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ABSTRACT 

 

USE OF MULTI-TEMPORAL HIGH-RESOLUTION SAR IMAGES  

FOR MONITORING FLOOD SITUATION AND TYPHOON EFFECTS 

  

Pisut Nakmuenwai 

Doctor of Engineering 

Chiba University, 2017 

 

This dissertation focuses on the application of multi-temporal high-resolution Synthetic Aperture 

Radar (SAR) images for detecting and monitoring the natural disasters effects. Because SAR sensors 

emitting microwave are independent on sunlight conditions and microwave can penetrate the cloud-cover, it 

can be used under all the weather conditions in the daytime and nighttime to detect natural disaster even in 

the bad weather environment. Although a single image could capture the event, multi-temporal images based 

on multiple time series provide more information in another dimension. The multi-temporal information is 

not only useful for the change detection, but it also provides an excellent tool to monitor the event progress. 

Change detection which is considering just two points in time is suitable for emergent disasters, e.g., typhoon, 

landslide, earthquake, and volcanic eruption. In this case, the damage assessment of buildings due to the 

2013 typhoon Haiyan in the Philippines is selected to illustrate the potentiality of the interferometry SAR 

pairs. On the other hand, the incremental disaster needs more points in time to capture its progress. The 

extraction of inundated areas due to the 2011 flood in Thailand is decent to be an example for monitoring the 

progress of the disaster. The flood duration map was obtained from the series of dual polarization SAR 

images. Both the events are the biggest natural disaster in this decade and affected a broad area in those 

countries. 

 

Keywords: multi-temporal SAR, flood detection, building damage detection 
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ABSTRACT 

 

多時期高解像度 SAR画像を用いた洪水のモニタリングと台風被害の抽出 

  

Pisut Nakmuenwai 

Doctor of Engineering 

Chiba University, 2017 

 

センサの進歩により，高解像度の合成開口レーダ(SAR)画像が高頻度で得られるようにな

った。SAR センサは雲が透過できるマイクロ波を放射するため，天候に影響されず昼夜撮影でき

ることから，災害後の緊急対応に有効である。また，多時期の SAR 画像を用いることで，地震，

台風などの短期間災害による被害だけでなく，洪水などの長期間災害のモニタリングもできる。

本研究は，多時期の高解像度 SAR 画像を用いて自然災害後の被害把握とモニタリングを行った。

短期間の災害事例として，2013 年台風 Haiyan 前後の COSMO-SkyMed 干渉ペア画像から，フィリ

ピンにおける建物の被害を抽出した。建物の被害状況を評価するために，2 時期の後方散乱係数の

合計，差分と相関係数を融合した変化指標Δh を提案した。その閾値より抽出された結果は，高解

像度光学画像と比較し，精度の検証を行った。長期間災害の事例として，2011 年タイの洪水によ

る浸水域の変化をモニタリングした。2011年 9月 2日から 2012年 2月 14日までに撮影された 30

枚の RADARSAT 画像を用いて，各画像から水域の閾値を自動的に算出する手法を提案した。各

画像から抽出された浸水域の範囲と場所の変化から洪水被害の進行を観測できた。また，2011 年

12月 21日の画像から得られた浸水域について，光学画像と水深計のデータを用いて精度の検証を

行った。本研究の結果により，多時期の高解像度 SAR画像が災害把握における有用性を示した。 

 

Keywords: multi-temporal SAR, flood detection, building damage detection 
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Chapter 1  

Introduction 

 

1.1. Overview 

Synthetic aperture radar (SAR) imaging can penetrate clouds, providing an effective precipitation 

detector under a wide range of atmospheric conditions [1]. SAR is developed on microwave technology 

cover wavelength between 300 MHz (100cm) and 300GHz (0.1cm). The commonly used wavelengths are X-

band (2.4-3.75 cm), C-band (3.75-7.5 cm), or L-band (15-30 cm), which is suitable for different application 

[2]. Shorter wavelength, such as X-band, is the suitable frequency for several high-resolution radar 

applications [3, 4]. Longer wavelength, such as C-band, is not hindered by atmospheric effects and is capable 

of 'seeing' through tropical clouds and rain showers [4]. Its penetration capability is limited and is restricted 

to the top layers with regard to vegetation canopies or soils. 

SAR is a very powerful technique to detect environmental changes or help in the evaluation of 

natural disasters, according to it can operate under any weather conditions [1, 5]. Multi-temporal change 

detection is important for monitoring disasters, but data integration from two or more images which taken in 

a different time or different sensor condition is continual development and need to be improved [6]. 

1.2. Scope and objectives 

This dissertation focuses on the capabilities of SAR satellite images as a primary data to 

monitoring natural disaster especially typhoon and floods. The optical sensor is expecting as a supporting 

data and validating data. According to SAR sensor provided several wavelengths which are suitable for a 

different objective. Thus, disaster effect should be monitored by specific wavelength. The main scope of this 

research is to enlarge the capability of SAR imagery data for a natural disaster in particular cases, typhoon, 

and floods. The specific objectives are outlined as follows: 

Floods: 

 Extract flood area using C-band SAR satellite data, case study Thailand flood 2011. 

 Improve the accuracy of water extraction by using dual polarization instead of single 

polarization.  

 Monitoring the floods situation by combining the extracted water areas from multi-temporal 

SAR images which were acquired from a different condition. 
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Typhoon: 

 Evaluate damage to building using X-band SAR satellite data, case study typhoon Haiyan in 

Philippines 2013. 

 Improve the damage of building evaluation efficiency by developing novel change index from 

two single polarization images which taken before and after the event. 

 

1.3. Outline of this research 

This thesis exhibits all contents in to 6 chapters. Each chapter is related as shown in a diagram of 

Figure 1-1. The contents are outlined in more detail as follows: 

Chapter 2: This chapter presents and describes aspects of the natural disaster and SAR satellites. The 

primary natural disaster which is discussed in this section is tropical cyclones and its effects, floods caused 

by torrential rains, and damage to buildings resulting from high wind. There are two SAR satellites which 

were use in this study, RADARSAT-2, and COSMO-SkyMed. The satellite information and data pre-

processing are also provide in this chapter. 

Chapter 3: This chapter examines a novel extraction method for SAR imagery data of widespread 

flooding, particularly in the Chao Phraya river basin of central Thailand, where flooding occurs almost every 

year. Multi-temporal dual-polarized RADARSAT-2 images were used to classify water areas using a 

clustering-based thresholding technique, neighboring valley-emphasis, to establish an automated extraction 

system. 

Chapter 4: This chapter is the reproduction of section 3 for flood extraction in 2016, newer acquired 

images. According to flood in Chao Phraya river basin is a corny event, flood situation assessment must 

regularly be performed. Proving the proposed method can work correctly and efficiently for this area, flood 

in 2016 was selected to be processed in the same technique. Each image in this section was clipped by water 

references to determine the global threshold, and then calculate the global threshold for water extraction. 

Chapter 5: In this section, damage caused by Typhoon Haiyan in the city of Tacloban, Philippines 

was extracted from COSMO-SkyMed imagery data using a thresholding operation. A multitemporal 

correlation map obtained from a color composite of the backscattering coefficients and their correlation 

coefficients is used to indicate changes. The results were compared with WorldView-2 satellite images to 

assess coastal erosion and damage to buildings specifically. 

Chapter 6: The general conclusions are drawn in the final section, which provides discussions 

obtained in this research. Please download this article as an open access publication at  

http://www.mdpi.com/2072-4292/9/1/78 
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Figure 1-1 Flowchart of the dissertation 
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Chapter 2  

State of the art and theoretical concepts 

 

2.1. Natural Disasters 

A natural disaster is any catastrophic event conducted by the natural processes, causing loss of life or 

property damage, and typically leaves some economic damage [1]. Natural disasters could be classified into 

several type geological catastrophes, hydrological disasters, meteorological disasters, health disasters [2]. 

The dissertation studied in these thesis unique to just only tropical cyclones and its effects as a floods 

situation.    

2.1.1. Tropical cyclones 

Tropical cyclones are “cyclonic” weather systems composed of the major rotating masses of 

thunderstorms. Tropical refers to the geographical origin of these systems, which form almost exclusively 

over tropical seas. Cyclone refers to their cyclonic nature; a wind direction of circulation is due to the 

Coriolis Effect. In the Southern Hemisphere, the wind blowing clockwise, while the Northern Hemisphere it 

blowing counterclockwise. These systems form over the warm ocean waters of the tropics and subtropics 

usually between the latitudes of 30°N and 30°S. Tropical cyclones originate and move within 7 tropical 

cyclones “basins” worldwide, 4 above the equator and 3 below the equator shown in Figure 2-1 [3].  

Tropical cyclones are classified into three main groups, based on intensity. The tropical depressions, 

tropical storms are groups of low and middle wind speed respectively. The third group is more intense 

storms, whose name depends on the region, “hurricanes” in the North Atlantic, “typhoons” in the western 

North Pacific, and “cyclones” in the Indian Ocean and Australasia. The National Hurricane Center (NHC 

Miami), the Regional Specialized Meteorological Center (RSMC Tokyo), and the Central Pacific Hurricane 

Center (CPHC Honolulu) classify hurricane or typhoon that has winds speeds exceed 119km/h into 5 

categories; the higher value is the most sustained winds. All tropical cyclone classifications from various 

organizations are described in Figure A-1 [4]. 

A typhoon is a tropical cyclone that develops in the Northwestern Pacific Basin, the western part of 

the North Pacific Ocean, between 180°E and 100°E. Accounting to almost one-third of the world's annual 

tropical cyclones, this tropical cyclone basin is the primary region and the most active on Earth. Typhoon 

paths follow three general directions. The straight track, a general westward path affects the Philippines, 

southern China, Taiwan, and Vietnam. Parabolic recurving track, Storms recurving affect the eastern 
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Philippines, east china, Taiwan, Korea, Japan, and the Russian Far East. The northward track, the storm 

follows a northerly direction from the point of origin, only affecting small islands [4].  

The main effects of tropical cyclones include torrential rains, high wind, large storm surges at 

landfall and tornadoes. Tropical cyclones make the most significant effects when they cross coastlines by 

making landfall. The destruction from a tropical cyclone depends mainly on its intensity, its size, and its 

location. Typhoon Haiyan landfall in the central Philippines on Nov. 8, 2013, is the most intense tropical 

cyclones on record with wind speed 195 miles per hour (314 km/h) [5].  

2.1.2. Floods 

Flood is an overflow of a large amount of water beyond its normal limits, especially over what is 

usually dry land [6]. Flooding can occur due to various phenomena. Riverine flood (Fluvial flood) occurs 

when excessive rainfall over an extended period of time in the upstream areas of a catchment causes a river 

to exceed its capacity. Coastal flood (Surge flood) occurs when flat land is flooded by storm surges, sea level 

rise or tsunami wave. Pluvial (Surface Flood) occurs when heavy rainfall creates a flood event independent 

of an overflowing water body [7, 8]. Due to almost of the flood in the world generally caused by heavy rain, 

it's usually occurring related to tropical cyclone as shown in Figure2-2 [7,9]. 

2.2. SAR Satellites 

Although in a typical SAR application, a single radar antenna is attached to an aircraft or spacecraft 

sensor, most land-surveying applications are now carried out by satellite observation. There are two SAR 

constellation satellite data were be used in this dissertation. 

2.2.1. RADARSAT 

RADARSAT is a constellation of Canadian remote sensing earth observation satellite operated by 

the Canadian Space Agency (CSA). This program has consisted of RADARSAT-1 (1995-2013), and 

RADARSAT-2 (2007-present). Both are equipped with a high-resolution SAR instrument operating in C-

Band. Both satellite orbits are Sun-Synchronous Orbit (SSO) at altitude 793-821km for RADARSAT-1 

(RS1), and 798km for RADARSAT-2 (RS2). Although the exact revisit time is 24 days, observation on the 

left- and right-looking gives complete coverage with is 2-3 days [10]. 

The RS1 observes only single HH polarization on right-looking providing the highest image 

resolution at 8m x 8m, while RS2 can observe with full polarization (HH, HV, VV, and VH) event right- or 

left-looking providing the highest image at 1m x 3m. The RS2 imaging can be carried out in one of several 

different beam modes. Each mode offers a unique set of imaging characteristics. The ScanSAR beam mode  
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Figure 2-1. Global cyclone tracked in 1848-2013. The warmer colors indicate stronger winds. 

Source: https://geozoneblog.files.wordpress.com/2014/05/globalwrappedclipped.png 

 

 

Figure 2-2. Geographic Centers of floods in the Flood Archive GIS file, 1985-2010 

Source: http://floodobservatory.colorado.edu/Archives/index.html 
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Figure 2-3. RADARSAT-2 SAR Beam Modes 

Source: RADARSAT-2 Product Description, 2016 

is widest swath width with the lowest resolution at around 100m.  The Spotlight beam mode is narrowest 

swath width with the highest resolution at around 1m. The RS2 beam mode is shown in Figure 2-3, and its 

all summary, and product characteristics are shown in Figure A-2. Each beam mode has nominal resolutions 

variant by incident angle shown in Figure A-3 [11, 12]. 

2.2.2. COSMO-SkyMed 

COSMO-SkyMed (Constellation of small Satellites for the Mediterranean basin Observation) is an 

Earth observation satellite system intended for both military and civilian use, funded by the Italian Ministry 

of Research and Ministry of Defense and conducted by the Italian Space Agency (ASI). This constellation 

consists of four identical medium-sized satellites equipped with X-band SAR sensor. The first and second 

satellites were launched in 2007, the third one was 2008, and the last one was 2010. All satellite orbits are 

Sun-Synchronous Orbit (SSO) at altitude 620km. According to the orbit, the cycle is 16 days for each 

satellite; the revisit frequency is 8 days for 2-satellites constellation and 4 days4-satellites constellation.  

The COSMO-SkyMed (CSK) satellites have three basic types of imaging modes. The spotlight is a 

high-resolution mode collected over a small area. Stripmap is a medium-resolution mode obtained over long, 

continuous swaths. ScanSAR is a low-resolution mode that creates extra-wide swaths. Each mode has two 

subtype modes. However, the SPOTLIGHT1 which is the highest resolution mode is military-only mode. 

Thus, the highest resolution available for commercial use is SPOTLIGHT2 at 1m. The incidence angle range 

is 25° to 59° for all modes. The 3 acquisition modes of the COSMO-SkyMed sensor and its characteristics 

are shown in Figure 2-4. 
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Figure 2-4. The 3 acquisition modes of the COSMO-SkyMed sensor. 

Source: http://www.e-geos.it/products/pdf/e-GEOS_COSMO-SkyMed.pdf 

2.3. SAR Pre-processing 

2.3.1. Radiometric Calibration 

The SAR calibration objective is to provide imagery that its pixel value can directly represent the 

radar backscatter of the reflecting surface. Although uncalibrated SAR imagery is sufficient for qualitative 

use, calibrated SAR images are essential to the quantitative use of SAR data. 

A typical SAR level-1 image does not include radiometric corrections and significant radiometric 

bias remains. Therefore, it is necessary to apply the radiometric correction to SAR images. The radiometric 

correction is needed for the SAR images comparison acquired from the same sensor but different modes, or 

acquired at different times, or acquired with different sensors. 
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The operator performs different calibrations for each SAT satellite deriving the sigma naught images. 

Optionally gamma naught and beta naught images can also be created. For SAR satellites using in this 

dissertation are described as follow. 

Radarsat-2: The operator performs absolute radiometric calibration for Radarsat-2 products by 

applying the sigma0, beta0 and gamma0 look-up tables provided in the product. For Radarsat-2 product 

calibration algorithm, the reader is referred to [13]. 

Cosmo-SkyMed: The operator performs absolute radiometric calibration for Cosmo-SkyMed 

products by applying few product factor corrections. For Cosmo-SkyMed product calibration algorithm, the 

reader is referred to [14]. 

2.3.2. Speckle Filter 

An ideal speckle filter must satisfy to the following specifications [15]: 

1) To preserve accurately the local mean value of the radar reflectivity. 

2) To smooth homogeneous image areas as much as possible and reduce the of the radar image. 

3) To preserve texture as much as possible where it exists in the image. 

4) To preserve and denoised image structures (contours, lines) as well as the quasi-deterministic 

responses due to corner reflector effects. 

5) To minimize possible prevent loss in spatial resolution during the process. 

The most common and efficient speckle filtering techniques are adaptive speckle filters for single-

channel detected SAR images using variants of the statistical speckle model. They also use several statistical 

estimators to restore the radar reflectivity, e.g., Minimum Mean Square Error (MMSE) estimators (e.g. Lee 

et al. filter, Kuan et al. filter, etc.), autoregressive estimators (e.g. Frost et al. filter), Bayesian estimators (e.g. 

Gamma-Gamma and DE-Gamma MAP filters) [15]. 

