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Chapter 1.   
 General Introduction of η6-Arene/sulfonyldiamine-Ru(II) complexes 
 
 
Asymmetric reduction of C=O and C=N bonds producing chiral alcohols and amines is the 
most fundamental and powerful molecular transformations. In nature, oxidoreductases such 
as horse liver alcohol dehydrogenase catalyze transfer hydrogenation of carbonyl 
compounds to alcohols using cofactors like NADH or NADPH. Such biochemical reactions 
are generally very stereoselective. However, organic synthesis needed economically and 
technically more beneficial methods. A reaction using nonhazardous organic molecules (eq 
1) provides a useful complement to catalytic reduction using molecular hydrogen.  
 
 

  
 
Asymmetric transfer hydrogenation is operationally simple, and the selectivities including 
functional group differentiation may be different from those of H2-hydrogenation. 
 
 
In 1995, Noyori et al. developed practical and outstanding catalysts for asymmetric transfer 
hydrogenation. They found that N-sulfonyl ethylenediamine is an excellent promoter of the 
Ru catalyzed transfer hydrogenation1. In fact they found that a chiral Ru complex 
represented as 1 acts as an excellent catalyst for asymmetric transfer hydrogenation of 
aromatic ketones in 2-propanol. Experimental results proposed that the (S,S)-1a-catalyzed 
reaction of acetophenone proceeds with an excellent enantioface differentiation, kRe/ksi = 99, 
and that the resulting (S)-alcohol is more susceptible to the reverse reaction by a factor of 
99. Because of the occurrence of the reverse process, the level of enantioselection decreases 
with increasing conversion of the ketone reductions. 
 
 
Figure 1. η6-Arene/sulfonyldiamine-Ru(II) complexes 
 

  
 

a: Ar = 4-CH3C6H4:  η6-arene = mesitylene 
b: Ar = 4-CH3C6H4:  η6-arene = p-cymene 
c: Ar = 4-CH3C6H4:  η6-arene = benzene 
d:  Ar = 2,4,6-(CH3)3C6H2:  η6-arene = p-cymene 
e:  Ar = 2,4,6-(CH3)3C6H2:  η6-arene = benzene 
f:   Ar = 1-naphthyl: η6-arene = benzene 
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On the other hand, formic acid is other well-behaving, inexpensive reducing agent. The 
asymmetric reduction using this hydrogen donor, an adduct of H2 and CO2, in place of 
2-propanol must proceed irreversibly with truly kinetic enantioselection. In this reaction 
conditions, reaction will be a 100% conversion in principle. In fact the reaction with a 5:2 
formic acid-triethylamine azeotropic mixture, in the presence of the chiral Ru catalyst 1a 
has provided a simple solution to this longstanding problem. Although Ru(II) complexes 
generally catalyze the reversible process HCO2H ⇄ H2 + CO2, molecular hydrogen does 
not participate in the ketone reduction under these catalytic conditions. As summarized in 
Table 1, many kinds of aromatic ketones are reduced to the corresponding secondary 
alcohols with higher yield and ee1b.  
 
Table 1. Asymmetric Transfer Hydrogenation of Ketones Using (S,S)-1 
 
 

  
 

OH

>99%, 96% ee

OH

70%, 82% ee

OR
OOH
n

R = CH3; n = 3 99%, 95% ee
R = C2H5; n = 1 98%, 93% eeR = CH(CH3)2; n = 0 94%, 75% ee

O

OH

O

OH

XS

OH

>99%, 98% ee

47%, 97% ee X = S 95%, 99% ee
X = SO2 95%, 98% ee

OH
Cl

CO2CH3

68%, 92% ee
  

 
 
 
 
The arene-Ru(II) complexes of type 1 possessing some suitable chiral 1,2-diamine 
ancillaries also efficiently catalyze asymmetric reduction of imines with a formic 
acid-triethylamine axeotropic mixure. The reaction can be conducted with a formic 
acid-triethylamine mixture with an S/C ratio of 100-200 at room temperature in various 
polar solvents, such as acetonitrile, acetone, dichloromethane, DMF and DMSO 1f (Table 
2). 
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Table 2. Asymmetric Transfer Hydrogenation of Imines Using (S,S)-1 
 
 

  
  

 
 
 
 
In 2011, Touge and Ikariya developed oxo-tethered ruthenium complexs 3 and 4 2 (Figure 
2). The asymmetric transfer hydrogenation of ketones was successfully performed in 5:2 
formic acid/ trimethylamine azeotoropic mixture. Remarkably corresponding chiral 
alcohols bearing a broad scope of substituents were enantioselectively synthesized with low 
catalyst loading, down to S/C = 30,000 (Table 3). 
 
In this reported “oxo-tethered” ruthenium−arene catalysts, both the persistent inflicted 
coordination of the otherwise labile η6-arene and the strong chelation of the 
sulfonamido-amine anchor led to prolonged life span of the active catalytic species. This 
resulted in a reinforced congregative three-point ligation of the conjugate ligand to the 
ruthenium metal core, thereby decreasing the overall structure flexibility and rigidifing the 
stereoarray of the catalyst. These factors can explain the enhanced catalytic performances. 
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Figure 2. Structure of Oxo-Tethered Ruthenium(II) Catalysts 
 
 

  
 
 
 Table 3. Asymmetric Transfer Hydrogenation of Ketones Using (R,R)-3 or (R,R)-4 
 

  
 

OH

(R,R)-3
(S/C = 30,000)
95%, 97% ee

OH
OH

Cl
OH OH

OCH3 O

OH

(R,R)-3
(S/C = 1,000)
98%, 96% ee

(R,R)-3
(S/C = 1,000)
95%, 97% ee

(R,R)-3
(S/C = 1,000)
99%, 93% ee

(R,R)-3
(S/C = 1,000)
99%, 98% ee

OH

OH Ph
OH O

OEt

HO HO

(R,R)-3
(S/C = 1,000)
95%, 96% ee

(R,R)-3
(S/C = 1,000)
99%, 96% ee

(R,R)-4
(S/C = 1,000)
96%, 97% ee

(R,R)-4
(S/C = 1,000)
85%, 98% ee   
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In industrial aspects, oxo-tethered ruthenium complexes 3 and 4 are using for the synthesis 
of some active pharmaceutical ingrediants.  
 
For example, in Teijin Pharma, an efficient and scalable enantioselective synthesis of the 
intermediate for a β2-adrenergic receptor agonist has been developed. This synthesis 
features an enantioselective reduction of α-amino-acetophenone derivative using the (S,S)-4 
(Ms-DENEB). Effective asymmetric transfer hydrogenation of the ketone substrate to the 
chiral alcohol afforded the primary amine in >99% ee 6. 
 
 
 
Scheme 1. Asymmetric Synthesis of a Key Intermediate for the β2-Adrenergic Receptor 
Agonist (Teijin Pharma) 
 
 

  
 
 
 
 
 
In Merck, a concise, enantioselective synthesis of MK-8742, a potent and selective NS5a 
inhibitor for the treatment of chronic HCV infection, has been developed. This approach 
features a highly enantioselective asymmetric hydrogenation of NH-imine using (R,R)-4 
(Ms-DENEB) and following a directed stereochemical relay strategy that leverages a 
dynamic diastereoselective condensation to produce the challenging hemiaminal 
stereocenter 7. 
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 Scheme 2. Asymmetric Synthesis of a Key Intermediate for Elbasvir (MK-8742, Merck) 
 

  
 
 
In Merck, development of a convergent synthesis of Omarigliptin (Marizev, MK-3102), a 
long-acting DPP‑4 inhibitor for the treatment of Type 2 Diabetes, the synthesis of the 
pyranone relies on (R,R)-3 (Ts-DENEB)-catalyzed asymmetiric transfer hydrogenation via 
DKR reduction of a rac-α-aminoketone to set the two contiguous stereogenic centers 8.  
 
 
Scheme 3. Asymmetric Synthesis of a Key Intermediate for the Marizev (MK-3102, 
Merck) 
 

      



 10                                      

 
Chiral ruthenium η6-arene/N-sufonyldiamine complexes, excellent catalysts for the 
asymmetric transfer hydrogenation of ketones, are also efficient catalysts for the 
H2-hydrogenation of ketones under neutral or acidic conditions. Cationic ruthenium 
complex 5 developed by Ohkuma and co-workers including chiral Ts-DPEN ligand show 
high activity and enantioselectivity in the H2-hydrogenation of 4-chromanones, and 
providing the corresponding chiral alcohols with 95-98% ee and up to 7,000 TON in the 
absence of a base 4a (Scheme 4, eq 1). Catalyst 5 also gives high enantioselectivity in the 
H2-hydrogenation of α-chloro aromatic ketones 4b. The well-defined triflylamido ruthenium 
complex 6 developed by Ikariya and co-workers with a carbon-chain tether also affords 
high enantioselectivity (91-98% ee) in the H2-hydrogenation of aromatic ketones, however, 
the turnover number of the catalyst was only 1,000 5 (eq 2). The oxo-tethered ruthenium 
complex 3 and its dehydrochlorinated complex 3-16e- developed by Touge and Ikariya give 
>99% ee in the H2-hydrogenation of several aromatic cyclic ketones including 
4-chromanone, and turnover numbers of up to 5,000. Furthemore this catalyst could be used 
in the hydrogenation of ester such asγ-butyrolactone under basic conditions (eq 3－5).  
 
 
 
Figure 3. η6-Arene/sulfonyldiamine-Ru(II) Complexes for Asymetric H2-Hydrogenation 
 
 

               
(Ohkuma, 2006)   (Ikariya, 2008)    

             (Touge, Ikariya, 2011) 
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Scheme 4. Asymmetric H2-Hydrogenation of Ketones and Ester by Using 
η6-Arene/sulfonyldiamine-Ru(II) complexes 
 
 

 

O

O
+ H2(1 MPa) O

OH
cat. (R,R)-5a (S/C = 3,000)

MeOH, 60 °C, 15 h
100% yield, 97% ee

(Ohkuma et al. 2006)

(1)

O
+ H2(3 MPa)

OH
cat. (R,R)-6 (S/C = 1,000)

MeOH, 60 °C, 24 h
96% yield, 92% ee

(Ikariya et al. 2008)

(2)

O
+ H2(3 MPa)

OH
cat. (R,R)-3 (S/C = 5,000)

MeOH, 60 °C, 18 h
99% yield, 93% ee

(Touge, Ikariya et al. 2011)

OH OH

+ H2(3 MPa)
cat. (R,R)-3-16e- (S/C = 1,000)

MeOH, 60 °C, 18 h
97% yield, 98% ee

O OH

(3)

(4)

+ H2(5 MPa)
cat. (R,R)-3 (S/C = 50)

tert-BuOK, MeOH
60 °C, 48 h

99% yield

O OH

O OH
(5)

   



 12                                      

References 
  (1) (a) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 

1996, 118, 2521. (b) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. 
Am. Chem. Soc. 1996, 118, 4916. (c) Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; 
Noyori, R. Angew. Chem., Int. Ed. 1997, 36, 285. (d) Hashiguchi, S.; Fujii, A.; Haack, 
K.-J.; Matsumura, K.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. 1997, 36, 288. (e) 
Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (f) Matsumura, K.; 
Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738. 

(2) (a) Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; 
Ikariya, T. J. Am. Chem. Soc. 2011, 133, 14960. (b) Touge, T.; Nara, H.; Hakamata, T. 
WO 2012026201 A1. (c) Touge, T.; Nara, H.; Hakamata, T. WO 2012147944 A1. (d) 
Touge, T.; Nara, H.; Hakamata, T. WO 2012153684 A1.  

(3) Touge, T.; Nara, H.; Fujiwhara, M.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2016, 138, 
10084. 

(4) (a) Ohkuma, T.; Utsumi, N.; Tsutsumi, K., Murata, K.; Sandoval, C.; Noyori, R. J. Am. 
Chem. Soc. 2006. 128, 8724. (b) Ohkuma, T.; Tsutsumi, K.; Utsumi, N.; Arai, N.; 
Noyori, R.; Murata, K. Org. Lett. 2007, 9, 255.  

(5) Ito, M.; Endo, Y.; Ikariya, T. Organometallics 2008, 27, 6053. 
(6) Komiyama, M.; Itoh, T.; Takeyasu, T. Org. Process Res. Dev. 2015, 19, 315. 
(7) Chung, J. Y. L.; Scott, J. P.; Anderson, C.; Bishop, B.; Bremeyer, N.; Cao, Y.; Chen, 

Q.; Dunn, R.; Kassim, A.; Lieberman, D.; Moment, A. J.; Sheen, F.; Zacuto, M. Org. 
Process Res. Dev. 2015, 19, 1760. 

(8) Mangion, I. K.; Chen, C.-Y.; Li, H.; Maligres, P.; Chen, Y.; Christensen, M.; Cohen, R.; 
Jeon, I.; Klapars, A.; Krska, S.; Nguyen, H.; Reamer, R. A.; Sherry, B. D.; Zavialov, I. 
Org. Lett. 2014, 16, 2310. 

                      



 13                                      

Chapter 2.   
 Asymmetric Hydrogenation of Unprotected Indoles Catalyzed by η6-Arene/N-Me-sulfonyldiamine-Ru(II) complexes 
 
 1. Introduction 

 
 

Chiral indolines are important structural motifs in naturally occurring alkaloids and 
numerous bioactive compounds. 1-3 For example, the antitumor agent SAR-260301 (1) 1h-i is 
an N-amide of (S)-2-methylindoline, and the anti-inflammatory agent 21j and antitumor 
agent 31k also contain the chiral indoline skeleton (Figure 1).  
 
 
Figure 1. Examples of Biologically Active Compounds Containing Chiral Indoline 
 

 
 
Among the various methods that are available for the synthesis of chiral indolines,2 the 
direct asymmetric hydrogenation of 2-substituted indoles is the simplest, most practical and 
atom-efficient.3 
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The η6-arene/sulfonyldiamine-Ru(II) complexes pioneered by Noyori and Ikariya4 have 
been shown to exhibit excellent catalytic activity in a wide range of asymmetric transfer 
hydrogenations of ketones or imines (Figure 2). Ohkuma reported the cationic 
Ru(OTf)(TsDPEN)(p-cymene) complex (5a), which works efficiently in methanol for the 
catalytic asymmetric hydrogenation of ketonic substrates (Scheme 1).5  The BF4 analog  
((R,R)-5b)  has also been shown to exhibit similar catalytic activity.6a  
 
 
 
Figure 2. η6-Arene/sulfonyldiamine-Ru(II) Complexes 
 

NoyoriIkariya
(1996)

Ru
N

NC6H5
C6H5

Ts Cl

HH

Ru
N

NC6H5
C6H5

Ts X

HH

(R,R)-4 (R,R)-5a X = TfO
Ohkuma
(2006)

(R,R)-5b X = BF4

 
 
 
 
Scheme 1. Example of the Reaction Using Complex (R,R)-5a 
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Through the use of η6-arene/sulfonyldiamine-Ru(II) complexes, transfer hydrogenation and 
H2-hydrogenation of prochiral ketones,4,5 imines, quinolones, and quinoxalines have been 
widely investigated, as summarized in Scheme 2.6 For example, 2-methylquinoline and 
2-methylquinoxaline can be successfully reduced by (R,R)-4 with formic acid as the 
hydrogen source [Method A].6h In the reduction of an imine substrate, 
2,3,3-trimethylindolenine is smoothly obtained by (R,R)-5b in methanol with hydrogen gas 
as a hydrogen source [Method B]. 6b, d, e, g, j, k However, the reduction of indoles is difficult 
to achieve with Ru complexes under these conditions. 
 
 
Scheme 2. Asymmetric Reduction of N-Hetero Aromatic Compounds with 
η6-Arene/sulfonyldiamine-Ru(II) Complexes7 
 
 

 
 
 
  

N

N

NH

HN

[Method A] 79% yield, 83% ee
[Method B] 92% yield, 26% ee

(b) 2-Methylquinoxaline

N NH

[Method A] 55% yield, 65% ee
[Method B] >99% yield, 95% ee

(a) 2-Methylquinoline

NHNH
[Method A] No Reaction
[Method B] <1% yield

(d) 2-Methylindole

N NH
[Method A] 43% yield, 39% ee
[Method B] >99% yield, 89% ee

(c) 2,3,3-Trimethylindolenine
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Kuwano and Ito reported the first hydrogenation of the olefin-portion of N-protected 
indoles using Rh and a Ru/PhTRAP complex under basic conditions.8a-d Feringa8e and 
Pfaltz8f also reported the asymmetric hydrogenation of N-protected indoles with the use of 
Rh and Ir/N,P catalysts (Scheme 3, eq. (1)). In contrast, the hydrogenation of unprotected 
indoles is still an unsolved challenge. Zhang, Zhou and co-workers approached this 
problem by changing the reduction of the olefin-portion of indole9a-b (a) to the reduction of 
an iminium ion intermediate (b), which is generated with the assistance of a Brnsted acid. 
While the chiral diphosphine-Pd catalyst reduced the iminium ion intermediate, a 
stoichiometric amount of a strong Brnsted acid (e.g., camphorsulfonic acid) was required 
as an activator (Scheme 3, eq. (2)). 
 
 
Scheme 3. Classification of the Asymmetric Hydrogenation of Indoles. 
 
 

 
 
 
There has been limited success in the catalytic asymmetric reduction of unprotected indoles, 
and there is no previous report on the Ru-catalyzed reduction of unprotected indoles. We 
report here the first chiral Ru(II) complex-catalyzed hydrogenation of unprotected indoles 
under mild reaction conditions in protic solvent. 
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 2. Results and Discussions 
 2.1 Initial Screening of Asymmetric Hydrogenation of 2-Methylindole. 
 
Based on the work of Zhang and Zhou, we considered that the iminium intermediate is a 
key point for the reduction of indole derivatives with the use of 
η6-arene/sulfonyldiamine-Ru(II)-type complexes. Based on these pioneering works,9a-b 
η6-arene/sulfonyldiamine-Ru(II) complexes were applied to the asymmetric hydrogenation 
of unprotected 2-methylindole (6a) (Table 1). For the reaction with a substrate/catalyst 
molar ratio (S/C) = 500 under H2 (5.0MPa) at 30 °C, although neither the RuCl complex 
(R,R)-4 nor the RuBF4 complex (R,R)-5b promoted the hydrogenation of 6a in MeOH, 
toluene or THF, (R,R)-5b catalyzed the reaction in 2,2,2-trifluoroethanol (TFE) to give the 
2-methylindoline (7a) in 32% yield with 88% ee (entry 6). The use of 
1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a fluorinated solvent further improved the 
catalytic performance of (R,R)-5b to give 7a in 65% yield with a higher stereoselectivity of 
94% ee (entry 7).  
 
 
Table 1.  Initial Screening for the Asymmetric Hydrogenation of 2-Methylindole 
 

 
 

entry catalyst solvent[a] yield (%)[b] ee (%)[c] 
1 (R,R)-4 MeOH <0.1 - 
2 (R,R)-4 Toluene <0.1 - 
3 (R,R)-5b MeOH <1 - 
4 (R,R)-5b Toluene 1 - 
5 (R,R)-5b THF <1 - 
6 (R,R)-5b TFE[d] 32 88(R) 
7 (R,R)-5b HFIP[e] 65 94.1(R) 

 
[a] Using 0.7mL/100mg substrate of solvent.  [b] GC yield.  [c] Determined by HPLC analysis.  [d] 
2,2,2-Trifluoroethanol  [e] 1,1,1,3,3,3-Hexafluoroisopropanol   
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2.2 Synthesis of New Cationic η6-Arene/N-Me-sulfonyldiamine-Ru(II) Complexes and Its Application for Asymmetric Hydrogenation of 2-Methylindole. 

 
 
Ikariya and Wills reported that the catalytic activity of η6-arene/sulfonyldiamine-Ru(II) 
complexes could be enhanced with the use of a secondary amino-analogue.10  Based on a 
consideration of the ease of preparation and the practical utility of related cationic 
complexes, the author newly prepared a series of N-methylated RuBF4 complexes (8-10) 
(Figure 3).  
 
Figure 3. New Cationic η6-Arene/N-Me-sulfonyldiamine-Ru(II) Complexes 
 

 
 
 
 
Scheme 4. Preparation of New Cationic η6-Arene/N-Me-sulfonyldiamine-Ru(II) 
Complexes (R,R)-8 
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N-Methylated TsDPEN ligand (14) was prepared by the treatment of (R,R)-TsDPEN (11) 
with methyl chloroformate (12) under the Schotten-Baumann reaction conditions (i) and 
subsequent reduction using Vitride®  (ii) in 64% yield in two steps. Complexation of 
ligand (14) with [RuCl2(p-cymene)]2 (15) easily afforded the parent RuCl complex  
((R,R)-8-Cl) (iii) and cationic RuBF4 complex ((R,R)-8) was prepared by the anion 
exchange reaction using AgBF4 in quantitative yield (iv). 
 
 
 
 
 
 
 
 
 
Figure 4. 1H NMR of (R,R)-8  (400 MHz, CD3OD) 
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Figure 5. 13C NMR of (R,R)-8 (125 MHz, CD3OD) 
 

  
Figure 6. 1H-1H COSY of (R,R)-8 (500 MHz, CD3OD)  
 

 

 

Ru
N

NC6H5
C6H5

Ts BF4

HMe  
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Figure 7. HSQC of (R,R)-8 (500 MHz, CD3OD)  
 

  Figure 8. HMBC of (R,R)-8 (500 MHz, CD3OD)  
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Figure 9. ESI-MS of (R,R)-8  
 
 

  
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

= M [M-BF4]+ 
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Table 2.  Catalyst Development for the Asymmetric Hydrogenation of 2-Methylindole[a] 
 

 
 

entry catalyst H2 (MPa) temp (ºC) yield (%)[b] ee (%)[c] 
1 (R,R)-5b 5.0 30 65 94.1(R) 
2 (R,R)-8 5.0 30 >99 95.6(R) 
3 (R,R)-9 5.0 30 92 91.7(R) 
4 (S,S)-10 5.0 30 >99 95.4(S) 
5 (R,R)-8 5.0 20 >99 96.0(R) 
6 (R,R)-8 5.0 10 98 96.2(R) 
7 (R,R)-8 5.0 0 96 96.4(R) 
8 (R,R)-8 3.0 10 96 96.0(R) 
9 (R,R)-8 1.0 10 96 95.9(R) 

10[d] (R,R)-8 5.0 10 >99[e] 96.2(R) 
11[f] (R,R)-8 5.0 10 93 90.0(R) 

 
[a] Using 0.7mL/100mg substrate of solvent.  [b] GC yield.  [c] Determined by HPLC analysis. [d] 
S/C = 1000, 30 h. [e] Isolated yield was 99%. [f] S/C=100, HFIP (1.0 equiv. of 6a), without the other solvent, 18 h. 
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Now new series of catalysts 8-10 are in hand, asymmetric hydrogenation of 2-methylindole 
was investigated with new catalysts and results were summarized in Table 2. The 
N-methylated RuBF4 complexes (R,R)-8 and (S,S)-10 furnished the full conversion of 6a to 
give (R)-7a with 95.6% ee and (S)-7a with 95.4% ee, respectively. For the 
(R,R)-8-catalyzed hydrogenation, the reaction carried out at 0 ºC gave 7a in up to 96.4 % ee, 
and the reaction could be conducted under a lower hydrogen pressure (3 or 1 MPa), which 
would be particularly important for industrial application.  Finally, the catalyst loading 
could be successfully reduced to S/C = 1000 for full conversion while maintaining the 
enantiomeric excess of 7a (96.2% ee), though the reaction time was prolonged (entry 10). 
When the amount of HFIP was reduced to 1 eq. to 6a, 7a was obtained in 93% yield with 
90% ee (entry 11). 
 
 
 2.3 Asymmetric Hydrogenation of Various Unprotected Indoles. 

 
With the ruthenium catalysts (R,R)-8, 9, and (S,S)-10, the generality of the asymmetric 
hydrogenation of indoles was examined, and the results with the use of appropriate 
catalysts for particular substrates are summarized in Table 3.  
 
