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Abstract 

Investigating and understanding the reconstruction process and current situation of urban areas after 

natural disasters is a useful method for evaluating the performance of the project’s implementers. In 

this study, we tracked and analyzed the reconstruction process in Bam, Iran, after the city was struck 

by an earthquake with a Mw of 6.6 on December 26, 2003. We adopted three approaches to assess 

the city's post-earthquake reconstruction comprehensively and to shed light on the progress and 

sustainability of disaster recovery projects. The results indicated that considerable progress had been 

made in reconstructing some of the damaged areas. However, progress was relatively slow in 

severely damaged areas. 

Moreover, we detected and classified the recent land-covers of the Bam area by using the confusion 

of high-resolution synthetic aperture radar (SAR) Images (ALOS-2) and the optical image (Sentinel-

2). Detection and Classification of land-covers by only optical imagery, in particular for buildings, 

are often complicated process with the low accuracy results in desert areas such as the Bam. We 

could obtain a reasonable classification of the land covers by the composition of quad- and dual-

SAR images with reverse sensor’s passes and normalized difference vegetation index (NDVI) from 

the Sentinel-2 Image. This method led to high accuracy, fast estimation and less dependency on 

visual inspection. 

災害後長期間における都市の変化と現状の把握は，都市復興と発展を評価する重要な情

報である。本研究は，2003年 12月 26日にマグニチュード 6.6の地震が発生したイラン・

バンム市の復興状況をモニタリングした。都市再建の過程を把握するために，3 つのデ

ータを用いた。1 つ目は，政府が公開した統計データである。年ごとに統計された建物

の数と材質の割合から復興プロジェクトの進行状況を評価した。2 つ目は，現地調査の

データである。2004，2007と 2014に行った 3回の現地調査で撮影した写真を比較して，

災害直後，3年後と現在における建物の変化を追跡した。3つ目は災害前後と現在の 3時

期に撮影された光学衛星画像である。衛星光学画像から復興による土地利用と土地被覆

の変化を目視により抽出し，建物の被害レベルと比較して復興過程を評価した。これら

のデータより，バンム市の復興に時間がかかっているものの，都市の再建に成功した。

また，現在バンム市の都市利用を把握するために，高解像度 ALOS-2 の合成開口レーダ
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(SAR)画像と光学画像を用いて都市被覆の自動分類を行った。砂漠とバンム市の建物が

近似した反射特性を持つため，光学画像のみによる分類が難しい。そこで，撮影方向が

異なる 2枚の SAR画像と併用し，バンム市内の都市被覆と周辺の砂漠の識別を行った。

SAR の偏波情報から算出されたテキスチャ情報と光学画像から算出された正規化差植生

指数(NDVI)を利用することで，高精度で土地利用を把握できた。 
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1.1 Background 

Remote sensing and geographic information system are helpful and efficient tools in disaster 

management. Yearly, various natural hazards such as earthquakes, floods, landslides, tsunamis, 

volcanic eruptions, and hurricanes kill lots of people and destroy properties and infrastructures. 

Struggling with these hazards, the disaster mitigation communities and space technology work 

together in developing accurate and effective methods for avoidance, alertness and relief measures. 

Disaster prevention is a long-term process during which, Geographical Information System (GIS) 

is used for assessing the vulnerability and hazard risks by monitoring the land use changes. 

 The population growth and the over consumption of earth's natural resources have resulted in 

increasing defenselessness of our community and civilization to the natural hazards. Nowadays, 

remote sensing has made it possible for the professionals of disaster management to have effective 

project planning more accurate than ever before (Kundzewicz et al., 1993; Lanza and Conti, 1994; 

Sabins, 1986). 

 Preparation against disasters concentrates on predictions and warnings of imminent disasters. In 

this stage, information extracted from GIS, integrated with other relevant datasets, are employed 

for the design of disaster warning systems such as planning evacuation routes or establishing 

comprehensive emergency operations. Disaster relief takes place after and sometimes during the 

hazard. In this phase, GIS, in combination with GPS, is extremely beneficial in search and rescue 

operations in the areas that have been stricken by the hazard. By using the satellite technology, it 

is possible to recognize escape routes and locations for temporary settlement during and after the 

disaster.  

Another important aspect concerning satellite monitoring involves assessment of the post-disaster 

recovery. Post-disaster recovery is the last phase of the disaster management cycle, which is often 

a lengthy, costly and complicated process (Van Westen, 2000). In this phase, satellite information 

is used for the evaluation of sites for reconstruction, mapping the environmental restoration and 

monitoring the reconstruction progress in the damaged areas.  Post-disaster recovery is a primary 

phase in estimating the land cover changes and updating the database for prevention of similar 

damage in the future disasters (Hill et al., 2006).  However, most of the disaster-related remote 

http://www.thesaurus.com/browse/advantageous
http://www.thesaurus.com/browse/avoidance
http://www.thesaurus.com/browse/alertness
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sensing studies have primarily concentrated on the response phase of a disaster, and very few have 

considered the recovery phase as an element of the disaster management cycle. 

From another point of view, the increasing numbers of the active satellites and their sensors have 

provided new opportunities to observe disasters on the Earth. The different types of spectral bands 

in visible, near infrared, infrared, short wave infrared, thermal infrared and SAR (Synthetic 

Aperture Radar) provides a sufficient spectral coverage and prepare incomparable data about 

characteristics of the Earth surface. Multi-dimensional computer enhancement of these data makes 

it possible to simulate the situation as accurately as possible and develop better prediction and 

monitoring models.  

  

1.2 Objectives 

The process of reconstruction is an important phase in the cycle of disaster management. Not only 

it provides accurate information about the post-disaster recovery process, but also it demonstrates 

the effort and progress that were made by a government or official organizations to alleviate the 

hardship of a natural disaster and meet the needs of survivors (Murao et al., 2013).  

Therefore, investigating and understanding the reconstruction process is a useful method both for 

the management of the imminent hazards, as well as evaluating the performance of the 

implementers of reconstruction. On the other hand, official statistical data regarding reconstruction 

progress may not always be the most reliable data source for evaluation, because this information 

is usually collected by the same organization that was responsible for the execution of the 

reconstruction. Hence, remote sensing techniques and assessment of satellite images provide a 

direct, objective, independent, and more reliable method of evaluating reconstruction projects. 

However, with all its benefits, monitoring land cover changes using remote sensing products is not 

a feasible task. Multiple methods should be used to extract and classify land use and land cover 

changes from a satellite data. Moreover, uncertainty can arise when dissimilarity of land covers in 

some areas confuse land-use classes. For example, accurate mapping of land cover changes is 

challenging in the arid and semi-arid environments due to the natural properties of these 
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environments. To that end, the fusion of optical and SAR satellite data merges more information 

from the image than optical pixel-based approaches, especially in urban regions. 

 The incorporation of spatial information provides high flexibility to the mappers. (Galletti and 

Soe, 2014). Particularly, in urban areas with spectrally similar or mixed classes, multiple sources 

with an efficient classification technique is required to derive reliable features for land cover 

mapping (Amarsaikhan et al., 2012). 

With the introduction above, this study proposes two goals. First, to provide an evaluation of the 

post-earthquake reconstruction process in the city of Bam, Iran in a different time, and second, to 

introduce an improved classification method for detection of land cover changes in arid areas (such 

as regions in the city of Bam) by using a fusion of optical and SAR data. In this method, optical 

data are used to increase the effect of the vegetation in the SAR images and to allow for better 

classification of radar data (Chaouch et al., 2011) 

 

1.3 Structure of the thesis 

The goal of this thesis is to analyze the application of satellite optical and SAR imagery for urban 

reconstruction monitoring and land-cover classification in arid areas. The research is done in the 

subsequent chapters by first providing an introduction to the problems we are about to face. In 

chapter 2, deals with the basic concepts and state of the art needed to follow up next chapters. The 

third part covers monitoring and evaluation of the urban reconstruction process in Bam city, Iran. 

The fourth part deals with the application of quad- and dual-polarimetric SAR data combination 

for land-cover detection in desert areas.  The general conclusions are drawn in the final chapter, 

which provides discussions obtained in this research. A flowchart of the methodology is presented 

in Figure 1.  
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2.1 Preface  

In this section, we provide basic information on the major topics and techniques which used in this 

project. First, we briefly introduce remote sensing and its application for disaster monitoring and 

management. Next, we discuss land cover, land change science, and the use of remote sensing for 

detection of the land covers in drylands. Finally, we present classification schemes, algorithms, 

and image processing techniques. 

 

2.2 Remote sensing and its application for disaster monitoring  

Landsat 1, or "Earth Resources Technology Satellite 1", was the first satellite of the United States' 

Landsat program, since then we have come a far way with our recent advanced sensors with better 

spatial and temporal resolutions. Currently, many satellites and sensors provide comprehensive 

information about properties of the surface or shallow layers of the Earth. For example, thermal 

sensors measure surface temperature reflected from solar radiation and microwave sensors 

estimate the dielectric feature for determination of the soil surface humidity (Demircan et al., 1993).  

With the aid of satellites as one of the key tools in the disaster management, the impact of natural 

disasters has been widely reduced. This is indebted to the disaster prevention (assessing the hazards 

and risks and planning the land use accordingly), with remote sensing techniques disaster 

preparedness (forecasting a potential hazard and delivering warning) and fast and proper disaster 

relief plan (OAS, 1990; UNDRO, 1991) all becoming possible with the sufficient attitude about 

the characteristic, anticipated repetition and intensity of a natural disaster, one can find favored 

approaches to mitigate the outcomes of these kinds of events. 

 In the cases of disasters that start very rapidly and affect large areas, such as floods or earthquakes, 

the use of synoptic earth observation methods has proven to be particularly efficient in the field of 

disaster management. Today, in most of the developed countries, where warning systems and 

building codes are advanced, remote sensing of the earth has shown the strong contribution to the 

prediction of disastrous events and thus saving people by delivering warning on time. 

Unfortunately, about 95% of the deaths caused by the natural disasters occur in the developing 

world, where a large proportion of the human population lives. Similar losses are expected in the 
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advanced countries, although with suitable disaster management strategies it is possible to 

minimize the harming consequences.  

 

2.2.1 Brief Introduction to Remote Sensing 

Remote sensing is the science of collecting, producing, and analyzing information about the Earth 

and earth-related phenomena with the application of sensors that do not come in contact with those 

phenomena (Buenemann et al., 2011). Sensors have the advantages that they provide non-biased 

information, can reach inaccessible and remote locations, and collect data on a regular basis 

(Jensen, 2005). Sensors come in various types including active or passive, sub-orbital or satellite. 

In active sensors, signals (such as sonar, laser, radio signals, etc.) are sent out to contact earth 

phenomena, and then the backscatters of those signals are recorded. In passive sensors on the other 

hands, electromagnetic radiation from sunlight that has been reflected or emitted from earth 

phenomena are recorded (Jensen 2005). Suborbital sensors fly on demand and collect data either 

actively or passively whereas, satellite sensors are orbit at a specific altitude and collect data 

passively on a regularly scheduled, tasked, or continuous basis once launched into space (NASA, 

2007). 

