1489, 1294, 1131, 1078, 1037, 1014, 806, 760 cm
–1

. MS (ESI) calcd for 

C34H35N2O5INaS2 [M+Na]
+
 765.0924, found 765.0908. 

 

N-((5’-Methoxy-1’-pivaloyl-1’H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4-methyl-N-tosylb

enzenesulfonamide (2c) (Isolated Method : B) : mp. 199 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ1.43 (s, 9H), 2.20 (s, 6H), 3.80 (s, 3H), 6.86 (s, 5H), 6.87 (d, J=8.3 

Hz,4H), 6.99 (dd, J=9.2, 2.3 Hz, 1H), 7.27 (t, J=7.7 Hz, 2H), 7.36-7.48 (m, 5H), 8.09 (d, 

J=7.7 Hz, 2H), 8.33(d, J=9.2 Hz, 1H), 8.79 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 

(2C), 28.4 (3C), 41.6, 55.9, 85.7, 101.6, 115.4, 115.8, 118.6, 126.7 (4C), 128.4 (4C), 

128.8, 130.7, 131.50 (2C), 131.54, 134.9 (2C), 135.6, 140.8 (2C), 141.2 (2C), 176.8. IR 

(neat) 1711, 1471, 1434, 1260, 1201, 1128, 1075, 1039, 802, 737, 664 cm
–1

. MS (ESI) 

calcd for C34H35N2O5INaS2 [M+Na]
+
 781.0873, found 781.0867. 

 

N-((5’-Fluoro-1’-pivaloyl-1’H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4-methyl-N-tosylben

zenesulfonamide (2d) (Isolated Method : A) : mp. 178 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.42 (s, 9H), 2.22 (s, 6H), 6.90 (d, J=8.2 Hz, 4H), 7.05 (dd, J=9.2, 2.3 

Hz, 1H), 7.13 (td, J=9.2, 2.3 Hz, 1H), 7.28 (t, J=7.5 Hz, 1H), 7.43 (d, J=8.2 Hz, 4H) 

7.46 (t, J=7.5 Hz, 1H), 8.06 (d, J=7.5 Hz, 2H), 8.42 (dd, J=9.2, 4.6 Hz, 1H), 8.91 (s, 

1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.4 (3C), 41.7, 85.7, 105.2 (d, 

JC-F=25.0 Hz), 114.7 (d, JC-F=25.0 Hz), 115.6, 119.2, 126.7 (4C), 128.5 (4C), 129.1 (d, 

JC-F=10.7 Hz), 131.56 (2C), 131.63, 132.6 135.1 (2C), 136.9, 141.06 (2C), 141.13 (2C), 

160.2 (d, JC-F=243.2 Hz), 177.0. 
19

F NMR (471 MHz, CDCl3) δ -115.8. IR (neat) 1716, 

1469, 1440, 1280, 1179, 1133, 1077, 1031, 1011, 813, 761, 738, 671 cm
–1

. MS (ESI) 

calcd for C33H32N2O5FINaS2 [M+Na]
+
 769.0674, found 769.0662. 

 

N-((5’-Chloro-1’-pivaloyl-1’H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4-methyl-Ntosylben

zenesulfonamide (2e) (Isolated Method : A) : mp. 186 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.42 (s, 9H), 2.21 (s, 6H), 6.88 (d, J=8.1 Hz, 4H), 7.28 (t, J=7.8 Hz, 

2H), 7.32-7.38 (m, 3H), 7.40 (d, J=8.1 Hz, 4H), 7.47 (t, J=7.8 Hz, 1H), 8.07 (d, J=9.8 

Hz, 2H), 8.37 (d, J=9.8 Hz, 1H), 8.91 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 
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28.3 (3C), 41.7, 85.4, 115.8, 118.8, 118.9, 126.7 (4C), 126.9, 128.5 (4C), 129.2, 130.7, 

131.5 (2C), 131.6, 134.6, 135.1 (2C), 136.7, 141.0 (2C), 141.1 (2C), 177.0. IR (neat) 

1715, 14742, 1260, 1129, 1076, 1044, 810, 763, 735, 665 cm
–1

. MS (ESI) calcd for 

C32H32N2O5ClINaS2 [M+Na]
+
 785.0378, found 785.0367. 

 

N-((5’-Bromo-1’-pivaloyl-1’H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4-methyl-N-tosylben

zenesulfonamide (2f) (Isolated Method : A) : mp. 194 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.43 (s, 9H), 2.22 (s, 6H), 6.87 (d, J=8.1 Hz, 4H), 7.28(t, J=7.8 Hz, 2H), 

7.41 (d, J=8.1 Hz, 4H), 7.46-7.62 (m, 3H), 8.06 (d, J=7.8 Hz, 2H), 8.30 (d, J=7.1 Hz, 

1H), 8.89 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.3 (3C), 41.8, 85.1, 115.7, 

118.4, 119.1, 121.9, 126.7 (4C), 128.5 (4C), 129.5, 129.6, 131.6 (2C), 131.7, 135.1 (3C), 

136.6, 140.87 (2C), 140.93 (2C), 177.0. IR (neat) 1714, 1441, 1281, 1163, 1133, 1081, 

1040, 808, 763, 672 cm
–1

. MS (ESI) calcd for C35H32N2O5BrINaS2 [M+Na]
+
 828.9873, 

found 828.9861. 

 

Methyl 

3-(((4’-methyl-N-tosylphenyl)sulfonamido)(phenyl)-
3
-iodanyl)-1-pivaloyl-1H-indo

le-5-carboxylate (2g) (Isolated Method : A) : mp. 189 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.45 (s, 9H), 2.23 (s, 6H), 3.95 (s, 3H), 6.91 (d, J=8.1 Hz, 4H), 7.30 (t, 

J=7.8 Hz, 2H), 7.44-7.50 (m, 1H), 7.46 (d, J=8.1 Hz,4H), 8.06-8.14 (m, 3H), 8.50 (d, 

J=7.5 Hz, 1H), 8.97 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.3 (2C), 28.3 (3C), 41.9, 

52.4, 86.5, 115.6, 117.6, 121.2, 126.8 (4C), 127.0, 127.7, 127.8, 128.6 (4C), 131.7 (2C), 

131.8, 135.0 (2C), 137.0, 138.9, 140.7 (2C), 141.3 (2C), 166.4, 177.1. IR (neat) 1718, 

1434, 1291, 1263, 1130, 1075, 1041, 764, 738, 665 cm
–1

. MS (ESI) calcd for 

C35H35N2O7INaS2 [M+Na]
+
 809.0823, found 809.0807. 

 

3-(((4’-Methyl-N-tosylphenyl)sulfonamido)(phenyl)-
3
-iodanyl)-1-pivaloyl-1H-indo

l-5-yl pivalate (2h) (Isolated Method : B) : mp. 195 °C (decomp.) 
1
H NMR (500 MHz, 

CDCl3) δ 1.37 (s, 9H), 1.45 (s, 9H), 2.21 (s, 6H), 6.90 (d, J=8.1 Hz, 4H), 7.11 (dd, J=9.2, 

2.3 Hz, 1H), 7.16 (d, J=7.8 Hz, 1H), 7.31 (t, J=7.8 Hz, 2H), 7.44 (d, J=8.1 Hz, 4H), 

7.48 (t, J=7.8 Hz, 1H), 8.08 (d, J=7.8 Hz, 2H), 8.45 (d, J=9.2 Hz, 1H), 8.83 (s, 1H). 
13

C 

NMR (125 MHz, CDCl3) δ 21.2 (2C), 27.2 (3C), 28.3 (3C), 39.1, 41.7, 85.8, 111.9, 

115.8, 118.5, 120.9, 126.7 (4C), 128.5 (4C), 128.7, 129.7, 131.5 (2C), 133.7, 135.1 (2C), 

136.5, 140.8 (2C), 141.3 (2C), 148.4, 176.97, 177.0. IR (neat) 1748, 1712, 1459, 1276, 

1133, 1113, 1078, 1034, 822, 770, 741, 671 cm
–1

. MS (ESI) calcd for C38H41N2O7INaS2 

[M+Na]
+
 851.1292, found 851.1279. 
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N-((5’-Cyano-1’-pivaloyl-1’H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4-methyl-N-tosylben

zenesulfonamide (2i) (Isolated Method : A) : mp. 188 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.43 (s, 9H), 2.23 (s, 6H), 6.87 (d, J=8.0 Hz, 4H), 7.31 (t, J=7.8 Hz, 

2H), 7.35 (d, J=8.0 Hz, 4H), 7.49 (t, J=7.8 Hz, 1H), 7.63 (dd, J=8.9,1.4 Hz,1H), 7.72 (d, 

J=1.4 Hz, 1H), 8.09 (d, J=7.8 Hz, 2H), 8.51 (d, J=8.9 Hz,1H), 9.02 (s,1H). 
13

C NMR 

(125 MHz, CDCl3) δ 21.3 (2C), 28.2 (3C), 41.9, 86.3, 108.5, 115.8, 118.58, 118.62, 

124.1, 126.6 (4C), 128.2, 128.5 (4C), 129.4, 131.7 (2C), 131.9, 135.3 (2C), 137.6, 138.1, 

140.8 (2C), 141.0 (2C), 177.1. IR (neat) 2223, 1721, 1447, 1280, 1133, 1078, 1039, 821, 

763, 672 cm
–1

. MS (ESI) calcd for C34H32N3O5INaS2 [M+Na]
+
 776.0720, found 

776.0707. 

 

N-((5’-(1”,3”-dioxyindolin-2”-yl)-1’-pivaloyl-1’H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4

-methyl-N-tosylbenzenesulfonamide (2j) (Isolated Method : G) : mp. 190 °C 

(decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.43 (s, 9H), 2.19 (s, 6H), 6.85 (d, J=8.1 Hz, 

4H), 7.29 (t, J=7.8 Hz, 2H), 7.38 (d, J=8.1 Hz, 4H), 7.41-7.50 (m, 2H), 7.62 (d, J=1.8 

Hz, 1H), 7.76-7.82 (m, 2H), 7.86-7.94 (m, 2H) , 8.17 (d, J=7.8 Hz, 2H), 8.51 (d, J=8.9 

Hz, 1H), 8.91 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.3 (3C), 41.7, 86.6, 

116.0, 117.7,118.3, 123.7 (2C), 125.0, 126.6 (4C), 128.3, 128.4 (4C), 128.6, 129.8, 

131.6 (4C), 134.5 (2C), 135.2, 135.4 (2C), 136.3, 140.8 (2C), 141.3 (2C), 167.1 (2C), 

177.0.. IR (neat) 1719, 1468, 1377, 1279, 1132, 1077, 1036, 814, 751, 716, 669 cm
–1

. 

MS (ESI) calcd for C27H22N2O3I [M-Ts2N
-
]

+
 549.0670, found 549.0657. 

 

N-((6’-Chloro-1’-pivaloyl-1’H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4-methyl-N-tosylben

zenesulfonamide (2k) (Isolated Method : C) : mp. 143 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.42 (s, 9H), 2.21 (s, 6H), 6.87 (d, J=8.2 Hz, 4H), 7.24-7.30 (m, 3H), 

7.33 (d, J=8.3 Hz, 1H), 7.38 (d, J=8.2 Hz, 4H), 7.46 (t, J=7.5 Hz, 1H), 8.10 (d, J=7.5 

Hz, 2H), 8.48 (d, J=1.7 Hz,1 H), 8.83 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 

28.3 (3C), 41.7, 86.3, 115.7, 117.8, 120.2, 125.6, 126.4, 126.6 (4C), 128.4 (4C), 131.5 

(2C), 131.6, 133.0, 135.1 (2C), 135.9, 136.4, 141.0 (2C), 141.2 (2C), 177.0. IR (neat) 

1714, 1421, 1265, 1161, 1131, 1077, 1042, 805, 766, 670 cm
–1

. MS (ESI) calcd for 

C33H32N2O5ClINaS2 [M+Na]
+
 785.0378, found 785.0364. 

 

N-((7’-Methyl-1-pivaloyl-’1H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4-methyl-N-tosylben

zenesulfonamide (2l) (Isolated Method : A) : mp. 171 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.46 (s, 9H), 2.19 (s, 6H), 2.29 (s, 3H), 6.86 (d, J=8.1 Hz, 4H), 7.20 (d, 
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J=6.9 Hz, 1H), 7.21-7.31 (m, 5H), 8.04 (d, J=7.5 Hz, 2H), 8.63 (s, 1H). 
13

C NMR (125 

MHz, CDCl3) δ 21.0, 21.2 (2C), 28.8 (3C), 42.7, 84.0, 115.8, 117.4, 124.8, 125.7, 126.8 

(4C), 128.4 (4C), 128.7, 128.9, 131.4, 131.5 (2C), 134.6 (2C), 135.3, 135.6, 140.7 (2C), 

141.3 (2C), 178.8. IR (neat) 1724, 1442, 1276, 1131, 1077, 1035, 811, 762, 738, 672 

cm
–1

. MS (ESI) calcd for C34H35N2O5INaS2 [M+Na]
+
 765.0924, found 765.0913. 

 

N-((2’-Methyl-1’-pivaloyl-1’H-indol-3’-yl)(phenyl)-λ
3
-iodanyl)-4-methyl-N-tosylbe

nzenesulfonamide (2m) (Isolated Method : D) : mp. 142 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.32 (s, 9H), 2.25 (s, 6H), 2.68 (s, 3H), 6.91 (d, J=8.0 Hz, 4H), 7.24 (d, 

J=7.6 Hz, 1H), 7.27-7.34 (m, 4H), 7.42-7.48 (m, 1H), 7.45 (d, J=8.2 Hz, 4H), 7.51 (d, 

J=7.6 Hz, 1H), 7.89 (d, J=8.5 Hz, 2H). 
13

C NMR (125 MHz, CDCl3) δ 14.4, 21.3 (2C), 

27.9 (3C), 44.8, 82.0, 112.2, 115.9, 119.4, 123.5, 124.5, 126.7 (4C), 127.6, 128.4 (4C), 

131.4, 131.7 (2C), 133.5 (2C), 135.8, 140.5 (2C), 141.2 (2C), 143.1, 185.2. IR (neat) 

1730, 1451, 1263, 1131, 1082, 1035 cm
–1

. MS (ESI) calcd for C34H35N2O5INaS2 

[M+Na]
+
 765.0924, found 765.0908. 

 

N-(Phenyl(1-pivaloyl-1H-indol-3-yl)-
3
-iodanyl)-N-(phenylsulfonyl)benzenesulfona

mide (2n) (Isolated Method : A) : mp. 180 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 

1.43 (s, 9H), 7.10 (t, J=8.0 Hz, 4H), 7.22 (t, J=7.7 Hz, 2H), 7.28 (t, J=8.0 Hz, 2H), 7.35 

(t, J=7.7 Hz, 1H), 7.40-7.49 (m, 3H), 7.55 (d, J=8.0 Hz,4H), 8.07 (d, J=7.7 Hz, 2H), 

8.46 (d, J=8.1 Hz, 1H), 8.84 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 28.3 (3C), 41.7, 

85.9, 115.3, 117.7, 119.3, 125.2, 126.6 (4C), 126.9, 127.7, 127.9 (4C), 130.6 (3C), 131.6 

(2C), 131.7, 134.9 (2C), 135.4, 136.3, 143.9 (2C), 177.1. IR (neat) 1712, 1444, 1279, 

1131, 1078, 1038, 793, 744, 720, 688 cm
–1

. MS (ESI) calcd for C31H29N2O5INaS2 

[M+Na]
+
 723.0455, found 723.0444. 

 

4-Fluoro-N-((4’-fluorophenyl)sulfonyl)-N-(phenyl(1”-pivaloyl-1”H-indol-3”-yl)-
3
-i

odanyl)benzenesulfonamide (2o) (Isolated Method : E) : mp. 155 °C (decomp.) 
1
H 

NMR (500 MHz, CDCl3) δ 1.43 (s, 9H), 6.77 (dd, J=7.6, 7.2, Hz, 4H), 7.31 (t, J=8.1 Hz, 

2H), 7.36 (t, J=8.1 Hz, 1H), 7.40-7.53 (m, 7H), 8.05 (d, J=8.1 Hz, 2H), 8.47 (d, J=8.3 

Hz, 1H), 8.78 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 28.3 (3C), 41.7, 85.7, 114.9 (d, 

JC-F=22.7 Hz, 4C), 115.0, 117.7, 119.2, 125.3, 127.1, 127.6, 129.2 (d, JC-F=9.5 Hz, 4C), 

131.7 (2C), 131.8, 134.8 (2C), 135.3, 136.3, 140.0 (2C), 163.9 (d, JC-F=250.4 Hz, 2C), 

176.9. 
19

F NMR (471 MHz, CDCl3) δ -108.9. IR (neat) 1712, 1444, 1280, 1219, 1133, 

1081, 1039 cm
–1

. MS (ESI) calcd for C31H27N2O5F2INaS2 [M+Na]
+
 759.0266, found 

759.0273. 
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N-(Phenyl(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-(propylsulfonyl)propane-1-su

lfonamide (2p) (Isolated Method : E) : mp. 97 °C (decomp.) 
1
H NMR (500 MHz, 

CDCl3) δ 0.87 (t, J=7.5 Hz, 6H), 1.56 (s, 9H), 1.60-1.70 (m, 4H), 2.95-3.00 (m, 4H), 

7.36-7.50 (m, 2H), 7.54 (t, J=7.5Hz, 1H), 8.11 (d, J=7.5 Hz, 2H), 8.49 (d, J=8.6 Hz, 1H), 

8.65 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 13.0 (2C), 17.5 (2C), 28.5 (3C), 41.8, 56.1 

(2C), 86.8, 115.3, 116.6, 117.8, 119.3, 125.4, 127.3 (4C), 127.5, 131.9 (2C), 132.0, 

134.46 (2C), 134.53, 136.4, 176.7. IR (neat) 1706, 1442, 1303, 1270, 1095, 1046, 948, 

822, 741, 608 cm
–1

. MS (ESI) calcd for C25H33N2O5INaS2 [M+Na]
+
 655.0768, found 

655.0771. 

 

4-Methyl-N-(methylsulfonyl)-N-(phenyl(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)be

nzenesulfonamide (2q) (Isolated Method : A) : mp. 150 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.48 (s, 9H), 2.23 (s, 3H), 2.80 (s, 3H), 6.99 (d, J=7.5 Hz, 2H), 

7.30-7.38 (m, 3H), 7.40-7.52 (m, 3H), 7.56 (d, J=7.5 Hz, 2H), 8.07 (d, J=8.3 Hz, 2H), 

8.47 (d, J=8.6 Hz, 1H), 8.75 (d, J=8.3 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.3, 

28.4 (3C), 41.7, 42.7, 86.2, 115.7, 117.7, 119.3, 125.2, 126.7 (2C), 127.0, 127.6, 128.7 

(2C), 131.67 (2C), 131.73, 134.7 (2C), 135.1, 136.3, 141.2, 141.6, 177.0. IR (neat) 1710, 

1443, 1267, 1120, 1080, 1051, 823, 747, 717 cm
–1

. MS (ESI) calcd for 

C27H29N2O5INaS2 [M+Na]
+
 675.0455, found 675.0450. 

 

4-Methyl-N-((4”-methoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylb

enzenesulfonamide (2r) (Isolated Method : D) : mp. 180 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.43 (s, 9H), 2.20 (s, 6H), 3.74 (s, 3H), 6.75 (d, J=9.2Hz, 2H), 6.88 (d, 

J=8.0Hz, 4H), 7.34 (t, J=7.5 Hz, 1H), 7.38-7.48 (m, 2H), 7.43 (d, J=8.0 Hz, 4H), 8.02 

(d, J=9.2Hz, 2H), 8.45 (d, J=7.5 Hz, 1H), 8.83 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 

21.2 (2C), 28.4 (3C), 41.9, 55.5, 86.6, 103.9, 117.2 (2C), 117.7, 119.4, 125.0, 126.67, 

126.71 (4C), 127.7, 128.4 (4C), 135.0, 136.2, 137.1 (2C), 140.8 (2C), 141.4 (2C), 162.2, 

177.1. IR (neat) 1702, 1443, 1292, 1259, 1138, 1078, 1031, 1113, 814, 746, 671 cm
–1

. 

MS (ESI) calcd for C33H34N2O6INaS2 [M+Na]
+
 781.0873, found 781.0865. 

 

4-Methyl-N-((4”-chlorphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylbenz

enesulfonamide (2s) (Isolated Method : A) : mp. 190 °C (decomp.) 
1
H NMR (500 MHz, 

CDCl3) δ 1.40 (s, 9H), 2.20 (s, 6H), 6.87 (d, J=8.1 Hz, 4H), 7.17 (d, J=8.6 Hz, 2H), 

7.31-7.40 (m, 5H), 8.04 (d, J=8.6 Hz, 2H), 8.45 (d, J=9.2 Hz, 1H), 8.87 (s, 1H). 
13

C 

NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.3 (3C), 41.7, 86.6, 112.7, 117.7 119.3, 125.1, 
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126.6 (4C), 126.8, 127.7, 128.5 (4C), 131.5 (2C), 135.6, 136.2, 136.6 (2C), 138.4, 141.0 

(2C), 141.2 (2C), 177.1. IR (neat) 1703, 1443, 1281, 1136, 1077, 1029, 813, 754, 670 

cm
–1

. MS (ESI) calcd for C33H32N2O5ClINaS2 [M+Na]
+
 785.0378, found 785.0361. 

 

4-Methyl-N-((4”-cyanophenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylbenz

enesulfonamide (2t) (Isolated Method : D) : mp. 167 °C (decomp.) 
1
H NMR (500 MHz, 

CDCl3) δ 1.36 (s, 9H), 2.22 (s, 6H), 6.84 (d, J=8.3 Hz, 4H), 7.28 (d, J=8.3 Hz, 4H), 7.34 

(t, J=8.5 Hz, 1H), 7.39-7.49 (m, 4H), 8.24 (d, J=8.6 Hz, 2H), 8.46 (d, J=8.5 Hz, 1H), 

8.90 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.3 (3C), 41.7, 86.5, 115.3, 

117.0, 117.7, 119.2, 120.0, 125.3, 126.5 (4C), 127.0, 127.7, 128.5 (4C), 134.2 (2C), 

135.7 (2C), 136.0, 136.2, 140.7 (2C), 141.2 (2C), 177.0. IR (neat) 2232, 1714, 1445, 

1269, 1133, 1078, 1036, 814, 749, 671 cm
–1

. MS (ESI) calcd for C34H32N3O5INaS2 

[M+Na]
+
 776.0720, found 776.0701. 