Lee and Kuan's filters are locally adaptive linear MMSE estimators. Lee filter is identical to the 

independence of noise and signal in the model used by the Kuan et al. filter. Lee uses the unit mean 

uncorrelated multiplicative speckle module. A linear approximation is made by developing an additive noise 

model different of the multiplicative speckle model used in Equation (1) and Equation (2) [16]:  

𝑌̂(𝑡) 
 = I(̅t) + 𝑊(𝑡)[𝐼(𝑡) − I(̅t)  (1) 

W(𝑡) 
 = 1 −

𝐶𝑣

𝐶𝐼
 

(2) 

when  𝑌̂(𝑡) 
  is the filtered image value 

 I(̅t) is the mean of I(t) 
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𝐶𝑣 is coefficient of variance of speckled image 

𝐶𝐼 is the coefficient of variance of noise-free image 

2.3.3. Terrain Correction 

Mostly SAR image is side-looking observation which occurs foreshortening and layover effects.  A 

mountaintop reaches the sensor earlier the foot of the mountain. This results in the common look of 

mountains seem to fall over towards the sensor. The range doppler terrain correction operator is implemented 

from orthorectification method. The available orbit state vector information in the metadata and 

topographical variations on the surface of the earth as digital elevation model (DEM) are applied to the the 

original image. After terrain correction, SAR image position will be closer to the real world geometry. The 

final product is able to overlay layers from another source [17]. 

In this dissertation, the most popular DEM, Shuttle Radar Topography Mission (SRTM) was used in 

terrain correction process for all SAR images. The SRTM DEM data originally produced by NASA for the 

entire globe. The first release of SRTM data in 2003 is 1-arc second tiles (approximately 30m at the equator) 

for the United States, but the rest of the world is 3-src second tiles (approximately 30m at the equator) [18].    

2.3.4. Coregistration 

SAR interferometry requires a pixel-to-pixel match between common features in SAR image pairs. 

Thus coregistration, the alignment of two SAR images is an essential step for the accurate determination of 

multi-temporal analysis, e.g., change detection, phase difference and for noise reduction.  

The SAR coregistration procedure consists of two main stage, coarse coregistration and finds 

coregistration. The first step is pixel level accuracy. This technique is searching for coarse image offsets and 

shifting the slave image. The second phase is fine coregistration for subpixel accuracy. This method is 

searching for subpixel tie points, fitting transformation equations, and resampling the slave image [19]. 
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Chapter 3  

Automated Extraction of Inundated Areas from Multi-

Temporal, Dual-Polarization RADARSAT-2 Images of the 

2011 Central Thailand Flood 

This study examines a novel extraction method for SAR imagery data of widespread flooding, particularly in 

the Chao Phraya river basin of central Thailand, where flooding occurs almost every year. Because the 2011 

flood was among the largest events and of a long duration, a large number of satellites observed it, and 

imagery data are available. At that time, RADARSAT-2 data were mainly used to extract the affected areas 

by the Thai government, whereas ThaiChote-1 imagery data were also used as optical supporting data. In this 

study, the same data were also employed in a somewhat different and more detailed manner. Multi-temporal 

dual-polarized RADARSAT-2 images were used to classify water areas using a clustering-based 

thresholding technique, neighboring valley-emphasis, to establish an automated extraction system. The novel 

technique has been proposed to improve the classification speed and efficiency. This technique selects 

specific water references throughout the study area to estimate local threshold values and then averages them 

by an area weight to obtain the threshold value for the entire area. The extracted results were validated using 

high-resolution optical images from the GeoEye-1 and ThaiChote-1 satellites and water elevation data from 

gaging stations. 

3.1. Introduction 

Floods occur almost every year in Thailand and cause unfavorable situations. The worst flooding in 

the last five decades occurred in 2011 [1]. The World Bank has estimated the damage and the losses due to 

this flooding at approximately THB 1.43 trillion (USD 46.5 billion) in total, while the recovery and 

reconstruction needs were estimated to be THB 1.5 trillion (USD 50 billion) over the five-year period [2]. 

This flood event spread throughout the northern, northeastern, and central provinces of the country. The 

flooding caused heavy economic impacts by disturbing industrial production in the affected areas and the 

supply chains of industries worldwide [1–3]. In this study, satellite imagery data, which can effectively 

extract information in large-scale disasters, were introduced to evaluate the extent of the flood. Among other 

types of sensors, synthetic aperture radar (SAR) sensors can operate during the day and night and under all 

weather conditions [4]. RADARSATs, which are Canadian SAR satellites with C-band radars operating at a 

wavelength of 5.6 cm, have been mainly used for flood monitoring in Thailand since 2000 (RADASAT-1, 

RS1) and 2008 (RADARSAT-2, RS2) [5,6]. ThaiChote-1 (TH1), the first satellite of Thailand, has been used 

to provide optical support under clear sky conditions since 2004.  
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Earth terrain surfaces are considered to be rough at radar wavelengths and exhibit diffuse scattering 

with moderate backscatter. In contrast, water surfaces are generally smooth and can be regarded as specular 

reflectors that yield small backscatter at radar wavelengths. As a consequence, the surrounding terrain 

corresponds to brighter intensities in SAR images, whereas water is regarded as low intensity area. Therefore, 

SAR images are considered to be very effective and have been extensively used for water and flood mapping 

[7,8].  

Single co-polarized HH (horizontal transmit and horizontal receive) SAR images are the most 

common and are useful for determining water and flood areas. Especially for C-band radars, this is the 

preferred polarization for mapping flooded vegetation because it maximizes canopy penetration and 

enhances the contrast between forests and flooded vegetation [9–12]. Although it has been used in many 

cases, but with respect to water surfaces, obstacle cover, floating objects, and wind ripples, affect SAR 

backscatter, preventing C-band from returning good results. Dual and full polarizations have been employed 

to enhance capability [11–13]. Dual-polarizations can potentially be used to detect and map vegetation water 

content (VWC) in forested areas and more reliably distinguish open water surfaces affected by wind. When 

an SAR image is acquired in lighter winds or under smooth water surface conditions, the HH co-polarization 

has been shown to be the most suitable for mapping surface waters. However, when wind or surface water 

roughness is present, the single cross-polarized HV (horizontal transmit and vertical receive) often yields 

better results for water extraction [14–16]. Unfortunately, the Thai government only uses HH polarization in 

most cases to monitor flood events. Therefore, the intent of this study is to improve the effectiveness of 

mapping surface waters by combining the depolarization information in HV with HH as the total backscatter.  

Deriving the extent of inundation from a single SAR image has been carried out using several 

methods, e.g., pixel-based classification [17–24], segment-based classification with region growth [25–28], 

and mixing between the two methods [19,29,30]. The most common and efficient way is thresholding, which 

is a pixel-based operation. In computer vision and image processing, thresholding was introduced to reduce a 

gray level image to a binary image, foreground and background. The algorithm assumes that the image 

histogram is distributed in two classes or has a bimodal distribution. Flooded areas or foregrounds are 

separated from the background by a constant threshold value. Manual threshold-value selection may be faced 

with a problem; it is hard to judge the most suitable value objectively. Automatic thresholding methods have 

been introduced to overcome this issue and to improve the classification speed or efficiency. Several 

techniques have been proposed to determine threshold values for SAR images [17–22]. The optimum global 

threshold value can be obtained from the minimum within-class variance [17,18] or the minimum error 

thresholding [19–21], whereas some techniques look for local threshold values using auxiliary data, e.g., 

elevation and slope [22–24]. In this study, we selected a threshold value by a modification of the Otsu’s 

method. The Otsu’s method is a clustering based thresholding, one of the most referenced methods [31]. This 

technique establishes an optimum threshold by minimizing the weighted sum of within-class variances of the 
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foreground and background pixels [17,18,31]. This technique is robust for noisy images with Gaussian noise 

and is the best for presenting the inter-region contrast of SAR images [17,18]. 

To detect floods over large-scale areas such as the Chao Phraya river basin, identifying the global 

threshold value from the histogram of the entire image is almost impossible because this histogram has a 

unimodal distribution. The global threshold value is estimated in an indirect way as the arithmetic average of 

local threshold values for small areas. First, the image is divided into small portions, and then only those 

portions that have a bimodal distribution histogram are selected as representative. This technique can be 

carried out by the fully automated division of an image by a certain pattern, the bi-level quad tree [19–21]. 

However, the advantage of systematic hierarchical image division is location independent. It is time 

consuming, particularly for processing multi-temporal images in the same place, and tiled pieces at different 

times may not be in the same place. A permanent representative area is proposed in this study to decrease 

processing time and to monitor local water bodies in a time series. This is much more suitable for Thailand 

because floods occur almost every year. 

Because the Chao Phraya river basin is located in a large flat plain, inundation always remains for an 

extended period of time. The damage caused by flooding depends not only on the water depth but also on the 

flood duration. In 2011, the inundation depths ranged between 0.6 m and 4.9 m, with an average of 2.2 m, 

and the mode (most frequent value) was 2.5 m. Fifty-seven (57) days was the average inundation duration, 

which ranged from 3 to 120 days and had a mode of 60 days [3]. The flooded areas could be captured 

remotely by a single satellite image, and the duration could be obtained by monitoring the flooded areas in a 

sequence of time. However, water depth requires auxiliary data for processing, e.g., a digital elevation model 

(DEM). In this study, estimating water depth was set aside for future work. Thus, only the inundation area 

and duration are studied in this article. Working with multi-temporal SAR images, it is very difficult to 

obtain images in the exact same conditions, e.g., satellite position, look-side (right/left), and incidence angle. 

Several methods must be introduced to normalize multi-temporal images prior to analysis [32,33]. In contrast, 

the proposed method, which obtains the threshold value from water references, is independent of the 

acquisition condition, and there is no need to normalize the images [19–21].   

3.2. Study Area and Imagery Data 

This paper focuses on the Chao Phraya river basin in the central part of Thailand, which has an area 

of approximately 7400 km2. The basin was assigned as a regularly inundated area by the Thai government. 

The city of Ayutthaya, which is approximately 16.5 km in width and 21.0 km in length and includes the 

Ayutthaya Historical Park and the Rojana and Hi-Tech Industrial Parks, was selected as a validation area for 

extracting water bodies during the 2011 Thailand flood, as shown in Figure 3-1.  
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The imagery data acquired by RADARSAT-2 (RS2) during that event have several beam types, i.e., 

Wide1 (W1), Wide2 (W2), Wide3 (W3), SCNA (W1 + W2), and SCNB (W2 + S5 + S6). The radar 

frequency, resolution, and incident angle varied depending on the beam type. Most of the images were taken 

in the HH and HV dual-polarization mode, and 30 images using that polarization were selected. The images 

were observed either from the ascending (ASC) or descending (DES) path. A summary of the image 

properties is presented in Table 3-1, and their color composite maps are shown in Figure 3-2. Because the 

swath width and revisit time of the satellite are limited, only some of the images could capture the whole 

study area. 

Two optical images were also used for validation. A GeoEye-1 (GE1) image was prioritized because 

it had a higher resolution and was taken on 22 November 2011, which was the nearest in time to one of the 

RS2 images. The pan-sharpened GE1 image had four multispectral bands with a 1.0-m resolution. 

ThaiChote-1 (TH1) images are also important because they are used as common data. A pan-sharped TH1 

image has a multispectral band with a 2.5-m resolution. A TH1 image was taken on 25 November 2011. 

Another TH1 image was taken prior the flood on 12 December 2009. That image was used to assess the 

environment in the dry season but was not used in the analysis process. All the optical images will be shown 

in the accuracy assessment section. 

3.3. Methodology and Results  

The methodology used in this study is comprised of two parts. The main part is an automated system 

that extracts water bodies and produces flood duration maps. The second part is an accuracy assessment, 

which is a process to measure the efficiency of the main part using optical images as truth data. That part did 

not need to be implemented in the automated system. The main part begins with preparing RS2 images by 

the radiometric calibration using the lookup tables provided in these products, the Refined Lee speckle 

filtering [34,35] with a window size of 5 × 5 pixels, and the terrain correction using an SRTM 90-m DEM. 

Radiometric calibration provides images in which pixels can be directly related to the radar backscatter of 

the scene by applying the sigma naught, beta naught, and gamma naught lookup tables provided in the 

product [32]. The pre-processing was performed using the Sentinel Application Platform (SNAP) software 

program. Next, RS2 images were clipped by the study area and then temporarily cut again into specific 

segments throughout the study area. Those particular segments were defined as water references, as 

mentioned in the next section. The automatic thresholding was applied to each water reference one at a time 

to estimate a local threshold value. In that step, water references with unimodal distribution histograms were 

rejected. The local threshold values were weight-averaged by area to estimate the global threshold value. 

Finally, the global threshold value was applied to the whole image to extract the water bodies. The flood 

duration map is an auxiliary product for flood management and is calculated from the cumulative days of 

water bodies. All these processes were developed using a Python script and applicable modules, e.g., the 

Geospatial Data Abstraction Library (GDAL) for reading and writing   
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Figure 3-1. Map showing the study area (left), where the black border delimits the Chao 

Phraya river basin in central Thailand, and the red square delimits Ayutthaya City. 

Topographic map (middle), with main streams on the DEM. Water reference map showing 

87 water references throughout the study area on a RADARSAT-2 image (right).  

 

Table 3-1. Summary of the RADARSAT-2 image data properties used in this study. 

Beam / Swatch Position 
Resolution  

(m) 

Swath 

Wide 

(km) 

Pixels/ 

Lines 

 

Incident Angle 

(degrees) 
 Number of Scenes 

Near Far  Asc. Des. 

W1 (Wide1) 12.5 170  12,930 20.0 31.9  - 5 

W2 (Wide2) 12.5 150 12,930 30.6 39.5  - 1 

W3 (Wide3) 12.5 130 12,930 38.7 45.3  2 - 

SCNA (ScanSAR W1 + W2) 25.0 300 12,000 20.0 39.5  7 6 

SCNB (ScanSAR W2 + S5 + S6) 25.0 300 12,000 30.6 46.5  4 5 

 
Total 

 13 17 

  30 

 

DEM 

-1m 

1127m 

River 
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Figure 3-2. RADARSAT-2 color composite (HH as red, HV as green, and HH/HV as blue) 

images taken during the 2011 Thai flood event from the beginning to end. 
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Figure 3-3. Work flow diagram for automatic flood extraction for RADARSAT-2. The 

optical image procedure shown by the dashed lines was used for a one-time accuracy 

assessment. 

 

image data, NumPy for numerical calculation, and Matplotlib for plotting histograms. NumPy is the 

fundamental package for scientific computing with powerful N-dimensional array objects and linear algebra. 

Matplotlib is 2D and 3D plotting library which produces quality figures under interactive environments. 

The purpose of the accuracy assessment was to measure the efficiency and accuracy of the final 

results by comparing the water areas extracted from the SAR images (RS2) with those from the optical 

images (GE1 and TH1). The backscattering coefficient was used for the SAR images, and the Normalized 

Difference Water Index (NDWI) was used for the optical images. Although the RS2 images were processed 

using automatic thresholding, the GE1 image was processed using manual thresholding. The RS2 and TH1 

results were compared with the GE1 image to determine the most accurate thresholding. The work flow 

diagram used in this study is shown in Figure 3-3. 

3.3.1. Water References and Histogram Analysis 

Applying automatic clustering-based thresholding to a large area may return unsatisfying results 

because its histogram is not bimodally distributed [31]. This problem occurs when the ratios of the water and 

non-water areas are very different. A novel technique was implemented in this study to overcome this 

problem by applying automatic thresholding to specific smaller areas located throughout the study area. 

Global Thresholding 
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GEOEYE-1 / THAICHOTE-1 

Water Area 

Accuracy 

NDWI 

  Threshold Values 

Calibration/ Speckle Filter 

Bimodal Histogram Selection 

Automatic Thresholding 

Weight Average Threshold 



Chapter 3 

Inundated Areas Extraction in Thailand 2011 

 

 

24 

Those small areas were defined as water references, which can be used for any satellite images acquired on a 

different date and time.  

All the water references were selected using the following criteria: having an area larger than 

320,000 m2 (512 pixels for a resolution of 25.0 m, and 2048 pixels for a resolution of 12.5 m), containing 

water throughout the year, not facing a flood situation, located on flat ground as much as possible, and 

having a water and non-water cover ratio of nearly 1:1. An irregular shape is allowed. In this study, an 

elliptical shape was preferred because it was easy to maintain the ratio of the water and non-water 

proportions. The 87 water references were selected from different types of water bodies, natural and man-

made. Their locations are shown in Figure 3-1 (right).  

Because not all of the RS2 images covered the entire study area and included all the water references, 

only those water references whose entire areas were covered by each RS2 image were taken into account. 

The number of water references and their covering areas for each image are shown in Table 3-2. It was 

impossible to show all of them in this article, and thus only 10, taken on 28 February 2011, are shown in 

Figure 3-4. Smooth water surfaces are shown in black for the HH, HV, and HH + HV polarizations and in 

deep blue for the color composites of HH, HV, and HH/HV. "HH + HV" denotes the sum of the 

backscattering coefficients as the total backscattering, and "HH/HV" denotes the ratio of the backscattering 

coefficients as the relative backscattering. Both values were calculated on a linear scale but are presented on 

a logarithmic scale (dB). 

The histogram plots shown in Figure 3-4 were obtained from the RS2 images and were clipped by 

the selected water reference within the red elliptical boundary. The blue curve shows the HH + HV 

backscattering coefficient, the red curve shows the HH backscattering coefficient, and the green curve shows 

the HV backscattering coefficient. Theoretically, these histograms should display a bimodal distribution, but 

some of them were found to have unimodal distributions. Examples include water surfaces covered by 

floating or emerged plants or surface waves caused by strong winds. These situations cause a larger than 

normal amount of SAR energy to be reflected back to the sensor [11–13]. This effect can be observed in the 

sample images for water references 024, 028, 063, and 076.  