Table 3. Asymmetric Hydrogenation of Unprotected Indoles[a] 
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entry subs

trate 
catalyst S/C Temp (ºC) Time (h) yield[b] (%) ee[c] (%) 

1 6b (R,R)-8 100 0 30 >99 97(R) 
2 6c (R,R)-8 250 10 27 96 97(R) 
3 6d (R,R)-8 100 0 7 93 83(S) 
4 6e (S,S)-10 100 30 30 99 83(-) 
5 6f (R,R)-8 100 10 25 84 86(+) 
6 6g (R,R)-8 100 10 30 98 73(S) 
7 6h (S,S)-10 100 60 20 38 42(+) 
8 6i (S,S)-10 500 10 7 >99 96(S) 
9 6j (S,S)-10 500 10 7 >99 95(+) 

10[d] 6k (R,R)-9 2000 0 30 97 91(R,R) 
11[d] 6l (R,R)-8 250 30 31 96 96(R,R) 
12[d] 6m (R,R)-8 100 30 27 59 >99(+) 
13[e] 6n (R,R)-8 100 10 23 92 97(R,R) 
14 6o (R,R)-8 250 10 28 >99 99(+) 

 
[a] Using 0.7mL/100mg substrate of solvent.  [b] Isolated yield.  [c] Determined by GC or HPLC 
analysis. [d] Only cis form products (7k-7m) were obtained.  [e] Major product was the cis isomer (7n) 
(84.0% de (cis), and the ee of the trans isomer was 99% ee.) 
 
 
 
Under the optimized conditions, 2-alkylated indoles were smoothly hydrogenated to give 
the corresponding indolines in high conversion with high to excellent ees (entries 1,2). The 
cyclopropyl ring remained intact in (R,R)-8-catalysis to give 7d with 83% ee.  
(1H-Indol-2-yl)methanol (6g) was also smoothly hydrogenated for the first time directly to 
access the chiral 2-hydroxymethtyl indoline (7g) with 73% ee. For methoxy 
ethyl-substituted 6e, (R,R)-8 gave 7e with 74% ee, though (S,S)-10 gave better results for 7e 
with 83% ee. 2-Phenylindole (6h) was slowly converted to 7h with moderate ee (entry 7). 
For 2-methylindoles with substituents at the 5-position, typically, (S,S)-10 showed better 
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results than (R,R)-8 (entries 8,9). Ring-fused substrates (6k-m) that were connected 
between the 2- and 3-positions of indole were sufficient for the ruthenium-catalyzed 
asymmetric hydrogenation. The hydrogenation of 5-membered ring-fused substrate (6k) 
was smoothly catalyzed by (R,R)-9 even with a catalyst loading of S/C = 2000 (entry 10). 
The 8-membered system to give 6m achieved >99% ee with (R,R)-8 (entry 12). Although 
only cis-isomers were obtained for these ring-fused substrates, when 2,3-dimethylindole 
was subjected to hydrogenation, the trans-isomer was detected (cis: trans = 92 : 8), and 
both isomers showed a very high enantiomeric excess (97% ee for cis and 99% ee for trans) 
(entry 13). Interestingly, a substrate bearing a phenolic hydroxyl group at the 4-position of 
2-methylindole was reduced by (R,R)-8 with high yield and excellent ee (99% ee) (entry 
14). 
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2.4 Asymmetric Hydrogenation of Halogenated Indoles. 
 
 
Table 4.  Asymmetric Hydrogenation of Halogenated Indoles [a] 
 

 
 

 
 

[a] Using 0.7 mL/100 mg substrate of solvent.  
 
 
The (S,S)-10-catalyzed asymmetric hydrogenation is also useful for the reduction of indoles 
having electron-withdrawing substituents. The 5-fluoro-2-methylindole was successfully 
converted to the 5-fluoro-2-methylindoline with 94% ee. Furthermore, the reduction of 
chloro- or bromo-substituted indoles was fascinating, since various late-transition 
metal-mediated reduction caused dehalogenation as a side reaction. 5-Chloro- and 
5-bromo-2-methylindole were converted to the corresponding indolines 7q and 7s in almost 
quantitative yields and with high enantioselectivities (95% ee and 96% ee, respectively), 
while retaining the halogen atoms. In these reactions, dehalogenated products were not 
observed, and the reaction could be carried out on a 3 g scale to give 7q. On the other hands, 
previously reported H8-BINAP-Pd catalysis in CSA9a,b gave small amount of product, and 
generated dehalogenated compounds 6a or 7a as a by-product considerably (Scheme 5) 
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Scheme 5.  Comparison of Catalyst Activity with H8-BINAP-Pd Complex [a][b][2] 
 
 (a) Asymmetric hydrogenation of 5-Chloro-2-methylindole (6q) 
 
 

  
 
(b) Asymmetric hydrogenation of 5-Bromo-2-methylindole (6s) 

  

 
 
 
[a] Yield were determined by GC analysis. [b] Standard reaction conditions: substrate (0.25 mmol), L-CSA (0.25 mmol), Pd(OCOCF3)2 (2mol %), H8-BINAP (2.4 mol %), H2 (700 psi), 3 mL of solvent, 
24 h, RT.   
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2.5 Derivatization of (S)-5-Chloro-2-methylindoline.  

 
The synthetic utility of the chiral (S)-5-chloro-2-methylindoline (7q) is shown in Scheme 6. 
The coupling reactions of 7q with potassium vinyltrifluoroborate (15) and 
3-formylphenylboronic acid (17) were catalyzed by a Pd-Cy-cBRIDP complex11 to afford 
the corresponding coupling products 16 and 18 in high yields without a loss of 
enantioselectivity. The successful introduction of a hydrogenation-sensitive vinyl group or 
formyl group demonstrates the advantage of the current halogen-tolerant catalytic 
asymmetric reduction. 
 
 
Scheme 6. Derivatizations of (S)-5-chloro-2-methylindoline to 2-methyl-5-vinylindoline 
and (S)-5-(3-formylphenyl)-2-methylindoline.  
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 2.6 Asymmetric Hydrogenation of Indoles with Protecting Groups. 

 
Furthermore, the results using indoles with synthetically important protecting groups are 
fascinating, as shown in Table 5.  
 
 
Table 5.  Asymmetric Hydrogenation of Indoles with Protecting Groups[a] 
 

 
 
 

   
 
 
[a] Using 0.7 mL/100 mg substrate of solvent.  
 
 
In weakly acidic HFIP reaction media (pH = 4–5), the acid-sensitive tert-butyldimethylsilyl 
(TBS) protecting group of a primary alcohol and ethylene acetal of an aliphatic aldehyde 
were tolerated in the (S,S)-10-catalyzed hydrogenation to give 7t in 94% yield with 92% ee 
and 7u in 90% yield with 90% ee, respectively. Both benzyl ethers of primary alcohol and 
phenolic alcohol survived in the (R,R)-8-catalyzed hydrogenation. Ethyl ester was also 
compatible with the hydrogenation to give 7x in 95% yield with 91% ee. Since the 
previously reported H8-BINAP-Pd catalysis in CSA9a,b did not give 7t or 7u at all (Scheme 
7), these results demonstrate the advantages of the current ruthenium catalysis directed 
toward the synthesis of further complex indoline-derived compounds. 
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Scheme 7.  Comparison of Catalyst Activity with H8-BINAP-Pd Complex [a][b][2] 
 
 
(a) Asymmetric hydrogenation of indole containing silyl protecting group (6s) 
 
 

  
 
(b) Asymmetric hydrogenation of indole containing acetal protecting group (6t) 
 
 

  
[a] Yield were determined by GC analysis. [b] Standard reaction conditions: substrate (0.25 mmol), 
L-CSA (0.25 mmol), Pd(OCOCF3)2 (2mol %), H8-BINAP (2.4 mol %), H2 (700 psi), 3 mL of solvent, 
24 h, RT.   
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2.7 Derivatization of Chiral Indoline to Tetrahydro-1H-pyrroloindole. 

 
A one-pot derivatization of acetal-protected chiral indoline (7u) to chiral tetrahydro 
1H-pyrroindole (21) is shown in Scheme 8. After the deprotection of acetal 7u with 
trifluoroacetic acid, subsequent reduction of the intermediary tetrahydro pyrroloindolium 
salt using sodium cyanoborohydride gave 21 in high yield and with almost no loss of 
enantioselectivity.  
As shown in Figure 1, chiral tetrahydro-1H-pyrroloindole skeletons are found in some 
biologically active compounds, which have been prepared in multistep syntheses that 
include optical resolution. This is the first and practical example of the catalytic asymmetric 
synthesis of tetrahydro-1H-pyrroloindole. 
 
 
Scheme 8. Derivatization of Chiral Indoline to Tetrahydro-1H-pyrroloindole 
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 2.8 Reuse of HFIP Solvent for Asymmetric Hydrogenation.  

 
From the perspective of green chemistry and industrial production, the reuse of solvent is 
very important. Since the current reaction system of asymmetric hydrogenation does not 
require the use of co-solvents or additives, the solvent can be easily recovered by simple 
distillation after the reaction is complete. The HFIP solvent was recovered quantitatively 
after hydrogenation of 2-methylindole, and the recovered HFIP was reused in the next 
hydrogenation to give 2-methylindole without a loss of yield or enantioselectivity (Scheme 
9). 
 
 
Scheme 9. Reuse of HFIP Solvent for Asymmetric Hydrogenation of 2-Methylindole 
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 2.9 Mechanistic Study by Using Isotopic Labeling Experiments. 

 
 
To elucidate the reaction mechanism, asymmetric hydrogenation was run in HFIP-d2 and 
H2. 1H-NMR analysis showed that two deuterium atoms were introduced at the 3-position, 
and deuteration at the 2-position was not observed (eq. 1, Scheme 10).  
 
 
Scheme 10. Isotopic Labeling Experiments Using D2 and HFIP-d2 
 

 
 
 
In contrast, when hydrogenation was performed with D2 and HFIP, the incorporation of 
deuterium was observed only at the 2-position and the amine of the indoline (eq. 2, Scheme 
10). These experimental results prove that unprotected indoles are activated in the weakly 
acidic HFIP solvent to form an iminium intermediate, and the 
η6-arene/N-Me-sulfonyldiamine-Ru(II)-BF4 complexes hydrogenate the iminium 
intermediate quite effectively to provide asymmetric indoline synthesis. This highly 
efficient asymmetric hydrogenation is believed to occur through cooperation between 
ruthenium-hydride and amine-NH in the concerto catalysis.12 The moderate isotopic 
labeling at 2-position in eq. 2 was discussed later in the reaction mechanism section, and 
was improved by carrying out the reaction using both D2 and HFIP-d2 (eq. 3). In addition, 
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according to eq. 1, the incorporation of deuterium at 3-position was observed without 
catalyst. (i.e. the incorporation of deuterium at 3-position was occurred just mixed the 
2-methylindole substrate and HFIP.) 
 
 
 
 
Figure 10. The Results of Isotopic Labeling Experiments and Proposed Pathway of 
Hydrogenation of Indoles 
 

 
(a) Asymmetric Hydrogenation of 2-Methylindole by using H2 and HFIP-d2 

   
 
(b) Asymmetric Hydrogenation of 2-Methylindole by using D2 and HFIP 
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 (c) Asymmetric Hydrogenation of 2-Methylindole by using D2 and HFIP-d2 

  
 
 
(d) Proposed Pathway of Hydrogenation of Indoles 
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 2.10 Proposed Transition State. 
 
 
In the reaction of ketonic or imine substrates with η6-arene/sulfonyldiamine-Ru(II) 
complexes, a CH/π interaction occurs between a hydrogen atom on the η6-arene and the 
aromatic ring of a substrate.10c-d,13 Furthermore, hydrogen-bonding interaction between the 
substrates with NH-proton of ligand is important for facilitating the enantioface selection.13  
With these interactions, acetophenone is reduced to (R)-2-phenylethanol by (R,R)-Ru 
catalyst. Because (R)-enriched indoline was obtained using (R,R)-8, the reaction would 
proceed via a similar transition state (Figure 12 (a)). For the reduction of iminium 
intermediate, the cationic intermediate would seem to be difficult to receive the assistance 
of hydrogen-bonding. However, with including π-electron of C=N double bond of the 
iminium intermediate, the hydrogen-bonding network is workable for constructing the 
6-membered ring transition state.10d If the proton is dissociated from the iminium 
intermediate, the hydrogen-bonding interaction using imine would strongly stabilize the 
6-membered ring transition state. Further discussion including other possible transition 
states and why we excluded these other possibilities were described in Figure 11.  
 
Figure 11. Proposed Transition State 
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In the asymmetric hydrogenation of 2-methylindole, conceivable various transition state 
were depicted in Figure 12 (b)-(e). 
 
In the asymmetric hydrogenation of 2-methylindole, the obtained enantiomer was 
(R)-isomer.  
This fact would suggest the analogous CH/π interaction between a hydrogen atom on the 
η6-arene and the aromatic ring of an indole substrate and could exclude the possibility of 
Cyclic ‘non-CH/π’ mechanism. In addition, Cationic ‘anti’ mechanism (d) is also excluded 
because this transition state yields incorrect (S)-indoline enantiomer.  
 
On the other hand, non-Cyclic ‘CH-π’ & Cationic mechanism (Figure 12 (e)) produces 
correct (R)-indoline enantiomer. However this transition state would compete with Cationic 
‘anti’ mechanism (d) by flipping approach of substrate. In this asymmetric hydrogenation, 
ee value is very high (ca. 96%), so this result would support nitrogen atom of iminium 
intermediate interacts with N-H bond of catalyst and constructs the 6-membered ring 
transition state (Cyclic ‘CH-π’ mechanism (Figure 12 (b)). While the possibility of the 
solvent like HFIP is involved in transition state could not be excluded. 
Figure 12.  Possible Transision State 
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 Figure 13.  Possible Reaction Mechanism. 
 
 
(e) Proposed Pathway for Hydrogenation of Indoles 
 

  
(b) Proposed Reaction Mechanism of Asymmetric Hydrogenation by H2 and HFIP 
 
 

  This Figure 13 (b) is a basical realization of the asymmetric hydrogenation using Ru 
catalysts 4. The cationic Ru species 2 is generated by ionization of complex 1. The resulting 
cationic 16e- amido Ru complex 2 (Solvate) can accept reversibly a H2 molecule to form 
the η2-H2 complex 3, whose deprotonation leads to RuH 4 as a common reductive species. 
This complex 4 can reduce indoles to indolines and generate 16e- amido complex 5. 
Protonation of complex 5 regenerates complex 2. 
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(c) Proposed Reaction Mechanism of Asymmetric Hydrogenation by D2 in HFIP 
 
 

  
 In the asymmetric hydrogenation by D2 in HFIP, reductive speices Ru-D complex 7 is 
generated in the same way with Figure 13 (b). This complex 7 reduces indoles to 
2-deutero-indolines and generates 16e- amido complex 5. By receiving H+ from HFIP, 
complex 7 is converted to η2-H-D complex 11. If this complex 11 releases D+, Ru-H 
complex 4 would generate. The resulting Ru-H complex 4 reduce indoles to corporate 
hydrogen at the 2-position of indoline products. Besides, complex 5 would be protonated 
by D+, which would be suppried in a step 6→7, to generate N-D 16e- amido complex 8 
(Solvate). Reductive speices Ru-D (N-D) complex 10 would generate from complex 8 by 
the D2 addition and following D+ elimination. Resulting complex 10 reduces indoles to 
2-deutero-N-deutero-indolines and regenerates complex 5. 
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(d) Possibility of ATH Path  
 
In the asymmetric hydrogenation of indoles using HFIP medium, the possibility of 
asymmetric transfer hydrogenation (ATH) can not be excluded. If ATH reaction was 
proceeded in certain amount, the deuteraetion value at 2-position of indolines would 
decrease at the hydrogenation by using D2 and HFIP system. 
 
To verify this reaction, following two experiments were conducted.  
 
 
Condition 1 
 

  
In 10 mL head-space vial, 2-Methylindole and 16e- amido Ru complex 5 were stirred in 
HFIP solvent at 40 ºC for 4 h. However, no indoline product was detected by GC analysis. 
Additionally, although the head spaces of reaction vessel and reaction mixture were 
checked by (HS)-GC-MS, hexafluoroacetone and its hydrate were not detected at all. 
 
 
Condition 2 
 

  
In 10 mL head-space vial, 16e- amido Ru complex 5 was stirred in HFIP solvent at 40 ºC 
for 4 h (without indole substrate). Although the head spaces of reaction vessel and reaction 
mixture were checked by (HS)-GC-MS, hexafluoroacetone and its hydrate were not 
detected at all. 
 



 43                                      

  
From these results, ATH reaction was not occurred in this HFIP solvent system. 
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 3. Conclusion 
 
In conclusion, various unprotected indole compounds were efficiently hydrogenated by 
η6-arene/N-Me-sulfonyldiamine-Ru(II)-BF4 catalysts under mildly acidic HFIP, which 
showed advantages for the synthesis of further complex molecules. The 
5-halo-2-methylindoles were converted to the corresponding indolines and retained the 
halogen atoms. From the 5-halo-2-methylindoles, cross coupling reactions were 
accomplished. Some acid-sensitive protecting groups were also tolerant using the mild 
η6-arene/N-Me-sulfonyldiamine-Ru(II)-BF4 catalyses. With these fascinating and powerful 
hydrogenations, further applications toward the synthesis of advanced indoline molecules 
are now being examined by our group.  
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5. Experimental Section 
 
 
A. General Information 
 All reactions and manipulations were conducted under a nitrogen atmosphere unless 
otherwise noted. Synthesis of complexes was performed in commercial anhydrous solvents. 
NMR Spectra were obtained on Agilent 400-MR DD2 and Bruker BioSpin Avance Ⅲ 500 
Systems.  NMR chemical shifts are reported in ppm relative to CHCl3 (7.26 ppm for 1H, 
and 77.0 ppm for 13C), CH2Cl2 (5.32 ppm for 1H, and 53.1 ppm for 13C), or CH3OH (3.30 
ppm for 1H, and 49.0 ppm for 13C). Optical rotations were obtained on a JASCO P-1020 
Polarimeter. Mass spectra were recorded on SHIMADZU LCMS-IT-TOF and JEOL 
JMS-T100GCV. High performance liquid chromatography (HPLC) analysis was performed 
using a system comprised of a GL-Science GL-7400 series; column oven: GL-7430, a 
gradient unit, a pump, degasser: GL-7430, a UV detector: GL-7450, an auto sampler: 
GL-7420.Splitting patterns were reported as s, singlet; d, doublet; t, triplet; q, quartet; m, 
multiplet; br, broad. 
 
 
Indoles (6a, 6h, 6i, 6j, 6k, 6n, 6q) were perchased from TCI (Tokyo chemical industry Co., 
LTD), indole (6o) was perchased from Wako Pure Chemical Industries, Ltd., indoles (6g, 
6k, 6l, 6r) were perchased from Sigma-Aldrich, indole (6m) was perchased from Alfa 
Aesar, indole (6d) was perchased from Beijing Kaida. Catalyst (R,R)-4 was perchased from 
Takasago International Corporation. Catalyst (R,R)-5a was perchased from Kanto Chemical 
Co. Inc.  
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B. Synthesis of Catalysts  
(a) Synthesis of RuBF4((R,R)-Tsdpen)(p-cymene) ((R,R)-5b))  

Ru
N

NC6H5
C6H5

Ts Cl
HH

(R,R)-4

AgBF4

MeOH-CH2Cl2

Ru
N

NC6H5
C6H5

Ts BF4

HH

(R,R)-5b   
To a stirred solution of (R,R)-4 (1.00 g, 1.57 mmol) in dry CH2Cl2 (20 mL), a solution of 
AgBF4 (0.37 g, 1.89 mmol) in dry MeOH (5mL) was added dropwise. After being stirred 
for 2h at room temperature, the precipitated salt was filtered through Celite. Then, the 
filtrate was concentrated with an evaporator, and dried under reduced pressure to give the 
desired complex (R,R)-5b. Yield 1.08 g (99%). 

  
1H NMR (400 MHz, CD3OD) δ 7.43–6.60 (m, 14H), 5.40 (d, J = 6.4 Hz, 2H), 5.21 (d, J = 
6.4 Hz, 2H), 4.62 (d, J = 11.2 Hz, 1H), 4.50 (d, J = 11.2 Hz, 1H), 2.82–2.75 (m, 1H), 2.25 
(s, 3H), 2.18 (s, 3H), 1.30 (d, J = 6.8 Hz, 6H); 13C NMR (125 MHz, CD3OD) δ 144.7, 
138.6, 136.5, 134.7, 130.9, 130.3, 129.9, 129.5, 129.4, 128.9, 128.7, 128.4, 128.1, 127.2, 
97.9, 93.1, 78.6, 77.4, 63.0, 60.8, 32.5, 22.7, 21.3, 18.3; HRMS (ESI) calcd for 
C31H35N2O2SRu  [M–BF4]+ 601.1465, found 601.1461. 
 
 
(b) Synthesis of 4-Methyl-N-((1R,2R)-2-(methylamino)-1,2-diphenylethyl)benzene- sulfonamide ((R,R)-N-Me-TsDPEN (14)) [1] 
 

  
To a solution of (R,R)-TsDPEN (11) (10.0 g, 27.29 mmol) in THF (50 mL), methyl 
chloroformate (12) (4.22 mL, 54.57 mmol), K2CO3 (11.3 mL, 81.86 mmol) and H2O (50 
mL) were added. After being stirred for 2h at room temperature, the mixture was washed 
with water (50 mL), and then, extracted with toluene (3 x 50 mL). The solvent was 
removed to afford the product (13) as a white solid (11.6 g, quantitative yield).   
To a stirred solution of amide precursor (13) (11.5 g, 27.1 mmol) in dry THF (500 mL), a 
Vitride® (70% solution in toluene) (21.1 mL, 82.9 mmol) was added dropwise. After 
refluxing for 2 hours, water (100 mL) was added slowly to quench the reaction. The 
product was extracted with chloroform (3 x 100 mL), and the combined organic layer was 
washed with brine (2 x 100 mL), and dried over MgSO4. The MgSO4 was removed by a 
filtration, and the filtrate was concentrated to afford the crude product. The crude product 
was purified by silica gel column chromatography to afford the product (14) as a white 
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solid (7.3 g, 64%). 
 
1H NMR (400 MHz, CDCl3) δ 7.38–7.35 (m, 2H), 7.15–7.13 (m, 3H), 7.06–7.00 (m, 5H), 
6.94–6.91 (m, 4H), 6.23 (br, 1H), 4.26 (d, J = 8.0 Hz, 1H), 3.53 (t, J = 8.0 Hz, 1H), 2.33 (s, 
3H), 2.20 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 142.7, 138.8, 138.3, 137.1, 129.1, 128.3, 
127.9, 127.6, 127.5, 127.5, 127.3, 127.1, 69.7, 63.0, 34.1, 21.4; HRMS (ESI) calcd for 
C22H25N2O2S  [M+H]+ 381.1631, found 381.1648. 
 
 
(c) Synthesis of RuCl((R,R)-N-Me-Tsdpen)(p-cymene) ((R,R)-8-Cl))  

  
A mixture of [RuCl2(p-cymene)]2 (15) (1.19 g, 3.94 mmol), (R,R)-N-Me-TsDPEN (14) 
(1.50 g, 3.94 mmol), and triethylamine (1.11 mL, 7.88 mmol) in 2-propanol (30 mL) was 
heated at 80 ºC for 1 h. The orange solution was concentrated and a small amount of water 
was added. The resulting solid was collected by filtration. The crude mixture was washed 
with a small amount of water and dried under reduced pressure to give the desired complex 
(R,R)-8-Cl. Yield 2.43 g (95%). 
 
1H NMR (400 MHz, CD2Cl2) δ 7.12–7.07 (m, 5H), 6.81–6.77 (m, 4H), 6.69–6.65 (m, 3H), 
6.57–6.55 (m, 2H), 5.72 (d, J = 6.0 Hz, 1H), 5.51 (d, J = 6.0 Hz, 1H), 5.46–5.42 (m, 2H), 
4.03 (d, J = 11.2 Hz, 1H), 4.01 (br, 1H), 3.46 (d, J = 11.2 Hz, 1H), 3.24–3.19 (m, 1H), 2.79 
((d, J = 6.0 Hz, 1H), 2.41 (s, 3H), 2.24 (s, 3H), 1.40 (d, J = 7.2 Hz, 6H); 13C NMR (125 
MHz, CDCl3) δ 143.5, 139.4, 139.2, 136.7, 129.4, 128.8, 128.4, 128.1, 127.3, 127.2, 126.5, 
105.5, 95.0, 87.0, 81.5, 81.3, 80.9, 79.9, 70.3, 42.9, 30.9, 22.9, 21.5, 21.1, 19.2; HRMS 
(ESI) calcd for C32H37N2O2SRu  [M–Cl]+ 615.1622, found 615.1616. 
 