Hereafter, we only focus on the satellite sensors and provide some basic explanations about its 

resolutions. Remote sensing images obtained from satellite sensors are composed of a matrix of 

pixels laid out in a grid pattern. Pixels represent a particular area of the Earth surface and are square 

(Richards and Jia, 1999). A brightness value is assigned to each pixel in the image which 

corresponds to the amount of reflected or emitted energy/signal collected from the corresponding 

area of ground (Jensen 2005). Sensors acquire data at four resolutions: spatial, spectral, temporal, 

and radiometric. There are several definitions for spatial resolution, but typically it refers to the 

pixel size of a satellite image or the smallest feature that can be detected in it. The spatial resolution 

of an image is a function of the altitude that a sensor is located at and the area of the Earth’s surface 

that the sensor can see at a given moment (Short 2010). Spectral resolution refers to the number 

and width of electromagnetic wavelengths detected by the sensor (Akasheh, Neale, and Jayanthi 

2008). There are also sensors with a multispectral resolution that can detect several different 
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wavelengths (Jensen 2005). Similarly, there are sensors with a hyper-spectral resolution that can 

identify hundreds of narrow spectral bands (Short 2010). 

 The temporal resolution indicates the sensor’s revisit time that is how often the sensor returns to 

the same spot on the earth. This ability of the satellite that can collect images from the same place 

over time provides opportunities to monitor changes occurring in a specific area of the Earth’s 

surface. Lastly, radiometric resolution refers to the quantization level of the information contained 

in the pixels of an image. The higher the radiometric resolution, the more sensitive a sensor is to 

small differences in energy levels. Ranges correspond to the number of bits that are used to store 

data. Typical ranges are 8, 12, or 16 bits per pixel (Richards and Jia, 1999).  

 

2.2.2 Land Cover Change Detection by Remote Sensing  

 Remote sensing has become an important tool in understanding landscape dynamics and the land 

change science (Ellis and Pontius 2010). There are two separate terminologies ‘land use’ and ‘land 

cover’ that are often used interchangeably. Land cover refers to the physical material at the surface 

of the earth, including vegetation, water, ground and other physical features of the land. It could 

also include human-made elements such as buildings, crops, etc. On the other hand, land use is 

characterized by the arrangements and activities humans undertake to modify a particular land 

cover type into build environments such as settlements and habitats (Rawat et al. 2015).  

The land use and cover pattern of an area in an outcome of the natural and socio-economic factors 

as well as the extent of utilization by a man in time and space and therefore it has become a central 

element in monitoring environmental changes and managing natural resources (Zubair 2006). To 

that end, satellite imagery can provide spatially and temporally explicit and continuous information 

on both land use and land cover changes, which will help us, understand the direction and spatial 

extent of change (Buenemann et al. 2011, Elmore et al. 2000). 

 This quantified information on how land cover has changed over a period can facilitate the 

development of appropriate land management strategies (Houet et al. 2009). This is important 

because recent investigations indicate that land management practices are one of the most 

important factors influencing ecosystem structure and function (Chehbouni 2000).  
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Satellite imagery to land cover mapping has many useful properties. A large geographic area like 

ten thousand square kilometers can be covered by the synoptic view of the satellite sensor. Also, 

the data is collected in a spatially continuous fashion and regular basis, and it will be possible to 

be carefully compared with old data. Moreover, to facilitate the data analysis, they have been saved 

in digital format. There will be no need to digitize the analyzed information because the classified 

data are compatible with GIS. Also, many remote sensing data can often be downloaded without 

any cost, and land cover mapping can be performed at a very much low cost compared to other 

mapping methods. On the other hand, during the process field data collection can quickly become 

expensive in terms of time and labor.   

Satellite imagery provides information where field work cannot be conducted for historical points 

in time and tends to be limited to point locations in small and accessible areas. Finally, the satellites 

can record data in the electromagnetic range beyond the visible spectrum as they have many 

sensors, which can detect things that are not visible to human eyes (Jensen 2005) 

It should be noted that remote sensing and field work should be considered as two complementary 

approaches and although remote sensing has many advantages that fieldwork does not, fieldwork 

remains critical in the remote sensing process (e.g., calibration and evaluation) and the two 

approaches are not mutually separate (Buenemann et al. 2011). 

 

2.2.3 Drylands Study via RS 

Drylands are areas where water losses (such as evapotranspiration) exceed water gains (for 

example rainfall). Climatically it is defined as land surface areas where the aridity index –the ratio 

between the mean annual precipitation and mean potential annual evapotranspiration- is 0.05 to 

0.65. Drylands cover about 40 percent of the Earth’s land surface and are divided into three 

categories of arid, semi-arid and sub-humid. Monitoring the land surface changes in drylands 

provides information about desertification and land degradation in those areas.  

Since drylands are usually vast and inaccessible, remote sensing has shown to be a useful and 

powerful mean for deriving information on soils, vegetation, and water resources, monitoring 

environmental changes, and assessing such issues as drought (Rhee et al., 2010), land degradation 
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(Albaladejo et al. 1998), and irrigated crop area (Beltran and Belmonte 2001) in those areas. In 

dry deserts, detailed pictures of dunes and other surface materials, and even surface features can 

be obtained (Nicholson, 2011). Although the resolution and accuracy of satellite images are still 

insufficient compared to other methods such as aerial photography and field observations, they 

still serve as an important mean for studying and monitoring inaccessible dry regions. In addition, 

remote drylands have, most of the time, a relatively clear sky (without clouds) and therefore the 

area is suitable for observation by optical sensors.  

However, there are some challenges with satellite imagery of drylands that, if not attended, can 

lead to inaccurate assessment of land cover changes. These issues are usually due to natural 

characteristics of the vegetation cover (spectral and spatial sparseness), and the heterogeneity of 

surface features such as soil or urban surfaces in that area. Since satellite pixels are a combination 

of vegetation, soil, and other features, special techniques must be employed to unravel the different 

components within a specific area.  

The remote sensing of vegetation cover is based on a physical principle that unlike other materials 

that show a gradual increase in reflectivity with wavelength, green vegetation shows a significant 

increase in the red and near-infrared wavelength (Nicholson, 2011). When surfaces are composed 

of a mixture of materials, they include a wide range of spectral profiles (Alberti, Weeks, and Coe 

2004) and this could cause high reflectance in the thermal band and low reflectance in the near-

infrared from these surfaces, which eventually leads to confusion in classification of lands with 

similar reflectance characteristics (Xu 2010). 

 The secondary problem is due to the variation of soils regarding color differences. This is related 

to the soil biochemistry and its effect on the absorption of solar radiation. For example, rangelands 

are usually covered with bright soil due to its highly mineral ingredients, which makes it hardly 

detectable from barren agricultural fields. For the same reason, the spectral variability between the 

rangeland soil and regular ground complicates the classification event though both are from the 

same category (Elmore et al. 2000).    

The third problem relates to the condition of mixed vegetation and bare soil, which causes multiple 

scattering. The low levels of biomass and sparse vegetation in drylands versus relatively high 

proportions of exposed soil make it difficult to detect different land cover types (Leprieur et al. 

2000). The vegetation cover already reflects a significant amount of the radiation on the bare land. 
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Since the vegetation layer absorbs relatively more of the red wavelength than the near-infrared 

wavelength, the light that is scattered toward the ground is enriched in the near-infrared 

wavelength, hence, when reflected, it submits high values of vegetation index. 

 The same problem may arise in the irrigated agricultural and riparian areas of drylands. In these 

regions that normally have an increased spacing of vegetation compared to non-arid regions, when 

the percentage of pixel occupied by canopy is reduced, the light is scattered by both vegetation 

and soil (Shupe and Marsh 2004). If the rate drops lower than 20 percent, Spectral discrimination 

of vegetation types becomes involved (Harris 2003).  

Crop and fallow cycles can vary throughout the year and are often dependent upon irrigation 

schedules rather than rainfall. In drylands, spatial patterns consist of homogeneous grasslands, 

mixed shrublands, and even more various urban areas (Lo and Choi 2004), making a classification 

based on spatial pattern difficult. 

The presence of non-photosynthetic vegetation that is common in these environments can also 

complicate the problem (van Leeuwen and Huete, 1996). Land degradation can further lead to a 

change in reflection properties due to decrease in vegetation cover, increase in erosion, and change 

of land surface characteristics (Escadafal et al., 2005). For example, the low density of vegetation 

in drylands means that in each pixel there is a very low percentage of land filled with a tree or a 

bush. This can allow the light scattered by soil overpower the vegetation signal leading to neglect 

of the vegetation part. Also, the physical features of dryland vegetation (which are usually small, 

sparse leaves, open crown, spine, thorns and photosynthetic stalks) decreases the difference 

between absorption in the red and reflection in near-infrared bands which is typically observed in 

green and leafy vegetation area. Therefore, detecting vegetation is more difficult in arid areas 

compared to other environments.  

Even for a certain species, the classification of vegetation can become complicated because the 

spatiotemporal feature of the same specifics changes over time due to the topography and such 

events as fire or localized precipitation. The characteristics mentioned above make remote sensing 

of drylands and classification of different land cover types challenging. However, research has 

shown that combination of the various sensors and classifiers may help overcome some of these 

difficulties and provide a far more comprehensive survey of the observed area. In this investigation, 
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we evaluate the different combination of classifiers and present a new method for land cover 

detection in arid areas (Okin and Roberts 2004). 

 

2.4 Image Preprocessing 

 All types of Satellite images, including captured by a multispectral sensor on a satellite or aerial 

photography in an aircraft, or any other platform, will have different geometric distortions. This 

problem is normal in the field of remote sensing, as we attempt to demonstrate the 3D surface of 

the Earth as a 2D image. All images from satellites are subject to some form of geometric 

distortions, depending on the manner in which the data was generated. There are numerous factors 

that can lead to these errors. Internal factors are introduced by the remote sensing system and 

include satellite and sensor calibration or equipment anomalies, the perspective of the sensor optics, 

the motion of the scanning system, the altitude, attitude and velocity of the platform, and motion 

of the platform (Shanker et al. 2006). Some external factors, which can cause distortions, are 

Earth’s rotation, curvature, and terrain relief. Also, the atmosphere can play as another external 

error source by scattering and absorbing a proportion of the electromagnetic radiation as it passes 

to and from the target on Earth, hence impacting the signal that is received by the sensor. To 

improve the accuracy, such image distortions and atmospheric influences should be corrected 

before images are used for analysis and land cover classification (Song et al. 2001). Internal errors 

are systematic and predictable and therefore can be identified and corrected based on pre-launch 

or in-flight calibration measurements, whereas external errors require relating empirical ground 

observations to be corrected. Below, we discuss a few of these correction methods, including 

geometric correction, radiometric correction, and cross calibration. 

 

2.4.1 Radiometric Correction  

Radiometric correction is necessary to avoid radiometric errors or distortions and to ensure that 

terrestrial variables retrieved from optical satellite sensor systems are calibrated to a standard 

physical scale. (Teillet et.al 2010). When a sensor on board an aircraft or spacecraft observes an 

emitted or reflected electromagnetic energy, the observed energy is not the same as the energy 
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emitted or reflected from the same object observed from a short distance. This is due to the sun's 

azimuth and elevation and atmospheric conditions such as fog or aerosols, which influence the 

observed energy.  

When an electromagnetic signal passes through the atmosphere, two processes affect the radiation: 

first, the absorption, which reduces its intensity, and second; the scattering, altering its direction. 

The first one happens when electromagnetic radiation interacts with gasses such as water vapor, 

carbon dioxide, and ozone. Hence radiometric distortions need a correction, to have the real 

reflection. 