 

4-Methyl-N-((4”-nitrophenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylbenz

enesulfonamide (2u) (Isolated Method : A) : mp. 179 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.38 (s, 9H), 2.21 (s, 6H), 6.84 (d, J=8.1 Hz, 4H), 7.31 (d, J=8.1 Hz, 

4H), 7.35 (t, J=7.5 Hz, 1H), 7.42-7.49 (m, 2H), 8.28 (dt, J=9.2, 2.0 Hz, 2H), 8.47 (d, 

J=7.5 Hz, 1H), 8.92 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.3 (3C), 41.7, 

86.5, 117.8, 119.2, 125.3, 125.8 (2C), 126.6 (4C), 127.0, 127.6, 128.5 (4C), 136.08, 

136.14 (2C), 136.3, 140.7 (2C), 141.4 (2C), 149.3, 177.1. IR (neat) 1706, 1525, 1289, 

1137, 1078, 1028, 1009, 819, 768, 671 cm
–1

. MS (ESI) calcd for C33H32N3O7INaS2 

[M+Na]
+
 796.0619, found 796.0603. 

 

4-Methyl-N-((2”-methoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylb

enzenesulfonamide (2v) (Isolated Method : A) : mp. 204 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.45 (s, 9H), 2.25 (s, 6H), 3.97 (s, 3H), 6.85-6.93 (m, 5H), 6.99 (dd, 

J=8.3, 1.5 Hz, 1H), 7.38 (t, J=8.6 Hz, 1H), 7.40-7.52 (m, 7H), 7.59 (dd, J=8.3, 1.5 Hz, 

1H), 8.51 (d, J=8.6 Hz, 1H), 8.87 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.3 (2C), 

28.4 (3C), 41.8, 57.0, 82.8, 103.9, 112.2, 117.7, 119.6, 124.0, 125.2, 126.6 (4C), 127.0, 

127.6, 128.4 (4C), 133.8, 134.0, 136.3, 136.5, 140.7 (2C), 141.2 (2C), 156.3, 177.0. IR 

(neat) 1712, 1474, 1277, 1127, 1079, 1014, 751, 671 cm
–1

. MS (ESI) calcd for 

C34H35N2O6INaS2 [M+Na]
+
 781.0873, found 781.0853. 

 

4-Methyl-N-((2”-n-butoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylb

enzenesulfonamide (2w) (Isolated Method : E): mp. 165 °C (decomp.) 
1
H NMR (500 
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MHz, CDCl3) δ 1.00 (t, J=7.5 Hz, 3H), 1.44 (s, 9H), 1.53 (sext, J=7.5 Hz, 2H), 1.87 

(quin, J=7.5 Hz, 2H), 2.26 (s, 6H), 4.14 (t, J=7.5 Hz, 2H), 6.82-6.88 (m, 1H), 6.89 (d, 

J=8.0 Hz, 4H), 6.98 (d, J=7.5 Hz, 1H), 7.37 (t, J=7.5 Hz, 1H), 7.40-7.52 (m, 4H), 7.44 

(d, J=8.0 Hz,4H), 8.52 (d, J=8.6 Hz, 1H), 8.88 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 

13.8, 19.1, 21.3 (2C), 28.4 (3C), 30.8, 41.8, 70.1, 82.4, 103.9, 113.0, 117.7, 119.5, 124.0, 

125.2, 126.9 (4C), 127.0, 127.6, 128.3 (4C), 133.6 (3C), 136.3, 136.4 (2C), 140.6, 141.4, 

155.8, 177.1. IR (neat) 1710, 1461, 1281, 1129, 1076, 1029, 1010 cm
–1

. MS (ESI) calcd 

for C37H41N2O6INaS2 [M+Na]
+
 823.1343, found 823.1335. 

 

N-((2”-isobutoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methyl-N-tosyl

benzenesulfonamide (2x) (Isolated Method : C) : mp. 156 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ1.12 (d, J=6.6 Hz, 6H), 1.44 (s, 9H), 2.19-2.32 (m, 7H), 3.94 (d, J=6.6 

Hz, 1H), 6.87-6.94 (m, 5H), 7.01 (d, J=8.5 Hz, 1H), 7.36-7.48 (m, 8H), 7.51 (d, J=8.5 

Hz, 1H), 8.55 (d, J=8.3 Hz, 1H), 8.92 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 19.4 (2C), 

21.3 (2C), 28.1, 28.4 (3C), 41.8, 76.5, 82.2, 103.7, 113.1, 117.8, 119.4, 124.1, 125.3, 

126.6 (4C), 127.1, 127.5, 128.4 (4C), 133.0, 133.5, 136.3, 136.3, 140.7 (2C), 141.5 (2C), 

155.8, 177.1. IR (neat) 1712, 1446, 1281, 1132, 1078, 1012, 757, 669 cm
–1

. MS (ESI) 

calcd for C37H41N2O6INaS2 [M+Na]
+
 823.1343, found 823.1324. 

 

N-((2”-(octyloxy)phenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methyl-N-tosyl

benzenesulfonamide (2y) (Isolated Method : A) : mp. 136 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 0.89 (t, J=7.2 Hz, 3H), 1.22-1.52 (m, 19H), 1.90 (quin, J=7.2 Hz, 2H), 

2.27 (s, 6H), 4.14 (t, J=7.2 Hz, 2H), 6.86-6.94 (m, 5H), 6.99 (dd, J=8.3, 1.2 Hz, 1H), 

7.38 (t, J=8.6 Hz, 1H), 7.41-7.53 (m, 8H), 8.54 (d, J=8.6 Hz, 1H), 8.89 (s, 1H). 
13

C 

NMR (125 MHz, CDCl3) δ 14.3, 21.3 (2C), 22.6, 25.8, 28.4 (3C), 28.8, 29.1, 29.3, 31.8, 

41.7, 70.4, 82.6, 103.9, 113.0, 117.8, 119.5, 123.9, 125.2, 126.6 (4C), 127.0, 127.6, 

128.4 (4C), 133.6 (2C), 136.3, 136.4, 140.7 (2C), 141.4 (2C), 155.8, 177.0. IR (neat) 

1707, 1474, 1292, 1135, 1080, 1032, 759, 671 cm
–1

. MS (ESI) calcd for 

C41H49N2O6INaS2 [M+Na]
+
 879.1969, found 879.1974. 

 

N-((2”-(2’”-methoxyethoxy)phenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-met

hyl-N-tosylbenzenesulfonamide (2z) (Isolated Method : A) : mp. 78-82 °C 
1
H NMR 

(500 MHz, CDCl3) δ 1.46 (s, 9H), 2.26 (s, 6H), 3.47 (s, 3H), 3.82-3.92 (m, 2H), 

4.28-4.40 (m, 2H), 6.84-6.96 (m, 5H), 7.07 (dd, J=8.3, 1.2 Hz, 1H), 7.38 (t, J=8.6 Hz, 

1H), 7.41-7.52 (m, 7H), 7.58 (dd, J=8.3, 1.2 Hz, 1H), 8.51 (d, J=8.6 Hz, 1H), 8.89 (s, 

1H). 
13

C NMR (125 MHz, CDCl3) δ21.3 (2C), 28.4 (3C), 41.7, 59.3, 70.2, 70.6, 83.4, 
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99.9, 105.6, 114.3, 117.7, 119.6, 124.5, 125.2, 126.6 (4C), 126.9, 127.7, 128.3 (4C), 

133.7, 133.7, 134.0, 136.3, 140.7 (2C), 141.3 (2C), 156.0, 177.1. IR (neat) 1706, 1474, 

1294, 1135, 1080, 1033, 759, 672 cm
–1

. MS (ESI) calcd for C36H40N2O7INaS2 [M+Na]
+
 

825.1136, found 825.1121. 

 

4-Methyl-N-(1’-pivaloyl-(3”-trifluoromethylphenyl)-1’H-indol-3’-yl)-
3
-iodanyl)-N

-tosylbenzenesulfonamide (2aa) (Isolated Method : E): mp. 139 °C (decomp.) 
1
H 

NMR (500 MHz, CDCl3) δ 1.42 (s, 9H), 2.20 (s, 6H), 6.85 (d, J=8.1 Hz, 4H), 7.31-7.42 

(m, 2H), 7.42-7.48 (m, 2H), 7.67 (d, J=7.9 Hz, 1H), 8.34 (d, J=7.9 Hz, 1H), 8.38 (s,1H), 

8.46 (d, J=8.3 Hz, 1H), 8.88 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.3 

(3C), 41.7, 87.1, 115.9, 117.7, 119.3, 120.3 (q, JC-F=271.8 Hz, 1C), 125.2, 125.2, 126.6 

(4C), 127.7, 128.2 (2C), 128.5 (4C), 131.7, 132.9 (q, JC-F=33.4 Hz, 1C), 135.7, 136.2, 

138.6, 140.9 (2C), 141.0 (2C), 177.1.
 19

F NMR (471 MHz, CDCl3) δ -62.6. IR (neat) 

1706, 1443, 1292, 1136, 1077, 1033, 800, 748, 671 cm
–1

. MS (ESI) calcd for 

C34H32N2O5F3INaS2 [M+Na]
+
 819.0642, found 819.0634. 

 

4-Methyl-N-((3”,5”-dichlorophenlyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tos

ylbenzenesulfonamide (2ab) (Isolated Method : A) : mp. 183 °C (decomp.) 
1
H NMR 

(500 MHz, CDCl3) δ 1.44 (s, 9H), 2.23 (s, 6H), 6.90 (d, J=8.0 Hz, 4H), 7.35-7.45 (m, 

3H), 7.39 (d, J=8.6 Hz, 1H), 7.47 (td, J=8.6, 1.5 Hz, 1H), 7.95 (d, J=1.8 Hz, 2H), 8.48 

(d, J=8.6, Hz, 1H), 8.87 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.3 (2C), 28.4 (3C), 

41.8, 87.1, 115.4, 117.7, 119.3, 125.3, 126.7 (4C), 127.0, 127.7, 128.6 (4C), 132.0, 

132.7 (2C), 135.9, 136.3, 136.6 (2C), 140.8 (2C), 141.2 (2C), 177.1. IR (neat) 1714, 

1444, 1283, 1135, 1077, 1031, 1012, 800, 745, 672 cm
–1

. MS (ESI) calcd for 

C33H31N2O5Cl2INaS2 [M+Na]
+
 818.9988, found 818.9987. 

 

4-Methyl-N-((3”,5”-bis(trifluoromethyl)phenlyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iod

anyl)-N-tosylbenzenesulfonamide (2ac) (Isolated Method : E) : mp. 156 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.42 (s, 9H), 2.20 (s, 6H), 6.83 (d, J=8.0 Hz, 4H), 7.26 (d, 

J=8.0 Hz, 4H), 7.40 (t, J=7.8 Hz, 1H), 7.45-7.52 (m, 2H), 7.86 (s,1H), 8.47 (d, J=7.8 

Hz,1H), 8.59 (s, 1H), 8.90 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2 (2C), 28.3 (3C), 

41.7, 87.8, 116.9, 117.7, 119.2, 121.8 (q, JC-F=271.9 Hz, 2C), 125.1, 125.3, 126.5 (4C), 

127.1, 127.6, 128.5 (4C), 133.5 (q, JC-F=34.6 Hz, 2C), 135.1 (2C), 136.0, 136.2, 140.4 

(2C), 141.2 (2C), 177.1.
 19

F NMR (471 MHz, CDCl3) δ -62.8. IR (neat) 1715, 1342, 

1273, 1152, 1129, 1077, 1038, 812, 753, 658 cm
–1

. MS (ESI) calcd for 

C35H31N2O5F6INaS2 [M+Na]
+
 887.0515, found 887.0511. 
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Methyl 

3-((3”,5”-dichlorophenyl)((4’-methyl-N-tosylphenyl)sulfonamido)-
3
-iodanyl)-1-piv

aloyl-1H-indole-2-carboxylate (2ad) (Isolated Method : A) : mp. 178 °C (decomp.) 
1
H 

NMR (500 MHz, CDCl3) δ 1.25 (s, 9H), 2.26 (s, 6H), 4.09 (s, 3H), 6.88 (d, J=8.1, Hz, 

4H), 7.28 (d, J=8.1 Hz, 4H), 7.34 (d, J=8.3 Hz, 1H), 7.37-7.42 (m, 2H), 7.50 (t, J=8.3, 

Hz, 1H), 7.77 (d, J=8.3 Hz, 1H), 7.98 (d, J=2.0 Hz, 2H), 8.89 (s, 1H). 
13

C NMR (125 

MHz, CDCl3) δ21.3 (2C), 27.9 (3C), 45.5, 53.9, 87.9, 112.6, 117.4, 122.1, 124.8, 126.7 

(4C), 127.8, 128.2, 128.4 (4C), 130.2, 132.0, 132.5 (2C), 136.3, 136.6 (2C), 140.2 (2C), 

140.8 (2C), 159.5, 182.7. IR (neat) 1739, 1710, 1510, 1273, 1156, 1134, 1079, 1030, 

761, 652 cm
–1

. MS (ESI) calcd for C35H33N2O7INaS2 [M+Na]
+
 877.0043, found 

877.0025. 

 

N-((2”-methoxyphenlyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-mesylmethanes

ulfonamide (2ae) (Isolated Method : F) : mp. 178 °C (decomp.) 
1
H NMR (500 MHz, 

CDCl3) δ 1.58 (s, 9H), 2.81 (s, 6H), 4.02 (s, 3H), 6.95 (t, J=8.3 Hz, 1H), 7.03 (d, J=8.3 

Hz, 1H), 7.40 (t, J=8.0 Hz, 1H), 7.45-7.54 (m, 3H), 7.62 (d, J=8.3 Hz, 1H), 8.51 (d, 

J=8.0 Hz, 1H), 8.73 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.3 (2C), 28.5 (3C), 41.8, 

42.2 (2C), 57.0, 83.6, 104.6, 112.4, 117.7, 119.5, 124.0, 125.3, 127.2, 127.4, 134.2, 

135.9, 136.2, 156.3, 176.8. IR (neat) 1710, 1474, 1284, 1105, 1037, 832, 756, 701 cm
–1

. 

MS (ESI) calcd for C22H27N2O6INaS2 [M+Na]
+
 629.0247, found 629.0263. 

 

N-(benzylsulfonyl)-N-((2”-methoxyphenlyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl

)- 1-phenylmethanesulfonamide (2af) (Isolated Method : E) : mp. 139 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.54 (s, 9H), 4.37 (s, 4H), 6.80 (t, J=8.3 Hz, 1H), 6.90 (d, 

J=8.3 Hz, 1H), 6.95 (t, J=7.5 Hz, 2H), 7.10 (t, J=7.5 Hz, 4H), 7.21 (d, J=8.3 Hz, 1H), 

7.32 (t, J=8.0 Hz, 1H), 7.36 (d, J=8.0 Hz, 1H), 7.38-7.49 (m, 6H), 8.39 (s, 1H), 8.45 (d, 

J=8.0 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 28.5 (3C), 41.7, 56.7, 59.6 (2C), 83.8, 

104.1, 112.1, 117.7, 119.6, 123.6, 124.9, 126.8, 127.1, 127.3 (2C), 127.8 (4C), 131.5 

(4C), 132.0 (2C), 133.9, 134.7, 135.4, 136.1, 156.3, 176.6. IR (neat) 1712, 1474, 1442, 

1281, 1106, 1027, 748, 697 cm
–1

. MS (ESI) calcd for C34H35N2O6INaS2 [M+Na]
+
 

781.0873, found 781.0874. 

 

N-((1’-t-butoxylcarbonyl-1’H-indol-3’-yl)(phenyl)-
3
-iodanyl)-4-methyl-N-tosylben

zenesulfonamide (2ag) (Isolated Method : A) : mp. 104 °C (decomp.) 
1
H NMR (500 

MHz, CDCl3) δ 1.67 (s, 9H),2.26 (s, 6H),6.94 (d, J=8.0 Hz,4H), 7.30-7.39 (m, 3H), 

7.40-7.55 (m, 7H), 8.07 (d, J=7.5 Hz, 2H), 8.20 (d, J=8.3 Hz, 1H), 8.42 (s, 1H). 
13

C 
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NMR (125 MHz, CDCl3) δ 21.3 (2C), 28.0 (3C), 84.7, 86.2, 115.8, 116.1, 119.8, 124.7, 

126.5, 126.8 (4C), 128.5 (4C), 128.6, 131.6, 131.7 (2C), 134.5 (2C), 135.1, 135.3, 141.0 

(4C), 147.8. IR (neat) 1743, 1450, 1255, 1134, 1080, 1036 cm
–1

. MS (ESI) calcd for 

C33H33N2O6INaS2 [M+Na]
+
 767.0717, found 767.0718. 

 

N-((1’-Benzoyl-1’H-indol-3’-yl)(phenyl)-
3
-iodanyl)-4-methyl-N-tosylbenzenesulfo

namide (2ah) (Isolated Method : E) : mp. 161 °C (decomp.) 
1
H NMR (500 MHz, 

CDCl3) δ 2.21 (s, 6H), 6.85 (d, J=8.1 Hz, 4H), 7.26 (t, J=7.7 Hz, 2H),7.37 (d, J=8.0 

Hz,4H), 7.34-7.55 (m, 10H), 7.61 (t, J=7.5 Hz, 1H), 7.69 (d, J=7.2 Hz, 2H), 8.00 (d, 

J=7.7 Hz, 2H), 8.22 (s, 1H), 8.38 (d, J=8.4 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 

21.2 (2C), 86.7, 115.6, 116.7, 119.9, 125.5, 126.7 (4C), 128.4 (4C), 128.9, 129.2 (2C), 

129.9 (2C), 131.5 (2C), 132.0, 133.2, 134.7 (2C), 135.7, 136.8, 140.7 (2C), 141.1 (2C), 

167.9. IR (neat) 1695, 1445, 1282, 1133, 1081, 1029, 1010, 808, 761, 664 cm
–1

.MS 

(ESI) calcd for C35H29N2O5INaS2 [M+Na]
+
 771.0455, found 771.0448. 

 

4-Methyl-N-(phenyl(1’-tosyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylbenzenesulfonami

de (2ai) (Isolated Method : A) : mp. 151 °C (decomp.) 
1
H NMR (500 MHz, DMSO-d6) 

δ2.29 (s,9H), 7.12 (d, J=8.0 Hz, 4H), 7.40 (t, J=8.0 Hz, 2H), 7.43-7.49 (m, 4H), 7.52 (d, 

J=8.0 Hz, 4H), 7.58 (d, J=7.2 Hz, 1H), 7.82 (d, J=8.0 Hz, 1H), 7.92 (d, J=8.0 Hz, 2H), 

8.00 (d, J=8.4 Hz, 1H), 8.26 (d, J=7.8 Hz, 2H), 9.03 (s, 1H). 
13

C NMR (125 MHz, 

CDCl3) δ 20.8 (2C), 21.1, 90.3, 113.7, 117.3, 120.8, 125.2, 126.1 (4C), 126.9, 127.1 

(2C), 128.2 (4C), 128.6, 130.6 (2C), 131.7 (2C), 132.0, 133.1, 133.4, 134.7 (2C), 135.0, 

139.5 (2C), 143.8 (2C), 146.6. IR (neat) 1384, 1283, 1136, 1081, 1030, 1010, 812, 762, 

672 cm
–1

. MS (ESI) calcd for C35H31N2O6INaS3 [M+Na]
+
 821.0267, found 821.0267. 

 

4-Methyl-N-(phenyl(1-pivaloyl-4’,5’,6’,7’-tetrahydro-1’H-indol-3’-yl)-
3
-iodanyl)-

N-tosylbenzenesulfonamide (4a) (Isolated Method : E) : mp. 129 °C (decomp.) 
1
H 

NMR (500 MHz, CDCl3) δ 1.38 (s, 9H), 1.63-1.73 (m, 4H), 2.24-2.29 (m, 2H), 2.28 (s, 

6H), 2.77-2.83 (m, 2H), 6.97 (d, J=8.0 Hz, 4H), 7.36 (t, J=7.8 Hz, 2H),7.49 (d, J=8.0 

Hz, 4H), 7.52 (t, J=7.8 Hz, 1H), 7.95 (d, J=7.8 Hz, 2H), 8.17 (s, 1H). 
13

C NMR (125 

MHz, CDCl3) δ 21.3 (2C), 22.0, 22.6, 22.9, 25.4, 28.4 (3C), 41.8, 89.3, 122.4, 126.8 

(4C), 128.2, 128.4 (4C), 131.5, 131.6 (2C), 134.3, 134.4 (2C), 140.6 (2C), 141.6 (2C), 

177.1. IR (neat) 1709, 1279, 1139, 1079, 1032, 1012 cm
–1

. MS (ESI) calcd for 

C33H37N2O5INaS2 [M+Na]
+
 755.1081, found 755.1060. 
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Ethyl 

4-(((4’-methyl-N-tosylphenyl)sulfonamido)(phenyl)-
3
-iodanyl)-3,5-dimethyl-1-piv

aloyl-pyrrole-2-carboxylate (4b) (Isolated Method : F) : mp. 144-147 °C 
1
H NMR 

(500 MHz, CDCl3) δ 1.21 (s, 9H), 1.34 (t, J=7.2 Hz, 3H), 2.27 (s, 6H), 2.46 (s, 2H), 

6.97 (br, 2H), 6.95 (d, J=8.0 Hz, 4H), 7.34 (t, J=7.5 Hz, 2H), 7.45-7.52 (m, 5H), 7.81 (d, 

J= 7.5 Hz, 2H). 
13

C NMR (125 MHz, CDCl3) δ 13.7, 14.3, 21.3 (2C), 27.9 (3C), 45.3, 

61.5, 93.4, 115.5, 122.3, 126.8 (4C), 128.4 (4C), 130.5, 131.4, 133.5 (2C), 139.2, 140.6 

(2C), 141.0 (2C), 160.9, 183.5. IR (neat) 1754, 1697, 1408, 1283, 1130, 1039, 822, 750, 

665 cm
–1

. MS (ESI) calcd for C34H39N2O7INaS2 [M+Na]
+
 801.1136, found 801.1133. 

 

4-Methyl-N-((3’,5’-dimethyl-1’-pivaloyl-pyrrazol-4’-yl)(phenyl)-
3
-iodanyl)-N-tosy

lbenzenesulfonamide (4c) (Isolated Method : F) : mp. 91-95 °C
 1

H NMR (500 MHz, 

CDCl3) δ 1.46 (s, 9H), 2.29 (s, 6H), 2.40 (s, 3H), 2.74 (s, 3H), 3.93 (s, 3H), 6.93-6.99 

(m, 5H), 7.01 (d, J=8.0 Hz, 1H), 7.47 (d, J=8.3 Hz, 4H), 7.52 (t, J=8.0 Hz, 1H), 7.71 (d, 

J= 8.0 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 13.6, 15.9, 21.3 (2C), 27.7 (3C), 42.6, 

57.0, 89.6, 104.5, 112.5, 123.8, 126.7 (4C), 128.4 (4C), 134.3, 134.9, 140.7 (2C), 141.0 

(2C), 151.3 (2C), 156.4, 177.8. IR (neat) 1727, 1476, 1266, 1126, 1078, 812, 771, 665 

cm
–1

. MS (ESI) calcd for C31H36N2O6INaS2 [M+Na]
+
 760.0982, found 760.0981. 

