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General introduction 

 

Angiosperms are the most diversified group among land plants (e.g. Wikström et al. 

2001). Since Darwin (1877), plant researchers have been believed that diversifications 

of flowering plants were promoted by plant-pollinator interactions (Van der Niet & 

Johnson 2012; Willmer 2011). Basically plants cannot move from their birth places to 

other points by themselves but use other mobile factors for their reproduction and 

propagule dispersal, such as wind, water, and a variety of animal species (Ackerman 

2000; Culley et al. 2002; Stebbins 1970; Tussenbroek et al. 2016). In approximately 

87.5% of extant flowering plants, their reproductive successes are thought to be 

dependent on animal pollination (Ollerton et al. 2011). Animals visit to flowers for 

floral rewards such as nectar or pollen, and they also carry conspecific pollen grains to 

stigma. Many studies showed that flowers were adapted to the most efficient pollinators 

and their traits changed for more fruit and seed production (e.g. Stebbins 1970). These 

floral adaptations could cause reproductive isolation between populations and promote 

plant speciation (Kay 2006; Ramsey et al. 2003). Therefore, close relationships between 

plants and their pollinators have been one of important research subjects of evolutionary 

biology and ecology. 

 Reproductive success of flowers is determined by the quality and quantity of 

carried pollen. Insufficient visitation frequencies of pollinators or mismatches between 

floral parts and pollinators’ body sizes cause lower production of fruits and seeds (Aizen 

& Harder 2007). These conditions are named as pollen limitation, and it is considered to 

be one of the main factors which could cause ecological and evolutionary consequences 

such as evolving the mechanisms of reproductive assurance or promoting adaptation to 
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inefficient pollinators to flowering plants (Ashman et al. 2004). Compared to ecological 

impacts, evolutionary changes caused by pollen limitation have been widely studied (e.g. 

Harder & Aizen 2010). Plants evolved their flowers to reduce the influences of pollen 

limitation. In the condition of quantitative pollen limitation, plants may acquire the 

mechanisms of reproductive assurances such as autonomous self-pollination, or adapt to 

most effective pollinators by attracting or fitting floral shapes to them. Previous study 

suggested the commonness of pollen limitation (e.g. Knight et al. 2005), and it might 

indicate that pollen limitation promoted plant diversifications. 

One of the representative examples of the results of floral adaptation is 

pollination syndrome. Plants with specific pollinator species receive similar selective 

pressures to floral traits, and they are changed to have similar floral colors and/or shapes. 

In Schiestl & Johnson (2013) and cited therein, clear examples of pollination syndrome 

across unrelated three taxa were shown. For example, flowers with hummingbirds as 

pollinators tend to have reddish color and large volume of dilute nectar; on the other 

hand, hawkmoth-pollinated flowers have white floral color and floral scent at night (e.g. 

Raguso et al. 2003; Wilson et al. 2004). Recently genetic backgrounds of pollination 

syndromes have been gradually revealed (Hermann et al. 2013 and references therein; 

Wessinger et al. 2014; Sheehan et al. 2016), and quantitative evaluations of the 

predictability of pollination syndromes have also been performed (Rosas-Guerrero et al. 

2014). Although the pollination syndrome concepts have been received widely in 

researchers, inconsistent cases have been frequently reported in some taxa and 

reliabilities of this concept has been still controversial (e.g. Faegri & van der Pijl 1979; 

Fenster et al. 2004; Ollerton et al. 2009; Rosas-Guerrero et al. 2014). 

In general, flowers have various types of animal visitors including bees, 
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butterflies, and hummingbirds (e.g. Waser et al. 1996; Sahli & Conner 2007; Gomez et 

al. 2014). However, some of them do not act as effective pollinators but collect floral 

rewards with few or no pollination. These ineffective visitors are categorized as 

nectar/pollen thieves or robbers. Nectar thieves (nectar stealers without damage to 

flowers) or robbers (with damage) have been well studied mainly about their ecological 

influences (Inouye 1980), perhaps because one of the famous nectar thieves were 

bumblebees, most popular floral visitors in pollination biology. Nectar thieves or 

robbers indirectly reduce plant fitness through affecting behaviors of other visitors 

(Irwin et al. 2010). Compared to nectar stealers, the study cases of pollen thieves or 

robbers have been limited (Hargreaves et al. 2009). Pollen grains are unique because 

they are not only floral reward for visitors but also floral gametes (Hargreaves et al. 

2009; Muth et al. 2016). Unnecessary pollen consumptions reduced seed productions 

directly, and pollen thieves or robbers would create the conditions of pollen limitation. 

Pollen thieves are predicted to affect plant fitness more strongly than nectar thieves; 

however, the numbers of studies including theoretical or empirical ones are insufficient 

to understand the comprehensive impacts of pollen theft. 

Against to pollen theft, plants could respond through the floral adaptation. 

Hargreaves et al. (2009) reviewed the patterns of floral adaptation to pollen thieves: 

tolerance, resistance and converting thieves into pollinators. Plants can endure the 

thieves by increasing pollen production or resist them by morphological or chemical 

defenses. For example, Alcea rosea has spinose pollen grains and this mechanical 

structure protected pollen to collection by corbiculate bees (Lunau et al. 2015). 

Furthermore, the larval developments of specialized bees, which depended on the 

resource of pollen of a plant species, were impeded from non-host pollen grains (Praz et 
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al. 2008). Similarly, floral traits which mimic or conceal additional pollen have been 

recognized as adaptations to pollen thieves (e.g. Lunau 2000). Finally, the utilizations of 

pollen thieves by changing their function to pollinators can occur by decreasing the 

space or time separations of reproductive organs, although these adaptations could 

increase self-pollination. However, no study has been directly investigated whether 

pollen theft promoted floral adaptation. 

Pollinator-mediated evolution of flowering plants has been mainly studied from 

two perspectives; adaptation of floral traits to pollinators (microevolution) and 

speciation with shifts of pollination systems (macroevolution). Pollinator-mediated 

floral adaptation has been examined through the inter- or intraspecific comparison of 

floral traits and their pollinators between populations (e.g. Anderson & Johnson 2008; 

Anderson et al. 2014; Newman et al. 2015; Pauw et al. 2008; Shutterworth & Johnson 

2010; Sun et al. 2014). Recently Grant-Stebbins model, firstly suggested by Johnson 

(2006), has been accepted widely. In Grant & Grant (1965), they hypothesized 

pollinator distributions were not equal throughout the plant distribution. Stebbins (1970) 

also suggested that the pollination efficiencies of each pollinator would change, 

depending on the frequencies of each pollinator, structure of visited flowers, and their 

surrounding environments. Grant-Stebbins model is the combined model of them, and it 

suggests that geographic mosaic of pollinator distribution give different selective forces 

and promotes divergent selections (Johnson 2006; 2010).  

The degrees of pollen limitations caused by pollen theft would also be different 

between populations. Floral visitors can change their behaviors smoothly and they act as 

pollen thieves in some plants but also do as effective pollinators for others (e.g. 

Hargreaves et al. 2012). Their behaviors could be changed by their surrounded 
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environments such as the abundances of visitors or other flowering plants. These 

differences would cause various intensities of pollen limitation between populations, 

promoting geographic differences of the patterns of floral adaptation. Although inter- or 

intraspecific variations of the degrees of pollen theft have been examined (Hargreaves et 

al. 2012; Solís-Montero et al. 2015), the question whether these differences could cause 

various patterns of floral adaptation has remained to be answered. This may be due to 

the lack of model cases for investigating the evolutionary influences of pollen theft. 

Especially, although the phenomenon of converting thieves into pollinators by floral 

adaptations could be common in the evolutionary interaction between plants and flower 

visitors, specific cases that can be clearly attributed to the phenomenon have not been 

known. 

Differences of floral visitor faunas could not only promote morphological 

variations but also generate genetic differences at neutral genetic loci. This is because 

that pollinator shifts can reduce gene flow by separating pollen vectors and thus act as a 

prezygotic isolation barrier. Although this issue has been still controversial, plant 

speciation by pollinator shifts have been widely accepted (Van der Niet et al. 2014). 

Even for the plant species with generalist pollinators, geographical mosaic of floral 

visitor assemblages including both effective pollinators and pollen/nectar stealers may 

impose floral trait divergence among populations and also affect population genetic 

structure of the species. 

In order to answer these questions, multiple approaches including field 

observations and experiments, phylogenetic analyses and population genetics would be 

needed. Recently image quality of low-cost digital video cameras has been dramatically 

improved, enabling the burden for field researchers of pollination biology to decrease 
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(e.g. Phillips et al. 2014). The advent of next generation sequencing (NGS) technology 

has also enabled us to determine numerous amounts of DNA sequences easily and 

cheaply, and shed light on genetic and genomic mechanisms of ecological and 

evolutionary perspectives even in non-model organisms. One of the NGS methods, 

restriction site-associated DNA sequencing (RADseq), has largely contributed to these 

studies (Andrews et al. 2016). This method can collect genome-wide single nucleotide 

polymorphism (SNP) flanking to cutting sites of restriction enzymes without any 

information about genomes of target or related species.  

The genus Lycoris is distributed in Eastern Asia, mainly in China, Korea, and 

Japan. Approximately 20 species are included in the genus, and they have several 

interesting features that attract researchers: variation of floral traits, frequent 

hybridization in nature, separation of vegetative and reproductive phases, and 

polymorphisms of chromosome numbers. Floral shapes of Lycoris species are divided 

into mainly two patterns; funnel shapes or radiated ones. For example, Higan-bana 

(Lycoris radiata var. radiata) that is familiar to Japanese as a beautiful autumn flower, 

has radiated flowers with bright reddish color. Floral colors in the genus Lycoris are 

varied: red, orange, yellow, peach, white, and mixed ones of them (Hsu et al. 1994). In 

L. longituba var. longituba, intraspecific polymorphisms of floral colors were observed 

(He et al. 2011). Most of the Lycoris species show vegetative period after or before 

flowering season. Leaves appear above the ground and expand rapidly. After that, the 

leaves disappear before the appearances of scape. The periods of vegetative and 

reproductive phases are different among species. Chromosome polymorphisms have 

been well studied for taxonomical aspects. As for fertile diploid taxa, chromosome 

numbers varies from 2n=14 to 2n=22 in Lycoris (Hsu et al. 1994). The chromosomes of 
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Lycoris can be classified into three types: acrocentric (A), metacentric (M) and 

telocentric (T) chromosomes.  The 2n=22 taxa have only A-type chromosomes 

(2n=22A) and include L. radiata var. pumila, L. sprengeri and L. sanguinea. The 

choromosomes of the taxa of 2n=12, 14 and 16 were composed of M and T 

chromosomes (2n=10M+2T, 8M+6T and 6M+10T, respectively).  

Lycoris sanguinea Maxim is a perennial herb with bulb and distributed in Japan 

and Korea. There are three varieties with different floral traits; L. s. var. sanguinea, L. s. 

var. kiushiana T.Koyama, and L. s. var. koreana (Nakai) T.Koyama (Kurita 1988). 

Lycoris s. var. sanguinea is distributed mainly in wide ranges of central Japan, L. s. var. 

kiushiana from Kyusyu to western parts of Honsyu, and L. s. var. koreana in limited 

area of southern Korea and Nagasaki and Miyazaki Pref. (Kawano 2009; Hsu et al. 

1994). Lycoris s. var. koreana has been considered extinct in the wild (EW) but the 

individuals were recently observed in the Tsushima Island (Ministry of the Environment 

Japan 2015). The sizes of floral parts are different among the three varieties; for 

example, the anthers of L. s. var. sanguinea are not exserted from corollas, but the other 

two have longer and exserted anthers (Hsu et al. 1994). Their funnel-shaped and 

reddish-orange flowers were partly consistent with the characters common to 

butterfly-pollinated flowers based on the pollination syndrome (Faegri & van der Pijl 

1979). Limited informations about floral visitors have been available for L. sanguinea. 

Kawano (2009) and Chung et al. (1999) listed the species of floral visitors. However, 

visitation and pollination frequencies of each visitor have not been reported. In some 

cases, frequent visitors were not always effective pollinators (i.e. the visitation and 

pollination frequencies by each floral visitor were not positively correlated) (King et al. 

2013 and references therein). Therefore, I need to evaluate each floral visitor in terms of 
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the effectiveness for reproductive success of L. sanguinea.  

In this thesis, I focused on a new observation in pollination ecology of L. 

sanguinea var. sanguinea: breaking-bud pollination by small bees. I observed that small 

bees visited to partially opened flowers of L. s. var. sanguinea. I called this stage of 

flowers as breaking buds, which had just started to open. Previous studies reported 

similar insect behavior. In Xyris tenneseensis, Lasioglossum zephyrum visited to 

premature flowers and removed floral sheath to collect pollens (Wall et al. 2002). 

Another study suggested that the dichogamous (protogynous) flowers could be 

pollinated by bees before they fully opened (Thomson & Plowright 1980). However, in 

our knowledge, there has been no study about the insect-mediated pollination process at 

partially opened stage.  

This thesis is composed by four chapters. In the first chapter, I reported 

pollinator frequencies of Lycoris sanguinea var. sanguinea in multiple sites and 

examined whether visitation of small bees at the breaking-bud stage was effective for 

fruit and seed set. Pollinator observations in five populations of the Kanto region 

showed that most frequent visitors were small bees, Lasioglossum japonicum. They also 

visited to breaking buds at five populations. Bagging experiments showed that the small 

bees can pollinate flowers even at the breaking-bud stage because stigmas were 

receptive even 1 or 2 days before anthesis. Comparison among experimental 

manipulations in the field suggested that breaking-bud pollination would contribute 

considerably to the reproduction of L. s. var. sanguinea. 

In the second chapter, I collected the data of pollinator frequencies and floral 

morphologies of 13 populations of the three varieties of L. sanguinea. Pollinator 

observations showed that only three populations had breaking-bud pollination. Cluster 
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analysis based on eight floral morphological characters suggested that the 13 

populations were divided into three groups, which were partly inconsistent with the 

three varieties. One of the three groups consisted of the three populations in which 

breaking-bud pollination was observed, suggesting the evolutional association between 

floral traits and this novel pollination process. Statistical analyses showed significant 

correlations between frequencies of breaking-bud pollination and anther-stigma length 

at breaking-bud stage. 

In the third chapter, I examined whether any floral adaptation could be detected 

in the populations in which breaking-bud pollination was observed, by transplantation 

experiments. I transplanted individuals from one breaking-bud pollination (Aichi) and 

two non-breaking-bud pollination (Ehime and Hiroshima and Ehime) to Chiba, where 

breaking-bud pollination is frequently observed.  Bagging experiments showed that 

Ehime and Hiroshima populations were not adapted to breaking-bud pollination because 

their stigma was not receptive at the breaking-bud stage. Furthermore, I manipulated 

flowers to be visited only by small bees at different flowering stages. The results 

showed that pollination efficiency of small bees at breaking-bud stage was higher than 

that at fully-opening stage for the samples of Chiba.  

In the fourth chapter, I collected huge amount of genetic data by RAD 

sequencing. Estimations of population genetic structures showed clear pattern of 

isolation by distance (IBD). Neighbor-net tree of populations showed that populations 

were not grouped according to either traditional taxonomic classification or the clusters 

on floral morphologies, suggesting that similar set of morphological characters were 

generated independently. I hypothesized that differences of pollinator assemblages can 

promote the formation of these morphological patterns, although other factors can also 
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do. 

Finally, I discussed about the pollinator functions for the evolution of Lycoris 

sanguinea varieties. Pollinator differences between populations could promote to 

divergences of floral traits, but geographical factors would also associate to population 

divergences.  I also discussed about the taxonomic identification of these varieties. It 

could be difficult to identify these varieties based on the genetic and morphological 

information. Morphological variation in this species would be clinal, just as indicated 

by the IBD pattern, and partly caused by regional selective pressure of pollinators.  
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Chapter 1: Breaking-bud pollination: a new pollination process in partially opened 

flowers by small bees. 

[The content of this chapter has been published in Yamaji and Ohsawa (2015).] 

 

Introduction 

 

Some plants and animals interact closely to perform functions such as plant defense, 

pollination and seed dispersal (Agrawal 2011; Fontaine et al. 2006; Willson and 

Traveset 2000) and mutualistic interactions between plants and pollinators have 

attracted the attention of naturalists for more than a hundred years (e.g., Darwin 1877). 