By considering the peaks, valleys, and curvatures of the smoothed histograms, the water references 

with unimodal distributions were rejected, and only those with bimodal distributions were taken into account. 

The bimodal occurrences for the HH and HH + HV polarizations are shown in Table 3-2. This number 

indicates the occurrence probability of the bimodal distribution for each image. In that sense, HH + HV is 

more likely to have a bimodal distribution and is more suitable for automatic classification. In other words, 

the HV polarization can improve the efficiency of water surface extraction. Thus, the extracted water areas 

presented in this article were derived from HH + HV.  
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3.3.2. Automatic Thresholding 

Otsu’s method (OT) is one of the best threshold selection methods for general gray-level images. 

This technique chooses the threshold value of the minimum within-class variance (σW
 2 ) or the maximum 

between-class variance (σB
 2) in equation (1). Although this method can obtain satisfactory segmentation 

results in many cases, it is basically limited to images with background and foreground Gaussian 

distributions of equal variance. Therefore, images that do not meet this criterion may return unsatisfactory 

results, especially when the gray level histogram is unimodal or close to a unimodal distribution [33]. 

To address this weakness, many modifications of the Otsu method have been proposed. For example, 

the valley-emphasis method (VE), modified by weight σB
 2 with p(t), the complement of a probability at a 

threshold value t, causes the valley in the histogram to be more likely to be better determined. The 

neighborhood valley-emphasis (NE) is an improvement of the valley-emphasis method by weighting σB
 2 with 

the neighborhood information in n = 2m + 1 intervals at the threshold value t as in equation (2). The result is 

closer to the valley of the histogram because it considers the neighborhood around the threshold point in 

addition to the threshold point. The optimal threshold is chosen by maximizing the between-class variance 

function [17] as in equation (3). 

σB
 2(t) = pw

 (t)(μw
 (t) − μ)2 + pn

 (t)(μn
 (t) − μ)2 =   pw

 pn
 (μw

 (t) − μn
 (t))2, (1) 

p̅(t) = p(t − m) + ⋯ p(t − 1) + p(t) + p(t + 1) + ⋯ p(t + m), and (2) 

t∗ =  Arg max  (1 − p̅(t)) σB
2 (t), (3) 

where  σB
 2(t) is the between-class variance at threshold value t,  

 μ is the mean value of all the intervals, 

 μw
 (t) is the mean value of the water portion at threshold value t, 

 μn
 (t) is the mean value of the non-water portion at threshold value t, 

 pw
 (t) is the probability of the water portion at threshold value t, 

 pn
 (t) is the probability of the non-water portion at threshold value t, 

 m is the number of neighborhood intervals for threshold value t, 

 p(t) is the probability of the interval at threshold value t, 

 p̅(t) is the sum of the probabilities of the neighborhood interval around threshold value t, 

 Arg max
 

 is the argument of the maxima for threshold value t in the function, and 

 t∗ is the optimum threshold value. 

From the previous study [17] and our empirical test for all the images using three thresholding 

methods (OT, VE, and NE), the NE method yielded the most suitable result for water extraction from the 
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ThaiChote-1 HH,HV,HH/HV HH+HV HH HV Histogram 
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Figure 3-4. Automated threshold values using the neighborhood valley method of water 

references in the red elliptical areas (10 of 87) from the HH, HV and HH + HV sigma-naught 

values taken on 2011/11/28 PM (1 of 30 in Table 3-2). The dashed lines represent unimodal 

distributions, and the solid lines represent bimodal distributions. The ThaiChote-1 images in 

the first column were acquired on different dates in the dry season.   
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Table 3-2. List of RADARSAT-2 images and threshold values for water extraction. 

No. Local Time 
Interval 

(days) 
Path Beam 

Water References  
Bimodal 

Occurrences 
 

Weighted-Average 

Threshold (dB) 

Count 
Area 

(Km2) 
 HH HH + HV  HH HH + HV 

1 2011/09/02 AM - DES W1 36 101.02  17/36 31/36  -1.25 2.02 

2 2011/09/09 AM 7.0 DES W1 62 180.29  45/62 60/62  -1.20 2.19 

3 2011/09/16 AM 7.0 DES W1 33 116.00  32/33 32/33  -1.37 1.74 

4 2011/09/23 AM 7.0 DES W2 41 118.50  40/41 40/41  -13.96 -12.87 

5 2011/09/26 AM 3.0 DES W1 34 98.25  16/34 31/34  -1.01 2.06 

6 2011/09/27 PM 1.5 ASC W3 53 145.92  53/53 53/53  -0.84 2.21 

7 2011/10/03 AM 5.5 DES W1 61 179.86  49/61 60/61  -0.98 2.26 

8 2011/10/04 PM 1.5 ASC W3 38 115.81  37/38 37/38  -1.06 2.01 

9 2011/10/10 AM 5.5 DES SCNA 83 240.50  74/83 78/83  -1.27 1.92 

10 2011/10/11 PM 1.5 ASC SCNA 87 248.09  77/87 83/87  -1.03 2.04 

11 2011/10/17 AM 5.5 DES SCNB 84 229.70  76/84 79/84  -1.07 2.00 

12 2011/10/20 AM 3.0 DES SCNA 36 101.02  21/36 31/36  -0.30 2.50 

13 2011/10/21 PM 1.5 ASC SCNB 70 183.31  65/70 69/70  -0.92 2.08 

14 2011/10/25 PM 4.0 ASC SCNA 25 73.79  13/25 22/25  -1.04 2.18 

15 2011/10/27 AM 1.5 DES SCNA 74 209.61  54/74 70/74  -1.05 2.07 

16 2011/10/28 PM 1.5 ASC SCNB 87 248.09  78/87 82/87  -0.93 2.14 

17 2011/11/04 PM 7.0 ASC SCNA 87 248.09  80/87 80/87  -1.17 1.94 

18 2011/11/10 AM 5.5 DES SCNB 84 229.70  77/84 80/84  -0.90 2.10 

19 2011/11/11 PM 1.5 ASC SCNA 75 200.62  56/75 68/75  -1.04 2.04 

20 2011/11/12 PM 1.0 ASC SCNA 61 191.21  52/61 57/61  -15.65 -14.51 

21 2011/11/14 PM 2.0 ASC SCNB 69 181.22  64/69 66/69  -1.16 1.88 

22 2011/11/18 PM 4.0 ASC SCNA 24 72.65  13/24 21/24  -1.39 1.89 

23 2011/11/20 AM 1.5 DES SCNA 74 209.61  46/74 62/74  -1.24 2.07 

24 2011/11/21 PM 1.5 ASC SCNB 86 244.22  78/86 80/86  -1.01 2.08 

25 2011/11/27 AM 5.5 DES SCNA 83 240.50  68/83 76/83  -1.46 1.76 

26 2011/11/28 PM 1.5 ASC SCNA 87 248.09  75/87 81/87  -1.24 1.92 

27 2011/12/04 AM 5.5 DES SCNB 84 229.70  75/84 81/84  -1.21 1.91 

28 2011/12/21 AM 17.0 DES SCNA 83 240.50  68/83 74/83  -1.51 1.68 

29 2011/12/28 AM 7.0 DES SCNB 84 229.70  71/84 77/84  -1.30 1.82 

30 2012/02/14 AM 48.0 DES SCNB 68 199.03  56/68 61/68  -16.51 -15.26 
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Figure 3-5. Close-ups of the extracted water extents from the RADARSAT-2 image acquired 

on 28 November 2011 using the HH+HV global threshold value (1.92 dB). The water areas 

are displayed in deep blue, and the red ellipses are the water references. 

RS2 images. The threshold value of that method was close to the valley of the histogram and was able to 

extract water surfaces quite well. Consequently, the NE method was used for automatic thresholding in the 

following discussion.  

All the histograms were calculated by dividing the entire range of values into 256 intervals and then 

setting the number of neighborhood intervals to 11 (m = 5). The results of the threshold values are displayed 

as vertical lines in the histogram plots in Figure 3-4. In the figure, the solid lines represent bimodal 

distributions, whereas the dashed lines represent unimodal distributions, which were excluded from the 

calculation of the global threshold. For example, water reference 076 was rejected when calculating the 

global threshold for HH+HV. The threshold values obtained from the bimodal distributions are the area-

weighted average, resulting in the global threshold value. This threshold is expected to be effective for the 

entire image. All the global threshold values are listed in columns 10 and 11 of Table 3-2. 

Among the 30 RS2 images, the global threshold values were slightly different. This may be because 

the RS2 images were acquired under different conditions. Different paths result in different azimuth angles, 

whereas different beam modes result in different incident angles, wave frequencies, and image resolutions. 

Those conditions produce different backscattering coefficients. The proposed technique has less bias for 

selecting the threshold value because it does not depend on the satellite mode and seasonal environment. 

Thus, the extracted water bodies for all the acquisition dates can be combined.  
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Figure 3-6. Extracted water areas after applying the global threshold value for each Radarsat-

2 image. The extracted results from the actual date are shown in deep blue, and the results 

from the previous date are shown in light blue. 
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Figure 3-7. Water duration map calculated by stacking the extracted water surfaces. The red 

border shows Ayutthaya City, an enlargement of which is shown on the right side of the figure. 

The yellow border shows the Rojana industrial park.  

 

3.3.3. Water Areas Extraction and Flood Duration Map 

The water areas were simply extracted by applying a global threshold value to each RS2 image. 

Close-ups of the extracted result from the image acquired on 28 November 2011 are shown in Figure 3-5. 

The water boundaries obtained using this technique appear to be reasonable in comparison to the visually 

classified results from the original RS2 and TH1 images acquired in a dry season. All the RS2 images from 

the 30 dates were processed separately. Because some RS2 images did not cover the entire study area, the 

missing parts were estimated from the previous image. The results are shown in Figure 3-6. The results from 

the current date are shown in deep blue, and the estimated results from the previous date are shown in light 

blue. The estimations coincided with the actual flood situation; flooding began in the north region on 2 

October 2011 (image 1), the flooded areas spread to the south on 23 October 2011 (image 4), the flood in the 

north had abated by 21 November 2011 (image 28), and was completely finished on 14 February 2012 

(image 30). 

Flooding usually occurs over a long duration because the central region of Thailand is nearly flat. 

Agricultural plants have limited times to tolerate waterlogging or submerging. Buildings and electrical 

equipment are not designed to work in this situation and are hard to repair. The severity of damage to assets 

increases with flood duration. Therefore, the period of inundation or a flood duration map is very important 
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to the Thai government for controlling floods and developing remedial plans. The flood duration map was 

produced by stacking the interval of the extracted water surfaces. The final flood duration map is shown in 

Figure 3-7. 

3.4. Accuracy Assessment 

The accuracy of a classification must be assessed by comparing the results with truth data. In this 

study, optical images that captured ground surface activity and gaging stations that recorded water heights 

were introduced as truth data sources. During this flood event, almost all the country was covered by clouds, 

and optical satellite clear-sky images therefore were very rare. GeoEye-1 (GE1) and ThaiChote-1 (TH1) 

clear-sky images taken on 22 November 2011 over Ayutthaya city were selected as the truth data. Those data 

covered the Ayutthaya Historical Park and the Rojana and Hi-Tech industrial parks, which are very 

important economically and for tourism.  

To extract the flooded areas from the optical images, using the Normalize Different Water Index 

(NDWI) calculated from the Green (G) and near-infrared (NIR) band values is the most popular and 

effective method [36]. McFeeters proposed the NDWI in 1996 to detect surface waters in wetland 

environments and to allow for the measurement of surface water extent, and asserted that values of NDWI 

greater than zero are assumed to represent water surfaces, while values less than, or equal to, zero are 

assumed to be non-water surfaces [37]. In this image interpretation, rivers and ponds were also extracted as 

flooded areas because nearly the entire study area was covered by water. The GE1 NDWI threshold for the 

water areas during the flood period was determined by visual interpretation of Figure 8(4B) as NDWI ≧ 

0.02 or 69.1% of the image area shown in Figure 3-9(1A–1C). This NDWI threshold value was used as the 

truth data when obtaining the most accurate threshold values for NDWI from TH1 and HH + HV from RS2. 

3.4.1. Finding the Best Accuracy Thresholds for the ThaiChote-1 and RADARSAT-2 Images 

The comparison of two (the truth data and estimation) two-class spatial images, water areas (W) or 

non-water areas (N) results in four combinations: W-W, N-N, W-N, and N-W. When the threshold for a 

client’s image is set to the minimum value, all of the results will be non-water areas (N). Some of them are 

N-N, which represents the same N values as those from the master image (GE1), whereas the others are W-

N, which represents a water extraction omission error (false negative). When the threshold of the client 

image moves to higher values, some values will be considered to be water (W). Some of these values are W-

W, which represent the same W values, whereas the others are N-W, which represent overestimation 

(commission error, false positive) in the water extraction. The best threshold value is the point where the 

summation of the W-W and N-N areas becomes largest. This point corresponds to the result most similar to 

that from the GE1 image. The results of this approach are shown in Table 3-3. 
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Similar to GE1, TH1 has an optical sensor with four bands with quite similar spectral ranges, but its 

spatial resolution is much lower. Before calculating the NDWI values, a TH1 image in Figure 3-8(5A) was 

up-sampled and co-registered to the GE1 image. We then compared the NDWI in Figure 3-8(5B) with that 

from the GE1 image. The most accurate TH1 NDWI threshold for water was found to be 0.28, which 

corresponds to 64.6% of the estimated water areas (W-W and N-W) in Figure 3-9(2A–2C). Among those 

extracted areas, 85.2% were similar to those from the GE1 (W-W and N-N), 9.6% were false negatives (W-

N), and 5.1% were false positives (N-W). By applying this NDWI threshold to the TH1 pre-flood image, the 

water-covered ratio of this area was 11.9%. 

For thresholding SAR sensors, the backscattering coefficient (the sigma naught value, σ°) is used 

more often than the NDWI for optical sensors. The best threshold for the RS2 HH+HV acquired on 

November 21, 2011 was determined to be 3.18 dB, which corresponds to 64.9% of the estimated water areas 

(W-W and N-W). Among those extracted water areas, 79.9% were similar to the results from GE1 (W-W 

and N-N), 12.2% were false negatives (W-N), and 7.9% were false positives (N-W). 

3.4.2. Comparison with the Proposed Method 

The threshold value for RS2 from the most accurate thresholding method was greater, covered a 

larger area and was more accurate than the proposed weight averaged neighborhood valley-emphasis 

thresholding method. The RS2 threshold value acquired for 21 November 2011, (image 24) from the most 

accurate thresholding method was 3.18 dB (64.9% area coverage), whereas that by the proposed method was 

2.08 dB (44.0% area coverage). For the proposed method, 71.9% of the results were similar to the results of 

GE1 (W-W and N-N), 26.6% were false negatives (W-N), and 1.5% were false positives (N-W). From 

Figure 3-9(3B,3C), the blue color shows the water areas extracted by the proposed method, and the green 

color shows the difference from the best accuracy method. 

Although the threshold value of the best accuracy method is apparently more eligible, applying that 

local threshold value to the entire study area returned an inappropriate result and was difficult to implement 

as a practical procedure. The extraction of water surfaces using that threshold value for the entire area 

resulted in overestimation. For example, the water areas in Figures 3-5 and 3-6 became noisier. Moreover, it 

was almost impossible to find suitable optical images to be used as references for the SAR images 

throughout the event. 

3.4.3. Comparison with the Gaging Station Data 

Because the satellite images were not taken from the same sensors and were not acquired on the 

same date, it is difficult to explain the cause of the different extracted water extents. The difference in sensor 

types and spatial resolutions and changes in water height over time may have contributed to the discrepancy. 

The heights of the flood waters were difficult to project because water flows downward without stopping, 



Chapter 3 

Inundated Areas Extraction in Thailand 2011 

 

 

33 

although water flows rather slowly in this area. To understand the flood event, the daily average water 

heights above the mean sea level (MSL) that were collected from the three nearest telemetry gaging stations 

(C35, C37, and S5) and recorded by the Royal Irrigation Department (RID) [38] and the water depths from 

the surface of the road at four checkpoints reported by Rojana Industrial Park Public Co., Ltd. [39] were 

introduced as truth data, as shown in Figure 3-10. The four water checkpoints were located in the Rojana 

Industrial Park at the power plant (RJ0), Rojana phase-1 gate-A in front of the head office (RJ1), Rojana 

phase-2 gate-B (RJ2), and Rojana-3 around the flyover (RJ3). Among them, RJ0 was closest to the Honda 

automobile factory shown in Figure 3-9. 

The solid lines in the left graph show the water heights at the three telemetry gaging stations over a 

one-year period (April 2011 to March 2012). The period over which the satellite images were acquired was 

at the end of the flood event, when the water level had dramatically decreased. Although the water heights 

were slightly different on 22 November 2011, they had significantly dropped more than 30 cm in three days 

by 25 November 2011. 

Because the satellite images were not taken from the same sensors and were not acquired on the 

same date, it is difficult to explain the cause of the different extracted water extents. The difference in sensor 

types and spatial resolutions and changes in water height over time may have contributed to the discrepancy. 