 

4-Methyl-N-((indazol-3’-yl)(phenyl)-
3
-iodanyl)-N-tosylbenzenesulfonamide (4d) 

(Isolated Method : E) : mp. 175 °C (decomp.) 
1
H NMR (500 MHz, DMSO-d6) δ 2.31 (s, 

6H), 3.46 (br, 1H), 7.49 (d, J=8.0 Hz, 2H), 7.50-7.57 (m, 5H), 7.61 (t, J=8.0 Hz, 1H), 

7.72 (t, J=7.8 Hz, 1H), 7.99 (d, J= 8.3 Hz, 1H), 8.26 (d, J= 8.0 Hz, 2H). 
13

C NMR (125 

MHz, DMSO-d6) δ 20.9 (2C), 111.5, 114.7, 117.1, 119.6, 123.4, 124.4 (4C), 126.1 (4C), 

131.8 (2C), 132.0, 135.0 (2C), 140.5 (2C), 143.9. IR (neat) 3174, 1259, 1126, 1077, 

1037, 763, 677, 556 cm
–1

. MS (ESI) calcd for C27H24N3O4INaS2 [M+Na]
+
 668.0145, 

found 668.0128. 

 

4-Methyl-N-((2’,5’-dimethylthiophen-3’-yl)(phenyl)-
3
-iodanyl)-N-tosylbenzenesulf

onamide (4e) (Isolated Method : A) : 188 °C (decomp.) 
1
H NMR (500 MHz, 

DMSO-d6) δ 2.31 (s, 6H), 2.40 (s, 3H), 2.62 (s, 3H), 7.15 (d, J=8.0 Hz, 4H), 7.26 (s, 

1H), 7.48-7.56 (m, 6H), 7.66 (t, J=7.4 Hz, 1H), 8.16 (d, J= 7.4 Hz, 2H). 
13

C NMR (125 

MHz, DMSO-d6) δ 14.9, 16.5, 20.8 (2C), 101.5, 116.8, 126.1 (4C), 128.2 (4C), 129.3, 

131.8 (2C), 131.9, 134.8 (2C), 139.5, 141.1, 143.9 (2C), 144.4 (2C). IR (neat) 1279, 

1133, 1079, 1032, 810, 766, 742, 663 cm
–1

. MS (ESI) calcd for C26H26NO4INaS3 

[M+Na]
+
 661.9961, found 661.9971. 
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4-Methyl-N-((2’-methylbenzo[b]thiophen-3’-yl)(phenyl)-
3
-iodanyl)-N-tosylbenzen

esulfonamide (4f) (Isolated Method : A) : 181-184 °C 
1
H NMR (500 MHz, DMSO-d6) 

δ 2.31 (s, 6H), 2.94 (s, 3H), 7.14 (d, J=8.0 Hz, 4H), 7.44-7.57 (m, 8H), 7.61 (t, J=7.5 Hz, 

1H), 8.02-8.09 (m, 2H), 8.21 (d, J= 7.5 Hz, 2H). 
13

C NMR (125 MHz, DMSO-d6) δ 

17.8, 20.8 (2C), 102.0, 116.5, 123.1, 123.4, 126.0, 126.1 (4C), 126.5, 128.1 (4C), 131.8 

(2C), 132.0, 134.8 (2C), 137.7, 137.9, 139.5 (2C), 143.9 (2C), 149.9. IR (neat) 1429, 

1276, 1129, 1078, 1010, 758, 664 cm
–1

. MS (ESI) calcd for C29H27NO4INaS3 [M+Na]
+
 

697.9961, found 697.9966. 

 

4-Methyl-N-(phenyl(1’,3’,6’-trimethyl-uracil-5’-yl)-
3
-iodanyl)-N-tosylbenzenesulf

onamide (4g) (Isolated Method : E): 172 °C (decomp.) 
1
H NMR (500 MHz, DMSO-d6) 

δ 2.31 (s, 6H), 2.87 (s, 3H), 3.24 (s, 3H), 3.50 (s, 3H), 7.14 (d, J=8.0 Hz, 4H), 7.47-7.56 

(m, 6H), 7.65 (t, J=8.0 Hz, 1H), 8.09 (d, J=8.0 Hz, 2H). 
13

C NMR (125 MHz, 

DMSO-d6) δ 20.8 (2C), 24.4, 30.0, 34.1, 95.4, 116.4, 126.1 (4C), 128.1 (4C), 131.5 

(2C), 131.9, 134.7 (2C), 139.5 (2C), 143.8 (2C), 150.7, 158.7, 161.4. IR (neat) 1706, 

1651, 1583, 1281, 1230, 1149, 1084, 814, 743, 684 cm
–1

. MS (ESI) calcd for 

C27H27N3O6INaS2 [M+Na]
+
 704.0341, found 704.0356. 

 

N-((3”,5”-dichlorophenyl)(2’-methyl-4’-oxo-1’,4’-dihydroquinolin-3’-yl)-
3
-iodanyl

)-4-methyl-N-tosylbenzenesulfonamide (4h) (Isolated Method : A) : 162 °C (decomp.) 
1
H NMR (500 MHz, DMSO-d6) δ 2.30 (s, 6H), 2.92 (s, 3H), 3.51 (br, 1H), 7.14 (d, 

J=7.7 Hz, 4H), 7.44-7.56 (m, 5H), 7.68 (t, J=8.0 Hz, 1H), 7.81 (t, J= 8.0 Hz, 1H), 7.91 

(br, 1H), 8.25 (s, 2H). 
13

C NMR (125 MHz, DMSO-d6) δ 20.8 (2C), 24.1, 105.4, 115.6, 

118.7, 121.9, 126.1 (4C), 128.2 (4C), 131.7, 133.0 (2C), 133.7, 135.3 (2C), 139.3 (2C), 

139.6 (2C), 143.8, 156.8, 171.5. IR (neat) 3114, 1276, 1129, 1073, 1031, 1010, 796, 763, 

677 cm
–1

. MS (ESI) calcd for C30H25N2O5Cl2INaS2 [M+Na]
+
 776.9519, found 

776.9515. 
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Chapter 3-5 

Regio-controlled aminations of Indoles via (Indolyl)(aryl)iodonium Imide 

 

Abstract 

Three different aminations were performed by one hypervalent iodine, 

(indolyl)(aryl)iodonium imide. These reactions induced transformation of C-H bond to 

C-N bond regioselectively, and gave 2-, 3- or benzylic aminoindoles from indole 

derivatives.  

 

Introduction 

Amino indole is very important structure for medicinal or biologically active 

compounds
1
. Therefore, direct C-N bond formation of indoles is attractive for synthetic 

organic chemists, and various types of reactions using heavy metals
2 

and without 

metals
3
, were reported. Direct nitrogen introduction requires high regioselectivity, 

however, some reports were applied to limited indoles where reactive positions are 

blocked by substituents, such as 2-,3-alkyl, and carboxylindoles, or requires complex 

ligands. On the other hands, halo-amination is useful strategy for regioselective and 

direct C-N bond formation. Nicholas group reported 3,2-bromo-amination of indoles 

with benzophenone O-acetyloxime and CuBr
4
, and Liu group succeeded in 

chloro-amination of indoles with Chloramine-T
®
 and Cu/Pd catalysts

5
. However, both 

methods require stoichiometric amount of heavy metal reagents.  

On the other hands, hypervalent iodine is effective reagent for functionalization of 

indoles. Recently, Suna group reported azidation of indole derivatives via 

(indolyl)(phenyl)iodonium azide with copper catalyst
2g

. However, the reaction was 

applied to only methyl indole-2-carboxylate derivatives, and the azidoiodane 

intermediate was unstable and careful experimental operation was required. Similarly, 

imide-combined hypervalent iodines are also useful reagents for C-N bond formation
6
. 

The author also developed novel imide and indole-combined hypervalent iodine, 

(indolyl)(aryl)iodonium imide
7
. This reagent is stable solid and easily prepared and able 

to isolate. Here, the author reported the new synthetic strategy for C-N bond formation 

of indole from (indolyl)(aryl)iodonium imide as substrate. This methodology contains 

three different atom-economy amination reactions, and the controled introduction of 

imide group by designing structures of the hypervalent iodines can be achieved. 
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Chapter 3 

 

Regioselective Bromo-amination of Indoles via (Indolyl)(aryl)iodonium Imides 

N-(3’-Bromo-1’-pivaloyl-1’H-indol-2’-yl)-4-methyl-N-tosylbenzenesulfonamides were 

obtained by bromo-amination of (indolyl)(phenyl)iodonium imides using brominating 

reagents. This reaction is C-H dual-functionalization on one-step with complete 

regioselectivity. 

 

Introduction 

Direct oxidative transformation of C-H bond to C-N bond is attractive on organic 

chemistry
1
. Moreover, direct and regioselective C-H dual-functionalization

2
 is greatly 

ambitious, and possesses much possibility to reduce synthetic step, and therefore 

environmental load. Nevertheless, the study of regioselective C-H 

dual-functionalization of indole is lacked. On the best of the author’s knowledge, 

Nicholas
3
 group and Liu group

4
 reported regioselective intermolecular 

2,3-halo-amination of indoles. However, these methods required stoichiometric amount 

of heavy metal reagents. Recently, Yuan and Liu group
5
 reported metal-free 

3,3-dichloro-2-amination of indole with Chloramine-B
®
. However, the products require 

reduction process of halogen to give indole structure. Here, the author showed first 

metal-free 3,2-bromo-amination of indoles via (indolyl)(aryl)iodonium imide
6
 with 

bromination reagent. This reaction forms both C-N and C-Br bonds regioselectively 

without any metal reagents. 

 

Results and Discussion 

First, the author screened a series of bromination reagents and solvent for the 

3,2-bromo-amination of (indolyl)(phenyl)iodonium imides 2a (Table 1). The treatment 

with N-Bromosuccinimide (NBS) and N-bromoacetamide transformed 2a into 

2-bis(tosyl)imidyl-3- bromoindole derivative (3a) in good yields (entries 1, 2), however, 

treatment with pyrridinium tribromide provided desired product (3a) in low yield (entry 

3). Use of 1,3-dibromo-5,5-dimethylhydantin (DBH) increased the yield of 3a (entry 4). 

On the other hands, both 1,3-dichloro-5,5-dimethylhydantin (DCH) and 

1,3-diiodo-5,5-dimethylhydantin (DIH) were not effective at all (entries 4, 5). Then, 

other solvents were screened with DBH (entries 6-8). Solvents, such as CHCl3, THF, 

and DMF, were not effective. Warming reaction temperature to 40 ˚C improved the 

yield of 3a (entry 10). 
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To research the scope of substrate on redioselective 3,2-bromo-amination of 

(indolyl)(aryl)iodonium imides, various indoles and bis(sulfonyl)imides were examined 

(Table 2). The conditions for equivalent of DBH, solvent, and temperature had to be 

changed by the substituent group on indole group (Table 5, conditions A-E). The 

reaction of 5-substituted indoles bearing Me (2b), F (2d), Cl (2e), Br (2f), CO2Me (2g), 

CN (2h), PivO (2i), and PhthN (2j) groups gave the corresponding monosubstituted 

N-(3-bromo-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (3b, 

3d-3j) in high yields, respectively. The substrate bearing strong electron-donating group, 

such as MeO (2c), was converted into 3,4-dibromo product in high yield (3c). Other 

(indolyl)(aryl)iodonium imides bearing mono-substituted indole at other position were 

also transformed into the corresponding products in high yields (3m, 3n), respectively. 

The same reaction of (indolyl)(aryl)iodonium imides having various bis(sulfonyl)imides 

2 was carried out with high conversion and the desired products were obtained in high 

yields (3p-3s), respectively. Moreover, (indolyl)(aryl)iodonium imides bearing N-Ts or 

N-Bz groups instead of N-Piv group as a protecting group were also transformed into 

desired products in good yields (3t, and 3u), respectively. 
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The author also searched direct conversion of 1-pivaloylindole 1 into 

N-(3-bromo-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (3) 

(Scheme 1). 3,2-Bromo-amination of (indolyl)(aryl)iodonium imide was carried out in 

high yield, however, isolation of 2 reduced the total yield of 3 from 1. In addition, this 

method could not be used when (indolyl)(aryl)iodonium imides could not be isolated. 

The author examined two methods for one-pot synthesis of 3 from 1 (Scheme 2). 

Addition of DBH and 1a at the same time (eq. 2) proceeded smoothly to give the the 

product in higher yield than that in addition of DBH after preparation of compound 2a 
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(eq. 3).  

 

 

Then, the author examined direct conversion of various indoles into 

(indolyl)(aryl)iodonium imide (2) with bis(sulfonyl)imides, DIB, and DBH (Table 3). 

The conditions for equivalent of DBH, solvent, and temperature had to be changed by 

substituent groups on indoles, respectively (Table 6, conditions A-E). Treatment of 

monosubstuted indole 1(2b-2n) and N-Ts or N-Bz protected indole (2t, 2u) with various 

bis(sulfonyl)imides (2o-2s) gave the corresponding 

2-bis(sulfonyl)imidyl-3-bromoindoles (2b-2u) in high yields, respectively. Direct 

conversion procedure improved the yield of the most products 3, as compound with 

isolation method of (indolyl)(aryl)iodonium imide 2. Especially, indoles, such as 5-NO2 

(1l), 4-Br (1m), and Ms2NH (1r), where the isolation of 2 was impossible, were also 

transformed into compounds 3 bearing 5-NO2 (3l), 4-Br (3m), and Ms2NH (3r) in high 

yields using one-pot method. 
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Next, the author investigated the reaction mechanism of the regioselective 

3,2-bromo-amination of indole via (indolyl)(aryl)iodonium imide (Scheme 2). The 

reaction with 1-pivaloylindole (1a), bis(sulfonyl)imide, and DBH, without DIB 

proceeded to generate desired product (3a) in 4 % yield, and 3-bromo indole derivative 

4 in 96 % yield, respectively. Moreover, 4 did not react with DIB and Ts2NH under the 

present reaction conditions. These results suggested that generation of 

(indolyl)(aryl)iodonium imide 2 was necessary for the formation of 3. In addition, the 
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reaction of 2a with DBH (0.6 equiv.) and (PrSO2)NH (1.0 equiv.) gave 

N-(3-bromo-1-pivaloyl-1H-indol-2-yl)- 4-methyl-N-tosylbenzenesulfonamide (3a) 

(60 % yield) and N-(3-bromo-1-pivaloyl-1H-indol-2-yl)-N-(propanesulfonyl)- 

propanesulfonamide (3q) (32 % yield), respectively. However, ligand exchange on the 

iodine atom was not observed by the treatment of 2a with (PrSO2)2NH in DCE. The 

treatment of 1:1 mixture of 2e and 2q with DBH (0.6 equiv.) provided four 

3,2-bromo-amination products (3a, 3e, 3q, 3v). These observations indicate that 

3,2-bromo-amination of indole derivatives with DBH is intermolecular reaction via 

exchange for bis(sulfonyl)imide group on the iodine atom. 
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The proposed reaction mechanism is showed in Scheme 3. N-pivaloylndole 1 reacts 

with PhI(OAc)NTs2 generated in situ from DIB and Ts2NH, to give 

(indolyl)(aryl)iodonium imide 2 via deprotonation. Then, treatment of 2 with DBH 

gives intermediate A. At this step, reactivity of DBH is promoted by Lewis acidity of 

hypervalent iodine, and the Ts2N group on the hypervalent iodine is substituted by 

5,5-dimethylhydantoin derived from DBH to form A. Then, A is attacked by Ts2N anion 

followed by aromatization to produce dual-functionalized indole 3 together with 

iodobenzene and 5,5-dimethylhydantoin.  

 

 

Then, the author demonstrated derivatization of 3,2-bromo-amination product 3a (Table 

4). Various 3-functionalized indoles (5a-10a) were obtained by halogen-lithium and 

-magnesium exchange of 3 with tBuLi and MgCl2, followed by reaction with 

electrophiles, respectively.  
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Moreover, the author also succeeded in synthesis of polycyclic indole derivatives from 

3a (Scheme 4). Thus, -unsaturated imine (12a) was generated by reduction of 3a 

with Raney Ni, followed by condensation with benzaldehyde (Scheme 4). 12a is useful 

compounds for forming a part of medicinally important indoline derivatives. Treatment 

12a with 2,3-dimethylbutadiene under heating conditions gave Diels-Alder adduct 13a, 

and with N-(2-bromoethyl)methansulfonamide and 2-bromoethanol with base provided 

spiro-hetero cyclic compounds 14a and 15a, respectively. New ionic 6-membered ring 
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formation by reaction of 12a with benzaldehyde, pyrroridine, and 4-nitrobenzoic acid 

was also successfully obtained. These transformations showed easy preparation of 

various indole derivatives from 12a, and with synthetic utility of 12a for application to 

medicinally important indole derivatives. 

 

 

In conclusion, the author succeeded in regioselective 3,2-bromo-amination of indoles 

using indolyl(aryl)iodonium imides and bromination reagent. This is the first metal-free 

regioselective dual-functionalization of indoles, and it was applied to direct 

functionalization of N-pivaloylindole. The 3,2-bromo-amination product was easily 

transformed to various 3-substituted 2-aminoindole derivatives, and tricyclic 

compounds.   
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Experimental 

1. General Methods. 
1
H NMR spectra were measured on a JEOL ECA-500 (500 MHz) 

spectrometer at ambient temperature. Data were recorded as follows: chemical shift in 

ppm from internal tetramethylsilane    the δ sc le,   lt pl c ty (s = s  glet; d = d  blet; 

t = triplet; q = quartet; sep = septet; m = multiplet; br = broad), coupling constant (Hz), 

integration, and assignment. 
13

C NMR spectra were measured on a JEOL ECA-500 

(125 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent 

resonance employed as the internal standard (deuterochloroform at 77.0 ppm). 

High-resolution mass spectra were recorded by Thermo Fisher Scientific Exactive 

Orbitrap mass spectrometers. Infrared (IR) spectra were recorded on a JASCO FT/IR 

4100 spectrometer. Single crystal X-ray diffraction data were collected at 173 K on a 

   ke  SMART APEX    CCD d ff  ct  ete  w th M  Kα (λ = 0.71073) radiation and 

graphite monochrometer. For thin-layer chromatography (TLC) analysis throughout this 

work, Merck precoated TLC plates (silica gel 60GF254 0.25 mm) were used. The 

products were purified by column chromatography on neutral silica-gel (Kanto 

Chemical Co., Inc. silica gel 60N, Prod. No. 37560-84; Merck silica gel 60, Prod. No. 

1.09385.9929). Visualization was accomplished by UV light (254 nm), anisaldehyde, 

KMnO4, and phosphomolybdic acid.  

 

1. General Procedure for Preparation of 

N-(3-Bromo-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (3a) 

from 4-Methyl-N-(phenyl(1-pivaloyl-1H-indol-3-yl)-
3
-iodanyl)-N- 

tosylbenzenesulfonamide (2a) (Table 4, entry 10) 

To a solution of 4-methyl-N-(phenyl(1-pivaloyl-1H-indol-3-yl)-
3
-iodanyl)-N- 

tosylbenzenesulfonamide 2a (72.9 mg, 0.10 mmol) in 1,2-dichloroethane (1mL) was 

added 1,3-dibromo-5,5-dimethylhydantoin (17.2 mg, 0.060 mmol). The mixture was 

stirred at 40 ºC for 7 h under argon atmosphere. Saturated Na2SO3 aqueous solution (10 

mL) was added to the reaction mixture, and the product was extracted with AcOEt (15 

mL × 3). The combined extracts were washed by water (10 mL) and brine (10 mL) and 

dried over Na2SO4. The organic phase was concentrated under reduced pressure and the 

crude product was purified by column chromatography on silica-gel (eluent: 

hexane/AcOEt = 5/1), to give the desired product 3a (55.4 mg, 92 % yield). 

 

2. General Procedure for Preparation of 

N-(3-Bromo-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (3a) 

from 1-Pivaloylindole (1a) (scheme 2) 
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To prepare PhI(OAc)NTs2 were used DIB (38.7 mg, 0.12 mmol), Ts2NH (39.1 mg, 0.12 

mmol) in 1,2-dichloroethane (1mL. The mixture was stirred at room temperature for 30 

min. under argon atmosphere. Then, N-pivaloylindole (1a) (20.1 mg, 0.10 mmol) and 

1,3-dibromo-5,5-dimethylhydantoin (17.2 mg, 0.060 mmol) were added, and the 

solution was stirred at 40 ºC for 7 h. Saturated Na2SO3 aqueous solution (10 mL) was 

added to the reaction mixture, and the product was extracted with AcOEt (15 mL × 3). 

The combined extracts were washed by water (10 mL), brine (10 mL) and dried over 

Na2SO4. The organic phase was concentrated under reduced pressure and the crude 

product was purified by column chromatography on silica-gel (eluent: hexane/AcOEt = 

5/1), to give the desired product 3a (52.4 mg, 87 % yield). 

 

N-(3-Bromo-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (3a): 
1
H NMR (500 MHz, CDCl3) δ 1.50 (s, 9H), 2.48 (s, 6H), 7.24-7.30 (m, 1H), 7.33 (d, 

J=8.0 Hz, 4H), 7.41 (t, J=7.5 Hz, 1H), 7.52 (d, J=7.5 Hz, 1H), 7.55 (d, J=7.5 Hz, 1H), 

7.98 (d, J=8.0 Hz, 4H), 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 28.1 (3C), 43.2, 

103.4, 113.8, 121.0, 122.2, 125.6, 125.9, 126.1, 129.1 (4C), 130.4 (4C), 133.7, 135.5 

(2C), 145.4 (2C), 181.2. IR (neat) 1716, 1373, 1295, 1167, 660 cm
–1

. MS (ESI) calcd 

for C27H27N2O5BrNaS2 [M+Na]
+
 625.0437, found 625.0428. 