Radiometric correction removes the effects of atmospheric scattering and absorption, which occurs 

as the electromagnetic signal from the sun, passes through the atmosphere on its way to the target 

and from the target to the satellite (Du et al. 2002). Radiometric correction thus ensures that the 

results from the satellite image represent actual changes on the Earth’s surface and are not due to 

differences in atmospheric conditions, or sensor calibrations. 

Imagery can be radiometrically corrected to at-sensor radiance, at-sensor reflectance, or at ground 

reflectance. Radiometric corrections of optical images include 1) sensor radiometric calibration, 

2) surface reflectance retrieval, 3) spectral characterization, and 4) georadiometric effects on image 

radiometry. Surface reflectance is caused by the scattering and absorption of the electromagnetic 

energy while passing through the atmosphere to the satellite sensor (Teillet et.al 2010). Since the 

optical features of the Earth's atmosphere are not identical spatially or temporally, corrections for 

these effects in the solar-reflective spectral bands are needed to fix satellite images.  

Many researchers have studied the necessity of atmospheric correction when performing land 

cover change detection. Song et al. (2001) proposed that atmospheric correction may not be 

essential when using post-classification change detection under one condition; image scenes are 

classified separately with training data derived from the image to be classified. However, these 

researchers also found that atmospheric conditions could impact the results when image ratios 

were used. In contrary, Mahiny and Turner (2007) stated that atmospheric correction could 

influence the results of vegetation change detection and landscape metrics and hence, perform 

atmospheric correction can enhance accuracy despite different advantages and disadvantages.  
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Similar to geometric correction, radiometric correction is classified into two types; absolute and 

relative radiometric correction (Xie et al., 2008). Absolute radiometric correction attempts to 

measure or convert the surface reflectance of the target area using the sensor calibration data, the 

sun angle and view angle, and information about atmospheric conditions at the time and location 

of image acquisition (Du, Teillet, and Cihlar 2002). Relative radiometric correction adjusts 

(normalizes) radiometric measurements of one image toward a base or a selected reference data at 

a given moment. Several techniques exist for absolute radiometric correction, including ground 

reference, image-based, and atmospheric modeling techniques (Hadjimitsis et al. 2010).  

Ground reference methods involve the collection of spectral data at specific ground locations at 

the time the satellite passes overhead. Scene data are adjusted based on the differences between 

scene values and collected values at specific locations. Dark object subtraction is a commonly used 

image-based technique which assumes image scenes contain features with zero or near-zero 

reflectance. Any deviations from zero in spectral values from these elements are supposed to be 

from atmospheric scattering and scenes are adjusted accordingly (Schroeder et al. 2006). A 

radiative transfer model uses information on atmospheric conditions at the time of sensor overpass 

to convert digital number data of the original scenes into at-ground spectral reflectance units. 

Atmospheric conditions for historical imagery are typically non-existent or are difficult to acquire 

in which case radiative transfer models apply standardized values based on latitude, season, aerosol 

measurements, and estimated surface temperature. An alternative, for historical imagery, is to use 

a relative radiometric correction (Small 2002). Several techniques exist for relative radiometric 

correction, including dark object subtraction, ridge method, and pseudo-invariant features. 

 These techniques assume that there is a linear relationship of spectral values between two image 

scenes. Dark object subtraction can be used as a relative radiometric technique by selecting the 

darkest objects in a master scene and adjusting the other scene accordingly (Chen et al. 2005). In 

the ridge method, a density plot, comparing band to band, of two scenes is used to find a peak of 

solid values between the two scenes.  

Regression coefficients are determined for each band by passing a line through the center of the 

density plots (Song et al. 2001). Pseudo-invariant features (PIFs), a mathematical model, and 

regression analysis are used to normalize one image (slave image) to a base (master image). This 
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technique assumes that there is a linear relationship between slave image pixels and master image 

pixels at the same image locations (Li et al., 2005). 

 To determine the linear relationship, spectral values of PIFs are collected from the master and 

slave images. PIFs are features which are spatially well defined and whose spectral reflectance 

properties have not changed or have changed tiny, over time (Song et al. 2001). PIFs represent the 

brightest and darkest features in an image and can be selected by various automated or manual 

methods. The set of spectral values is then inputted into a mathematical model, which is used to 

transform the slave image pixels to reflectance values normalized to the master image. 

 

2.4.2 Calibration 

Cross-calibration is the radiometric comparison of one sensor to another sensor on different 

satellites. Images are cross-calibrated if they are calibrated to a common source such as an 

integrating sphere before launch. Cross-calibration of space-based Earth observing systems is the 

way to guarantee consistency between two time series from two different sensors to build long-

term time series of observations. There are several reasons that cross-calibration is needed (Giri, 

2012); 1) While data from multiple sensors are increasingly employed to gain a more 

comprehensive understanding of land-surface, it remains challenging and costly to put sensors on 

an absolute radiometric scale, 2) Cross-calibration is the only viable solution to tie similar or 

different sensors onto a common radiometric scale while keeping consistency in quality, 3) It is 

most useful when onboard references are not available or vicarious calibrations are limited.  

Cross-calibration is usually necessary following absolute radiometric correction because sensor 

calibrations may change or degrade over time causing differences in scenes, which are not due to 

actual changes on the ground nor atmospheric conditions (Yang et al. 2003; Coppin et al. 2004). 

Cross-calibration techniques are identical to related radiometric correction methods described in 

the previous section except that they are performed on scenes, which are corrected using the 

absolute method. In some studies, cross-calibration is replaced by relative radiometric correction 

as they state that relative radiometric correction can sufficiently account for the effects of 

atmosphere and sensor calibration (Furby and Campbell 2001).  
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Other studies, however, have shown that performing cross-calibration after absolute radiometric 

correction can produce more consistent image-to-image reflectance. Schroeder et al. (2006), in 

their search for the most useful radiometric technique for performing change detection, reported 

that consistent measurements of the surface reflectance for the same land cover over time (also 

referred to as common radiometric scale) were more useful for change detection than obtaining 

actual surface reflectance. This was because absolute correction techniques can in fact make the 

images less spectrally similar. Where vicarious calibration can be labor-intensive and limit the 

number of calibrations performs, cross-calibration can coordinate observations from different 

sensors, and facilitate a better approach to validate the absolute calibration accuracy.  

 

2.4.3 Classification  

Classification methods provide a system for assigning land cover on the ground to informational 

classes (Gao 2009). The scheme selected is ultimately determined by the land cover map needed; 

however, there are some general guidelines recommended for determining classes. Land cover 

classes should be mutually exclusive (land cover should belong to only one class), exhaustive (all 

classes in landscape accounted for), and hierarchical (specific categories can be collapsed into 

more general categories; (Congalton and Green 2009). Using a nationally or internationally 

recognized scheme offers the opportunity for other researchers to compare and contrast research 

results. 

Frequent use of image classification have caused these aspects be automated; the researchers just 

need to provide certain input for the process of classification. Based on the amount of human 

interaction during classification, there are two types of approaches; supervised and unsupervised 

classification. Supervised classifiers are classifiers that by using a set of training data (Lu and 

Weng 2007) collected for each class are calibrated. This kind of classification requires the 

researcher select a proper classification scheme, and provide training sites within the image,   with 

the best presentation of each class. A land cover classification system may include different classes, 

such as ground, water, forest, and building.  

Each site that falls into a single class would have slightly different spectral characteristics, and 

enough number of training locations in each class must be provided by the analyst represent the 
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variation present within each class in the image. The classifier then uses spectral characteristics of 

the training sites to classify the remainder of the image. Supervised classifiers are easy to use and 

can give accurate thematic maps; however, they depend upon the quantity and quality of the 

training data (Foody and Mathur 2004).  A proper supervised classification depends on the 

analyst’s ability to provide sufficient numbers of training samples and to realize when training data 

can be transferred from one image to another (This topic is discussed further in the section 

“Training: Classifier Calibration”).  

On the other hand, unsupervised classification requires fewer numbers of inputs for the analyst 

during or before the processing. The classification algorithm automatically searches and analyzes 

the image, extracting clusters that are representative of the image content. The image analyst can 

check the post-classification results and determine if the extracted classes have to mean in the 

context of the image. This method has a few drawbacks; 1) to determine the meaning of each class 

identified by the unsupervised algorithm, 2) it requires a significant amount of time 2) to optimize 

the number of classes to initialize the algorithm, it also needs experimentations 3)   there is no 

guarantee that the classes obtained in one image will be identical to the classes in the second image. 

Because of the above drawback, it may even take a longer time to interpret the unsupervised result 

than to conduct a supervised classification. 

Classification schemes may be comprised of hard, discrete categories; hard classifiers assign each 

pixel to only one land cover class. Hard classifiers are popular because they are simple to use, they 

are computationally efficient, and they produce only one thematic map output layer. The 

supervised classifiers are some of the most commonly used of the many classifiers available, 

however as stated by Jensen (2005), there is not any distinguished classification method and the 

analyst himself can select the most appropriate method based on efficiency, effective time and cost 

relating to the area of study, source of data and the aim of research. 

To have an unsupervised method of classifying for the images in this study, first, K-Means have 

been selected which states for calculating the initial class means, they are randomly distributed in 

the data space, then using a minimum distance technique (Anil, Z 2010) iteratively clusters the 

pixels into the nearest class, recalculate the related class means and reclassify  the pixels by means 

of new means, this procedure will be iterated. 
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2.5 Principal Components Analysis (PCA)  

A method in which a set of data is transformed into a new set of data with a better capture of the 

essential information is called principal components analysis (PCA). It converts an original set of 

data which are highly correlated into a substantially smaller set of uncorrelated data, which still 

contains most of the information from the original data set (Jensen 2005). Some variables are often 

highly correlated such that the most of the information represented by one variable is a copy of the 

information contained in another variable. PCA reduces or eliminates redundancy, which 

commonly exists in multiple Landsat bands, and condenses the information in inter-correlated 

variables into a fewer number of variables, are called principal components. This reduces 

processing time and allows classification algorithms to focus on spectral data, which contribute 

the most information to classification (Gao 2008).  

In this method the original transformed data takes a new coordinate system, the number of output 

by the transformation is less than or equal to the number of input bands. If the original data contains 

a different number of variables, then each observation may be considered as a point in dimensional 

vector space. An interesting feature of the PCA transformation, particularly when it is applied to a 

set of data with several spectral bands, is that it extracts and concentrates almost all of the 

information in first the few components. The other components contain the same information in 

the main variables or the noise. Hence considering these components will reduce the volume of 

data greatly is to processed. 

 Some research indicates that first principal component has a strong association with brightness 

levels in an image, while the second principal component has a strong association with vegetation 

(Harris 2003). This is similar to the brightness and green output bands of TCT; however, it was 

difficult to determine the relationships of PCA components with brightness and vegetation with a 

visual inspection, and this may cause a misinterpretation (Coppin et al. 2004). Although finding 

the correlation of principal components to particular land cover is yet a complicated process, 

research has shown that PCA can be helpful in the detection of land cover in images with different 

registry date and time (Henry 2008). 
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2.6 Accuracy Assessment: Reference Data and Reporting 

In the field of image analysis and information processing, there are two terms; accuracy and 

precision. Accuracy evaluates the correlation between a standard that is assumed to be correct and 

a classified image that is of unknown quality. Precision refers to some details that are found in the 

classification. To increase the accuracy, it is possible to decrease the level of detailed information 

in the classification or to pick more general classes rather than very specific ones. For instance, a 

scheme that classifies trees vs. crops provides less chance for classification error than one that 

recognizes many different types of trees and different kinds of vegetables. In this example, lower 

precision presents the potential for higher classification accuracy. However, the analyst of the 

image that selects only general classes cannot make accurate statements about any given point on 

the image. 