The heights of the flood waters were difficult to project because water flows downward without stopping, 

although water flows rather slowly in this area. To understand the flood event, the daily average water height 

above the mean sea level (MSL) that were collected from the 3 nearest telemetry gaging stations (C35, C37 

and S5) and recorded by the Royal Irrigation Department (RID) [38] as shown in Figure 3-10. The water 

depths from the surface of the road at 4 checkpoints reported by Rojana Industrial Park Public Co., Ltd. [39] 

were also introduced as truth data. The 4 water checkpoints were located in the Rojana Industrial Park at the 

power plant (RJ0), Rojana phase-1 gate-A in front of the head office (RJ1), Rojana phase-2 gate-B (RJ2), 

and Rojana-3 around the flyover (RJ3). Among them, RJ0 was closest to the Honda Automobile factory 

shown in Figure 3-9. The pictures of water checkpoints RJ0 and RJ1 taken on November 13 and 23, 2011 

illustrated flood situation are shown in Figure 3-11 and Figure 3-12. Water level statistics chart of gaging 

station and water check points are shown in Figure 3-13. 

3.5. Discussion and Future Work 

The proposed method can improve the speed of automated thresholding because to determine the 

global threshold value from static local areas is much more efficient than to do from systematic hierarchical 

local areas. This technique is suitable for multi-temporal images in a specific place, like the Chao Phraya 

river basin. Although the processing for permanent water references is rapid, the selection of proper water 

references takes time at the first step. An improper water reference without a bimodal distribution histogram 

should not be considered because it does not contribute to the estimation of the global thresholding. 
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Figure 3-8. Close-up of Ayutthaya city for in-flood and post-flood time. The dual polarization 

color composite (1A–3A) and HH + HV (1B–3B) from RADARSAT-2. The false color composite 

and NDWI (4A, 4B) from GeoEye-1, and the false color composite and NDWI for in-flood (5A, 

5B) and pre-flood (6A, 6B) times from ThaiChote-1.   
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Figure 3-9. Histograms and cumulative probability plots (top) and extracted flooded areas 

(blue color) in Ayutthaya city (middle) and over part of the Rojana Industrial Park (bottom), 

from the visualization of the GeoEye-1 image (1A–1C), determining the best accuracy of the 

ThaiChote-1 image (2A–2C), and the emphasis of the neighborhood valley on the 

RADARSAT-2 image (3A–3C), plotted on a GeoEye-1 false color composite. The green 

pixels are the determined best accuracy results from RADARSAT-2, which was larger than 

that determined using the neighborhood valley-emphasis method. 
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Figure 3-10. Telemetry gaging station pictures at C35, C37, and S5 taken during a field survey on 

October 5, 2014. 
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Figure 3-11. Water levels at water checkpoint in front of the power plant (RJ0) of Rojana Industrial Park, 

taken on November 13 and November 23, 2011 

Source: http://rojna-th.listedcompany.com/flood_situation.html  

2011/11/13 

2011/11/23 



Chapter 3 

Inundated Areas Extraction in Thailand 2011 

 

 

38 

 

Figure 3-12. Water levels at water checkpoint in front of the head office (RJ1) of Rojana Industrial Park, 

taken on November 13 and November 23, 2011 

Source: http://rojna-th.listedcompany.com/flood_situation.html  

2011/11/13 

2011/11/23 



Chapter 3 

Inundated Areas Extraction in Thailand 2011 

 

 

39 

Table 3-3. Results of the accuracy assessment of the water extraction for Ayutthaya city.   

Satellite/Date Data Method 
Threshold 

Value 

N-N 

(%) 

W-N  

(%) 

N-W 

(%) 

W-W 

(%) 

Water  

(N-W + W-

W) 

(%) 

Accuracy  

(N-N + W-W) 

(%) 

GE1 2011/11/22 AM NDWI VS(1) 0.02 - - - - 69.1 - 

TH1 2011/11/25 AM NDWI BA(2) 0.28 25.8 9.6 5.1 59.5 64.6 85.2 

RS2 2011/11/21 PM HH+HV BA(2) 3.18 dB 23.0 12.2 7.9 56.9 64.9 79.9 

  NE(3) 2.08 dB 29.4 26.6 1.5 42.4 44.0 71.9 

(1) VS = visualization thresholding 

(2) BA = find best accuracy thresholding 

(3) NE = weight-average neighborhood valley-emphasis thresholding 

 

Figure 3-13. Comparison of the water heights recorded at three telemetry gaging stations and the 

levee heights (left); enlargement of the left plot for 14–27 October and the water depths above the 

road surface observed at four checkpoints in the Rojana Industrial Park (right).  

 

Open water from SAR images can be extracted quite well, but it is difficult to extract water in 

inundated urban areas and under trees [25,27, and 40]. The most important factor that limits the use of 

satellite data are resolution. When a satellite records data in a high-resolution mode, the imaging swath 

becomes smaller than that in the normal mode. This fact is caused by limitations of the data recorder and 

transmitter. Observing an inundation over a wide area with the same sensor or the same satellite is almost 

impossible. Although RS2 can observe in the spotlight mode at a 1-m resolution, the image on November 22 

was acquired in the SCNB mode at a 25-m resolution to cover a larger area. On the other hand, the 

resolutions of pan-sharpened GE1 and TH1 images are 1 m and 2 m, respectively. Therefore, the GE1 and 
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RS2 results are quite different (approximately 23–33%), according to the accuracy assessment. For detecting 

the water surface, a large number of pixels were missing because the overall backscattering of the pixels 

surrounded by obstacles such as buildings was higher than for open spaces.  

Sensor type can also cause differences. Although the NDWI obtained from optical sensors is suitable 

for the detection of water surfaces, objects having low infrared radiation are also classified as water surfaces. 

This misclassification can be observed in Figure 3-9(1C) and (2C). The roof-tops of buildings were 

sometimes identified as flood water by GE1, and there were more false-positive classifications from TH1. 

Water surfaces may also be misclassified by the backscattering coefficient from a SAR sensor. For example, 

non-water objects with smooth surfaces such as roads and runways are classified as water surfaces. 

Furthermore, side-looking transmission hinders observational ability. Water surfaces next to buildings 

produce double bounce backscattering, resulting in a total backscattering coefficient that is higher than usual 

and misclassifications as non-water. This effect can be observed in Figure 3-9(3C), where the west sides of 

the buildings were misclassified because the layover was projected onto the water surface. Similarly, the 

water surfaces between the buildings were misclassified.  

Observing inundations using satellites has another drawback; water under roofs or inside buildings 

cannot be observed. Auxiliary data must be prepared to provide the missing information. The average ground 

elevation data were prepared from an aerial survey conducted by the Japan International Cooperation 

Agency (JICA) for the zone along the Chao Phraya River and by ESRI Thailand for the outer area in 2012. 

The combined data can cover the entire Chao Phraya river basin. Future research needs to focus on 

improving accuracy through the utilization of LiDAR DEMs as topographic data.  

3.6. Conclusions  

Multi-temporal RADARSAT-2 images with different acquisition conditions were used to extract 

water areas from the 2011 central Thailand flood along the Chao Phraya river. Considering the use of 

satellite SAR data in emergency situations, where validation data are scarce and optical images are hindered 

by cloud cover, an automated thresholding approach for water extraction was attempted. By introducing the 

global threshold value of the entire study area for each SAR image, the weight-averaged neighborhood 

valley-emphasis method was able to extract flooded areas automatically from the backscattering coefficient. 

The proposed method, which obtains the threshold value from the water references located throughout the 

Chao Phraya river basin, is more suitable for Thailand. Moreover, this technique is independent of the 

satellite acquisition condition, and there is no need to normalize the images before combining all the 

extracted water-areas as a flood duration map. In this case, the HH+HV dual-polarization achieved a higher 

accuracy than the HH single-polarization for open water extraction, which is affected by winds and 

floating/submerged plants. The extraction result for Ayutthaya city was similar to the visual inspection result 

from a GeoEye-1 image (approximately 67%), whereas the result obtained by the best accuracy thresholding 
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method was approximately 77%. The results based on the ThaiChote-1 image were more similar to that from 

the GeoEye-1 image (approximately 82%) because they were both obtained by high-resolution optical 

satellites. On the other hand, the results from RADARSAT-2 had lower accuracies than those from GeoEye-

1 and ThaiChote-1 because of its lower spatial-resolution and side-looking observational scheme. SAR 

images also have limitations for observing water areas covered by trees or adjacent to buildings. Despite 

these obstacles, the extraction of flooded areas from SAR intensity data can be improved by introducing pre-

event topographic data such as LiDAR DEMs and building footprints. 
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Chapter 4  

Implementation of Automated Inundated Areas Extraction 

System for the Central Thailand Flood from Multi-Temporal, 

Dual-Polarization RADARSAT-2 Image: A Case Study of 

Flood in 2016 

4.1. Introduction 

The Thai government assigned Chao Phraya river basin as a frequently inundated area. According to 

the flood historical data provided by the Geo-Informatics and Space Technology Development Agency 

(GISTDA) [1], a flood occurs in this area almost every year as shown in Figure A-4. These data obtained by 

applying a manual threshold value to HH intensity of RADARSAT-1, RADARASAT-2 and COSMO-

SkyMed satellites acquired throughout the rainy season from the year 2006 to 2015. Flood monitoring should 

regularly be performed with unbiased technique. Thus, this study intends to monitor flood situation in this 

water basin by applying the same technique as chapter 3. The results were validated by Landsat 8 optical 

images. 

The three RADARSAT-2 (RS2) images from several images taken in rainy season 2016 were 

selected for the processing. Due to the flood situation in the year, 2016 was not heavy as the year 2011, 

Ayutthaya city was not faced with inundation. In this year, the flood occurred in some part of these provinces, 

Sukhothai (STI), Phitsanulok (PLK), Nakhon Sawan (NSN), Supha Buri (SPB) and Phra Nakhon Si 

Ayutthaya (AYA). Thus, the validation area was change to these regions. The optical images were taken by 

Landsat 8 (LS8). 

4.2. Study Area and Imagery Data 

This study focuses on the same area as chapter 3, the Chao Phraya river basin in the central part of 

Thailand. The approximate area is 7400km2.  

This section performs automated inundated area extraction of the RS2 imagery data acquiring on 23 

October, 11 November, and 5 December 2016. The processing technique mentioned in the previous section 

was applied to these data. The accuracy assessment has been done by comparing the flood extracted results 

with Landsat8 images taken on 21 October and 13 November 2016.  
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The RS2 images used in this study acquired by beam types SCNA (W1 + W2) and SCNB (W2 + S5 

+ S6). All of them were taken in the HH and HV dual-polarization mode with 25-m resolution. Images taken 

in October and November were observed from the descending (DES) path, while December was observed 

from the ascending (ASC) path. Their color composite maps are shown in Figure 4-1, and a summary of the 

images properties is provided in Table 4-1. The Landsat8 images were always observed from descending 

(DES) path due to it is a sun-synchronized orbital satellite. There are eleventh bands with several resolutions 

are provided. All bands using in this study are 30-m resolution. These images will be shown in the accuracy 

assessment section. 

4.3. Methodology and Results 

The RS2 images were preprocessed by using the Sentinel Application Platform (SNAP) software. 

This process comprised with the radiometric calibration, the Refined Lee speckle filtering, and terrain 

correction using an SRTM 90-m DEM. Then, the water extraction technique proposed in chapter 3 was 

applied to the images. This water extraction begins with threshold value calculation, and then applied the 

threshold value to the backscattering images. This study focuses only on HH + HV since the previous study 

show that, HH + HV sigma naught as total backscatter can reduce the effect of the wave on the water surface. 

The threshold value calculation consists of two steps, local thresholding, and global thresholding. 

Since the three images should be reprocessed in the same ways as chapter 3, the 28 water references have 

been declared permanently for the Chao Phraya river basin, were applied to these images to find local 

threshold value. These elliptical shape water references are located throughout the Chao Phraya river basin. 

Water reference having unimodal distribution histogram was rejected from the processing before calculate 

the local threshold. According to the chapter 3, the neighborhood valley-emphasis (NE) method have been 

proved it is the most suitable for water extraction, just only this method was applied. The global threshold 

value obtained from weight average by area from all local threshold which having bimodal distribution 

histogram. The number of bimodal occurrences and the global threshold value for each image was shown in 

Table 4-1. In this table, HH + HV show once again that it can increase bimodal probability rather than use 

only HH backscattering.  

The global threshold value was applied to each HH + HV image to obtain the water area. These 

extracted water areas results are shown in Figure 4-2. These three images reveal flood situation take placed 

in three regions. First, Sukhothai and Phitsanulok province (STI&PLK) is located in the north part. Second, 

Nakhon Sawan province (NSN) is located in the middle part. Third, Suphan Buri and Phra Nakhon Si 

Ayutthaya (SPB&AYA) is located in the lower part. 

Illustrating a multi-temporal flood extracted data acquired from several dates is more convenient by 

repetition as flood detection map in Figure 4-3. This map was displayed in seven colors. One time repetition 

show as yellow shade, the bright tone is 23 October, the mid tone is 11 November, and the dark tone is 5 
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December 2016. Two times repetition shown as blue shade, the bright tone is 23 October and 11 November, 

the mid tone is 11 November and 5 December 2016. Three times repetition shown as dark blue. The last one, 

a gray color, indicates not continuous of two times repetition which is uncertain classifies. The close-ups of 

the flood detection map for 87 water references are shown in Figure 4-4. From these close-ups images, the 

water body could be detected very well in dark blue which refer to three times repetition of water extracted 

area.  

 

   

Figure 4-1. The RADARSAT-2 color composite (HH as red, HV as green, and HH/HV as 

blue) images taken at the beginning, middle, and end of the 2016 Thai flood event. 

 

Table 4-1. List of RADARSAT-2 images and threshold values for water extraction. 

No. Local Time 
Interval 

(days) 
Path Beam 

Water References  
Bimodal 

Occurrences 
 

Weighted-Average 

Threshold (dB) 

Count 
Area 

(Km2) 
 HH HH + HV  HH HH + HV 

1 2016/10/24 AM - DES SCNA 78 8.4  38 44  -13.97 -12.63 

2 2016/11/11 PM 18 ASC SCNB 74 7.7  51 53  -15.51 -14.10 

3 2016/12/06 PM 24 ASC SCNB 71 7.4  39 46  -15.37 -14.06 
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Figure 4-2. Extracted water areas after applying the global threshold value for each Radarsat-

2 image. The extracted results show in blue color. 

 

Figure 4-3. The detected flood area from RADARSAT-2 acquired from 3 dates. The color 

reference was classified by repetition into 7 classes. There was flood occurs in 3 regions. 
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Figure 4-4. Close-ups of the flood detection map from the RADARSAT-2 images for 87 

water references. The red ellipses are the water references. 
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4.4. Accuracy Assessment 

Validating the flood extraction from RS images in this study has been done by comparing the results 

to LS8 images. Although both flood areas were extracted from thresholding technique, they were different 

sensors. The total backscatter (HH + HV) is the representative of RS2, while Normalized Difference Water 

Index (NDWI) is representative of LS8.  

NDWI is remote sensing derived index related to detecting water on the earth. There are several 

pairs of spectral band. The first intent was proposed by Bo-Cai Gao, calculated from Near-Infrared (NIR) 

and Short Wave Infrared (SWIR) [2] as in equation (1): 

𝑁𝐷𝑊𝐼 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
. (1) 

Although this method is suitable for general optical satellite including LS8, some optical satellite has no 

SWIR sensors. Therefore, the previous section which using GeoEye-1 (GE1) cannot use this index. For GE1, 

the four sensor satellite, blue, green, red, and NIR must be calculated from green and NIR proposed by S.K. 

McFeeters [3] as in equation (2): 

𝑁𝐷𝑊𝐼 =
(𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅)
. (2) 

Thus, to be able to compare with the previous study in chapter 3, this study evaluated water surface by green 

and NIR bands. According to the sky usually cover with the cloud in the rainy season, LS8 images were 

selected by closest acquired date to the RS2 images and least percentage of cloud cover.  

The threshold value uses for NDWI to extract water area were determined by finding the best 

accuracy mentioned in chapter 3. The comparison of water area extracted from RS2 and LS8 results in four 

combinations: W-W, N-N, W-N, and N-W. The best threshold value for LS8 is the point that summation of 

the W-W and N-N areas becomes largest. This stage corresponds to the results of LS8 image most similar to 

that from the RS2 image. The results of this operation and the accuracy for the three regions are shown in 

Table 3-2. The evaluated accuracy values for the three regions were 90.5%, 89.0%, and 93.3% accordingly. 