Crystal data for 3a: Formula C27H27BrN2O5S2, colorless, crystal dimensions 0.40 × 

0.30 × 0.30 mm
3
, prismatic, space group Pbca, a = 11.3613(5) Å, b = 15.8902(15) Å, c 

= 29.9856(4) Å, α = 90.00 °, β = 90.00 °, γ = 90.00 °, V = 5413.74(4) Å3, Z = 8, ρcalc = 

1.481 g cm
–3

, F(000) = 2480, μ(M Kα) = 1.713 mm
–1

, T = 173 K. 28834 reflections 

collected, 5143 independent reflections with I > 2σ(I) (2θmax = 27.51°), and 539 

parameters were used for the solution of the structure. The non-hydrogen atoms were 

refined anisotropically. R1 = 0.0292 and wR2 = 0.0767. GOF = 1.105. Crystallographic 

data (excluding structure factors) for the structure reported in this paper have been 

deposited with the Cambridge Crystallographic Data Centre as supplementary 

publication no. CCDC-1023213. Copies of the data can be obtained free of charge on 

application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 

44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk]. 
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Figure 2. OPTEP drawing of 3a. 

 

N-(3-Bromo-5-methyl-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonami

de (3b): 
1
H NMR (500 MHz, CDCl3) δ 1.49 (s, 9H), 2.46 (s, 3H), 2.47 (s, 6H), 7.23 (d, 

J=8.6 Hz, 1H), 7.29 (s, 1H), 7.32 (d, J=8.3 Hz, 4H), 7.45 (d, J=8.6 Hz, 1H), 7.96 (d, 

J=8.3 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.2, 21.8 (2C), 28.1 (3C), 43.1, 103.2, 

113.7, 120.4, 125.7, 125.9, 127.5, 129.2 (4C), 130.4 (5C), 132.0, 135.5 (2C), 145.4 (2C), 

181.0. IR (neat) 1712, 1374, 1282, 1164, 662 cm
–1

. MS (ESI) calcd for C27H25N2O5BrS2 

[M-H
+
]

-
 678.9577, found 678.9586. 

 

N-(3,4-Dibromo-5-methoxy-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulf

onamide (3c): 
1
H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 2.48 (s, 6H), 3.94 (s, 3H), 

7.09 (d, J=9.2 Hz, 1H), 7.33 (d, J=8.3 Hz, 4H), 7.43 (d, J=9.2 Hz, 1H), 7.98 (d, J=8.3 

Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 28.2 (3C), 43.4, 57.7, 102.3, 104.2, 

112.1, 113.3, 122.9, 128.6, 129.2 (4C), 129.9, 130.6 (4C), 135.6 (2C), 145.6 (2C), 151.9, 

181.0. IR (neat) 1723, 1382, 1277, 1175, 1084, 648 cm
–1

. MS (ESI) calcd for 

C28H28N2O5BrS2 [M-H
+
]

-
 615.0628, found 615.0639. 

 

N-(3-Bromo-5-fluoro-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonami

de (3d): 
1
H NMR (500 MHz, CDCl3) δ 1.48 (s, 9H), 2.48 (s, 6H), 7.12-7.21 (m, 2H), 

7.33 (d, J=8.2 Hz, 4H), 7.49 (dd, J=8.5, 3.8 Hz, 1H), 7.96 (d, J=8.2 Hz, 4H). 
13

C NMR 

(125 MHz, CDCl3) δ 21.8 (2C), 28.1 (3C), 43.2, 102.8 (d, JC-F=9.5 Hz), 106.0 (d, 

JC-F=25.0 Hz), 114.5 (d, JC-F=26.2 Hz), 115.2 (d, JC-F=8.3 Hz), 126.5 (d, JC-F=9.5 Hz), 
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127.5, 129.2 (4C), 130.1, 130.4 (5C), 135.3 (2C), 145.6 (2C), 158.7 (d, JC-F=239.7 Hz), 

180.8.
 19

F NMR (471 MHz, CDCl3) δ -119.8. IR (neat) 1723, 1373, 1300, 1171, 662 

cm
–1

. MS (ESI) calcd for C27H25N2O5BrFS2 [M-H
+
]

-
 619.0378, found 619.0392. 

 

N-(3-Bromo-5-chloro-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonami

de (3e): 
1
H NMR (500 MHz, CDCl3) δ 1.48 (s, 9H), 2.48 (s, 6H), 7.33 (d, J=8.1 Hz, 

4H), 7.36 (dd, J=8.9, 2.3 Hz, 1H), 7.47 (d, J=8.9 Hz, 1H), 7.50 (d, J=2.3 Hz, 1H), 7.95 

(d, J=8.1 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 28.1 (3C), 43.2, 102.4, 

115.1, 120.4, 126.3, 126.7, 127.3, 128.2, 129.3 (4C), 130.4 (4C), 131.9, 135.3 (2C), 

145.6 (2C), 180.7. IR (neat) 1721, 1373, 1297, 1164, 1130, 661 cm
–1

. MS (ESI) calcd 

for C27H25N2O5BrClS2 [M-H
+
]

-
 635.0082, found 635.0097. 

 

N-(3,5-Dibromo-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide 

(3f): 
1
H NMR (500 MHz, CDCl3) δ 1.47 (s, 9H), 2.48 (s, 6H), 7.33 (d, J=8.3 Hz, 4H), 

7.42 (d, J=8.9 Hz, 1H), 7.50 (dd, J=8.9, 1.8 Hz, 1H), 7.66 (d, J=1.8 Hz, 1H), 7.95 (d, 

J=8.3 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 28.1 (3C), 43.2, 102.2, 115.3, 

123.5, 127.2, 128.8 (2C), 129.3, 130.4 (4C), 132.2, 135.3 (2C), 145.6 (2C), 180.7. IR 

(neat) 1725, 1373, 1299, 1165, 661 cm
–1

. MS (ESI) calcd for C27H25N2O5Br2S2 [M-H
+
]
-
 

678.9577, found 678.9586. 

 

Methyl 3-bromo-2-((4-methyl-N-tosylphenyl)sulfonamido)-1-pivaloyl-1H-indole- 

5-carboxylate (3g): 
1
H NMR (500 MHz, CDCl3) δ 1.50 (s, 9H), 2.48 (s, 6H), 3.96 (s, 

3H), 7.33 (d, J=8.4 Hz, 4H), 7.57 (dd, J=8.9, 0.60 Hz, 1H), 7.96 (d, J=8.4 Hz, 4H), 8.10 

(dd, J=8.9, 1.7 Hz, 1H), 8.25 (dd, J=1.7, 0.60 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 

21.8 (2C), 28.1 (3C), 43.3, 104.1, 113.6, 123.6, 124.3, 125.3, 126.8, 127.5, 129.3 (4C), 

130.4 (4C), 135.2 (2C), 135.8, 145.7 (2C), 166.7, 180.7. IR (neat) 1720, 1379, 1289, 

1166, 650 cm
–1

. MS (ESI) calcd for C29H28N2O5BrS2 [M-H
+
]

-
 659.0527, found 

659.0530. 

 

N-(3-Bromo-5-cyano-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonami

de (3h): 
1
H NMR (500 MHz, CDCl3) δ 1.48 (s, 9H), 2.49 (s, 6H), 7.34 (d, J=8.3 Hz, 

4H), 7.60 (d, J=8.6 Hz, 1H), 7.64 (dd, J=8.6, 1.7 Hz, 1H), 7.88 (d, J=1.7 Hz, 1H), 7.95 

(d, J=8.3 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 28.0 (3C), 43.4, 102.8, 

105.9, 114.6, 118.9, 125.4, 126.4, 128.2, 128.6, 129.3 (4C), 130.4 (4C), 134.9, 135.0 

(2C), 145.9 (2C), 180.6. IR (neat) 2225, 1728, 1372, 1308, 1165, 664 cm
–1

. MS (ESI) 

calcd for C28H25N3O5BrS2 [M-H
+
]

-
 626.0424, found 626.0411. 
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3-Bromo-2-((4-methyl-N-tosylphenyl)sulfonamido)-1-pivaloyl-1H-indol-5-yl 

pivalate (3i): 
1
H NMR (500 MHz, CDCl3) δ 1.39 (s, 9H), 1.48 (s, 9H), 2.47 (s, 6H), 

7.10 (dd, J=8.9, 2,8 Hz, 1H), 7.21 (d, J=2.8 Hz, 1H), 7.33 (d, J=8.2 Hz, 4H), 7.53 (d, 

J=8.9 Hz, 1H), 7.96 (d, J=8.2 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 27.2 

(3C), 28.1 (3C), 39.1, 43.2, 103.1, 113.1, 114.6, 120.3, 126.2, 127.1, 129.2 (4C), 130.4 

(4C), 131.2, 135.4 (2C), 145.5 (2C), 146.3, 177.5, 180.9. IR (neat) 1744, 1723, 1384, 

1272, 1166, 652 cm
–1

. MS (ESI) calcd for C32H34N2O7BrS2 [M-H
+
]

-
 701.0996, found 

701.1014. 

 

N-(3-Bromo-5-(1,3-dioxoisoindolin-2-yl)-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosy

lbenzenesulfonamide (3J): 
1
H NMR (500 MHz, CDCl3) δ 1.51 (s, 9H), 2.48 (s, 6H), 

7.34 (d, J=8.3 Hz, 4H), 7.45 (dd, J=8.9, 2.0 Hz, 1H), 7.60 (d, J=2.0 Hz, 1H), 7.67 (d, 

J=8.9 Hz, 1H), 7.79-7.85 (m, 2H), 7.94-8.03 (m, 6H). 
13

C NMR (125 MHz, CDCl3) δ 

21.8 (2C), 28.1 (3C), 43.2, 103.4, 114.5, 119.7, 123.8 (2C), 124.7, 126.1, 126.2, 127.5, 

129.5 (4C), 130.5 (4C), 131.7 (2C) 132.8, 134.5 (2C), 135.4 (2C), 145.4 (2C), 167.5 

(2C), 180.8. IR (neat) 1718, 1479, 1376, 1307, 1166, 1079, 661 cm
–1

. MS (ESI) calcd 

for C35H29N3O7BrS2 [M-H
+
]

-
 746.0641, found 746.0641. 

 

N-(3-Bromo-5-nitro-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamid

e (3k): 
1
H NMR (500 MHz, CDCl3) δ 1.50 (s, 9H), 2.50 (s, 6H), 7.35 (d, J=8.3 Hz, 4H), 

7.61 (d, J=9.3 Hz, 1H), 7.95 (d, J=8.3 Hz, 4H), 8.30 (dd, J=9.3, 2.3 Hz, 1H), 8.48 (d, 

J=2.3 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 28.1 (3C), 43.5, 104.0, 114.1, 

118.0, 120.8, 125.3, 129.4 (4C), 130.4 (5C), 135.0 (2C), 136.0, 143.1, 146.0 (2C), 180.6. 

IR (neat) 1730, 1523, 1348, 1308, 1166, 873, 650 cm
–1

. MS (ESI) calcd for 

C27H25N3O7BrS2 [M-H
+
]

-
 646.0323, found 646.0328. 

 

N-(3,4-Dibromo-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide 

(3l): 
1
H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 2.48 (s, 6H), 7.20 (dd, J=8.3, 7.8 Hz, 

1H), 7.34 (d, J=8.5 Hz, 4H), 7.44 (d, J=7.8 Hz, 1H), 7.46 (d, J=8.3 Hz, 1H), 7.99 (d, 

J=8.5, Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 28.2 (3C), 43.6, 102.2, 113.0, 

115.6, 121.9, 125.9, 127.4, 127.9, 129.2 (4C), 130.6 (5C), 134.7, 135.6 (2C), 145.6 (2C), 

181.4. IR (neat) 1718, 1377, 1310, 1165, 662 cm
–1

. MS (ESI) calcd for 

C27H25N2O5Br2S2 [M-H
+
]
-
 678.9577, found 678.9598. 

 

N-(3-Bromo-6-chloro-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonami
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de (3m): 
1
H NMR (500 MHz, CDCl3) δ 1.49 (s, 9H), 2.47 (s, 6H), 7.25 (dd, J=8.6, 1.5 

Hz, 1H), 7.33 (d, J=8.2 Hz, 4H), 7.44 (d, J=8.6 Hz, 1H), 7.54 (d, J=1.5 Hz, 1H), 7.96 (d, 

J=8.2 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 28.1 (3C), 43.2, 103.1, 113.7, 

122.0, 123.1, 124.1, 126.7, 129.3 (4C), 130.4 (4C), 132.0, 133.6, 135.3 (2C), 145.6 (2C), 

180.7. IR (neat) 1726, 1374, 1292, 1165, 1072, 648 cm
–1

. MS (ESI) calcd for 

C27H25N2O5BrClS2 [M-H
+
]

-
 635.0082, found 635.0094. 

 

N-(3-Bromo-7-methyl-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonami

de (3n): 
1
H NMR (500 MHz, CDCl3) δ 1.32 (s, 9H), 2.36 (s, 3H), 2.48 (brs, 6H), 

7.14-7.21 (m, 2H), 7.22-7.46 (m, 5H), 7.76 (br, 2H), 8.14 (br, 2H). 
13

C NMR (125 MHz, 

CDCl3) δ 20.8, 21.8 (2C), 28.6 (3C), 44.7, 102.7, 118.7, 122.3, 122.4, 125.4, 127.6, 

128.9, 129.3 (4C), 130.5 (br, 4C), 131.3 (br, 2C), 136.1, 145.9 (br, 2C), 181.2. IR (neat) 

1736, 1379, 1264, 1173 662 cm
–1

. MS (ESI) calcd for C28H28N2O5BrS2 [M-H
+
]

-
 

615.0628, found 615.0644. 

 

N-(3-Bromo-1-pivaloyl-1H-indol-2-yl)-N-(benzenesulfonyl)benzenesulfonamide 

(3o): 
1
H NMR (500 MHz, CDCl3) δ1.49 (s, 9H), 7.27 (t, J=7.7 Hz, 1H), 7.42 (t, J=7.7 

Hz, 1H), 7.49-7.59 (m, 6H), 7.68 (tt, J=7.5, 1.2 Hz, 2H), 8.09 (d, J=8.6, 1.2 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 28.0 (3C), 43.2, 103.7, 113.9, 121.0, 122.3, 125.5, 125.8, 

126.1, 128.6 (4C), 130.4 (4C), 133.6, 133.4 (2C), 138.3 (2C), 181.1. IR (neat) 1714, 

1379, 1298, 1168, 685 cm
–1

. MS (ESI) calcd for C25H22N2O5BrS2 [M-H
+
]

-
 573.0159, 

found 573.0175. 

 

N-(3-Bromo-1-pivaloyl-1H-indol-2-yl)-N-(4-fluorobenzenelsulfonyl)-4-fluorobenze

nesulfonamide (3p): 
1
H NMR (500 MHz, CDCl3) δ1.48 (s, 9H), 7.19-7.27 (m, 4H), 

7.30 (t, J=7.7 Hz, 1H), 7.44 (t, J=7.7 Hz, 1H), 7.52-7.59 (m, 2H), 8.14 (dd, J=8.9, 5.2 

Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 28.0 (3C), 43.2, 103.7, 113.9, 115.9 (d, 

JC-F=9.5 Hz, 4C), 121.2, 122.5, 125.5, 125.6, 126.2, 133.5 (d, JC-F=9.5 Hz, 4C), 133.6, 

134.1 (d, JC-F=2.4 Hz, 2C), 166.4 (d, JC-F=256.3 Hz, 2C), 181.2.
 19

F NMR (471 MHz, 

CDCl3) δ -102.0. IR (neat) 1712, 1387, 1285, 1238, 1176, 1154 cm
–1

. MS (ESI) calcd 

for C25H20N2O5BrF2S2 [M-H
+
]

-
 608.9971, found 608.9988.  

 

N-(3-Bromo-1-pivaloyl-1H-indol-2-yl)-N-(propanesulfonyl)propanesulfonamide 

(3q): 
1
H NMR (500 MHz, CDCl3) δ 1.13 (t, J=7.4 Hz, 6H), 1.52 (s, 9H), 1.93-1.99 (m, 

4H), 3.68-3.80 (m, 2H), 3.92-4.06 (m, 2H), 7.31 (t, J=8.0 Hz, 1H), 7.42 (t, J=8.0 Hz, 

1H), 7.51 (d, J=8.0 Hz, 1H), 7.63 (d, J=7.8 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 
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13.1 (2C), 16.9 (2C), 28.0 (3C), 43.4, 58.5 (2C), 102.8, 113.9, 120.9, 122.7, 125.36, 

125.41, 126.1, 133.4, 182.7. IR (neat) 1712, 1374, 1299, 1163, 619 cm
–1

. MS (ESI) 

calcd for C19H26N2O5BrS2 [M-H
+
]

-
 505.0472, found 505.0487. 

 

N-(3-Bromo-1-pivaloyl-1H-indol-2-yl)-N-(methanesulfonyl)methanesulfonamide 

(3r): 
1
H NMR (500 MHz, CDCl3) δ 1.51 (s, 9H), 3.63 (s, 6H), 7.32 (t, J=7.8 Hz, 1H), 

7.43 (t, J=7.8 Hz, 1H), 7.51 (d, J=7.8 Hz, 1H), 7.63 (d, J=7.8 Hz, 1H). 
13

C NMR (125 

MHz, CDCl3) δ 28.0 (3C), 43.4, 43.8 (2C), 102.5, 121.0, 122.8, 125.0, 125.4, 126.3, 

133.4, 182.7. IR (neat) 1714, 1357, 1290, 1161, 621 cm
–1

. MS (ESI) calcd for 

C15H18N2O5BrS2 [M-H
+
]

-
 448.9846, found 448.9858. 

 

N-(3-Bromo-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-(methanesulfonyl)benzenesulfon

amide (3s): 
1
H NMR (500 MHz, CDCl3) δ1.60 (s, 9H), 2.44 (s, 3H), 3.83 (s, 3H), 7.27 

(t, J=8.0 Hz, 1H), 7.30 (d, J=8.1 Hz, 2H), 7.41 (t, J=8.0 Hz, 1H), 7.50 (d, J=8.0 Hz, 1H), 

7.56 (d, J=8.0 Hz,1H), 7.82 (d, J=8.1 Hz, 2H). 
13

C NMR (125 MHz, CDCl3) δ 21.8, 

28.1 (3C), 43.3, 44.0, 103.8, 114.0, 121.0, 122.5, 125.4, 125.6, 126.1, 129.7 (2C), 129.8 

(2C), 133.4, 134.5, 146.0, 182.3. IR (neat) , 1718, 1361, 1300, 1171, 663 cm
–1

. MS 

(ESI) calcd for C21H22N2O5BrS2 [M-H
+
]

-
 525.0159, found 525.0170. 

 

N-(1-Benzoyl-3-bromo-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (3t): 
1
H NMR (500 MHz, CDCl3) δ 2.44 (s, 6H), 6.47 (d, J=8.6 Hz, 1H), 7.10 (t, J=8.6 Hz, 

1H), 7.23 (t, J=7.7 Hz, 1H), 7.30 (d, J=8.0 Hz, 4H), 7.44 (t, J=7.7 Hz, 2H), 7.55 (d, 

J=8.6 Hz, 1H), 7.61 (t, J=8.6 Hz, 1H), 7.68 (d, J=7.7 Hz, 2H), 8.01 (d, J=8.0 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 105.8, 114.4, 120.8, 123.0, 126.0, 126.1, 

126.4, 128.6 (2C), 129.2 (4C), 130.2 (4C), 130.5 (2C), 133.4, 133.9, 134.7, 135.7 (2C), 

145.4(2C), 166.4. IR (neat) 1702, 1381, 1302, 1168 cm
–1

. MS (ESI) calcd for 

C29H22N2O5BrS2 [M-H
+
]

-
 621.0148, found 621.0155. 

 

N-(3-Bromo-1-tosyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (3u): 
1
H 

NMR (500 MHz, CDCl3) δ 2.33 (s, 3H), 2.47 (s, 6H), 7.20 (d, J=8.2 Hz, 2H), 7.29 (t, 

J=7.6 Hz, 1H), 7.31-7.38 (m, 5H), 7.53 (d, J=7.7 Hz, 1H), 7.65 (d, J=7.7 Hz, 1H), 7.92 

(d, J=8.2 Hz, 2H), 8.02 (d, J=8.3 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.6, 21.8 

(2C), 114.4, 121.1, 123.9, 126.5, 126.9, 127.4, 128.1 (2C), 129.3 (4C), 129.6 (2C), 

130.4 (4C), 134.3, 135.99, 136.02 (2C), 145.0, 145.6 (2C). IR (neat) 1595, 1378, 1176, 

1161, 1082, 658 cm
–1

. MS (ESI) calcd for C29H24N2O6BrS3 [M-H
+
]

-
 670.9974, found 

670.9990. 
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N-(3-Bromo-5-chloro-1-pivaloyl-1H-indol-2-yl)-N-(propanesulfonyl)propanesulfon

amide (3v): 
1
H NMR (500 MHz, CDCl3) δ 1.13 (t, J=7.4 Hz, 6H), 1.50 (s, 9H), 

1.93-2.08 (m, 4H), 3.64-3.79 (m, 2H), 3.92-4.04 (m, 2H), 7.36 (dd, J=8.9, 2.3 Hz, 1H), 

7.43 (d, J=8.9 Hz, 1H), 7.61 (d, J=2.3 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 13.1 

(2C), 16.9 (2C), 28.1 (3C), 43.4, 58.6 (2C), 101.7, 115.1, 120.4, 126.47, 126.54, 126.63, 

128.7, 131.6, 182.3. IR (neat) 1714, 1375, 1302, 1158, 862, 802 cm
–1

. MS (ESI) calcd 

for C19H27N2O5BrClS2 [M+Na]
+
 563.0047, found 563.0052. 

 

3. Transformation of 2a into Various 2-Amino Indole Derivatives. 

3.1. General Procedure for Electrophilic Addition of 3a with t-BuLi. 

To a solution of 2a (60.2 mg, 0.10 mmol) in THF (1.0 mL) was added dropwise the 

cooled t-BuLi (0.12 mL, 0.21 mmol, 1.8 M in pentane) at -96 ºC over 10 min. The 

solution was stirred at –96 ºC for 20 min. under argon atmosphere. Then, dried MgCl2 

(20.0 mg, 0.21 mmol) was added. After the obtained mixture was stirred at –96 ºC for 

20 min, electrophiles were added and the reaction solution was kept at –96 ºC 

(electrophile: PhCHO, TMSOTf) or –60 ºC (electrophile: Piv2O, 1-formylmorphorine, 

Me2SO4) for 1-2 h. Saturated NH4Cl aqueous solution (10 mL) was added to the 

reaction mixture, and the product was extracted with AcOEt (15 mL × 3). The 

combined extracts were washed by brine (10 mL) and dried over Na2SO4. The organic 

phase was concentrated under reduced pressure and the crude product was purified by 

silica-gel column chromatography (eluent: hexane/AcOEt = 8/1), to give the desired 

product 5a-10a. 