 
(d) Synthesis of RuBF4((R,R)-N-Me-Tsdpen)(p-cymene) ((R,R)-8))  

  
To a stirred solution of (R,R)-8-Cl (1.11 g, 1.80 mmol) in dry CH2Cl2 (20 mL), a solution 
of AgBF4 (0.41 g, 2.10 mmol) in dry MeOH (5mL) was added dropwise. After being stirred 
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for 2h at room temperature, the precipitated salt was filtered through Celite. Then, the 
filtrate was concentrated with an evaporator, and dried under reduced pressure to give the 
desired complex (R,R)-8. Yield 1.15 g (99%). 

  
1H NMR (400 MHz, CD3OD) δ 7.50–6.58 (m, 14H), 5.41 (d, J = 6.4 Hz, 2H), 5.21 (d, J = 
6.4 Hz, 2H), 4.66 (d, J = 11.2 Hz, 1H), 4.50 (d, J = 11.2 Hz, 1H), 2.81–2.72 (m, 1H), 2.55 
(s, 3H), 2.27 (s, 3H), 2.19 (s, 3H),1.30 (d, J = 6.8 Hz, 6H); 13C NMR (125 MHz, CD3OD) δ 
144.9, 138.5, 136.4, 132.1, 130.4, 130.1, 129.7, 129.4, 129.0, 128.4, 128.1, 117.5, 98.0, 
93.2, 78.6, 77.4, 68.6, 62.4, 32.4, 23.5, 22.7, 21.2, 18.3; HRMS (ESI) calcd for 
C32H37N2O2SRu  [M–BF4]+ 615.1622, found 615.1605. 
 
 
(e) Synthesis of RuCl((R,R)-N-Me-Tsdpen)(mesitylene) ((R,R)-9-Cl))  

TsHN NHCH3

C6H5 C6H5

11

+ [RuCl2(mesitylene)]2
Et3N

2-Propanol

(R,R)-9-Cl

Ru
N

NC6H5
C6H5

Ts Cl
HMeA

  
A mixture of [RuCl2(mesitylene)]2 (A) (0.76 g, 2.60 mmol), (R,R)-N-Me-TsDPEN (11) 
(1.00 g, 2.60 mmol), and triethylamine (0.73 mL, 5.26 mmol) in 2-propanol (20 mL) was 
heated at 80 ºC for 1 h. The orange solution was concentrated and a small amount of water 
was added. The resulting solid was collected by filtration. The crude mixture was washed 
with a small amount of water and dried under reduced pressure to give the desired complex 
(R,R)-9-Cl. Yield 1.54 g (93%). 
 
1H NMR (400 MHz, CD2Cl2) δ 7.24 (d, J = 8.0 Hz, 2H), 7.16–6.70 (m, 10H), 6.64 (d, J = 
8.0 Hz, 2H), 5.43 (s, 3H), 3.93 (d, J = 10.8 Hz, 1H), 3.84 (br, 1H), 3.61 (t, J = 10.8 Hz, 1H), 
2.72 (d, J = 6.4 Hz, 3H), 2.35 (s, 9H), 2.25 (s, 3H); 13C NMR (125 MHz, CD2Cl2) δ 142.4, 
140.2, 139.7, 136.7, 129.1, 128.8, 128.5, 128.1, 127.9, 127.4, 126.6, 125.2, 95.5, 84.0, 81.6, 
69.8, 41.7, 21.2, 19.3; HRMS (ESI) calcd for C31H35N2O2SRu  [M–Cl]+ 601.1465, found 
601.1452. 
 
 
(f) Synthesis of RuBF4((R,R)-N-Me-Tsdpen)(p-cymene) ((R,R)-9))  
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To a stirred solution of (R,R)-9-Cl (1.15 g, 1.80 mmol) in dry CH2Cl2 (20 mL), a solution 
of AgBF4 (0.41 g, 2.10 mmol) in dry MeOH (5 mL) was added dropwise. After being 
stirred for 2h at room temperature, the precipitated salt was filtered through Celite. Then, 
the filtrate was concentrated with an evaporator, and dried under reduced pressure to give 
the desired complex (R,R)-9. Yield 1.23 g (99%). 
 
1H NMR (400 MHz, CD3OD) δ 7.50–6.65 (m, 14H), 5.82 (s, 3H), 4.19 (d, J = 11.2 Hz, 1H), 
3.84 (d, J = 11.2 Hz, 1H), 2.97 (s, 3H), 2.34 (s, 9H), 2.22 (s, 3H); 13C NMR (125 MHz, 
CD3OD) δ 144.9, 142.3, 138.5, 136.5, 130.4, 130.1, 129.7, 129.3, 128.7, 128.4, 92.8, 78.5, 
68.7, 62.4, 32.5, 19.2, 18.1; HRMS (ESI) calcd for C31H35N2O2SRu  [M–BF4]+ 601.1465, 
found 601.1460. 
 
 
(g) Synthesis of N-((1S,2S)-2-(methylamino)-1,2-diphenylethyl)methanesulfonamide) 

((S,S)-N-Me-MsDPEN)  (D))  

  
To a stirred solution of (S,S)-Ms-DPEN (B) (3.00 g, 10.33 mmol) in dry THF (20 mL) and 
dry DMF (5 mL), diisopropylethylamine (3.60 mL, 20.7 mmol) and iodomethane (C) 
(0.45mL, 7.23 mmol) was added. After the reaction was heated at 50 ºC for 10 h, water (50 
mL) and chloroform (50 mL) was added. The product was extracted with chloroform (2 x 
25 mL), and the combined organic fractions were washed with brine (2 x 100 mL), and 
dried over MgSO4. The MgSO4 was removed by a filtration, and the filtrate was 
concentrated to give the crude product. The crude product was purified by silica gel column 
chromatography to afford the product (D) as a white solid (1.4 g, 63%). 
 
1H NMR (400 MHz, CDCl3) δ 7.28–7.18 (m, 8H), 7.12–7.09 (m, 2H), 4.48 (d, J = 8.0 Hz, 
1H), 3.66 (d, J = 7.6 Hz, 1H), 2.34 (s, 3H), 2.24 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 
139.0, 138.7, 128.5, 128.4, 127.9, 127.7, 127.6, 127.6, 69.2, 63.0, 41.2, 34.0; HRMS (FI) 
calcd for C16H20N2O2S  [M]+ 304.1246, found 304.1234. 
 
 
(h) Synthesis of RuCl((S,S)-N-Me-Msdpen)(p-cymene) ((S,S)-10-Cl))  
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A mixture of [RuCl2(p-cymene)]2 (15) (0.58 g, 1.90 mmol), (S,S)-N-Me-MsDPEN (D) 
(0.60 g, 1.90 mmol), and triethylamine (0.53 mL, 3.80 mmol) in 2-propanol (15 mL) was 
heated at 80 ºC for 1 h. The reaction was stopped by adding water (15 mL), and the product 
was extracted with chloroform (2 x 15 mL). The combined organic layer was dried over 
MgSO4.  After removal of MgSO4, concentrion under reduced pressure gave the desired 
complex (S,S)-10-Cl. Yield 0.8 g (73%). 
 
 
1H NMR (400 MHz, CD2Cl2) δ 7.24 (d, J = 8.0 Hz, 2H), 7.40–6.80 (m, 10H), 5.58 (d, J = 
6.8 Hz, 1H), 5.42–5.40 (m, 2H), 5.32 (d, J = 6.0 Hz, 1H), 3.98 (d, J = 11.2 Hz, 1H), 3.94 
(br, 1H), 3.58 (t, J = 11.2 Hz, 1H), 3.13–3.06 (m, 1H), 2.80 (d, J = 6.0 Hz, 1H), 2.35 (s, 
3H) , 2.33 (s, 3H), 1.38–1.35 (m, 6H); 13C NMR (125 MHz, CD2Cl2) δ 141.6, 140.5, 136.7, 
129.2, 129.1, 128.9, 128.6, 127.9, 127.2, 126.9, 104.7, 95.6, 86.5, 82.2, 80.8, 80.3, 80.2, 
70.4, 66.2, 43.2, 43.0, 31.0, 23.1, 21.3, 19.2; HRMS (ESI) calcd for C26H33N2O2SRu  
[M–Cl]+ 539.1307, found 539.1327. 
 
 
(i) Synthesis of RuBF4((S,S)-N-Me-Msdpen)(p-cymene) ((S,S)-10))  

(S,S)-10-Cl

AgBF4

MeOH-CH2Cl2

(S,S)-10

Ru
N

N C6H5
C6H5

MsCl
HMe

Ru
N

N C6H5
C6H5

MsF4B
HMe

  
To a stirred solution of (S,S)-10-Cl (0.88 g, 1.53 mmol) in dry CH2Cl2 (15 mL), a solution 
of AgBF4 (0.36 g, 1.84 mmol) in dry MeOH (3 mL) was added dropwise. The reaction left 
to stir 2h at room temperature, and the precipitated salt was filtered through Celite. Then, 
the filtrate was concentrated under reduced pressure to give the desired complex (S,S)-10. 
Yield 0.95 g (99%). 
 
1H NMR (400 MHz, CD3OD) δ 7.40–7.02 (m, 10H), 5.99–5.97 (m, 1H), 5.90–5.86 (m, 2H), 
5.77–5.76 (m, 1H), 4.13 (d, J = 11.2 Hz, 1H), 3.92 (t, J = 11.2 Hz, 1H), 3.07 (d, 3H), 
3.00–2.96 (m, 1H), 2.38 (s, 3H), 2.22 (s, 3H), 1.44–1.29 (m, 6H); 13C NMR (125 MHz, 
CD3OD) δ 142.0, 140.4, 137.7, 136.7, 130.4, 129.9, 129.4, 127.6, 87.4, 82.7, 80.6, 70.9, 
62.2, 44.5, 41.4, 32.3, 22.4, 19.2; HRMS (ESI) calcd for C26H33N2O2SRu  [M–BF4]+ 
539.1307, found 539.1330. 
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C. Synthesis of Indoles  
Indole 6c was synthesized according to the literature procedure. [2] 
 
 
2-Substituted indoles 6b, 6e, 6f, 6s, 6t, 6u, 6v, 6w, 6x were prepared following known 
methods. [3]   
 
 

 
 
2-Alkylated indoles were obtained by previously reported procedure. [3] 
 
 A 500mL four neck flask equipped with a magnetic stirring bar was charged with indole 
substrate (1 equiv.), norbornene (2 equiv.), K2CO3 (2 equiv.), and PdCl2(CH3CN)2 (10 
mol %). A solution of water in dimethylacetamide (DMA) (0.5M) was added as the solvent 
to prepare a 0.2 M solution of the substrate. Then the resulting solution was briefly 
evacuated and then backfilled with argon (5 times), and then the alkyl bromide (1 equiv.) 
was added via syringe. The reaction mixture was then placed in a preheated oil bath at 
80 °C. Vigorous stirring was applied and the reaction was monitored by TLC. Upon 
completion, the reaction mixture was cooled to room temperature, diluted with 
tert-butylmethylether, and filtered. The filtrate was concentrated by evaporator in a water 
bath (70°C, 5-10 mmHg) to remove tert-Butylmethylether and DMA. The residue was 
directly submitted to flash column chromatograph (by dry loading) to afford the 
2-alkylindole product (30-50 % yield). (Small amount of 3-alkylindole was obtained as a 
byproduct depending on substrates.) 
 
1H- and 13C-NMR of indoles of 6b, 6s, 6t, 6w were matched previously reported data. 
 
Following this method, unknown indoles 6e, 6f, 6u, 6v, 6x were synthesized. 
 
 
2-(2-Methoxyethyl)-1H-indole (6e)  

  
1H NMR (400 MHz, CDCl3) δ 8.50 (br, 1H), 7.54–7.51 (m, 1H), 7.30–7.27 (m, 1H), 
7.13–7.03 (m, 2H), 6.23–6.22 (m, 1H), 3.68–3.65 (m, 2H), 3.41 (s, 1H), 3.00–2.97 (m, 2H); 
13C NMR (125 MHz, CDCl3) δ 137.8, 136.0, 128.4, 121.9, 121.0, 119.8, 110.5, 99.7, 72.2, 
58.8, 28.5; HRMS (FI) calcd for C11H13NO [M]+ 175.0997, found 175.0989. 
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2-(2-(2-Methoxyethoxy)ethyl)-1H-indole (6f)  

  
1H NMR (400 MHz, CDCl3) δ 9.23 (br, 1H), 7.53–7.51 (m, 1H), 7.29–7.27 (m, 1H), 
7.11–7.02 (m, 2H), 6.22–6.21 (m, 1H), 3.79–3.76 (m, 2H), 3.68–3.65 (m, 2H), 3.62–3.59 
(m, 2H), 3.50 (s, 3H), 3.03–3.00 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 138.1, 136.3, 
128.2, 120.8, 119.6, 119.2, 110.6, 99.5, 71.7, 70.6, 69.7, 58.9, 28.2; HRMS (FI) calcd for 
C13H17NO2 [M]+ 219.1259, found 219.1273. 
 
 
2-(2-(Benzyloxy)ethyl)-1H-indole (6v)  

  
1H NMR (400 MHz, CDCl3) δ 8.50 (br, 1H), 7.54–7.51 (m, 1H), 7.37–7.25 (m, 6H), 
7.11–7.05 (m, 2H), 6.24–6.23 (m, 1H), 4.57 (s, 2H), 3.78 (t, J = 6.0 Hz, 2H), 3.04 (t, J = 6.0 
Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 138.0, 137.7, 136.0, 128.6, 128.4, 127.9, 127.8, 
121.0, 119.8, 119.5, 110.5, 99.9, 73.4, 70.0, 28.6; HRMS (FI) calcd for C17H17NO [M]+ 
251.1310, found 251.1305. 
 
 
5-(Benzyloxy)-2-butyl-1H-indole (6w)  

  
1H NMR (400 MHz, CDCl3) δ 7.70 (br, 1H), 7.47–7.42 (m, 2H), 7.40–7.28 (m, 3H), 
7.14–7.07 (m, 2H), 6.85–6.80 (m, 1H), 6.14–6.13 (m, 1H), 5.08 (s, 2H), 2.70–2.65 (m, 2H), 
1.69–1.62 (m, 2H), 1.43–1.35 (m, 2H), 0.96–0.91 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 
153.3, 140.9, 137.9, 131.1, 129.3, 128.4, 127.6, 127.5, 111.5, 110.8, 103.6, 99.3, 71.0, 31.3, 
28.0, 22.4, 13.8; HRMS (FI) calcd for C19H21NO [M]+ 279.1623, found 279.1626. 
 
 
Methyl 2-(1H-indol-2-yl)acetate (6y)  
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1H NMR (400 MHz, CDCl3) δ 8.62 (br, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.33 (d, J = 7.9 Hz, 
1H), 7.15 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 7.9 Hz, 1H), 6.35–6.34 (m, 1H), 3.83 (s, 2H), 3.75 
(s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.0, 136.3, 130.3, 128.2, 121.8, 120.1, 119.8, 
110.8, 101.9, 52.3, 33.7; HRMS (FI) calcd for C13H17NO [M]+ 219.1259, found 219.1273. 
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D. Asymmetric Hydrogenation of Indoles Using η6-Arene/ N-Me-sulfonyldiamine 

-Ru(II) complexes  
 

  
 
General procedures under the conditions of S/C = 500, 10 °C for 7 h. 
Indole (1.5 mmol) and Ru catalyst (0.003 mmol) were placed in a 100 mL stainless steel 
autoclave equipped with a glass inner tube. The atmosphere was replaced with argon gas, 
and solvent (1.4 mL) was added to this mixture. Hydrogen was initially introduced into the 
autoclave at a pressure of 1.0 MPa, before being reduced to 0.1 MPa. This procedure was 
repeated three times. Then the autoclave was pressurized with H2 gas (5.0 MPa), and the 
solution was stirred vigorously at 10 ºC for 7 h. The product was obtained by silica gel 
chromatography. Optical purities of the products were determined by Chiral-GC or HPLC 
analysis. 
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E. Characterization Data for Reduction Products  
(R)- 2-Methylindoline (7a) 
 

  Following the general procedure (cat. (R,R)-8), 7a was obtained as clear oil. 
1H NMR (400 MHz, CDCl3) δ 7.06 (d, J = 7.2 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.88 (t, J = 
7.2 Hz, 1H), 6.59 (d, J = 7.6 Hz, 1H), 4.00–3.95 (m, 1H), 3.60 (br, 1H), 3.13 (dd, J = 15.6, 
8.4 Hz, 1H), 2.62 (dd, J = 15.4, 7.8 Hz, 1H), 1.28 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, 
CDCl3) δ 150.9, 128.9, 127.2, 124.7, 118.5, 109.1, 55.2, 37.7, 22.2; All characterization 
data are in agreement with previously reported data[2]. 
HRMS (FI) calcd for C9H11N [M]+ 133.0892, found 133.0883. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, Hexane/2-propanol 97:3, 0.8 mL/min, 254 nm, 30 ºC, tmajor=9.8 
min.((R)-enantiomer) , tminor=10.9 min.((S)-enantiomer); [α]D20 +5.76 (c 2.1 in CHCl3) 96% 
ee (R) (lit. 2 [α]DRT +6.96 (c 0.63 in benzene) 91% ee (R)) 
 
 
(R)- 2-Butylindoline (7b)   

  
Following the general procedure (cat. (R,R)-8), 7b was obtained as clear oil. 
1H NMR (400 MHz, CDCl3) δ 7.05 (d, J = 7.2 Hz, 1H), 7.01–6.97 (m, 1H), 6.66 (t, J = 7.2 
Hz, 1H), 6.58 (d, J = 7.6 Hz, 1H), 3.85–3.78 (m, 1H), 3.80 (br, 1H), 3.10 (dd, J = 15.4, 8.6 
Hz, 1H), 2.66 (dd, J = 15.6, 8.8 Hz, 1H), 1.62–1.55 (m, 2H), 1.40–1.35 (m, 4H), 0.95–0.85 
(m, 3H); 13C NMR (125 MHz, CDCl3) δ 151.0, 128.9, 127.1, 124.6, 118.4, 109.0, 60.0, 
36.5, 36.1, 28.7, 22.7, 14.1; All characterization data are in agreement with previously 
reported data[2]. 
HRMS (FI) calcd for C12H17N [M]+ 175.1361, found 175.1364. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, Hexane/2-propanol 99:1, 1.0 mL/min, 254 nm, 30 ºC, tmajor=8.4 min. 
((R)-enantiomer), tminor=11.9 min. ((S)-enantiomer); [α]D20 +8.70 (c 0.92 in CHCl3) 97% ee 
(R) (lit. 2 [α]DRT +12.6 (c 1.1 in CHCl3) 93% ee (R)) 
 
 
(R)- 2-Benzylindoline (7c)   

  
Following the general procedure (cat. (R,R)-8), 7c was obtained as pale yellow oil. 
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1H NMR (400 MHz, CDCl3) δ 7.35–7.30 (m, 2H), 7.23–7.20 (m, 3H), 7.08 (d, J = 7.6 Hz, 
1H), 7.00 (t, J = 7.8 Hz, 1H), 6.68 (t, J = 7.6 Hz, 1H), 6.56 (t, J = 7.8 Hz, 1H), 4.10–4.02 
(m, 1H), 3.80 (br, 1H), 3.13 (dd, J = 15.4, 8.6 Hz, 1H), 2.93–2.76 (m, 3H); 13C NMR (125 
MHz, CDCl3) δ 150.5, 139.1, 129.1, 128.6, 128.4, 127.3, 126.4, 124.8, 118.5, 109.1, 61.0, 
42.7, 35.9; All characterization data are in agreement with previously reported data[2]. 
HRMS (FI) calcd for C15H15N [M]+ 209.1205, found 209.1216. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, Hexane/2-propanol 99:1, 1.0 mL/min, 254 nm, 30 ºC, tmajor=12.0 min. 
((R)-enantiomer), tminor=13.8 min. ((S)-enantiomer); [α]D20 +75.6 (c 3.4 in CHCl3) 97% ee 
(R) (lit. 2 [α]DRT +80.2 (c 1.00 in CHCl3) 95% ee (R)) 
 
 
(S)- 2-Cyclopropylindoline (7d)  

  
Following the general procedure (cat. (R,R)-8), 7d was obtained as clear oil. 
1H NMR (400 MHz, CDCl3) δ 7.07 (d, J = 7.0 Hz, 1H), 7.00 (t, J = 7.8 Hz, 1H), 6.67 (d, J 
= 7.0 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H), 3.65 (br, 1H), 3.20–3.08 (m, 2H), 2.93–2.83 (m, 
1H), 1.10–1.00 (m, 1H), 0.53–0.43 (m, 2H), 0.30–0.19 (m, 2H); 13C NMR (125 MHz, 
CDCl3) δ 150.7, 128.7, 127.2, 124.6, 118.4, 109.1, 64.9, 36.0, 16.6, 3.1, 2.1; All 
characterization data are in agreement with previously reported data [12] . 
HRMS (FI) calcd for C11H13N [M]+ 159.1048, found 159.1046. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 140 ºC, P = 20 psi, tminor=11.3 min. ((R)-enantiomer), tmajor=12.3 min. 
((S)-enantiomer); [α]D20 +49.0 (c 0.7 in CHCl3) 83% ee (R) (lit. 12 [α]D25 +61.7 (c 1.0 in 
CHCl3) >99% ee (S)) 
 
 
(-)- 2-(2-Methoxyethyl)indoline (7e) 
 

  
Following the general procedure (cat. (S,S)-10), 7e was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.05 (d, J = 7.4 Hz, 1H), 6.98 (t, J = 7.8 Hz, 1H), 6.67 (t, J = 
7.4 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H), 4.20 (br, 1H), 3.54–3.50 (m, 2H), 3.35 (s, 1H), 3.15 
(dd, J = 15.6, 8.8 Hz, 1H), 2.69 (dd, J = 15.4, 8.2 Hz, 1H), 1.95–1.88 (m, 1H), 1.85–1.78 
(m, 1H); 13C NMR (125 MHz, CDCl3) δ 150.9, 128.5, 127.2, 124.5, 118.3, 109.1, 71.0, 
58.8, 58.2, 36.4, 36.3  
HRMS (FI) calcd for C11H15NO [M]+ 177.11536, found 177.1162. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, Hexane/2-propanol 95:5, 1.0 mL/min, 254 nm, 30 ºC, tminor =7.1 min. 
((+)-enantiomer), tmajor=8.8 min. ((-)-enantiomer); [α]D20 -15.5 (c 0.84 in CHCl3) 82% ee 
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(+)- 2-(2-(2-Methoxyethoxy)ethyl)indoline (7f) 
 

  Following the general procedure (cat. (R,R)-8), 7f was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.04 (d, J = 7.0 Hz, 1H), 6.98 (t, J = 7.7 Hz, 1H), 6.65 (t, J = 
7.0 Hz, 1H), 6.56 (d, J = 7.7 Hz, 1H), 4.00–3.95 (m, 1H), 3.65–3.50 (m, 6H), 3.40 (s, 1H), 
3.13 (dd, J = 15.6, 8.8 Hz, 1H), 2.68 (dd, J = 15.6, 8.4 Hz, 1H), 1.95–1.90 (m, 1H), 
1.85–1.78 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 151.0, 128.5, 127.1, 124.4, 118.1, 108.9, 
71.9, 70.0, 69.5, 58.9, 58.2, 36.4, 36.0  
HRMS (FI) calcd for C13H19NO2 [M]+ 221.14158, found 221.1415. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OJ-H, 250  4.6 mm 
column, Hexane/2-propanol 90:10, 1.0 mL/min, 254 nm, 30 ºC, tminor =10.8 min. 
((-)-enantiomer), tmajor=13.8 min. ((+)-enantiomer); [α]D20 +14.1 (c 1.95 in CHCl3) 97% ee  
 
 
(S)- Indolin-2-ylmethanol (7g) 
 

  Following the general procedure (cat. (R,R)-8), 7g was obtained as a white solid. 
1H NMR (400 MHz, CDCl3) δ 7.08 (d, J = 7.3 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.72 (t, J = 
7.3 Hz, 1H), 6.64 (d, J = 7.6 Hz, 1H), 4.08–4.00 (m, 1H), 3.74–3.70 (m, 1H), 3.60–3.56 (m, 
1H), 3.11 (dd, J = 15.6, 9.2 Hz, 1H), 2.83 (dd, J = 15.6, 8.0 Hz, 1H); 13C NMR (125 MHz, 
CDCl3) δ 150.5, 128.8, 127.4, 124.8, 119.2, 109.9, 65.2, 60.3, 32.0; All characterization 
data are in agreement with previously reported data [13] . 
HRMS (FI) calcd for C9H11NO [M]+ 149.08406, found 149.0839. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H, 250  4.6 
mm column, Hexane/2-propanol 95:5, 1.0 mL/min, 254 nm, 30 ºC, tmajor=18.3 min. 
((S)-enantiomer), tminor=21.0 min. ((R)-enantiomer); [α]D20 +40.6 (c 1.2 in EtOH) 73% ee 
(S) (lit. 13 [α]D28 +53.6 (c 0.89 in EtOH) (S))  
 
 
(+)- 2-Phenylindoline (7h) 
 

  
Following the general procedure (cat. (S,S)-10), 7h was obtained as a light pink solid. 
1H NMR (400 MHz, CDCl3) δ 7.42–7.38 (m, 2H), 7.37–7.23 (m, 3H), 7.18–7.13 (m, 2H), 
6.72 (t, J = 7.2 Hz, 1H), 6.64 (d, J = 7.6 Hz, 1H), 4.92 (t, J = 9.2 Hz, 1H), 4.10 (br, 1H), 
3.42 (dd, J = 15.6, 9.2 Hz, 1H), 2.96 (dd, J = 15.6, 8.8 Hz, 1H); 13C NMR (125 MHz, 
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CDCl3) δ 150.9, 144.6, 128.5, 128.0, 127.5, 127.3, 126.2, 124.5, 118.8, 108.8, 63.5, 39.5; 
All characterization data are in agreement with previously reported data [6] . 
HRMS (FI) calcd for C14H13N [M]+ 195.1048, found 195.1058. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 170 ºC, P = 20 psi, tminor=17.3 min. ((-)-enantiomer), tmajor=18.2 min. 
((+)-enantiomer); [α]D20 +32.5 (c 1.2 in CHCl3) 42% ee.  
 