Previous studies suggest that various plant lineages have undergone convergent 

evolution to produce the same flower characteristics that are adapted to specific 

pollinators, and these results generated the concept of pollination syndromes (Faegri 

and van der Pijl 1979; Fenster et al. 2004). For example, plants pollinated by butterflies 

tend to have erect, radiating flowers; long, narrow corolla tubes; and vivid, pure red or 

pink coloration (Faegri and van der Pijl 1979; Proctor et al. 1996). Recently, some 

studies found genetic backgrounds (Hermann et al. 2013; Wright and Bomblies 2013) 

and quantitative evidence of pollination syndromes (Rosas-Guerrero et al. 2014) 

indicating the presence of convergent relationships between plants and animals. 

However, other studies have argued that there are mismatches between floral 

characteristics and effective pollinator types (Ollerton et al. 2009; Waser et al. 1996), 

and the reliability of this concept is still debated. 

Although plant–pollinator interactions have been studied from many 

viewpoints, no research has been conducted on flowers before full flowering, or on their 
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way to opening. Flowers in such opening stages have been studied mainly on 

cleistogamous plants. About 700 plant species produce cleistogamous flowers, which 

pollinate by themselves, without opening, for resource conservation or reproductive 

assurance (Culley and Klooster 2007; Redbo-Torstensson and Berg 1995; Waller 1984). 

In chasmogamous plants, which have opening flowers, the breeding technique called 

bud pollination has been used at the bud stage to resolve the self-incompatibility 

problem (e.g., Nasrallah 1974). A previous study showed that, in natural conditions, a 

sweat bee Lasioglossum zephyrum manipulates the premature flowers of Xyris 

tennesseensis (Xyridaceae) to ensure floral rewards (Wall et al. 2002); however, no 

research has been done to determine whether insect pollination is occurring at these 

flowering stages (see also Boyd et al. 2011). During the flowering season, the flower 

buds of an individual plant can be in various stages of maturation and opening at any 

given time. Pollinators can visit the flowers at the ‘breaking-bud stage,’ when there are 

small gaps between the petals wide enough for small pollinators to enter. Insects might 

visit some flowering plants before their opening stages, like X. tennesseensis, and such 

unpredictable visits might also be linked to the pollination of plants. 

In this chapter, I carried out pollinator observations, bagging experiments, and 

counts of pollen grains on Lycoris sanguinea Maxim. var. sanguinea (Amaryllidaceae) 

at multiple sites. In other genera of this family, some studies have found interesting 

examples of plant–pollinator interactions, such as the relationships between style 

polymorphism and the tongue length of main visitors to flowers (e.g., Arroyo and Dafni 

1995). However, the genus Lycoris, which includes our target species, has been scarcely 

studied in terms of the relationships between plants and floral visitors, although the 

plants of this genus have more diversified characteristics than other well-known flowers 
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of Amaryllidaceae (Hsu et al. 1994; Wang et al. 2013). L. sanguinea var. sanguinea has 

showy reddish-orange flowers to which various types of insect visit (Kawano 2009), yet 

details of the activities of these insects as pollinators (e.g., the visitation frequency and 

the effects on plant reproduction) has not been described. Our results show (1) the list of 

pollinators of L. sanguinea var. sanguinea, (2) the frequency of flower visitation by 

several types of insect, (3) the effects of these pollinators on fruit and seed set in this 

plant, and (4) the pollen grain numbers of L. sanguinea var. sanguinea on the body of 

main floral visitors and on the anthers of randomly-selected and manipulated flowers. I 

then report for the first time on a new pollination process, breaking-bud pollination, 

which occurs in the breaking buds of L. sanguinea var. sanguinea. 
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Materials and methods 

 

Plant species 

The genus Lycoris has approximately 20 species, and these plants occur mainly in East 

Asia, including China, Korea and Japan. Five species of this genus are found in Japan, 

including L. albiflora Koidz, L. aurea (L’Herit.) Herb, L. radiata (L’Herit.) Herb, L. 

sanguinea Maxim., and L. squamigera Maxim (Kawano 2009). Our studied species, L. 

sanguinea, has varieties including L. sanguinea var. sanguinea, L. sanguinea var. 

kiushiana Makino, and L. sanguinea var. koreana (Nakai) Koyama. Lycoris sanguinea 

var. sanguinea grows on deciduous forest floors from central Honshu to Shikoku in 

Japan, on the Korean Peninsula, and in China (Kawano 2009). As in other Lycoris, the 

vegetative growth and reproductive phases of L. sanguinea var. sanguinea are 

seasonally separated. Leaves emerge in late March to April, but die back to the ground 

by early summer. Two to six flowers borne on a 30- to 50-cm-tall, leafless stalk appear 

in late July to August. Lycoris sanguinea var. sanguinea has showy, reddish-orange, 

funnel-shaped flowers that lack odor, which partly correspond to the features of 

butterfly-pollinated flowers based on pollination syndrome concepts (Faegri and van der 

Pijl 1979). The stamens of this flower are shorter than the perianths and the pistil is 

approximately as long as the perianths. A bud on the stalk finishes opening 

approximately 5 h after the beginning of the opening of the perianths, and the buds of a 

given stalk open over a period of approximately 5 days (personal observation). Flowers 

are visited by various insect species, such as Amegilla florea (Hymenoptera: Apidae), 

Thymelicus sylvaticus (Lepidoptera: Hesperiidae), and unidentified small bees. We have 

limited information on the reproductive ecology of this species, particularly concerning 
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the breeding system (Kawano 2009). 

 

Observations of pollinators 

Our studies were conducted at five sites (Sites 1–5), mainly in Izumi Nature Park, a 

natural park in Chiba Prefecture, central Japan (Table 1-1). At each study site, L. 

sanguinea var. sanguinea grew on the floor of a forest of deciduous trees, such as 

Quercus acutissima Carruth (Fagaceae) and Quercus serrata Murray (Fagaceae). 

Pollinator observations at Site 1 were carried out over the entire flowering season of L. 

sanguinea var. sanguinea in 2011 and 2012, whereas the other four sites were studied 

over part of the 2013 flowering season (Table 1-2). At a given site, I selected several 

target flowers of L. sanguinea var. sanguinea (Table 1-2) and logged the species of each 

insect visitor. I only counted the insects which landed on flowers as floral visitors. 

These data allowed the visitation frequencies of species to be calculated. I also recorded 

insect behavior, both by direct observation and by using a GZ-E220 video camera 

recorder (JVC Kenwood, Japan) to obtain video clips of pollinators visiting the flowers 

of L. sanguinea var. sanguinea. In 2011, I carried out night-time observations for a few 

nights and verified that no nocturnal pollinators visited. Therefore, our observations 

were conducted primarily between 05:00 and 13:00 h, with the observation time varying 

depending on weather conditions and pollinator activity. Dates of pollinator 

observations are given in Table 1-2. At the conclusion of the pollinator observations, I 

compared visit frequencies of each insect among sites and years with two-way 

ANOVAs using R version 2.15.2. For the main and following visitors, I also performed 

post hoc tests with Tukey’s Honest Significant Difference (HSD) test. In 2011, I 

observed that only small bees entered the breaking buds. Therefore, I captured 10 such 
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bees using a pooter (aspirator) and sent the specimens to Professor Osamu Tadauchi, a 

research professor at Kyushu University, for identification. Other insects were captured 

with insect nets and identified by the authors. 

 

Effect of pollinator visitation 

To estimate the relative contributions of insect visitors, I conducted bagging 

experiments for two types of opening stages: partially opened flowers classified as 

‘breaking buds’, and fully opened flowers classified as ‘flowering’; both types were of 

interest because many small bees visited and entered breaking buds through small gaps 

between the tepals to collect pollen. The anthers and stigma were more closely apposed 

in breaking buds than at the flowering stage, and the stigma of flowers at the 

breaking-bud phase was near the point at which the small bees entered the buds. Hence, 

I hypothesized that these bee species could carry pollen to the stigma of breaking buds. 

In 2011 and 2012, I carried out bagging experiments at Site 1 to calculate the 

fruit set ratios and seed numbers per fruit of each flower pollinated by different insect 

visitors. I was particularly interested to test whether small bees can pollinate the plants 

at the breaking-bud stage. The following seven treatments were applied: (1) Control: 

flowers were freely exposed to insect visitors. (2) Breaking-bud: just after small bees 

left flowers at the breaking-bud stage, the flowers were emasculated and then enclosed 

in bags to block subsequent insect visits. (3) Flowering: insect visits during the 

breaking-bud stage were prevented by bagging then the bags were removed after flower 

opening. (4) Large-insect exclusion: some plants that did not have opening flowers but 

did set some buds were covered with a 1-cm mesh wire cage until the end of anthesis. 

This cage excluded insects, except for small bees (approximately 5-mm body length), 
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and could evaluate the relative contribution of the bees for fruit and seed production 

throughout the entire flowering period. (5) Hand-self: buds were enclosed in bags for 

the whole duration of flowering and the flowers were artificially self-pollinated at the 

flowering stage. (6) Hand-bud pollination: buds were emasculated 1 or 2 days before 

anthesis, pollinated with pollen grains from other individuals and then enclosed in bags. 

(7) Auto-self: buds were enclosed in bags for the duration of flowering to test whether 

autonomous selfing occurred. Draining bags made of non-woven fabric were used for 

the bagging treatments. These bags were sufficient to prevent insect flower visitation, 

including those by the small bees, even though the bees were only 5 mm in size. All 

treated flowers were tagged, and the fruit-set and seed-set ratios were examined 3–4 

weeks after the treatments. All fruit samples were collected to count seed numbers. I 

also counted the ovule number in the ovary of flowers in Site 1, and this value (10) was 

utilized for calculating the seed-set ratios. To compare the fruit-set and seed-set ratios 

between each treatment, I applied Fisher’s exact test using R version 2.15.2. 

 

Count of pollen grains on the body of small bees 

In 2013 I captured the visiting small bees at Site 1 to examine the amounts of pollen 

adhering to their bodies. I caught small bees on the flowers as soon as they visited using 

a pooter (aspirator), they were then killed quickly in the tube with ethyl acetate. I 

separated the pollen grains from the bodies of the small bees by washing in 70 % 

ethanol. The collected bees were placed in a 2-mL tube with 200 μL of 70 % ethanol 

and were washed by vortexing. The insects were washed repeatedly until no pollen 

grains were visible on the bodies when viewed under the microscope. The number of 

pollen grains in the washings was estimated using a haemocytometer. Ten pollen counts 
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were performed per sample. Finally, I classified the counted samples into seven 

categories: 0, 1–10, 11–50, 51–100, 101–500, 501–1000, 1001–5000, 5001–10000, and 

> 10001. 

 

Count of pollen grains on anthers 

In 2012, I counted pollen grains remaining on the anthers of the flowers to assess the 

ability of small bees to collect pollen grains. I randomly selected some flowers that were 

fully opened (‘control’) and some breaking buds that did not reveal whether small bees 

had visited them (‘breaking-bud’). I also bagged some buds until they had fully opened 

(‘pollinator rejection’). I then collected the anthers of the selected and bagged flowers. 

Anthers of bagged flowers were collected just after I had removed the bag. The 

collected anthers were stored in 1000 μL of 70 % ethanol. After collection, I counted 

the number of pollen grains using a haemocytometer and performed statistical analysis 

with one-way ANOVA. When a statistically significant difference was detected, 

Tukey’s test was used for comparison of the treatments. Results were reported on a 

per-flower basis. 
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Results 

 

Observations of pollinators 

Total numbers and frequencies of insect visits to the target flowers of L. sanguinea var. 

sanguinea are listed in Table 1-3. Total visit frequencies of all insect visitors differed 

significantly by study site (two-way ANOVA, df = 4, F = 4.6691, P < 0.01) and by year 

(two-way ANOVA, df = 1, F = 15.1058, P < 0.001). Six insect families visited the 

target flowers: Apidae, Halictidae, Hesperiidae, Lycaenidae, Papilionidae and Syrphidae 

(Table 1-3). At all study sites, the small bee Lasioglossum japonicum (Hymenoptera: 

Halictidae) was the most frequent visitor, but the visit frequencies of the bees were 

different among sites (two-way ANOVA, df = 4, F = 5.473, P < 0.001) and years 

(two-way ANOVA, df = 1, F = 18.271, P < 0.001). Amegilla florea (Hymenoptera: 

Apidae) and Episyrphus balteatus (Diptera: Syrphidae) were the next most frequent 

visitors. Visitation frequencies of A. florea were different among sites (df = 4, F = 

4.4522, P < 0.01) and years (df = 1, F = 7.4866, P < 0.01), but those of E. balteatus 

were not (site: df = 4, F = 1.6507, P = 0.18; year: df = 1, F = 0.6202, P = 0.44). 

Additionally, Tukey’s tests detected statistically significant differences in the visit 

frequencies of both L. japonicum and A. florea by study site, between Site 1 and 3, and 

Site 1 and 5 (L. japonicum: P < 0.05 in Site 1–Site 3, P < 0.05 in Site 1–Site 5, 

respectively; A. florea: P < 0.05 in Site 1–Site 3, P < 0.05 in Site 1–Site 5, respectively), 

and by year, between 2011 and 2012, and 2011 and 2013 (L. japonicum: P < 0.001 in 

2011–2012, P < 0.01 in 2011–2013, respectively; A. florea: P < 0.05 in 2011–2012, P < 

0.05 in 2011–2013, respectively). 

Lasioglossum japonicum visited breaking buds to collect pollen (Fig. 1-1a–e), and these 
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visits were observed at every site (Table 1-4: two-way ANOVA, site: df = 4, F = 0.8642, 

P = 0.50; year: df = 1, F = 10.9034, P < 0.01). At the flowering stage, most of the small 

bees landed on the indehiscent anthers and collected pollen using their mandibles (Fig. 

1-1f), but some subsequently travelled down to the base of the perianth. No other insect 

species visited breaking buds. Amegilla florea would land on a flower, obtain nectar, 

and then leave immediately for other flowers. This species touched the anthers when 

collecting nectar, and pollen grains could have become attached to their bodies and be 

transferred to the same or other flowers. Episyrphus balteatus visited flowers to collect 

pollen grains and did not appear to touch the stigma. Papilio macilentus (Lepidoptera: 

Papilionidae) and Thymelicus sylvaticus (Lepidoptera: Hesperiidae), which were 

anticipated to be the main pollinators based on pollination-syndrome reasoning, rarely 

visited the experimental flowers. They inserted their proboscis to the bottom of flowers 

to suck nectar, thus they might have incidentally carried some pollen. 

 

Effect of pollinator visitation 

The results of the bagging experiments are given in Table 1-5. The breaking-bud 

treatment showed that flower visits at the breaking-bud stage by the small bee L. 

japonicum resulted in effective pollination. In 2011, I bagged the breaking buds after L. 

japonicum visits, and thirty percent of the bagged flowers set fruit with seeds despite 

protection against subsequent insect visits (Table 1-5). In 2012, I observed small bees 

entering flowers through a wire cage with a 1-cm diameter mesh (large-insect exclusion 

treatment), and 43 % of these cage-enclosed flowers produced fruit and seeds (Table 

1-5). These fruit-set ratios were significantly higher than that of the auto-self treatment, 

which prevented visitations by all insects (Fisher’s exact test, P < 0.05 in 2011, P < 0.05 
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in 2012, respectively).  

Further, I compared fruit-set and seed-set ratios of each treatment, particularly 

between the breaking-bud and other treatments. The control treatments had significantly 

higher fruit-set ratio than the ‘breaking-bud’ treatment (Fisher’s exact test, P < 0.05 in 

2011 and 2012, respectively), although this was not the case for seed-set ratio (Fisher’s 

exact test, P = 0.58 in 2011 and P = 0.08 in 2012, respectively). The fruit-set ratio of the 

breaking-bud treatment was not significantly different from that of the flowering 

treatments, in which insect visits were permitted only at the flowering stage, in 2011 

and 2012 (Fisher’s exact test, P = 0.13 in 2011, P = 0.61 in 2012, respectively). On the 

other hand, the seed-set ratio of the breaking-bud treatment was significantly lower than 

that of the flowering treatment in 2012 (Fisher’s exact test, P < 0.05), but not in 2011 (P 

= 0.29). Additionally, there were no significant differences in the fruit-set and seed-set 

ratios between the breaking-bud treatment and the large-insect exclusion treatment 

(Fisher’s exact test, P = 0.32 in fruit-set ratio, P = 0.13 in seed-set ratio, respectively). 

The other treatments revealed additional reproductive features of L. sanguinea 

var. sanguinea. The results of the hand-self treatment indicated self-compatibility of L. 

sanguinea var. sanguinea. A low fruit-set ratio from the auto-self treatment suggested 

the rarity of automatic self-pollination in L. sanguinea var. sanguinea. The hand-bud 

pollination treatment showed that stigmas were receptive even 1 or 2 days before 

anthesis. 