 

4-Methyl-N-(1-pivaloyl-1H-indol-2-yl)-N-tosylbenzenesulfonamide (5a): 
1
H NMR 

(500 MHz, CDCl3) δ 1.49 (s, 9H), 2.48 (s, 6H), 6.15 (s, 1H), 7.18 (t, J = 7.6 Hz, 1H), 

7.29-7.37 (m, 5H), 7.47-7.53 (m, 2H), 7.91 (d, J = 8.6 Hz, 4H). 
13

C NMR (125 MHz, 

CDCl3) δ 21.8 (2C), 28.0 (3C), 43.4, 110.3, 113.6, 121.6, 121.8, 124.7, 125.5, 127.2, 

129.1 (4C), 130.0 (4C), 134.6, 134.8 (2C), 145.4 (2C), 182.3. IR (neat) 1713, 1370, 

1294, 1171 cm
–1

. MS (ESI) calcd for C27H29N2O5S2 [M+H]
+

 525.1512, found 525.1508. 

 

N-(3-(Hydroxy(phenyl)methyl)-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzene

sulfonamide (6a): 
1
H NMR (500 MHz, CDCl3) δ 1.48 (s, 9H), 2.22 (s, 3H), 2.50 (s, 

3H), 2.86 (d, J = 2.3 Hz, 1H), 5.45 (d, J = 2.3 Hz, 1H), 6.96 (d, J = 8.0 Hz, 2H), 7.01 (d, 

J = 7.6 Hz, 1H), 7.19-7.28 (m, 6H), 7.28-7.33 (m, 1H), 7.37 (d, J = 8.5 Hz, 2H), 7.56 (d, 

J = 8.6 Hz, 1H), 7.86 (d, J = 8.5 Hz, 2H), 8.03 (d, J = 8.5 Hz, 2H). 
13

C NMR (125 MHz, 

CDCl3) δ 21.6, 21.8, 28.3 (3C), 43.3, 66.6, 113.8, 121.4, 123.1, 124.2, 124.3, 124.9, 
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126.2, 127.0, 127.1 (2C), 127.6 (2C), 129.1 (2C), 129.4 (2C), 129.5 (2C), 130.5 (2C), 

134.7, 135.1, 135.2, 140.1, 145.55, 145.64, 181.7. IR (neat) 2928, 1711, 1377, 1291, 

1163 cm
-1

. MS (ESI) calcd for C34H34N2NaO6S2 [M+Na]
+

 653.1750, found 653.1739. 

 

N-(3-Formyl-1-pivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (7a): 
1
H NMR (500 MHz, CDCl3) δ 1.48 (s, 9H), 2.50 (s, 6H), 7.30-7.41 (m, 1H), 7.37 (d, J = 

8.4 Hz, 4H), 7.44 (t, J = 7.8 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.4 Hz, 4H), 

8.37 (d, J = 7.8 Hz, 1H), 8.97 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.9 (2C), 28.0 

(3C), 43.7, 113.3, 119.3, 123.1, 123.2, 123.9, 126.0, 129.5 (4C), 130.3 (4C), 133.5 (2C), 

134.1, 134.2, 146.4 (2C), 181.9, 185.4. IR (neat) 1724, 1674, 1381, 1311, 1166 cm
-1

. 

MS (ESI) calcd for C28H28N2NaO6S2 [M+Na]
+
 575.1281, found 575.1267. 

 

N-(1,3-Dipivaloyl-1H-indol-2-yl)-4-methyl-N-tosylbenzenesulfonamide (8a): 
1
H 

NMR (500 MHz, CDCl3) δ 1.27 (s, 9H), 1.43 (s, 9H), 2.48 (s, 6H), 7.25-7.30 (m, 1H), 

7.32 (d, J = 8.4 Hz, 4H), 7.35-7.40 (m, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.73 (d, J = 8.0 Hz, 

1H), 8.00 (d, J = 8.3 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 21.8 (2C), 27.4 (3C), 28.3 

(3C), 43.6, 44.1, 113.6, 121.9, 122.5, 123.3, 123.6, 124.6, 126.3, 128.7 (4C), 130.8 (4C), 

132.9, 135.7 (2C), 145.0 (2C), 181.6, 205.6. IR (neat) 2930, 1718, 1672, 1379, 1289, 

1165 cm
-1

. MS (ESI) calcd for C32H36N2NaO6S2 [M+Na]
+
 631.1907, found 631.1896. 

 

4-Methyl-N-(3-methyl-1-pivaloyl-1H-indol-2-yl)-N-tosylbenzenesulfonamide (9a): 
1
H NMR (500 MHz, CDCl3) δ 1.50 (s, 9H), 1.51 (s, 3H), 2.47 (s, 6H), 7.20 (t, J = 8.0 

Hz, 1H), 7.30-7.39 (m, 1H), 7.33 (d, J = 7.8 Hz, 4H), 7.46 (d, J = 7.5 Hz, 1H), 7.55 (d, J 

= 8.0 Hz, 1H), 7.99 (d, J = 7.8 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 8.2, 21.8 (2C), 

28.1 (3C), 43.0, 113.8, 120.2, 120.5, 121.1, 124.6, 124.9, 126.9, 129.1 (4C), 130.2 (4C), 

134.2, 135.4 (2C), 145.2 (2C), 181.9. IR (neat) 1719, 1374, 1292, 1163 cm
-1

. MS (ESI) 

calcd for C28H30N2NaO5S2 [M+Na]
+
 561.1488, found 561.1484. 

 

4-Methyl-N-(1-pivaloyl-3-(trimethylsilyl)-1H-indol-2-yl)-N-tosylbenzenesulfonamid

e (10a): 
1
H NMR (500 MHz, CDCl3) δ 0.05 (s, 9H), 1.39 (s, 9H), 2.47 (s, 6H), 7.21 (t, J 

= 7.9 Hz, 1H), 7.30-7.37 (m, 1H), 7.32 (d, J = 8.3 Hz, 4H), 7.54 (d, J = 8.3 Hz, 1H), 

7.79 (d, J = 7.9 Hz, 1H), 7.94 (d, J = 8.3 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 0.11 

(3C), 21.7 (2C), 28.3 (3C), 43.3, 113.8, 120.4, 120.9, 123.2, 124.0, 129.0 (4C), 130.4 

(4C), 130.9, 131.2, 135.4, 136.2 (2C), 144.9 (2C), 181.4. IR (neat) 2922, 1715, 1447, 

1375, 1294, 1170, 658 cm
-1

. MS (ESI) calcd for C30H36N2NaO5S2Si [M+Na]
+
 619.1727, 

found 619.1711. 
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3.2. Transformation of 3a into 2-Amino-indole Derivatives 11a-15a. 

3.2.1. Transformation of 3a into 11a. 

To a solution of Raney Nickel (300 mg) in 1,4-dioxiane (4.0 mL) and H2O (0.8 mL) 

was added 3a (120.4 mg, 0.20 mmol). The solution was refluxed for 48 h under argon 

atmosphere. Then, the mixture was filtrated and washed with CHCl3 (10 mL). The 

solution was removed under reduced pressure and the crude product was purified by 

column chromatography on silica-gel (eluent: hexane/AcOEt = 2/1), to give the desired 

product 11a (64.3 mg, 88 % yield). 

 

(Z)-N-(Indolin-2-ylidene)-4-methylbenzenesulfonamide (11a): 
1
H NMR (500 MHz, 

CDCl3/CF3CO2H) δ 2.44 (s, 3H), 4.24 (s, 2H), 7.21-7.29 (m, 2H), 7.33-7.43 (m, 4H), 

7.88 (d, J = 8.3 Hz, 2H), 11.8 (brs, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.6, 37.6, 

113.1, 124.6, 125.9, 127.3 (2C), 129.1, 130.3 (2C), 135.3, 140.6, 146.2, 170.7. IR (neat) 

2952, 1590, 1486, 1302, 1144 cm
-1

. MS (ESI) calcd for C15H15N2O2S [M+H]
+
 287.0849, 

found 287.0845.  

 

3.2.3. Transformation of 11a into 12a. 

To a solution of 11a (36.3 mg, 0.10 mmol) in CH2Cl2 (1.0 mL) were added BF3•Et2O 

(18.5 L, 0.15 mmol) and PhCHO (15.3 L, 0.15 mmol). The mixture was stirred at 

room temperature for 7 h under argon atmosphere. Then, saturated NaHCO3 aqueous 

solution (10 mL) was added to the reaction mixture, and the product was extracted with 

AcOEt (15 mL × 3). The combined extracts were washed by brine (10 mL) and dried 

over Na2SO4. The organic phase was concentrated under reduced pressure and the crude 

product was purified by silica-gel column chromatography (eluent: hexane/AcOEt = 

2/1), to give the desired product 12a (36.3 mg, 97 % yield, E:Z = 92:8). 

 

N-((Z)-3-((E)-Benzylidene)indolin-2-ylidene)-4-methylbenzenesulfonamide (12a): 
1
H NMR (500 MHz, CDCl3) δ 2.41 (s, 3H), 6.92 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 8.0 Hz, 

1H), 7.21-7.28 (m, 1H), 7.30 (d, J = 8.2 Hz, 2H), 7.41-7.49 (m, 3H), 7.58-7.63 (m, 2H), 

7.65 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 8.2 Hz, 2H), 8.11 (s, 1H), 10.12 (s, 1H). 
13

C NMR 

(125 MHz, CDCl3) δ 21.5, 111.3, 121.3, 122.8, 123.1, 126.5 (2C), 128.7 (2C), 129.4 

(4C), 129.5, 130.1, 130.2, 134.3, 139.1, 140.2, 141.8, 143.1, 160.6. IR (neat) 3280, 1571, 

1461, 1312, 1280, 1134, 1085 cm
-1

. MS (ESI) calcd for C22H19N2O2S [M+H]
+
 375.1162, 

found 375.1154. 

Crystal data for 12a: Formula C22H18N2O2S, yellow, crystal dimensions 0.30 × 0.10 × 

0.10 mm
3
, triclinic, space group P-1, a = 9.9285(7) Å, b = 10.1079(7) Å, c = 10.4705(7) 
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Å,  = S23 66.6900(10) °,  = 76.0070(10) °,  = 89.8540(10) °, V = 931.25(11) Å3, Z 

= 2, calc = 1.335 g cm
-3

, F(000) = 392, (MoK) = 0.193 mm–1, T = 173 K. 5301 

reflections collected, 4050 independent reflections with I > 2(I) (2max = 28.43°), and 

245 parameters were used for the solution of the structure. The non-hydrogen atoms 

were refined anisotropically. R1 = 0.0458 and wR2 = 0.1094. GOF = 1.040. 

Crystallographic data (excluding structure factors) for the structure reported in this 

paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. CCDC-1023215. Copies of the data can be obtained free 

of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. 

code +44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk]. 

 

Figure 3. ORTEP drawing of 12a. 

 

3.2.4. Transformation of 12a into 13a. 

To the solution of 12a (37.4 mg, 0.1 mmol) in toluene (2 ml) was added 

2,3-dimethyl-1,3-butadiene (15.3μl, 0.15 mmol). The solution was stirred at 120 ºC for 

24 h. Then, the solvent was removed under reduced pressure to give the desired product 

13a (42.9 mg, 94 % yield, E/Z = 90:10) without any purifications. 

 

4,5-Dimethyl-2-phenylspiro[cyclohex-4-ene-1,3'-indoline] (13a): 
1
H NMR (500 MHz, 

CDCl3) δ 1.71 (s, 3H), 2.78 (s, 3H), 1.98 (d, J=17.2 Hz, 1H), 2.23 (dd, J=17.8, 5.5 Hz, 

1H), 2.58 (t, J=17.8 Hz, 1H), 2.97 (d, J=17.2 Hz, 1H), 3.31 (dd, J=17.8, 5.5 Hz, 1H), 

6.34 (d, J=7.7 Hz, 2H), 6.77 (t, J=7.7 Hz, 2H), 6.81 (d, J=7.5 Hz, 1H), 6.99 (t, J=7.5 Hz, 

1H), 7.13 (t, J=7.5 Hz, 1H), 7.22-7.37 (m, 4H), 7.78 (d, J=8.3 Hz, 2H), 9.51 (brs, 1H). 
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13
C NMR (125 MHz, CDCl3) δ 18.6, 18.9, 21.6, 36.5, 41.5, 47.1, 55.6, 110.6, 123.3, 

123.5, 124.7, 125.4, 126.7, 126.8 (2C), 127.6 (2C), 127.9 (2C), 128.4, 129.3 (2C), 132.2, 

140.9, 143.0, 173.0. IR (neat) 3289, 1606, 1282, 1141, 1090 cm
–1

. MS (ESI) calcd for 

C28H27N2O3S [M-H
+
]

-
 455.1799, found 455.1812. 

 

3.2.5. Transformation of 12a into 14a. 

To a solution of 12a (37.4 mg, 0.10 mmol) and 2-methanesulfonylethylamine (24.3 mg, 

0.12 mmol) in THF (1.0 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (15.6 L, 

0.105 mmol. The mixture was stirred at room temperature for 7 h under argon 

atmosphere. Then, saturated NH4Cl aqueous solution (10 mL) was added to the reaction 

mixture, and the product was extracted with AcOEt (15 mL × 3). The combined extracts 

were washed by brine (10 mL) and dried over Na2SO4. The organic phase was 

concentrated under reduced pressure and the crude product was purified by silica-gel 

column chromatography (eluent: hexane/AcOEt = 3/1), to give the desired product 13a 

(42.6 mg, 86% yield, E:Z = >99:<1). 

 

(Z)-4-Methyl-N-(1'-(methanesulfonyl)-2'-phenylspiro[indoline-3,3'-pyrrolidin]-2- 

ylidene)benzenesulfonamide (14a): 
1
H NMR (500 MHz, CDCl3)  2.20-2.28 (m, 1H), 

2.41- 2.50 (m, 1H), 2.45 (s, 3H), 2.83 (s, 3H), 3.90-3.98 (m, 2H), 4.89 (s, 1H), 5.82 (d, J 

= 7.8 Hz, 1H), 6.68 (td, J = 7.8, 1.0 Hz, 1H), 6.71-7.30 (br, 2H), 6.93 (d, J = 7.8 Hz, 

1H), 7.10-7.25 (m, 3H), 7.13 (td, J = 7.8, 1.0 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.87 (d, 

J = 8.2 Hz, 2H), 10.0 (s, 1H). 
13

C NMR (125 MHz, CDCl3)  21.6, 35.2, 35.9, 46.8, 

62.1, 69.3, 110.7 (2C), 123.4, 125.4, 126.4 (2C), 127.2 (2C), 128.1, 128.2, 129.0, 129.8 

(2C), 138.2, 139.1, 140.3 (2C), 144.0, 172.0. IR (neat) 3282, 1589, 1322, 1145, 1085 

cm
-1

. MS (ESI) calcd for C25H26N3O4S2 [M+H]
+
 496.1359, found 496.1353. 

Crystal data for 14a: Formula C25H25N3O4S2•C4H8O2, colorless, crystal dimensions 

0.20 × 0.10 × 0.10 mm
3
, triclinic, space group P-1, a = 9.5145(9) Å, b = 11.3505(10) Å, 

c = 12.4229(11) Å,  = 79.1933(10) °,  = 86.0059(12) °,  = 82.6050(12) °, V = 

1305.4(2) Å3, Z = 2, calc = 1.375 g cm
-3

, F(000) = 570, (MoK) = 0.247 mm
-1

, T = 

173 K. 7744 reflections collected, 5883 independent reflections with I > 2(I) (2max = 

28.74°), and 364 parameters were used for the solution of the structure. The 

non-hydrogen atoms were refined anisotropically. R1 = 0.0528 and wR2 = 0.1411. GOF 

= 1.044. Crystallographic data (excluding structure factors) for the structure reported in 

this paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. CCDC-1023217. Copies of the data can be obtained free 

of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. 
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code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk]. 

 

 

Figure 4. ORTEP drawing of 14a. 

 

3.2.6. Transformation of 12a into 15a. 

To a solution of 12a (37.4 mg, 0.10 mmol) in THF (1.0 mL) were added 

2-bromoethanol (15.3 L, 0.15 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (15.3 L, 

0.15 mmol). The mixture was stirred at room temperature for 7 h under argon 

atmosphere. Then, saturated NH4Cl aqueous solution (10 mL) was added to the reaction 

mixture, and the product was extracted with AcOEt (15 mL × 3). The combined extracts 

were washed by brine (10 mL) and dried over Na2SO4. The organic phase was 

concentrated under reduced pressure and the crude product was purified by silica-gel 

column chromatography (eluent: hexane/AcOEt = 2/1), to give the desired product 14a 

(38.1 mg, 91% yield, E:Z = 85:15). 

 

(Z)-4-Methyl-N-(2-phenyl-4,5-dihydro-2H-spiro[furan-3,3'-indolin]-2'- 

ylidene)benzenesulfonamide (15a): 1H NMR (500 MHz, CDCl3) 2.37 (ddd, J = 

12.6, 8.3, 5.2 Hz, 1H), 2.46 (s, 3H), 2.89 (ddd, J = 12.6, 9.8, 7.2 Hz, 1H), 4.35 (td, J = 

9.8, 5.2 Hz, 1H), 4.44 (td, J = 8.3, 7.2 Hz, 1H), 5.09 (s, 1H), 6.71 (d, J = 7.5 Hz, 2H), 

6.76 (d, J = 7.8 Hz, 1H), 6.89 (t, J = 7.5 Hz, 2H), 6.94-7.01 (m, 2H), 7.07 (t, J = 7.8 Hz, 

1H), 7.24 (d, J = 7.5 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.96 (d, J = 8.0 Hz, 2H), 9.86 (s, 

1H). 13C NMR (125 MHz, CDCl3) 21.6, 39.2, 62.9, 67.1, 89.1, 110.5, 123.5, 124.6, 

125.2 (2C), 126.7 (2C), 127.49 (2C), 127.53, 128.2, 129.6 (2C), 131.2, 135.5, 138.5, 
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139.6, 143.6, 170.1. IR (neat) 3060, 1657, 1446, 1275, 1149 cm–1. MS (ESI) calcd for 

C24H23N2O3S [M+H]+ 419.1424, found 419.1416. 

Crystal data for 15a: Formula C24H22N2O3S, colorless, crystal dimensions 0.20 × 0.10 

× 0.10 mm
3
, triclinic, space group P-1, a = 6.8453(4) Å, b = 11.1232(7) Å, c = 

14.3467(9) Å,  = 95.8640(10) °,  = 94.6170(2) °,  = 106.1630(10) °, V = 

1036.91(11) Å3, Z = 2, calc = 1.340 g cm
-3

, F(000) = 440, (MoK) = 0.185 mm
-1

, T = 

173 K. 5925 reflections collected, 4519 independent reflections with I > 2(I) (2max = 

28.44°), and 272 parameters were used for the solution of the structure. The 

non-hydrogen atoms were refined anisotropically. R1 = 0.0437 and wR2 = 0.1124. GOF 

= 1.079. Crystallographic data (excluding structure factors) for the structure reported in 

this paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. CCDC-1023216. Copies of the data can be obtained free 

of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. 

code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk]. 

 

 

Figure 5. ORTEP drawing of 15a. 

 

3.2.7. Transformation of 12a into 16a. 

To a solution of 12a (37.4 mg, 0.10 mmol), 4-nitrobenzoic acid (3.3 mg, 0.02 mmol), 

and pyrrolidine (1.7 L, 0.02 mol) in THF (1.0 mL) was added acetaldehyde (24.9 L, 
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0.40 mmol, ca. 90% aq.) at -78 ºC. The mixture was stirred at -78 ºC for 24 h under 

argon atmosphere. Then, saturated NaHCO3 aqueous solution (10 mL) was added to the 

reaction mixture, and the product was extracted with AcOEt (15 mL × 3). The 

combined extracts were washed by brine (10 mL) and dried over Na2SO4. The organic 

phase was concentrated under reduced pressure and the crude product was purified by 

silica-gel column chromatography (eluent: hexane/AcOEt = 2/1), to give the desired 

product 16a (35.2 mg, 82% yield). 

 

4-Phenyl-1-tosyl-2,3,4,9-tetrahydro-1H-pyrido[2,3-b]indol-2-ol (16a): 
1
H NMR (500 

MHz, CDCl3) δ 1.03-1,09 (m, 1H), 2.21 (ddd, J = 14.5, 6.0, 3.0 Hz, 1H), 2.38 (s. 3H), 

2.94 (brs, 1H), 4.18 (dd, J = 11.5, 6.0 Hz, 1H), 5.74 (s, 1H), 6.60 (d, J = 7.8 Hz, 1H), 

6.85 (t, J = 7.8 Hz, 1H), 6.87-6.93 (m, 2H), 7.11 (t, J = 7.8 Hz, 1H), 7.14-7.20 (m, 3H), 

7.26 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 8.2 Hz, 2H), 9.04 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.6, 34.0, 37.3, 79.8, 101.9, 110.7, 119.4, 119.7, 121.5, 

125.6, 126.6, 126.9 (2C), 127.8 (2C), 128.4 (2C), 129.1, 130.1 (2C), 133.5, 134.0, 143.3, 

144.8. IR (neat) 3480, 1593, 1468, 1362, 1162 cm
-1

. MS (ESI) calcd for C24H23N2O3S 

[M+H]
+
 419.1424, found 419.1424.  
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Chapter 4 

 

Regioselective Iodo-amination of 2-Methylindoles via (Indolyl)(aryl)iodonium 

Imides 

N-((3-iodo-1-pivaloyl-1H-indol-2-yl)methyl)-N-(methanesulfonyl)methanesulfonamide

s were prepared by iodo-amination of 2-methylindole derivatives via  

(2-methylindolyl)(phenyl)iodonium imides using iodinating reagents. This reaction 

transformed both sp
2 

C-H and non-activated sp
3 

C-H bonds to C-I and C-N bonds, 

respectively. 

 

Introduction 

Direct intermolecular C-H amination at non-activated sp
3
 carbon is attractive as 

functionalization of commercially available and cheep compounds, and is useful for 

synthetic chemistry
1
. Although oxidative C-H functionalization of alkylindole is also 

noticed by a lot of organic chemists to construct new synthetic process of medicinal and 

bioactive compounds
2
, direct intermolecular sp

3
 carbon amination of alkylindoles 

required azide compounds or heavy metal reagents
2a,c

. On the other hands, halogenation 

reagents are useful compounds for direct and metal-free C-N bond formation at benzylic 

carbon atom
3
, and some reports showed that hypervalent iodine is also effective for 

direct carbon-nitrogen bond construction reaction at non-activated sp
3
 carbon atom

4
.  

On chapter 2, the author developed novel imide-combined hypervalent iodine, 

(indolyl)(aryl)iodonium imide, and succeeded in C-H dual-functionalization of indole 

via (indolyl)(aryl)iodonium imide with bromination reagent in chapter 3
5
. These 

methods regioselectively transformed two C-H bonds to C-Br and C-N bond, 

respectively. Here, the author reports new regioselective dual-functionalization of 

2-methylindole derivatives via (indolyl)(aryl)iodonium imide generated in situ with 

iodination reagent. This reaction provided 2-aminomethyl-3-iodoindole derivatives 

through oxidative C-N bond formation of non-activated sp
3
 C-H bond. 