Classification error occurs when a pixel of an image (or a feature) that belongs to one class is 

assigned to another class. There are two types of errors; an error of omission and error of 

commission. The error of omission refers to an error that happens when a feature is left out of the 

class that is being evaluated, whereas error of commission indicates the error that occurs when a 

feature is incorrectly included in the class that is being evaluated. An error of omission in one class 

can associate to an error in commission in another class. 

Comparison between the map created by remote sensing and reference map which is based on the 

different information source can lead to an acceptable accuracy.One of primary purposes of 

accuracy  assessment and error analysis is quantitative comparisons of different interpretations 

which leads to an acceptable  precision,and  answers  the question why the remote sensing analysis 

is needed if the reference map is already existed by using a pixel-by-pixel, point-by-point 

comparison, different procedures of classification, by different individuals, or  from images 

acquired at different times,can be achieved.Although, in the application, we have to determine 

which one is the most useful or the most correct one. 

Most often, the accuracy of image classification is reported as a percentage of correct results. By 

using the consumer’s accuracy takes errors of the commission into account, by telling the user that, 

for all areas identified as a category, a certain percentage are actually correct.  The ratio of correctly 
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classified pixels to the pixels assigned to a particular group is called consumer’s accuracy. Another 

ratio is called Producer’s accuracy, which measures the accuracy of classified maps. 

To assess the accuracy of classified maps, land cover on the map should be compared to actual 

land cover on the ground. The confusion matrix, by far the most commonly used technique, 

compares a set of ground reference data to the classified map. The confusion matrix gives a 

measure of the overall accuracy, (i.e., total number of correctly classified samples), producer’s 

accuracy (i.e., measure of omission; probability that a ground reference test sample is classified 

properly in the map), and user’s accuracy (i.e., ratio of commission; probability that a sample from 

a map actually represents that category on the ground; Congalton 1991). 

 It also provides a Kappa coefficient of agreement (Congalton 1991) that accounts for chance 

agreement in the overall accuracy value, even though Pontius and Millones (2011) have recently 

shown its limitations. Finally, the McNemar test is useful for determining if differences in 

classification accuracies obtained by different classification approaches are statistically significant 

(Debeir et al. 2002; De Leeuw et al. 2006 (Foody and Mathur 2004). The null hypothesis of the 

McNemar test is that map accuracy (proportion of correctly classified pixels) is the same regardless 

of which classification algorithm is used (De Leeuw et al. 2006). If the McNemar test results in a 

value higher than 3.84, the null hypothesis is rejected and map accuracies are considered 

significantly different (statistically) with a 95 percent degree of confidence. The confusion matrix 

and McNemar test require reference data as input. Reference data should be collected using a 

stratified disproportionate random sampling scheme (Stehman and Czaplewski 1998) for the same 

reasons noted for the training data above. It is important that unbiased reference data are used in 

evaluating classified map accuracy and that data collected for training are not also used for testing 

(Congalton and Green 2009; Stehman and Czaplewski 1998). As with training data discussed 

above, sampling scheme, sample size, and data collection methods are critical in the context of the 

data used for assessing the accuracy of the classified maps. 
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Chapter 3 

Monitoring and evaluation of the urban 

reconstruction process in Bam 
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3.1 Introduction 

The city of Bam is located in Kerman Province in southeastern Iran, at a distance of 980 km from 

the capital city, Tehran (see Fig. 3.1a). On December 26, 2003, a devastating earthquake with a 

Mw of 6.6 struck the region, severely damaging the city. Although it lasted for just a few seconds, 

more than 22,000 lives were lost (Eshghi et al. 2004), and 80% of the city’s buildings were 

completely destroyed (Nadim et al. 2004). This earthquake damaged almost all of the city’s brick 

and adobe buildings, including the famous “Arg-e Bam” (Bam Citadel), which was over 2,000 

years old and was listed as a component of the “Bam and its Cultural Landscape” World Heritage 

Site in July 2004. The city’s municipal facilities and infrastructure were also destroyed. While a 

study showed that destructive earthquakes of a similar magnitude had previously struck the 

province over a time span of 2,000 years, Bam itself has never before experienced a significant 

event such as this one (Allamezadeh et al. 2005). 

 

Soon after the occurrence of the earthquake, a large number of studies were carried out to assess 

the impact of the earthquake and the degree of damage that it caused (Chiroiu 2005; Yamazaki et 

al. 2005; Gusella et al. 2005; Kohiyama and Yamazaki 2005; Rathje et al. 2005). Several studies 

have been conducted to evaluate the effect of public participation during the reconstruction phase 

implemented after the disaster and to identify key players during this phase (Omidvar et al. 2011). 

Ghafory-Ashtiany and Hosseini (2007) have discussed rescue and relief operations and the 

 

Fig. 3.1 (a) Location of Bam, Iran, (b) Bam city border (black line) and the region of interest 

analyzed in this study (the yellow rectangle). 
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replacement of buildings and infrastructure based on the results of field surveys and official 

statistics. Kitamoto et al. (2011) have also carefully monitored the reconstruction of the Bam 

Citadel as one of notable World Heritage Sites that was destroyed by the earthquake. This study 

encompassed the techniques applied and policy decisions. However, no study has so far been 

conducted to assess renovation and reconstruction of the city over the decade following the Bam 

earthquake. Moreover, none of the previous studies have used satellite images and remote sensing 

technologies to monitor the progress of the reconstruction work.  

In general, the process of reconstruction is an important component of disaster management. It 

demonstrates the efforts made by a government to alleviate hardships experienced by the affected 

population after a disaster and its ability to satisfy the needs of survivors (Murao et al. 2013). 

Therefore, investigating and understanding the reconstruction process is a useful method for 

evaluating the performance of the implementers of reconstruction. However, official statistical 

data are not always the best data source, because this information is partially collected by the same 

institute that is responsible for the project’s execution. By contrast, the assessment of satellite 

images provides a direct, objective, independent, and more reliable method of evaluating 

reconstruction projects. 
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For this study, we used different methods, including remote sensing, to evaluate the renovation 

and reconstruction process Bam over the decade following the earthquake. We examined the city’s 

current status, including its residential buildings, public facilities, and other kinds of infrastructure 

using official statistical data, field survey data, and high-resolution satellite images to monitor its 

reconstruction. This study is the first of its kind to be conducted on Bam. 

 

Fig. 3.2 (a) QuickBird image of Bam acquired on September 30, 2003, (b) QuickBird image acquired on 

January 3, 2004 (c) GeoEye-1 image acquired on August 11, 2012. 

The yellow points represent the locations of sites observed in the field survey in 2004 and 2014. White 

rectangles represent the locations of the seven study areas. 
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The study’s methodology comprised four main components. First, official statistics and reports 

provided by the authorities were examined. These included the extent of the damage to buildings 

and the number of buildings, according to their structural type, before and after the earthquake. 

Second, we conducted field surveys of the reconstruction process based on photographs taken at 

the same locations at three different times after the earthquake. This enabled us to compare 

landscape changes and, especially, to observe changes in the physical environment. Third, we 

analyzed three satellite images of areas of the city captured before, immediately after, and eight 

years after the earthquake to identify any significant changes in buildings, land use, roads, and 

vegetation in two targeted study areas. In addition, we evaluated post-reconstruction changes 

relating to 632 individual buildings in the seven study areas. Last, we analyzed the data obtained 

for the three main components of the study, described above. Accordingly, we present a discussion 

of the overall reconstruction process in Bam. 

 

3.2 Assessment of reconstruction 

3.2.1 Assessment of reconstruction based on statistical data 

We compiled and examined statistical data provided by the Bam Statistical Survey Center that is 

overseen by the Statistical Center of Iran (2004) as well as the official reports of the Islamic 

Revolutionary Housing Foundation (ISF), which is the principal executing agency responsible for 

Bam’s reconstruction. Tables 3.1 and 3.2, respectively, provide statistics on Bam’s population 

during different periods, and the degree of damage inflicted on the city’s buildings.  

 

 

 Table 3.1 Population of Bam at three different times (Statistical Center of Iran 2011) 

Year 1996 2006 2011 

Population 83,936 96,740 107,131 

 

 
Table 3.2 Effect of the 2003 earthquake on buildings (Statistical Center of Iran 2004) 

Before EQ Immediately after EQ in 2004 

28,625 
Destroyed Partially Damaged Intact 

26,111 2,381 133 
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According to information available in the records of the Civil Engineering Organization of Bam, 

33,126 construction permits have been issued. Of these, 26,540 were executed between early 2004 

(following the earthquake) and March 2014. During this period, the Statistical Center of Iran 

(2011) also noted the existence of 26,708 residential units. This large number of units indicates 

the extent of reconstruction efforts and the scale of the budget allocated for this project. The Civil 

Engineering Organization of Bam has claimed that it has been monitoring the construction process. 

Consequently, these new structures would be expected to present a higher degree of resistance to 

an earthquake of a similar magnitude to the previous one.  

 

Figure 3.3 shows the number of residential units built during different periods and classified 

according to the materials used for construction. This figure reveals that more than half of the 

existing residential units in Bam in 2011 were completed in 2006 and 2007 (2–3 years after the 

occurrence of the earthquake). As of May 2006, 20,119 buildings were under reconstruction, and 

7,206 residential buildings and 72 commercial buildings had been completed. In 2007 (3 years 

after the earthquake), the pace of reconstruction had evidently slowed down. In addition, we found 

that 12.5 % of the residential buildings were completed before 2005. Therefore, 87.5 % of these 

types of structures were newly constructed. Furthermore, 85.7 % of the city’s residential buildings 

were found to have a steel structure, whereas 10.2 % were made of reinforced concrete, both of 

 

*Adobe, mud, clay, wood, cement blocks, brick 

Fig. 3.3 Number of residential buildings, categorized by the completion year and structural type 
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which are usually selected by professional engineers and technicians working under the 

supervision of engineering institutions. Only 4.1 % of the existing residential buildings in 2011 

were built using conventional and inappropriate frameless methods entailing the use of materials 

such as mud, clay, brick, and cement blocks that are not earthquake resistant. By contrast, prior to 

the earthquake, 69.0 % of such buildings were built using brick, wood, or clay (Ghafory-Ashtiany 

and Hosseini 2007). 

 

3.2.2 Assessment of reconstruction based on field surveys 

The first author carried out a field survey of Bam during visits to the area in March and September 

2014. The selection of locations to be photographed was based on original sets of field photographs 

that were previously taken in different areas of Bam, with geographical coordinates assigned to 

most of these. These original sets consisted of around 2,000 photographs, which were taken by 

three different research groups 2, 4, and six weeks after the disaster in early 2004. Subsequently, 

in 2007, the second author took an additional 400 photographs of the city. Aligned with this archive, 

the first author prepared 1,500 photographs that mostly matched the previous photos using a GPS 

device. 

The initial distribution of the damage was also considered in stratifying the selection of sampled 

sites. Several studies assessing the extent of damage in different parts of the city (Chiroiu 2005; 

Yamazaki et al. 2005; Gusella et al. 2005; Kohiyama and Yamazaki 2005; Rathje et al. 2005) have 

indicated that highly damaged structures were located in the center and in areas located east and 

southeast of the city. In addition, these areas of the city included key urban infrastructure and 

buildings such as banks, fire stations, and administrative offices. Therefore, more attention was 

paid to these strongly affected areas during the field surveys and photograph sampling (Fig. 3.2 b, 

c).  