 

Counts of pollen on the bodies of small bees 

I collected samples from 94 L. japonicum visiting the flowers. I confirmed that some 

pollen grains of our target plants were attached to the bodies of all of them (Fig. 1-2). 
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The highest number of pollen grains on a small bee was 10496.0, and average pollen 

numbers were 1018.5 (±201.0). Captured bees mainly had pollen on the proximal parts 

of their legs and abdomen. Under the microscope, I found pollen grains of other species 

in some samples, but those of L. sanguinea var. sanguinea were predominant in all 

samples I did not include any pollen grains of other species in the count. 

 

Counts of pollen grains on anthers 

Anthers of ‘control’, ‘breaking-bud’, and ‘pollinator rejection’ treatments were 

collected from 28, 10, and 8 flowers, respectively. There were significant differences 

(one-way ANOVA, df = 2, F = 169.37, P < 0.001) among treatments. The very low 

number of pollen grains of ‘breaking-bud’, [mean pollen number = 5400.0 (±2304.4)] 

relative to those of ‘pollinator rejection’ [mean pollen number = 118,812.5 (±13522.4)] 

treatments, showed that the small bees collected most of the pollen produced by flowers 

during the breaking-bud stage (Fig. 1-3). Pollen grain numbers were not significantly 

different between ‘control’ and ‘breaking bud’ treatments [mean pollen numbers = 

3732.1 (± 640.5) vs. 5400.0 (± 2304.4), respectively; Tukey’s test, P = 0.96]. A few 

pollen grains were shed onto the perianths of some flowers, but these were not included 

in the analysis. 
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Discussion 

 

This is the first report of breaking-bud pollination, a pollination process mediated by 

insect species at the breaking-bud stage. Unlike the case of Xyris tennesseensis, which 

visits premature flowers of Lasioglossum zephyrum by removing the floral sheath (Wall 

et al. 2002), Lasioglossum japonicum entered the breaking buds of Lycoris sanguinea 

var. sanguinea through tiny spaces between tepals with no damage to the flower. In this 

study, I conducted bagging experiments in a research site in Chiba prefecture. However, 

our target plant L. sanguinea var. sanguinea is found from central Honshu to Shikoku in 

Japan (Kawano 2009), and the only breaking-bud visitor, L. japonicum, is widely 

distributed from Honshu to Yakushima Island (Image Database HANABACHI: 

Tadauchi et al. 2001). This overlap of distribution areas indicates that breaking buds of 

L. sanguinea var. sanguinea may be visited and pollinated by L. japonicum in other 

populations, and I in fact observed the visitation of the bees to breaking buds in other 

study sites (Table 1-3). Furthermore, this visitation method may occur in other plant 

species, because most flowering plants open gradually and have an opening stage 

similar to breaking-buds. I perceive that there are at least two essential requirements for 

breaking-bud pollination: (1) small visitors that can touch the stigma of the breaking 

buds, and (2) a stigma that is receptive to pollination at the breaking-bud stage. 

Consequently, flowers of other species (e.g., slowly-flowering protogynic 

hermaphrodites) may set fruit and seed via a pollination process as observed in this 

study. Compared to cleistogamy, i.e., autonomous self-pollination within closed flowers 

(Lord 1981), breaking-bud pollination by small bees is unique because an insect 

participates in the pollination process, and outcrossing can occur if the insect has 
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already visited other individual plants. If breaking-bud pollination provided the highest 

fitness for plants, the opening of flowers would no longer be important. Thus flowers 

might be able to omit the opening stage, creating a pollination process like cleistogamy, 

and further promoting the floral adaptation of these plants. Although the fruit-set and 

seed-set ratios in the breaking-bud treatment did not have significant differences in 

comparison with the flowering treatment in 2011 or the large-insect exclusion treatment 

(Table 1-5), and although I cannot conclude whether breaking-bud pollination had a 

significantly different contribution to the reproduction of L. sanguinea var. sanguinea 

than the other pollination methods, the discovery of breaking-bud pollination may lead 

to novel insights into pollination biology. In particular, most plant scientists observe 

fully open flowers when studying floral visitors, but this approach may miss important 

pollination events that occurred at the breaking-bud stage. 

Previous research has shown that the first visitor to a flower will probably 

obtain the largest floral reward (Galen and Stanton 1989; Harder 1990; Harder and 

Thomson 1989), thus it should be advantageous for small bees to visit breaking buds. 

Except for L. japonicum, I did not observe any other insects visiting breaking buds. 

Consequently, breaking buds would have a good supply of pollen grains, which are 

consumed by the larvae of most bee species (Roulston and Cane 2000). In pollinator 

observations, the visitation frequencies of L. japonicum on breaking buds were higher 

than those on fully-open flowers, except for Site 3 (Table 1-4). In addition, the 

dominant pollen resource of L. japonicum was L. sanguinea var. sanguinea at the 

blooming season of this plant species (Fig. 1-2), and most of the pollen was removed at 

the breaking-bud stage (Fig. 1-3). Therefore, I hypothesize that it is the most profitable 

strategy for them. In addition, the fruit set ratios of the flowers that were visited only by 
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small bees were not significantly different between experimental years, while those of 

the flowers visited by all kinds of visitors were significantly different (Table 1-5). These 

results suggest that L. japonicum is a stable pollinator of L. sanguinea var. sanguinea, 

thus the L. japonicum pollination strategy might be the best for the plant also. 

However, it is not clear that breaking-bud pollination is adaptive for L. 

sanguinea var. sanguinea. The fruit-set ratios of the breaking-bud and large-insect 

exclusion treatments were significantly lower than those of the control treatment in both 

experimental years (Table 1-5; Fisher’s exact test, P < 0.05 in 2011, P < 0.05 in 2012, 

respectively), and the fruit-set and seed-set ratios of the flowering treatment were 

comparable to those of the breaking-bud and large-insect exclusion treatments (Table 

1-5). Our results indicate that pollination by insects other than small bees, such as other 

larger bees and butterflies, at the flowering stage, is also effective. Moreover, 

pollination by small bees might reduce the genetic diversity of L. sanguinea var. 

sanguinea. I observed that L. japonicum collected pollen grains into pollen masses at 

the base of the legs, and this pollen was not used for pollination (Thorp 1979, 2000). 

Instead, the small bees might promote self-pollination, as they move around in the 

breaking-bud and some pollen grains could easily be transferred to the stigma of the 

same flower. Additionally, the involvement of small insects such as L. japonicum may 

lead to shorter pollen-dispersal distances than those of larger insects (Gathmann and 

Tscharntke 2002; Greenleaf et al. 2007; Zurbuchen et al. 2010), which could cause 

increased inbreeding (Kettle et al. 2010). In the bagging experiments, I showed that L. 

sanguinea var. sanguinea is self-compatible (Table 1-5; see also Ma et al. 2000, 2001). 

However, it is unknown whether the progeny of breaking-bud-pollinated plants suffer 

from inbreeding depression. Many seeds resulting from self-pollination in L. sanguinea 
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var. sanguinea germinated through embryo rescue (Ma et al. 2000, 2001), but it is 

unknown whether these seeds can germinate under natural conditions. Future studies 

should be undertaken to examine seed qualities (e.g., germination rate) vs. level of 

selfing by means of various bagging experiments. 

In addition to the discovery of breaking-bud pollination, our study shows that L. 

japonicum is the most frequent floral visitor of L. sanguinea var. sanguinea, whereas 

the predicted butterfly species rarely visited (Table 1-3). In recent years, several 

biologists have questioned the predictive power of the pollination syndrome theory 

(Faegri and van der Pijl 1979; Johnson and Steiner 2000; Ollerton et al. 2009; Waser et 

al. 1996). Our results also suggest a mismatch between the predictions of 

pollination-syndrome theory and the actual pollinator faunas, and this might be the 

result of floral adaptations to other pollinators. At two sites in Kyushu, I observed 

insects visiting a different variety of L. sanguinea, L. sanguinea var. kiushiana, which 

has larger flowers than var. sanguinea. I established that Papilio bianor and P. helenus 

(Lepidoptera: Papilionidae) were the most frequent visitors, small bees were unfrequent 

visitors and they did not enter the breaking buds of this plant at all (unpublished data). It 

can be conjectured that the flower of L. sanguinea var. kiushiana is adapted to butterfly 

pollinators, whereas L. sanguinea var. sanguinea has floral features altered by selection 

by smaller insects, such as L. japonicum. 

 

 

 

  



35 

 

References 

 

Agrawal A.A. (2011) Current trends in the evolutionary ecology of plant defence. 

Functional Ecology. 25, 420–432.  

Arroyo J., Dafni A. (1995) Variations in habitat, season, flower traits and pollinators in 

dimorphic Narcissus tazetta L. (Amaryllidaceae) in Israel. New Phytologist. 129, 

135–145.  

Boyd R.S., Teem A., Wall M.A. (2011) Floral biology of an Alabama population of the 

federally endangered plant, Xyris tennesseensis Kral (Xyridaceae). Castanea. 76, 

255–265 

Culley T.M., Klooster M.R. (2007) The cleistogamous breeding system: a review of its 

frequency, evolution, and ecology in angiosperms. The Botanical Reviews. 73, 1–30.  

Darwin C. (1877) The different forms of flowers on plants of the same species. John 

Murray, London 

Faegri K., van der Pijl L. (1979) The principles of pollination ecology. Pergamon Press, 

Oxford 

Fenster C.B., Armbruster W.S., Wilson P., Dudash M.R., Thomson J.D. (2004) 

Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution 

and Systematics. 35, 375–403.  

Fontaine C., Dajoz I., Meriguet J., Loreau M. (2006) Functional diversity of 

plant-pollinator interaction webs enhances the persistence of plant communities. PLoS 

Biology. 4, 129–135.  

Galen C., Stanton M.L. (1989) Bumble bee pollination and floral morphology: factors 

influencing pollen dispersal in the alpine sky pilot, Polemonium viscosum 



36 

 

(Polemoniaceae). American Journal of Botany. 76, 419–426.  

Gathmann A., Tscharntke T. (2002) Foraging ranges of solitary bees. Journal of Animal 

Ecology. 71, 757–764.  

Greenleaf S.S., Williams N.M., Winfree R., Kremen C. (2007) Bee foraging ranges and 

their relationship to body size. Oecologia. 153, 589–596. 

Harder L.D. (1990) Pollen removal by bumble bees and its implications for pollen 

dispersal. Ecology. 71, 1110–1125. 

Harder L.D., Thomson J.D. (1989) Evolutionary options for maximizing pollen 

dispersal of animal-pollinated plants. American Naturalist. 133, 323–344. 

Hermann K., Klahre U., Moser M., Sheehan H., Mandel T., Kuhlemeier C. (2013) Tight 

genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in 

petunia. Current Biology. 23, 873–877. 

Hsu P.S., Kurita S., Yu Z.Z., Lin J.Z. (1994) Synopsis of the genus Lycoris 

(Amaryllidaceae). SIDA 16, 301–331 

Johnson S.D., Steiner K.E. (2000) Generalization vs. specialization in plant pollination 

systems. Trends in Ecology & Evolution. 15, 140–143. 

Kawano S. (2009) Life-history monographs of Japanese plants. 13: Lycoris sanguinea 

Maxim. (Amaryllidaceae). Plant Species Biology. 24, 139–144. 

Kettle C.J., Maycock C.R., Ghazoul J., Hollingsworth P.M., Khoo E., Sukri R.S.H., 

Burslem D.F.R.P. (2010) Ecological implications of a flower size/number trade-off in 

tropical forest trees. PLoS One. 6, e16111. 

Lord E.M. (1981) Cleistogamy: a tool for the study of floral morphogenesis, function 

and evolution. The Botanical Review. 47, 421–449.  

Ma B., Tarumoto I., Morikawa T. (2000) Cytological studies on selfed plants and 



37 

 

interspecific crosses produced in four species of genus Lycoris (Amaryllidaceae). 

Scientific Report of the Colleage of Agriculture, Osaka Prefecture University. 52, 

13–18. 

Ma B., Tarumoto I., Nakamura N., Kunitake H. (2001) Production of interspecific 

hybrids between Lycoris incarnata and four other Lycoris species through embryo 

culture. Journal of the Japan Society for Horticultural Science. 70, 697–703 

Nasrallah M.E. (1974) Genetic control of quantitative variation in selfincompatibility 

proteins detected by immunodiffusion. Genetics. 76, 45–50 

Ollerton J., Alarcon R., Waser N.W., Price M.V., Watts S., Cranmer L., Hingston A., 

Peter C.I., Rottenberry J. (2009) A global test of the pollination syndrome hypothesis. 

Annals of Botany. 103, 1471–1480.  

Proctor M., Yeo P., Lack A. (1996) The natural history of pollination. Harper Collins, 

London 

Redbo-Torstensson P., Berg H. (1995) Seasonal cleistogamy: a conditional strategy to 

provide reproductive assurance. Plant Biology. 44, 247–256.  

Rosas-Guerrero V., Aguilar R., Marten-Rodriguez S., Ashworth L., Lopezaraiza-Mikel 

M., Bastida J.M., Quesada M. (2014) A quantitative review of pollination syndromes: 

do floral traits predict effective pollinators? Ecology Letters. 17, 388–400.  

Roulston T.H., Cane J.H. (2000) Pollen nutritional content and digestibility for animals. 

Plant Systematics and Evolution. 222, 187–209.  

Tadauchi O., Dawut A., Inoue H. (2001) On image database file HANABACHI based 

on the Japanese bees. ESAKIA. 41, 149–154. 

Thorp R.W. (1979) Structural, behavioral, and physiological adaptations of bees 

(Apoidea) for collecting pollen. Annals of Missouri Botanical Garden. 66:788–812. 



38 

 

Thorp R.W. (2000) The collection of pollen by bees. Plant Systematics and Evolution. 

222, 211–223.  

Wall M.A., Teem A.P., Boyd R.S. (2002) Floral manipulation by Lasioglossum 

zephyrum (Hymenoptera: Halictidae) ensures first access to floral rewards by initiating 

premature anthesis of Xyris tennesseensis (Xyridaceae) flowers. Florida Entomologist. 

85, 290–291. 

Waller D.M. (1984) Differences in fitness between seedlings derived from 

cleistogamous and chasmogamous flowers in Impatiens capensis. Evolution. 38, 

427–440. 

Wang R., Xu S., Jiang Y., Jiang J., Li X., Liang L., He J., Peng F., Xia B. (2013) De 

novo sequence assembly and characterization of Lycoris aurea transcriptome using GS 

FLX Titanium platform of 454 Pyrosequencing. PLoS One. 8, e60449. 

Waser N.M., Chittka L., Price M.V., Williams N.M., Ollerton J. (1996) Generalization 

in pollination systems, and why it matters. Ecology. 77, 1043–1060 

Willson M.F., Traveset A. (2000) The ecology of seed dispersal. In: Fenner M (ed) 

Seeds: the ecology of regeneration in plant communities. CAB Int, Wallingford, 

85–110. 

Wright K.M., Bomblies K. (2013) Evolutionary genetics: inheritance of a complex 

pollination syndrome. Current Biology. 23, R525–R527. 

Yamaji F., Ohsawa A.T. (2015) Breaking-bud pollination: a new pollination process in 

partially opened flowers by small bees. Journal of plant research, 128, 803–811. 

Zurbuchen A., Landert L., Klaiber J., Muller A., Hein S., Dorn S. (2010) Maximum 

foraging ranges in solitary bees: only few individuals have the capability to cover long 

distances. Biological Conservation. 143, 669–676.  