After the best threshold values had been obtained, these values were applied to NDWI images to 

extracted water area. The results are shown in Figure 4-5 for the Sukhothai and Phitsanulok province 

(STI&PLK), Figure-4-6 for the Nakhon Sawan province (NSN), and Figure 4-7 for Suphan Buri and Phra 

Nakhon Si Ayutthaya province (SPB&AYA).  
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Figure 4-5. A Flood area map from RADARSAT-2 HH+HV automatic thresholding 

technique for Sukhothai and Phitsanulok province (STI&PLK) (A). The seven combination 

colors indicate repetition of the flood in three acquiring dates. Landsat8 true color composite 

map (B), and flood area map from finding the best accuracy of NDWI (C).  
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Figure 4-6. A Flood area map from RADARSAT-2 HH+HV automatic thresholding 

technique for Nakhon Sawan province (NSN) (A). The seven combination colors indicate 

repetition of the flood in three acquiring dates. Landsat8 true color composite map (B), and 

flood area map from finding the best accuracy of NDWI (C). 
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Figure 4-7. A Flood area map from RADARSAT-2 HH+HV automatic thresholding 

technique for Suphan Buri and Ayutthaya province (SPB&AYA) (A). The seven combination 

colors indicate repetition of the flood in three acquiring dates. Landsat8 true color composite 

map (B), and flood area map from finding the best accuracy of NDWI (C).  
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Table 4-2. Results of the accuracy assessment of the water extraction for the three regions.   

Satellite/Date Data Method 
Threshold 

Value 

N-N 

(%) 

W-N  

(%) 

N-W 

(%) 

W-W 

(%) 

Water  

(N-W + W-W) 

(%) 

Accuracy  

(N-N + W-W) 

(%) 

Sukhothai and Phisanulok  (STI&PLK) 

RS2 2016/11/11 PM HH+HV BA(2) -14.10 dB 83.5 7.2 2.4 7.0 9.3 90.5 

LS8 2016/11/13 AM NDWI VS(1) 0.06 - - - - 14.1 - 

Nakhon Sawan (NSN) 

RS2 2011/10/24 AM HH+HV BA(2) -12.63 dB 82.2 3.5 3.2 11.1 14.3 89.0 

LS8 2016/10/21 AM NDWI VS(1) 0.08 - - - - 14.6 - 

Suphan Buri and Ayutthaya (SPB&AYA) 

RS2 2016/10/24 AM HH+HV BA(2) -12.63 dB 74.4 6.2 4.8 14.6 19.3 93.3 

LS8 2016/10/21 AM NDWI VS(1) 0.00 - - - - 20.8 - 

(1) BA = find best accuracy thresholding 

(2) NE = weight-average neighborhood valley-emphasis thresholding 

 

4.5. Conclusion 

The reproduction of proposed method from chapter 3 can be done very quickly due to the water 

references have been defined. Moreover, the results are very accurate around 90%, especially compare with 

NDWI of Landsat 8. There are several reasons may cause the accuracy higher than GeoEye-1 in chapter 3. 

One of the most prominent factors is that the resolution of Landsat 8 (30 m) is quite similar to the 

RADARSAT-2 SCN mode (25 m).  This technique may possibly apply to optical sensor satellites such as 

Landsat 8 to monitor flood situation with the same water references. However, the optical sensors have 

limitation to the inclement weather. It is very hard to obtain a good image with clear sky in the rainy season. 
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Chapter 5  

Multi-temporal Correlation Method for Damage Assessment 

of Buildings from High-Resolution SAR Images of the 2013 

Typhoon Haiyan 

In this study, damage caused by Typhoon Haiyan in the city of Tacloban, Philippines is extracted from 

COSMO-SkyMed imagery data. A multitemporal correlation map, i.e., a color composite of the 

backscattering coefficients obtained on different days and their correlation coefficients, is used to indicate 

changes. The Hyperboloid Change Index is proposed as a measure of the level of destruction. The method is 

demonstrated in a three-dimensional Cartesian coordinate system to elaborate the relationships among the 

aforementioned parameters. Compared to other candidate methods, a hyperboloid equation is found to be the 

most suitable for change detection, and its resulting positive value indicates that the typhoon had a high level 

of impact on the area. Potential damage areas are extracted using a thresholding operation, and the results are 

compared to two WorldView-2 satellite images to specifically assess coastal erosion and damage to 

buildings and offshore fish traps. 

5.1. Introduction 

In an SAR interferogram, the coherence (γ), which is derived by processing Single-Look Complex 

(SLC) co-registered data, is a measure of the correlation in a small neighborhood of geometric conditions. 

This value also indicates some specific information. A strong coherence implies that two images are 

homogenous, i.e., that the land surface has not changed and the geometric conditions are very similar. A 

weak coherence indicates that there has been a change due to one or more conditions, including a significant 

difference in look angles, constantly moving water surfaces, or land cover changes [1]. Therefore, SLC has 

been widely applied to land cover classification [2–5]. Furthermore, when used over a short time interval, it 

can distinguish between processes, such as manmade activities, moving objects, or damage detection [6–11]. 

Similar to the coherence, the correlation coefficient (R), which is more commonly used in statistics, 

is a measure of the linear correlation between two variables or pixel values in a local area from two images; 

the value of the correlation coefficient ranges from -1 and +1. The squared correlation coefficient of the SAR 

intensity has been proven to be a quick coherence estimator and is implemented in the same manner as 

coherence [12,13]. Although the coherence and correlation coefficient are very similar in the sense that they 

provide a value for the correspondence between two-time points, they detect different kinds of change on the 

ground. The coherence is influenced by the phase difference, which is specific to the spatial arrangement and 

thus to possible displacements. The intensity correlation is related to changes in the magnitude of the SAR 
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backscatter, which in turn is related to the roughness permutation [14]. Some studies have shown that the 

aforementioned methods perform almost identically when identifying the major factor of the decorrelation 

[15]. However, some studies have determined that the normalized coherence is better suited to and more 

useful for damage assessment [16,17]. Another study has found that the coherence is more useful for 

distinguishing slight to moderate damage levels, whereas the correlation coefficient is more sensitive to large 

surface changes [18]. In contrast, some studies have claimed that the correlation coefficient is slightly more 

sensitive to ground changes. Furthermore, a combination of both methods has slightly increased the overall 

accuracy [14].  

Recent studies have primarily used the difference and coherence (or the correlation coefficient) to 

estimate the severity of damage caused by various natural hazards in several ways [19]. In this study, the 

same parameters are used for damage extraction but with a different concept that overcomes the deficiency 

of the degree of change not being able to be determined on one scale. A new technique is introduced that 

utilizes three change parameters instead of the more common one or two.  

Because buildings are the most valuable assets of families and businesses, the assessment of the 

damage to buildings in typhoon events using high-resolution SAR images is a suitable topic of study. Among 

the types of damage that occur in natural disasters, the damage caused by winds is relatively easy to detect 

using satellite imagery because winds usually damage roofs. Furthermore, because there is a high probability 

of cloud cover, optical sensors are often not useful. For this reason, radar sensors are a better choice for rapid 

damage assessment. Although SARs operate in several frequency bands, the L, C and X bands are most often 

used. The X-band provides the highest spatial resolution; thus, it was most suitable for use in this study. 

Typhoon Haiyan, which is known as Yolanda in the Philippines, was used in a case study. 

Considered to be the strongest tropical cyclone in recorded history, it struck land in the Philippines with a 

wind speed of 195 miles (314 km) per hour on November 8, 2013. The typhoon killed more than 6,300 

people, displaced 16 million people, and did a total of PhP 89 billion (US$ 2 billion) in damage [20]. In this 

study, the detection of damage to buildings was carried out using pre- and post-event COSMO-SkyMed 

(CSK) images and the results were compared to the results of visual inspections of high-resolution optical 

satellite data. The new change index proposed in this study was designed to be suitable for detecting damage 

to buildings and determining the degree of change in the general case between two SAR images. The 

meanings of symbols and acronyms used in this article are listed in Table 5-1. 

  



Chapter 5 

Buildings Damage Assessment in Philippines 2013 

 

 

55 

Table 5-1. List of symbols and acronyms used throughout the text. 

 Acronym Meaning 

σo backscatter coefficient 

𝜙 phase 

γ coherence 

a hyperboloid constant a 

b hyperboloid constant b 

c hyperboloid semi-major axis 

d subtraction 

d' normalized subtraction 

s addition 

s' normalized addition 

A amplitudes 

C complex number 

D difference 

D' normalized difference  

 Acronym Meaning 

DSD standard deviation D 

S summation 

S' normalized summation 

SSD standard deviation S 

R correlation coefficient 

R' normalized R 

RSD standard deviation R 

RC combined correlation  

H' hyperboloid equation 

Δd absolute difference change index 

Δw weight method change index 

Δr cylindrical change index 

Δh hyperboloid change index 
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5.2. Study Area And Imagery Data 

This paper focuses on Tacloban, which is the capital city of Leyte province and its surrounding areas 

on Leyte Island. Located 580 km southeast of Manila, Tacloban was struck by the eye wall, which was the 

most powerful part of the storm. The typhoon wrought massive destruction on the city. The widespread 

devastation was caused by the extreme winds, and lowlands on the eastern side of the city were submerged 

by storm surges. Because the city had a large population, the number of deaths there accounted for 48% 

(2,678) of the total deaths in the Philippines in this event [20]. After the super typhoon struck land, the storm 

surges, and the extreme wind speeds were the major causes of damage. Strong waves and rising water levels, 

which were assumed to have heights of approximately 4 m, inundated and caused catastrophic damage to the 

coastal areas [21]. Tacloban’s airport was the area most affected due to its location; it was directly hit by the 

winds and surges. For these reasons, an area approximately 7.0 km wide and 12.3 km long (Figure 5-1), an 

area which includes Tacloban’s downtown area, was selected as the study site.  

The orbital parameters of CSK were favorable for multi-temporal image analyses. However, the two 

sets of imagery data were taken from different satellites, and there were rather long time intervals between 

them. The pre-event image was taken by CSK-1 on August 7, 2013; the post-event image was taken by CSK-

3 on November 20, 2013. The temporal baseline (Btemp) was 105 days, and the perpendicular baseline 

(Bperp) distance between the two satellite orbits was 885.2 m. The images were taken from the descending 

path with the right-looking HH polarization in the StripMap HIMAGE mode [22]. Both images have 

incidence angles between 44.99 and 47.19 degrees, and they have a spatial resolution of 0.94 m in the 

azimuthal direction and 1.57 m in the range direction. The ground resolution was 2.18 m after 

orthorectification.  

Two high-resolution optical satellite images acquired by WorldView-2 (WV-2) were also employed 

as ground truth data. The pre-event image was acquired on May 18 and the post-event image on November 

11, 2013. Both images have 8 multispectral bands (2.0 m resolution) and a panchromatic band (0.5 m). After 

pan-sharpening using the Brovey technique, 0.5 m resolution multispectral images were prepared. 

5.3. Change Detection Workflow 

Radiometric calibration provides images in which pixels can be directly related to the radar 

backscatter of the scene by applying product factor corrections, e.g., the reference slant-range, reference 

incidence-angle, rescaling factor and the calibration factor. This process results in the backscattering 

coefficient, which is essential for the comparison of SAR images acquired by different sensors, by the same 

sensor at different times, or by the same sensor in different modes [23]. To use the backscattering coefficient 

(σ°) for detecting surface changes, a calibration must first be applied to a pair of co-registered images. In a 
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preliminary test, a window size of 5×5 was found to be suitable for the building damage detection. It was 

therefore adopted for both methods in the coherence and correlation coefficient calculations. 

The MTC and MTR mapping methods were applied to evaluate the effects of the typhoon. 

Subsequently, SARBM3D filtering was applied to reduce the speckle while retaining the backscatter 

information [24]. An orthorectification using an SRTM 3 sec DEM was applied. This application was 

intended to compensate for distortions caused by topographical variations in the scene, to compensate for the 

tilt of the satellite, and to assign real-world coordinates to each pixel.  

The change detection process was accomplished by calculating the difference and summation. Then, 

normalization was carried out on these values, including the correlation coefficient, before the change index 

was calculated. Finally, thresholding was applied by selecting the appropriate value regarding the pre- and 

post-event WV-2 images. An assessment of the accuracy was performed by comparing this result to the 

visualization of the WV-2 images. The two kinds of data were not compared directly but rather by using the 

final results as the extracted damage percentage. A flowchart of the processes is shown in Figure 5-2. 
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Figure 5-1. (a) The footprint of the CSK scenes and Tacloban, Leyte study area. (b) Color 

composite of the pre- and post-event CSK backscattering coefficients. (c–d) True color 

composite of the pre- and post-event WV-2 images.  
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5.3.1. Coherence (γ) and Correlation (R) 

In repeat-pass interferometry, the coherence (γ) is derived from a pair of images in the same local 

area taken within a certain time-interval. The exact coherence and the relation between the interferometric 

phase dispersion can be derived using a mathematical operation. Therefore, the coherence is frequently 

calculated as an estimator [25] using two co-registered single-look complex (SLC) images, as in equation 

(1): 

γ =
∑ C1C2

√∑|C1|2 √∑|C1|2
 , (1)  

where C is a complex number with phase (φ) and amplitude (A) [26]. 

The Pearson correlation coefficient (R) is a measure of linear dependence and is defined as the 

covariance of two variables divided by the product of their standard deviations. In this case, it was calculated 

from the backscattering coefficients (σ°) of the two images using equation (2) with a moving window. 

Because this statistic determines the linear trend, and the SAR intensity is distributed in an exponentially 

increasing manner, it was appropriate to use decibel units (dB), which are on a logarithmic scale. 

R =
∑(σ1

o − σ 1
o̅̅ ̅̅ )(σ2

o − σ2
o̅̅ ̅)

√∑(σ1
o − σ 1

o̅̅ ̅̅ )2 √∑(σ2
o − σ 2

o̅̅ ̅̅ )2

 
(2) 
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5.3.2. MTC and MTR Visual Interpretation 

For the MTC map shown in Figure 5-3(a), red is used for the amplitude of the pre-event (A1), green for that 

of the post-event (A2) and blue for their coherence (γ). For the MTR map shown in Figure 5-3(b), red is 

used for the backscattering coefficient of the pre-event (σ1), green for that of the post-event (σ2) and blue for 

their correlation coefficient (R). The color composite of the SAR images visually provides information on 

the increase/decrease of the backscattering intensity at different times. The interferometric coherence (γ) and 

correlation coefficient (R) provide more information on the earth surface conditions, which vary within a 

small local area. However, using these measured values alone limits the interpretation because they do not 

indicate the trend of stage changes, which may be increasing or decreasing. Therefore, they are usually used 

in conjunction with a pair of amplitudes (intensity and backscatter coefficient) or their difference values. In 

various fields of change detection, RGB color composite mapping is considered to be a useful method 

  CSK Single Look Complex  

Figure 5-2. Data flow diagram for Multitemporal Coherence (MTC) and Multitemporal 

Correlation (MTR) processing. Note that that the modules shown with dotted lines were not 

used to produce the final results. 
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[27,28]. When a color composite is used, the results of the Multi-temporal Coherence (MTC) and Multi-

temporal Correlation (MTR) methods can be represented by colors closer to natural ones, which are easier to 

understand [7,8]. 

Because the coherence is a complex correlation coefficient, it is generally used as an absolute value 

or as the amplitude of coherence in real numbers. In a stable stage in which there is no change on the surface, 

the backscattering in the two images is equal. The coherence was high for the urban area, due to its high 

reflectivity and phase stability, but it was low for other land cover surfaces, because of the contribution of 

amplitudes and phase instability. Based on these results, white pixels were used to represent urban areas; 

yellow pixels were used to represent general land cover. Alternatively, the correlation coefficient had both 

positive and negative values, depending on the trend of the changes. Thus, in the stable stage, urban areas 

can have either white or yellow pixels, and the general land cover is represented using light yellow pixels. In 

both cases, smooth surfaces, e.g., roads and bodies of water may be either blue or black because of the 

ambiguity of the correlation. Low-correlation surfaces that have decreasing reflectances, e.g., areas that have 

flooded or that contain objects that have been removed from the scene, are shown in red, whereas those that 

have increasing reflectances, e.g., areas with destruction and that contain replaced objects in the scene, are 

shown in green.  

To more clearly explain the color composition derived by the MTR method, an RGB color model is 

shown in Figure 5-4(a), and 3D scatter plots for each pixel are shown in Figure 5-4(b) and (c) (displaying 

1% of the pixels for rendering performance). The color gradient from black to blue represents smooth 

surfaces, such as bodies of water, roads, and runways, where the backscatter was low. Alternately, flooded 

areas that are still remaining in the southern part of the city exhibit a reddish-magenta color due to the 

reduction of the backscatter. Other land cover and vegetation areas with low correlation coefficients can be 

recognized in yellow. The most important parts are the built-up areas in the city. If a building did not suffer 

damage, it is shown in white or yellow because its backscatter remained high with only slight changes. In 

contrast, if the typhoon caused damage to a building, a decrease or increase in the backscatter can be 

observed. Due to the washing away of buildings/houses or the accumulation of debris, the MTR color 

composite is red (decreasing backscatter with a high negative correlation), magenta (increasing backscatter 

with a high positive correlation), green (increasing backscatter with a high negative correlation) or cyan 

(increasing backscatter with a high positive correlation). 

In this study, we attempted to use the correlation coefficient for several reasons. For example, the 

correlation coefficient can be applied to images that have lost their phase properties, e.g., multilook, 

calibrated and georeferenced data [29, 30], and the correlation coefficient can be calculated rapidly using 

real-valued operations. It can also be used in cases of decorrelation due to large perpendicular baselines. 

Another main reason that we chose the correlation coefficient is that it shows a two-tailed normal 

distribution. This characteristic is suitable for our proposed method, which classifies the level of change 

from both sides of their mean. Since the coherence shows a one-tailed distribution, higher values refer to 
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larger displacements, so it was inapplicable to the normalized value discussed in the next section. It might be 

used in different ways. 