The field survey conducted in 2014 revealed four main findings, as follows. 

• Abandoned buildings and bare lands: Abandoned buildings, most of which were severely 

damaged by the earthquake, could still be seen in some areas (see Fig. 3.4 [a and b]). In some areas, 

especially in the central and northern parts of the city that were severely damaged, all of the debris 



 

38 
 

had been removed, but the land remained bare in the absence of any reconstruction (Fig. 3.4 [c and 

d]). 

• Repaired buildings: Some slightly damaged buildings had been partially renovated and were 

being used in that condition (Fig. 3.4 [e and f]). 

• Public buildings: Almost all of the important public buildings—that is, mosques, banks, and 

governmental offices—had been reconstructed (Fig. 3.4 [g and h]). 

• New buildings: New buildings had been constructed in the city, mainly in the eastern and 

southeastern parts, which, prior to the earthquake, had not been developed. These buildings 

included sports stadiums, a medical university, a commercial/administrative complex, a library, a 

cultural center, and a new residential district. Photographs of some of these buildings are depicted 

in Fig. 3.4 (i–l). 
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Fig. 3.4 Photos of the same locations observed in the field surveys in 2004 and 2014: (a) & (b) abandoned 

buildings, (c) & (d) bare lands, (e) & (f) repaired buildings, and (g) & (h) reconstructed public places. 

Examples of new buildings in 2014, (i) Bam football stadium, (j) Bam central library, (k) Medical 

University of Bam, (l) Asiri mosque. The location of each site is displayed in Fig. 3.1d. 
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3.2.3 Assessment of reconstruction based on satellite images 

We compared three high-resolution optical images of Bam that were captured by the QuickBird 

satellite on September 30, 2003 (Fig. 3.2a) and January 3, 2004 (Fig. 3.2b), and by the GeoEye-1 

satellite on August 11, 2012 (Fig. 3.2c). Figure 3.1b shows the city’s borders and the focal areas 

targeted for our analysis. For this study, we selected seven areas (see Fig. 3.2 [a–c]), based on a 

previous study by Hisada et al. (2004). These authors evaluated damaged buildings using the EMS-

98 criteria (Günthal ed. 1998) and classified them into five groups according to the damage grade, 

ranging in severity from the least severe (G1) to the most severe (G5). Areas 1, 5, and 7, which 

are located in the western section, the city center, and the southern section, respectively, 

experienced relatively little damage. Areas 2, 3, and 4, which are in the northern section and Area 

6, which is located in the western section of the city, were significantly damaged. We selected 

areas 1 and 3 to estimate land cover changes. All seven areas were analyzed to estimate changes 

in the buildings as a result of reconstruction. 

 

3.3 Estimation of changes in land cover 

We compared the satellite images of the slightly damaged area (Area 1) and the severely damaged 

area (Area 3) captured before the earthquake (2003) and eight years after the earthquake (2012) to 

detect changes in four main categories of urban land cover. These were: buildings, vegetation, 

roads, and ground. We used manual means of classification to detect land cover, namely, 

monitoring and comparing each component type of land cover. Our use of very high resolution 

(0.5 m) images enabled careful and accurate detection of land cover changes. Even though this 

method was very time consuming, we were able to distinguish old from new buildings. Figures 

3.5 and 3.6, respectively, depict examples of unchanged and reconstructed buildings.  
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Figure 3.7 (a and c) shows satellite imagery of Area 1, with the manually classified land cover in 

2003 and 2012, respectively. Yamazaki et al. (2005) found that this area was partially damaged, 

 

Fig. 3.5 An example of unchanged building (Old building remains the same): (a) the building in 

2003, (b) the building in 2004, (c) the building in 2012, (d) and (e) photos of the same building, 

collected in the field surveys of 2004 and 2014 

 

Fig. 3.6 An example of a reconstructed building. (Old building changed to New building): (a) the 

building in 2003, (b) the building in 2004 (severely damaged), (c) the reconstructed building in 2012 

in the same location, (d) photo of the destroyed and (e) reconstructed building, collected in the field 

surveys of 2004 and 2014 
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as shown in Fig. 3.7b. Figure 3.8a lists the area-wise percentages of the four land cover categories 

(buildings, vegetation, roads, and ground). The image for 2012 reveals an increase in building-

covered land and a decrease in ground covered land. Similarly, Fig. 3.9 (a and c) shows the land 

cover of Area 3 in 2003 and 2012, respectively. Figure 3.8b lists the corresponding area-wise 

percentages for the four land cover categories in this area. As observed by Yamazaki et al. (2005), 

and shown in Fig. 3.9b, this area was completely destroyed by the earthquake. Here, land covered 

by buildings and vegetation had decreased, whereas ground cover had increased significantly. A 

large tract of empty land was observed in the area, which implied the slow pace of the 

reconstruction process. Although the debris has been removed and the land has been re-zoned, 

reconstruction has not yet begun in this area. 

 

 

Fig. 3.7 Analysis of Area 1: (a) manual classification of land covers in 2003; (b) damage level of 

individual buildings in 2004 (Yamazaki et al. 2005); (c) manual classification of land covers in 2012; 

(d) land cover changes between 2003 and 2012. 
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As shown in Figs. 3.7d and 3.9d, respectively, land cover changes before and after the earthquake 

were classified according to ten different categories. These were “old building to new building,” 

“old building, no change” (existed before 2003), “old building to vegetation,” “old building to 

ground,” “vegetation to new building,” “vegetation, no change” (existed before 2003), “vegetation 

to ground,” “ground to new building,” “ground to vegetation,” and “ground, no change” (existed 

before 2003). Table 3 lists the area-wise percentages of these land cover changes.  

 

 

Fig. 3.8 Percentages of land covers, buildings, roads, vegetation and ground in Area 1 (left) and Area 

3 (right) in 2003 and 2012 
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Fig. 3.9 Analysis of Area 3: (a) manual classification of land covers in 2003; (b) damage level of 

individual buildings in 2004 (Yamazaki et al. 2005); (c) manual classification of land covers in 2012; (d) 

land cover changes between 2003 and 2012 
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From Fig. 3.7d, we can observe that in Area 1, which was partially damaged, the majority of land 

covered by old buildings and part of the ground changed to new buildings. This finding was 

contrary to our expectation and will be subsequently discussed. In contrast, Fig. 3.9d shows that 

in Area 3, which was extensively damaged, the majority of old buildings and vegetation changed 

to ground cover. This observation is consistent with the slow recovery of severely affected areas 

that has been widely observed, worldwide, in zones hard hit by natural disasters (JICA, 2013). 

 

3.4 Estimation of changes in the buildings 

In this section, we consider reconstruction from a different perspective. Based on the previously 

mentioned study by Hisada et al. (2004), who assessed and categorized the damage grades of 

buildings according to the five classes of EMS-98 (G1 to G5), we selected 632 buildings in the 

Table 3.3 Land cover changes (in percent) from 2003 to 2012 

(a) Area 1 

 

2003 

2012 

 

New 

Building 

Old 

Building 
Vegetation Ground Total 

Old Building 50.9 6.7 0.0 1.7 59.3 

Vegetation 2.2 - 10.8 1.1 14.1 

Ground 13.0 - 0.3 13.3 26.6 

Total 66.1 6.7 11.1 16.1 100.0 

 

 (b) Area 3 

 

2003 

2012 

 

New 

Building 

Old 

Building 
Vegetation Ground Total 

Old Building 39.5 2.9 0.0 22.5 64.9 

Vegetation 3.3 - 2.0 14.0 19.3 

Ground 3.2 - 0.0 12.6 15.8 

Total 46.0 2.9 2.0 49.1 100.0 
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same seven study areas. Using satellite images, along with the results of our field investigations, 

we evaluated changes that had occurred in existing buildings (in 2003) from the time of the 

earthquake up to August 2012. We delineated three groups based on the kinds of building changes.  

•  No change: Buildings that existed before the earthquake and were still standing in 2012 

without evidencing any change, or just minor repairs, or that had been abandoned. 

• Changed and renewed: Buildings existing in 2012 that had been completely rebuilt after 

the earthquake. 

• Vacant land: Buildings that existed before the earthquake that had changed to bare land in 

2012. 

Figures 3.10 and 3.11 show the damage grade and the type of change for individual buildings in 

all seven study areas. Table 4 shows the number of buildings and the type of change in each study 

area, based on the damage incurred and current status. According to the study by Hisada et al. 

(2004), the apportioning of buildings by damage grade was as follows: G1 (19 buildings), G2 (110 

buildings), G3 (122 buildings), G4 (104 buildings), and G5 (277 buildings) across the seven study 

areas. This indicates that 61 % of all buildings belonged to the G4 and G5 categories, and were 

severely damaged or had collapsed as a result of the earthquake. Only 20 % of buildings in the 

seven study areas survived with slight or minor damage (G1 or G2).  
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Fig. 3.10 Damage level (left) and the type of change (right) for each individual building in Areas 1, 2, 3 

and 4 

 



 

48 
 

 

Of the 632 buildings, in total, 421 were reconstructed between 2003 and 2012. In 2012, 100 were 

found to be unchanged, and 111 had changed to vacant land. Of the 129 buildings categorized as 

G1 and G2, 66 had been reconstructed, while 61 remained unchanged. Of the 381 G4 and G5 

buildings, 282 had been reconstructed while 13 remained unchanged. Only two G1 and G2 

 

Fig. 3.11 Damage level (left) and the type of change (right) for each individual building in Areas 5, 6 and 

7 
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buildings had changed to vacant land, whereas 86 G4 and G5 buildings had been abandoned and 

demolished, leaving empty land in their place.  

Our comparison of these land use changes, categorized into three classes (no change, rebuilt, and 

vacant), and the number of buildings categorized into five classes according to their level of 

damage (G1 to G5), revealed a correlation between the level of damage and the reconstruction 

process. This comparison suggested an increase in the ratio of reconstructed buildings and the 

areas of vacant land in proportion to the level of damage of the buildings, as shown in Fig. 3.12. 

Similarly, the number of unchanged buildings was higher in slightly damaged areas. 

 

Table 3.4 Number of buildings in each study area based on the damage level and the type of change 

Damage Level G1 G2 G3 G4 G5 Number of 

Buildings 

Type of 

Change 
N V R N V R N V R N V R N V R  

Area 1 4 0 6 7 0 28 5 0 22 0 0 13 0 0 3 88 

Area 2 0 0 0 6 0 2 2 1 8 1 0 6 0 4 23 53 

Area 3 2 0 1 7 2 12 5 1 15 6 4 31 1 31 93 211 

Area 4 0 0 0 1 0 2 0 4 3 0 2 2 0 10 26 50 

Area 5 2 0 0 6 0 9 10 10 10 1 4 10 0 15 12 89 

Area 6 1 0 0 9 0 5 3 1 4 3 0 2 1 8 34 71 

Area 7 3 0 0 13 0 1 1 6 11 0 4 15 0 4 12 70 

Total 12 0 7 49 2 59 26 23 73 11 14 79 2 72 203  

Number of 

Buildings 
19 110 122 104 277 632 

 

N: No change between the earthquake and 2012 

V: Vacant land, no rebuilding in the location after the destruction of the existing building 

R: Buildings were rebuilt or renewed between 2003 and 2012 
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3.5 Results and discussion 

Several major findings that were consistent with the field survey results emerged from our 

evaluation using satellite images to determine land cover changes, as discussed in section 4.1. First, 

most of the reconstruction of damaged structures occurred in the same location. Moreover, some 

of the buildings that had not been seriously damaged, particularly those in Area 1, were completely 

renovated. In addition, new buildings (e.g., gyms and commercial complexes) were constructed 

on previously empty lots, thus indicating an increase in the use of new land for construction in the 

area. In the center of the city, vegetation and green spaces were destroyed and changed to bare 

land. 