39 

 

Table 1-1. Locations of the five study sites 

 

 Site name Latitude Longitude 

Site 1 Izumi Nature Park, Noro-cho, Chiba Pref. 35°34′38″N 140°13′50″E 

Site 2 Sonnou no Mori, Inage-ku, Chiba Pref 35°38′49″N 140°06′52″E 

Site 3 Sugawara Shrine, Kamiozuki, Kanagawa Pref 35°21′50″N 139°14′23″E 

Site 4 Mannyou Nature Park, Iwafune-cho, Tochigi Pref 36°19′26″N 139°37′53″E 

Site 5 Kogushi Katakuri no Sato, Yoshii-machi, Gunma Pref 36°15′12″N 139°00′56″E 
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Table 1-2. Target flower number (sample size, n), and experimental dates and times in pollinator observations 

 

 Year Flower n   Total time of observations Dates of pollinator observations 

  Breaking bud Flowering Total   

Site 1 2011 26 125 151 20 h 3–6, 8, 10, 19, 24, 25 August 

 2012 9 66 75 144 h 1–24 August 

Site 2 2013 2 21 23 24 h 3–6 August 

Site 3 2013 3 19 22 30 h 30, 31 July; 1 August 

Site 4 2013 1 13 14 24 h 8–10 August 

Site 5 2013 1 20 21 18 h 11–13 August 

 

 

  

4
0
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Table 1-3. Pollinator visit numbers by insect species 

 

The figures in parentheses show frequencies in visits h−1. Dashes indicate no visitation 

  

Family Species Site 1  Site 2 Site 3 Site 4 Site 5 

  2011 2012     

Halictidae Lasioglossum japonicum 773 (1.89) 6348 (15.26) 380 (4.24) 196 (0.95) 236 (2.46) 52 (0.68) 

Apidae Amegilla florea 5 (0.04) 255 (0.8) 89 (0.64) 11 (0.18) 6 (0.19) 34 (0.36) 

Apidae Apis mellifera - - - - 2 (0.13) - 

Syrphidae Episyrphus balteatus - 24 (0.17) 1 (0.04) 6 (0.1) 13 (0.21) - 

Syrphidae Baccha maculata - - 2 (0.08) 1 (0.02) - 2 (0.17) 

Syrphidae sp. 9 (0.21) 18 (0.13) - - - - 

Papilionidae Papilio macilentus - 2 (0.25) - - - - 

Hesperiidae Thymelicus sylvaticus sylvaticus 3 (0.09) 6 (0.38) - - - - 

Lycaenidae Pseudozizeeria maha - - - 1 (0.1) - - 

Lycaenidae sp. - - 2 (0.06) - - - 

Megachilidae sp. - - 6 (0.18) - - 1 (0.17) 

4
1
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Table 1-4. Pollinator visit numbers by Lasioglossum japonicum at the breaking-bud and flowering stages 

 

 Site 1  Site 2 Site 3 Site 4 Site 5 

 2011 2012     

Breaking bud 442 (2.7) 1067 (33.82) 39 (8.25) 15 (0.68) 33 (4.71) 1 (1.0) 

Flowering 331 (1.17) 5281 (12.73) 341 (3.71) 181 (0.99) 203 (2.27) 51 (0.65) 

Total 773 (1.89) 6348 (15.26) 380 (4.24) 196 (0.95) 236 (2.46) 52 (0.68) 

 

The figures in parentheses show frequencies in visits h
−1

 

 

  4
2
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Table 1-5. Results of bagging experiments at Site 1 

 

Treatment type 2011   2012   

 n FS SS n FS SS 

Control 81 56.8* 17.0 124 57.3* 23.9 

Breaking bud 20 30.0 13.3 - - - 

Flowering 21 9.5 25.0 94 38.3 26.9* 

Large-insect exclusion - - - 86 43.0 23.0 

Auto-self 38 5.3* 45.0 - - - 

Hand-self - - - 47 63.8 17.3 

Hand-bud pollination - - - 19 63.2 20.0 

 

The values marked with an asterisk indicate a significant difference (P < 0.05) 

compared to the breaking-bud treatment. Dashes indicate no data. n flower number for 

each experiment, FS fruit-set ratio (percentage), SS seed-set ratio (percentage) 
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Figure 1-1. The process of breaking-bud pollination.  

 

 

 

A small bee visits a breaking bud (a) and enters (b, c). The bee uses its mandibles to 

open the anthers and collect pollen (d, e). Small bees have difficulty carrying pollen to 

the stigmas of fully opened flowers because the anthers and stigma are too far apart (f) 
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Figure 1-2. Histogram of pollen grain numbers on the bodies of small bees.  

 

 

 

Individual numbers of each category are shown on the bars 
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Figure 1-3. Pollen grain numbers remaining on anthers after three types of treatment.  

 

 

 

Grey bars show the mean grain numbers per flower after each treatment. Limits are the 

maximum and minimum values of pollen grain number. ‘Pollinator rejection’, all 

pollinators excluded; ‘Control’, no pollinators excluded; ‘Breaking bud’, anthers 

harvested just after small bees left the flowers at the breaking-bud stage. Different 

letters indicate that pollen grain numbers were significantly different by Tukey’s test (P 

< 0.001) 
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Chapter 2: Relationships between pollinator fauna and floral morphology in Lycoris 

sanguinea: effects of a novel pollination mechanism. 

 

Introduction 

 

Studies of plant-pollinator interactions have shown strong evidence of the ecological 

and evolutionary connections between plants and pollinators (Kay & Sargent 2009; 

Johnson 2010; Willmer 2011). Approximately 87.5% of flowering plants are dependent 

on pollinators for their reproductive success (Ollerton et al. 2011). Pollinators select 

floral traits, and floral diversification has been strongly promoted by relationship 

changes between flowers and pollinator fauna (Fenster et al. 2004; Van der Niet & 

Johnson 2012), although other environmental factors are also important (Herrera et al. 

2006; Perez-Balares et al. 2007; Anderson & Johnson 2008; Cosacov et al. 2013).  

In generalist flowers, the strength and direction of pollinator-mediated selection 

vary between populations because the type and number of pollinator species differ 

between these populations (e.g., Waser et al. 1996). The geographical mosaics of 

pollinator fauna can exert different selective forces on individual plants and may lead to 

different pollinator ecotypes in intraspecific plant populations (Johnson 2010; Van der 

Niet et al. 2014). Pollinator-selected floral traits possess two different functions (Gómez 

& Zamora 2006). Attractant traits attract pollinators to flowers by floral scent or colour 

(e.g., Byers et al. 2014; Schestl 2015), while mechanical traits select pollinators by 

structural fit (e.g., Kay 2006; Zhang & Li 2014; Paudel et al. 2016). Divergent selection 

caused by different frequencies of the same pollinators promotes variance only of 

mechanical traits (e.g., Newman et al. 2015). In generalist plants, the relationships 
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between pollinator fauna and floral morphology have been investigated by several 

groups (e.g., Cooley et al. 2008; Gomez et al. 2014; Medel et al. 2007); however, few 

studies regarding mechanical adaptations within the geographic mosaic of pollinators 

have been conducted.  

The genus Lycoris (Amaryllidaceae), which comprises approximately 20 

species, has been introduced as ornamental and medicinal plants in eastern Asia (Hsu et 

al. 1994; Chang et al. 2009). Compared to those of other genera in the Amaryllidaceae 

family, such as Narcissus, the plant-pollinator interactions of Lycoris have received 

relatively little study (e.g., Marques et al. 2016; Simón-Porcar et al. 2013; 

Pérez-Barrales et al. 2007). Lycoris sanguinea Maxim., which have been previously 

studied about the pollinator relationships (Yamaji & Ohsawa 2015, 2016), is a perennial 

bulb in Japan. This plant exhibits floral size variations and is divided into three 

described varieties: L. sanguinea var. sanguinea, L. sanguinea var. kiushiana Makino, 

and L. sanguinea var. koreana (Nakai) Koyama (Hsu et al. 1994; Kurita 1988). The 

flowers of these varieties attract several taxonomic groups of insects (Chung et al. 1999; 

Kawano 2009; Yamaji & Ohsawa 2015). In L. sanguinea var. sanguinea, the most 

frequent visitors are small bees of the species Lasioglossum japonicum (Yamaji & 

Ohsawa 2015), although its floral characteristics have been thought to attract butterfly 

species (Faegri & van der Pijl 1979; Johnson & Steiner 2000). In contrast, my 

preliminary research revealed that large butterfly (Papilio) species frequently visited L. 

sanguinea var. kiushiana, which has the largest flowers of the three varieties. Based on 

these observations, I predicted that the differences of flower morphology in L. 

sanguinea were strongly influenced by pollinators. However, no comprehensive 

research on the floral morphology of L. sanguinea and its pollinators has been 
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conducted.  

Furthermore, I recently found a novel pollination mechanism in Lycoris 

sanguinea var. sanguinea (Yamaji & Ohsawa 2015). Lasioglossum japonicum visited 

and collected the immature pollen of partially opened flowers (breaking buds) using 

their mandibles, and they touched the stigma while foraging and collecting pollen. This 

mechanism, which I named breaking-bud pollination, has been observed in all five 

populations across a limited region of the distribution area (Yamaji & Ohsawa 2015). In 

my observations, the bees did not actively pollinate in breaking buds but instead 

accidentally attached pollen to the stigma. My previous study suggested that 

breaking-bud pollination increased fruit and seed set compared to that of pollination 

only at the fully open stage (Yamaji & Ohsawa 2015). Additionally, L. sanguinea var. 

sanguinea is self-compatible, and the stigma of this plant is receptive at the 

breaking-bud stage (Yamaji & Ohsawa 2015). Therefore, the main condition for 

breaking-bud pollination is morphological, dependent on whether small bees can touch 

the stigma. I hypothesized that populations pollinated at the breaking-bud stage could 

adapt to small bees and change their floral morphology compared to that of populations 

without breaking-bud pollination. 

The goal of this study was to investigate the relationships between the floral 

morphology of L. sanguinea and its pollinators. I hypothesized that different pollinator 

fauna in intraspecific populations of L. sanguinea promote the morphological variation 

between them. I specifically focused on the interaction of breaking-bud pollination with 

floral morphology. However, my previous study did not clarify whether breaking-bud 

pollination occurs widely in L. sanguinea. Therefore, I conducted pollinator 

observations and morphological measurements of floral traits in multiple populations, 
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followed by statistical analysis to compare these values between populations and test 

significant correlations between floral traits and pollinator frequencies. 
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Materials and methods 

 

Study species and sites 

Lycoris sanguinea, a perennial bulb in the Amaryllidaceae family, is mainly found 

growing on deciduous forest floors in Japan. Its flowering season occurs from mid-July 

to August. Each individual has two to six flowers, which are reddish-orange and 

funnel-shaped without a floral scent (Kawano 2009). Three varieties of L. sanguinea 

have been described based on taxonomic and ecological characteristics: L. sanguinea. 

var. sanguinea, L. sanguinea. var. kiushiana, and L. sanguinea. var. koreana (Kurita 

1988). L. sanguinea var. sanguinea is distributed mainly in central Honshu. The stamens 

of this variety are shorter than its petals. L. sanguinea var. kiushiana is distributed 

mainly from Shikoku to Kyusyu, and its stamens are exserted beyond its corollas. L. 

sanguinea var. koreana is narrowly distributed in Tsushima Island and southern Korea. 

This variety can be distinguished by its flower size, smaller than that of L. sanguinea 

var. kiushiana, and by its stamens, longer than those of L. sanguinea var. sanguinea. 

Previous genetic analyses using allozyme loci have suggested that L. sanguinea var. 

koreana has a limited dispersal range (Chung et al. 1999).  

I examined 13 populations in this study (Figure 2-1; Table 2-1). These sites 

covered the distribution regions of the three varieties from central Honshu to Kyusyu 

and Tsushima Island. Most of the populations were located in humid subtropical 

climates, except for population 11, which was located in a humid continental region. 

Populations 3 and 4 were located in higher altitudes, while the other 11 study sites were 

in lowlands. In each population, I identified flowering individuals by L. sanguinea 

variety according to floral morphology, flowering period, and location, based on the 
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work of Hsu et al. (1994). At the Hiroshima site (populations 7 and 8), I identified two 

varieties, L. sanguinea var. sanguinea and L. sanguinea var. kiushiana, based on 

morphological traits. Therefore, I added these two populations to my study. Each 

population covered approximately 1 km and grew under similar conditions. However, 

the population of L. sanguinea var. kiushiana occurred in a slightly darker area than that 

of L. sanguinea var. sanguinea. 

 

Floral morphology measurements 

In 2015, I randomly selected 30 L. sanguinea individuals in each population for floral 

morphology measurements. I measured only one freshly opened flower per individual to 

avoid the effects of floral degradation or herbivore damage. After selection, eight floral 

traits were measured using a digital calliper: stamen length (STL), pistil length (PIL), 

anther-stigma length (ASL), petal length (PEL), petal width (PEW), petal-petal length 

(PPL), pedicel length (PED), and corolla tube length (CTL) (Figure 2-2A). PPL 

represents the average distance of petal tips between diagonally-located petals, and ASL 

indicates the average distance between the tips of the stamens and pistil. PPL and ASL 

were measured in situ, and the other six traits were measured using collected samples 

preserved in 70% ethanol.  

 

Observations of floral visitors 

To investigate the pollinator assemblages of each population, I observed opened flowers 

and breaking buds. I first searched for and selected freshly opened or breaking buds as 

target flowers at each site, then set digital video cameras (GZ-E220 and GZ-E265, JVC 

Kenwood, Japan) with tripods in front of the selected flowers. I recorded floral visitors 
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for an average of 8 hours a day. I then checked the videos and categorized the floral 

visitors into functional groups based on the work of Fenster et al. (2004). Furthermore, I 

identified “potential pollinators”, which were defined as floral visitors that contacted the 

stigma with conspecific pollen. To estimate the contact frequencies of the visitors 

(touches per observation time of each functional group), I carefully checked the pistil 

movements. I established the following criteria for potential pollinators: the figures of 

the visitors and stigma in the videos overlapped, and the pistil moved after the visitors 

left in windless conditions. I identified potential pollinators in accordance with these 

criteria and recorded their pollination events. I conducted the above pollinator research 

for 11 populations in 2015; research was conducted in populations 3 and 4 in 2013.  

 

Visitor pollen counts 

To reveal the potential pollinators in visitor assemblages, I observed the body surfaces 

of floral visitors and checked the attachment of L. sanguinea pollen grains. At each site, 

I caught floral visitors as soon they visited the flower using insect nets or a pooter 

(aspirator). Small and large bees were killed using ethyl acetate, and large butterflies 

were quickly killed by applying finger pressure to the thorax. These specimens were 

preserved in 100% ethanol or soft plastic bags, and their body surfaces were 

microscopically observed in my laboratory. The positions of pollen grains on the insect 

body surfaces were recorded in for five partitions (head, thorax, abdomen, legs, and 

wings). I also counted the attached L. sanguinea pollen numbers on each partition.  

 

Data collection for abiotic factors  

To investigate the influence of environmental factors, I extracted 19 bioclimatic factors, 
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mean temperature, and precipitation for the flowering season of L. sanguinea (i.e., 

Jul.–Aug.) These data were extracted from the WorldClim database (Hijmans et al. 

2005) for the longitude and latitude coordinates of each population. These 

environmental data were interpolations of observed data from 1950 to 2000 at a spatial 

resolution of 5 km
2
.  

 

Statistical analyses 

Comparisons of floral morphology between populations 

 Each floral trait was statistically compared between populations using 

generalized linear models (GLMs) with gamma errors (identity link), and these models 

were compared to null hypotheses for likelihood ratio tests. To determine which 

populations were statistically different, I also conducted a post-hoc test, Tukey’s 

honestly significant differences (TukeyHSD) test, using the glht function in the 

multcomp library of the R package (Hothorn et al. 2008).  

I divided the populations based on the measured morphological trait data using 

hierarchical clustering methods. The mean morphological data of the eight traits in each 

population were converted to Bray-Curtis similarities using the vegdist function in the 

vegan package, and the populations were clustered based on the converted scores 

obtained by the unweighted pair group method with arithmetic mean (UPGMA) in the 

hclust function. I estimated the actual number of clusters based on Beale’s index using 

the NbClust function (Charrad et al. 2014). Furthermore, I performed an analysis of 

similarity (ANOSIM) for the statistical test of clustering results. The contributions of 

each floral trait to the clusters were also statistically tested by similarity percentage 

(SIMPER). Both statistical analyses were performed in the vegan R package.  
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Comparisons of floral visitors and potential pollinators between populations 

 I calculated the visitation frequencies of each visitor and functional group as 

the total number of visitors per observation time. I also measured the pollination 

frequencies of each functional group. This value was calculated as number of insects 

with stigma contact per flower per hour in potential pollinators with conspecific pollen.  

Using these frequency values, I performed clustering analyses to compare the 

13 populations. I used the mean pollination frequencies of each floral visitor for 

UPGMA clustering in hclust and determined the best number of clusters in NbClust 

using Beale’s index. I also performed ANOSIM to investigate the significance of these 

clustering results and SIMPER to select the factors with the greatest contribution to 

clustering. I selected visitors and pollinators using the criterion of cumulative 

contributions in SIMPER until 80%. These representative groups were used in the 

following statistical analyses. 