In the recent studies previously mentioned, several techniques have been attempted to combine the 

two statistics in order to retain the information contained in both and to improve overall accuracy. For 

example, the correlation coefficient has been used as the primary main statistic with the coherence used as a 

multiplier. As with the correlation coefficient, their product ranges from -1 to 1. We found that this 

combination did not greatly improve the results, and there was slightly more noise. Therefore, only the 

correlation coefficient was used for the processing in this study. Enlarged images of the Tacloban airport 

terminal and graphs of the corresponding profiles are shown in Figure 5-5. 

From the graphs of the profiles, the land cover was divided into 6 categories: trees, car parking areas, 

buildings, aircraft parking areas, grass, and runways. First, the aircraft parking areas and runways had the 

lowest reflectance. Some noise, the results of normal SAR characteristics and debris spread over the 

surfaces, was present, In contrast, the aircraft parking area and runway coherence were highest, although it 

was less than 0.5, and the correlation fluctuated between -0.5 and 0.5. Second, the grass area had a higher 

reflectance and slightly lower coherence, and the correlation was distributed over a wider range. Third, the 

tree areas had increased reflectance, and the correlation coefficient was slightly more negative. This area 

could not be captured by the coherence because all trees were totally destroyed, but median strips still 

remain. Next, the car parking area, which was a mix of empty space and three rows of trees, had combined 

characteristics and three peaks. Its reflectance decreased by an equivalent amount. Lastly, the east side of the 

Tacloban airport terminal building was destroyed, as evidenced by the area with the highest reflectance and 

reduced peak. The coherence slightly dropped in the damaged area, whereas the correlation coefficient was 

slightly negative. 

5.4. Change Index 

In the case of the visual interpretation, color composites produced by the MTC and MTR methods 

have slightly different representative colors, especially when normalized by the standard deviation. These 

maps provide more potential change information than two-color composites of the backscattering intensity 

(or coefficient) and are easier to visually interpret, but the process of using them to estimate the damage is 

still complicated. Recent studies have used several change indices, including the difference, coherence, and 

correlation coefficient, to detect and classify damage levels [7,13,31–33]. According to the color composite, 

red, green, cyan and magenta refer to pixels that have explicitly changed. Classifying them using a 2D model 
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Figure 5-3. (a) MTC and (b) MTR maps enhanced using the standard deviation technique 

and (c) their histograms.  
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Figure 5-4. (a) MTR demonstrated in the RGB color space. (b–c) 3D scatter plots of the MTR 

scaled by 2 times the standard deviation (2 SDs). 
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Figure 5-5. Enlarged image of the Tacloban airport terminal: (a) WV-2 pre-event, (b) WV-2 

post-event, (c) |γ|, (d) MTC, (e) R, (f) MTR, (g) RC and (h) MTRC maps, enhanced using the 

standard deviation technique. 
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usually has some weaknesses, which will be discussed later. The new method in 3D space, the method 

proposed in this study, is expected to overcome shortcomings in the use of the change indices. 

5.4.1. Difference and Summation 

The difference (D) is a very simple index and is commonly used to indicate a difference in spatial 

analyses, but the summation (S) has rarely been used. Both are calculated using the average value in a 

moving window. The two indices have a reciprocal relationship when expressed in Euclidean vectors or a 

Cartesian coordinate system. When simultaneously rotating the pre-event values (σ1o to the red axis) and 

post-event values (σ2o to the green axis) 45o counterclockwise, the operation produces the subtraction (d) 

axis in equation (3) and the addition (s) axis in equation (4). In this case, the difference (D) and summation 

(S) can be obtained by multiplying d and s by a constant value, √2, as shown in equation (5). We can infer 

that the summation (S) is a value on the yellow axis and that the difference (D) is a value on the axis 

perpendicular to the S-axis in the red-green plane, as shown in Figure 5-6. From this insight, the axis 

rotation, any equations composed of these parameters can be expressed in a 3D space. 

d =  σ̅2
o  cos 45° − σ̅1

o sin 45° =
σ̅2

o  − σ̅1
o  

√2
 (3)  

s =  σ̅2
o sin 45° + σ̅1

o cos 45° =
σ̅2

o  + σ̅1
o  

√2
 (4)  

  D =  σ̅2
 o − σ̅1

 o = √2d ;  S = σ̅2
o + σ̅1

o = √2s (5) 

 

45
o

 45
o

 

Figure 5-6. (a) The rotation of the σ
1
 and σ

2
 axes 45

o

 counterclockwise results in the 

Summation (S) and Difference (D) axes. (b) The backside view of (a). 

(a) 
(b) 
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5.4.2. Change Index 

Because the units and ranges of R, D, and S are not the same, normalization was introduced. All of 

the factors used to calculate the change indices in this study were normalized by equation (6). Each pixel 

value was subtracted from the mean value and divided by twice the standard deviation (SD) of the entire 

image. Thus, a normalized positive value represents a value above the mean; a negative value represents a 

value below the mean, and 1.0 represents a value twice that of the standard deviation. Each normalized value 

(Z-score) is denoted using the prime symbol. According to the statistical three-sigma or 68–95–99.7 rule, 

which separates the normal distribution into three ranges using the standard deviation, normalized values of 

1.0, which are located in range number 2, should cover 95% of the total pixels. Using the normalized score, 

it can be seen that D' is equivalent to d' and S' to s' in equation (6). The normalized results are shown in 

Figure 5-7. 

Figure 4-7. (a) Normalized Correlation (R'), (b) Difference (D') and (c) Summation (S') 

obtained from the backscattering coefficients of the MTR map 
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                 -3.0     0.5     2.0              D 
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R′ =
R − R

2RSD
;  d′ = D′ =

D − D

2DSD
 ;  s′ = S′ =

S − S

2SSD
 (6)  

In this study, the absolute difference method (Δd) of equation (7) would give an ambiguous result 

because it could not discriminate between the blue and black pixels representing bodies of water and the 

white and the white and yellow pixels representing natural vegetation and buildings, according to the 

transformed RGB model shown in Figure 5-6. Employing a combination using the correlation coefficient, as 

is used in some methods, would not improve the discrimination. For example, the weight method (Δw) [13] 

and the cylindrical or radius method (Δr) of equation (7) also have the same weaknesses. 

Δd = |D′|;   Δw = |D′| − 0.5R′;  Δr = √R′2 + D′2 (7) 

This problem can be solved by expressing the MTR in 3D space. A new change index is proposed 

and calculated using the normalized values of the difference (D'), summation (S'), and correlation (R'). 

According to the previous discussion, the D'-, S'- and R'-axes are mutually orthogonal. A hyperboloid of 

revolution can be obtained by rotating a hyperbola around its semi-minor axis (S'). The standard hyperboloid 

form in equation (8) is reduced to that in equation (9) when the constants a, b, and c are equal to 1. When a, b 

and c are not equal to 1, a standard deviation weight instead of the 2 in equation (6) can be introduced to 

simplify the hyperboloid equation. 

   H′ =
R′2

a2 +
D′2

b2 −
S′2

c2  (8)  

   H′ =  R′2
+ D′2

− S′2
;  when a =  b = c = 1 (9) 

All of the R', D,' and S' values that return the same H' value in the equation are located on the same 

hyperboloid surface. Negative values representing a hyperboloid of two sheets indicate a greater similarity. 

Zero values represent a conical surface, the differences, and similarities of which are almost equal. Positive 

values representing a hyperboloid of one sheet indicate greater differences. By spreading the hyperboloid 

“spittoon,” as shown in Figure 5-8(d), this operation was capable of differentiating among bodies of water, 

natural vegetation and buildings. Because the H' value is calculated using the quadratic polynomial formula, 

each range on the scale is squared. The change index value is much easier to recognize in the linear scale if 

the square root is taken. Because H' can be a positive or negative number, the square root must apply to the 

absolute value of H', and its sign must be retained, as in the definition of the Hyperboloid Change Index (Δh) 

in equation (10). 

Δh = sign(H′) √|H′| (10) 
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A comparison of the results obtained using the proposed method and those obtained using other 

candidate methods is shown in Figure 5-8. Among those methods, Δh demonstrated the best classification 

capability. This is mainly because it was developed from three parameters, which included the summation in 

the equation in such a way that the magnitude of the intensity from the original data is preserved. This index 

can indicate the change in conjunction with the reflectance, so its appearance is much clearer than those of 

the other indices. It is capable of distinguishing changes very clearly. Moreover, the difference between the 

sea and mainland can easily be identified. Yellow areas with slightly positive values represent slight 

changes, such as the changes seen in the natural vegetation. Blue areas with high negative values were 

almost unchanged over the period. These included bodies of the water, roads, runways, and buildings. In this 

case, a double bounce effect area can be identified as corresponding to a very low value of the index, since 

the summation of the intensity is very high, as in the case of the deep blue on the eastern side of the 

Tacloban airport terminal buildings, for instance. Although Δh was able to capture this phenomenon, which 

could not have been captured by the other indices, the area was not identified as an area of destruction, 

because the reflection from building walls was hard to see in nadir images acquired from optical satellites. 

Red areas with highly positive values represent significant changes, such as damaged and flooded areas or 

the growth of agricultural plants. For large buildings, the index value was high due to the loss of surface. 

Therefore, the reflectance was increased, with a high correlation. The growth of vegetation over a period of 

105 days, as shown on the map, would not be counted as damage caused by the typhoon. To avoid this 

possibility, the pair of SAR images should be taken over the shortest possible time interval. 

5.5. Damage Extraction and Accuracy Evaluation 

Thresholding is the simplest method of evaluating damage levels. A suitable threshold value for the 

Hyperboloid Change Index (Δh) was selected by comparing its results with the high-resolution optical 

images. Because of limitations in visibility due to cloud cover, two WV-2 images taken 177 days apart were 

selected and used as the truth data. An enlargement of a sample area at the Tacloban airport is shown in 

Figure 5-9. Because the changed index value was designed to be a function of the standard deviation, a 

value of 1.0 is equivalent to twice the standard deviation, which covers approximately 95% of the total 

pixels. Therefore, the threshold value would be close to 1.0. By varying the threshold by trial-and-error to 

suitably detect damage with the least noise, a value of 1.0 was selected. The extraction result is shown in 

Figure 5-10(b), wherein the image has been classified into 3 classes. The classes with threshold values lower 

than 1.0 appear noisy. Enlarged images of the Tacloban airport terminal are shown in Figure 5-11. 

The coastal erosion of the northeastern cape can be easily distinguished from the WV-2 image and 

the extracted results from the proposed method. Moreover, destruction offshore, e.g., fish traps and boats, 

can also observe along the west coast in Figure 5-9 and Figure 5-10.  
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For the building damage detection, the results obtained using the same threshold value sufficiently 

revealed the damage. It was difficult to separate the buildings from much of the debris spread throughout the 

city, and the resolution of the CSK images made accurate assessment difficult. Building damage detection 

from remote sensing imagery can be carried out by several sensors, e.g. optical, SAR, and LiDAR. In this 

regard, the optical imagery with spatial resolution finer than one meter is well suited to be a reference data 

source. Because optical satellite images are acquired with views almost from the nadir, only building 

information on the roof and the presence/absence of debris around the lateral walls are collected [34]. 

Although the superimposition of pre- and post-event optical images results in automated change detection, 

visual interpretation is widely used in practice [35]. Based on a field survey and a visual interpretation of 

high-resolution optical satellite images, the damage level, focusing on the roofs, was classified into two 

categories by Tohoku University [36]. The high damage or destruction class was used when the roof of a 

building had been reduced by more than 50%, or the structure had been washed or blown away. The low 

damage or survival class was used for buildings with small variations in their geometry or roof shape. Unlike 

optical sensors, an SAR sensor can capture, due to its oblique observation scheme, more information relevant 

to lateral wall damage, but its performance in urban areas is limited by shadowing and layover issues [37]. 

Due to the lateral observations and surface roughness measurements inherent to SAR, the 

backscatter from a cluster of small buildings, when they were destroyed, would be reduced because of the 

reduction of the double bounce effect. Furthermore, this effect can strongly reduce backscatter when 

numerous buildings are washed away [38].  

In this study, the extracted results had low accuracy for small buildings in dense areas, but accuracy 

was good enough to extract the damaged portions of large buildings. The damage assessment was examined 

using 545 large buildings with footprint areas larger than 500 m2, buildings that were selected from auxiliary 

vector data. The damage was visually assessed from roofs in the pre- and post-event WV-2 images. The 

damage was then assigned to three classes using the relative damaged area in the footprint of each building: 

less than 10% as no damage or minor damage, from 10% to 50% as moderate damage, and more than 50% as 

major damage or collapse. The statistical results are plotted in Figure 5-12, and enlarged images for the 10 

largest buildings are shown in Figure 5-13. 

The classification procedure was carried out in two steps. First, the major damage was classified. 

The moderate damage was then distinguished from the minor damage. The threshold value was selected by 

the extracted % of building footprint that returned the best accuracy. Comparison results in Table 2 show that 

the proposed index  ∆h was better than that of other candidate methods. Although all methods yielded good 

accuracy with almost the same value, 89%, the proposed index result was superior in terms of damage 

extraction for several reasons. First, it had the lowest amount of noise in the extracted area. Second, it 

captured the damage to buildings with the best performance, as the damage level extracted from the area was 

highest with the proposed method, close to 50%, which we define as major damage. 
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Figure 5-8. Results of the change detection using the candidate methods: (a) absolute 

difference (𝜟d), (b) weight (𝜟w), (c) circular (𝜟r), (d) proposed hyperboloid method (𝜟h) 

and enlarged images of the Tacloban airport terminal. 

∆d = |𝐷′| ∆w = |𝐷′| ∆r = √𝑅′2 + 𝐷′2 

𝛥ℎ = sign(𝐻′)√|𝐻′| 

𝐻′ = 𝑅′2
+𝐷′2

− 𝑆′2
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Figure 5-9. Enlarged images of the Tacloban airport: (a) MTR map, (b) the pre-event WV-2 

image and (c) the post-event WV-2 image. Black-bordered areas are close-ups of Tacloban 

airport. 

WV-2 2013/11/11 WV-2 2013/05/18     σ 2013/08/07         σ 2013/11/20         R 

(a) (c) (b) 
500 m 500 m 500 m 

Figure 5-10. Assessment of damage to Tacloban airport: (a) Hyperboloid Change Index (𝜟h), 

(b) thresholding into 3 classes, (c) the extracted damage areas overlapping on the post-event 

WV-2 image. Black-bordered areas are close-ups of Tacloban airport. 
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Table 5-2. Comparison of candidate methods to ∆h by extracted area, best accuracy, and percent of footprint 

Method 

Threshold =1.0 Extracted Area = 3.72% 

Extracted  

Area 

Overlap 

to ∆h 

Best  

Accuracy 

At % of  

footprint 
Threshold 

Overlap 

to ∆h 

Best  

Accuracy 

At % of  

footprint 

∆d  5.19%  80% 89% 24% 1.11  71% 89% 20% 

∆w  7.57%  80% 89% 26% 1.23  71% 89% 16% 

∆r 12.65% 100% 83% 40% 1.28  83% 89% 22% 

∆h  3.72% 100% 89% 32% 1.00 100% 89% 32% 
 

Figure 5-11. Assessment of damage to Tacloban airport: (a) Hyperboloid Change Index 

(𝜟h), (b) thresholding into 3 classes, and (c) the extracted damage areas superimposed on the 

post-event WV-2 image. 

 𝜟h -2.4          -1  0   1                           6.2 𝜟h        0.8-1.0          1.0-1.2           ≥ 1.2 
    

  WV-2 2013/11/11           𝜟h ≥ 1.2        

  

(a) (b) (c) 

100m 100m 100m  

Figure 5-12. Damage extraction diagram when 𝜟h's threshold 1.2 for 545 large buildings 

with footprint areas is more than 500
 
m

2
, shown in the right-side map. The damage levels 

were classified to 3 classes by visual inspection of the WV-2 images.  
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Figure 5-13. Comparison of the results obtained using the proposed damage extraction method and the reference 

damaged areas from the WV-2 images for the 10 largest buildings. 
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Table 5-3. Confusion matrix of 𝜟h for the 2-class damage extraction from the CSM images. 

 

Visual inspection of WV-2 images 

Minor & Moderate Major Total User Accuracy 

∆h from 

CSM 

Minor & Moderate 393 48 441 0.89 

Major 12 92 104 0.88 

Total 405 140 545   

Procedure Accuracy 0.97 0.66   0.89 

Cohen's kappa for 2 Classes = 0.69 

 

Table 5-4. Confusion matrix of 𝜟h for the 3-class damage extraction from the CSM images. 

 

Visual inspection of WV-2 images 

Minor Moderate Major Total User Accuracy 

∆h from 

CSM 

Minor 236 144 41 421 0.56 

Moderate 6 7 7 20 0.35 

Major 5 7 92 104 0.88 

Total 247 158 140 545 
 

Procedure Accuracy 0.96 0.04 0.66 
 

0.61 

Cohen's kappa for 3 Classes = 0.35 

 

In the case of ∆h, the major damage class (32%) was identified with relatively good accuracy (user 

accuracy of 0.88, producer accuracy of 0.66) from the extracted results. At this point, a maximum overall 

accuracy of 0.89 and Cohen’s kappa of 0.69 was returned in the confusion matrix shown in Table 5-3. It is 

also notable that the minor damage could not be distinguished from the moderate damage in the extracted 

results. In the case of separating moderate damage from minor damage with the criterion of 28%, the overall 

accuracy dropped to 0.61 and the Cohen’s kappa to 0.35 in the confusion matrix shown in Table 5-4. 