 
(S)- 2,5-Dimethylindoline (7i) 
 

  Following the general procedure (cat. (S,S)-10), 7i was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 6.90 (s, 1H), 6.81 (d, J = 7.8 Hz, 1H), 6.51 (d, J = 7.8 Hz, 
1H), 4.00–3.93 (m, 1H), 3.09 (dd, J = 15.6, 8.4 Hz, 1H), 2.59 (dd, J = 15.2, 7.6 Hz, 1H), 
2.24 (s, 3H), 1.27 (d, J = 6.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 148.5, 129.3, 127.9, 
127.5, 125.5, 109.2, 55.4, 37.8, 22.2, 20.8; All characterization data are in agreement with 
previously reported data[2]. 
HRMS (FI) calcd for C10H13N [M]+ 147.1048, found 147.1043. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 130 ºC, P = 20 psi, tmajor=7.7 min. ((S)-enantiomer), tminor=8.2 min. ((R)-enantiomer); 
[α]D20 -12.5 (c 1.5 in CHCl3) 96% ee (S) (lit. 2 [α]DRT +12.4 (c 1.10 in CHCl3) 84% ee (R))  
 
 
 (-)- 5-Methoxy-2-methylindoline (7j) 
 

  Following the general procedure (cat. (S,S)-10), 7j was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 6.71–6.70 (m, 1H), 6.59–6.51 (m, 2H), 4.00–3.90 (m, 1H), 
3.73 (s, 1H), 3.40 (br, 1H), 3.10 (dd, J = 15.6, 8.4 Hz, 1H), 2.60 (dd, J = 15.4, 7.6 Hz, 1H), 
1.27 (d, J = 6.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 153.4, 144.7, 130.6, 112.0, 111.6, 
109.8, 55.9, 55.6, 38.2, 22.1  
HRMS (FI) calcd for C10H13 ClNO [M]+ 163.0997, found 163.1003. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 130 ºC, P = 20 psi, tmajor=17.3 min. ((-)-enantiomer), tminor=18.0 min. 
((+)-enantiomer); [α]D20 -8.47 (c 1.2 in CHCl3) 95% ee  
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(2R,3R)- 1,2,3,3a,4,8b-Hexahydrocyclopenta[b]indole (7k) 
 

 
 

Following the general procedure (cat. (R,R)-8), 7k was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.02 (d, J = 7.3 Hz, 1H), 6.97 (t, J = 7.8 Hz, 1H), 6.66 (t, J = 
7.3 Hz, 1H), 6.51 (d, J = 7.8 Hz, 1H), 4.40–4.35 (m, 1H), 3.80–3.75 (m, 1H), 3.73 (br, 1H), 
2.00–1.87 (m, 1H), 1.80–1.50 (m, 5H); 13C NMR (125 MHz, CDCl3) δ 151.3, 133.3, 127.3, 
124.5, 118.2, 108.4, 63.3, 47.2, 36.9, 34.9, 24.4; All characterization data are in agreement 
with previously reported data [14] . 
HRMS (FI) calcd for C11H13N [M]+ 159.1048, found 159.1049. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 150 ºC, P = 20 psi, tminor=9.6 min. ((S,S)-enantiomer), tmajor=10.8 min. 
((R,R)-enantiomer); [α]D20 +41.8 (c 3.1 in CHCl3) 91% ee (2R,3R) (lit. 14 [α]D20 +33.3 (c 
0.33 in CHCl3) 70% ee (2R,3R))  
 
 
(2R,3R)- 2,3,4,4a,9,9a-Hexahydro-1H-carbazole (7l) 
 

  
Following the general procedure (cat. (R,R)-8), 7l was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.07 (d, J = 7.3 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.75 (t, J = 
7.3 Hz, 1H), 6.65 (d, J = 7.6 Hz, 1H), 3.72 (q, J = 6.8 Hz, 1H), 3.60 (br, 1H), 3.09 (q, J = 
6.8 Hz, 1H), 1.80–1.73 (m, 2H), 1.70–1.50 (m, 3H), 1.45–1.30 (m, 3H); 13C NMR (125 
MHz, CDCl3) δ 150.7, 133.5, 127.0, 123.1, 118.7, 110.1, 59.6, 40.9, 29.2, 26.9, 22.5, 21.6; 
All characterization data are in agreement with previously reported data[2]. 
HRMS (FI) calcd for C12H15 N [M]+ 173.1205, found 173.1203. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 160 ºC, P = 20 psi, tminor=9.2 min. ((S,S)-enantiomer), tmajor=10.5 min. 
((R,R)-enantiomer); [α]D20 +16.7 (c 2.8 in CHCl3) 96% ee (2R,3R) (lit. 2 [α]DRT +23.4 (c 
1.20 in CHCl3) 91% ee (2R, 3R))  
 
 
(+)- 5a,6,7,8,9,10,11,11a-Octahydro-5H-cycloocta[b]indole (7m) 
 

  
Following the general procedure (cat. (R,R)-8), 7m was obtained as white solid. 
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1H NMR (400 MHz, CDCl3) δ 7.04 (d, J = 7.4 Hz, 1H), 6.98 (t, J = 7.8 Hz, 1H), 6.68 (t, J = 
7.4 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 3.88–3.80 (m, 1H), 3.60 (br, 1H), 3.22–3.17 (m, 1H), 
2.10–1.85 (m, 2H), 1.80–1.40 (m, 10H); 13C NMR (125 MHz, CDCl3) δ 149.4, 135.3, 
127.2, 124.2, 118.5, 108.5, 63.8, 46.1, 30.2, 30.0, 28.6, 27.5, 25.7, 25.4  
HRMS (FI) calcd for C14H19N [M]+ 201.15175, found 201.1523. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AS-H, 250  4.6 
mm column, Hexane/2-propanol 99:1, 0.5 mL/min, 254 nm, 30 ºC, tminor=12.2 min. 
((-)-enantiomer), tmajor=13.2 min. ((+)-enantiomer)); [α]D20 +6.8 (c 0.9 in CHCl3) >99% ee  
 
 (2R, 3R)- 2,3-Dimethylindoline (7n)  

  
Following the general procedure (cat. (R,R)-8), 7n was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.07–7.00 (m, 2H), 6.73 (t, J = 7.4 Hz, 1H), 6.60 (t, J = 7.6 
Hz, 1H), 3.96–3.91 (m, 1H), 3.50 (br, 1H), 3.28–3.24 (m, 1H), 1.17 (d, J = 7.2 Hz, 3H), 
1.13 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 150.1, 134.2, 127.2, 123.8, 118.7, 
109.3, 58.3, 39.4, 16.3, 13.6; All characterization data are in agreement with previously 
reported data[2]. 
HRMS (FI) calcd for C10H13N [M]+ 147.1048, found 147.1055. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 130 ºC, P = 20 psi, t=6.5, 6.7 min. (trans- isomer), tminor=7.8 min (cis- (S,S) 
enantiomer), tmajor=8.7 min. (cis- (R,R) enantiomer); [α]D20 +32.9 (c 0.3 in CHCl3) 97% ee 
(2R, 3R) (92 : 8 diasteromer mixture (cis major)) (lit. 2 [α]DRT +26.6 (c 0.83 in CHCl3) 92% 
ee (2R, 3R))  
  
 
(+)- 2-Methylindolin-4-ol (7o) 
 

NH

OH

*
  Following the general procedure (cat. (R,R)-8), 7o was obtained as a pale yellow crystal. 

1H NMR (400 MHz, CDCl3) δ 6.88 (t, J = 8.0 Hz, 1H), 6.23 (d, J = 8.0 Hz, 1H), 6.15 (d, J 
= 8.0 Hz, 1H), 4.50 (br, 1H), 4.15–3.98 (m, 1H), 3.10 (dd, J = 15.0, 8.6 Hz, 1H), 2.56 (dd, J 
= 15.2, 7.2 Hz, 1H), 1.28 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 152.7, 152.4, 
128.7, 113.7, 106.3, 102.6, 55.3, 34.1, 22.4  
HRMS (FI) calcd for C9H11 NO [M]+ 149.08406, found 149.0842. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 150 ºC, P = 20 psi, tmajor=22.9 min. ((+)-enantiomer), tminor=24.0 min. 
((-)-enantiomer); [α]D20 +24.3 (c 0.82 in CHCl3) 99% ee  
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(S)- 5-Fluoro-2-methylindoline (7p) 
 

  Following the general procedure (cat. (S,S)-10), 7p was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 6.81–6.78 (m, 1H), 6.70–6.63 (m, 1H), 6.50–6.47 (m, 1H), 
4.10–3.90 (m, 1H), 3.60 (br, 1H), 3.11 (dd, J = 15.6, 8.4 Hz, 1H), 2.61 (dd, J = 15.6, 8.0 Hz, 
1H), 1.28 (d, J = 6.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 157.0 (d, J = 233 Hz),  
146.9, 130.6 (d, J = 8.8 Hz), 113.1 (d, J = 23.8 Hz), 112.1 (d, J = 23.8 Hz), 109.3 (d, J = 8.8 
Hz), 55.9, 38.0 (d, J = 1.2 Hz), 22.1; All characterization data are in agreement with 
previously reported data[2]. 
HRMS (FI) calcd for C9H10 FN [M]+ 151.0797, found 151.0799. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, Hexane/2-propanol 97:3, 0.8 mL/min, 254 nm, 30 ºC, tminor=8.0 min. 
((R)-enantiomer), tmajor=11.2 min. ((S)-enantiomer); [α]D20 -12.0 (c 0.25 in CHCl3) 94% ee 
(S) (lit. 2 [α]DRT +7.56 (c 0.80 in CHCl3) 88% ee (R))  
 
 
(S)- 5-Chloro-2-methylindoline (7q) 
 

  
Following the general procedure (cat. (S,S)-10), 7q was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.01–7.00 (m, 1H), 6.96–6.93 (m, 1H), 6.48 (d, J = 8.4 Hz, 
1H), 4.03–3.96 (m, 1H), 3.70 (br, 1H), 3.11 (dd, J = 15.6, 8.4 Hz, 1H), 2.60 (dd, J = 15.6, 
7.6 Hz, 1H), 1.27 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 149.5, 130.8, 126.9, 
124.9, 122.9, 109.7, 55.6 37.6, 22.1  
HRMS (FI) calcd for C9H10 ClN [M]+ 167.0502, found 167.0508. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 140 ºC, P = 20 psi, tmajor=12.6 min. ((S)-enantiomer), tminor=13.3 min. 
((R)-enantiomer) 
[α]D20 -10.6 (c 1.6 in CHCl3) 94% ee  
Absolute configuration was determined by comparison with 2-methylindoline (7a): 
Dechlorination product of (S)-7q matched (S)-7a by Chiral-GC analysis.  
  
 
(4aS,9aS)-6-chloro-2,3,4,4a,9,9a-hexahydro-1H-carbazole (7r) 
 

  
Following the general procedure (cat. (S,S)-10), 7r was obtained as white solid. 
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1H NMR (400 MHz, CDCl3) δ 7.02–7.01 (m, 1H), 6.98–6.95 (m, 1H), 6.57–6.55 (m, 1H), 
3.75–3.71 (m, 1H), 3.60 (br, 1H), 3.11–3.06 (m, 1H), 1.78–1.72 (m, 2H), 1.72–1.45 (m, 3H), 
1.43–1.30 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 149.3, 135.4, 126.7, 123.5, 123.3, 10.8, 
60.0, 41.0, 29.1, 26.7, 22.4, 21.5 
HRMS (FI) calcd for C12H14ClN [M]+ 207.08148, found 207.08188. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H, 250  4.6 
mm column, Hexane/2-propanol 95:5, 1.0 mL/min, 254 nm, 30 ºC, tminor=6.2 min. 
((R)-enantiomer), tmajor=7.0 min. ((S)-enantiomer)) ; [α]D20 -13.7 (c 1.0 in CHCl3) 90% ee  
 
 
(S)- 5-Bromo-2-methylindoline (7s) 
 

  
Following the general procedure (cat. (S,S)-10), 7s was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.15–7.14 (m, 1H), 7.09–7.07 (m, 1H), 6.45 (d, J = 8.4 Hz, 
1H), 4.02–3.96 (m, 1H), 3.70 (br, 1H), 3.12 (dd, J = 15.6, 8.8 Hz, 1H), 2.61 (dd, J = 16.0, 
7.6 Hz, 1H), 1.26 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 149.9, 131.2, 129.8, 
127.7, 110.3, 109.9, 55.5, 37.5, 22.1; All characterization data are in agreement with 
previously reported data [14] . 
HRMS (FI) calcd for C9H10 BrN [M]+ 210.9997, found 210.9994. 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 160 ºC, P = 20 psi, tmajor=8.6 min. ((S)-enantiomer), tminor=8.9 min. 
((R)-enantiomer)); [α]D20 -7.75 (c 1.3 in CHCl3) 96% ee (S) (lit. 14 [α]D20 +17.1 (c 1.54 in 
CHCl3) 85% ee (R))  
 
  
(-)- 2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)indoline (7t) 
 

  Following the general procedure (cat. (S,S)-10), 7t was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.07 (d, J = 7.3 Hz, 1H), 7.00 (t, J = 7.8 Hz, 1H), 6.68 (t, J = 
7.3 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H), 4.10–3.95 (m, 1H), 3.82–3.75 (m, 1H), 3.17 (dd, J = 
15.4, 8.6 Hz, 1H), 2.70 (dd, J = 15.6, 7.6 Hz, 1H), 1.90–1.82 (m, 1H), 1.75–1.70 (m, 1H), 
0.95 (s, 9H), 0.08 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 150.9, 128.6, 127.2, 124.6, 118.3, 
109.1, 61.5, 58.2, 39.0, 36.5, 25.9, 18.2  
HRMS (FI) calcd for C16H27NOSi [M]+ 277.18619, found 277.1854. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, Hexane/2-propanol 99:1, 0.5 mL/min, 254 nm, 30 ºC, tminor=9.5 min. 
((+)-enantiomer), tmajor=11.7 min. ((-)-enantiomer)); [α]D20 -24.7 (c 0.6 in CHCl3) 92% ee  
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(-)- 2-(2-(1,3-Dioxolan-2-yl)ethyl)indoline (7u) 
 

  Following the general procedure (cat. (S,S)-10), 7u was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.05 (d, J = 7.2 Hz, 1H), 6.98 (t, J = 7.8 Hz, 1H), 6.66 (t, J = 
7.2 Hz, 1H), 6.58 (d, J = 7.8 Hz, 1H), 4.91–4.89 (m, 1H), 4.00–3.82 (m, 5H), 3.13 (dd, J = 
15.6, 8.8 Hz, 1H), 2.68 (dd, J = 15.6, 8.4 Hz, 1H), 1.80–1.70 (m, 4H); 13C NMR (125 MHz, 
CDCl3) δ 150.9, 128.7, 127.2, 124.6, 118.4, 109.1, 104.3, 64.9, 59.6, 36.1, 30.9, 30.7 
HRMS (FI) calcd for C13H17NO2 [M]+ 219.12593, found 219.1249. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, Hexane/2-propanol 90:10, 1.0 mL/min, 254 nm, 30 ºC, tmajor=23.2 min. 
((-)-enantiomer), tminor=26.4 min. ((+)-enantiomer); [α]D20 -8.89 (c 0.9 in CHCl3) 92% ee 
  
 
 
(+)- 2-(2-(Benzyloxy)ethyl)indoline (7v)  

  Following the general procedure (cat. (R,R)-8), 7v was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.40–7.25 (m, 5H), 7.05 (d, J = 7.2 Hz, 1H), 6.99 (t, J = 7.8 
Hz, 1H), 6.63 (t, J = 7.2 Hz, 1H), 6.55 (d, J = 7.8 Hz, 1H), 4.52 (s, 2H), 4.10 (br, 1H), 
4.05–3.98 (m, 1H), 3.63–3.60 (m, 2H), 3.14 (dd, J = 15.2, 8.8 Hz, 1H), 2.68 (dd, J = 15.4, 
8.2 Hz, 1H), 2.00–1.81 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 150.9, 138.3, 128.6, 128.4, 
127.7, 127.6, 127.2, 124.6, 118.4, 109.1, 73.1, 68.3, 58.1, 36.4  
HRMS (FI) calcd for C17H19NO [M]+ 253.1467, found 253.1478. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, Hexane/2-propanol 95:5, 1.0 mL/min, 254 nm, 30 ºC, tmajor=10.4 min. 
((+)-enantiomer), tminor=13.9 min. ((-)-enantiomer)); [α]D20 +6.17 (c 1.6 in CHCl3) 84% ee  
 
 
(+)- 5-(Benzyloxy)-2-butylindoline (7w) 
 

  
Following the general procedure (cat. (R,R)-8), 7w was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.43–7.15 (m, 5H), 6.78–6.77 (m, 1H), 6.66–6.63 (m, 1H), 
6.52 (d, J = 8.4 Hz, 1H), 4.98 (s, 2H), 3.85–3.78 (m, 1H), 3.08 (dd, J = 15.4, 8.6 Hz, 1H), 
2.65 (dd, J = 15.6, 8.4 Hz, 1H), 1.62–1.58 (m, 2H), 1.40–1.32 (m, 4H), 0.90–0.85 (m, 3H); 
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13C NMR (125 MHz, CDCl3) δ 137.7, 131.0, 129.0, 128.5, 128.2, 127.7, 127.5, 113.4, 
112.8, 109.7, 71.1, 60.6, 36.7, 36.5, 28.8, 22.8, 14.1  
HRMS (FI) calcd for C19H23NO [M]+ 281.1780, found 281.1780. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H, 250  4.6 
mm column, Hexane/2-propanol 90:10, 0.8 mL/min, 254 nm, 30 ºC, tmajor=7.9 min. 
((+)-enantiomer), tminor=10.0 min. ((-)-enantiomer); [α]D20 +8.60 (c 0.5 in CHCl3) 97% ee  
 
 
(-)- Ethyl 4-(indolin-2-yl)butanoate (7x) 
 

  
Following the general procedure (cat. (S,S)-10), 7x was obtained as pale yellow oil. 
1H NMR (400 MHz, CDCl3) δ 7.04 (d, J = 7.3 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.66 (t, J = 
7.3 Hz, 1H), 6.57 (d, J = 7.6 Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 3.85–3.78 (m, 1H), 3.70 (br, 
1H), 3.11 (dd, J = 15.6, 8.8 Hz, 1H), 2.69 (dd, J = 15.4, 8.6 Hz, 1H), 2.38–2.33 (m, 2H) , 
1.73–1.60 (m, 4H), 1.25 (t, J = 7.2 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 173.4, 150.8, 
128.5, 124.6, 127.1, 124.5, 118.4, 109.0, 60.2, 59.4, 36.2, 35.9, 34.1, 21.7, 14.1  
HRMS (FI) calcd for C14H19NO2 [M]+ 233.1416, found 233.1427. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OJ-H, 250  4.6 mm 
column, Hexane/2-propanol 90:10, 1.0 mL/min, 254 nm, 30 ºC, tmajor=15.3 min. 
((-)-enantiomer), tminor=21.2 min. ((+)-enantiomer); [α]D20 -2.32 (c 1.5 in CHCl3) 91% ee   
  
 
(-)- Methyl 2-(indolin-2-yl)acetate (7y)  

  
Following the general procedure (cat. (S,S)-10), 7y was obtained as a clear oil. 
1H NMR (400 MHz, CDCl3) δ 7.06 (d, J = 7.5 Hz, 1H), 7.01 (t, J = 7.9 Hz, 1H), 6.68 (t, J = 
7.5 Hz, 1H), 6.60 (d, J = 7.9 Hz, 1H), 4.41 (br, 1H), 4.25–4.18 (m, 1H), 3.71 (s, 3H), 3.18 
(dd, J = 15.4, 8.6 Hz, 1H), 2.66 (dd, J = 15.6, 8.4 Hz, 1H), 2.63 (d, J = 6.8 Hz, 2H); 13C 
NMR (125 MHz, CDCl3) δ 172.7, 150.5, 127.8, 127.5, 124.6, 118.7, 109.2, 55.7, 51.7, 40.6, 
35.8  
HRMS (FI) calcd for C11H13NO2 [M]+ 191.09463, found 191.0953. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AS-H, 250  4.6 
mm column, Hexane/2-propanol 97:3, 1.0 mL/min, 254 nm, 30 ºC, tmajor=9.8 min. 
((-)-enantiomer), tminor=10.9 min. ((+)-enantiomer); [α]D20 -53.1 (c 0.5 in CHCl3) 72% ee  
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K.  Derivatizations of Chiral Indolines  
(a) Synthesis of (S)-2-Methyl-5-vinylindoline (16)  

  

PCy2

CH3

Cy-cBRIDP   
A 50mL schlenk flask equipped with a magnetic stirring bar was charged with 
(S)-5-Chloro-2-methylindoline (7q) (0.30 g, 1.789 mmol), potassium vinyltrifluoroborate 
(15) (0.36 g, 2.684 mmol), Cy-cBRIDP (29.0 mg, 0.072 mmol), Pd(OAc)2 (8.0 mg, 0.036 
mmol), K2CO3 aquaous solution (2.22M) (3.24 mL, 22.00 mmol) and 2-Methyl-2-butanol 
(tert-AmOH) (3.0 mL). Then the resulting solution was briefly evacuated and then 
backfilled with argon (5 times). The reaction mixture was then placed in a preheated oil 
bath at 110 °C. Vigorous stirring was applied and the reaction was monitored by GC and 
TLC. After stirred at 9 h, the reaction mixture was cooled to room temperature, diluted with 
CHCl3 and water (5 mL each) and separated organic layer. Aquaous layer was extracted by 
CHCl3 (3  5 mL) and combined organic layer was dried over MgSO4. After removal of 
organic solvents, the residue was purified by silica gel column chromatography 
(Hexane/AcOEt = 15/1) gave 16 as a clear liquid in 75% yield (0.21 g).  
 
The enantiomeric excess of 16 was determined by GC analysis (CHIRALSIL-DEX-CB 
0.25  25 m, T = 140 ºC, P = 20 psi, tmajor=12.0 min. ((S)-enantiomer), tminor=12.8 min. 
((R)-enantiomer), 95% ee. 
 