 

Relationships between floral morphologies and pollinators 

To study the relationships between floral morphologies and pollinator species, I selected 

representative parts of floral morphologies and pollinator functional groups based on the 

SIMPER analyses. I also used generalized linear mixed models (GLMMs) using glmer 

functions in R package lme4. Each value of floral morphologies was used as response 

values and pollination frequencies of each pollinator group were as explanatory values. 

Population sites were also used as random effects for GLMMs. Furthermore, I estimated 

significant correlated factors for each floral morphology by multiple comparisons with 

Holm corrections in glht function of the R package multcomp. 
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Relationships between floral morphology and biotic/abiotic factors 

I first translated each value of the morphological and environmental factors 

into principal component analysis (PCA) axis scores because many of the factors in 

each variable were correlated. Twenty-one environmental variables were standardized 

prior to PCA, and eight morphological variables were used with no standardization. To 

investigate the relationships between morphological axis scores and other factors 

(pollination frequencies, environmental axis scores), GLMs with Gaussian errors 

(identity link) were performed. Models were prepared for each morphological data axis 

score as a response variable and the pollination frequencies of representative visitors 

and environmental axis scores as explanatory variables. Statistical tests were also 

performed by multiple comparison tests with Holm corrections using the glht function 

of the package multcomp. 

 

Test of breaking-bud-pollination effects on floral morphology 

 I tested two hypotheses about the effect of breaking-bud pollination on floral 

morphology. Under the stigma-anther hypothesis (SA hypothesis), breaking-bud 

pollination occurs due to the timing of pollen collection by small bees, and this process 

is encouraged by decreasing the anther-pistil gaps at the breaking-bud stage. Under the 

stigma-petal hypothesis (SP hypothesis), breaking-bud pollination does not happen 

under the conditions of the SA hypothesis but instead occurs at the entrances of 

breaking buds. Pollination is thus promoted by placement of the stigma closer to the 

petal tips (Figure 2-3).  

To test these hypotheses, I performed generalized linear mixed models 
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(GLMMs) using the glmer function in the package lme4. I first calculated the distances 

between the stigma and anthers and between the stigma and petal tips by calculating PIL 

– STL and PIL – PEL, respectively. These values were used as response variables for 

the SA and SP hypotheses. The pollination numbers of representative functional groups 

and of small bees for breaking-buds were used as fixed effects, and each population was 

a random effect. For the SA and SP hypotheses, GLMMs with gamma errors (log links) 

were performed. GLMMs were also performed with the offset variable of log 

observation hours per day. I investigated the influences of each variable by multiple 

comparison tests with Holm corrections using the glht function. 
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Results 

 

Comparisons of floral morphology between populations 

 Of my study populations, six were identified as Lycoris sanguinea var. 

sanguinea, five as L. sanguinea var. kiushiana, and two as L. sanguinea var. koreana 

(Table 2-1). The eight floral morphology traits significantly differed between 

populations (GLMs with gamma errors: P < 0.001), and statistically different 

populations determined using TukeyHSD are shown in Figure 2-2 as different symbols. 

In the Hiroshima prefecture, two sympatric populations (populations 7 and 8) 

significantly differed in five traits (Figure 2-2), indicating the weak relationship 

between floral morphology and geography.  

Clustering analyses divided the 13 study populations into three groups (Figure 

2-4). These groups were not consistent with the varieties based on my identifications. 

Group1 consisted of four populations with larger flowers than those of the other groups. 

Group2 included six populations with intermediate flower size. Populations 9, 10, and 

13 belonged to Group3, which had the smallest flowers in the study population. 

ANOSIM showed the clustering analysis to be statistically significant (ANOSIM: P < 

0.001), and SIMPER showed that four traits contributed to clustering with a percent 

cumulative contribution (STL, PEL, PPL, and PIL).  

 

Observations and comparisons of floral visitors and potential pollinators 

 In total, I recorded 1854 floral visitors across all populations and categorized 

them into six functional groups: 938 small bees, 358 large bees, 35 small butterflies, 

283 large butterflies, 229 hoverflies, and 11 hawkmoths (Figure 2-5). The pollination 
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frequencies of eastern populations tended to be higher for small and large bees, and 

those of western populations were higher for large butterflies (Figure 2-6). In population 

5, I could not identify contact with the stigma by any floral visitor, and I removed it 

from the following analyses of pollination frequencies. 

Based on the visitation frequencies, the 13 populations were divided into two 

groups (Figure 2-7A; ANOSIM: P = 0.003). The similarity percentage (SIMPER) 

results revealed that small bees and large butterflies represented 61.3% of cumulative 

contributions. Cluster analysis using pollination frequencies yielded statistically similar 

results (ANOSIM: P = 0.005) to those of analysis based on visitation frequencies 

(Figure 2-7B). Only populations 7 and 11 belonged to different clusters in the results of 

the two analyses. No contact by smaller insects was observed in population 7, and 

population 11 had the lowest visitation and pollination frequencies among the study 

sites, which may have caused the differences in clustering. SIMPER analysis showed 

high contributions of large butterflies and large bees (66.7% of cumulative 

contributions). By SIMPER analysis, three functional groups with an 87.9% cumulative 

contribution were selected as representative visitor groups (small bees, large bees, and 

large butterflies).  

 

Visitor pollen counts 

In total, I captured 119 floral visitors (Table S2-1). Most visitors had pollen of L. 

sanguinea varieties, suggesting that they could be pollinators if they touched the stigma. 

Small bees had pollen grains on their whole bodies, but they tended to have larger 

pollen amounts on their abdomens and legs. Large bees also had large amounts of pollen 

on their abdomens and legs, but few individuals had pollen on their thoraxes. All 
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captured large butterflies had pollen grains on their legs and wings. Although I did not 

observe visitations of small bees in populations 3 and 11 (Figure 2-3), I observed their 

visitation to flowers and confirmed that captured small bees in the former population 

also had L. sanguinea pollen.  

 

Relationships between floral morphologies and pollinators 

In SIMPER analyses, four and three factors were selected in floral morphologies and 

pollinator groups respectively; STL, PEL, PPL and PIL in floral morphologies, small 

bees, large bees and large butterflies. All four parts of floral traits had significant 

relationships to small and large bees (Table 2-2; multiple comparisons with Holm 

correction, P<0.01). 

 

Relationships between floral morphology and biotic/abiotic factors 

The results are shown in Table 2-3. GLMs with Gaussian errors showed that the scores 

of PC1 based on morphological data were significantly related with the contact 

frequency of small bees (GLM with Gaussian error: t value = 3.681, P = 0.008; multiple 

comparison tests with Holm adjustments: P < 0.01). Two abiotic factors were not 

significantly related with the PC1 score (GLM with Gaussian error of abiotic factor 1: t 

value = -0.247, P = 0.812; GLM with Gaussian error of abiotic factor 2; t value = -1.275, 

P = 0.243). The PC2 score was not supported significantly by any explanatory variables 

(multiple comparison tests with Holm adjustments: P = 1).  

 

Test of breaking-bud-pollination effects for floral morphologies 

The results of the hypothesis testing are shown in Table 2-4. The estimated pollination 
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frequencies of breaking-bud pollination were significantly related to the stigma-anther 

length with other three explanatory variables according to the GLMM with gamma error 

(GLMM with gamma error: t value = 2.254, P = 0.024; multiple comparison tests with 

Holm adjustments: P = 0.048). Conversely, stigma-petal length showed a weak but 

nonsignificant relationship with breaking-bud-pollination frequency (GLMM with 

gamma error: t value = 2.232, P = 0.026; multiple comparison tests of stigma-petal 

length: P = 0.051). 
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Discussion 

 

In this study, I compared floral morphology and pollinator faunas between populations 

in the genus Lycoris. Clustering analyses by floral morphology divided the 13 study 

populations of L. sanguinea into 3 groups. These clusters were better described by 

pollinators groups than by abiotic factors. Although I could not identify potential 

pollinators in population 5, the results suggested that the floral morphology of L. 

sanguinea was strongly influenced by pollinator fauna. More importantly, I observed 

the presence of breaking-bud pollination in three populations that were morphologically 

clustered together. My analysis showed a significant relationship between anther-stigma 

separation and breaking-bud-pollination frequency. Although the pollination frequencies 

of small and large bees were also significantly related to floral morphology, the result of 

the generalized linear models suggested that breaking-bud pollination was related to 

these traits, especially to gap length between the tips of the male and female 

reproductive organs.  

In my previous study, small bees collected approximately 95% of pollen grains 

produced by L. sanguinea var. sanguinea at the breaking-bud stage (Yamaji & Ohsawa 

2015). This excessive pollen collection would decrease the available pollen for 

reproduction, causing pollen limitation (Ashman et al. 2004). This condition could 

promote floral adaptation against small bees and cause variation in floral morphology. 

The cluster analysis based on floral morphology grouped the populations with 

breaking-bud pollination, suggesting relationships between the measured traits and the 

pollination system. However, my data showed a positive relationship between the 

pollination frequency of small bees and the anther-stigma distance at the breaking-bud 
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stage (Table 2-4). This result is unusual because the separation of the anthers and stigma 

should decrease to allow small bees to contact the stigma more easily. To reduce the 

ratio of self-pollination, some plants have separated their reproductive organs in time or 

space (e.g., Lloyd & Webb 1986; Webb & Lloyd 1986). My data may show a similar 

pattern for preventing self-pollination, although the varieties of L. sanguinea are 

self-compatible (Table S2-2; Yamaji & Ohsawa 2015). Therefore, my results may 

suggest that seedlings or growing plants produced by self-pollination have lower fitness. 

Although the floral morphology of L. sanguinea varieties varied significantly 

and was related to pollination frequency, I found that the pollinator fauna between 

populations of L. sanguinea var. sanguinea slightly differed. This plant-pollinator 

interaction was similar to adaptive wandering, proposed by Wilson & Thomson (1996). 

This theory suggests that slight differences of pollinator communities do not cause the 

evolution of mechanisms that could exclude other pollinators, so floral evolution occurs 

without specialization of the pollination system in generalist flowers. For example, I 

focused on the pollinator community differences between populations 6 and 9. Both 

populations have two main pollinators, Lasioglossum japonicum and Amegilla florea, 

with L. japonicum as the most frequent pollinator. These two populations were located 

together according to clustering analysis based on pollination frequencies, but their 

flowers were divided into two clusters based on floral morphology. These results 

suggest that the floral morphology of L. sanguinea var. sanguinea could be produced by 

floral adaptation mediated by local pollinator fauna. However, I found considerable 

pollinator overlap between populations. The dispersal distance of L. sanguinea is 

thought to be limited (Chung et al. 1999), and it is easier to treat geographic isolation 

rather than pollinator difference as the cause of reproductive isolation.  
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Based on the results of the present study, I suggest that pollinator-mediated 

adaptation occurred in L. sanguinea for a rare pollination process. Most of the observed 

pollinators had intraspecific pollen (Table S2-1), but the actual number of pollinators 

that touched the stigma varied. To investigate the relationships between the lineage’s 

split history and its pollinator changes, phylogenetic analyses with molecular data have 

been used (e.g., Ng & Smith 2016; Van der Niet & Johnson 2012). The floral traits of L. 

sanguinea are partly consistent with those of butterfly-pollinated flowers (Faegri & van 

der Pijl 1979), and the shift from butterflies to bees may have promoted the variation of 

floral morphologies. Previous results and my unpublished data suggest that the three 

varieties of L. sanguinea are positioned nearest to each other in the genus (Shi et al. 

2006), and further analyses of the divergence history between L. sanguinea populations 

could reveal plant-pollinator interactions more precisely. 
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Table 2-1. Population codes, locations, research dates, number of observed flowers, 

observation periods, and observation-based variety identification. 

Population 

code 

Locality Observation date  Observation 

flower  (n) 

Observation 

period (h) 

Variety 

identification 

1 Tsushima-city, Nagasaki 

Pref.  

27, 28 Aug. 2015 31 16 var. koreana 

2 Nishisonogi-gun, Nagasaki 

Pref.  

15, 16 Sep. 2015 24 10 var. koreana 

3 Fujitu-gun, Saga Pref. 19-21 Jul. 2013  11 27 var. kiushiana 

4 Itoshima-city, Fukuoka 

Pref.  

16-18 Jul. 2013  13 26 var. kiushiana 

5 Touon-city, Ehime Pref.  21-24 Jul. 2015  8 30 var. kiushiana 

6 Saijou-city, Ehime Pref.  23, 24 Jul. 2015  6 16 var. sanguinea 

7 Shoubara-city, Hiroshima 

Pref.  

25-28, 31 Jul. 

2015  

15 23 var. kiushiana 

8 Shoubara-city, Hiroshima 

Pref.  

26-28, 31 Jul. 

2015, 3 Aug. 2015  

19 22 var. sanguinea 

9 Ibaraki-city, Osaka Pref.  7-10 Aug. 2015  14 26 var. sanguinea 

10 Shin-shiro-city, Aichi Pref.  3, 4 Aug. 2015  20 16 var. sanguinea 

11 Okaya-city, Nagano Pref.  10, 11 Aug. 2015 8 18 var. kiushiana 

12 Osato-gun, Saitama Pref.  8, 9 Aug. 2015  14 16 var. sanguinea 

13 Chiba-city, Chiba Pref.  5, 6 Aug. 2015  16 16 var. sanguinea 
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Table 2-2. Simultaneous tests for general linear hypotheses of interactions between 

floral morphologies and pollinator groups. 

 

 Estimate Standard error Z-value P-value 

STL     

  small bee -0.12801 0.03807 -3.363 0.00236 

  large bee -0.127 0.03375 -3.763 0.0005 

  large butterfly 0.01299 0.02244 0.579 0.91022 

     
PEL 

    

  small bee -0.12364 0.03804 -3.251 0.003405 

  large bee -0.12221 0.03376 -3.619 0.000877 

  large butterfly 0.01147 0.02237 0.513 0.935175 

     
PPL 

    

  small bee -0.12389 0.03815 -3.248 0.003447 

  large bee -0.12858 0.03374 -3.81 0.000417 

  large butterfly 0.01245 0.02243 0.555 0.919596 

     
PIL 

    

  small bee -0.126 0.03803 -3.313 0.00273 

  large bee -0.12459 0.03375 -3.691 0.00066 

  large butterfly 0.01302 0.02243 0.58 0.90967 

 

P-values were adjusted by Holm corrections. Bold means significant differences from 

zero at the P < 0.05 level. 
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Table 2-3. Simultaneous tests for general linear hypotheses of interactions between 

floral morphology and biotic/abiotic factors. 

 

 Estimate Standard error Z-value P-value 

Mor1     

  small bee 0.82718 0.2247 3.681 0.00116 

  large bee 0.2011 0.30422 0.661 1 

  large butterfly 0.1635 0.11825 1.383 0.66705 

  bio1 -0.26893 1.09081 -0.247 1 

  bio2 -0.08471 0.06645 -1.275 0.66705 

     
Mor2     

  small bee -0.3479 2.1805 -0.16 1 

  large bee -1.1528 2.9522 -0.39 1 

  large butterfly 0.1585 1.1475 0.138 1 

  bio1 -5.4602 10.5854 -0.516 1 

  bio2 -0.1846 0.6449 -0.286 1 

 

P-values were adjusted using Holm corrections. Bold indicates a significant difference 

from zero at the P < 0.05 level. 
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Table 2-4. Simultaneous tests for general linear hypotheses of interactions between 

floral morphology and biotic factors at the breaking-bud stage. 

 

 Estimate Standard error Z-value P-value 

Stigma-anther     

  small bee -0.11038 0.03792 -2.911 0.0108 

  small bee to breaking 

bud 
0.11608 0.05151 2.254 0.04845 

  large bee -0.12216 0.03864 -3.162 0.00627 

  large butterfly 0.01153 0.02248 0.513 0.60799 

     
Stigma-petal     

  small bee -0.11351 0.03774 -3.008 0.00789 

  small bee to breaking bud 0.11484 0.05145 2.232 0.05122 

  large bee -0.12192 0.03862 -3.157 0.00638 

  large butterfly 0.0119 0.02246 0.53 0.5963 

 

P-values were adjusted using Holm corrections. Bold indicates a significant difference 

from zero at the P < 0.05 level. 
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Table S2-1. Numbers of pollen-deposited floral visitors and positions of pollen deposition. 