Further, a comparison of land cover changes with statistical data showed that although there is still 

a considerable area of vacant land in the central and northern parts of the city, a sufficient number 

of housing units have been constructed. This can be attributed to the increase in the number of 

units and the population density in the reconstructed areas. Most of the former buildings consisted 

of just one or two family units. However, the reconstruction has resulted in new buildings with 

more floors and family units. Therefore, the total number of units exceeds that prior to the 

earthquake, even though the amount of empty land has also increased. 

 

Fig. 3.12 Percentages of the types of change for buildings with different damage levels (G1–G5) 
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A current issue that affects the city is the transformation of a considerable proportion of land with 

vegetation into empty ground after the earthquake. There are two main reasons for this 

phenomenon. The first is the destruction of networks of Qantas (aqueducts) (Statistical Center of 

Iran 2004), which provided the main source of irrigation in the dry desert environment of Bam. 

The second reason is the high rate of casualties in these severely damaged areas, resulting in a lack 

of people in the area to restore and subsequently maintain the gardens. 

Moreover, a comparison of the percentage of roads and passageways existing prior to the 

earthquake (2003) and after reconstruction (2012) showed an increase of approximately 3 % (Fig. 

3.8). In Area 1, which experienced relatively less damage such that buildings remained standing 

in proper alignment, road widening was achieved by moving back the reconstructed buildings. In 

Area 3, which experienced major destruction, in addition to moving back the reconstructed 

buildings, some new roads and streets were built (Fig. 3.9 [c and d]). Roads and open spaces are 

vital for facilitating transportation and emergency operations in crisis situations. Consequently, the 

city appears to have become much more resilient as a result of the reconstruction process. 

 The evaluation of satellite images to determine building changes, discussed in section 4.2, 

indicated that the ratio of reconstructed buildings increased in proportion to the degree of damage. 

This correlation suggests that the reconstruction process in the study areas was generally based on 

the need for change. In other words, we can state that the selection of buildings requiring 

reconstruction was properly carried out in most cases, with the exception of parts of Area 1, where 

the ratio of reconstructed units was not correlated with the level of damage. The differences 

observed within Area 1, which was not severely damaged, could be partially attributed to the bank 

loan provided by the government (with a 5 % interest rate repayable in 15 years) (Ghafory-

Ashtiany and Hosseini 2007). This served to motivate the residents of less damaged buildings to 

participate in the reconstruction program while benefitting from the aid provided through the loan 

program. 

The relatively large number of vacant lands (111 units out of a total of 623) that were not rebuilt 

after the earthquake, and subsequent debris removal, suggest that the reconstruction of heavily 

damaged districts such as Areas 3 and 5 has not yet been completed. Nevertheless, based on the 

findings of this study, the progress of Bam’s reconstruction process, in qualitative and quantitative 

terms, has been relatively good compared with the post-earthquake reconstruction that took place 
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in other cities in Iran. For example, during the reconstruction of Manjil after the earthquake that 

occurred in 1990, little attention was paid to preventing shifts in property boundaries in the city. 

This had an extensive and negative effect on the official land registry and also led to changes in 

the social structure (Pooyan 2012). Moreover, during the reconstruction of Manjil, planning that 

specifically targeted protection of the city’s cultural and historical identity was absent. This could 

have had an important impact on the tourism industry. Even less attention was given to the 

economic situation, specifically improving living standard and discouraging emigration. 

Furthermore, despite the construction regulations in earthquake-prone regions, reconstruction 

continued to be carried out close to fault lines (Mahdi and Mahdi 2013). However, in the case of 

the Bam earthquake, the previous experience gained from the Manjil earthquake could have led to 

avoidance of repeating previous mistakes and promoted effective disaster management, including 

shorter construction times, higher production, and better construction quality. 

 

3.6 Conclusions 

In this study, we used official statistical data, field survey data, and multi-temporal satellite 

imagery to evaluate the reconstruction process and land cover changes in the city of Bam after it 

was struck by a devastating earthquake on December 26, 2003. The study’s significance lies in its 

use of satellite images and remote sensing technologies that have not previously been applied in 

studies conducted on Bam.  

Our results showed that the reconstruction process was adequate in partially damaged districts of 

the city. However, in severely damaged areas, a sizeable area of vacant land remains despite the 

implementation of post-earthquake reconstruction. This can be attributed to the destruction of 

gardens, the deaths of their former owners, and the construction of a number of steel-frame 

buildings (Fig. 3.3) with smaller footprints.  

 Our evaluation showed that reconstruction of a significant number of buildings had been 

completed within 2 to 3 years of the earthquake’s occurrence. This indicates that the pace and 

progress of the reconstruction project was acceptable and that the project was conducted efficiently 

compared with previous governmental reconstruction projects in Iran. Moreover, a comparison of 

the building materials and structural types employed in Bam before and after the earthquake 
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showed that the quality of the building structures had generally improved, probably as a result of 

direct supervision by the Civil Engineering Organization. It is expected that the new city of Bam 

will achieve greater sustainability than its predecessor while being much more resilient to future 

disaster events. 

Furthermore, it should be noted that the reconstruction policy formulated for Bam not only 

responded to the demand for the reconstruction of residential units, but also provided social and 

urban development and economic growth by establishing new infrastructure, public buildings, and 

cultural facilities.  

In sum, we can conclude that the implementation of Bam’s reconstruction plan has been successful, 

particularly when compared with earlier post-disaster development programs implemented in other 

cities in Iran. The important factors that contributed to the success of this plan were financial aid 

and construction materials provided by the government and the active participation of local 

survivors in the reconstruction process. Although the 2003 Bam earthquake resulted in extensive 

physical damage and loss of human lives, it led to a rise in national awareness relating to the 

reduction of risks associated with earthquakes and an improvement in the quality of disaster 

management in Iran. 

Finally, it should be noted that although the analysis of satellite images conducted for this study 

ensured high accuracy and reduced costs compared with conventional methods entailing field 

surveys and data collection, the process of manual classification is time consuming and requires 

considerable expertise. Future work should attempt to develop powerful algorithms to enable 

automatic and highly accurate detection of types of land cover. 
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Chapter 4  

Application of Quad- and Dual-Polarimetric 

SAR data combination for land-cover 

detection in desert areas 
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4.1 Introduction 

Following the invention of the first digital data sets, significant information has been provided 

using remote sensing for the classification of land use and land coverage. (Stavrakoudis et al. 2011). 

A wide range of data with different spatial resolutions to have a rapid urban planning without 

physical access can be collected by using this technique (Erener, 2013). 

 Various objects such as water, concrete, asphalt, vegetation, metal and soil are contributed in 

urban areas, and they have complex nature. Each objective class has different spectral 

characteristics in RS image (Pacifici et al. 2009). As an example, a simple building which belongs 

to building class can be interpreted as a complex structure with many architectural details 

surrounded by trees, gardens, grass, roads, social and technical infrastructure, other buildings, and 

many other temporary objects. 

As it appears in (Amarsaikhan et al. 2007), multispectral remote sensing sources have been widely 

used for city land-cover detection. But, still there are great challenging tasks due to the complex 

city texture (Ban et al. 2010). Recently, application of microwave images for urban area 

classification has become more popular. For classifying, monitoring and analyzing urban 

aggregates, the SAR images seems essential (Dell’Acqua, 2009, Taubenböck et al. 2012). Thus, 

development of such a technique for large-area mapping can be considered. The multispectral and 

microwave images provide different information. Thus, integration those images can efficiently 

improve urban mapping.  

 Unlike the passive sensor images, the combined SAR and optical images can observe a particular 

urban feature. Besides, taking advantage of two sources, they can provide complementary 

information (Amarsaikhan et al. 2007). Remarkable attempts and valuable progress have been 

achieved toward the development of new advanced active and passive RS sensors during the last 

decades. The accurate and detailed mapping of urban land cover and land us should be noted (Hu 

and Wang, 2013). However, ordinary feature combinations or conventional techniques may not 

easily separate the complex features in the urban areas, which are diverse in nature and similar in 

spectral characteristics (K. Roychowdhury 2016). 

The atmospheric situation can obstruct the wavelengths of traditional spaceborne optical sensors 

and multispectral systems, and Radar passes through these circumstances (Stefanski et al. 2014; 
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Al-Tahir et al. 2014; Henderson et al. 2002). ). Also, since they do not become dependent on the 

Sun for illumination, they can acquire data at night. These benefits provide radar systems with 

relevant data selecting potential for many districts, especially those often obscured by persistent 

cloudy conditions, like tropical and high latitude regions (Sheoran, 2015 and Sawaya et al. 

2010).So, the Rada can be a useful and independent source of information for those parts. 

Many authors have interpreted their studies that Radar can be fused with optical data to improve 

land use/cover mapping accuracies(Idol 2015).  

For thematic accuracy of classifications, image date is often vital. Thus, it would be quite 

beneficial for the applications involving green vegetation such as agriculture, forestry, rangeland 

or wetlands. Scientists often gather detailed information on phenology of natural vegetation and 

crop calendars, to facilitate the recognition of the best image date for attainment (Niel and 

McVicar, 2004).  

To improve plant discrimination, it has been proven by Le Hegarat-Mascle et al. 2000; Turner & 

Congalton 1998, that having multiple dates of imagery is very useful. Multidate analysis has been 

applied by Department of Agriculture, both domestically and in the Foreign Agricultural Office of 

United States to improve the accuracy of their crop inventories. 

 The availability of free imagery, such as from the Landsat and other more recent space-borne 

missions, facilitate the compilation and acquisition of multi-temporal image datasets. As a result, 

there are several studies on multi-date analysis for many disciplines. Also, there are many types of 

research on the application of remote sensing technologies such as hyperspectral imaging (Gomez-

Chova et al. 2003; Liu & Bo 2015).As the land use and land cover kinds have variety and 

complexity, it is often challenging to find unique signatures for each single classes using data 

extracted for each single band.Compared to radar systems the optical data is quite accessible. 

Therefore, for most applications, optical data will be the dominant source of imagery 

By using multi-date radar or multi-date radar and optical integration, there are several studies 

confirmed the improvement of crop accuracies (Bargiel & Herrmann, 2011; Yekkihkhay et al. 

2014). Multiple image dates improves the accuracies of land use and land cover mapping, and a 

lot of studies have concentrated on this subject, those researchers demonstrate the importance of 
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investigating, most of them have focused on comparing differences within the same season and/or 

the same case study or same classes (Idol et al., 2015). 

 

4.2 Study area, Data description, and methodology 

4.2.1 The study area 

In this research, an area of approximately 1600 km2 covering, including all part of Bam city, 

Baravat city, and Arg-e-Jadid Special Economic Zone.  The land covers were studied with a greater 

focus (more specifically) in the urban areas. This area is located in Kerman province of 

southeastern Iran, 45 kilometers far from south of Lut Desert (the hottest place on Earth in 2004 

and 2005, which reached 70.7 degrees Celsius according to MODIS on NASA’s Aqua satellite 

data (Mildrexler et al. 2006)) and north of Jebal-Barez mountain chain. The area is illustrated in 

Fig. 4.1. 