 
1H NMR (400 MHz, CDCl3) δ 7.19 (s, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.62 (dd, J = 17.6, 
10.8 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 5.51 (d, J = 17.6 Hz, 1H), 5.00 (d, J = 10.8 Hz, 1H), 
4.03–3.97 (m, 1H), 3.80 (br, 1H), 3.13 (dd, J = 15.4, 8.6 Hz, 1H), 2.62 (dd, J = 15.4, 8.6 Hz, 
1H), 1.28 (d, J = 4.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 150.9, 137.1, 129.2, 128.6, 
126.3, 122.2, 109.2, 108.6, 55.4, 37.5, 22.3 
HRMS (FI) calcd for C11H13N [M]+ 159.1048, found 159.1053. 
[α]D20 -6.71 (c 0.60 in CHCl3) 95% ee  
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(b) Synthesis of (S)-3-(2-Methylindolin-5-yl)benzaldehyde (18)  

  

PCy2

CH3

Cy-cBRIDP   
A 50mL schlenk flask equipped with a magnetic stirring bar was charged with 
(S)-5-Chloro-2-methylindoline (7q) (0.30 g, 1.789 mmol), 3-formylphenylboronic acid (17) 
(0.36 g, 2.684 mmol), Cy-cBRIDP (29.0 mg, 0.072 mmol), Pd(OAc)2 (8.0 mg, 0.036 
mmol), K2CO3 aquaous solution (2.22M) (3.24 mL, 22.00 mmol) and 2-Methyl-2-butanol 
(tert-AmOH) (3.0 mL). Then the resulting solution was briefly evacuated and then 
backfilled with argon (5 times). The reaction mixture was then placed in a preheated oil 
bath at 100 °C. Vigorous stirring was applied and the reaction was monitored by GC and 
TLC. After stirred at 5 h, the reaction mixture was cooled to room temperature, diluted with 
CHCl3 and water (5 mL each) and separated organic layer. Aquaous layer was extracted by 
CHCl3 (3  5 mL) and combined organic layer was dried over MgSO4. After removal of 
organic solvents, the residue was purified by silica gel column chromatography 
(Hexane/AcOEt = 10/1) gave 18 as a pale yellow solid in 80% yield (0.34 g).  
 
The enantiomeric excess of 18 was determined by HPLC analysis (Chiralpak AD-H, 250  
4.6 mm column, Hexane/2-propanol 95:5, 1.0 mL/min, 254 nm, 30 ºC, tminor=19.5 min. 
((R)-enantiomer), tmajor=24.0 min. ((S)-enantiomer), 95% ee. 
 
 
1H NMR (400 MHz, CDCl3) δ 10.06 (s, 1H), 8.04–8.03 (m, 1H), 7.81–7.74 (m, 2H), 7.54 (t, 
J = 7.8 Hz,1H), 7.38–7.29 (m, 2H), 6.66 (d, J = 7.8 Hz, 1H), 4.10–4.04 (m, 1H), 3.90 (br, 
1H), 3.21 (dd, J = 15.8, 8.0 Hz, 1H), 2.70 (dd, J = 15.8, 8.0 Hz, 1H), 1.32 (d, J = 6.4 Hz, 
3H); 13C NMR (125 MHz, CDCl3) δ 192.6, 151.1, 142.6, 136.8, 132.2, 130.0, 129.7, 129.2, 
127.4, 127.3, 126.4, 123.5, 109.0, 55.4, 37.5, 22.3 
HRMS (FI) calcd for C16H15NO [M]+ 2387.1154, found 137.1164. 
[α]D20 -8.20 (c 0.75 in CHCl3) 95% ee  
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(c)  Synthesis of Tetrahydro-1H-pyrroloindole (21) 
 

  
To a solution of (S)-2-(2-(1,3-dioxolan-2-yl)ethyl)indoline (7u) (0.30 g, 1.36 mmol) in 
AcOH (2.0 mL) were added CF3COOH (3.11g, 2.03 mL, 27.3 mmol, 20eq vs 7u). After the 
mixture was stirred for 1 h at room temperature, NaBH3CN (0.256 g, 4.08 mmol) was 
added. After stried for 10 h, CHCl3 (10mL) and aqueous NaHCO3 solution (30 mL) was 
added and separated the organic layer. The aqueous phase was extracted with CHCl3 (2  20 
mL), and the combined organic portions were dried over MgSO4, and concentrated to give 
a crude liquid. After removal of organic solvents, the residue was purified by silica gel 
column chromatography (Hexane/AcOEt = 5/1) gave 21 as a clear liquid in 80% yield (0.17 
g).  
 
The enantiomeric excess was determined by GC analysis (CHIRALSIL-DEX-CB 0.25  25 
m, T = 140 ºC, P = 20 psi, tmajor=8.8 min. ((S)-enantiomer), tminor=9.4 min. ((R)-enantiomer), 
89% ee. 
 
 
1H NMR (400 MHz, CDCl3) δ 7.11–7.08 (m, 2H), 6.75 (t, J = 7.2 Hz, 1H), 6.58 (d, J = 7.2 
Hz, 1H), 3.96–3.84 (m, 1H), 3.45–3.38 (m, 1H), 3.23–3.10 (m, 2H), 2.98–2.93 (m, 1H), 
1.95–1.78 (m, 3H), 1.40–1.20 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 154.7, 129.9, 127.5, 
124.8, 119.3, 111.0, 65.3, 52.3, 33.9, 31.3, 25.8 
HRMS (FI) calcd for C11H13N [M]+ 159.1048, found 159.1056. 
[α]D20 -9.42 (c 0.50 in CHCl3) 89% ee  
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Chapter 3.   
 Efficient Access to Chiral Benzohydrols via Asymmetric Transfer Hydrogenation of Unsymmetrical Benzophenones with Bifunctional Oxo-tethered Ruthenium Catalysts 
 
 6. Introduction 
 
Catalytic asymmetric synthesis of secondary alcohols from ketones has attracted 
considerable interest as a reliable method. Since a string of Ru catalysts with 1,2-diamine 
scaffolds was established for asymmetric H2-hydrogenation or transfer hydrogenation of 
acetophenone derivatives in the mid-1990s,1,2 the utility of metal/NH cooperation has been 
highlighted via advances in redox transformations of carbonyl or alcoholic compounds.3 
Because of breakthrough developments of the bifunctional catalysts, the scope of ketone 
substrates has been extensively broadened; however, a high level of stereo-controlling 
ability of the chiral catalysts is needed to access post-challenging targets. 
 
Among aromatic ketones, unsymmetrical benzophenones have been less frequently 
subjected to enantioselective reduction, in which a catalyst must discern structural 
differences in the two aromatic rings.4-8 The catalytic hydrogenation offers straightforward 
access to biologically and pharmaceutically valuable benzhydrols without producing 
stoichiometric amounts of metal waste, compared with the asymmetric catalytic addition of 
nucleophilic arylmetals to aromatic aldehydes.9 Ohkuma and Noyori reported that the 
Ru/(S)-Xylbinap/(S)-daipen catalyst can effectively promote H2-hydrogenation of 
substituted benzophenones in the presence of tert-BuOK under mild pressure (8 atm) and 
temperature conditions.4a Although ortho-substituted benzophenones were successfully 
converted to the corresponding diarylmethanols with a maximum of 99% ee, the 
enantiomeric excesses obtained from meta- and para-substituted substrates were lower 
(<47% ee). In other asymmetric H2-hydrogenation,4b–f hydroboration,5 hydrosilylation,6 and 
transfer hydrogenation7 systems with reasonable enantioselectivity, the substrate scope 
remains primarily limited to ortho-functionalized and mono-substituted benzophenones.10 
 
According to other examples to obtaining chiral diarylmethanol, addition of 

appropriate reagents to aldehyde are widely known. For example, addition of 
aryl zinc reagent into aldehyde with chiral ligands affords corresponding chiral 
diarylmethanols (Scheme 1, eq. 1). Furthermore the addition of aryl boron 
compounds such as aryl boronic acid derivatives into aldehyde with chiral 
ligands and appropriate metal also affords diarylmethanols (Scheme 1, eq. 2) 
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Scheme 1. Other examples for obtaining chiral diarylmethanols 
 

   
 
 
 
Using a systematic approach to structural tuning of the bifunctional catalysts derived from sulfonylated 1,2-diphenylethylenediamine (DPEN), we designed a new family of oxo-tethered Ru complexes—(R,R)-3 and (R,R)-4—that exhibit 
excellent catalytic performance for the asymmetric transfer hydrogenation of 
simple ketones.11,17 The persistent three-point coordination obtained by 
introducing the covalently tethered unit12 enhanced catalyst longevity and 
produced the highest activity of a series of the prototypic (η6-arene)Ru/Ts-DPEN catalysts, including (R,R)-1 and (R,R)-2. Regarding the 
imposed coordination, conformational rigidity also supported the 
stereodiscrimination ability of the bifunctional catalysts. In this paper, the 
author reports the substantial enantioselectivity of the oxo-tethered Ru 
complexes in the catalytic transfer hydrogenation of diaryl ketones with a variety of substituents at ortho positions and/or other positions. 
 
 
Figure 1. Structure of non-tethered and tethered Ru-DPEN catalysts  
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 7. Results and Discussions 
 
 (ア)  Asymmetric Transfer Hydrogenation of 2-Substituted Benzophenones 
 
 We initially examined asymmetric transfer hydrogenation of 2-methylbenzophenone using 
1 mol% of the DPEN-derived Ru complexes in an azeotropic mixture of formic acid and 
triethylamine at 60 °C. As listed in Table 1, the corresponding (S)-alcohol was obtained in 
86-98% ees after the 18 h reaction. Compared to the prototype catalyst of (R,R)-1 and 
(R,R)-2 (entries 1 and 2), the oxo-tethered Ru(II) complexes (R,R)-3, (R,R)-4 exhibited 
superior activities (entries 3 and 4), and the former Ts-derivative showed optimal catalytic 
performance in terms of the yield and enantioselectivity. The attained optical purity is as 
high as those with a ketoreductase eznyme.8b 
 
  Table 1. Asymmetric transfer hydrogenation of 2-methylbenzophenonea 

      
 

entry catalyst % yield % eeb 
1 (R,R)-1 22 86 (S, +) 
2 (R,R)-2 45 90 (S, +) 
3 (R,R)-3 98 98 (S, +) 
4 (R,R)-4 94 94 (S, +) 

 
a Typical reaction condition: catalyst (0.01 mmol), substrate (1.0 mmol), HCO2H/Et3N=5/2 azeotropic 
mixture (0.5 mL)  b Determined by HPLC analysis. 
 
 
 
 A variety of 2-substituted benzophenones was shown to be applicable to asymmetric 
transfer hydrogenation with (R,R)-3, which displayed enhanced enantioselectivities relative 
to the asymmetric hydrogenation with chiral Ru catalysts,4a–f as listed in Table 2.  
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 Table 2. Asymmetric transfer hydrogenation of 2-substituted benzophenonesa,b 
 
 
 
 
 
 

  
 
a Typical reaction condition: catalyst (0.01 mmol), substrate (1.0 mmol), HCO2H/Et3N=5/2 azeotropic mixture (0.5 mL)  b Ee values were determined by HPLC analysis. c (R,R)-4 was employed as a catalyst.  
d Comparable yield (99%) and ee (70%) were obtained by using (R,R)-3 under identical conditions.   
 
 
 
Mono-substituted benzophenones bearing chloro, bromo, and trifluoromethyl groups at the 
ortho position were smoothly reduced with almost complete conversions and excellent ees, 
exceeding 98% (6b–6d). The results of the high-performance liquid chromatographic 
(HPLC) analysis with a chiral stationary phase indicated that the products were (S)-isomers. 
In contrast to the asymmetric hydrogenation with a diphosphine-diamine-Ru(II) complex,4a 
the oxo-tethered catalyst (R,R)-4 tolerated a phenolic 
ketone—2-hydroxybenzophenone—and provided a satisfactory ee of 77% (6e). 
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Multiply-substituted aryl phenyl ketones, including 2,4-methyl-, 2,4,5-trimethyl-, 
2,4-dichloro-, and 2-chloro-5-nitrobenzophenone analogues, were converted into the 
desired (S)-benzhydrols with sufficient conversions and ees (6f–6i). Although reduction of 
2,5-difluoro- and 2-fluoro-3-trifluoromethylbenzophenone produced slightly lower ees of 
91% and 90% (6j and 6k), 2,3,4,5,6-pentafluorobenzophenone was completely 
hydrogenated with outstanding enantioselectivity (6l). Transfer hydrogenation of 
2,4’-dichloro- and 2-chloro-4’-fluorobenzophenone furnished the corresponding 
unsymmetrical diarylmethanols in high yields with 97% ee (6m and 6n), indicating that 
(R,R)-3 can precisely recognize the ortho-substituted phenyl group. 
In a putative outer sphere mechanism involving H+ and H- transfer to the C=O moiety, an 
attractive interaction between the edge of an η6-arene ligand and the face of an aromatic 
ring13 in ketone substrates has been considered to impose their one-sided approach and 
enable remarkable asymmetric induction.14 Given that the stereochemistry of all products 
from 2-substituted diaryl ketones has an S-configuration, a sterically favorable edge-to-face 
interaction away from the ortho-substituted phenyl groups is envisaged in the transition 
state, as depicted in Figure 2. The introduction of the sterically less demanding fluorine 
atom into the ortho position was mildly effective compared with other halogens (6j, 6k, 
6o). 
 Absolute configuration of new diarylmethanol products were determined by X-ray 
crystallography of corresponding esters of alcohol products (see details in Experimental 
Section).  
 
 
 
Figure 2. Proposed interaction between 2-substituted benzophenone and the oxo-tethered Ru(II) complex (R,R)-3  
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 2.2 Synthesis of Optically Active 6-Phenyl-6H-benzo[c]chromene Compound  
 
 The chiral benzohydrol product was successfully utilized in the expedient preparation of 
chiral benzo[c]chromene (9), for which only few synthetic methods have been reported 
(Scheme 2).15 The Suzuki-Miyaura coupling reaction of 
(S)-(2-bromophenyl)(phenyl)methanol (6c) with 2-flurorophenylboronic acid (7) in the 
presence of Pd(PPh3)4 smoothly afforded the corresponding adduct 8 with virtually no loss 
of optical purity. Subsequent cyclization with tert-BuOK in THF yielded the desired 
benzochromene framework 9 in 70% yield with 98% ee. 
 
 Scheme 2. Synthesis of optically active 6-phenyl-6H-benzo[c]chromene 
    

 
 
 
 

 
(i) 2-Fluorophenylboronic acid (7) (1.5 equiv), Pd(PPh3)4 (2 mol%), K2CO3 (1.5 equiv), 

Toluene/THF = 1/1, 100 °C, 7 h  (ii) tert-BuOK (1.0 equiv), THF, 20 °C, 3 h  
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  2.3  Asymmetric Transfer Hydrogenation of Non-ortho-Substituted Diaryl Ketones 
 
 The utility of (R,R)-3 was also demonstrated in the reaction of unsymmetrical diaryl 
ketones with the exception of 2-substituted benzophenones, as summarized in Table 3. 
 
 
Table 3. Asymmetric transfer hydrogenation of non-ortho-substituted diaryl ketones a,b 

 

  

   a Typical reaction condition: catalyst (0.01 mmol), substrate (1.0 mmol), HCO2H/Et3N=5/2 azeotropic 
mixture (0.5 mL)  b Ee values were determined by HPLC analysis.    
 
 
From 4-chlrorobenzophenone, the corresponding (S)-alcohol was formed with a moderate 
ee of 48% (11a). The enantioselectivities can be substantially increased to 76% and 77% 
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ees by doubly-halogenated substrates at the meta- and para-positions (11b and 11c). A 
comparable selectivity of 76% ee was attainable in the reduction of mono-substituted 
4-nitrobenzophenone, implying an additional beneficial effect resulting from the 
incorporation of a strongly electron-withdrawing NO2 group (11d); 
3-nitro-4-chlorobenzophenone produced 93% ee with complete conversion (11e). When 
3,4,5-trifluorobenzophenone and 3,5-dinitrobenzophenone were tested as highly biased 
diaryl ketones, the expected chiral alcohols (11f and 11g) were obtained with 95% with 
>99% ees, respectively. In these cases, the (S)-enantiomers were formed, possibly via a 
transition state by avoiding an interaction between the 6-arene ligand and the relatively 
electron-deficient ring, as indicated in bold in Figure 3.16    
 
 
Figure 3. Plausible transition state in asymmetric transfer hydrogenation of 
non-ortho-substituted benzophenones with (R,R)-3 
  

 
 
 
 
 As an intriguing example, 4-methoxybenzophenone produced a low ee (5%) in the 
R-configuration of 11h, likely because of the arene-arene interaction involving a phenyl 
ring attached to the electron-donating methoxy group (11h). The catalyst molecule can 
differentiate between two para-substituted phenyl groups with opposite electronic character, 
as observed in the reaction of 4-chloro-4’methoxybenzophenone, which yields a higher ee 
of 11i. A comparable ee with complete conversion was achieved in the reduction of 
4-chloro-4’-hydroxybenzophenone, and the phenolic OH group remained intact (11j). 
Additional enhancement of enantioselectivity by the nitro group was confirmed in the 
formation of 11k and 11l. The ees of the obtained methoxy-substituted alcohols—11i and 
11k—were consistently increased by 3-5 % compared with the stereochemical outcomes of 
11a and 11d, which were derived from the corresponding aryl phenyl ketones, possibly 
because the methoxyphenyl ring preferentially interacts with the η6-arene ligand in the 
enantio-determining step. 
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 The excellent enantioselectivity was also realized for other aromatic ketones with distinct 
electronic properties. As shown in Schemes 3 and 4, the reaction of benzoylferrocene 
afforded (S)-alcohol (11m) in 90% ee via a similar asymmetric induction, albeit producing 
only a 53% yield after 20 h at 60 °C. In addition, 3-nitrophenyl 2-thienyl ketone was 
converted to the corresponding (R)-product (11n) in 96% yield with almost complete 
enantioselectivity (Scheme 4). These results provide evidence for enantioselective 
reduction, that is, the chiral oxo-tethered catalyst accurately avoids the sterically 
demanding and electron-poor ferrocene moiety and establishes the thiophene ring as an 
electron-rich fragment that can approach the 6-arene ligand shown in Figure 3. 
 
 
Scheme 3. Asymmetric transfer hydrogenation of benzoylferrocene 
 

 
  

 Scheme 4. Asymmetric transfer hydrogenation of 3-nitrophenyl 2-thienyl ketone 
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 8. Conclusion 
 An extensive range of unsymmetrical benzophenone derivatives was successfully reduced 
with good to excellent ees and in high yields, because the oxo-tethered ligand ensuring 
precise recognition of ortho-substituted phenyl groups as well as differentiation between 
electron-rich and electron-poor arene rings. Considering the combination of desirable 
features, including a wide substrate scope, excellent enantioselectivity, mild reaction 
conditions, and high stability and availability of the catalyst precursor, the author believes 
that this catalyst system has significant potential for application in a practical streamlined 
method to obtain chiral diarylmethanols. 
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 10. Experimental Section 
 
 
 
General Information 
 All reactions and manipulations were conducted under a nitrogen atmosphere unless 
otherwise noted. Synthesis of ruthenium catalysts was performed in commercial anhydrous 
solvents. NMR Spectra were obtained on Agilent 400-MR DD2 and Bruker BioSpin 
Avance Ⅲ 500 Systems.  NMR chemical shifts are reported in ppm relative to CHCl3 (7.26 ppm for 1H, and 77.0 ppm for 13C), or CH3OH (3.30 ppm for 1H, and 49.0 ppm for 
13C). The following abbreviations were used to designate peak splitting patterns: s = singlet, 
d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Optical rotations were 
obtained on a JASCO P-1020 Polarimeter. Mass spectra were recorded on SHIMADZU 
LCMS-IT-TOF and JEOL JMS-T100GCV. Elemental analyses were carried out using a 
PE2400 Series II CHNS/O Analyser (Perkin Elmer). High performance liquid 
chromatography (HPLC) analysis was performed using a system comprised of a 
GL-Science GL-7400 series; column oven: GL-7430, a gradient unit, a pump, degasser: 
GL-7430, a UV detector: GL-7450, an auto sampler: GL-7420. Recyclable preparative 
HPLC was performed on a Japan Analytical Industry LC-9225 NEXT system. IR Spectra 
were obtained on Thermo Fisher Scientific NICOLET iS10. 
 
 
Ketones (5a, 5b, 5c, 5e, 5f, 5g, 5h, 5i, 5j, 5l, 5m, 5n, 5o, 10a, 10b, 10c, 10d, 10e, 10h, 
10m) were purchased from TCI (Tokyo Chemical Industry Co., Ltd.). Ketones (6d, 6k) 
were purchased froma Sigma-Aldrich. Ketone (10i) was purchased from Combi blocks. 
Ketones (11j and 11k) were purchased from Wako Chemical Ltd. and Alfa Aesar, 
respectively. 
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A. Synthesis of Ketones.  
(j) Synthesis of Phenyl(3,4,5-trifluorophenyl)methanol ((rac)-11f)  

  
To a stirred mixture of 3,4,5-trifluorobenzaldehyde (4.00 g, 25.0 mmol) in dry THF (100 

mL), a solution of phenylmagnesium bromide (26.2 mL 26.23 mmol, 1.0 M in THF) was 
added dropwise at 0 ºC, and then the reaction temperature was raised to room temperature. 
After stirring for 2 h, water (50 mL) and EtOAc (50 mL) were added, and HCl conc. (ca. 1 
mL) was slowly added to acidify the reaction mixture. The product was extracted with 
EtOAc (2  50 mL) and the combined organic layers were washed with brine (2  100 mL), 
dried over anhydrous MgSO4, and concentrated under reduced pressure to afford the crude 
product. Purification by silica-gel column chromatography gave the product (11f) as a 
colorless oil (4.9 g, 83% yield). 
  
1H NMR (400 MHz, CDCl3) δ 7.37–7.27 (m, 5H), 7.00–6.94 (m, 2H), 5.68 (d, J = 2.8 Hz, 
1H), 2.51 (d, J = 2.8 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ151.1 (dd, J = 10.0, 3.8 Hz), , 
142.5, 139.9 (m), 137.8 (m), 128.9, 128.4, 126.5, 110.3 (dd, J = 17.5, 5.0 Hz), 74.9.  
HRMS (FI) calcd for C13H9F3O [M]+: 238.0606. Found: 238.0617.  
IR (neat) 3376, 2978, 2876, 1622, 1528, 1447, 1343, 1234, 1036, 758, 704, 613 cm-1. 
 
 
 
(k) Synthesis of Phenyl(3,4,5-trifluorophenyl)methanone (10f)[1] 
 

  
 To a solution of 11f (2.00 g, 8.39 mmol) in CH2Cl2 (73 mL) were added KBr (0.204g, 1.71 
mmol), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) (65.5 mg, 0.419 mmol), and 
saturated aqueous NaHCO3 (50 mL). The biphasic mixture was vigorously stirred, and 
aqueous NaOCl (36.7 mL, 0.7 M) was added. The resulting bright orange mixture was 
stirred for 2 h, and the orange color faded away. The colorless biphasic layers were 
separated, the aqueous phase was extracted with CHCl3 (2  50 mL), and the combined 
organic portions were dried over MgSO4, and concentrated to give a crude liquid. The 



 86                                      

mixture was filtered through a plug of silica gel and concentrated to give the product (10f) 
as a colorless liquid (1.9 g, 97% yield). 
 
1H NMR (400 MHz, CDCl3) δ 7.79–7.75 (m, 2H), 7.65–7.60 (m, 1H), 7.55–7.40 (m, 4H); 
13C NMR (125 MHz, CDCl3) δ 192.8, 151.9 (dd, J = 10.0, 3.8 Hz), 149.9 (dd, J = 10.0, 3.8 
Hz), 142.7 (m), 136.1, 133.0 (m), 129.8, 128.6, 114.5 (dd, J = 16.3, 5.0 Hz).  
HRMS (FI) calcd for C13H7F3O [M]+: 236.0449. Found: 236.0448.  
IR (neat) 3391, 1662, 1596, 1526, 1434, 1344, 1232, 1046, 886, 763, 727, 700, 667 cm-1. 
. 
 
 
(l) Synthesis of (3,5-Dinitrophenyl)(phenyl)methanone (10g) 
 

   A THF solution (60 mL) containing Pd(OAc)2 (67.2 mg, 0.30 mmol), PPh3 (184.0 mg, 0.70 
mmol), 3,5-dinitrobenzoic acid (2.121 g, 10.0 mmol), phenylboronic acid (1.463 g, 12.0 
mmol), di-tert-butyl dicarbonate (2.764 g, 15.0 mmol), and H2O (0.450 mL) was heated 
under Ar atmosphere at 60 °C for 15 h. After cooling the reaction mixture, the insoluble 
materials were filtered off through a pad of Florisil. The Florisil was washed with Et2O (50 
mL) and the combined filtrates were washed with a saturated aqueous solution of NaHCO3 (3  20 mL), and brine (10 mL), and then dried over MgSO4. After removal of organic 
solvents, the residue was purified by silica-gel column chromatography (hexane/AcOEt = 
6/1), followed by preparative HPLC equipped with JAIGEL-1H and -2H columns using 
CHCl3 as an eluent at a flow rate of 14 mL min-1 gave 10g as a white solid in 24% yield 
(0.650 g, 2.39 mmol). 
 