 

Pop. 

code 

Smal bee Large bee Large butterfly 

 H T A L W H T A L W H T A L W 

1 4/10 7(2)/10 8(5)/10 6(4)/10 4/10 2/5 0/5 1/5 0/5 3/5 4/5 2/5 2/5 5/5 5/5 

2 3/5 2/5 3(2)/5 2(2)/5 1/5 3/4 0/4 4(3)/4 2(1)/4 1/4 2/3 1/3 1/3 3/3 3/3 

3 4/5 1(1)/5 3(2)/5 2(1)/5 1/5 1/1 1/1 1(1)/1 1/1 0/1 1/1 1/1 0/1 1/1 1/1 

4 0/1 1(1)/1 1(1)/1 1(1)/1 0/1 - - - - - 1/1 0/1 0/1 1/1 1/1 

5 2/3 2/3 2(1)/3 1/3 1/3 1/1 0/1 1/1 1/1 0/1 - - - - - 

6 1/7 1/7 1(1)/7 2(1)/7 0/7 2/2 1/2 1(1)/1 1/2 1/2 - - - - - 

7 - - - - - - - - - - 2/5 2/5 2/5 5/5 5/5 

8 0/3 1/3 1(1)/3 1(1)/3 1/3 - - - - - - - - - - 

9 1/7 4/7 5(2)/7 5(2)/7 1/7 2/2 0/2 0/2 0/2 0/2 - - - - - 

10 5/11 6(1)/11 9(4)/11 6(5)/11 4/11 - - - - - - - - - - 

7
5
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11 0/1 0/1 0/1 0/1 0/1 - - - - - - - - - - 

12 3/12 5/12 9(2)/12 8(2)/12 1/12 1/1 0/1 0/1 0/1 0/1 - - - - - 

13 2/10 3(1)/10 7(3)/10 9(4)/10 2/10 4/8 0/8 4/8 3/8 0/8 - - - - - 

 

Numbers to the right of the slash indicate total captured individuals, and numbers to the left indicate pollen-deposited individuals. 

Numbers in parentheses indicate individuals with > 100 pollen grains. H = head, T = thorax, A = abdomen, L = legs, and W = wings. 

Dashes indicate no data. 
  

7
6
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Table S2-2. Results of self-pollination experiments in 11 populations. 

 

Population 

code  
Variety 

identification  
n  FS  SS  

1  var. koreana  -  -  -  

2  var. koreana  -  -  -  

3  var. kiushiana  8  12.5  30.0  

4  var. kiushiana  10  40.0  25.0  

5  var. kiushiana  7  71.4  36.0  

6  var. sanguinea  25  48.0  25.8  

7  var. kiushiana  15  46.7  32.9  

8  var. sanguinea  25  64.0  23.1  

9  var. sanguinea  15  46.7  28.6  

10  var. sanguinea  54  74.1  34.5  

11  var. kiushiana  30  90.0  45.6  

12  var. sanguinea  19  57.9  24.5  

13  var. sanguinea  28  50.0  28.6  

 

n indicates the flower number for the experiment. FS and SS indicate fruit-set and 

seed-set ratios (percentages), respectively. 

  



78 

 

Figure 2-1. Study site locations. 

 

 

 

Each number represents a research population code. Population codes and locations are 

listed in Table 2-1. 
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Figure 2-2. The results of morphological measurements for eight floral parts. 

 

 

 

(A) Schematics of the measured floral parts. ASL = anther-stigma length, CTL = corolla 

tube length, PED = pedicel length, PEL = petal length, PEW = petal width, PIL = pistil 

length, PPL = petal-petal length, STL = stamen length. (B) Boxplots of the eight 

measured traits. 
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Figure 2-3. Schematics for the test of breaking-bud pollination effects. 

 

 

 

(A) Possible process of pollination at the breaking-bud stage. (B) Stigma-anther 

hypothesis. (C) Stigma-petal hypothesis. 
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Figure 2-4. Nonmetric multidimensional scaling (NMDS) based on the results of 

morphological cluster analysis. 

 

 

 

Numbers indicate population codes. The three circles described by different lines 

indicate significantly different clusters. 
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Figure 2-5. Visitation frequencies and frequency ratios of each population by pollinator 

functional group. 

 

 

 

Each bar shows average frequencies of pollinators in each population. White bars in 

“Small bee” indicate frequencies to breaking buds. 
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Figure 2-6. Pollination frequencies and frequency ratios of each population by 

pollinator functional group. 

 

 

 

Each bar shows average frequencies of pollinators in each population. White bars in 

“Small bee” indicate frequencies to breaking buds. 
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Figure 2-7. Nonmetric multidimensional scaling (NMDS) based on the results of cluster 

analysis using visitation and pollination frequencies of each floral visitor. 

 

 

 

Numbers indicate population codes. (A) Visitation frequencies. (B) Pollination 

frequencies. 

  



85 

 

Chapter 3: Transplant experiments in Lycoris sanguinea var. sanguinea: floral 

adaptation to breaking-bud pollination 

 

Introduction 

 

Animal-pollinated flowers prepare floral resources to attract pollinators. One of these 

resources, pollen, provides nutrition for pollen-collecting animals (Roulston & Cane 

2000; Hargreaves et al. 2010). Generally, less than 1% of removed pollen grains are 

used for pollination (Harder & Johnson 2008), and this pollen limitation could limit 

seed production (Ashman et al. 2004). These conditions could promote plant 

diversification by floral adaptation (e.g. Vamosi et al. 2006; Harder & Aizen 2010). 

Flowering plants experience a variety of floral visitors, and some of them consume 

floral resources, such as nectar or pollen without transporting conspecific pollen to a 

stigma (Hargreaves et al. 2009; Irwin et al. 2010). Pollen thieves may directly decrease 

seed production of the plant population by consuming pollen grains without pollination, 

and they may greatly influence fitness (Hargreaves et al. 2009). Previous studies 

suggest that pollen theft is a more common phenomenon than reported (Hargreaves et al. 

2010); however, the harmful effects on plant reproduction, specific influences on 

flowers (e.g. Solís-Montero et al. 2015), and plant responses to pollen theft have been 

seldom reported.  

Pollen-thieved plants could adapt floral traits to tolerate or resist thieves, or 

convert them into pollinators (reviewed in Hargreaves et al. 2009). Pollen theft can 

cause a pollen limitation, and may promote floral adaptation against the thieves. In 

hermaphroditic flowers, herkogamous or dichogamous flowers tend to have pollen 
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stolen because of mismatches between their visiting phases and pollinator body sizes 

(e.g. Armbruster et al. 1989; Ish-Am & Eisikowitch 1993). To attract floral visitors to 

female-phase flowers, is important for flowers with dichogamy to reduce the effects of 

pollen thieves, and some plants mimic floral rewards or provide feeding pollen as 

attractive materials (Jesson & Barrett 2003; Lunau 2000). However, to our knowledge, 

there are no reports of a pollen thief converted into an effective pollinator until now. 

The evolutionary forces mediated by pollen thieves are likely significant to plants, and 

future empirical studies would resolve these questions. 

In this study, I investigated the possibility of floral adaptation mediated by 

pollen thieves in Lycoris sanguinea Maxim. var. sanguinea Koyama (Amaryllidaceae). 

This plant is visited by various insect species, but the main visitor is the small bee 

Lasioglossum japonicum. The bees visit breaking buds, which are partially-opened 

flowers. Although these small bees tend to be pollen thieves because they are too small 

to contact the stigma, they collect pollen grains from undehisced anthers of breaking 

buds by their mandibles and can pollinate these buds (termed “breaking-bud pollination” 

in Yamaji & Ohsawa 2015). Furthermore, I demonstrated that individuals can be 

artificially pollinated one to two days before flowering (Yamaji & Ohsawa 2015). This 

novel pollination process, “breaking-bud pollination,” was observed in a part of the 

distributed area of L. sanguinea var. sanguinea (Chapter 2). This plant does not need to 

adapt to pollinators at the breaking-bud stage. The ancestral pollinators were likely 

butterfly species based on floral traits that are partly consistent with butterfly-pollinated 

syndromes (Faegri & van der Pijl 1979). Butterflies visit fully-opened flowers to land 

stably on opened corolla. Other larger insects pollinate opened flowers due to their body 

sizes, but only L. japonicum can enter to breaking buds. L. japonicum collect most of 
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the pollen grains of L. sanguinea var. sanguinea at the breaking-bud stage, possibly 

causing a pollen limitation. Such conditions would decrease the pollination efficiency 

by floral visitors in later flowering stages, and could reduce the fitness of L. sanguinea 

var. sanguinea populations. Under these conditions, the improvement of pollination 

efficiencies by small bees could increase floral fitness. Therefore, I hypothesized that 

small bees were originally pollen thieves and floral adaptation increased pollination 

efficiency, changing the bees’ function from thief to pollinator. 

To test this hypothesis, I conducted transplant experiments and following 

pollinator observations and bagging experiments of field populations with breaking-bud 

pollination. Reciprocal transplant experiments are the ideal approach for detecting the 

local effects of biological interactions, including plant-pollinator relationships (Kawecki 

& Ebert 2004; Blanquart et al. 2013; Sun, Gross & Schiestl 2014; Newman et al. 2015). 

However, there are practical limitations to studies of short-flowering plants in multiple 

populations. The flowering season of L. sanguinea var. sanguinea was approximately 

late-July to mid-August, and the period of breaking-bud stage approximately half a day 

or less. Common garden experiments (de Villemereuil et al. 2016) with L. japonicum 

are difficult, and because ecological information on L. japonicum, such as nest sites, is 

scarce, it is difficult to collect them in populations with breaking-bud pollination. For 

these reasons, I conducted transplant experiments in one population with breaking-bud 

pollination. I compared fruit-set and seed-set ratios and visitation and pollination 

frequencies between populations with different pollinator faunas. 

One of the possible reasons for floral adaptation caused by small bee visits to breaking 

buds is to improve the pollination efficiencies by small bees (e.g. Castellanos et al. 

2003). At the fully-open stage, small bees have few chances to contact the stigma 
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because of the spacing between the anther and stigma. In contrast, at the breaking-bud 

stage, small bees may easily touch the stigma because the space between anthers and 

stigma are smaller than in the fully-open stage. These differences could promote the 

selection of individuals in populations that are adapted to small bee visits to breaking 

buds. To test this hypothesis, I artificially restricted insect visitation to flowers at several 

flowering stages. One treatment enabled only small bees to visit the flowers for the 

entire flowering season. I prepared iron-wire cages with gaps that were larger than small 

bees, but smaller than other insect visitors, which were placed over individuals with 

unopened flowers and remained until the end of the season. Another treatment was to 

allow visitation of small bees at the fully-open stage. In addition, I attached 

insect-eliminating covers on cages that were removed after the flowers completely 

opened. To compare the floral fitness between treatments, I estimated the differences in 

pollination efficiencies through fruit- and seed-set ratios. 
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Materials and methods 

 

Plant material 

L. sanguinea var. sanguinea is a perennial herb that lives on deciduous forest floors and 

is mainly distributed in the Honshu region of Japan (Kurita 1988; Kawano 2009). The 

flowering season occurs from approximately late-July to late-August, and there are 

typically two to six opened flowers on their scapes. The flowers are bright orange-red 

without floral scent and the stamens are shorter than the perianths, but the pistil is 

slightly exserted from the corolla (Hsu et al. 1994; Kawano 2009). Various insect 

species, such as larger bees and butterflies, visit these flowers; however, the main visitor 

is the small bee L. japonicum (Yamaji & Ohsawa 2015). L. sanguinea var. sanguinea is 

self-compatible and requires pollinators for seed production (Yamaji & Ohsawa 2015). 

Pollen-mediated gene flow ranges were limited (Chung et al. 1999), and I can infer that 

there is no seed dispersal mechanism because of their small black seeds (Willson & 

Traveset 2000). 

 

Transplant experiments 

To investigate the floral adaptation of L. sanguinea var. sanguinea at the breaking-bud 

stage, I transplanted individuals from populations without breaking-bud pollination to a 

field where breaking-bud pollination had been observed. The main experimental field 

was Izumi Nature Park (Noro-cho, Chiba Pref., 35°34’38”N, 140°13’50”E) where 

breaking-bud pollination is observed and there is a large space for transplant 

experiments. I selected four populations based on a previous study (Chapter 2). Data on 

floral visitor frequencies, potential pollinators, and presence or absence of breaking-bud 
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pollination of these populations were previously collected. I observed two populations 

of L. sanguinea var. sanguinea with breaking-bud pollination (Aichi and Chiba) and 

two without (Ehime and Hiroshima). In mid- to late-July of 2016, I collected 30 

individuals from each population. I selected individuals that were beginning to elongate 

their scapes, and the tips were just on the ground. Six meters separated each individual 

to prevent collecting clonal individuals (Chung et al. 1999). I carefully dug in the 

ground approximately 20-cm around individuals not to damage their bulbs and roots. 

The samples were transplanted into 15-cm pots with commercially available culture soil, 

and transported to Izumi Nature Park. To reduce the effects of gene flow from other 

populations to those native to Izumi Nature Park, I located the experimental plot at least 

150 m from other populations based on the estimated foraging ranges of small bees 

(Gathmann & Tscharntke 2002; Greenleaf et al. 2007). I arranged collected samples in a 

regular grid of 30 × 4 plots (Figure 3-1). Arranged samples were separated from each 

other by 0.5 m. Our preliminary experiments showed that transplanted individuals in 

Chiba populations have no significant differences in fruit-set or seed-set ratios with 

those planted in the ground in natural conditions (generalized linear models with 

binomial errors: fruit set, coefficient = -0.024, z = -0.066, P = 0.95; seed set, coefficient 

= -0.025, z = -0.135, P = 0.89). 

 

Bagging experiment 

To evaluate the fitness of each population to breaking-bud pollination, I conducted 

various bagging experiments based on our previous work (Yamaji & Ohsawa 2015). 

Treatments were the following: (A) Control: no treatment; (B) Breaking bud: observed 

small bee visits to breaking buds, then removed these anthers, and bagged using 
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insect-excluded bags; (C) Pollen supplementation: selected flowers and pollinated them 

with pollen grains of other individuals; (D) Bud pollination: selected unopened buds 

which will open one or two days after, then removed anthers of them, and pollinated 

them with pollen of other individuals; and (E) Pollinator exclusion: unopened buds were 

bagged until the end of flowering season. To reduce the individual effects of fruit and 

seed sets, I treated a flower per each treatment in an individual, as possible. At the end 

of the flowering seasons, I collected treated samples and recorded the fruit set and seed 

number of each flower. 

 

Pollinator observation 

To compare the floral visitors and pollinators between populations and pollination types, 

I recorded floral visitors using digital video cameras. Our main objective was to 

determine whether breaking buds of individuals from other populations were visited by 

small bees or not. In the flowering season, digital video cameras (GZ-E220 and 

GZ-E265, JVC Kenwood, Japan) with tripods were placed approximately 50 cm from 

the target flowers. Target flowers included both completely open flowers and breaking 

buds in each observation day, as possible. I recorded insect visitors to selected flowers 

from 06:00 to 10:00. After that, I viewed the footage to record visiting insect numbers 

and species. I also checked whether each floral visitor touched a stigma or not, and I 

identified formers as pollinators. I calculated visitation and pollination frequencies of 

each insect per hour. Target flowers were decided at the start of observations in each day, 

and I ensured that flowering phenologies were not different between populations 

(Figure S3-1). 
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Cage-cover experiment 

To reveal the differences of pollination efficiencies by small bees, I manipulated flowers 

not to be visited at breaking-bud stage but to be at fully-open stage. I first prepared 

smaller mesh cages that only small bees could pass through. I made preliminary cages 

with several sizes of mesh holes; 10 mm × 10 mm, 7 mm × 6 mm, 5 mm × 5 mm, and 4 

mm × 4 mm. I caught small bees and large bees in June, and released them into the 

prepared cages. I determined that the 7 mm × 6 mm mesh was suitable because small 

bees could pass through smoothly, but large bees could not. In Izumi Nature Park, I 

selected individuals with no opening flowers, transplanted them into pots with 

commercially available soil, and transported them to the experimental site. Pots were 

placed 0.5 m apart, and I covered them before opening with pollinator-excluded covers. 

In next day, I removed the covers and exposed cages for small bees. Unopened or 

partially-opened buds and fully-open flowers coexisted in each cage, and I checked each 

flower for buds or opening flowers. After anthesis, I removed the cages and collected 

fruits and seeds. Fruit-set and seed-set ratios were calculated and compared using the 

following statistical methods. 

 

Data analyses 

To compare populations in the bagging experiments, I used a generalized linear model 

(GLM) with binomial errors in R software. I compared fruit set and seed number per 

fruit between pollination types and populations in each treatment. In the case of zero 

values in any group, I prepared hypothetical samples. This virtual sample had a seed per 

fruit, and I added a sample per population. I also tested differences of each value 

between pollination types using Wald tests. I further used statistical analyses to reveal 
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which population pairs had significant differences in fruit set and seed number per fruit. 