 

Results and Discussion 

First, the author screened haloganation reagents and solvents in halo-amination of 

(2-methylindolyl)(aryl)iodonium imide (Table 1). The same treatment as 

3,2-bromo-amination of (indolyl)(aryl)iodonium imide with DBH gave 

N-((3’-bromo-1’-pivaloyl-1’H-indol-2’-yl)methyl)-4-methyl-N-tosylbenzenesulfonamid

e in moderate yield (entry 1). Use of 1.2 equivalents DBH decreased the product yield 

(entry 2), however, dark conditions and use of Ts2NH (1.2 equiv.) improved the yield of 
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3a (entries 3,4). Although the author examined halo-amination with various solvents 

and bromination reagents, desire product was not obtained in high yield (entries 5-11). 

Amazingly, 3a was produced in high yield by use of NIS or DIH instead of DBH 

(entries 12,13). Those iodination reagents were not effective for dual-functionalization 

of indole derivatives (see chapter 3), however, DIH was the best reagent for C-N bond 

formation of 2-methylindole derivatives. 

 

 

 

Although the desire product (3a) was obtained in high yield from 2a, various 

(alkylindolyl)(aryl)iodonium imides 2 generated from substituted 2-alkylindole 

derivatives (1) could not be isolated from the reaction mixture of 1 with DIB and Ts2NH. 

Then, the author studied one-pot preparation method for iodo-amination of 1a (Scheme 
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1). The yield of product was 78 %, when DIB, Ts2NH and DIH were added at same time. 

The condition of DIH and additional Ts2NH adde after 1st step, generation of 

(indolyl)(aryl)iodonium imide intermediate, did not improve the yield of 3a. Then, the 

author examined addition of bases after 1st step, followed by stirring for 10 minutes 

(Table 2). Use of 1.2 equivalent of NaHCO3 was not affected in the yield of 3a (entry 2), 

however, the product was formed in 96 % yield by using NaHCO3 (2.4 equiv.) (entry 3). 

Other bases were not effective for iodo-amination of 2-methylindole derivatives (entries 

4-7). 

 

 
 

 

Next, the author examined screening various bis(sulfonyl)imides and N-protecting 

groups of 2-methylindole for iodo-amination (Table 3). Although both arene- and 

bis(alkanesulfonyl)imide gave -amino-3-iodoindole derivatives (3a-3f) in high yield, 
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use of Ms2NH was the best conditions for dual-functionalization of 2-methylindole with 

DIH. In addition, indole bearing Bz (1h) and Ts (1g) groups were also applied for 

effective to give desire products in 91 % and 52 % yields, respectively.   

 

 

 

To research the range of substrates for redioselective iodo-amination of 2-methylindole, 

various 2-methylindoles were examined (Table 4). NIS was used instead of DIH for 

some substrates, and equivalent of iodination reagent depended on substitutent of 

2-methylindole derivatives. 3,5-dimethylindole (2j) derivative gave 

N-((3’-bromo-5’-methyl-1’-pivaloyl-1’H-indol-2’-yl)methyl)-4-methyl-N-tosylbenzenes

ulfonamide (3j) in high yield. The substrate bearing strong electron-donating group, 

MeO (2q), was converted into 3,6-diiodo product (3k) in high yield by using 2.4 

equivalent of NIS. The reaction of 5 or 6-monosubstituted indoles bearing 5-F (2k), 

5-Cl (2l), 5-Br (2m), 5-CO2Me (2n), 5-CN (2o), 6-Me (2r), 6-MeO (2s), 6-Cl (2t), and 
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6-CO2Ne (2u) groups, gave the corresponding monosubstituted products (3k-3o, 3r-3u) 

in high yields, respectively. 5- or 6-NO2 indole derivative were also transformed to 

desire products in high yield in the presence of Na2SO4 (2.0 equiv.) without base. 4-Me 

(1w) indole derivative was also converted into 2-Ms2NCH2-3-iodo indole derivative 

(3w) in high yields, respectively. In addition, the same treatment of di-substituted 

indoles (1x, 1y) and 3H-benzo[e]indole derivatives (1z) gave corresponding products in 

good to high yields, respectively. Unfortunately, 3-ethylindole derivative was not 

transformed to iodo-amination product. 
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The author then examined some experimental studies to determine reaction mechanism 

for iodo-amination of 2-methylindole derivatives (Scheme 2). Reducing equivalent of 

DIH from 0.6 to 0.5, the desired product 3e was obtained in only 7 % yield and 

3-iodoindole derivative was formed in 91 % as a byproduct. Moreover, when DIH (0.1 

equiv.) was added to the reaction mixture of (indolyl)(aryl)iodonium imide (2e) 

generated in situ from 1a with DIH (0.5equiv.) stirring for 2h, the yield of 3e was 

increased to 75 %. These results suggested that 4 is one of the intermediates for 

dual-functionalization of 2-methylindole derivatives. In addition, reaction of 4 with DIB 

(1.2 equiv.) and Ms2NH (1.2 equiv.) in DCM for 7 h under dark conditions gave 3e in 

35 %, together with recovered 4 in 56 %. Surprisingly, the treatment of 1a with only 

DIH (0.6 equiv.) and Ms2NH (1.2 equiv.) also gave 3e in 56 % yield. However, both 

methods provided 3e in moderate yield less than that in the optimized conditions. On 

the other hands, treatment of 4 with DBH (0.5 equiv.), DIB (1.0 equiv.), and Ms2NH 

(1.2 equiv.) provided 3-iodo-product 3e and 3-bromo-product 5e in 6 % and 53 % yields, 

respectively. Since 5a was not produced by the reaction of 3e with DBH (0.5 equiv.), 5e 

was directly transformed from 4 with DBH. These observations suggest that both DIB 

and DIH separately gave iodo-amination product 3e. 
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The proposed mechanism for iodo-amination is shown in Scheme 3. First, 

2-methylindole derivative 1a reacts with PhI(OAc)NMs2 generated in situ from DIB 

and Ms2NH to form (indolyl)(phenyl)iodonium imide 2e.  

2e generates 2-methyl-3-iodoindole derivative 4 and hypervalent iodine species by 

using DIH. 4 is transformed to 3e via two pathways. In the first pathway, 4 is 

re-oxidized with hypervalent iodine compound and enamine intermediate A is formed 

via dehydrogenation. Then, Ms2N anion attacks intermediate A to give 3e (Path A). In 

the second pathway, 4 reacts with iodination reagent again followed by dehydrogenation, 

and enamine intermediate B is formed. Intermediate B is converted into 3e by the 

reaction with Ms2N anion and the subsequent elimination of iodide ion. Iodide ion is 

re-oxidized by hypervalent iodine to regenerate iodination species (Path B). The author 

believed that both pathways are included under the optimized conditions. 
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The author also found removal of one methanesulfonyl group from the product 3e by 

using K2CO3 (Scheme 4). The deprotection proceeded under mild conditions to give 6e, 

which can be converted into various medicinal compounds via nucleophilic reactions. 

 

 

 

In conclusion, the author developed first regioselective dual-fuctionalization of 

2-methylindole derivatives via (indolyl)(aryl)iodonium imides with DIH or NIS. This 

reaction directly converted non-activated sp
3
 C-H bond into C-N bond, and the product 

possesses synthetic utility for medicinal and biologically active compounds. 
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Experimental 

1. General Methods. 
1
H NMR spectra were measured on a JEOL ECA-400 (400 MHz) 

spectrometer at ambient temperature. Data were recorded as follows: chemical shift in 

ppm f      te   l tet   ethyls l  e    the δ sc le,   lt pl c ty (s = s  glet; d = d  blet; 

t = triplet; q = quartet; sep = septet; m = multiplet; br = broad), coupling constant (Hz), 

integration, and assignment. 
13

C NMR spectra were measured on a JEOL ECA-400 

(100 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent 

resonance employed as the internal standard (deuterochloroform at 77.0 ppm). 

High-resolution mass spectra were recorded by Thermo Fisher Scientific Exactive 

Orbitrap mass spectrometers. Infrared (IR) spectra were recorded on a JASCO FT/IR 

4100 spectrometer. Single crystal X-ray diffraction data were collected at 173 K on a 

   ke  SMART APEX    CCD d ff  ct  ete  w th M  Kα (λ = 0.71073) radiation and 

graphite monochrometer. For thin-layer chromatography (TLC) analysis throughout this 

work, Merck precoated TLC plates (silica gel 60GF254 0.25 mm) were used. The 

products were purified by column chromatography on neutral silica-gel (Kanto 

Chemical Co., Inc. silica gel 60N, Prod. No. 37560-84; Merck silica gel 60, Prod. No. 

1.09385.9929). Visualization was accomplished by UV light (254 nm), anisaldehyde, 

KMnO4, and phosphomolybdic acid. 

 

1. General Procedure for Preparation of N-((3’-iodo-1’-pivaloyl-1’H-indol-2’-yl)- 

methyl)-4-methyl-N-tosylbenzenesulfonamide (3a) from 4-Methyl-N-(phenyl(1’- 

pivaloyl-2’-methyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylbenzenesulfonamide 2a 

(Table 1, entry 13) 

To a solution of 4-methyl-N-(phenyl(1-pivaloyl-2-methyl-1H-indol-3-yl)-
3
-iodanyl)- 

N-tosylbenzenesulfonamide 2a (74.3 mg, 0.10 mmol) in dichloromethane (1mL) was 

added 1,3-diiodo-5,5-dimethylhydantoin (22.2 mg, 0.060 mmol). The mixture was 

stirred at room temperature for 7 h under argon atmosphere. Then, saturated Na2SO3 

aqueous solution (10 mL) was added to the reaction mixture, and the product was 

extracted with AcOEt (15 mL × 3). The combined extracts were washed by water (10 

mL), brine (10 mL) and dried over Na2SO4. The organic phase was concentrated under 

reduced pressure and the crude product was purified by column chromatography on 

silica-gel (eluent: hexane/AcOEt = 5/1), to give the desired product 3a (61.1 mg, 92 % 

yield). 

 

2. General Procedure for One-pot Preparation of 

N-((3’-iodo-1’-pivaloyl-1’H-indol-2’-yl)-methyl)-4-methyl-N-tosylbenzenesulfonam



96 

 

ide (3a) from 1-Pivaloyl-2-methylindole 1a (Table 2, entry 3) 

To prepare PhI(OAc)NTs2 were used DIB (38.7 mg, 0.12 mmol), and Ts2NH (39.1 mg, 

0.12 mmol) in dichloromethane (1mL). The solution was stirred at room temperature for 

30 min. under argon atmosphere. Then, 1-pivaloyl-2-methylindole (1a) (22.2 mg, 0.10 

mmol) was added, and the obtained mixture was stirred at room temperature for 2 h. 

Then, NaHCO3 (22.1 mg, 0.24 mmol) was added, and the obtained mixture was stirred 

at room temperature for 10 min, followed by addition of 

1,3-diiodo-5,5-dimethylhydantoin (22.2 mg, 0.060 mmol). The mixture was stirred at 

room temperature for 5 h under argon atmosphere. Then, saturated Na2SO3 aqueous 

solution (10 mL) was added to the reaction mixture, and the product was extracted with 

AcOEt (15 mL × 3). The combined extracts were washed by water (10 mL), brine (10 

mL) and dried over Na2SO4. The organic phase was concentrated under reduced 

pressure and the crude product was purified by column chromatography on silica-gel 

(eluent: hexane/AcOEt = 5/1), to give the desired product 3a (63.8 mg, 96 % yield). 

 

N-((3’-iodo-1’-pivaloyl-1’H-indol-2’-yl)-methyl)-4-methyl-N-tosylbenzenesulfonam

ide (3a): 
1
H NMR (400 MHz, CDCl3) δ 1.45 (s, 9H), 2.31 (s, 6H), 5.27 (s, 2H), 7.05 (d, 

J=8.2 Hz, 4H), 7.17-7.32 (m, 4H), 7.63 (d, J=8.2 Hz, 4H). 
13

C NMR (100 MHz, CDCl3) 

δ 21.5 (2C), 28.1 (3C), 44.5, 46.8, 72.1, 112.7, 121.7, 122.1, 124.9, 127.8 (4C), 129.1 

(4C), 130.2, 130.7, 135.7, 136.8, 136.8 (2C), 144.5 (2C), 183.6. IR (neat) 1715, 1378, 

1166, 832, 750 cm
–1

. MS (ESI) calcd for C28H30N2O5IS2 [M+H]
 +

 665.0635, found 

665.0641. 

 

N-((3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(benzenesulfonyl)benzenesulfonam

ide (3b): 
1
H NMR (400 MHz, CDCl3) δ 1.42 (s, 9H), 5.30 (s, 2H), 7.17-7.34 (m, 9H), 

7.46 (t, J=7.6 Hz, 2H), 7.75 (dd, J=8.4, 1.2 Hz, 4H). 
13

C NMR (100 MHz, CDCl3) δ 

28.1 (3C), 44.4, 46.9, 72.5, 112.8, 121.9, 122.2, 125.0, 127.9 (4C), 128.5 (4C), 130.1, 

130.7, 130.7, 135.5 (2C), 135.6, 139.6 (2C), 183.7. IR (neat) 1731, 1374, 1167, 999, 

806, 741 cm
–1

. MS (ESI) calcd for C26H27N2O5IS2 [M+H]
 +

 637.0333, found 637.0334. 

 

4-Fluoro-N-(4”-fluorobenzenesulfonyl)-N-((3’-iodo-1’-pivaloyl-1’H-indol-2’-yl)-me

thyl)benzenesulfonamide (3c): 
1
H NMR (400 MHz, CDCl3) δ 1.41 (s, 9H), 5.27 (s, 

2H), 6.90-7.00 (m, 4H), 7.20-7.37 (m, 4H), 7.72-7.81 (m, 4H). 
13

C NMR (100 MHz, 

CDCl3) δ 28.0 (3C), 44.5, 47.0, 72.3, 112.7, 115.8 (d, JC-F=23.0 Hz, 4C), 121.8, 122.5, 

125.2, 130.0, 130.2, 130.9 (d, JC-F=9.6 Hz, 4C), 135.5 (d, JC-F=3.8 Hz, 2C), 135.7, 165.6 

(d, JC-F=257.7 Hz, 2C), 183.7. 
19

F NMR (390 MHz, CDCl3) δ -102.9. IR (neat) 1745, 
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1590, 1492, 1384, 1240, 1173, 837 cm
–1

. MS (ESI) calcd for C26H25N2O5F2IS2 [M-H
+
]

-
 

673.0130, found 673.0132. 

 

N-((3’-iodo-1’-pivaloyl-1’H-indol-2’-yl)-methyl)-4-methyl-N-(methanesulfonyl)ben

zenesulfonamide (3d): 
1
H NMR (400 MHz, CDCl3) δ 1.43 (s, 9H), 2.27 (s, 3H), 3.36 (s, 

3H), 5.19 (s, 2H), 6.97 (d, J=8.8 Hz, 2H), 7.20-7.27 (m, 1H), 7.29-7.33 (m, 2H), 7.34 (d, 

J=8.0 Hz, 1H), 7.55 (d, J=8.8 Hz, 2H). 
13

C NMR (100 MHz, CDCl3) δ 21.5, 28.1 (3C), 

44.4, 44.6, 46.1, 76.7, 113.0, 121.9, 122.3, 124.9, 128.1 (2C), 129.0 (2C), 130.2, 131.5, 

135.5, 135.6, 144.8, 184.0. IR (neat) 1686, 1364, 1163, 962, 841, 734 cm
–1

. MS (ESI) 

calcd for C22H26IN2O5S2 [M+H]
 +

 589.0322, found 589.0326. 

 

N-((3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methanesulfona

mide (3e): 
1
H NMR (400 MHz, CDCl3) δ 1.48 (s, 9H), 3.23 (s, 6H), 5.18 (s, 2H), 7.28 

(t, J=8.0 Hz, 1H), 7.34 (t, J=8.0 Hz, 1H), 7.42 (d, J=8.0 Hz, 1H), 7.49 (d, J=8.0 Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 28.2 (3C), 43.7 (2C), 44.2, 45.6, 70.6, 113.4, 122.2, 

122.5, 125.0, 130.2, 132.7, 135.6, 184.4. IR (neat) 1692, 1363, 1154, 967, 753 cm
–1

. MS 

(ESI) calcd for C16H21N2O5ClIS2 [M+Cl]
-
 546.9631, found 546.9641. 

 

N-((3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(propanesulfonyl)propanesulfona

mide (3f): 
1
H NMR (400 MHz, CDCl3) δ 0.96 (t, J=7.5 Hz, 6H), 1.47 (s, 9H), 1.82 

(sext, J=7.5 Hz, 1H), 3.21-3.31 (m, 4H), 5.17 (s, 2H), 7.27 (t, J=8.0 Hz, 1H), 7.34 (t, 

J=8.0 Hz, 1H), 7.41 (d, J=8.0 Hz, 1H), 7.50 (d, J=8.0 Hz, 1H). 
13

C NMR (100 MHz, 

CDCl3) δ 12.7 (2C), 16.6 (2C), 28.1 (3C), 44.2, 46.2, 58.5 (2C), 70.8, 113.2, 122.2, 

122.4, 125.1, 130.1, 132.9, 135.7, 184.2. IR (neat) 1703, 1370, 1151, 999, 805, 741 

cm
–1

. MS (ESI) calcd for C20H31N2O5IS2 [M+H]
+
 569.0635, found 569.0641. 

 

N-(benzylsulfonyl)-N-((3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-1-phenylmethanes

ulfonamide (3g): 
1
H NMR (400 MHz, CDCl3) δ 1.37 (s, 9H), 4.28 (br, 2H), 4.52 (s, 

4H), 7.21-7.42 (m, 13H), 7.46 (d, J=7.8 Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 28.0 

(3C), 44.0, 47.3, 62.9 (4C), 113.0, 122.1, 122.4, 125.1, 126.7 (2C), 128.9 (4C), 129.4 

(2C), 130.0, 131.2 (4C), 132.6, 135.5, 183.9. IR (neat) 1691, 1377, 1158, 744, 694 cm
–1

. 

MS (ESI) calcd for C28H30N2O5IS2 [M+H]
+
 665.0635, found 665.0644. 

 

N-((1-benzoyl-3-iodo-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methanesulfona

mide (3h): 
1
H NMR (400 MHz, CDCl3) δ 3.28 (s, 6H), 5.53 (s, 2H), 6.46 (d, J=7.6 Hz, 

1H), 7.06 (td, J=8.0, 1.4 Hz, 1H), 7.23 (t, J=7.6 Hz, 1H), 7.47 (d, J=7.6 Hz, 1H), 7.53 (d, 
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J=8.0 Hz, 2H), 7.69 (t, J=7.6 Hz, 1H), 7.83 (dd, J=8.0, 1.4 Hz, 2H). 
13

C NMR (100 

MHz, CDCl3) δ 42.7 (2C), 44.9, 75.2, 114.1, 122.1, 123.3, 125.3, 129.0 (2C), 130.46 

(2C), 130.54, 133.8, 134.1, 134.9, 136.7, 169.5. IR (neat) 1685, 1375, 1158, 817, 745 

cm
–1

. MS (ESI) calcd for C18H18N2O5INaS2 [M+Na]
+
 554.9516, found 554.9519. 

 

N-((3-iodo-1-tosyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methanesulfonamid

e (3i): 
1
H NMR (500 MHz, CDCl3) δ 2.34 (s, 3H), 3.49 (s, 6H), 5.46 (s, 2H), 7.20 (d, 

J=8.2 Hz, 2H), 7.28-7.35 (m, 1H), 7.326-7.43(m, 2H), 7.65 (d, J=8.2 Hz, 2H), 8.06 (d, 

J=8.2 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.6, 42.8 (2C), 45.5, 80.8, 115.3, 122.5, 

124.7, 126.5 (2C), 126.9, 130.1 (2C), 131.5, 132.8, 134.8, 136.7, 145.5. IR (neat) 1359, 

1154, 996, 798, 754 cm
–1

. MS (ESI) calcd for C28H20N2O5IS2Na [M+Na]
+
 604.9342, 

found 604.9348. 

 

N-((3-iodo-5-methyl-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methan

esulfonamide (3j): 
1
H NMR (400 MHz, CDCl3) δ 1.48 (s, 9H), 2.47 (s, 3H), 3.22 (s, 

6H), 5.17 (s, 2H), 7.15 (dd, J=8.5, 1.4 Hz, 1H), 7.26 (m, 1H), 7.32 (d, J=8.5 Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 21.1, 28.2 (3C), 43.7 (2C), 43.9, 45.6, 70.6, 113.3, 121.8, 

126.6, 130.4, 132.3, 132.7, 133.8, 184.2. IR (neat) 1728, 1362, 1157, 957, 761 cm
–1

. MS 

(ESI) calcd for C17H23N2O5ClIS2 [M+Cl]
-
 560.9787, found 560.9801. 

 

N-((3,6-diiodo-5-methyoxy-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)

methanesulfonamide (3k): 
1
H NMR (400 MHz, CDCl3) δ 1.46 (s, 9H), 3.23 (s, 6H), 

3.97 (s, 3H), 5.14 (s, 2H), 6.83 (s, 1H), 7.84 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 

28.3 (3C), 43.7 (2C), 44.1, 45.5, 56.7, 70.0, 83.8, 102.2, 124.2, 131.1, 131.4, 134.5, 

154.1, 183.6. IR (neat) 1694, 1365, 1161, 1036, 840 cm
–1

. MS (ESI) calcd for 

C17H22N2O6ClIS2 [M+Cl]
-
 702.8703, found 702.8722. 

 

N-((5-fluoro-3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methan

esulfonamide (3l): 
1
H NMR (400 MHz, CDCl3) δ 1.47 (s, 9H), 3.24 (s, 6H), 5.15 (s, 

2H), 7.07 (ddd, J=9.2, 9.0, 2.5 Hz, 1H), 7.17 (dd, J=8.7, 2.5 Hz, 1H), 7.35 (dd, J=9.2, 

4.1 Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 28.2 (3C), 43.7 (2C), 44.2, 45.5, 69.5, 

107.5 (d, JC-F=24.9 Hz), 113.4 (d, J C-F=25.9 Hz), 114.5 (d, J C-F=8.6 Hz), 131.4 (d, J 

C-F=10.5 Hz), 132.0, 134.4, 159.1 (d, J C-F=241.4 Hz), 184.0.
 19

F NMR (390 MHz, 

CDCl3) δ -120.1. IR (neat) 1698, 1366, 1160, 979, 762 cm
–1

. MS (ESI) calcd for 

C16H20N2O5FClIS2 [M+Cl]
-
 564.9536, found 564.9548. 
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N-((5-chloro-3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methan

esulfonamide (3m): 
1
H NMR (400 MHz, CDCl3) δ 1.46 (s, 9H), 3.24 (s, 6H), 5.15 (s, 

2H), 7.28 (dd, J=9.2, 2.0 Hz, 1H), 7.33 (dd, J=9.2, 0.48 Hz, 1H), 7.48 (dd, J=2.0. 0.48 

Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 28.2 (3C), 43.7 (2C), 44.3, 45.4, 68.9, 114.4, 

121.7, 125.3, 128.5, 131.5, 134.0, 134.1, 183.9. IR (neat) 1730, 1362, 1159, 947, 846 

cm
–1

. MS (ESI) calcd for C16H20N2O5Cl2IS2 [M+Cl]
-
 580.9241, found 580.9254. 