1H NMR (400 MHz, CDCl3) δ 9.25 (s, 1H), 8.93 (s, 2H), 7.83–7.80 (m, 2H), 7.78–7.72 (m, 
1H), 7.62–7.57 (m, 2H); 13C NMR (125 MHz, CDCl3) δ191.6, 148.5, 140.7, 135.0, 134.2, 
130.0, 129.4, 129.1, 121.5. 
HRMS (FI) calcd for C13H8N2O5 [M]+: 272.0433. Found: 272.0442.  
IR (neat) 3100, 1670, 1545, 1348, 1282, 1079, 916, 809, 710 cm-1. 
 
 
 
(d) Synthesis of (3,5-Dinitrophenyl)(4-methoxyphenyl)methanone (10l)  
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   A THF solution (60 mL) containing Pd(OAc)2 (67.2 mg, 0.30 mmol), PPh3 (184.0 mg, 0.70 
mmol), 3,5-dinitrobenzoic acid (2.121 g, 10.0 mmol), 4-methoxyphenylboronic acid (1.824 
g, 12.0 mmol), di-tert-butyl dicarbonate (2.765 g, 15.0 mmol), and H2O (0.450 mL) was 
heated under Ar atmosphere at 60 °C for 18 h. After cooling the reaction mixture, the 
insoluble materials were filtered off through a pad of Florisil. The Florisil was washed with 
Et2O (50 mL) and the combined filtrates were washed with a saturated aqueous solution of 
NaHCO3 (3  20 mL), and brine (10 mL), and then dried over MgSO4. After removal of 
organic solvents, the residue was purified by silica-gel column chromatography 
(hexane/AcOEt = 5/1), followed by preparative HPLC equipped with JAIGEL-1H and -2H 
columns using CHCl3 as an eluent at a flow rate of 14 mL min-1 gave 10l as a white solid in 
33% yield (0.976 g, 3.23 mmol). 
 
1H NMR (400 MHz, CDCl3) δ 9.22 (s, 1H), 8.89 (s, 2H), 7.82 (d, J = 8.8 Hz, 2H), 7.04 (d, 
J = 8.8 Hz, 2H), 3.94 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 190.2, 164.6, 148.5, 141.5, 
132.7, 129.1, 127.7, 121.1, 114.5, 55.70. 
HRMS (ESI) calcd for C14H10N2O6 [M]+: 302.0539. Found: 302.0539.  
IR (neat) 3092, 1661, 1597, 1546, 1538, 1264, 1165, 1023, 846, 729, 608 cm-1. 
 
 
 
 
 
(e) Synthesis of (3-Nitrophenyl)(thiophen-2-yl)methanol ((rac)-11n)  

  A solution of 3-nitrobenzaldehyde (3.02 g, 20.0 mmol) in dry THF (25 mL) was cooled to 
0 °C, and commercially available 2-thienyl lithium (1.0 M in hexane/THF) was carefully 
added dropwise under Ar atmosphere. The resulting solution was allowed to warm to room 
temperature followed by stirring for 3 h. After the reaction was quenched with aqueous 
NH4Cl (5 mL), the resulting mixture was extracted with Et2O (3  15 mL) and then washed 
with brine (5 mL). The organic layer was dried over MgSO4 and the volatiles were removed 
under reduced pressure. The residue was purified by column chromatography on silica gel 
using hexane/AcOEt = 3/1 as eluents. The following purification by preparative HPLC 
equipped with JAIGEL-1H and -2H columns using CHCl3 as an eluent at a flow rate of 14 
mL min-1 gave (3-nitrophenyl)(thiophen-2-yl)methanol (11n) as a colorless oil in 48% yield 
(2.25 g, 9.56 mmol). 
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1H NMR (400 MHz, CDCl3) δ 8.32–8.31 (m, 1H), 8.15–8.12 (m, 1H), 7.78–7.76 (m, 1H), 
7.54–7.52 (m, 1H), 7.30–7.29 (m, 1H), 6.97–6.94 (m, 2H), 6.15 (s, 1H), 2.83 (br, 1H); 13C 
NMR (125 MHz, CDCl3) δ 148.3, 146.6, 145.1, 132.2, 129.4, 126.9, 126.2, 125.5, 122.8, 
121.2, 71.1. 
HRMS (FI) calcd for C11H9NO3S [M]+: 235.0303. Found: 235.0294. 
IR (neat) 3392, 2917, 2848, 1529, 1350, 1094, 1022, 811, 760, 707 cm-1. 
 
(f) Synthesis of (3-Nitrophenyl)(thiophen-2-yl)methanone (10n)  

11n 10n
CH2Cl2

TEMPO (5 mol%)
KBr (0.2 eq)
NaOCl aq, NaHCO3 aq

OH
O2N

S

O
O2N

S

  To a solution of 11n (1.00 g, 4.25 mmol) in CH2Cl2 (36 mL) were added KBr (0.102g, 0.86 
mmol), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) (32.8 mg, 0.210 mmol), and 
saturated aqueous NaHCO3 (25 mL). The biphasic mixture was vigorously stirred, and 
aqueous NaOCl (18.3 mL, 0.7 M) was added. The resulting bright orange mixture was 
stirred for 3 h, and the orange color faded away. The colorless biphasic layers were 
separated, the aqueous phase was extracted with CHCl3 (2  25 mL), and the combined 
organic portions were dried over MgSO4, and concentrated to give a crude liquid. The 
mixture was filtered through a plug of silica gel and concentrated to give the product (10n) 
as a pale white solid (0.94 g, 95% yield). 
 
1H NMR (400 MHz, CDCl3) δ 8.72–8.71 (m, 1H), 8.46–8.43 (m, 1H), 8.22–8.19 (m, 1H), 
7.82–7.80 (m, 1H) , 7.78–7.75 (m, 1H) , 7.65–7.63 (m, 1H) , 7.22–7.20 (m, 1H); 13C NMR 
(125 MHz, CDCl3) δ 185.6, 148.1, 142.4, 139.5, 135.5, 135.3, 134.7, 129.8, 128.4, 126.6, 
124.0. 
HRMS (FI) calcd for C11H7NO3S[M]+: 233.0147. Found: 233.0134. 
 
 
 
 
 
B. Asymmetric Transfer Hydrogenation of Unsymmetrical Benzophenones Using 
(R,R)-3 of (R,R)-4  
General procedures under the conditions of S/C = 100, 60 °C, and 5 h. 

Under N2 atmosphere, a mixture of ketone (1.0 mmol) and the Ru catalyst (0.01 mmol) in 
an azeotrope of formic acid and triethylamine (5:2, 0.5 mL) was stirred at 60 ºC for 5 h. 
After the reaction completion, water (3 mL) and EtOAc (5 mL) were added. The biphasic 
layers were separated, the aqueous layer was extracted with EtOAc (3  5 mL), and the 
combined organic portions were washed with brine (3 mL). After drying over MgSO4, filtration, and solvent removal under reduced pressure, the crude residue was purified by 
silica-gel column chromatography to afford the desired product. The optical purity of 
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product was determined by chiral HPLC analysis using a Daicel Chiralcel OD-H, OJ-H or 
Chiralpak AD-H, AS-H column (4.6 mm  25 cm) with hexane/2-propanol as the eluent 
where a clear base-line separation was obtained. 
 
 
 
 
Figure S1. Structure of non-tethered and tethered Ru-DPEN catalysts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To confirm the advantages of Oxo-tethered complexes, the reactivity and selectivity were 
compared with Non-tethered conventional type Ru-diamine complex (R, R)-1. The results 
were summarized in Table S1 and Table S2. 
 
 
 Table S1. Asymmetric transfer hydrogenation of 2-substituted benzophenones 
 
 

  
 
Substrate Temp. (°C) Time (h) Catalyst  

(R,R)-3 (R,R)-1 

 5b 
 

40 
 

17 
 
>99% yield, 98% ee 

 
95% yield, 93% ee 

5f 
 

60 
 

17 
 
94% yield, 97% ee 

 
16% yield, 83% ee 
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 5i 
 

40 
 
7 

 
>99% yield, 99% ee 

 
60% yield, 98% ee 

  
 
 
 
 Table S2. Asymmetric transfer hydrogenation of non-ortho-substituted diaryl ketones 
 

  
 
Substrate Time (h) Catalyst  

(R,R)-3 (R,R)-1 
O

Cl   10a 
 

11 
 
>99% yield, 48% ee 

 
51% yield, 37% ee 

  10b 
 

18 
 
>99% yield, 76% ee 

 
98% yield, 64% ee 

  10c 
 
7 

 
>99% yield, 77% ee 

 
86% yield, 64% ee 

 10d 
 

11 
 
>99% yield, 76% ee 

 
98% yield, 67% ee 

 10e 
 
7 

 
>99% yield, 93% ee 

 
80% yield, 88% ee 
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C. Characterization Data for Reduction Products.  
(S)-Phenyl(o-tolyl)methanol (6a) 
 

  According to the general procedure (ketone: 0.196 g (1 mmol), cat. (R,R)-3), 0.194 g of 6a 
was obtained as a white solid (98% yield). 
1H NMR (400 MHz, CDCl3) δ 7.52–7.50 (m, 1H), 7.33–7.14 (m, 8H), 6.01 (d, J = 3.2 Hz, 
1H), 2.25 (s, 1H), 2.12 (d, J = 3.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 142.9, 141.4, 
135.4, 130.5, 128.5, 127.6, 127.5, 127.1, 126.3, 126.1, 73.4, 19.4. All characterization data 
are in agreement with the previously reported data[2]. 
HRMS (FI) calcd for C14H14O [M]+: 198.10446. Found: 198.10457. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 15.8 min, (S) 
isomer 17.3 min); [α]D20 +7.3 (c 0.735 in CHCl3) 98% ee (S) (lit.[2] [α]D22 +6.38 (c 0.906 in 
CHCl3) 93% ee (S)).  
IR (neat) 3375, 3064, 3027, 1492, 1454, 1017, 699, 667 cm-1. 
 
 
 
(S)-(2-Chlorophenyl)(phenyl)methanol (6b) 
 

  According to the general procedure (ketone: 0.216 g (1 mmol), cat. (R,R)-3), 0.217 g of 6b 
was obtained as a clear oil (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.60–7.57 (m, 1H), 7.39–7.18 (m, 8H), 6.20 (s, 1H), 2.44 (br, 
1H); 13C NMR (125 MHz, CDCl3) δ 142.2, 141.0, 132.5, 129.5, 128.7, 128.5, 128.0, 127.7, 
127.0, 126.9, 72.7. All characterization data are in agreement with the previously reported 
data[2]. 
HRMS (FI) calcd for C12H11ClO [M]+: 218.04984. Found: 218.05035. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 14.6 min, (S) 
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isomer 18.6 min); [α]D20 -15.2 (c 1.51 in CHCl3) 98% ee (S) (lit.[2] [α]D20 -21.51 (c 1.136 in 
CHCl3) 97% ee (S)).  
IR (neat) 3355, 3064, 3031, 1441, 1183, 1020, 699, 646 cm-1. 
 
 
 
 
 
 
(S)-(2-Bromophenyl)(phenyl)methanol (6c) 
 

  According to the general procedure (ketone: 3.0 g (11.5 mmol), cat. (R,R)-3), 0.301 g of 6c 
was obtained as a clear oil (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.60–7.53 (m, 2H), 7.42–7.28 (m, 6H), 7.18–7.13 (m, 1H), 
6.19 (s, 1H), 2.56 (br, 1H); 13C NMR (125 MHz, CDCl3) δ 142.5, 142.1, 132.8, 129.1, 
128.4, 128.4, 127.7, 127.7, 127.0, 122.8, 74.7. All characterization data are in agreement 
with the previously reported data[2]. 
HRMS (FD) calcd for C13H11BrO [M]+: 261.9993. Found: 261.9996. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 15.8 min, (S) 
isomer 22.3 min); [α]D20 -41.6 (c 1.40 in CHCl3) 99% ee (S) (lit.[2] [α]DRT -41.9 (c 1.19 in 
CHCl3) 96% ee (S)).  
IR (neat) 3354, 3063, 3030, 1735, 1438, 1184, 1016, 699 cm-1. 
 
 
 
(S)-Phenyl[2-(trifluoromethyl)phenyl]methanol (6d) 
 

  According to the general procedure (ketone: 0.250 g (1 mmol), cat. (R,R)-3), 0.250 g of 6d 
was obtained as a clear oil (99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.67–7.62 (m, 2H), 7.58–7.52 (m, 1H), 7.40–7.24 (m, 6H), 
6.31 (d, J = 3.2 Hz, 1H), 2.34 (d, J = 3.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 142.7, 
132.3, 129.5, 128.4, 127.8, 127.7, 127.5, 126.4, 125.6, 125.4, 123.3, 70.8. 
HRMS (FI) calcd for C14H11F3O [M]+: 252.07620. Found: 252.07615. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 9.1 min, (S) 
isomer 13.4 min); [α]D20-71.7 (c 1.53 in CHCl3) >99% ee (S); the stereochemistry was 
determined based on the reported literature[9].  
IR (neat) 3356, 3066, 3032, 1454, 1313, 1161, 1123, 1037, 767, 737, 700, 649 cm-1. 
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(S)-2-(1’-Hydroxybenzyl)phenol (6e) 
 

  According to the general procedure (ketone: 0.198 g (1 mmol), cat. (R,R)-4), 0.188 g of 6e 
was obtained as a clear oil (94% yield). 
1H NMR (400 MHz, CDCl3) δ 7.96 (br, 1H), 7.35–7.26 (m, 5H), 7.26–7.12 (m, 1H), 
6.85–6.76 (m, 3H), 5.92 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 155.2, 141.8, 129.2, 128.6, 
128.2, 128.1, 126.8, 126.7, 120.0, 117.1, 76.7. All characterization data are in agreement 
with the previously reported data[7]. 
HRMS (ESI) calcd for C13H12O2 [M-H]-: 199.0765. Found: 199.0766. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 80:20, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 6.0 min, (S) 
isomer 8.0 min); [α]D20 -46.1 (c 1.40 in CHCl3) 77% ee (R) (lit.[7] [α]D25 -5.68 (c 0.827 in 
CH3CN) 99% ee).  
IR (neat) 3347, 3062, 3032, 1587, 1489, 1456, 1014, 699 cm-1. 
 
 
 
(S)-(2,4-Dimethylphenyl)(phenyl)methanol (6f) 
 

  According to the general procedure (ketone: 0.210 g (1 mmol), cat. (R,R)-3), 0.199 g of 6f 
was obtained as a white solid (94% yield). 
1H NMR (400 MHz, CDCl3) δ 7.36–7.24 (m, 6H), 7.05–7.02 (m, 2H), 6.96 (s, 1H), 5.97 (s, 
1H) , 2.31 (s, 3H) , 2.22 (s, 3H), 2.09 (br, 1H); 13C NMR (125 MHz, CDCl3) δ 143.1, 138.6, 
137.2, 135.3, 131.4, 128.4, 127.4, 126.9, 126.7, 126.4, 73.2, 21.0, 19.3. All characterization 
data are in agreement with the previously reported data[3]. 
HRMS (FI) calcd for C15H16O [M]+: 212.12011. Found: 212.11955. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 13.3 min, (S) 
isomer 15.9 min); [α]D20 -2.0 (c 2.93 in CHCl3) 97% ee (S) (lit.[3] [α]D23 +8.9 (c 0.80 in 
CHCl3) 82% ee (R)).  
IR (neat) 3335, 3061, 3029, 2917, 1615, 1493, 1452, 1187, 1033, 1020, 800, 760, 699, 638 
cm-1. 
 
 
 
(S)-Phenyl(2,4,5-trimethylphenyl)methanol (6g) 
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  According to the general procedure (ketone: 0.224 g (1 mmol), cat. (R,R)-2), 0.222 g of 6g 
was obtained as a white solid (98% yield). 
1H NMR (400 MHz, CDCl3) δ 7.35–7.20 (m, 6H), 6.92 (s, 1H), 5.96 (d, J = 2.8 Hz, 1H), 
2.23 (s, 3H) , 2.22 (s, 3H) , 2.19 (s, 3H), 2.07 (d, J = 2.8 Hz, 1H); 13C NMR (125 MHz, 
CDCl3) δ 143.2, 138.8, 135.7, 134.1, 132.5, 132.0, 128.4, 127.6, 127.4, 126.9, 73.2, 19.4, 
19.2, 18.7. 
HRMS (FI) calcd for C16H18O [M]+: 226.13576. Found: 226.13621. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 14.4 min, (S) 
isomer 21.3 min); [α]D20 +24.7 (c 1.02 in CHCl3) 98% ee (S).  
IR (neat) 3362, 3032, 2968, 2892, 1504, 1452, 1264, 1069, 1012, 869, 746, 703, 687 cm-1. 
 
 
 
(S)-(2,4-Dichlorophenyl)(phenyl)methanol (6h) 
 

  According to the general procedure (ketone: 0.251 g (1 mmol), cat. (R,R)-3), 0.246 g of 6h 
was obtained as a clear oil (97% yield). 
1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.4 Hz, 1H), 7.35–7.26 (m, 7H), 6.15 (d, J = 3.2 
Hz, 1H), 2.37 (d, J = 3.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 141.8, 139.6, 133.8, 
133.1, 129.3, 128.9, 128.6, 128.0, 127.4, 126.9, 72.3. All characterization data are in 
agreement with the previously reported data[6]. 
HRMS (FI) calcd for C13H10Cl2O [M]+: 252.01087. Found: 252.01169. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 14.2 min, (S) 
isomer 16.0 min); [α]D20 -2.82 (c 1.75 in CHCl3) 99% ee (S) (lit.[6] [α]D22 -15.4 (c 0.17 in 
CHCl3) 93% ee (S)).  
IR (neat) 3336, 3064, 3031, 1589, 1470, 1454, 1381, 1183, 1103, 1033, 1021, 865, 697, 668, 
626 cm-1. 
 
 
 
(S)-(2-Chloro-5-nitrophenyl)(phenyl)methanol (6i) 
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OHCl

NO2   According to the general procedure (ketone: 0.262 g (1 mmol), cat. (R,R)-3), 0.262 g of 6i 
was obtained as a clear oil (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 8.66 (d, J = 2.4 Hz, 1H), 8.10–8.07 (m, 1H), 7.48 (d, J = 8.8 
Hz, 1H), 7.40–7.28 (m, 5H), 6.19 (d, J = 3.2 Hz, 1H), 2.49 (d, J = 3.2 Hz, 1H); 13C NMR 
(125 MHz, CDCl3) δ 147.0, 143.0, 140.9, 138.9, 130.5, 128.9, 128.5, 127.1, 123.4, 123.0 
72.5. 
HRMS (FI) calcd for C13H10NClNO3[M]+: 263.03492. Found: 263.03539. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 23.3 min, (S) 
isomer 25.9 min); [α]D20 +169.9 (c 1.53 in CHCl3) >99% ee (S).  
IR (neat) 3385, 3101, 1609, 1576, 1525, 1456, 1346, 1183, 1023, 918, 836, 768, 743, 699 
cm-1. 
 
 
 
(S)-(2,5-Difluorophenyl)(phenyl)methanol (6j) 
 

OHF

F   According to the general procedure (ketone: 0.218 g (1 mmol), cat. (R,R)-3), 0.200 g of 6j 
was obtained as a clear oil (91% yield). 
1H NMR (400 MHz, CDCl3) δ 7.40–7.23 (m, 6H), 7.00–6.86 (m, 2H), 6.08 (d, J = 3.6 Hz, 
1H), 2.37 (d, J = 3.6 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 158.9 (d, J = 240 Hz), 155.6 
(d, J = 240 Hz), 142.2, 132.7 (dd, J = 15.6, 8.0 Hz), 128.7, 128.1, 126.4, 116.4 (dd, J = 25.0, 
8.0 Hz), 115.3 (dd, J = 25.0, 8.0 Hz), 114.1 (dd, J = 25.0, 4.0 Hz), 69.8 (d, J = 2.0 Hz).  
HRMS (FI) calcd for C13H10F2O [M]+: 220.06997. Found: 220.07077. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OJ-H, 250  4.6 mm 
column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 26.7 min, (S) 
isomer 29.3 min); [α]D20 +29.6 (c 2.1 in CHCl3) 91% ee (S).  
IR (neat) 3354, 3065, 3032, 2916, 2848, 1491, 1429, 1241, 1181, 1134, 1035, 1022, 884, 
834, 818, 769, 699 cm-1. 
 
 
 
(S)-[2-Fluoro-3-(trifluoromethyl)phenyl](phenyl)methanol (6k) 
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  According to the general procedure (ketone: 0.268 g (1 mmol), cat. (R,R)-3), 0.268 g of 6k 
was obtained as a white solid (>99% ee). 
1H NMR (400 MHz, CDCl3) δ 7.82–7.78 (m, 1H), 7.58–7.50 (m, 1H), 7.45–7.22 (m, 6H), 
6.21 (d, J = 4.0 Hz, 1H), 2.36 (d, J = 4.0 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 156.8 (qd,  
J = 260.0, 2.5 Hz) 142.0, 132.6 (d, J = 12.5 Hz), 131.6 (d, J = 5.0 Hz), 128.8, 128.2, 126.3, 
126.3 (q, J = 5.0 Hz), 124.1(d, J = 3.8 Hz), 122.6 (q, J = 270 Hz), 118.3 (qd, J = 32.5, 12.5 
Hz), 69.5.  
HRMS (FI) calcd for C14H10 F4O [M]+: 270.06678. Found: 270.06633. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 15.0 min, (S) 
isomer 16.3 min); [α]D20 +1.90 (c 2.1 in CHCl3) 90% ee (S).  
IR (neat) 3236, 1623, 1594, 1467, 1326, 1227, 1144, 1110, 1023, 831, 793, 746, 696 cm-1. 
 
 
 
(S)-(Perfluorophenyl)(phenyl)methanol (6l) 
 

  According to the general procedure (ketone: 0.272 g (1 mmol), cat. (R,R)-3), 0.272 g of 6l 
was obtained as a white solid (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.42–7.30 (m, 5H), 6.24 (d, J = 7.2 Hz, 1H), 2.65 (d, J = 7.2 
Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 144.6 (m), 140.8 (m), 140.6, 137.7 (m), 128.8, 
128.3, 125.4 (m), 117.0 (m), 67.6. All characterization data are in agreement with the 
previously reported data[7]. 
HRMS (FI) calcd for C13H7F5O [M]+: 274.04171. Found: 274.04238. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 254 nm, 30 ºC, (R) isomer 9.8 min, (S) 
isomer 12.1 min); [α]D20 -45.0 (c 1.90 in CHCl3) >99% ee (S) (lit.[7] [α]D20 +42.0 (c 1.224 in 
CHCl3) 70% ee (R)).  
IR (neat) 3275, 1654, 1522, 1505, 1304, 1121, 995, 948, 699, 644 cm-1. 
 
 
 
(S)-(2-Chlorophenyl)(4-chlorophenyl)methanol (6m) 
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  According to the general procedure (ketone: 0.251 g (1 mmol), cat. (R,R)-3), 0.251 g of 6m 
was obtained as a clear oil (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.56–7.54 (m, 1H), 7.36–7.22 (m, 7H), 6.19 (d, J = 3.6 Hz, 
1H), 2.40 (d, J = 3.6 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 140.7, 140.6, 133.5, 132.4, 
129.6, 129.0, 128.6, 128.3, 127.9, 127.2, 72.0; All characterization data are in agreement 
with the previously reported data[4]. 
HRMS (FI) calcd for C13H10NCl2O[M]+: 252.01087. Found: 252.01037. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 15.6 min, (S) 
isomer 23.6 min); [α]D20 -42.1 (c 1.55 in CHCl3) 97% ee (S) (lit.[4] [α]D23 +40.0 (c 1.04 in 
CHCl3) 96% ee (R)).  
IR (neat) 3370, 1489, 1438, 1183, 1091, 1056, 1014, 798, 668 cm-1. 
 