I adopted multiple comparison tests, adjusted using the Holm correction, in the glht 

function of the multcomp package (Hothorn et al. 2008).  

To compare the floral visitor frequencies between pollination types, we used 

generalized linear mixed models (GLMMs) with Poisson errors in the glmer function of 

the package lme4. I compared visitation and pollination frequencies of five visitor 

types: small bees, small bees to breaking buds, larger bees, hoverflies, and large 

butterflies. I used visitation and pollination counts of each flower as response variables 

and pollination types as explanatory variables. I also set observed days and populations 

as random effects. Statistical differences between pollination types were evaluated by 

Wald tests. Additionally, I added an offset variable to scale frequencies by the hour of 

observation in each period. I also compared both frequencies between populations using 

GLMMs with observed days as random effects and observed hours as the offset variable. 

Multiple comparisons with Holm adjustment were used in the glht function. 

Finally, I compared the results of cage experiments using GLMMs with 

binomial errors in the glmer function of the package lme4. I compared fruit-set ratio and 

seed numbers per fruit using treatment type (breaking buds or opening flowers) as a 

fixed effect and individuals as random effects. I also considered the emerged times of 

flowers and small bees. In our experiment, breaking buds had one additional day for 

pollination compared to opening flowers. The flowering periods of L. sanguinea var. 

sanguinea individuals were approximately five days (personal observation). Therefore, I 

added an offset variable for GLMMs with various values A (A = 3~7) to breaking buds 

and A-1 to opening flowers. I checked significant differences using Wald tests. 
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Results 

 

Bagging experiments 

The results of the bagging experiments are shown in Figures 3-2 and 3-3. The breaking 

bud treatment showed that population type significantly affected fruit-set ratio (GLM 

with binomial error: Z = -3.716, P < 0.001), indicating differences in floral fitness to 

small bees at the breaking-bud stage. The bud pollination treatments showed the reason 

for the lower fruit set of the two populations; they had no pollination abilities at the bud 

stage (Figure 3-2: fruit set, GLM; Z = -3.616, P < 0.001). This data suggested that the 

individuals in populations with breaking-bud pollination had more matured stigmas 

compared with other populations. Both treatments resulted in similar seed sets among 

populations (Figure 3-3). Other treatments revealed smaller gaps of fitness between 

populations; control and outcross treatments showed no significant differences between 

populations (Figure 3-2: Control, GLM: Z = -0.702, P = 0.483; Outcross, GLM: Z = 

-0.647, P = 0.518), and the pollinator exclusion treatment showed no reproductive 

success of L. sanguinea var. sanguinea without pollinators, consistent with previous 

reports. 

 

Pollinator observation 

I recorded 44 h over 10 days and 1484 floral visitors in 4 functional groups were 

recorded; 1243 small bees (including 516 ones for breaking buds), 48 large bees, 190 

hoverflies, and 3 large butterflies. Visitation frequencies to breaking buds by small bees 

were not different between pollination types (GLMM with Poisson error; Z = -0.786, P 

= 0.432), suggesting no floral signal to attract small bees to breaking buds. In contrast, 
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in the Hiroshima population, visitation frequencies of small bees to fully-opened 

flowers and breaking buds were significantly lower than other three (Figure 3-4: 

GLMM with Poisson error; P < 0.01). Pollination frequencies of small bees to breaking 

buds were significantly different between pollination types and between populations 

(Figure 3-5: GLMM; pollination types: Z = -2.013, P < 0.05; populations: P < 0.05). 

Visitation and pollination frequencies of other pollinator groups were not significantly 

different between pollination types or between populations.  

 

Cage-cover experiments 

A total of 60 individuals and 229 flowers were used for the cage experiments (102 

flowers for breaking buds and 127 for open flowers). The fruit-set ratio in the 

breaking-bud treatment was higher than in the flowering treatment (Figure 3-6, Table 

3-1: GLMM, offset = log (A, A-1|A = 3~7); P < 0.01). In contrast, the seed-set number 

per fruit was lower in breaking buds (GLMM; P < 0.01). 
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Discussion 

 

This study investigated the hypothesis that breaking buds of L. sanguinea var. 

sanguinea can adapt to pollen theft by small bees. Although the small bees visited 

breaking buds of all four plant populations (Figure 3-4), populations with breaking-bud 

pollination had higher fruit-set ratios in the “breaking bud” treatment (Figure 3-2). This 

suggested that the individuals in these populations adapted to small bees at the 

breaking-bud stage. This study also demonstrated that the trait of premature 

development of the stigma could be selected for in these populations (“bud pollination” 

in Figure 3-2). The ability of the stigma to accept pollen at the breaking-bud stage is 

important to establish breaking-bud pollination and the selection for earlier-maturing 

stigma could promote higher fruit sets in L. sanguinea var. sanguinea. Only small bees 

can visit breaking buds; thus, it is unlikely that the selection of stigma prematurity is 

due to other factors. Furthermore, the pollination efficiency of the small bees changed in 

response to flowering stage. Results of the cage experiments showed a lower fruit-set 

ratio in the fully-open stage mediated by small bees (Figure 3-6A). These differences 

could promote floral adaptation in breaking buds because consumed pollen is not used 

for pollination (Thorp 2000), and pollen consumption in breaking buds could decrease 

the efficiencies of other insects indirectly (Hargreaves et al. 2009). Therefore, these 

results positively support the hypothesis that small bees changed from pollen thieves to 

pollinators by floral adaptation at the breaking-bud stage. 

The evolutionary impacts of pollen theft on flowering plants have scarcely 

been studied. This study records a possible process for converting pollen thieves into 

pollinators. In previous studies, the main reason of why floral visitors act as pollen 
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thieves was the separation of male/female reproductive parts in space, such as 

herkogamy (Hargreaves et al. 2009). In our case, however, the anthers and stigma are 

closer in breaking buds than in completely open flowers, and small bees visiting 

breaking buds overcomes the challenge of mismatches between reproductive parts and 

insect body sizes. Although another barrier to small bees being effective pollinators was 

stigma immaturity in breaking buds, natural selection could resolve it. This might have 

shown the difficulties of converting thieves into pollinators because both time and space 

separations could be prohibitive. A previous study suggested that floral traits, not the 

behaviours of floral visitors influenced whether they acted as pollen thieves (Hargreaves 

et al. 2012). However, in L. sanguinea var. sanguinea, the visitation of small bees to 

breaking buds was undoubtedly a key factor for the bees to be effective pollinators, and 

our results suggest the importance of changes in visitor behaviours. Therefore, 

behavioural changes that could reduce the separation of reproductive organs would be 

required for pollen thieves to become pollinators. Breaking buds contain a large amount 

of pollen that is collected only by small bees, and the visitation to breaking buds would 

be advantageous for small bees. These conditions could be produced by increases in 

pollen collectors including small bees or decreases other plant abundances as resources 

for pollen grains. In both cases, an excessive demand for pollen might promote the 

visitation of breaking buds and the adaptation to small bees. 

It has been suggested that a reduction in herkogamy or dichogamy could 

increase the efficiency of pollen thieves (Hargreaves et al. 2009). However, it also could 

increase self-pollination, which reduces genetic diversity and lowers fitness via 

inbreeding depression. Therefore, these selective forces may conflict with each other. A 

previous study demonstrated the self-compatibility of L. sanguinea var. sanguinea 
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(Yamaji & Ohsawa 2015), and L. sanguinea var. kiushiana was observed to produce 

fruits and seeds by self-pollination (Table S2-2). Although seed germinated ratios or 

viabilities have not been researched, this plant might have received little influence by 

selfing, and the selection against to pollen thieves was likely to act to breaking buds. 

Self-compatibility might be another condition that changes visitor functions. 

To the best of our knowledge, this is the first record of pollen thieves becoming 

pollinators due to floral adaptation. Populations without breaking-bud pollination 

showed slightly decreasing ratios of reproductive success under natural conditions 

(“Control” in Figures 3-2 and 3-3), suggesting that other floral visitors, such as larger 

bees, contributed greatly to floral fitness. It is possible that large bees carried pollen 

grains with higher quality or quantity on their bodies than the small bees. This study did 

not examine pollen quality or quantity; therefore, further research on the differences in 

efficiencies is required. Additionally, visitation frequencies of small bees differed 

between populations (Figure 3-4). I previously observed differences in visitation 

frequencies and visitor types between these populations (Chapter 2). Some floral traits 

that attract visitors, such as floral scent, may vary in L. sanguinea var. sanguinea, and 

these floral traits could have influenced the results in this study. 
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Table 3-1. The results of statistical analyses in cage-cover experiments.  

 

Offset value (log(x))  Estimate  Std. Error  Z value  P value  

Fruit set ratio  
    

  x=3  
-0.7861  0.2939  -2.674  0.0075  

  x=4  
-0.9039  0.2939  -3.075  0.0021  

  x=5  
-0.9684  0.2939  -3.295  0.0010  

  x=6  
-1.0092  0.2939  -3.434  0.0006  

  x=7  
-1.0374  0.2939  -3.53  0.0004  

     

Seed number per fruit  
    

  x=3  
0.8144  0.1972  4.131  0.0000

 

 

  x=4  
0.6966  0.1972  3.533  0.0004  

  x=5  
0.6321  0.1972  3.206  0.0014  

  x=6  
0.5913  0.1972  2.999  0.0027  

  x=7  
0.5631  0.1972  2.856  0.0043  

 

Bold means significant differences at the P < 0.05 level. 
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Figure 3-1. Individual arrangements for transplant experiments. 

 

 

 

Each circle means individuals, and alphabets in circles show populations. C, Chiba, A, 

Aichi, E, Ehime, and H, Hiroshima. 
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Figure 3-2. Fruit set ratios for bagging experiments. 

 

 

 

Each bar shows average ratios of each population. Error bars show 1 SE. Same 

alphabets on average bars show no significant differences between these populations. 

(A) Control, (B) Breaking bud, (C) Pollen supplementation, (D) Bud pollination. 
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Figure 3-3. Seed numbers per fruit for bagging experiments. 

 

 

 

Each bar shows average ratios of each population. Error bars show 1 SE. (A) Control, 

(B) Breaking bud, (C) Pollen supplementation, (D) Bud pollination. 
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Figure 3-4. Visitation frequencies of each pollinator group. 

 

 

 

Each bar means average frequencies calculated by visitation numbers per flower per 

hour. Error bars show 1 SE. Same alphabets on the bars mean no significant differences 

between these populations. 
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Figure 3-5. Pollination frequencies of each pollinator group. 

 

 

 

Each bar means average frequencies calculated by pollination numbers per flower per 

hour. Error bars show 1 SE. Same alphabets on the bars mean no significant differences 

between these populations. 
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Figure 3-6. The results of cage experiments. 

 

 

 

Each bar means average values and error bars mean 1 SE. (A) Fruit set ratios, (B) Seed 

number per fruit. 
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Figure S3-1. Flower numbers for observations of floral visitors in each day. 

 

 

 

Each bar showed the numbers of observed flowers. 
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Chapter 4: Inferences of population structure and divergences in Lycoris sanguinea: 

relationships between population genetics and pollination system 

 

Introduction 

 

Plant-pollinator interactions have been well studied for evolutionary biology and 

ecology. The differences of pollinator species or functional groups could promote 

prezygotic reproductive isolation and cause speciation (Kay & Sargent 2009; Willmer 

2011). However, the specific mechanisms of pollinator-mediated speciation have 

remained unclear (van der Niet & Johnson 2014). For understanding the mechanisms of 

plant-pollinator interactions, genetic or genomic studies in closely related taxa could 

have been effective methods (e.g. Milano et al. 2016).  

Lycoris sanguinea var. sanguinea has the rare pollination process named as 

breaking-bud pollination (Yamaji & Ohsawa 2015). This process happens at partially 

opened stage by small bees Lasioglossum japonicm. Some populations of L. sanguinea 

var. sanguinea adapt to this pollination system, possibly by moving up the period of 

stigma receptivity as discussed in the previous chapter. However, we don’t know 

whether these regional floral adaptation to breaking-bud pollination is accompanied 

with neutral genetic differentiation among populations.  

Next generation sequencing technologies enables us to obtain huge amounts of 

DNA sequence fragments (Baird et al. 2008; Peterson et al. 2012). Especially, 

restriction site associated DNA sequencing (RADseq) can be adopted to organisms 

without genomic information by reading flanking regions of restriction sites for 

phylogenetic, phylogeographic and population genetic studies (i.e. Andrews et al. 
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2016). 

Here we focused on the patterns of genetic structures and population 

divergences between populations of L. sanguinea varieties. We selected nine 

populations which included three breaking-bud pollinated populations. We used RAD 

sequencing method for genome-wide single nucleotide polymorphism (SNP) detection. 

We analyzed genetic data for basically genetic information of each population, 

population genetic structures and population divergent patterns.  
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Materials and methods 

 

Plant samples 

We selected nine populations of Lycoris sanguinea varieties based on the cluster 

analysis of morphological data, which was conducted in chapter 2 (Figure 4-1). We 

collected leaf or pericarp samples from 10 individuals from each population. Each 

sample was dried by silica gel and total DNA of each sample was extracted by CTAB 

method (Doyle & Doyle 1987). DNA amounts were calculated by Quantus Fluorometer 

(Promega, USA), and we adjusted concentration of the DNA samples to 20 ng/µl.  

 

Rad sequencing 

We adopted double-digested RAD methods (Peterson et al. 2012) for the collection of 

genetic data. RAD sequencing was conducted in Clockmics (Osaka, Japan) as the 

collaborative research research with Dr. Atsushi J. Nagano, Ryukoku University. 

Genomic DNA was digested using two restriction enzymes EcoRI and BglII, and the 

library constructed were sequenced on Hiseq (Illumina), at one lane in single end 50bp 

reads mode.  

 

RADseq data processing 

Processes of RAD-seq data were performed by PyRAD v2.0 (Eaton 2014). PyRAD is 

de novo assembly software which utilized sequence clustering program VSEARCH, 

enabling consideration of indel variation. Our raw FastQ data have already been 

separated by sample barcodes, and we first conducted quality filtering with removal of 

barcodes, restriction sites and sequence adaptors. We replaced base calls with a quality 



114 

 

scores below 33 to “Ns”, and reads with more than four “Ns” were discarded. Second, 

we clustered filtered data within and across samples. Within-sample and consensus 

sequence clusters were built with 85% clustering threshold. Minimum depth of 

coverage for a cluster was set to four. Finally, we constituted alignment files with 

filtering for paralog. We set minimum sample numbers in a final locus to four and 

maximum individuals with shared heterozygous sites to 48. 

After the de novo assembly by PyRAD, we used TASSEL software (Bradbury 

et al. 2007) to remove SNPs with Ns in more than 20% of individuals, SNPs with a 

minor allele frequency less than 5%, and individuals with Ns at more than 20% of SNPs. 

We also generated SNPs dataset with different filtering parameters, but results of PCoA 

on the other datasets showed lower resolution. To remove the FST outlier loci, we used 

BayeScan v2.1 (Foll & Gaggiotti 2008) with default parameters and a false discovery 

rate of 0.05. BayeScan estimated FST coefficient of each loci in global and population 

levels, and detected candidates which have been subject to selection using a Bayesian 

method.  

 

Genetic diversity and population genetic analyses 

After the remove of outlier loci, we used SPAGeDi software (Hardy & Vekemans 2002) 

to estimate genetic diversity (He) and individual inbreeding coefficient (Fis) with 1000 

permutations of each population. Additionally, pairwise population FST values were 

calculated by using GenAlex v6.5 (Peakall & Smouse 2012) with an option of 

“interpolate missing” and 999 permutations. The graph of Principal Coordinate 

Analyses (PCoAs) was constructed based on not-standardized FST distance values by 

using GenAlex v6.5. Testing of isolation by distance pattern of genetic divergence was 
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conducted by using Mantel test (Mantel 1967) with 999 permutations. 

 Bayesian clustering was performed using STRUCTURE 2.3 (Pritchard et al. 

2000). The admixture model with correlated allele frequencies was used. The model 

was run with the likely number of clusters (K) set to values from 2 to 9, using a burn-in 

of 30,000 Markov ChainMonte Carlo (MCMC) iterations followed by 100,000 MCMC 

iterations. The optimal K was determined based on the method of Evanno et al. (2005) 

implemented in STRUCTURE HARVESTER (Earl and vonHoldt, 2012), by using the 

data of 10 independent runs. Bar charts representing the proportion of cluster 

membership in each individual were obtained using CLUMPAK (Kopelman et al. 