 

 

Fig. 4.1 the study area 
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4.2.2 Data Description 

 Three images were used from two different sensors. Two of these images are from the PALSAR-

2 sensor, on ALOS-2 Japanese L-Band satellite launched in 2014. One of these SAR images was 

an FBD (Fine Beam Dual), 1.1 type, dual polarization (HH and HV), descending product acquired 

on 27 may 2015. Another one was HBQR 1.1 type, full polarization (HH, HV, VH, and VV), 

ascending image for seven may 2015. The level-1C image was taken by sentinel-2 satellite used 

as an optical image in this paper. The image acquired on 30 August 2015 and had 12 multi-spectral 

bands with 10-m resolution in band red, green, blue and infra-red. The detailed descriptions of 

these images are given in Table 4.1.  

 

Table 4.1. Detailed descriptions of the images used in the study.  

 

Sensor

Type Sensor

Product 

Type

Acquisition 

Date Pass Polarization Resolution

Antenna 

Pointing

Off Nadir 

Angle

Range 

Spacing

Azimuth 

spacing

SAR

ALOS-2 HBQR 1.1
2015-05-07

Ascending
Full HH/ 

HV/VH/VV
5.54 Right 28.4 2.861 m 3.127 m

ALOS-2 FBDR 1.1
2015-05-27

Descending
Dual 

HH/HV
6.6 Right 36.6 4.291 m 3.415 m

Optical Sensor

Product 

Type

Acquisition 

Date Pass

Orbit 

Number Resolution Bands

Zenith 

Angle

Cloud

Percentage

Azimuth 

Angle

Sentinel-2 S2MSI-1C 2015-08-30 Descending 120 10 12 7.11 0 103.559
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4.2.3 Methodology 

The primary purpose of this research was obtaining the classification of land covers in the arid 

area by an unsupervised method with the minimum amount of operator interfere. To achieve this 

goal, we used a combination of two SAR image which was taken by ALOS-2 and one optical 

image which was taken by Sentinel-2 satellite. A flowchart of the methodology is shown in Fig. 

4.3.  

 

Fig. 4.2 Footprint of SAR data on study area. 
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We chose one of the SAR images with ascending path and another in descending path to improve 

a detection of objects (especially buildings) which located in different directions. Fig. 4.9 shows 

objects with high backscatter values in ascending path in red and objects with high backscatter 

values in descending Path in cyan.  

Two SAR images were stacked together after preprocessing level which was explained precisely 

in section 4.3. The final product in this step is a combination of 6 bands (HH, HV, VH, VV, HH, 

and HV) with 6.6-meter resolution. In figure 4.8, the color composite of this sample product is 

introduced, where they are R; Band HH 7 may, G; Band VV 7 may, B; Band HH 27 may.  

To have the best classification in this research, three evolutionally processes (to improve the 

previous method) and based on 6-band images DATA are performed. 

 

 

Fig. 4.3 flowchart of the methodology. 
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4.3 SAR data pre-processing 

The SAR images were provided as the FBD and HBQR data with the processing level 1.1 ALOS-

2, which are represented by the complex I and Q channels to preserve the amplitude and phase 

information( Fig 4.4 and 4.5). After several pre-processing steps using the SNAP Desktop software, 

these images were projected on the WGS84 reference ellipsoid with a pixel spacing of 6.6 m. For 

speckle reduction, microwave data needs to be filtered. Lee Sigma filter with 5*5 pixel window 

size and 0.9 sigma factor was applied to reduce speckle noise (Kato and Yamazaki, 2008). 

 

 

 

Fig. 4.4 ALOS-2 HBQR data with the processing level 1.1 captured on May 7 and the location of Bam 

city. 
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Radar images are made up of digital numbers characterizing the intensity of the back-scattered 

energy for each pixel. The contrasted the back-scatter from different objects enables them to be 

visually discriminated. The datasets of both images were radiometric calibration to achieve sigma 

nought (σ°) or the backscatter values in the ground range with the decibel (dB) unit, represented 

by the following equation: 

 

σ° (dB) =10log(DN/10 )                                                                                                              :4.1 

 

Where DN is the digital number of backscattering intensity of SAR images. After this conversion, 

bilinear interpolation resampling type of calibration was applied to the images. Then both the 

images were terrain corrected and stacked.  

 

Fig.4.5 ALOS-2 FDB data with the processing level 1.1 captured on May 27 and the location of Bam 

city. 
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Fig. 4.6 ALOS-2 HBQR data captured on May 7 after preprocessing and the location of Bam city. 

 

Fig.  4.7. ALOS-2 FBD data captured on May 27 after preprocessing and the location of Bam 
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Fig 4.8. Band composition, Red: Sigma HH 07 May 2015(Ascending) Green: Sigma VV 

07 May 2015 (Ascending) Blue: Sigma HH 27 May 2015(Descending) 

 

 

Fig 4.9. Band composition, Red: Sigma HH 07 May 2015 (Ascending), Green 

and Blue: Sigma HH 27 May 2015 (Descending) 
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4.4 Backscatter value diagrams 

 We provided the land covers signature value diagrams to realize the statement of backscatter value 

of each pixel in a particular image according to the related land cover of that pixel. For this purpose, 

231 samples from all Land Covers type with the whole area xm2 from the Sentinel-2 image with 

ten-meter resolution were selected (as shown in fig. 4.10). We tried all kinds of colors, heights, 

and angles of objects to be included in the sample selection.  Subsequently, we achieved 

backscatter value ranges for each land cover in different images by determining the related 

backscatter value. 

 

4.5 Research process 

4.5.1 Multi-polarization SAR data 

In the first method, The six bands of two images were layer stacked, PCA for 6 Band images is 

performed and then on three first component classification was done. To identifying the classes, 

 

Fig. 4.10 samples of all land cover types for backscatter value diagrams. 
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Backscatter values (σ°) were used. The K-Means method was performed for the classification 

scheme. (Chipman et al., 2004).  

To have the best result in classification, we started with 40 different classes, and we changed 

threshold to 99% of the total. The resultant classes merged to the following three major land cover 

classes: Buildings, bare land, and vegetation. Then, training sample datasets were created to be 

applied for the classification of images. (Fig. 4.15). 

 

 

Fig. 4.11 The land covers backscatter values histogram for the six bands of SAR images. 

. 
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 Figure 4.11 shows the signature value diagram for each one of 6 bands taken by ALOS- 2. The 

red lines refer to Buildings, yellow lines to Soil and Green to Vegetation. It is evident, in all images 

except HH may 27, there are many similarities in backscatter values diagram of Building and 

Vegetation land covers, while the diagrams relating to the backscatter value of Soil is appropriately 

different. These diagrams explain why the initial classification misclassified most of the Building 

as the Vegetation and vise verse. As is shown in figure 4.13, performing PCA (Fig 4.12) almost 

decreased the difficulty, and the deviation between Vegetation and Buildings diagrams is enlarged 

in the first component. 

 

 

Fig. 4.12. Principal component analysis results (6 bands from two SAR images) 

 

 

Fig. 4.13 The land covers backscatter values histogram for the first three components. 
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Fig. 4.14 Bands color composition for principal component analysis results, Red: Component 1, 

Green: Component 2, Blue: Component 3 

 

 

Fig. 4.15 K-means unsupervised classification for three components of six bands, 40 Classes, Merge 

to 3 classes. 
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4.5.2 ΔHH, Mean HV, Mean HH 

 In this part, we reduced the number of active bands to noise reduction and then having a better 

classification. For this purpose, first the mean of sigma naught value for the both equivalent 

pixels in HH band may 27 and May 07, and mean of sigma naught Value for the both equivalent 

pixels in HV may 07 and May 27 are evaluated. Also, the difference between sigma naught value 

for the both equivalent pixels in HH band May 07, and HH May 27 are estimated (Liu et al., 

2012; Liu et al., 2014). 

 

 

                                                                                      : 4.2 

 

Fig. 4.16 Backscatter value analysis (ΔHH, Mean HV, Mean HH) results and histograms. 
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Three new nominated images (ΔHH, mean HV, mean HH) are stacked together (Fig. 4.17). Then 

PCA for this new 3-Band image was performed (Fig. 4.19), and the first two components K-mean 

classification was conducted (Fig. 4.19). 

 

 

 

Fig. 4.17 Principal Component Analysis for ΔHH, Mean HV, Mean HH 

 

 

Fig. 4.18 Bands color composition, PCA for ΔHH, Mean HV, Mean HH, Red: Component 1, Green: 

Component 2, Blue: Component 3 
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4.5.3 ΔHH, Mean HV, Mean HH, NDVI 

 For increasing the accuracy of the results in the third method SAR, and optical images were 

combined. Vegetation land covers can be detected by optical images well, especially via Red and 

Infrared bands. 

 

4.5.3.1 Optical data processing 

The optical data was download from the ESA (European Space Agency) website, and it was used 

to produce NDVI image of the region. By spectral indices which could be employed as features 

the Sentinel 2 image was described, then as we explained before these indices use the values from 

two bands to calculate an index that represents the pixel. 

 

Fig. 4.19 K-means unsupervised classification for two components of ΔHH, Mean HV, Mean HH 

bands, 40 Classes, Merge to 3 classes. 
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The indices are designed to accentuate some particular land cover class. The Normalized 

Difference Vegetation Index (NDVI) characterizes live green plant. It was first introduced by 

Rouse et al. (1973). The index uses the visible red band and the near-infrared band, and is 

calculated as follows: 

                                                                  : 4.3 

 

Where RED corresponds to surface reflectance in Sentinel-2 band 4 and NIR corresponds to 

surface reflectance in Sentinel 2 band 8. This index works with the principle where vegetation 

results in a large difference in the two used bands. This leads to large NDVI values (Monica 

Sandberg 2015). 

 

 

Fig. 4.20. Sentinel-2 image, captured on 2015 august 30 
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4.5.3.2 Fusion of optical and SAR images  

The image fusion technique aims at integrating the information conveyed by data acquired with 

different sensors, also spatial and spectral resolutions, for purposes of image analysis, feature 

extraction, modeling, and land cover classification (POHL and VAN GENDEREN, 1998). To 

allow for joint processing and interpretation of ALOS-2 and Sentinel-2 data the following pre-

processing steps were performed· First, the bands of the S-2 product were brought to the same 

resolution (6.6 m). This procedure accounted for the fact that our Alos-2 products have 6.6m x 

6.6m pixel spacing after preprocessing. After that, the SAR image bands were stacked with 

Sentinel-2 data (NDVI) using nearest neighbor approach. Next, the area of interest was selected, 

and both datasets were cropped to the same area of interest surrounding Bam city. Finally, to ensure 

that the same ground sampling grid is employed in both datasets the SAR data was resampled to 

reach the same number of pixels as the optical data. 

 

 Accordingly, first by using NDVI method, land Covers relating to the vegetation discovered, then 

we combined this result as a band with the other three bands (ΔHH, mean HV, mean HH, mean 

HV). After principal component analysis performance for above combination, the most three 

influenced components (Fig. 4.21) were selected, and K-mean method was used for an 

unsupervised classification (Fig. 4.23). Finally, by comparing the result of the classification and 

the truth data, confusion matrices were built to accuracy estimation for the method (Table 4.5).  