 

N-((5-bromo-3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methan

esulfonamide (3n): 
1
H NMR (400 MHz, CDCl3) δ 1.45 (s, 9H), 3.24 (s, 6H), 5.15 (s, 

2H), 7.27 (d, J=8.9 Hz, 1H), 7.42 (dd, J=8.9, 2.0 Hz, 1H), 7.64 (d, J=2.0 Hz, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 28.2 (3C), 43.7 (2C), 44.3, 45.4, 68.7, 114.7, 115.9, 124.8, 

127.9, 132.0, 133.9, 134.3, 183.9. IR (neat) 1729, 1362, 1159, 938, 846 cm
–1

. MS (ESI) 

calcd for C16H20N2O5ClBrIS2 [M+Cl]
-
 624.8736, found 624.8746. 

 

Methyl 

3-iodo-2-((N-(methanesulfonyl)methylsulfonamido)methyl)-1-pivaloyl-1H-indole-5-

carboxylate (3o): 
1
H NMR (400 MHz, CDCl3) δ 1.50 (s, 9H), 3.26 (s, 6H), 3.96 (s, 3H), 

5.18 (s, 2H), 7.73 (d, J=8.4 Hz, 1H), 7.94 (dd, J=8.4, 1.2 Hz, 1H), 8.19 (d, J=1.2 Hz, 

1H). 
13

C NMR (100 MHz, CDCl3) δ 28.3 (3C), 43.6 (2C), 44.3, 45.3, 52.4, 69.5, 115.3, 

121.9, 123.3, 126.7, 133.6, 135.0, 135.8, 167.0, 184.0. IR (neat) 1719, 1343, 1236, 1155, 

979, 756 cm
–1

. MS (APCI) calcd for C18H23N2O7ClIS2 [M+Cl]
-
 604.9685, found 

604.9692. 

 

N-((5-cyano-3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methane

sulfonamide (3p): 
1
H NMR (400 MHz, CDCl3) δ 1.46 (s, 9H), 3.26 (s, 6H), 5.15 (s, 

2H), 7.44 (d, J=8.7 Hz, 1H), 7.57 (dd, J=8.7, 1.6 Hz, 1H), 7.86 (d, J=1.6 Hz, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 28.1 (3C), 43.6 (2C), 44.7, 45.2, 68.9, 106.1, 114.0, 119.1, 

127.56, 127.59, 130.3, 135.1, 137.3, 183.7. IR (neat) 2230, 1709, 1347, 1156, 1067, 

1005, 843 cm
–1

. MS (ESI) calcd for C17H20N3O5ClIS2 [M+Cl]
-
 571.9583, found 

571.9599. 

 

N-((3-iodo-5-nitro-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methanes

ulfonamide (3q): 
1
H NMR (400 MHz, CDCl3) δ 1.47 (s, 9H), 3.27 (s, 6H), 5.15 (s, 2H), 

7.45 (d, J=9.2 Hz, 1H), 8.23 (dd, J=9.2, 2.0 Hz, 1H), 8.46 (d, J=2.0 Hz, 1H). 
13

C NMR 

(100 MHz, CDCl3) δ 28.1 (3C), 43.6 (2C), 44.8, 45.2, 69.9, 113.3, 119.1, 120.0, 130.2, 

136.0, 138.4, 143.5, 183.6. IR (neat) 1714, 1520, 1361, 1154, 974, 836 cm
–1

. MS (ESI) 
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calcd for C16H20N3O7ClIS2 [M+Cl]
-
 591.9481, found 591.9485. 

 

N-((3-iodo-6-methyl-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methan

esulfonamide (3r): 
1
H NMR (400 MHz, CDCl3) δ 1.47 (s, 9H), 2.49 (s, 3H), 3.21 (s, 

6H), 5.16 (s, 2H), 7.09 (d, J=8.2 Hz, 1H), 7.19 (s, 1H), 7.35 (d, J=8.2 Hz, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 22.0, 28.2 (3C), 43.7 (2C), 44.2, 45.7, 70.6, 113.3, 121.7, 

124.2, 128.1, 131.7, 135.2, 136.0, 184.4. IR (neat) 1706, 1358, 1153, 965, 761 cm
–1

. MS 

(ESI) calcd for C17H23N2O5ClIS2 [M+Cl]
-
 560.9787, found 560.9794. 

 

N-((3,5-diiodo-6-methoxyl-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)

methanesulfonamide (3s): 
1
H NMR (400 MHz, CDCl3) δ 1.45 (s, 9H), 3.20 (s, 6H), 

3.91 (s, 3H), 5.13 (s, 2H), 6.83 (s, 1H), 7.87 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 

28.2 (3C), 43.7 (2C), 44.6, 45.7, 56.7, 68.8, 80.9, 95.5, 126.1, 131.6, 132.4, 136.3, 155.9, 

183.9. IR (neat) 1702, 1360, 1151, 1041, 824, 763 cm
–1

. MS (ESI) calcd for 

C17H22N2O6ClIS2 [M+Cl]
-
 702.8703, found 702.8712. 

 

N-((6-chloro-3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methan

esulfonamide (3t): 
1
H NMR (400 MHz, CDCl3) δ 1.47 (s, 9H), 3.23 (s, 6H), 5.14 (s, 

2H), 7.24 (dd, J=8.5, 1.8 Hz, 1H), 7.37-7.44 (m, 2H). 
13

C NMR (100 MHz, CDCl3) δ 

28.2 (3C), 43.7 (2C), 44.3, 45.5, 69.8, 113.2, 123.1, 123.2, 128.8, 131.1, 133.3, 135.7, 

183.8. IR (neat) 1712, 1358, 1153, 1072 962, 804, 760 cm
–1

. MS (ESI) calcd for 

C16H20N2O5Cl2IS2 [M+Cl]
-
 580.9241, found 580.9251. 

 

Methyl 

3-iodo-2-((N-(methanesulfonyl)methylsulfonamido)methyl)-1-pivaloyl-1H-indole-6-

carboxylate (3u): 
1
H NMR (400 MHz, CDCl3) δ 1.51 (s, 9H), 3.19 (s, 6H), 3.94 (s, 3H), 

5.10 (s, 2H), 7.49 (d, J=8.5 Hz, 1H), 7.87 (d, J=1.4 Hz, 1H), 7.92 (dd, J=8.5, 1.4 Hz, 

1H). 
13

C NMR (100 MHz, CDCl3) δ 27.2 (3C), 39.3, 43.9 (2C), 44.5, 52.3, 63.0, 110.8, 

122.3, 123.1, 127.0, 130.2, 134.5, 134.8, 166.9, 176.5. IR (neat) 1781, 1716, 1351, 1248, 

1159, 1072, 966, 825 cm
–1

. MS (APCI) calcd for C18H23N2O7IS2 [M]
+
 569.9986, found 

569.9991. 

 

N-((3-iodo-6-nitro-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methanes

ulfonamide (3v): 
1
H NMR (400 MHz, CDCl3) δ 1.53 (s, 9H), 3.22 (s, 6H), 5.11 (s, 2H), 

7.58 (d, J=8.9 Hz, 1H), 8.08 (d, J=1.8 Hz, 1H), 8.14 (dd, J=8.9, 1.8 Hz, 1H). 
13

C NMR 

(100 MHz, CDCl3) δ 27.2 (3C), 39.4, 43.8 (2C), 44.3, 62.4, 105.3, 117.4, 123.1, 131.1, 
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133.7, 136.8, 145.4, 176.3. IR (neat) 1793, 1514, 1335, 1159, 1050, 802, 747 cm
–1

.  

 

N-((3-iodo-4-methyl-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methan

esulfonamide (3w): 
1
H NMR (400 MHz, CDCl3) δ 1.40 (s, 9H), 3.23 (s, 6H), 5.18 (s, 

2H), 6.96 (d, J=7.3 Hz, 1H), 7.15 (t, J=7.3 Hz, 1H), 7.25 (d, J=7.3 Hz, 1H). 
13

C NMR 

(100 MHz, CDCl3) δ 20.3, 28.3 (3C), 43.6 (2C), 44.9, 46.3, 66.8, 111.3, 124.0, 125.8, 

131.3, 132.0, 136.1, 184.7. IR (neat) 1732, 1366, 1158, 961, 729 cm
–1

. MS (ESI) calcd 

for C17H24N2O5IClS2 [M+Cl]
-
 560.9787, found 560.9762. 

 

N-((5,6-dichloro-3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)met

hanesulfonamide (3x):
 1

H NMR (400 MHz, CDCl3) δ 1.46 (s, 9H), 3.24 (s, 6H), 5.12 (s, 

2H), 7.52 (s, 1H), 7.58 (s, 1H), 
13

C NMR (100 MHz, CDCl3) δ 28.2 (3C), 43.6 (2C), 

44.3, 45.4, 68.3, 114.8, 123.2, 127.1, 129.3, 130.1, 134.0, 134.7 183.4 IR (neat) 1712, 

1353, 1156, 970, 844, 765 cm
–1

. MS (ESI) calcd for C16H19N2O5Cl3IS2 [M+Cl]
-
 

614.8851, found 614.8857. 

 

N-((5,7-dimethyl-3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)met

hanesulfonamide (3y): 
1
H NMR (400 MHz, CDCl3) δ 1.12 (s, 9H), 2.39 (s, 3H), 2.43 

(s, 3H), 3.20 (s, 6H), 5.12 (s, 2H), 6.92 (s, 1H), 7.12 (s, 1H). 
13

C NMR (100 MHz, 

CDCl3) δ 18.3, 21.1, 27.7 (3C), 43.6 (2C), 46.0, 47.1, 61.2, 119.8, 122.5 (2C), 129.3, 

130.6, 132.4, 141.1, 189.0. IR (neat) 1740, 1368, 1157, 958, 838, 764 cm
–1

. MS (ESI) 

calcd for C18H25N2O5ClIS2 [M+Cl]
-
 574.9944, found 574.9950. 

 

N-((1-iodo-3-pivaloyl-3H-benzo[e]indol-2-yl)methyl)-N-(methanesulfonyl)methanes

ulfonamide (3z): 
1
H NMR (400 MHz, CDCl3) δ 1.39 (s, 9H), 3.19 (s, 6H), 5.28 (s, 2H), 

7.42 (d, J=9.1 Hz, 1H), 7.52 (t, J=8.2 Hz, 1H), 7.64-7.74 (m, 2H), 7.92 (d, J=8.2 Hz, 

1H), 9.61 (d, J=8.2 Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 28.2 (3C), 43.8 (2C), 45.5, 

46.5, 66.7, 112.9, 120.2, 121.4, 124.8, 125.9, 126.2, 127.9, 128.8, 129.2, 130.2, 133.3, 

184.6. IR (neat) 1731, 1361, 1154, 960, 795 cm
–1

. MS (ESI) calcd for C20H24N2O5IClS2 

[M+Cl]
-
 596.9787, found 596.9794. 

 

N-((3-bromo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methanesulfon

amide (5e): 
1
H NMR (400 MHz, CDCl3) δ 1.51 (s, 9H), 3.23 (s, 6H), 5.16 (s, 2H), 7.28 

(t, J=8.5 Hz, 1H), 7.35 (t, J=8.5 Hz, 1H), 7.47 (d, J=8.5 Hz, 1H), 7.59 (d, J=8.5 Hz, 1H). 
13

C NMR (100 MHz, CDCl3) δ 28.2 (3C), 43.6 (2C), 43.9, 44.1, 100.1, 113.6, 120.0, 

122.5, 125.0, 137.3, 130.2, 134.7, 184.2. IR (neat) 1697, 1366, 1159, 1048, 841, 762 
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cm
–1

. MS (ESI) calcd for C16H21N2O5INaS2 [M+Na]
+
 486.9967, found 486.9963. 

 

3. General Procedure for Preparation of 

N-((3-iodo-1H-indol-2-yl)methyl)methanesulfonamide (6e) from 

N-((3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methylsulfonyl)methanesulfonami

de (3e) (Scheme 4) 

To a solution of  

N-((3-iodo-1-pivaloyl-1H-indol-2-yl)-methyl)-N-(methanesulfonyl)methanesulfonamide 

3e (51.24 mg, 0.10 mmol) in THF (1mL), MeOH (0.5 ml), and H2O (0.5 ml) was added 

K2CO3 (41.5 mg, 3.0 mmol). The mixture was stirred at room temperature for 24 h. 

Then, saturated NH4Cl aqueous solution (10 mL) was added to the reaction mixture, and 

the product was extracted with AcOEt (15 mL × 3). The combined extracts were washed 

by brine (10 mL) and dried over Na2SO4. The organic phase was concentrated under 

reduced pressure and the crude product was purified by column chromatography on 

silica-gel (eluent: hexane/AcOEt = 5/1), to give the desired product 6e (26.7 mg, 76 % 

yield). 

 

N-((3-iodo-1H-indol-2-yl)methyl)methanesulfonamide (6e): 
1
H NMR (400 MHz, 

CDCl3) δ 3.42 (s, 3H), 4.67 (s, 2H), 7.13-7,27 (m, 2H), 7.30 (d, J=8.0 Hz, 1H), 7.42 (d, 

J=8.0 Hz, 1H), 8.79 (br, 1H). 
13

C NMR (100 MHz, CDCl3) δ 58.2, 59.0, 67.7, 111.2, 

120.7, 120.9, 123.3, 130.2, 135.6, 136.1. IR (neat) 3291, 1450, 1220, 1078, 908, 741 

cm
–1

.  
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Chapter 5 

 

Abstract 

Ligand Coupling Reaction of (Indolyl)(aryl)iodonium Imides to Form C-N Bond at 

3-Position in Indole Group; Effect of Substitutents of Hypervalent Iodine for 

Reaction Selectivity 

N-(1’-pivaloyl-1’H-indol-3’-yl)-4-methyl-N-tosylbenzenesulfonamides were generated 

by ligand coupling reaction of (indolyl)(aryl)iodonium imides using catalytic amount of 

cupper iodide (I) or under heat conditions. Substitutent on hypervalent iodines 

controlled the reaction with high regioselectivity. 

 

Introduction 

Diaryliodonium salt is very useful aryl source for ligand of metal catalysts and arylation 

of carbon or heteroatoms by nucleophilic or radical reaction
1
. In particular, copper 

catalysts have been used for ligand coupling reaction between various compounds with 

diaryliodonium salts
2
. However, coupling reaction with unsymmetric diaryliodonium 

salts usually gives three products with low selectivity. To solve the problem, 

mesitylene(aryl)iodonium salt has been used to control regioselectivity by steric barrier 

of mesitylene group
3
.  

The author developed (indolyl)(aryl)iodonium imide, which is not only imide-combined 

hypervalent iodine but also heteroaryl(aryl)iodonium compounds
4
. To expand the 

synthetic utility of the imide-combined hypervalent iodines, study of intramolecular 

C-N ligand coupling reaction of (indolyl)(aryl)iodonium imide is very important. 

However, (indolyl)(mesityl)iodonium imide could not be isolated by the previous 

method in chapter 2
5
. Ever if it works, the yield is not so good. Then, the author studied 

designing hypervalent iodine to control selectivity of ligand coupling reaction. Here, the 

author reported regioselective C-N ligamd coupling reaction of (indolyl)(aryl)iodonium 

imides bearing ortho-alkoxyaryl group.    

 

Results and discussion 

First, the author examined C-N ligamd coupling reaction of (indolyl)(phenyl)iodonium 

imide with CuCl (10 mol %) at room temperature in dichloromethane (Scheme 1). 

However, the yield of coupling product indole (2a) was only 11 %, and that of coupling 

with a phenyl group (4a) and 3-iodoindole group (3a) were 41 % and 66 % yield, 

respectively. Then, the author studied screening reaction conditions for ligand coupling 
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reaction (Table 1). The addition of BF3•OEt2 or 1,10-phenanthroline was not much 

effective for the reaction (entries 2, 3). Heating conditions improved the selectivity 

(entries 4, 5), however, other cupper catalyst did not give good effect for yield of 2a 

(entries 6, 7). 

 

 

 

 

 

Next, the author searched C-N ligand coupling reaction of (indolyl)(aryl)iodonium 

imide bearing various substituent (Table 2). Use of 1 bearing 

3,5-bis(trifluoromethyl)phenyl (1ab) or 4-methoxyphenyl (1ac) group gave 2a in low 

yield using CuCl (20 mol%) at 100 ˚C in toluene. These results suggested that electronic 
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effect does not affect the reaction selectivity of C-N ligand coupling reaction. On the 

other hand, 1 bearing 2-n-butoxyphenyl group (1ad) extremely improved the yield of 2a. 

Zhdankin group reported that 2-alkoxyphenyl group improved solubility of ArNTs
6
. 

However, it is the first application of 2-alkoxyphenyl-combined hypervalent iodine to 

control selectivity of C-N ligand couplig reaction. 

 

 

 

To study the effect of 2-alkoxyphenyl group in 1 for regioselective C-N ligand coupling 

reaction, the author examined amination at 3-position of indole with 

(indolyl)(aryl)iodonium imide bearing various 2-alkoxy groups (Table 3). The reaction 

was carried out in the presence of a catalytic amount of CuI and Ts2NH at 150 ˚C, as 

shown in Table 3. 2-MeO (1ae) and 2-EtO (1af) phenyl groups gave 2a in good yields, 

respectively, and sterically hindered groups, such as 2-i-PrO (1ag) and 2-PhO (1ah) 

phenyl groups, also provided the desired products in high yields. Moreover, 2a was 

obtained with 1ai bearing electron-withdrawing group, 2-CF3Ophenyl group (1ai).  
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The author examined the coupling reaction of various substituted 

(indolyl)(2-butoxyphenyl)iodonium imides (1) with under optimized reaction conditions 

(Table 4).  

Electron-donating groups, such as 5-Me (1bd) and 5-MeO (1cd), on indole group 

promoted the reaction to give 3-aminoindole derivatives (2a,b) in high yields, and the 

products (2) bearing 5-Cl (2d) and 5-COOMe (2e) groups were obtained from 

hypervalent iodoine (1) in high yields, respectively. In addition, use of unsymmetrical 

imide-combined hypervalent iodine (1fd) gave desired product 2f in high yield.  
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The author also succeeded in C-N ligand coupling of (indolyl)(aryl)iodonium imide 

(1ad) without any catalysts (Scheme 2). This reaction was carried out at 150 ˚C for 4h 

under metal-free conditions and the yield of 2a was almost the same as that in C-N 

ligand coupling reaction with Cu catalyst.  

 

 

 

In conclusion, the author developed cupper-catalyzed C-N ligand coupling reaction of 



109 

 

(indolyl)(aryl)iodonium imide and regioselective coupling reaction was carried out by 

design of hypervalent iodine ligand. The reaction provided 3-imide substututed indole 

derivatives, and proceeds without metal catalysts. The author believed that the present 

regioselective coupling reaction of hypervalent iodine bearing 2-alkoxyphenyl group 

can be used for functionalization of indoles and hypervalent iodine chemistry. 
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Experimental 

1. General Methods. 
1
H NMR spectra were measured on a JEOL ECA-500 (500 MHz) 

spectrometer at ambient temperature. Data were recorded as follows: chemical shift in 

ppm f      te   l tet   ethyls l  e    the δ scale, multiplicity (s = singlet; d = doublet; 

t = triplet; q = quartet; sep = septet; m = multiplet; br = broad), coupling constant (Hz), 

integration, and assignment. 
13

C NMR spectra were measured on a JEOL ECA-500 

(125 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent 

resonance employed as the internal standard (deuterochloroform at 77.0 ppm). 

High-resolution mass spectra were recorded by Thermo Fisher Scientific Exactive 

Orbitrap mass spectrometers. Infrared (IR) spectra were recorded on a JASCO FT/IR 

4100 spectrometer. Single crystal X-ray diffraction data were collected at 173 K on a 

   ke  SMART APEX    CCD d ff  ct  ete  w th M  Kα (λ = 0.71073) radiation and 

graphite monochrometer. For thin-layer chromatography (TLC) analysis throughout this 

work, Merck precoated TLC plates (silica gel 60GF254 0.25 mm) were used. The 

products were purified by column chromatography on neutral silica-gel (Kanto 

Chemical Co., Inc. silica gel 60N, Prod. No. 37560-84; Merck silica gel 60, Prod. No. 

1.09385.9929). Visualization was accomplished by UV light (254 nm), anisaldehyde, 

KMnO4, and phosphomolybdic acid. 

 

2. 1 General Procedure Using Method A for Preparation of Indolyl(aryl)iodonium 

Imides (1)  

To prepare PhI(OAc)NTs2 were used DIB (386.5 mg, 1.2 mmol) and Ts2NH (390.5 mg, 

1.2 mmol) in MeCN (10 ml). The mixture was stirred at room temperature for 30 min. 

under argon atmosphere. Then, N-pivaloylindole (201.3 mg, 1.0 mmol) was added, and 

the solution was stirred at 40 ˚C for 7 h. The solvent was removed under reduced 

pressure. Then AcOEt (10 ml) and ether (5 ml) were added. The mixture was sonicated 

until precipitation occurred as the white solid, and ether (5 ml) was added to the mixture. 

The solid was filtrated and washed with AcOEt/ether (2:1) (15 ml), to give desired 

product 2a (597.5 mg, 82 % yield). 

 

2. 2 General Procedure Using Method B for Preparation of 

4-Methyl-N-((2”-phenoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylb

enzenesulfonamide (1ah)  

To prepare PhI(OAc)NTs2 were used 1-(diacetoxyiodo)-2-phenoxybenzene (497.0 mg, 

1.2 mmol) and Ts2NH (390.5 mg, 1.2 mmol) in MeCN (10 ml). The mixture was stirred 

at room temperature for 30 min. under argon atmosphere. Then, N-pivaloylindole (201.3 
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mg, 1.0 mmol) was added, and the solution was stirred at room temperature for 5 h. The 

solvent was removed under reduced pressure. Then, AcOEt (6 ml) was added. The 

mixture was added dropwise to ether /hexane (1:1) until the solvent changed clear 

solution to pale white, followed by sonication and addition of ether (2 ml). The solid 

was filtrated and washed with AcOEt/hexane (2:1) (15 ml), to give desired product 1ah 

(566.3 mg, 69 % yield). 