2015). 

 A number of clusters (K) varying from 2 to 9, was evaluated under Admixture 

and LOCPRIOR models (Hubisz et al. 2009) by running 100,000 burn-in Markov Chain 

Monte Carlo (MCMC) repetitions and 1,000,000 subsequent repetitions based on the 

LOCPRIOR model. The probabilities of each K were averaged over 10 runs. We 

employed the CLUMPAK server (ref, http://clumpak.tau.ac.il/index.html) to evaluate 

multimodality among runs at each K. The optimum K value was determined based on 

ΔK, evaluating the probability of the data (Ln P(D)) for each K value using 

STRUCTURE HARVESTER. Bar charts representing the proportion of cluster 

membership in each individual were obtained using CLUMPAK . 

 

Population genetic divergences based on phylogenetic tree 

We used SplitsTree v 4.14.4 (Huson 1998) to visualize the phylogenetic networks 

between populations. We adopted neighbor-net algorithms (Bryant & Moulton 2004) 
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with default parameters (uncorrected P, ambiguous states ignored, variance with 

Ordinary Least Squares).  
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Result 

RAD sequencing 

Generated total read numbers were 181.9 million reads from 90 individuals. Average 

read counts per sample were 2.02 million (0.30 – 6.00 million) and average ratio of Q30 

scored reads were 95.38% (94.15 – 96.05%). After the filtering of assembled data, 574 

loci of 72 samples remained. 25 loci among them were detected as non-neutral loci by 

BayeScan, and they were removed for the following analyses.  

 

Basic population genetic parameters 

The expected heterozygosity (He) and individual inbreeding coefficient (Fis) values in 

nine populations examined were given in Table 4-1. Pairwise FST values between 

populations were shown in Table 4-2. 

 

Population structure 

Principal coordinate analysis (PCoA) showed clear genetic differentiation between 

populations (Figure 4-2). The breaking-bud pollinated populations (Pop9, 10 and 13) 

were separated from the other populations on the first axis (coord. 1), which explained 

21.9% of the variation. On the second axis (coord. 2, 12.73% explained), Pop1 was 

separated and the other populations were located adjacently from east to west. 

In the STRUTURE analysis, ΔK suggested K = 7 as optimal. In k=2, the 

breaking-bud pollinated populations (Pop9, 10 and 13) were grouped into cluster 1 and 

the remaining populations were assigned to cluster 2 (Figure 4-3). In k=3, Pop1 was 

separated from the non breaking-bud pollinated populations, but showed significant 

admixture with two Kyushu populations (Pop3 and 4). The result in this cluster number 
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coincided with that of PCoA. In k=4-7, clinal patterns of genetic divergence from east to 

west were revealed. 

The Mantel test showed significant correlations between geographic distances 

and pairwise FST values between populations, indicating clear pattern of isolation of 

distance (Figure 4-4). 

 

Phylogenetic networks 

Neighbor-net graphics visualized a pattern of genetic differentiation among the nine 

populations examined. Populations with breaking-bud pollination (Pop9, 10 and 13) 

appeared as a distinct group (Figure 4-5). As with PCoA and STRUCTURE, individuals 

of Pop1 were clearly separated from others. Populations in Kyusyu regions (Pop3 and 

4) were located closely. In Shikoku and Chugoku regions, Pop6 and 8 lied next to each 

other, and an individual of Pop6 was located within an aggregate of Pop5.
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Discussion 

 

To reveal the relationships between population genetics and pollination system, we 

estimated genetic structures among populations by using RADseq data. All of genetic 

cluster analyses and phylogenetic network showed clear genetic divergence between 

three eastern populations and the other six ones. Such genetic divergence between 

eastern and western regions in Japan has been frequently observed in plants and animals 

(Table 2 in Aoki et al. 2011). For example, in glacial and interglacial periods, plant 

distributions could be restricted in eastern and western refugia. After these periods, 

populations expanded distribution areas and present distribution patterns were formed 

(e.g. Aoki et al. 2011). Another hypothesis is that genetic divergence could be generated 

by the events of generic drift through the distributional shift from the past center of 

distribution (e.g. Tsuda et al. 2015; Uchida et al. 1997). In this theory, peripheral 

populations are expected to have lower genetic diversities than the central populations. 

In the present study, however, genetic diversities (He) did not vary so much among 

populations, suggesting that severe genetic drift events would be unlikely. 

In mantel test and STRUCTURE, we could detect the genetic patterns of 

isolation by distance. Lycoris sanguinea have very limited dispersal abilities of seeds 

and clonal bulbs (Chung et al. 1999). It is known that body sizes of bees and their 

foraging distances are highly correlated (Greenleaf et al. 2007). Lasioglossum 

japonicum, a main pollinator in some populations, has approximately 5-mm body sizes, 

suggesting short dispersal abilities of pollens (Gathmann & Tscharntke 2002; Greenleaf 

et al. 2007). Other larger bees such as Amegilla florea have 15 to 20-mm sizes and they 

may also carry pollen grains in limited ranges. Therefore, although the long distance 
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dispersal of pollen grains could be rarely happened (Ahmed et al. 2009; Nathan 2006), 

small and large bees would contribute to gene flow between populations. In contrast, 

butterfly species could have longer movement distances than bees (e.g. Hovestadt et al. 

2011). Pollen dispersal abilities between bees and butterflies have not been compared 

yet, but it could be possible that large butterflies have higher abilities of pollen dispersal 

distances than bees. They might promote geographical clusters of population genetic 

structures in L. sanguinea observed in STRUCTURE results. 

Although an apparent association between breaking-bud pollination and 

genetic divergence at neutral loci is observed, it is difficult to determine whether the 

pollinator differences influenced genetic structures of study populations. All of the three 

populations with breaking-bud pollination were located in eastern areas, and thus it 

would be also possible that pollinator divergence occurred after the eastern versus 

western genetic divergence caused by putative geographical isolation events in glacial 

period(s), as discussed above. In order to resolve this, additional genetic studies 

including Nagano and Saitama populations (Pop11 and 12 in chapter 2), in which 

breaking-bud pollination was not observed, would be desired. 

In the nine populations examined in this chapter, Pop6 had frequent pollination 

chances by small and large bees (Figure 2-5). This population showed smaller sizes of 

floral traits, and can be classified to L. sanguinea var. sanguinea based on the criteria of 

Hsu et al. (1994). In STRUCTURE analyses, Pop6 was assigned to the same cluster 

with the nearest population, Pop5 of L. s. var. kiushiana (Table 2-1), from k=2 to k=5. 

Neighbor-net phylogenies showed that Pop5 was distantly related to other L. s. var. 

sanguinea populations (Pop9, 10 and 13). In the same way, Pop5 and 8 were closely 

clustered in a group in all analyses, but other two larger-flower populations classified to 
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L. s. var. kiushiana (Pop3 and 4) were separated in phylogenetic networks. These results 

suggested that patterns of floral morphologies could have been caused independently to 

the history of population divergences at neutral genetic markers. Our previous works 

suggested the interactions between floral morphologies and pollination frequencies. 

Therefore, we suggested that floral morphologies could be affected by regional 

pollinator differences among L. sanguinea populations, and not by population genetic 

divergences. 
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Table 4-1. Genetic diversity of each population. 

 

Populations  Sample size  He  FIS 

Pop1  7  0.1966  -0.039  

Pop3  9  0.2529  0.238  

Pop4  9  0.2388  0.26  

Pop5  10  0.1998  0.204  

Pop6  7  0.1986  0.198  

Pop8  6  0.2223  0.322  

Pop9  9  0.1837  0.054  

Pop10  9  0.1982  0.129  

Pop13  6  0.144  0.216  
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Table 4-2. Pairwise population FST values. 

 

Pop1 Pop3 Pop4 Pop5 Pop6 Pop8 Pop9 Pop10 
 

0.220 
       

Pop3 

0.237 0.062 
      

Pop4 

0.340 0.179 0.115 
     

Pop5 

0.310 0.161 0.092 0.105 
    

Pop6 

0.263 0.134 0.086 0.102 0.079 
   

Pop8 

0.355 0.222 0.193 0.240 0.209 0.184 
  

Pop9 

0.410 0.250 0.226 0.296 0.276 0.255 0.168 
 

Pop10 

0.449 0.303 0.275 0.344 0.336 0.309 0.223 0.179 Pop13 
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Figure 4-1. Localities of this study sites.  

 

 

 

Each number means research population codes. Different color circles mean clusters 

based on floral morphologies. Blue, large flower groups, Yellow, small flower groups, 

Green, intermediate groups. 
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Figure 4-2. The graph of Principal Coordinate Analyses (PCoAs).  

 

 

Each population is divided by color and shapes. Colors correspond to morphological 

clusters drawn in Figure 4-1. 
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Figure 4-3. STRUCTURE results. Each cluster shows different versions of k values. 
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Figure 4-3. Continued. 
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Figure 4-4. Isolation-by-distance relationship between all population pairs.  
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Figure 4-5. Phylogenetic networks built by SplitsTree.  
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General discussion 

 

Breaking-bud pollination is the first case of a pollination process that is mediated by 

insect species at partially opened stage. Previous studies about pollinator-associated 

floral traits were focused on following characteristics; floral color, scent, morphologies 

and flowering times (e.g. Bradshaw & Schemske 2003; Byers et al. 2014; Hall & Willis 

2006; Schemske & Bradshaw 1999). These traits promote reproductive isolation by 

attracting different pollinators or delimiting pollination chances by maladaptive ones. 

Even when the same pollinators are shared, interspecific pollen transfer can be reduced 

by the positions of pollen placement and stigma contact on the bumblebee's body 

surface in Pedicularis (Huang & Shi 2013). Compared to these cases, breaking-bud 

pollination is made possible by hastening the receptive period of stigma, one or two 

day(s) shift of stigma maturation. In populations with breaking-bud pollination, stigma 

has already matured in bud stage, and this shift would be favored by natural selection by 

converting “just a pollen thief” to “effective pollinator”. At the breaking-bud stage, 

small bees collected most of the pollen grains of flowers (Figure 1-3). These pollens 

collected by small bees could not be used for reproduction because the bees consumed 

them as the energy and nutrition of their larvae or themselves (Hargreaves et al. 2009; 

Roulston & Cane 2000). This would cause pollen limitation and decrease fitness of L. 

sanguinea var. sanguinea individuals. Additionally, differences of pollination 

effectiveness between breaking-bud and fully-opening stages could also affect fitness. 

Compared to fully-opened stage, anthers and stigma at breaking-bud stage are spatially 

closer. Therefore, contact with stigma by small insects collecting pollen grains from 

anthers could be more likely to occur at breaking-bud stage (Thomson & Plowright 
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1980). We showed in Chapter 3 that small bees had lower effectiveness at fully-opening 

stage (Figure 3-6), and hypothesized that these conditions could cause the maturation of 

stigmas at breaking bud stage. This type of floral adaptation has never been reported 

and we suggest that this pollination process has novel perspectives in ecology and 

evolutionary biology. 

For the adaptation to small bees at the breaking-bud stage in L. sanguinea var. 

sanguinea, the behaviors of small bees visiting breaking buds are the key factor. 

Previous study suggested that floral traits determined whether the floral visitors acted as 

pollen thieves because they can smoothly change the behavioral patterns for visiting 

flowering plants (Hargreaves et al. 2012). The present study showed the acceleration of 

stigma maturation was an important trait for enabling breaking-bud pollination (Chapter 

3). Furthermore, entering behavior of small bees into breaking buds is undoubtedly 

essential and a prerequisite for the evolution of breaking-bud pollination.  However, it 

remains to be answered why breaking-bud pollination is observed only in some of 

eastern populations in Japan. One hypothesis is that regional abundance of the small 

bees could bring about the entering behavior into breaking buds through the competition 

between the small bee individuals for pollen resources of L. sanguinea. Another one is 

that the entering behavior of small bees into breaking buds could be heritable. I tried to 

examine the phylogenetic relationships of small bees between study populations using 

mitochondrial DNA regions COI (Figure S1). The result showed the populations 5 and 8 

were genetically differentiated from other populations. It should be noted that visitation 

of small bees to open flowers was observed but not at breaking-bud stage in the two 

population. Therefore, the genetic backgrounds could reflect the visitation patterns to L. 

sanguinea. 
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The present study also gave taxonomic implications for L. sanguinea varieties. 

Three varieties of L. sanguinea have been classified by the floral morphologies and 

flowering period. I classified my study populations based on these traits (Table 2-1), and 

nine populations, which included four populations of L. s. var. sanguinea, four ones of L. 

s. var. kiushiana, and one of L. s. var. koreana (Figure 4-1), were used for the estimation 

of genetic structures. However, the taxonomic groups and morphological clusters or the 

phylogenetic network were not consistent (Figure 2- , Figure 4-5). In contrast, cluster 3, 

which had the smallest flowers in study populations, was grouped together in 

neighbor-net tree of populations. Other two clusters were not consistent to the network, 

and the differences of local pollinator faunas in these populations might be reflected to 

floral morphology variations as suggested in chapter 4. At least, the populations 

included in cluster 3 might be identified as another variety in L. sanguinea, although the 

reassessment of floral traits for taxonomical groupings would be needed. 

On the other hand, Population 1 in Chapter 4 had clear genetic differentiation 

to other eight populations. Tsushima Island has been thought to limited distribution area 

of L. s. var. koreana (Ministry of the Environment Japan 2015), and the genetic analyses 

could suggest that individuals of Population 1 were L. s. var. koreana. However, this 

population was separately located across the sea and the results of genetic analyses 

might only reflect the effects of geographic barriers. I also need to compare the 

individuals of Tsushima Island to those of type localities of L. s. var. koreana for the 

identification of species. Further analyses of genetic structures and morphological traits 

using more samples would be requested. 
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Figure S1. Phylogeny of Lasioglossum japonicum estimated with a maximum likelihood 

(ML) analysis of an intergenic mitochondrial region. 

 

 

 

The analysis includes 16 samples in 9 populations. Support values are indicated > 50% 

supported. 
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Supporting methods 

 

DNA extraction 

Lasioglossum japonicum was sampled in nine populations. The bees were collected by 

pooter (aspirator) when they visited to flowers of L. sanguinea. These samples were 

killed quickly by ethyl acetate and then preserved in 70% ethanol. DNA extraction was 

conducted based on the method in Montero-Pau et al. (2008). I cut a hind leg of each 

sample and put them in 1.5 mL individual tubes. Then I aliquot 75uL of alkaline lysis 

reagent (NaOH 25mM, disodium EDTA 0.2mM, pH 8.0) into each tube. After that, I 

incubate for 1 hour at 95℃ and then cool on ice. Finally, I aliquot 75 uL of 

neutralization reagent (Tris-HCl 40mM, pH 5.0) and vortex the tubes. 

 

PCR amplification and sequencing 

I amplified mitochondrial COI region using the primers named as Jerry-Pat 

(approximately 900 bp length, Danforth et al. 1999). PCR was performed using 2.0 uL 

DNA extract with 0.03 uL of ExTaq (TaKaRa), 0.5 uL of dNTPs, 0.625 uL of 10×PCR 

buffer, 1.25 uM of each primer for 6.25 uL volume. PCR conditions were as follows: 5 

min for initial denaturation at 94℃, followed by 3 amplification cycles of 1 min 

denaturation at 94℃, 1 min annealing at 53℃, 1.5 min extension at 72℃, followed by 3 

cycles of 1 min denaturation at 94℃, 1 min annealing at 50℃, 1.5 min extension at 

72℃, then followed by 25 cycles of 1 min denaturation at 94℃, 1 min annealing at 

47℃, 1.5 min extension at 72℃, and a final 8 min extension at 72℃. Amplified DNA 

was purified using Exonuclease and Alkaline Phosphatase (illstra
TM

) according to the 

manufacture’s instruction. Cycle sequencing reactions were performed using BigDye 
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Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems). Each sample was 

purified by ethanol precipitation and sequenced in an ABI3500 Sequencer (Applied 

Biosystems).  

 

Alignment and phylogenetic analysis 

Sequence alignments were performed in CLUSTAL W (Larkin et al. 2007) and then 

modified manually. Maximum likelihood analysis was performed using MEGA version 

6.06 (Tamura et al. 2013). Mitochondrial sequence of L. lativentre was extracted from 

GenBank (accession number AF104650.1) and used as an outgroup for phylogenetic 

analysis. 
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