Because the moderate damage class was proportionally lower than the others, with any percentage of roof 

damage being classified as moderate, we were unable to correctly extract the moderate damage class from 

the minor damage class. Therefore, the damage levels were grouped into only two classes by combining the 

minor and moderate damage classes. 
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In total, 140 buildings were classified as having sustained major damage. By using the proposed 

method, 104 buildings were extracted, and from those, the classification of 92 buildings (66%) was correctly 

estimated. There were 405 buildings in the minor-to-moderate damages class, and a total of 441 buildings 

were extracted, with 393 buildings (97%) correctly classified. Note that the damaged areas of the buildings 

detected using this method relied on the SAR and auxiliary vector data and that some pixels around the 

selected buildings were assigned to the damaged area. Some of those pixels were the damaged areas of other 

buildings and were not included in this study. However, some of the pixels were affected by changes in the 

environment, including flooded areas, broken trees, and debris. Those pixels should be classified as false 

alarms. 

 

5.6. Conclusions 

The devastation wrought by the 2013 typhoon Haiyan was investigated using a Multi-temporal 

Correlation (MTR) technique applied to two CSK images. A new change index was introduced, and of the 

several candidate methods, the proposed Hyperboloid Change Index (Δh) method, achieved the greatest 

building damage extraction accuracy (89%) when distinguishing moderate damage from minor damage. The 

proposed index was able to indicate, with lower noise, changes over a period. Its value was normalized and 

related to the standard deviation of the difference and the correlation between the pre- and post-event 

backscattering coefficients. For this event, the index was able to efficiently extract, given a proper threshold 

value, the severe damage to fish traps and large buildings. However, some limitations were observed, 

including an inability to handle small buildings and/or dense areas as well as relatively poor accuracy in 

distinguishing minor to moderate damage levels for large buildings. These limitations of the proposed 

technique are probably related to the spatial resolution and SAR observation scheme, so they cannot be 

avoided.  

The proposed Hyperboloid Change Index has clear advantages with respect to other candidate 

methods because it can indicate a change in conjunction with the reflectance. The resulting change maps are 

clearer and easier to interpret than the maps produced using the other tested indices. The method is not only 

suitable for detecting damage to buildings, but it can also be used generally to differentiate levels of change. 

It is possible that further improvements can be made by adjusting the hyperboloid constants or the standard 

deviation coefficients, according to the specific case. This improvement, in addition to testing the influence 

of the window size, will be among the main issues considered in future research. 
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Chapter 6  

General conclusions  

This research aimed to provide more accurate data for natural disaster management, by developing a 

novel method which is suitable for the characteristic of disasters and SAR sensors. The general conclusions 

for the three most relevant chapters can be summarized as follows. 

In section 3, by introducing the global threshold value of the entire study area for each 

RADARSAT-2 image, the weight-averaged neighborhood valley-emphasis method was able to extract 

flooded areas automatically from the backscattering coefficient. In this case, the HH + HV dual-polarization 

achieved a higher accuracy than the HH single-polarization for open water extraction, which is affected by 

winds and floating/submerged plants. SAR images also have limitations for observing water areas covered 

by trees or adjacent to buildings. The postponed method, using permanent water references to obtain 

threshold value for classifying water body, could improve speed for automatic flood detection in a specific 

area such as Chao Phraya river basin. The accuracy of flood area detection from RADARSAT-2 acquired in 

2011 is around 70% when compare to the results obtained from GeoEye-1 and ThaiChote-1.  

In chapter 4, the proposed method from chapter 3 had been reprocessing by RADARSAT-2 acquired 

in 2016. In this year, flood situation covered less area than 2011. The accuracy of flood area detection from 

RADARSAT-2 is around 90% when compare to the results obtained from Landsat 8. The higher accurate 

value may cause by the resolution of RADARSAT-2 SAR Scan Narrow beam mode is more similar to 

Landsat 8 than GeoEye-1. 

In chapter 5, a new change index was introduced, and of the several candidate methods, the proposed 

Hyperboloid Change Index (Δh) method, achieved the greatest building damage extraction accuracy (89%) 

when distinguishing moderate damage from minor damage. However, some limitations were observed, 

including an inability to handle small buildings and/or dense areas as well as relatively poor accuracy in 

distinguishing minor to moderate damage levels for large buildings. 
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APPENDIX A 
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Figure A-1. Tropical cyclone classifications 

Source: http://www.wmo.int/pages/prog/www/tcp/Advisories-RSMCs.html 
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Figure A-2. Summary of RADARSAT-2 beam mode and product characteristics 

Source: RADARSAT-2 Product Description, 2016 
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Figure A-2. Summary of RADARSAT-2 beam mode and product characteristics (continue) 

Source: RADARSAT-2 Product Description, 2016 
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Figure A-3. Nominal Resolutions in ScanSAR Narrow and ScanSAR Wide Beam Modes. 

Source: RADARSAT-2 Product Description, 2016 

 

     

     

Figure A-4. The historical flood map of study area, Chao Phraya river basin in central 

Thailand provided by GISTDA, Thailand. These flood area were determined by manual 

thresholding of RADARSAT-1, RADARSAT-2, and COSMO-SkyMed.   
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APPENDIX B 

 

This section shows the python codes used to process in this dissertation. 

 

B.1 Python code for geometry transformation in general case 

import os 

import numpy as np 

import gdal, ogr, math 

 

class JSON(dict): 

    pass 

 

class ogcPoint(np.ndarray): 

    def __new__(cls, a): 

        obj = np.asarray(a).view(cls) 

        return obj 

 

    def updateNumPyArrayWithValues(self): 

        self[1] = 1 

        return self 

    @property 

    def X(self): 

        return self[0] 

    @property 

    def Y(self): 

        return self[1] 

 

class ogcEnvelope(np.ndarray): 

    def __new__(cls, a): 

        obj = np.asarray(a).view(cls) 

        return obj 

 

    def updateNumPyArrayWithValues(self): 

        self[1] = 1 

        return self 

    @property 

    def MinX(self): 

        return self[0] 

    @property 

    def MaxX(self): 

        return self[1] 

    @property 

    def MinY(self): 

        return self[2] 

    @property 

    def MaxY(self): 

        return self[3] 

    #----------- 

    @property 

    def Size(self): 

        return ogcPoint((self.MaxX-self.MinX,self.MaxY-self.MinY)) 

    @property 

    def LowerLeft(self): 

        return ogcPoint((self.MinX,self.MinY)) 

    @property 

    def LowerRight(self): 

        return ogcPoint((self.MaxX,self.MinY)) 

    @property 

    def UpperLeft(self): 

        return ogcPoint((self.MinX,self.MaxY)) 

    @property 

    def UpperRight(self): 

        return ogcPoint((self.MaxX,self.MaxY)) 

     

 

class ogcTransform(np.ndarray): 

    _size = ogcPoint((0,0)) #image size 

    def __new__(cls, a, size=(0,0)): 

        obj = np.asarray(a).view(cls) 

        obj._size = ogcPoint(size) 
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        return obj 

 

    def updateNumPyArrayWithValues(self): 

        self[1] = 1 

        return self 

 

    @property 

    def Size(self): 

        return self._size 

    @property 

    def MinX(self): 

        return self[0] 

    @property 

    def ResolutionX(self): 

        return self[1] 

    @property 

    def OrientationX(self): 

        return self[2] 

    @property 

    def MaxY(self): 

        return self[3] 

    @property 

    def OrientationY(self): 

        return self[4] 

    @property 

    def ResolutionY(self): 

        return self[5] 

 

    @property 

    def Rows(self): 

        return self.Size.Y 

    @property 

    def Columns(self): 

        return self.Size.X 

    @property 

    def Pixels(self): 

        return self.Size.X * self.Size.Y 

 

    @property 

    def MaxX(self): 

        return self.MinX + (self.ResolutionX*self.Size.X) 

    @property 

    def MinY(self): 

        return self.MaxY + (self.ResolutionY*self.Size.Y) 

    @property 

    def Width(self): 

        return self.MaxX-self.MinX 

    @property 

    def Height(self): 

        return self.MaxY-self.MinY 

    @property 

    def Envelope(self): 

        return ogcEnvelope((self.MinX,self.MaxX,self.MinY,self.MaxY)) 

    #--------     

    def PositionAt(self, RC): 

        return ogcPoint((self.MinX + (self.ResolutionX * RC.X) + (self.OrientationX*RC.Y), 

                        self.MaxY + (self.ResolutionY * RC.Y) + (self.OrientationY*RC.X))) 
 

 

 

B.2 Python code for clipping raster by each polygon in vector files 

def CreateROI(Vector, Raster, Path, MustComplete=True): 

     

     

    iRaster = gdal.Open(Raster) 

    iVector = ogr.OpenShared(Vector) 

 

    iLayer = iVector.GetLayer(0) 

    iBand = iRaster.GetRasterBand(1) 

    iTransf = ogcTransform(iRaster.GetGeoTransform(),(iRaster.RasterXSize,iRaster.RasterYSize)) 

 

    #iSchema = iLayer.GetLayerDefn() 

 

    for i in range(iLayer.GetFeatureCount()): 

        iFeature = iLayer.GetFeature(i) 
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        iID = iFeature.GetFieldAsInteger(iLayer.FindFieldIndex("ID",False)) 

         

        iGeometry = iFeature.geometry() 

         

        #--------------------------------- 

         

        iEnvelope = iTransf.Envelope 

        oEnvelope = ogcEnvelope((iGeometry.GetEnvelope())) 

         

        sEnvelope = ogcEnvelope((oEnvelope.MinX - iEnvelope.MinX, 

                                 oEnvelope.MaxX - iEnvelope.MinX, 

                                 -(oEnvelope.MaxY - iEnvelope.MaxY), 

                                 -(oEnvelope.MinY - iEnvelope.MaxY)))  

 

        pEnvelope = ogcEnvelope((sEnvelope / iTransf.ResolutionX).round().astype(np.int)) 

 

         

        oEnvelope = ogcEnvelope((iEnvelope.MinX+(pEnvelope.MinX*iTransf.ResolutionX), 

                                 iEnvelope.MinX+(pEnvelope.MaxX*iTransf.ResolutionX), 

                                 iEnvelope.MaxY+(pEnvelope.MaxY*iTransf.ResolutionY), 

                                 iEnvelope.MaxY+(pEnvelope.MinY*iTransf.ResolutionY)))  

 

        oTransf = ogcTransform([oEnvelope.MinX,iTransf.ResolutionX, 0.0, 

                                oEnvelope.MaxY,0.0, iTransf.ResolutionY]) 

         

        #--------------------------------------------- 

        iArray = iBand.ReadAsArray(int(pEnvelope.MinX),int(pEnvelope.MinY), 

                                   int(pEnvelope.Size.X),int(pEnvelope.Size.Y)) 

 

        if type(iArray).__module__ != np.__name__: 

            print ("#### Clip outside dataset") 

            print (iArray) 

            print (iEnvelope) 

            print (iRaster.RasterXSize,iRaster.RasterYSize) 

            print (int(pEnvelope.MinX),int(pEnvelope.MinY), 

                                   int(pEnvelope.Size.X),int(pEnvelope.Size.Y)) 

            continue #skip this aoi 

 

        #--------------------------------------------- 

        oTarget = os.path.join(Path,"Water%03d"%(iID)) 

         

        if not os.path.exists(oTarget): 

            os.makedirs(oTarget) 

        oTarget = os.path.join(oTarget,os.path.split(Raster)[1].replace("Outer","Water%03d"%(iID))) 

        #""" 

        print (oTarget) 

        print (iArray.shape[1], iArray.shape[0], 

             iRaster.RasterCount, iBand.DataType) 

         

        #--------------------------------------------- 

        oRaster = iRaster.GetDriver().Create(oTarget, 

             iArray.shape[1], iArray.shape[0], 

             iRaster.RasterCount, iBand.DataType) 

         

        oRaster.SetProjection(iRaster.GetProjectionRef()) 

        oRaster.SetGeoTransform(oTransf) 

        #oRaster.SetGCPs(iRaster.GetGCPCount(),iRaster.GetGCPs()) 

        oRaster.SetMetadata(iRaster.GetMetadata()) 

        #--------------------------------------------- 

         

        print ("*"*30) 

        NotComplete = False 

        oMask = iArray!=iBand.GetNoDataValue() #Mask true for not nodata 

        print ("Masked pixels count : ",np.sum(oMask)) 

         

        if np.sum(oMask) > 0:  #Not All Masked 

            for pR in range(oMask.shape[0]): 

                if NotComplete : break 

                for pC in range(oMask.shape[1]): 

                    if NotComplete : break 

                    if not MustComplete and not oMask[pR][pC] :  continue 

                         

                    iPoint = ogr.Geometry(ogr.wkbPoint) 

                    iLocate = iTransf.PositionAt(ogcPoint((pEnvelope.MinX+pC,pEnvelope.MinY+pR))) 

                    iPoint.AddPoint(*iLocate) 

                    iWithin = iPoint.Within(iGeometry) 

                     

                    if MustComplete and iWithin and not oMask[pR][pC] : 

                        if not oMask[pR][pC] and oMask[pR-1:pR+2,pC-1:pC+2].sum()>=8: 



 

Appendix B 

 

 

98 

                            oMask[pR,pC] = iWithin 

                            print ("Fixed missing pixel as average pixels") 

                            continue 

                        else: 

                            oMask.fill(False)  

                            NotComplete = True 

                            print ("Some nodata pixel is in clip polygon") 

                            break 

 

                    oMask[pR][pC] = iWithin 

     

                    continue 

                    print (pR, pC, iArray[pR][pC]) 

                    print (iPoint, oEnvelope) 

                    print ("-"*20) 

                    print (iPoint.Intersect(iGeometry)) 

        #--------------------------------------------- 

         

        for b in range(1,iRaster.RasterCount+1): 

            #skip first band read from above doesn’t work. Data from somewhere else 

            #if b>1: #skip b1 by using read from above to improve speed 

             

            iBand = iRaster.GetRasterBand(b) 

             

            if b<=3: 

                iArray = iBand.ReadAsArray(int(pEnvelope.MinX),int(pEnvelope.MinY), 

                                           int(pEnvelope.Size.X),int(pEnvelope.Size.Y)) 

            else: 

                iArrayA = iRaster.GetRasterBand(1).ReadAsArray(int(pEnvelope.MinX), 

   int(pEnvelope.MinY),int(pEnvelope.Size.X),int(pEnvelope.Size.Y)) 

                iArrayB = iRaster.GetRasterBand(2).ReadAsArray(int(pEnvelope.MinX), 

   int(pEnvelope.MinY),int(pEnvelope.Size.X),int(pEnvelope.Size.Y)) 

                iArray = 10*np.log10(np.power(10,iArrayA/10)+np.power(10,iArrayB/10)) 

                                 

            for pR in range(oMask.shape[0]): 

                for pC in range(oMask.shape[1]): 

                    Marked = iArray[pR-1:pR+2,pC-1:pC+2]!=iBand.GetNoDataValue() 

                    if iArray[pR][pC]==iBand.GetNoDataValue() and Marked.sum()>=8: 

                        iArray[pR,pC]=np.ma.masked_array(iArray[pR-1:pR+2,pC-1:pC+2],~Marked).mean() 

                        print ("Band",b,", Row",pR, ", Col", pC, ", Fixed", iArray[pR,pC]) 

                                    

            oBand = oRaster.GetRasterBand(b) 

            oBand.SetNoDataValue(iBand.GetNoDataValue()) 

            iArray[~oMask] = oBand.GetNoDataValue() 

            oBand.WriteArray(iArray) 

        del oRaster 

 

B.3 Python code for histogram peak detection  

def peakdet(v, delta, x = None): 

    """ 

    Source https://gist.github.com/endolith/250860 

    Converted from MATLAB script at http://billauer.co.il/peakdet.html 

     

    Returns two arrays 

     

    function [maxtab, mintab]=peakdet(v, delta, x) 

    %PEAKDET Detect peaks in a vector 

    %        [MAXTAB, MINTAB] = PEAKDET(V, DELTA) finds the local 

    %        maxima and minima ("peaks") in the vector V. 

    %        MAXTAB and MINTAB consists of two columns. Column 1 

    %        contains indices in V, and column 2 the found values. 

    %       

    %        With [MAXTAB, MINTAB] = PEAKDET(V, DELTA, X) the indices 

    %        in MAXTAB and MINTAB are replaced with the corresponding 

    %        X-values. 

    % 

    %        A point is considered a maximum peak if it has the maximal 

    %        value, and was preceded (to the left) by a value lower by 

    %        DELTA. 

     

    % Eli Billauer, 3.4.05 (Explicitly not copyrighted). 

    % This function is released to the public domain; Any use is allowed. 