 

2. 3 General Procedure Using Method C for Preparation of 

N-((2”-isopropoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methyl-N-tosy

lbenzenesulfonamide (1ag)  

To prepare ArI(OAc)NTs2 were used 1-(diacetoxyiodo)-2-isopropoxybenzene (456.2 mg, 

1.2 mmol) and Ts2NH (390.5 mg, 1.2 mmol) in MeCN (10 ml). The mixture was stirred 

at room temperature for 30 min. under argon atmosphere. Then, N-pivaloylindole (201.3 

mg, 1.0 mmol) was added, and the solution was stirred at 40 ˚C for 5 h. The solvent was 

removed under reduced pressure. Then, AcOEt (6 ml) was added. The mixture was 

added dropwise to ether /hexane (1:1) until the solvent changed clear solution to pale 

white. The solution was stored overnight at -10 ˚C. The solid was filtrated and washed 

with AcOEt/hexane (2:1) (15 ml), to give desired product 1ag (566.5 mg, 72 % yield). 

 

The experimental data of compound 1aa-1ae : see chapter 2 

 

N-((2”-etoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methyl-N-tosylbenz

enesulfonamide (1af) (Isolated Method : A, 71 % yield) : mp. 161 °C (decomp.) 
1
H 

NMR (500 MHz, CDCl3) δ 1.45 (s, 9H), 1.54 (t, J=7.2 Hz, 3H), 2.27 (s, 6H), 4.25 (q, 

J=7.2 Hz, 2H), 6.87-6.95 (m, 5H), 6.99 (dd, J=8.3, 0.85 Hz, 1H), 7.39 (td, J=8.3, 0.85 

Hz, 1H), 7.42-7.55 (m, 8H), 8.54 (d, J=8.6 Hz, 1H), 8.88 (s, 1H). 
13

C NMR (125 MHz, 

CDCl3) δ 14.6, 21.3 (2C), 28.4 (3C), 41.8, 66.1, 82.5, 104.0, 113.0, 117.8, 119.5, 124.0, 

125.2, 126.6 (4C), 127.1, 127.6, 128.4 (4C), 133.6, 133.7, 136.3, 136.4, 140.8 (2C), 

141.3 (2C), 155.6, 177.0. IR (neat) 1712, 1467, 1278, 1127, 1079, 1046, 750, 671 cm
–1

. 

MS (ESI) calcd for C35H37N2O6INaS2 [M+Na]
+
 795.1030, found 795.1021. 

 

N-((2”-isopropoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methyl-N-tosy

lbenzenesulfonamide (1ag) (Isolated Method : C, 72 % yield) : mp. 172 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.43 (s, 9H), 1.46 (d, J=6.0 Hz, 6H), 2.26 (s, 6H), 4.74 

(sep, J=6.0 Hz, 1H), 6.83-6.93 (m, 5H), 6.99 (d, J=8.0 Hz, 1H), 7.35-7.47 (m, 8H), 7.50 

(d, J=8.0 Hz, 1H), 8.55 (d, J=8.3 Hz, 1H), 8.89 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 
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21.2 (2C), 21.8 (2C), 28.4 (3C), 41.7, 73.6, 82.1, 104.7, 114.0, 117.8, 119.5, 123.9, 

125.2, 126.5 (4C), 127.0, 127.5, 128.4 (4C), 133.1, 133.4, 136.3, 136.5, 140.7 (2C), 

141.5 (2C), 154.6, 177.1. IR (neat) 1719, 1442, 1290, 1124, 1082, 1053, 751, 670 cm
–1

. 

MS (ESI) calcd for C36H39N2O6INaS2 [M+Na]
+
 809.1186, found 809.1174. 

 

4-Methyl-N-((2”-phenoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylb

enzenesulfonamide (1ah) (Isolated Method : B, 69 % yield) : mp. 196 °C (decomp.) 
1
H 

NMR (500 MHz, CDCl3) δ 1.35 (s, 9H), 2.23 (s, 6H), 6.74 (dd, J=8.3, 1.2 Hz, 1H), 

6.83-6.92 (m, 6H), 6.99 (td, J=8.3, 1.2 Hz, 1H), 7.21 (t, J=7.5 Hz, 1H), 7.28-7.37 (m, 

4H), 7.42-7.48 (m, 5H), 7.51 (d, J=8.0 Hz, 1H), 8.10 (dd, J=8.3, 1.2 Hz, 1H), 8.48 (d, 

J=8.0 Hz, 1H), 8.75 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.3 (2C), 28.3 (3C), 41.7, 

84.8, 105.8, 117.3, 117.6, 119.8, 120.3 (2C), 125.1, 125.4, 125.6, 126.7 (4C), 126.8, 

127.7, 128.4 (4C), 130.2 (2C), 133.9, 136.1, 136.2, 136.5, 140.8 (2C), 141.2 (2C), 154.6, 

156.1, 177.0. IR (neat) 1706, 1444, 1294, 1135, 1076, 1031, 747, 670 cm
–1

. MS (ESI) 

calcd for C39H37N2O6INaS2 [M+Na]
+
 843.1030, found 843.1013. 

 

4-Methyl-N-((2”-(trifluoromethoxy)phenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl

)-N-tosylbenzenesulfonamide (1ai) (Isolated Method : B, 60 % yield) : mp. 155 °C 

(decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.40 (s, 9H), 2.23 (s, 6H), 6.86 (q, J=8.0 Hz, 

4H), 7.20 (t, J=8.0 Hz, 1H), 7.30 (d, J=8.6 Hz, 1H), 7.32-7.47 (m, 7H), 7.49 (d, J=8.0 

Hz, 1H), 8.30 (d, J=8.0 Hz, 1H), 8.46 (d, J=8.6 Hz, 1H), 8.79 (s, 1H). 
13

C NMR (125 

MHz, CDCl3) δ 21.2 (2C), 28.2 (3C), 41.6, 86.3, 107.6, 117.1, 117.5, 119.4, 124.2 (q, 

JC-F=261.1 Hz), 125.0, 126.59 (4C), 126.64, 127.6, 128.4 (4C), 128.9, 134.0, 135.9, 

136.0, 138.7, 140.76 (2C), 140.82 (2C), 147.6, 177.0. 
19

F NMR (471 MHz, CDCl3) δ 

-56.6. IR (neat) 1715, 1446, 1247, 1134, 1079, 1011, 762, 672 cm
–1

. MS (ESI) calcd for 

C34H32N2O6F3INaS2 [M+Na]
+
 835.0591, found 835.0591. 

 

N-((2”-butoxyphenyl)(5’-methyl-1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methyl-

N-tosylbenzenesulfonamide (1bd) (Isolated Method : C, 70 % yield) : mp.102-104 °C 
1
H NMR (500 MHz, CDCl3) δ 1.03 (t, J=7.2 Hz, 3H), 1.43 (s, 9H), 1.56 (sext, J=7.2 Hz, 

2H), 1.92 (quin, J=7.2 Hz, 2H), 2.27 (s, 6H), 2.45 (s, 3H), 4.19 (t, J=7.2 Hz, 2H), 

6.87-6.94 (m, 5H), 7.02 (dd, J=8.3, 0.90 Hz, 1H), 7.20 (s, 1H), 7.33 (d, J=8.6 Hz, 1H), 

7.37 (dd, J=8.3, 1.2 Hz, 1H), 7.40-7.50 (m, 5H), 8.42 (d, J=8.6 Hz, 1H), 8.84 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 13.8, 19.2, 21.3 (2C), 21.4, 28.4 (3C), 30.8, 41.7, 70.1, 

81.7, 103.8, 113.0, 117.5, 119.1, 124.1, 126.6 (4C), 127.7, 128.4 (4C), 128.6, 132.7, 

133.5, 134.5, 135.3, 136.5, 140.6 (2C), 141.6 (2C), 155.6, 177.0. IR (neat) 1712, 1465, 
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1279, 1133, 1079, 805, 763, 672 cm
–1

. MS (ESI) calcd for C38H43N2O6INaS2 [M+Na]
+
 

837.1499, found 837.1488. 

 

N-((2”-butoxyphenyl)(5’-methoxy-1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methy

l-N-tosylbenzenesulfonamide (1cd) (Isolated Method : B, 69 % yield) : mp. 156 °C 

(decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.01 (t, J=7.5 Hz, 3H), 1.43 (s, 9H), 1.54 (sext, 

J=7.5 Hz, 2H), 1.90 (quin, J=7.5 Hz, 2H), 2.27 (s, 6H), 3.81 (s, 3H), 4.18 (t, J=7.5 Hz, 

2H), 6.84 (d, J=7.5 Hz, 1H), 6.88-6.96 (m, 5H), 7.02 (dd, J=8.0, 1.2 Hz, 1H), 7.09 (dd, 

J=8.0, 1.2 Hz, 1H), 7.09 (dd, J=9.2, 2.3 Hz, 1H), 7.40 (dd, J=8.3, 1.5 Hz, 1H), 

7.42-7.51 (m, 5H), 8.45 (d, J=9.2 Hz, 1H), 8.81 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 

13.8, 19.1, 21.3 (2C), 28.5 (3C), 30.8, 41.6, 55.8, 70.2, 81.8, 101.8, 103.7, 113.1, 115.9, 

118.8, 124.0, 126.5 (4C), 128.3 (4C), 128.6, 130.8, 132.8, 133.5, 136.6, 140.6 (2C), 

141.6 (2C), 155.7, 157.6, 176.8. IR (neat) 1701, 1469, 1280, 1127, 1077, 803, 749, 664 

cm
–1

. MS (ESI) calcd for C38H44N2O7INaS2 [M+Na]
+
 853.1449, found 853.1434. 

 

N-((2”-butoxyphenyl)(5’-chloro-1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methyl-

N-tosylbenzenesulfonamide (1dd) (Isolated Method : B, 54 % yield) : mp. 182 °C 

(decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.02 (t, J=7.2 Hz, 3H), 1.45 (s, 9H), 1.55 (sext, 

J=7.2 Hz, 2H), 1.91 (quin, J=7.2 Hz, 2H), 2.27 (s, 6H), 4.16 (t, J=7.2 Hz, 2H), 

6.87-6.95 (m, 5H), 7.00 (d, J=8.0 Hz, 1H), 7.38-7.50 (m, 7H), 7.63 (d, J=8.0 Hz, 1H), 

8.44 (d, J=9.5 Hz, 1H), 8.95 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 13.8, 19.2, 21.3 

(2C), 28.3 (3C), 30.8, 41.8, 70.1, 82.2, 104.2, 113.0, 118.9, 119.2, 124.0, 126.6 (4C), 

127.1, 128.4 (4C), 129.0, 130.9, 134.0, 134.6, 137.5, 140.8 (2C), 141.4 (2C), 155.9, 

177.0. IR (neat) 1712, 1443, 1280, 1129, 1078, 805, 756, 665 cm
–1

. MS (ESI) calcd for 

C37H40N2O6ClINaS2 [M+Na]
+
 857.0953, found 857.0943. 

 

Methyl 

3-(((4”-methyl-N-tosylbenzene)sulfonamido)(2’-n-butoxyphenyl)-
3
-iodanyl)-1-piv

aloyl-1H-indole-5-carboxylate (1ed) (Isolated Method : C, 49 % yield) : mp. 182 °C 

(decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.00 (t, J=7.2 Hz, 3H), 1.46 (s, 9H), 1.54 (sext, 

J=7.2 Hz, 2H), 1.91 (quin, J=7.2 Hz, 2H), 2.26 (s, 6H), 3.94 (s, 3H), 4.19 (t, J=7.2 Hz, 

2H), 6.86-6.94 (m, 5H), 7.00 (dd, J=8.3, 1.2 Hz, 1H), 7.42-7.50 (m, 5H), 7.60 (dd, 

J=8.3, 1.2 Hz, 1H), 8.12 (d, J=1.7 Hz, 1H), 8.15 (dd, J=8.9, 1.7 Hz, 1H), 8.56 (d, J=8.9 

Hz, 1H), 9.02 (s, 1H). 
13

C NMR (125 MHz, CDCl3) δ 13.8, 19.1, 21.2 (2C), 28.3 (3C), 

30.7, 41.8, 52.3, 70.1, 83.4, 104.2, 113.0, 117.6, 121.4, 124.0, 126.6 (4C), 127.0, 127.6, 

127.9, 128.4 (4C), 134.0, 134.3, 137.7, 138.8, 140.7 (2C), 141.6 (2C), 155.9, 166.3, 
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177.1. IR (neat) 1717, 1469, 1279, 1127, 1076, 817, 748, 664 cm
–1

. MS (ESI) calcd for 

C39H43N2O8INaS2 [M+Na]
+
 881.1398, found 881.1403. 

 

N-((2”-butoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-4-methyl-N-(methan

esulfonyl)benzenesulfonamide (1fd) (Isolated Method : C, 51 % yield) : mp.72-75 °C 
1
H NMR (500 MHz, CDCl3) δ 1.03 (t, J=7.2 Hz, 3H), 1.48 (s, 9H), 1.56 (sext, J=7.2 Hz, 

2H), 1.90 (quin, J=7.2 Hz, 2H), 2.26 (s, 3H), 2.86 (s, 3H), 4.17 (t, J=7.2 Hz, 2H), 6.90 

(d, J=8.1 Hz, 1H), 6.95 (d, J=8.0 Hz, 2H), 7.01 (d, J=8.1 Hz, 1H), 7.38 (t, J=8.3 Hz, 

1H), 7.41-7.53 (m, 7H), 8.53 (d, J=8.3 Hz, 2H), 8.79 (s, 1H). 
13

C NMR (125 MHz, 

CDCl3) δ 13.8, 19.1, 21.3, 28.4 (3C), 30.8, 41.8, 42.8, 70.1, 82.7, 104.0, 113.1, 117.7, 

119.4, 123.9, 125.2, 126.5 (2C), 127.0, 127.5, 128.5 (2C), 133.5, 133.7, 136.1, 136.2, 

140.8, 141.7, 155.8, 177.0. IR (neat) 1708, 1443, 1276, 1120, 1083, 808, 758, 658 cm
–1

. 

MS (ESI) calcd for C31H37N2O6INaS2 [M+Na]
+
 747.1030, found 747.1017. 

 

3. General Procedure for C-N Ligand Coupling Reaction of 

4-Methyl-N-((2”-n-butoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylb

enzenesulfonamide (1ad) with Cupper Catalyst (Table 3, entry 1) 

To a solution of 

4-methyl-N-((2-n-butoxyphenyl)(1-pivaloyl-1H-indol-3-yl)-
3
-iodanyl)-N-tosylbenzene

sulfonamide 1ad (80.1 mg, 0.10 mmol) in o-xylene (1mL) were added CuI (3.81 mg, 

0.020 mmol) and Ts2NH (6.51 mg, 0.020 mmol). The mixture was stirred at 150 ºC for 

1 h under argon atmosphere. Then, saturated NH4Cl aqueous solution (10 mL) was 

added to the reaction mixture, and the product was extracted with AcOEt (15 mL × 3). 

The combined extracts were washed by brine (10 mL) and dried over Na2SO4. The 

organic phase was concentrated under reduced pressure and the crude product was 

purified by column chromatography on silica-gel (eluent: hexane/AcOEt = 5/1), to give 

the desired product 3a (46.2 mg, 88 % yield). 

 

4-Methyl-N-(1’-pivaloyl-1’H-indol-3’-yl)-N-tosylbenzenesulfonamide (2a) : mp. 

207 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.40 (s, 9H), 2.46 (s, 6H), 7.07 (d, 

J=7.9 Hz, 1H), 7.17 (t, J=7.9 Hz, 1H), 7.30-7.36 (m, 5H), 7.46 (s, 1H), 7.87 (d, J=8.3 

Hz, 4H), 8.46 (d, J=7.9 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.7 (2C), 28.5 (3C), 

41.3, 115.8, 117.3, 118.6, 124.1, 126.0, 126.8, 127.7, 128.6 (4C), 129.6 (4C), 135.7, 

136.2 (2C), 145.2 (2C), 176.7. IR (neat) 1702, 1374, 1316, 1165 cm
–1

. MS (ESI) calcd 

for C27H28N2O5S2Na [M+Na
+
]

+
 547.1332, found 547.1316. 
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4-Methyl-N-(5’-methyl-1’-pivaloyl-1’H-indol-3’-yl)-N-tosylbenzenesulfonamide 

(2a) : mp. 214 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.39 (s, 9H), 2.28 (s, 3H), 

2.47 (s, 6H), 6.71 (s, 1H), 7.14 (d, J=8.6 Hz, 1H), 7.32 (d, J=8.3 Hz, 4H), 7.42 (s, 1H), 

7.87 (d, J=8.3 Hz, 4H), 8.31 (d, J=8.6 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.2, 

21.7 (2C), 28.5 (3C), 41.2, 115.6, 116.9, 118.4, 126.9, 127.4, 127.6, 128.7 (4C), 129.5 

(4C), 133.8, 133.9, 136.3 (2C), 145.2 (2C), 176.6. IR (neat) 1701, 1379, 1308, 1156, 

901, 811, 658 cm
–1

. MS (ESI) calcd for C28H30N2O5S2Na [M+Na
+
]

+
 561.1448, found 

561.1488. 

 

N-(5’-methoxy-1’-pivaloyl-1’H-indol-3’-yl)-4-methyl-N-tosylbenzenesulfonamide 

(2b) : mp. 224 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.39 (s, 9H), 2.46 (s, 6H), 

3.62 (s, 3H), 6.37 (d, J=2.6 Hz, 1H), 6.92 (dd, J=9.2, 2.6 Hz, 1H), 7.32 (d, J=8.3 Hz, 

4H), 7.43 (s, 1H), 7.88 (d, J=8.3 Hz, 4H), 8.34 (d, J=9.2 Hz, 1H). 
13

C NMR (125 MHz, 

CDCl3) δ 21.7 (2C), 28.6 (3C), 41.2, 55.2, 115.4, 115.6, 118.3, 127.8, 128.0, 128.6 (4C), 

129.6 (4C), 130.2, 136.4 (2C), 145.2 (2C), 156.7, 176.4. IR (neat) 1701, 1380, 1312, 

1162, 904, 814, 658 cm
–1

. MS (ESI) calcd for C28H30N2O6S2Na [M+Na
+
]

+
 577.1437, 

found 577.1437. 

 

N-(5’-chloro-1’-pivaloyl-1’H-indol-3’-yl)-4-methyl-N-tosylbenzenesulfonamide 

(2c) : mp. 201-204 °C 
1
H NMR (500 MHz, CDCl3) δ 1.41 (s, 9H), 2.48 (s, 6H), 6.81 (d, 

J=2.0 Hz, 1H), 7.27 (dd, J=8.9, 2.0 Hz, 1H), 7.33 (d, J=8.3 Hz, 4H), 7.52 (s, 1H), 7.85 

(d, J=8.3 Hz, 4H), 8.38 (d, J=8.9 Hz, 1H). 
13

C NMR (125 MHz, CDCl3) δ 21.7 (2C), 

28.4 (3C), 41.3, 115.2, 118.2, 126.2, 128.0, 128.6 (4C), 128.7, 129.7 (4C), 130.0, 133.9, 

136.0 (2C), 145.6 (2C), 176.6. IR (neat) 1708, 1379, 1307, 1163, 903, 815, 660 cm
–1

. 

MS (ESI) calcd for C27H27N2ClO5S2Na [M+Na
+
]
+
 581.0492, found 581.0944. 

 

Methyl 

3-((4’-methyl-N-tosylbenzene)sulfonamido)-1-pivaloyl-1H-indole-5-carboxylate 

(2d) : mp. 224 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.41 (s, 9H), 2.46 (s, 6H), 

3.89 (s, 3H), 7.33 (d, J=8.3 Hz, 4H), 7.54 (s, 1H), 7.63 (d, J=1.5 Hz, 1H), 7.86 (d, J=8.3 

Hz, 4H), 8.02 (dd, J=8.9, 1.5 Hz, 1H), 8.50 (d, J=8.9 Hz, 1H). 
13

C NMR (125 MHz, 

CDCl3) δ 21.7 (2C), 28.4 (3C), 41.4, 52.0, 116.2, 117.1, 126.1, 126.6, 127.2, 128.6 (4C), 

128.8, 129.7 (4C), 136.0 (2C), 138.1, 145.5 (2C), 166.7, 176.7. IR (neat) 1717, 1389, 

1313, 1165, 817, 658 cm
–1

. MS (ESI) calcd for C29H30N2O7S2Na [M+Na
+
]
+
 605.1387, 

found 605.1388. 
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4-Methyl-N-(5’-methyl-1’-pivaloyl-1’H-indol-3’-yl)-N-(methanesulfonyl)benzenesu

lfonamide (2e) : mp. 217 °C (decomp.) 
1
H NMR (500 MHz, CDCl3) δ 1.44 (s, 9H), 

2.43 (s, 3H), 3.56 (s, 3H), 7.25-7.30 (m, 3H), 7.32 (d, J=8.0 Hz, 1H), 7.37 (d, J=8.0 Hz, 

1H), 7.62 (s, 1H), 7.79 (d, J=8.3 Hz, 2H), 8.48 (d, J=8.0 Hz, 1H). 
13

C NMR (125 MHz, 

CDCl3) δ 21.7, 28.5 (3C), 41.4, 44.0, 115.2, 117.4, 118.2, 124.4, 126.2, 126.7, 127.2, 

128.8 (2C), 129.6 (2C), 135.1, 136.7, 145.6, 176.7. IR (neat) 1704, 1366, 1157, 900, 

749, 660 cm
–1

. MS (ESI) calcd for C21H25N2O5S2Na [M+Na
+
]

+
 471.1019, found 

471.1020. 

 

4. General Procedure for C-N Ligand Coupling Reaction of 

4-Methyl-N-((2”-n-butoxyphenyl)(1’-pivaloyl-1’H-indol-3’-yl)-
3
-iodanyl)-N-tosylb

enzenesulfonamide (1ad) without Any Catalists (Scheme 2) 

To a solution of 

4-methyl-N-((2-n-butoxyphenyl)(1-pivaloyl-1H-indol-3-yl)-
3
-iodanyl)-N-tosylbenzene

sulfonamide 1ad (80.1 mg, 0.10 mmol) in o-xylene (1mL) was stirred at 150 ºC for 4 h 

under argon atmosphere. Then, the organic solvent was concentrated under reduced 

pressure and the crude product was purified by column chromatography on silica-gel 

(eluent: hexane/AcOEt = 5/1), to give the desired product 3a (41.5 mg, 79 % yield). 
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