 
 
(S)-(2-Chlorophenyl)(4-fluorophenyl)methanol (6n) 
 

  According to the general procedure (ketone: 0.235 g (1 mmol), cat. (R,R)-3), 0.233 g of 6n 
was obtained as a clear oil (99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.60–7.57 (m, 1H), 7.40–7.20 (m, 5H), 7.03–6.95 (m, 2H), 
6.19 (d, J = 3.2 Hz, 1H), 2.39 (d, J = 3.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 162.2 (d, 
J = 245.0 Hz), 140.8, 138.0 (d, J = 3.8 Hz), 132.4, 129.6, 128.9, 128.6 (d, J = 8.8 Hz), 
127.8, 127.2, 115.3 (d, J = 21.3 Hz), 72.1. All characterization data are in agreement with 
the previously reported data[5]. 
HRMS (FI) calcd for C13H10NClFO [M]+: 236.04042. Found: 1236.04013. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 12.7 min, (S) 
isomer 18.3 min); [α]D20 -15.2 (c 1.51 in CHCl3) 97% ee (S) (lit.[5] [α]D20 +9.9 (c 0.82 in 
CHCl3) 83% ee (R)).  
IR (neat) 3351, 1604, 1509, 1471, 1441, 1158, 1056, 1023, 842, 813, 668 cm-1. 
 
 
 
(S)-(4-Chlorophenyl)(phenyl)methanol (11a) 
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  According to the general procedure (ketone: 0.217 g (1 mmol), cat. (R,R)-3), 0.217 g of 11a 
was obtained as a white solid (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.34–7.27 (m, 9H), 5.79 (d, J = 3.2 Hz, 1H), 2.28 (d, J = 3.2 
Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 143.4, 142.2, 133.3, 128.6, 128.6, 127.9, 126.5, 
75.6. All characterization data are in agreement with the previously reported data[2]. 
HRMS (FI) calcd for C13H11ClO [M]+: 218.04984. Found: 218.05004. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 18.5 min, (S) 
isomer 20.5 min); [α]D20 +8.0 (c 1.51 in CHCl3) 48% ee (S) (lit.[2] [α]DRT +2.77 (c 0.932 in 
CHCl3) 9% ee (S)).  
IR (neat) 3370, 3030, 1488, 1454, 1407, 1185, 1090, 1013, 795, 701, 668 cm-1. 
 
 
 
(S)-(3,4-Dichlorophenyl)(phenyl)methanol (11b) 
 

  According to the general procedure (ketone: 0.251 g (1 mmol), cat. (R,R)-3), 0.251 g of 
11b was obtained as a clear oil (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.48–7.47 (m, 1H), 7.40–7.13 (m, 7H), 5.72 (d, J = 3.2 Hz, 
1H), 2.46 (d, J = 3.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 143.8, 142.8, 132.5, 131.4, 
130.3, 128.8, 128.3, 128.1, 126.5, 125.8, 75.1. 
HRMS (FI) calcd for C13H10Cl2O [M]+: 252.01087. Found: 252.00984. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OJ-H, 250  4.6 mm 
column, hexane/2-propanol 90:10, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 10.1 min, (S) 
isomer 11.2 min); [α]D20 +31.2 (c 1.70 in CHCl3) 76% ee (S).  
IR (neat) 3311, 3220, 1495, 1458, 1398, 1269, 1029, 896, 812, 704, 636 cm-1. 
 
 
 
(S)-(3,4-Difluorophenyl)(phenyl)methanol (11c) 
 

  According to the general procedure (ketone: 0.218 g (1 mmol), cat. (R,R)-3), 0.218 g of 11c 
was obtained as a clear oil (>99% yield). 
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1H NMR (400 MHz, CDCl3) δ 7.40–7.05 (m, 8H), 5.77 (d, J = 3.2 Hz, 1H), 2.33 (d, J = 3.2 
Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 150.9 (dd, J = 12.5, 8.5 Hz), 149.0 (dd, J = 12.5, 
8.5 Hz), 143.1, 140.7 (t, J = 3.8 Hz), 128.7, 128.1, 126.5, 122.3 (dd, J = 6.2, 3.8 Hz), 117.1 
(d, J = 17.5 Hz), 115.5 (d, J = 17.5 Hz), 75.2. 
HRMS (FI) calcd for C13H10F2O [M]+: 220.06997. Found: 220.07028. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 97:3, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 22.8 min, (S) 
isomer 26.7 min); [α]D20 +20.7 (c 1.29 in CHCl3) 77% ee (S).  
IR (neat) 3514, 2961, 2886, 1724, 1287, 1186, 1069, 1036, 957, 931,851, 754 cm-1. 
 
 
 
(S)-(4-Nitrophenyl)(phenyl)methanol (11d) 
 

  According to the general procedure (ketone: 0.227 g (1 mmol), cat. (R,R)-3), 0.227 g of 
11d was obtained as a pale yellow solid (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 8.19–8.16 (m, 2H), 7.58–7.55 (m, 2H), 7.40–7.30 (m, 5H), 
5.91 (d, J = 2.8 Hz, 1H), 2.47 (d, J = 2.8 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 150.7, 
147.2, 142.7, 128.9, 128.4, 127.0, 126.7, 123.7, 75.5. All characterization data are in 
agreement with the previously reported data[6]. 
HRMS (FI) calcd for C13H11NO3 [M]+: 229.07389. Found: 229.07343. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H, 250  4.6 
mm column, hexane/2-propanol 90:10, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 12.3 min, 
(S) isomer 15.4 min); [α]D20 +51.5 (c 1.57 in CHCl3) 76% ee (S) (lit.[6] [α]D22 +71.0 (c 0.27 
in CHCl3) 92% ee (S)).  
IR (neat) 3466, 1595, 1515, 1450, 1345, 1190, 1055, 867, 813, 754, 745, 708, 692 cm-1. 
 
 
 
(S)-(4-Chloro-3-nitrophenyl)(phenyl)methanol (11e) 
 

  According to the general procedure (ketone: 0.261 g (1 mmol), cat. (R,R)-3), 0.262 g of 11e 
was obtained as a pale yellow solid (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 1.6 Hz, 1H), 7.53–7.48 (m, 2H), 7.40–7.30 (m, 
5H), 5.86 (s, 1H), 2.37 (br, 1H) ; 13C NMR (125 MHz, CDCl3) δ 147.5, 144.1, 142.3, 131.8, 
131.0, 129.1, 128.6, 126.7, 125.7, 123.3, 74.8.  
HRMS (FI) calcd for C13H10ClNO3 [M]+: 263.03492. Found: 263.03518. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OJ-H, 250  4.6 mm 
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column, hexane/2-propanol 90:10, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 22.7 min, (S) 
isomer 27.1 min); [α]D20 +52.5 (c 1.91 in CHCl3) 96% ee (S).  
IR (neat) 3578, 3428, 1530, 1454, 1350, 1191, 1048, 1024, 827, 768, 715 cm-1. 
 
 
 
(S)-Phenyl(3,4,5-trifluorophenyl)methanol (11f) 
 

  According to the general procedure (ketone: 0.236 g (1 mmol), cat. (R,R)-3), 0.236 g of 11f 
was obtained as a clear oil (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 7.37–7.27 (m, 5H), 7.00–6.94 (m, 2H), 5.68 (d, J = 2.8 Hz, 
1H), 2.51 (d, J = 2.8 Hz, 1H) ; 13C NMR (125 MHz, CDCl3) δ 151.1 (dd, J = 10.0, 3.8 Hz), , 
142.5, 139.9 (m), 137.8 (m), 128.9, 128.4, 126.5, 110.3 (dd, J = 17.5, 5.0 Hz), 74.9.  
HRMS (FI) calcd for C13H9F3O [M]+: 238.0606. Found: 238.0617. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 95:5, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 16.1 min, (S) 
isomer 21.2 min); [α]D20 +52.1 (c 1.46 in CHCl3) 95% ee (S).  
IR (neat) 3376, 2978, 2876, 1622, 1528, 1447, 1343, 1234, 1036, 758, 704, 613 cm-1. 
 
 
 
(S)-(3,5-Dinitrophenyl)(phenyl)methanol (11g) 
 

  According to the general procedure (ketone: 0.136 g (0.5 mmol), cat. (R,R)-3), 0.123 g of  
11g was obtained as a yellow oil (90% yield). 
1H NMR (400 MHz, CDCl3) δ 8.94–8.92 (m, 1H), 8.61–8.60 (m, 1H), 7.43–7.35 (m, 5H), 
6.00 (s, 1H), 2.66 (br, 1H); 13C NMR (125 MHz, CDCl3) δ 148.6, 148.3, 141.7, 129.4, 
129.1, 126.7, 126.4, 117.7, 74.9. 
HRMS (FI) calcd for C13H10N2O5 [M]+: 274.0590. Found: 274.0596. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AS-H, 250  4.6 
mm column, hexane/2-propanol 90:10, 1.0 mL/min, 220 nm, 30 ºC, (S) isomer 17.2 min, 
(R) isomer 18.6 min); [α]D20 +72.8 (c 1.15 in CHCl3) 96% ee (S).  
IR (neat) 3351, 3106, 1597, 1560, 1541, 1450, 1348, 1266, 1041, 912, 752, 728, 703, 679 
cm-1. 
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(R)-(4-Methoxyphenyl)(phenyl)methanol (11h) 
 

  According to the general procedure (ketone: 0.212 g (1 mmol), cat. (R,R)-3), 0.171 g of 
11h was obtained as a white solid (80% yield). 
1H NMR (400 MHz, CDCl3) δ 7.40–7.25 (m, 7H), 6.87–6.80 (m, 2H), 5.80 (s, 1H), 3.78 (s, 
3H), 2.18 (br, 1H); 13C NMR (125 MHz, CDCl3) δ 159.1, 144.0, 136.2, 128.4, 127.9, 127.4, 
126.4, 113.9, 55.3. All characterization data are in agreement with the previously reported 
data[3]. 
HRMS (FI) calcd for C14H14O2 [M]+: 214.09938. Found: 214.09995. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H, 250  4.6 
mm column, hexane/2-propanol 90:10, 0.5 mL/min, 220 nm, 30 ºC, (R) isomer 22.5 min, 
(S) isomer 24.3 min); [α]D20 +1.50 (c 1.08 in CHCl3) 5% ee (R) (lit.[3] [α]D29 +24.6 (c 0.80 
in CHCl3) 90% ee (R)).  
IR (neat) 3403, 2952, 2837, 1611, 1588, 1516, 1495, 1446, 1305, 1252, 1178, 1034, 1019, 
841, 811, 727, 697, 655, 624 cm-1. 
 
 
(S)-(4-Chlorophenyl)(4-methoxyphenyl)methanol (11i) 
 

  According to the general procedure (ketone: 0.123 g (0.5 mmol), cat. (R,R)-3), 0.073 g of 
11i was obtained as a white solid (59% yield). 
1H NMR (400 MHz, CDCl3) δ 7.31–7.29 (m, 4H), 7.25–7.23 (m, 2H), 6.87–6.85 (m, 2H), 
5.76 (d, J = 2.8 Hz, 1H), 3.79 (s, 3H), 2.20 (d, J = 2.8 Hz, 1H); 13C NMR (125 MHz, 
CDCl3) δ 159.2, 142.4, 135.8, 133.1, 128.5, 127.9, 127.7, 114.0, 75.2, 55.3. All 
characterization data are in agreement with the previously reported data[3]. 
HRMS (FI) calcd for C14H13ClO2 [M]+: 248.06041. Found: 248.06039. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 95:5, 0.5 mL/min, 220 nm, 30 ºC, (S) isomer 34.0 min, (R) 
isomer 36.3 min); [α]D20 +16.6 (c 0.73 in CHCl3) 53% ee (S) (lit.[3] [α]D27 +36.6 (c 0.80 in 
CHCl3) 89% ee (S)).  
IR (neat) 3315, 1611, 1513, 1488, 1253, 1174, 1091, 1035, 1008, 859, 806, 773 cm-1. 
 
 
 
(S)-4-[(4-Chlorophenyl)hydroxymethyl]phenol (11j) 
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  According to the general procedure (ketone: 0.116 g (0.5 mmol), cat. (R,R)-4), 0.116 g of 
11j was obtained as a white solid (>99% yield). 
1H NMR (400 MHz, CD3OD) δ 7.33–7.27 (m, 4H), 7.15–7.12 (m, 2H), 6.74–6.72 (m, 2H), 
5.67 (S, 1H), 4.86 (br, 1H); 13C NMR (125 MHz, CDCl3) δ 157.9, 145.1, 136.5, 133.6, 
129.2, 129.1, 116.1, 75.9, 49.0. 
HRMS (FI) calcd for C13H11NClO2 [M]+: 234.0448. Found: 234.0454. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OD-H, 250  4.6 
mm column, hexane/2-propanol 90:10, 1.0 mL/min, 220 nm, 30 ºC, (S) isomer 16.3 min, 
(R) isomer 18.8 min); [α]D20 +23.2 (c 0.97 in MeOH) 55% ee (S). Absolute configuration 
was determined by HPLC analysis of a demethylated compound derived from (S)-11i.  
IR (neat) 3384, 3142, 1614, 1598, 1513, 1489, 1455, 1372, 1242, 1172, 1093, 1004, 832, 
817 cm-1. 
 
 
 
(R)-(4-Methoxyphenyl)(4-nitrophenyl)methanol (11k) 
 

  According to the general procedure (ketone: 0.257 g (1 mmol), cat. (R,R)-3), 0.257 g of 
11k was obtained as a pale yellow oil (>99% yield). 
1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 8.8 Hz, 2H), 7.23 (d, J 
= 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.85 (s, 1H), 3.78 (s, 3H), 2.50 (br, 1H); 13C NMR 
(125 MHz, CDCl3) δ 159.5, 151.1, 147.0, 135.0, 128.1, 126.9, 123.6, 114.2, 75.0, 55.3.  
HRMS (FI) calcd for C14H13NO4 [M]+: 259.08446. Found: 259.0853. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H, 250  4.6 
mm column, hexane/2-propanol 90:10, 1.0 mL/min, 220 nm, 30 ºC, (S) isomer 19.5 min, 
(R) isomer 23.9 min); [α]D20 +43.1(c 1.14 in CHCl3) 79% ee (R).  
IR (neat) 3454, 1068, 1513, 1463, 1347, 1249, 1173, 1109, 1032, 834, 804, 739 cm-1. 
 
 
 
(S)-(3,5-Dinitrophenyl)(4-methoxyphenyl)methanol (11l) 
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According to the general procedure (ketone: 0.152 g (0.5 mmol), cat. (R,R)-3), 0.141 g of 
11l was obtained as a yellow liquid (92% yield). 
1H NMR (400 MHz, CDCl3) δ 8.91–8.89 (m, 1H), 8.58–8.57 (m, 1H), 7.26 (d, J = 8.4 Hz, 
2H), 6.90 (d, J = 8.4 Hz, 1H), 5.94 (s, 1H), 3.80 (s, 3H), 2.80 (br, 1H); 13C NMR (125 MHz, 
CDCl3) δ 160.1, 148.5, 133.9, 132.6, 128.2, 126.4, 117.5, 114.7, 74.4, 55.4. 
HRMS (ESI) calcd for C14H12N2O6 [M+Cl]-: 339.0389. Found: 339.0382. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OJ-H, 250  4.6 mm 
column, hexane/2-propanol 85:15, 1.0 mL/min, 220 nm, 30 ºC, (S) isomer 68.9 min, (R) 
isomer 85.4 min); [α]D20 +73.9 (c 0.9 in CHCl3) 99% ee (S).  
IR (neat) 3421, 3107, 2917, 2849, 1598, 1541, 1254, 1174, 1113, 1031, 840, 730 cm-1. 
 
 
 
(S)-Phenyl(ferrocenyl)methanol (11m) 
 

  According to the general procedure (ketone: 0.290 g (1 mmol), cat. (R,R)-3), 0.154 g of 
11m was obtained as a red solid (53% yield). 
1H NMR (400 MHz, CDCl3) δ 7.45–7.23 (m, 5H), 5.47 (d, J = 3.2 Hz, 1H), 4.23 (s, 9H), 
2.43 (d, J = 3.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 143.2, 128.2, 127.4, 126.2, 94.3, 
72.0, 68.5, 68.2, 68.1, 67.5, 66.0. All characterization data are in agreement with the 
previously reported data[8]. 
HRMS (ESI) calcd for C17H16OFe [M]+: 292.0545. Found: 292.0537. 
The enantiomeric excess was determined by HPLC analysis (Chiralpak AS-H, 250  4.6 
mm column, hexane/2-propanol 95:5, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 9.8 min, (S) 
isomer 10.8 min); [α]D20 +80.8 (c 0.05 in CHCl3) 90% ee (S) (lit.[8] [α]D -94.4 (c 0.016 in 
CHCl3) 98% ee (R)).  
IR (neat) 3566, 3415, 3083, 3027, 2957, 2919, 2859, 1731, 1494, 1453, 1409, 1372, 1320, 
1182, 1048, 1017, 1000, 823, 720, 700 cm-1. 
 
 
 
(R)-(3-Nitrophenyl)(thiophen-2-yl)methanol (11n) 
 

  According to the general procedure (ketone: 0.233 g (1 mmol), cat. (R,R)-3), 0.226 g of 
11n was obtained as a clear oil (96% yield). 
1H NMR (400 MHz, CDCl3) δ 8.32–8.31 (m, 1H), 8.15–8.12 (m, 1H), 7.78–7.76 (m, 1H), 
7.54–7.52 (m, 1H), 7.30–7.29 (m, 1H), 6.97–6.94 (m, 2H), 6.15 (s, 1H), 2.83 (br, 1H); 13C 
NMR (125 MHz, CDCl3) δ 148.3, 146.6, 145.1, 132.2, 129.4, 126.9, 126.2, 125.5, 122.8, 
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121.2, 71.1. 
HRMS (FI) calcd for C11H9NO3S [M]+: 235.0303. Found: 235.0294. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OJ-H, 250  4.6 mm 
column, hexane/2-propanol 90:10, 1.0 mL/min, 220 nm, 30 ºC, (S) isomer 34.9 min, (R) 
isomer 38.9 min); [α]D20 +19.4 (c 1.43 in CHCl3) 98% ee (R).  
IR (neat) 3392, 2917, 2848, 1529, 1350, 1094, 1022, 811, 760, 707 cm-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D. Synthesis of Chiral Benzo[c]chromene Compound.  

  
To a solution of 6c (0.5 g, 1.9 mmol) in toluene (6 mL) and THF (3 mL) were added 
(2-fluorophenyl)boronic acid (7) (0.399 g, 2.85 mmol), Pd(PPh3)4 (43.9 mg, 0.038 mmol), 
K2CO3 (0.394 g, 2.85 mmol), and H2O (10 mL). The biphasic mixture was vigorously 
stirred at 100 ºC for 7 h. The biphasic layers were separated, the aqueous phase was 
extracted with EtOAc (2  10 mL), and the combined organic portions were dried over 
MgSO4, and concentrated to give a crude liquid of 8. The crude product was used for the 
following cyclization reaction without further purification (90% yield). 
 
The enantiomeric excess of 8 was determined by HPLC analysis (Chiralcel OD-H, 250  
4.6 mm column, hexane/2-propanol 97:3, 1.0 mL/min, 254 nm, 30 ºC, (S) isomer 10.4 min, 
(R) isomer 11.7 min). 
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To a solution of crude liquid of 8 (0.05 g, 0.18 mmol) in toluene (1 mL) were added 
tert-BuOK (20.2 mg, 0.18 mmol). After the reaction mixture was stirred at 20 ºC for 2 h, 
aqueous NH4Cl (5 mL) was added to acidify the solution. The biphasic layers were 
separated, the aqueous phase was extracted with EtOAc (3  5 mL), and the combined 
organic portions were washed with brine (2  3 mL), dried over MgSO4, and concentrated 
under reduced pressure to afford the crude product which was purified by silica-gel column 
chromatography to afford the product (9) as a white solid (28.9 mg, 70% yield). 
 
1H NMR (400 MHz, CDCl3) δ 7.78–7.74 (m, 2H), 7.42–7.28 (m, 6H), 7.26–7.18 (m, 2H), 
7.08–6.95 (m, 2H), 6.84 (d, J = 7.6 Hz, 1H), 6.16 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 
153.6, 139.6, 134.0, 130.0, 129.6, 128.5, 128.5, 128.4, 128.1, 127.6, 126.2, 123.1, 122.8, 
122.1, 117.9, 79.6. 
HRMS (APCI) calcd for C19H14O [M]+: 258.1039. Found: 258.1019. 
The enantiomeric excess was determined by HPLC analysis (Chiralcel OJ-H, 250  4.6 mm 
column, hexane/2-propanol 98:2, 1.0 mL/min, 220 nm, 30 ºC, (R) isomer 17.4 min, (S) 
isomer 20.7 min); [α]D20 -80.7 (c 0.07 in CHCl3) 98% ee (S).  
IR (neat) 3065, 3033, 2960, 2922, 2852, 1726, 1593, 1486, 1439, 1245, 1010, 722, 699, 
612 cm-1. 
 
E. Determination of Absolute Configuration of Products  
a) Synthesis of (S)-(2-Chloro-5-nitrophenyl)(phenyl)methyl 4-nitrobenzoate (13i)  

  
To a mixture of 4-nitrobenzoylchloride (12) (400 mg, 2.17 mmol) and 
N,N-dimethyl-4-aminopyridine (256 mg, 2.17 mmol) in THF (10 mL) was added alcohol 6i 
(0.57 mg, 2.l7 mmol) in THF (10 mL). The reaction mixture was stirred for 2 h at room 
temperature and then quenched by water. The aqueous layer was extracted with CHCl3 (×3). 
The combined organic portions were dried over MgSO4 and evaporated in vacuo. The 
residue was purified by column chromatography to give ester 13i in 90% yield as a white 
solid. Single crystals were obtained by recrystallization from a slow diffusion of hexane 
into a THF solution. 
 
1H NMR (400 MHz, CDCl3) δ 8.46 (d, J = 2.8 Hz, 2H), 8.35–8.29 (m, 4H), 8.16 (dd, J = 
2.8, 8.7 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.48–7.38 (m, 6H); 13C NMR (125 MHz, CDCl3) δ 163.4, 150.9, 147.0, 139.7, 139.4, 136.6, 134.7, 131.2, 131.0, 129.2, 129.1, 127.5, 124.3, 
123.8, 123.0, 74.6. HRMS (APCI) calcd for C20H13N2O6Cl [M-H]-: 411.0389. Found: 
411.0405. Anal. calcd for C20H13ClN2O6: C, 58.19; H, 3.17; N, 6.79. Found: C, 58.48; H, 
3.23; N, 6.62.  
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IR (neat) 1728, 1522, 1346, 1264, 1249, 1095, 1054, 852, 742, 717 cm-1. 
 
 
 
b) Synthesis of (S)-(3,4-Dichlorophenyl)(phenyl)methyl 4-nitrobenzoate (14b)  

  
To a mixture of 4-nitrobenzoylchloride (12) (352 mg, 1.90 mmol) and 
N,N-dimethyl-4-aminopyridine (232 mg, 1.90 mmol) in THF (10 mL) was added alcohol 
11b (0.50 mg, 1.90 mmol) in THF (10 mL). The reaction mixture was stirred for 2 h at 
room temperature and then quenched by water. The aqueous layer was extracted with 
CHCl3 (×3). The combined organic portions were dried over MgSO4 and evaporated in 
vacuo. The residue was purified by column chromatography to give ester 14b in 90% yield 
as a white solid. Single crystals were obtained by recrystallization from an Et2O-hexane 
solution. 
 
1H NMR (400 MHz, CDCl3) δ 8.33–8.27 (m, 4H), 7.51–7.50 (m, 1H), 7.45–7.35 (m, 6H), 
7.27–7.25 (m, 1H), 7.06 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 163.5, 150.8, 139.7, 138.4, 
135.1, 132.9, 132.5, 130.9, 130.7, 129.0, 128.9, 128.7, 127.0, 126.5, 123.7, 76.8. HRMS 
(APCI) calcd for C20H13NO4Cl2 [M-H]-: 400.0149. Found: 400.0144. Anal. calcd for 
C20H13Cl2NO4: C, 59.72; H, 3.26; N, 3.48. Found: C, 59.84; H, 3.35; N, 3.43.  
IR (neat) 1724, 1523, 1493, 1469, 1342, 1323, 1302, 1269, 1115, 1030, 1015, 983, 873, 856, 
717, 695 cm-1. 
 