 

 

Fig. 4.21 Principal Component Analysis for 4 bands (ΔHH, Mean HV, Mean HH, NDVI). 
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To make a larger difference among the diagrams and having a most accurate classification, the 

final land covers signature value chart as shown in figure x, have built after performing the process 

as explained. According to the designed process, diagrams of different land covers (especially in 

the third component) is thoroughly characterized, and intersections and confusions between 

Vegetation and Building are nicely improved, and an excellent classification can be expected.  

 

 

Fig 4.22 Bands color composition, PCA for ΔHH, Mean HV, Mean HH, NDVI, Red: Component 1, 

Green: Component 2, Blue: Component 3. 

 

Fig. 4.23 The land covers backscatter values histogram (ΔHH, Mean HV, Mean HH, NDVI) for the 

first three components. 
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4.6 Result Evaluation 

4.6.1 Training Phase 

The training and test data sets for this study were created manually with the primary reference 

image, the high-resolution GeoEye-1 image. For each class, three samples of truth data with 

150m x 150m size were used (Fig. 4.25). These samples were selected according to the 

resolution of the optical image (10 meters) and local urban block scale. The samples have been 

chosen randomly from different parts of the city as much as possible.  

 

Fig. 4.24 K-means unsupervised classification for three components of ΔHH, Mean HV, Mean HH 

and NDVI bands, 40 Classes, Merge to 3 classes. 
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4.6.2 Accuracy Assessment\ Confusion Matrix 

Confusion matrices have been applied to validate the classification results and calculate various 

accuracies. This matrix has been computed for each classification map, and it also has been 

included values for the final accuracy of the producer and the user, in this study, the confusion 

matrix used the test plots that were manually defined at an earlier stage. The test plots could lead 

to different results. By the same amount of test pixels per class give an overview of the results 

for each class Hence for final validation of the results it should be taken into account (Sandberg 

2015).  

 

Fig 4.25. The samples of truth data, size: 150m x 150m  



 

77 
 

 

 

 

Table 4.2 Confusion matrix, PCA of 11 bands optical image 

 

Truth data

Classifier

results

Buildings Soil Vegetation
Classification

overall

Producer

Accuracy 

(%)

Buildings 901 654 0 1555 57.94

Soil 635 933 2 1570 59.42

Vegetation 0 0 1516 1516 100

Truth

overall
1536 1587 1518 4641

User

Accuracy 

(%)

58.65 58.79 99.86

Overall

accuracy 

(OA):

72.183%

Kappa 0.583

Table 4.3 Confusion matrix, PCA of 6 Polarization SAR Image 

 

Truth data

Classifier

results

Buildings Soil Vegetation
Classification

overall

Producer

Accuracy 

(%)

Buildings 1157 165 202 1524 75.91

Soil 18 1349 206 1573 85.76

Vegetation 366 73 1110 1549 71.65

Truth

overall
1541 1587 1518 4646

User

Accuracy 

(%)

75.08 85.01 73.12

Overall

accuracy 

(OA):

77.83%

Kappa 0.667
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Table 4.4 Confusion matrix, PCA of ΔHH, Mean HV, Mean HH 

 

Truth data

Classifier

results

Buildings Soil Vegetation
Classification

overall

Producer

Accuracy 

(%)

Buildings 1296 45 198 1539 84.21

Soil 4 1452 78 1534 94.65

Vegetation 241 90 1242 1573 78.95

Truth

overall
1541 1587 1518 4646

User

Accuracy 

(%) 

84.10 91.49 81.81

Overall

accuracy 

(OA):

85.88%

Kappa 0.788

Table 4.5 Confusion matrix, PCA of ΔHH, Mean HV, Mean HH, NDVI 

 

Truth data

Buildings Soil Vegetation
Classification 

overall

Producer

Accuracy 

(%)

Buildings 1327 69 0 1396 95.05

Soil 214 1518 0 1732 87.64

Vegetation 0 0 1518 1518 100

Truth

overall
1541 1587 1518 4646

User

Accuracy 

(%) 

86.11 95.95 100

Overall

accuracy 

(OA):

93.90%

Kappa 0.909
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4.7 Results and Discussion 

The land cover classification of optical images based on some algorithms which are configured on 

Pixels Features. Many software will detect different classes wrongly the same one when having 

almost similar pixel color. (Although by using object-based classification this error can be 

decreased, it is not considered here). The Sentinel-2 Satellite Image has been considered as an 

optical sample for Land Cover Classification and k-mean unsupervised method with 40 minimum 

class size, and 20 sample interval factor has applied as a classification method in this research. The 

number of outputs is defined 40 and after the classification Merged to 3 categories; Vegetation, 

Soil, and Building. 

 For the accuracy check, three districts from each class (with a size 22500 m2 for each one) were 

selected randomly, and producing maximum error matrix. As can be seen in Figure x the accuracy 

of optical image classification for the Soil and Building were small and approximately 60 percent. 

However, the overall accuracy has increased to 72.18 percent because of high accuracy of 

discrimination of vegetation in the optical images. 

In this product, more than half of pixels relates to the soil have been wrongly realized buildings, 

and more than half of pixels belonging to the building have been incorrectly achieved as soil. The 

variety of soil type and matching their color with the color of construction materials in the 

buildings in this kind of desert district is the primary reason for these significant errors. To solve 

this difficulty we have used SAR images. 

Comparing the exactness of the results were applied in different methods in this research, indicates 

that the combination of 4-bands, NDVI, ΔHH, mean HV, mean HH have the highest accuracy. 

Table x shows the accuracy of the 6-banded combination methods; HH, HV,  VV and VH 

polarization from the image taken on May 7 and HV,  HH  polarization from the image taken on 

May 27. 

 In this method, the smallest accuracy is for the Vegetation, 23.63 percent of Vegetation have 

realized Building, and 4.71 percent of Vegetation have realized Soil. Also, 13.25 percent of 

Buildings have been realized Vegetation. As has been indicated in figure x, the main reason for 

this deviation is the intersection and closeness of Backscatter values of these land covers in the 

SAR images. 
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We obtained the average value of each equivalent pair pixels in two HH and two HV bands and 

also the difference value of each equivalent pair pixels in two HH bands, to improve the accuracy 

of the classification results and increase the separatability of the each land cover diagram as we 

comprehensively illustrated in previous sections. 

This process increased 8 percent in overall accuracy; 5 percent in Building, 9 percent in Soil, and 

7 percent in Vegetation. Although similar to the previous method the Backscatter Value for Land 

Cover, Building and Vegetation were too close or had an intersection, such that about 15 percent 

of Vegetation were wrongly realized Building and 12.86 percent of Building were incorrectly 

recognized Vegetation. 

 

4.8 Conclusion 

This study intends to perform a combination of optical and active microwave images to improve 

the land cover classification for arid areas conditions. Also, to increase the effect of the vegetation 

on the SAR images and to better classify the radar data, the optical data are also incorporated. 

Dryland environments such as arid and semi-arid environment contain a significant amount of the 

global population and are sensitive to environmental changes. Considering the land change in 

dryland areas, the land cover mapping can be served to observe and analysis the administrative 

decisions on land utilization for different goals. Land cover plans are a fundamental topic in urban 

sciences. Also, they are the significant data source for investigating the city and environmental 

changes. 

In this decade, land cover change`s monitoring depends on remote sensing images and technology. 

Different techniques can be performed for classifying land use from satellite products. The most 

confusing issue during such a classification is a variety of land covers that make vague land classes. 

The Fusion of Optical SAR Satellite data merges more data from the satellite images than optical 

products.  

The incorporation of spatial information, in conjunction with usual classification methods, obtains 

more adaptability to the scientist. Thus, an efficient classification technique should be used, and 
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reliable features should be derived from multiple sources in the case of urban area mapping with 

spectrally similar or mixed classes. 

Comparing the exactness of the results were applied in different methods in this research, indicates 

that the combination of 4-bands, NDVI, ΔHH, mean HV, mean HH have the highest accuracy.   



 

82 
 

Chapter 5  

General conclusions 
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In recent years, increase in data accessibility, and advances in satellite technology have diversified 

the use of remote sensing for mapping and monitoring natural hazards and land cover classification 

and changes. An advantageous application of remote sensing in a wide range, including the 

detection of earthquakes damage, study about faults and volcanic activity, monitoring landslides 

and flooding have proven. 

In this study, official statistical data, field survey data, and multi-temporal satellite imagery have 

been used to evaluate the reconstruction process and land cover changes in the city of Bam after it 

was struck by a devastating earthquake on December 26, 2003. The study’s significance lies in its 

use of satellite images and remote sensing technologies that have not previously been applied in 

studies conducted on Bam. Furthermore, it should be noted that the reconstruction policy 

formulated for Bam not only responded to the demand for the reconstruction of residential units, 

but also provided social and urban development and economic growth by establishing new 

infrastructure, public buildings, and cultural facilities.  

Our evaluation showed that reconstruction of a significant number of buildings had been 

completed within 2 to 3 years of the earthquake’s occurrence. This indicates that the pace and 

progress of the reconstruction project were acceptable and that the project was conducted 

efficiently compared with previous governmental reconstruction projects in Iran. Moreover, a 

comparison of the building materials and structural types employed in Bam before and after the 

earthquake showed that the quality of the building structures had generally improved, probably as 

a result of direct supervision by the Civil Engineering Organization. It is expected that the new 

city of Bam will achieve greater sustainability than its predecessor while being much more resilient 

to future disaster events. 

Our results showed that the reconstruction process was adequate in partially damaged districts of 

the city. However, in severely damaged areas, a sizeable area of vacant land remains despite the 

implementation of post-earthquake reconstruction. This can be attributed to the destruction of 

gardens, the deaths of their former owners, and the construction of some steel-frame buildings 

with smaller footprints.  
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In sum, we can conclude that the implementation of Bam’s reconstruction plan has been successful, 

particularly when compared with earlier post-disaster development programs implemented in other 

cities in Iran. The important factors that contributed to the success of this plan were financial aid 

and construction materials provided by the government and the active participation of local 

survivors in the reconstruction process. Although the 2003 Bam earthquake resulted in extensive 

physical damage and loss of human lives, it led to a rise in national awareness relating to the 

reduction of risks associated with earthquakes and an improvement in the quality of disaster 

management in Iran. Finally, it should be noted that although the analysis of satellite images 

conducted for this study ensured high accuracy and reduced costs compared with conventional 

methods entailing field surveys and data collection, the process of manual classification is time-

consuming and requires considerable expertise.  

In the next chapter, we attempt to develop powerful algorithms to enable automatic and highly 

accurate detection of types of land cover. The results show, by using only the optical data, more 

than half of pixels relates to the soil have been wrongly realized buildings, and more than half of 

pixels belonging to the building have been incorrectly achieved as soil. The variety of soil type 

and matching their color with the color of construction materials in the buildings in this kind of 

desert district is the primary reason for these significant errors. To solve this difficulty we have 

used SAR images. 

Hence, to improve the land cover classification for arid areas conditions like Bam, we applied a 

combination of optical and active microwave images. The optical data are also incorporated, to 

increase the effect of the vegetation on the SAR images and better classification of the radar data. 

The Fusion of Optical SAR Satellite data merges more data from the satellite images than optical 

products. And finally, comparing the exactness of the results were applied in different methods in 

this research, indicates that the combination of 4-bands, NDVI, ΔHH, mean HV, mean HH have 

the highest accuracy. 
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