     

    """ 
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    maxtab = [] 

    mintab = [] 

        

    if x is None: 

        x = np.arange(len(v)) 

     

    v = np.asarray(v) 

     

    if len(v) != len(x): 

        sys.exit('Input vectors v and x must have same length') 

     

    if not np.isscalar(delta): 

        sys.exit('Input argument delta must be a scalar') 

     

    if delta <= 0: 

        sys.exit('Input argument delta must be positive') 

     

    mn, mx = np.Inf, -np.Inf 

    mnpos, mxpos = np.NaN, np.NaN 

     

    lookformax = True 

     

    for i in np.arange(len(v)): 

        this = v[i] 

        if this > mx: 

            mx = this 

            mxpos = x[i] 

        if this < mn: 

            mn = this 

            mnpos = x[i] 

         

        if lookformax: 

            if this < mx-delta: 

                maxtab.append((mxpos, mx)) 

                mn = this 

                mnpos = x[i] 

                lookformax = False 

        else: 

            if this > mn+delta: 

                mintab.append((mnpos, mn)) 

                mx = this 

                mxpos = x[i] 

                lookformax = True 

 

    return np.array(maxtab), np.array(mintab) 

 

B.4 Python code for automatic thresholding 

import os 

import sys 

import cv2 

 

import math 

import numpy as np 

from osgeo import gdal 

from datetime import datetime 

from matplotlib import pyplot as plt 

import collections as col 

 

import warnings 

warnings.simplefilter('ignore',np.RankWarning) 

 

def FindBest(source): 

    data_bin = 256 

    stripSize = 500 

    neighb_count = 7 

 

    stripCount = math.ceil(source.YSize/stripSize) 

     

    data_min = np.inf 

    data_max = -np.inf 

     

    for stripNo in range(stripCount): 

        rowNo = stripNo*stripSize 

        rowSize = stripSize 
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        if rowNo+stripSize > source.YSize: 

            rowSize = source.YSize - rowNo 

        data_arr = source.ReadAsArray(0,rowNo,source.XSize,rowSize) 

        data_arr = np.ma.masked_array(data_arr, data_arr==source.GetNoDataValue()) 

         

        #--------- 

        temp_arr = data_arr[~data_arr.mask].data.flatten() 

        if len(temp_arr)==0: continue 

        data_min = min(temp_arr.min(),data_min) 

        data_max = max(temp_arr.max(),data_max) 

        del data_arr 

        del temp_arr 

     

    print("min : ",data_min,"  max : ",data_max) 

    if np.isinf(data_min) or np.isinf(data_max): 

        results = col.OrderedDict() 

        results["Threshold"] = {}  #at lower bound 

        results["Bins"] = None 

        results["Min"] = None 

        results["Max" ] = None 

        results["Range"] = None 

        results["Interval"] = None 

        results["Series"] = [] 

        results["Counts"] = [] 

        results["PolyFit"] = [] 

        results["PeakDet"] = {} 

        return results 

      

     

    data_8bit = np.zeros((source.YSize,source.XSize),dtype=np.uint8) 

    data_8bit = np.ma.masked_array(data_8bit, data_8bit!=0) 

 

    hist_count, hist_series = np.histogram(np.zeros(data_bin),data_bin,[data_min,data_max]) 

    hist_series = hist_series[:-1] 

    hist_count = np.zeros(data_bin) 

     

 

    for stripNo in range(stripCount): 

        rowNo = stripNo*stripSize 

        rowSize = stripSize 

        if rowNo+stripSize > source.YSize: 

            rowSize = source.YSize - rowNo 

        data_arr = source.ReadAsArray(0,rowNo,source.XSize,rowSize) 

        data_arr = np.ma.masked_array(data_arr, data_arr==source.GetNoDataValue()) 

 

        temp_arr = data_arr[~data_arr.mask].data.flatten() 

        temp_count, hist_series = np.histogram(temp_arr,data_bin,[data_min,data_max]) 

        hist_count+= temp_count 

        hist_series = hist_series[:-1] 

        #--------- 

        temp_arr = (((data_arr-data_min)/(data_max-data_min))*(data_bin-1)).round() 

        #print(rowNo) #,"\n",temp_arr) 

        data_8bit[rowNo:rowNo+rowSize,0:source.XSize] = temp_arr 

        data_8bit.mask[rowNo:rowNo+rowSize,0:source.XSize] = temp_arr.mask 

        del data_arr 

        del temp_arr 

 

    flat_8bit = data_8bit[~data_8bit.mask].data.flatten() 

    otsu_cv2, otsu_img = cv2.threshold(flat_8bit,0,data_bin-1,cv2.THRESH_BINARY+cv2.THRESH_OTSU) 

     

    del flat_8bit 

    del data_8bit 

    """ 

    This code work well but no need 

    http://docs.opencv.org/3.1.0/d7/d4d/tutorial_py_thresholding.html#gsc.tab=0 

 

    Try to calculate by manual  

    //http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html 

    This following code not correct 

     

    """ 

    """-------------------------------------------- 

    #*** Recheck with 8 bit ---- Remove when ok ----- 

    hist_count, hist_series = np.histogram(flat_8bit,256,[0,256]) 

    hist_series = hist_series[:-1] 

    print("*******",len(flat_8bit),flat_8bit.min(), flat_8bit.max()) 

    print("*******",len(hist_count),hist_count.min(), hist_count.max()) 

    print("*******",len(hist_series),hist_series.min(), hist_series.max()) 
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    print(hist_series) 

    #----------------------------------------------""" 

 

    """ Test Version with Between-Class""" 

    #http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html 

    hist_cumu = hist_count.ravel().cumsum() 

    hist_total = hist_cumu[-1]  

    #print("total",hist_total) 

 

    hist_valley = hist_count.ravel()/hist_total 

     

    otsu_min = np.inf 

    otsu_key = -1 

 

    otsu_max = -np.inf 

    otsu_key2 = -1 

 

    valley_max = -np.inf 

    valley_key = -1 

     

    neighb_shift = int(math.ceil(neighb_count-1/2)) 

    neighb_max = -np.inf 

    neighb_key = -1 

     

    for i in range(data_bin): 

        nL,nR = np.hsplit(hist_count,[i+1])  #number of items 

        sL,sR = np.hsplit(hist_series,[i+1]) #value of items 

        wL,wR = nL.sum()/hist_total, nR.sum()/hist_total #weight of side 

        mL,mR = (nL*sL).sum()/nL.sum(), (nR*sR).sum()/nR.sum() #mean of side 

        vL,vR = (((sL-mL)**2)*nL).sum()/nL.sum(), (((sR-mR)**2)*nR).sum()/nR.sum() #variance of side 

 

        otsu_wic = (wL*vL)+(wR*vR) #within-class 

         

        if otsu_wic < otsu_min: 

            otsu_min = otsu_wic 

            otsu_key = i 

             

        otsu_btc = wL*wR*((mL-mR)**2) 

        if otsu_btc > otsu_max: 

            otsu_max = otsu_btc 

            otsu_key2 = i 

        """ 

        print("-"*30) 

        print("M", mL, mR) 

        print("V", vL, vR) 

        print("WIC",i, otsu_key,  otsu_wic, otsu_min) 

        print("BTC",i, otsu_key2, otsu_btc, otsu_max) 

        """ 

         #------------- 

        # calculate valley within-class 

        valley_val = otsu_btc*(1-hist_valley[i]) 

        if valley_val > valley_max: 

           valley_max = valley_val 

           valley_key = i 

        #print("Valley", valley_key, valley_val, valley_max) 

            

        #------------- 

        # calculate neighborhood within-class 

        neighb_left = i - neighb_shift 

        neighb_right = i + neighb_shift + 1 

        neighb_val = otsu_btc* (1-hist_valley[neighb_left:neighb_right].sum()) 

        if neighb_val > neighb_max: 

           neighb_max = neighb_val 

           neighb_key = i 

        #print("Neighbor",neighb_key, neighb_val, neighb_max) 

 

    hist_delta = int(round((polyfit_peakdet/100)*hist_count.sum())) 

    hist_coef = np.polyfit(hist_series, hist_count,50) 

    hist_poly = np.polyval(hist_coef, hist_series) 

    peaks, valls= peakdet(hist_poly, hist_delta ,hist_series)  

            

    results = col.OrderedDict() 

    results["Threshold"] = col.OrderedDict() 

    results["Threshold"]["OTSU-CV2"] = hist_series[int(otsu_cv2)]  #at lower bound 

    results["Threshold"]["OTSU-WIC"] = hist_series[int(otsu_key)] 

    results["Threshold"]["OTSU-BTC"] = hist_series[int(otsu_key2)] 

    results["Threshold"]["Valley-Emphasis"] = hist_series[int(valley_key)] 

    results["Threshold"]["Neighbor-Emphasis"] = hist_series[int(neighb_key)] 

    results["Bins"] = 256 
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    results["Min"] = data_min 

    results["Max" ] = data_max 

    results["Range"] = data_max-data_min 

    results["Interval"] = hist_series[1]-hist_series[0] 

    results["Series"] = hist_series.tolist() 

    results["Counts"] = hist_count.astype(np.int).tolist() 

    results["PolyFit"] = hist_poly.tolist() 

    results["PeakDet"] = {"Delta":5,"Peaks": peaks.tolist(), "Valleys": valls.tolist() } 

     

    return results 

  

B.5 Python code for calculate MTR and Hyperboloid Change Index  

import os, sys 

import traceback 

import numpy as np 

import numpy.ma as ma 

import math, pickle 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from osgeo import gdal 

 

def CorrDiff(Source,Target,bandBefore,bandAfter,WinSize,bandCorr=None):#,Progress): 

        bandB     = Source.GetRasterBand(bandBefore) #Before 

        bandA     = Source.GetRasterBand(bandAfter) #After 

        bandC     = None 

        if bandCorr: bandC = Source.GetRasterBand(bandCorr) 

 

        bandSBefo = Target.GetRasterBand(1) 

        bandSAfte = Target.GetRasterBand(2) 

        bandTCorr = Target.GetRasterBand(3) 

        bandTDiff = Target.GetRasterBand(4) 

        bandTSumm = Target.GetRasterBand(5) 

        bandNCorr = Target.GetRasterBand(6) 

        bandNDiff = Target.GetRasterBand(7) 

        bandNSumm = Target.GetRasterBand(8) 

        bandHZscr = Target.GetRasterBand(9) 

 

        """ 

        bandSBefo.SetCategoryNames("Source Before") 

        bandSAfte.SetCategoryNames("Source After") 

        bandTCorr.SetCategoryNames("R Correlation") 

        bandTDiff.SetCategoryNames("Different") 

        bandTSumm.SetCategoryNames("Summation") 

        bandNCorr.SetCategoryNames("Norm R Correlation") 

        bandNDiff.SetCategoryNames("Norm Different") 

        bandNSumm.SetCategoryNames("Norm Summation") 

        bandHZscr.SetCategoryNames("+/-Root(Hyperboloid)") 

        """ 

 

        bandSBefo.WriteArray(bandB.ReadAsArray()) 

        bandSAfte.WriteArray(bandA.ReadAsArray()) 

 

        centerX = int(WinSize[0]/2.) 

        centerY = int(WinSize[1]/2.) 

        extendX = int(WinSize[0]/2.) 

        extendY = int(WinSize[1]/2.) 

         

        stepCount = 0. 

        stepPrint = 0. 

        stepTotal = float(bandB.XSize*bandB.YSize) 

         

        for j in range(centerY,bandB.YSize-centerY-1): 

            for i in range(centerX,bandB.XSize-centerX-1): 

                    #print bandB.XSize,bandB.YSize, i-extendX,j-extendY,i+extendX,j+extendY 

                    winsBData = bandB.ReadAsArray(i-extendX,j- 

      extendY,WinSize[0],WinSize[1]).flatten() 

                    winsAData = bandA.ReadAsArray(i-extendX,j- 

      extendY,WinSize[0],WinSize[1]).flatten() 

                     

                    if bandC: 

                        winsTCorr = bandC.ReadAsArray(i,j,1,1)[0][0] 

                        #print "Coherence",winsTCorr 

                    else: 
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                        winsTCorr = np.corrcoef(winsBData,winsAData) 

                        winsTCorr = winsTCorr[0,1] 

                        #print "Correlation",winsTCorr 

 

                    #After - Before 

                    winsBMean = np.average(winsBData) 

                    winsAMean = np.average(winsAData) 

                     

                    ###if Rsquare: winsTCorr**=2 

                    winsTDiff = winsAMean - winsBMean 

                    winsTSumm = winsAMean + winsBMean 

                     

                    bandTCorr.WriteArray(np.array([[winsTCorr]]),i,j) 

                    bandTDiff.WriteArray(np.array([[winsTDiff]]),i,j) 

                    bandTSumm.WriteArray(np.array([[winsTSumm]]),i,j) 

 

                    if (i==centerX and j==centerY): 

                        print i-extendX,j-extendY, WinSize 

                        print "Data1 : ",winsBData 

                        print "Data2 : ",winsAData 

                        print "AverageB : ",winsBMean 

                        print "AverageA :",winsAMean 

                        print "CorrCoef : ",winsTCorr 

                        print "Different:",winsTDiff 

                        print "Summation:",winsTSumm 

 

                    stepCount = stepCount+1. 

                    sys.stdout.write("\r"+ 

                    " %02d"%WinSize[0]+"x"+"%02d"%WinSize[1]+ 

                    " Progress %s ... %0.2f"%(j,((stepCount/stepTotal)*100.))+"%") 

                    sys.stdout.flush() 

        print  

        print "Moving Window Complete !!!" 

        print  

 

        print "Compute Statistics for Raw Corr,Diff,Summ" 

        bandSBefo.ComputeStatistics(False) 

        bandSAfte.ComputeStatistics(False) 

        bandTCorr.ComputeStatistics(False) 

        bandTDiff.ComputeStatistics(False) 

        bandTSumm.ComputeStatistics(False) 

         

        statSBefo = bandSBefo.GetStatistics(False,True) 

        statSAfte = bandSAfte.GetStatistics(False,True) 

        statTCorr = bandTCorr.GetStatistics(False,True) 

        statTDiff = bandTDiff.GetStatistics(False,True) 

        statTSumm = bandTSumm.GetStatistics(False,True) 

         

        statMin = 0; statMax = 1; statAvg = 2; statStd = 3 

 

        print "Corr Stat Raw Befo", statSBefo 

        print "Corr Stat Raw Afte", statSAfte 

        print 

        print "Corr Stat Raw Corr", statTCorr 

        print "Corr Stat Raw Diff", statTDiff 

        print "Corr Stat Raw Summ", statTSumm 

         

        numpTCorr = bandTCorr.ReadAsArray() 

        numpTDiff = bandTDiff.ReadAsArray() 

        numpTSumm = bandTSumm.ReadAsArray() 

 

        numpTCorr = ma.masked_array(numpTCorr,numpTCorr==-9999) 

        numpTDiff = ma.masked_array(numpTDiff,numpTDiff==-9999) 

        numpTSumm = ma.masked_array(numpTSumm,numpTSumm==-9999) 

         

        #Compute each row to reduce using of memory 

        for row in range(numpTCorr.shape[0]): 

            numpTCorr[row]-=statTCorr[statAvg] 

            numpTCorr[row]/=(statTCorr[statStd]*2.) 

            numpTDiff[row]-=statTDiff[statAvg] 

            numpTDiff[row]/=(statTDiff[statStd]*2.) 

            numpTSumm[row]-=statTSumm[statAvg] 

            numpTSumm[row]/=(statTSumm[statStd]*2.) 

         

        bandNCorr.WriteArray(numpTCorr.base) 

        bandNDiff.WriteArray(numpTDiff.base) 

        bandNSumm.WriteArray(numpTSumm.base) 

                 

        print "\nCompute Statistics for Norm's Corr,Diff,Summ" 
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        bandNCorr.ComputeStatistics(False) 

        bandNDiff.ComputeStatistics(False) 

        bandNSumm.ComputeStatistics(False) 

 

        statNCorr = bandNCorr.GetStatistics(False,True) 

        statNDiff = bandNDiff.GetStatistics(False,True) 

        statNSumm = bandNSumm.GetStatistics(False,True) 

 

        print 

        print "Corr Stat Norm Corr", statNCorr 

        print "Corr Stat Norm Diff", statNDiff 

        print "Corr Stat Norm Summ", statNSumm 

 

        #Compute each row to reduce using of memory 

        for row in range(numpTCorr.shape[0]): 

            #Hyperboloid Index 

            numpTCorr[row]**=2. 

            numpTDiff[row]**=2. 

            numpTSumm[row]**=2. 

            numpTCorr[row]+=numpTDiff[row] 

            numpTCorr[row]-=numpTSumm[row] 

            #+/- Root(Hyperboloid) 

            numpTSign = ma.absolute(numpTCorr[row]) 

            numpTSign = numpTCorr[row]/numpTSign 

            numpTCorr[row]=ma.absolute(numpTCorr[row]) 

            numpTCorr[row]**=0.5 

            numpTCorr[row]*=numpTSign 

 

        bandHZscr.WriteArray(numpTCorr.base) 

        print "\nCompute Statistics for Hyperboloid Score" 

        bandHZscr.ComputeStatistics(False) 

        print "\nBuild Overviews ..." 

        Target.BuildOverviews('average', [2, 4, 8,16,32,64]) 

 

 