 
 
c) Synthesis of (S)-(4-Chloro-3-nitrophenyl)(phenyl)methyl 4-nitrobenzoate (14e)  

  
To a mixture of 4-nitrobenzoylchloride (12) (352 mg, 1.90 mmol) and 
N,N-dimethyl-4-aminopyridine (232 mg, 1.90 mmol) in THF (10 mL) was added alcohol 
11e (0.50 mg, 1.90 mmol) in THF (10 mL). The reaction mixture was stirred for 2 h at 
room temperature and then quenched by water. The aqueous layer was extracted with 
CHCl3 (×3). The combined organic portions were dried over MgSO4 and evaporated in 
vacuo. The residue was purified by column chromatography to give ester 14e in 90% yield 
as a white solid. Single crystals were obtained by recrystallization from a heptane solution. 
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1H NMR (400 MHz, CDCl3) δ 8.34–8.28 (m, 4H), 7.93–7.92 (m, 1H), 7.57–7.56 (m, 2H), 
7.43–7.40 (m, 5H), 7.13 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 163.5, 150.9, 148.0, 140.1, 
137.7, 134.7, 132.3, 131.7, 130.9, 129.2, 129.1, 127.1, 127.0, 124.1, 123.8, 78.0. HRMS 
(APCI) calcd for C20H13N2O6Cl [M-H]-: 411.0389. Found: 411.0401. Anal. calcd for 
C20H13ClN2O6: C, 58.19; H, 3.17; N, 6.79. Found: C, 58.16; H, 2.98; N, 6.60.  
IR (neat) 1729, 1535, 1337, 1278, 1117, 1106, 732, 720, 702 cm-1. 
 
 
 
d)  Synthesis of (S)-Phenyl(2,4,5-trimethylphenyl)methyl 4,5-dichloro 

-2-((3aR,6S)-8,8-dimethyl-2,2-dioxidohexahydro-3H-3a,6-methanobenzo[c]isothiazole-1-carbonyl)benzoate[10] (13g) 
 

  
To a mixture of N-(2-carboxy-4,5-dichlorobenzoyl)-(+)-10,2-camphorsultam ((+)-15)  
(500 mg, 1.16 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (220 
mg, 1.16 mmol), and N,N-dimethyl-4-aminopyridine (142 mg, 1.16 mmol) in CHCl3 (3 
mL) was added alcohol 6g (201 mg, 0.89 mmol) in CHCl3 (2 mL). The reaction mixture 
was stirred for 5 h at room temperature and then quenched by a saturated aqueous NH4Cl 
solution. The aqueous layer was extracted with CHCl3 (×3). The combined organic portions 
were dried over MgSO4 and evaporated in vacuo. The residue was purified by column 
chromatography to give ester 13g in 95% yield as a white solid. Single crystals were 
obtained by recrystallization from a methanol solution. 
 
1H NMR (500 MHz, CDCl3) δ 8.15 (s, 1H), 7.49 (s, 1H), 7.35–7.27 (m, 5H), 7.12–7.11 (m, 
2H), 6.93 (s, 1H), 3.62–3.58 (m, 1H), 3.31–3.21 (m, 2H), 2.42–2.37 (m, 1H), 2.24 (s, 3H), 
2.21 (s, 3H), 2.20 (s, 3H), 2.03–1.98 (m, 1H), 1.84–1.82 (m, 3H), 1.30–1.24 (m, 2H), 0.94 
(s, 3H), 0.89 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 165.0, 162.6, 139.0, 136.8, 136.3, 
134.9, 134.8, 134.5, 134.1, 133.2, 131.9, 131.9, 131.0, 128.9, 128.5, 128.5, 127.9, 127.6, 
76.3, 65.4, 52.8, 48.3, 47.6, 44.7, 37.6, 32.8, 26.4, 20.4, 19.9, 19.4, 19.3, 18.8. HRMS (ESI) 
calcd for C34H35NO5SCl2 [M+Na]+: 662.1505. Found: 662.1504. Anal. calcd for 
C34H35Cl2NO5S: C, 63.74; H, 5.51; N, 2.19. Found: C, 63.84 H, 5.38; N, 2.38.  
IR (neat) 2960, 1727, 1674, 1552, 1461, 1331, 1316, 1301, 1242, 1167, 1139, 1117, 1091, 
1067, 753, 703 cm-1. 
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e) Synthesis of (S)-(2,5-Difluorophenyl)(phenyl)methyl 
4,5-dichloro-2-((3aS,6R)-8,8-dimethyl-2,2-dioxidohexahydro-3H-3a,6-methanobenzo[c]isothiazole-1-carbonyl)benzoate[10] (13j) 

 

  
To a mixture of N-(2-carboxy-4,5-dichlorobenzoyl)-(-)-10,2-camphorsultam ((-)-15) (406 
mg, 0.94 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (180 mg, 
0.94 mmol), and N,N-dimethyl-4-aminopyridine (115 mg, 0.94 mmol) in CHCl3 (2 mL) 
was added alcohol 6j (138 mg, 0.63 mmol) in CHCl3 (2 mL). The reaction mixture was 
stirred for 5 h at room temperature and then quenched by a saturated aqueous NH4Cl 
solution. The aqueous layer was extracted with CHCl3 (×3). The combined organic portions 
were dried over MgSO4 and evaporated in vacuo. The residue was purified by column 
chromatography to give ester 13j in 94% yield as a white solid. Single crystals were 
obtained by recrystallization from a methanol solution. 
 
1H NMR (500 MHz, CDCl3) δ 8.12 (s, 1H), 7.53 (s, 1H), 7.39–7.32 (m, 5H), 7.18 (s, 1H), 
7.18–7.15 (m, 1H), 7.06–6.96 (m, 2H), 3.71–3.68 (m, 1H), 3.39–3.27 (m, 2H), 2.40–2.35 
(m, 1H), 2.80–2.20 (m, 1H), 1.89–1.85 (m, 3H), 1.33–1.28 (m, 2H), 1.03 (s, 3H), 0.92 (s, 
3H); 13C NMR (125 MHz, CDCl3) δ 164.9, 162.5, 157.8, 156.8, 155.0, 137.7, 137.1, 135.1, 
134.7, 131.8, 131.3, 128.7, 128.5, 128.2, 127.2, 116.9 (dd, J = 23.8, 8.8 Hz), 116.2 (dd, J = 
23.8, 8.8 Hz), 114.8 (d, J = 28.8 Hz), 72.5, 65.5, 53.0, 48.4, 47.7, 44.7, 37.6, 32.9, 26.4, 
20.5, 19.9. HRMS (ESI) calcd for C31H27NO5F2SCl2 [M+Na]+: 656.0847. Found: 656.0831. 
Anal. calcd for C31H27Cl2F2NO5S: C, 58.68; H, 4.29; N, 2.21. Found: C, 59.00; H, 4.31; N, 
2.21.  
IR (neat) 2959, 1734, 1686, 1496, 1337, 1299, 1243, 1169, 1141, 1116, 1092, 1063, 764 
cm-1. 
 
 
 
f) Synthesis of (S)-(2-Fluoro-3-(trifluoromethyl)phenyl)(phenyl)methyl 

4,5-dichloro-2-((3aS,6R)-8,8-dimethyl-2,2-dioxidohexahydro-3H-3a,6-methanobenz
o[c]isothiazole-1-carbonyl)benzoate[10] (13k)  
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To a mixture of N-(2-carboxy-4,5-dichlorobenzoyl)-(-)-10,2-camphorsultam ((-)-15) (500 
mg, 1.16 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (220 mg, 
1.16 mmol), and N,N-dimethyl-4-aminopyridine (142 mg, 1.16 mmol) in CHCl3 (3 mL) 
was added alcohol 6k (240 mg, 0.89 mmol) in CHCl3 (2 mL). The reaction mixture was 
stirred for 5 h at room temperature and then quenched by a saturated aqueous NH4Cl 
solution. The aqueous layer was extracted with CHCl3 (×3). The combined organic portions 
were dried over MgSO4 and evaporated in vacuo. The residue was purified by column 
chromatography to give ester 13k in 95% yield as a white solid. Single crystals were 
obtained by recrystallization from a 2-propanol solution. 
 
1H NMR (500 MHz, CDCl3) δ 8.13 (s, 1H), 7.68–7.65 (m, 1H), 7.60–7.56 (m, 1H), 7.51 (s, 
1H), 7.39–7.13 (m, 5H), 7.29–7.25 (m, 2H), 3.68–3.65 (m, 1H), 3.36–3.23 (m, 2H), 
2.42–2.36 (m, 1H), 2.08–2.02 (m, 1H), 1.88–1.85 (m, 3H), 1.33–1.25 (m, 2H), 1.03 (s, 3H), 
0.92 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 164.9, 162.3, 158.0, 155.9, 137.5 (d, J = 27.5 
Hz), 135.0, 134.9, 132.0, 131.7, 131.2, 128.8, 128.7, 128.6, 127.9, 127.3, 127.0 (d, J = 5.0 
Hz), 124.3 (d, J = 3.8 Hz), 122.4 (q, J = 270.0 Hz), 118.7 (qd, J = 32.5, 12.5 Hz), 72.2, 65.5, 
52.9, 48.4, 47.7, 44.7, 37.5, 32.9, 26.4, 20.5, 19.9. HRMS (ESI) calcd for C32H27NO5F4SCl 
[M+Na]+: 706.0815. Found: 706.0804. Anal. calcd for C32H27Cl2F4NO5S: C, 56.14; H, 
3.98; N, 2.05. Found: C, 55.78; H, 4.00; N, 2.03.  
IR (neat) 2962, 1736, 1685, 1474, 1335, 1296, 1265, 1244, 1165, 1129, 1110, 1094, 1061, 
795, 758, 697 cm-1. 
 
 
 
g) Synthesis of (S)-(3,4-Difluorophenyl)(phenyl)methyl 

4,5-dichloro-2-((3aR,6S)-8,8-dimethyl-2,2-dioxidohexahydro-3H-3a,6-methanobenzo[c]isothiazole-1-carbonyl)benzoate[10] (14c) 
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To a mixture of N-(2-carboxy-4,5-dichlorobenzoyl)-(+)-10,2-camphorsultam ((+)-15) (500 
mg, 1.16 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (220 mg, 
1.16 mmol), and N,N-dimethyl-4-aminopyridine (142 mg, 1.16 mmol) in CHCl3 (3 mL) 
was added alcohol 11c (196 mg, 0.89 mmol) in CHCl3 (2 mL). The reaction mixture was 
stirred for 5 h at room temperature and then quenched by a saturated aqueous NH4Cl 
solution. The aqueous layer was extracted with CHCl3 (×3). The combined organic portions 
were dried over MgSO4 and evaporated in vacuo. The residue was purified by column 
chromatography to give ester 14c in 93% yield as a white solid. Single crystals were 
obtained by recrystallization from a methanol solution. 
 
1H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 7.52 (s, 1H), 7.41–7.33 (m, 5H), 7.23–7.19 (m, 
1H), 7.16–7.05 (m, 2H), 6.93 (s, 1H), 3.80–3.76 (m, 1H), 3.39–3.30 (m, 2H), 2.42–2.38 (m, 
1H), 2.10–2.06 (m, 1H), 1.91–1.88 (m, 3H), 1.34–1.32 (m, 2H), 1.01 (s, 3H), 0.93 (s, 3H); 
13C NMR (125 MHz, CDCl3) δ 165.0, 162.6, 151.1 (dd, J = 26.3, 12.5 Hz), 149.1 (d, J = 
26.3, 12.5 Hz), 138.4, 137.1, 136.4 (m), 135.0, 134.8, 131.4 (m), 128.8, 128.7, 128.2, 127.6, 
126.5, 123.3 (m), 117.2 (d, J = 18.0 Hz), 116.5 (d, J = 18.0 Hz), 77.5, 65.5, 53.0, 48.4, 47.6, 
44.7, 37.5, 33.0, 26.4, 20.4, 20.0. HRMS (ESI) calcd for C31H27NO5F2SCl2 [M+Na]+: 
656.0847. Found: 656.0831. Anal. calcd for C31H27Cl2F2NO5S: C, 58.68; H, 4.29; N, 2.21. 
Found: C, 58.60; H, 4.15; N, 2.36.  
IR (neat) 2969, 1732, 1673, 1515, 1328, 1299, 1264, 1244, 1169, 1141, 1114, 1093, 1068, 
754, 738, 709 cm-1. 
 
 
 
h) Synthesis of (S)-Phenyl(3,4,5-trifluorophenyl)methyl 

4,5-dichloro-2-((3aS,6R)-8,8-dimethyl-2,2-dioxidohexahydro-3H-3a,6-methanobenzo[c]isothiazole-1-carbonyl)benzoate[10] (14f) 

  
To a mixture of N-(2-carboxy-4,5-dichlorobenzoyl)-(-)-10,2-camphorsultam ((-)-15) (500 
mg, 1.16 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (220 mg, 
1.16 mmol), and N,N-dimethyl-4-aminopyridine (142 mg, 1.16 mmol) in CHCl3 (3 mL) 
was added alcohol 11f (212 mg, 0.89 mmol) in CHCl3 (2 mL). The reaction mixture was 
stirred for 5 h at room temperature and then quenched by a saturated aqueous NH4Cl 
solution. The aqueous layer was extracted with CHCl3 (×3). The combined organic portions 
were dried over MgSO4 and evaporated in vacuo. The residue was purified by column 
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chromatography to give ester 14f in 95% yield as a white solid. Single crystals were 
obtained by recrystallization from an ethanol solution. 
 
1H NMR (500 MHz, CDCl3) δ 8.10 (d, J = 0.5 Hz, 1H), 7.52 (d, J = 0.5 Hz, 1H), 7.40–7.32 
(m, 5H), 7.03–6.99 (m, 2H), 6.88 (s, 1H), 3.71–3.68 (m, 1H), 3.39–3.26 (m, 2H), 2.40–2.37 
(m, 1H), 2.10–2.04 (m, 1H), 1.89–1.88 (m, 3H), 1.33–1.26 (m, 2H), 1.06 (s, 3H), 0.93 (s, 
3H); 13C NMR (125 MHz, CDCl3) δ 164.9, 162.6, 152.2 (d, J = 10.0 Hz), 150.2 (d, J = 6.3 
Hz), 137.9, 137.3, 135.7 (m), 135.2, 134.7, 131.8, 131.3, 128.8, 128.8, 128.0, 127.4, 111.7 
(dd, J = 16.3, 5.0 Hz), 76.8, 65.5, 53.0, 48.4, 47.7, 44.7, 37.7, 32.9, 26.4, 20.6, 19.9. HRMS 
(ESI) calcd for C31H26NO5F3SCl2 [M+Na]+: 674.0753. Found: 674.0748. Anal. calcd for 
C31H26Cl2F3NO5S: C, 57.06; H, 4.02; N, 2.15. Found: C, 57.32; H, 4.02; N, 2.19.  
IR (neat) 2960, 1732, 1684, 1531, 1455, 1338, 1299, 1241, 1169, 1142, 1116, 1091, 1047, 
701 cm-1. 
 
  i) Synthesis of (R)-(3-Nitrophenyl)(thiophen-2-yl)methyl 

4,5-dichloro-2-((3aS,6R)-8,8-dimethyl-2,2-dioxidohexahydro-3H-3a,6-methanobenzo[c]isothiazole-1-carbonyl)benzoate[10] (14n) 
 

  
To a mixture of N-(2-carboxy-4,5-dichlorobenzoyl)-(-)-10,2-camphorsultam ((-)-15) (500 
mg, 1.16 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (220 mg, 
1.16 mmol), and N,N-dimethyl-4-aminopyridine (142 mg, 1.16 mmol) in CHCl3 (3 mL) 
was added alcohol 11n (136 mg, 0.58 mmol) in CHCl3 (2 mL). The reaction mixture was 
stirred for 5 h at room temperature and then quenched by a saturated aqueous NH4Cl 
solution. The aqueous layer was extracted with CHCl3 (×3). The combined organic portions 
were dried over MgSO4 and evaporated in vacuo. The residue was purified by column 
chromatography to give ester 14n in 92% yield as a white solid. Single crystals were 
obtained by recrystallization from a 2-propanol solution. 
 
1H NMR (500 MHz, CDCl3) δ 8.33–8.32 (m, 1H), 8.23–8.20 (m, 1H), 8.14 (s, 1H), 
7.84–7.82 (m, 1H), 7.61–7.57 (m, 1H), 7.16 (s, 1H), 7.37–7.36 (m, 1H), 7.27–7.26 (m, 1H), 
7.04–7.03 (m, 1H), 7.02–7.00 (m, 1H), 3.83–3.80 (m, 1H), 3.42–3.29 (m, 2H), 2.44–2.42 
(m, 1H), 2.14–2.09 (m, 1H), 1.92–1.86 (m, 3H), 1.36–1.34 (m, 2H), 1.18 (s, 3H), 0.97 (s, 
3H); 13C NMR (125 MHz, CDCl3) δ 164.9, 162.4, 148.4, 141.1, 140.9, 137.4, 135.1, 134.8, 
132.8, 131.8, 131.2, 129.8, 127.9, 127.6, 127.2, 127.1, 123.6, 122.3, 73.5, 65.6, 52.9, 48.5, 
47.7, 44.8, 37.7, 33.0, 26.4, 20.8, 20.0. HRMS (ESI) calcd for C29H26N2O7S2Cl2 [M+Na]+: 
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671.0451. Found: 671.0457. Anal. calcd for C29H26Cl2N2O7S2: C, 53.62; H, 4.03; N, 4.31. 
Found: C, 53.78 H, 3.95; N, 4.23.  
IR (neat) 2959, 1732, 1685, 1532, 1339, 1300, 1243, 1169, 1141, 1116, 1090, 1064 cm-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
X-ray Structure Determination for 13i, 14b, 14e, 13g, 13j, 13k, 14c, 14f, and 14n. 
Measurements were made on a Rigaku Saturn CCD area detector equipped with 
graphite-monochromated Mo-K radiation ( = 0.71070 Å) under nitrogen stream at 93 K.  
Indexing was performed from eighteen images.  The crystal-to-detector distance was 
45.05 mm.  The data were collected to a maximum 2 value of 55.0°.  A total of 720 
oscillation images were collected.  A sweep of data was carried out using  scans from 
–110.0 to 70.0° in 0.5° steps, at  = 45.0° and  = 0.0°.  A second sweep was performed 
using  scans from –110.0 to 70.0° in 0.5° steps, at  = 45.0° and  = 90.0°.  Intensity 
data were collected for Lorentz-polarization effects as well as absorption.  Structure 
solution and refinements were performed with the Crystal Structure program package.  
The heavy atom positions were determined by direct methods (SIR2002), and the 
remaining non-hydrogen atoms were found by subsequent Fourier techniques.  An 
empirical absorption correction based on equivalent reflections was applied to all data.  
All non-hydrogen atoms other than solvent molecules were refined anisotropically by 
full-matrix least-square techniques based on F2.  All hydrogen atoms were constrained to 
ride on their parent atom.  Relevant crystallographic data are compiled in Tables S3-S5. 
 
 Table S3. Crystallographic Data for 13i, 14b, 14e, and 13g 
 13i 14b 14e 13g 
empirical formula C20H13ClN2O6 C20H13Cl2NO4 C20H13ClN2O6 C34H35Cl2NO5S 
formula weight 412.79 402.23 412.79 640.62 
crystal color Colorless Colorless Colorless Colorless 
crystal system Monoclinic Monoclinic Orthorhombic Orthorhombic 
space group P21 (#4) P21 (#4) P212121 (#19) P212121 (#19) 
a, Å 13.373(4) 5.902(2) 7.210(2) 10.5269(13) 
b, Å 7.840(2) 12.201(3) 15.714(4) 11.2332(14) 
c, Å 18.471(6) 12.309(3) 15.938(4) 26.231(3) 
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, deg 109.497(4) 101.322(4)   
V, Å3 1815.6(9) 869.2(4) 1805.7(7) 3101.8(7) Z  4 2 4 4 
Dcalcd, g cm-3 1.510 1.537 1.518 1.372 
F000 848.00 412.00 848.00 1344.00 , cm-1 (MoK) 2.531 4.006 2.544 3.198 
Exposure rate  16.0 sec/° 10.0 sec/° 16.0 sec/° 16.0 sec/° 
no. of reflections measured 15140 7112 15014 25817 
no. of unique reflections 7694 3893 4139 6996 no. of variables 550 258 276 424 
R1(I>2.00(I)) 0.0604 0.0422 0.0393 0.0467 
wR2 (All reflections) 0.1009 0.0977 0.0883 0.1116 
GOF on F2 1.010 1.000 1.000 1.000 
Flack parameter 0.09(6) -0.00(5) -0.04(6) -0.06(5) 

R1 = FoFcFo, wR2 = wFo2 Fc22 wFo221/2.   
    
 Table S4. Crystallographic Data for 13j, 13k, and 14c 
 13j 13k 14c 
empirical formula C31H27Cl2F2NO5S C32H27Cl2F4NO5S C31H27Cl2F2NO5S formula weight 634.52 684.53 634.52 
crystal color Colorless Colorless Colorless 
crystal system Monoclinic Monoclinic Orthorhombic 
space group C2 (#5) C2 (#5) C2 (#5) 
a, Å 33.429(9) 24.814(7) 31.304(13) b, Å 7.746(2) 7.731(2) 7.830(3) 
c, Å 12.033(3) 19.580(5) 12.515(6) , deg 111.194(4) 126.078(3) 110.626(6) 
V, Å3 2924.3(12) 3035.7(13) 2871(2) 
Z  4 4 4 Dcalcd, g cm-3 1.441 1.498 1.468 
F000 1312.00 1408.00 1312.00 , cm-1 (MoK) 3.479 3.502 3.544 
Exposure rate  6.0 sec/° 10.0 sec/° 4.0 sec/° no. of reflections measured 12127 12547 11834 
no. of unique reflections 5792 6422 6423 
no. of variables 407 434 407 
R1(I>2.00(I)) 0.0437 0.0385 0.0360 
wR2 (All reflections) 0.1023 0.0906 0.0854 
GOF on F2 1.000 1.000 1.000 
Flack parameter -0.08(6) -0.03(5) -0.02(4) 

R1 = FoFcFo, wR2 = wFo2 Fc22 wFo221/2. 
 
 Table S5. Crystallographic Data for 14f and 14n 
 14f 14n 
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empirical formula C31H26Cl2F3NO5S C29H26Cl2N2O7S2 formula weight 652.51 649.56 
crystal color Colorless Colorless crystal system Monoclinic Monoclinic 
space group P21 (#4) P212121 (#19) 
a, Å 7.590(2) 7.0524(10) b, Å 33.801(6) 15.8433(22) 
c, Å 12.053(2) 25.4267(31) , deg 107.278(3)  
V, Å3 2952.9(10) 2841.0088(0) Z  4 4 
Dcalcd, g cm-3 1.468 1.519 
F000 1344.00 1344.00 , cm-1 (MoK) 3.514 4.270 
Exposure rate  10.0 sec/° 10.0 sec/° 
no. of reflections measured 24300 23544 
no. of unique reflections 11664 6486 no. of variables 828 405 
R1(I>2.00(I)) 0.0402 0.0416 
wR2 (All reflections) 0.0961 0.0989 
GOF on F2 1.000 1.000 Flack parameter -0.03(4) -0.02(5) 

R1 = FoFcFo, wR2 = wFo2 Fc22 wFo221/2. Figure S2. X-ray crystallographic structure of 13i.  
 

            
 
 Figure S3. X-ray crystallographic structure of 14b. 
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Figure S4. X-ray crystallographic structure of 14e. 
 

           
 Figure S5. X-ray crystallographic structure of 13g. All hydrogens except those attached to 
chiral carbons are omitted for clarity. 
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        Figure S6. X-ray crystallographic structure of 13j. All hydrogens except those attached to 
chiral carbons are omitted for clarity. 
 

     
 
 Figure S7. X-ray crystallographic structure of 13k. All hydrogens except those attached to 
chiral carbons are omitted for clarity. 
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Figure S8. X-ray crystallographic structure of 14c. All hydrogens except those attached to 
chiral carbons are omitted for clarity. 
 

   Figure S9. X-ray crystallographic structure of 14f. All hydrogens except those attached to 
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chiral carbons are omitted for clarity. 
 

   
 
 
 
Figure S10. X-ray crystallographic structure of 14n. All hydrogens except those attached to 
chiral carbons are omitted for clarity. 
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