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General Abstract 

Due to increasing of global demand for palm oil, Indonesia and Malaysia are 

pursuing the expansion of oil palm plantations which is accomplishing considerable 

concern and debate on global warming as impact of the greenhouse gas emission into 

the atmosphere. Oil palm plantations as a major contributor on the greenhouse gas 

emission as related with land use changes had been reported in many research. However, 

there are still limited studies concerning effect of soil types, fertilizer and topography on 

nitrous oxide (N2O), carbon dioxide (CO2) and yield of oil palm. 

These studies were conducted on mineral soil in Tunggal, Indonesia, and in 

Simunjan, Malaysia and also on peat soil in Tatau, Malaysia. The type of fertilizer 

application was coated fertilizer and conventional fertilizer. Measurement of N2O and 

CO2 emissions conducted 2 years continuously. The results show that N2O and CO2 

fluxes showed high variabilities with seasons, soil and fertilizer types. N2O and CO2 

fluxes in the tropical oil palm plantations were significantly affected by the soil types, 

but not consistently by fertilizer types.  

Since the oil palm plantations have been expanding into the different slope 

positions, observation the interaction of soil properties and topography influencing 

greenhouse gas fluxes which are still poorly understood is required. Topography affects 
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the movement of surface and subsurface water and causes the variability of soil 

processes, which makes the accurate estimation of greenhouse gas fluxes more difficult. 

In addition, assessment of the dissolved N2O concentration as source of indirect 

emission was also considered. The study result show N2O and CO2 fluxes showed 

variability with seasons and slope positions. Dissolved N2O concentrations varied by 

water sources and sampling time, sometimes supersaturated than ambient equilibrated 

concentration. Therefore, topography effect is needed carefully recognized on 

estimating the whole gases emissions including the indirect emissions. 

Soils and fertilizers are essential factors on the growth and production of oil 

palm. By applied coated fertilizer by a half and quarter of dosage from conventional 

fertilizer showed that coated fertilizer was more productively on FFB yields. 

Consequently, reducing the dosage of coated fertilizer in each soils type showed more 

productive on FFB yields. 

From the above studies, it is important to understand the oil palm plantation on 

influence toward the greenhouse gas and yield related with the sequence of soil, 

fertilizer and topography.  
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インドネシアとマレーシア油ヤシ農園における土壌、肥料および地形が 

一酸化二窒素と二酸化炭素放出および収量に与える影響 

 

要約 

 

インドネシアとマレーシアにおいて、栽培面積が急速に拡大している油ヤシ

農園は、近年、温室効果ガス一酸化二窒素(N2O)の発生源として、環境に対する

潜在的な影響が注目されている。しかし、土壌タイプや窒素施肥が、N2O と二

酸化炭素(CO2)生成能に及ぼす影響を検討した例は限られている。そこで本研究

では、この２つの要因が、油ヤシ農園からの N2Oと CO2放出に及ぼす影響を評

価することを目指した。現地の油ヤシ農園において、土壌、肥料および地形が、

N2Oと CO2放出および収量に与える影響について研究したものである。 

本研究は、インドネシアの鉱質土壌の油ヤシ農園と、マレーシアの鉱質土壌

と泥炭土壌の油ヤシ農園において実施された。油ヤシ栽培に必須な施肥窒素に

ついて、慣行肥料と被覆肥料とで比較して、N2O と CO2放出量を 2 年間継続し

て測定した。その結果、N2O と CO2放出量が、季節変化や土壌タイプおよび肥

料の種類により大きく変動することが示された。被覆肥料区の施肥窒素量は、

慣行肥料区の約半分で深層施肥したため、被覆肥料区の施肥窒素あたりの N2O

放出量は、慣行肥料区を下回る例が見い出された。 

油ヤシ栽培は、様々な地形において拡大されている。地形と土壌の特性の相

互関係が、温室効果ガスに影響しているか否かについての検討は、まだ限定的

http://ejje.weblio.jp/content/%E9%89%B1%E8%B3%AA%E5%9C%9F%E5%A3%8C
http://ejje.weblio.jp/content/%E9%89%B1%E8%B3%AA%E5%9C%9F%E5%A3%8C
http://ejje.weblio.jp/content/%E9%89%B1%E8%B3%AA%E5%9C%9F%E5%A3%8C
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である。地形は、水の流れにより、土壌中の物質変化に影響し、温室ガスの正

確な測定は難しくなると考えられた。さらに溶存 N2O が排出されることに注目

することが必要である。研究の結果、N2O と CO2の放出量は、季節と地形によ

って変動した。そして、溶存 N2Oは、水源と水の採取時期によって変化した。 

油ヤシの成長と生産のため、土壌と窒素肥料は必須要因である。現地施肥試

験では被覆肥料区の施肥窒素量は、慣行肥料区の約半分を施用した。被覆肥料

区と慣行肥料区と比べた結果、油ヤシの収量は、被覆肥料の方が生産性が高い

ことが確認された。土壌型が違っても、被覆肥料の量を減らしても、油ヤシの

生産性は高いという結果であった。 

上記の研究結果から、油ヤシ農園において土壌、肥料および地形が温室効果

ガス放出に重要な影響を与えていることが結論づけられた。 
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Chapter 1 

General Introduction 

 

1.1 Oil palm plantation in Indonesia and Malaysia 

Oil palm (Elaeis guineensis Jacq.) is a tropical crop and originated from West 

Africa. In1848, oil palm first planted in Java Island and it had been spread to Southeast 

Asian plantations development (Henderson and Osborne 2000). Oil palm is important 

supplier of vegetable oil in the world and one of the most rapidly expanding crops in the 

tropics. Indonesia and Malaysia had taken over from Nigeria and Zaire in dominating 

world trade in palm oil since 1966 (Poku 2002). Comparing with others crop-based oil 

seeds, oil palm trees produces the highest yield per unit area. From 1 ha of oil palm 

produces average oil yield as 4.09 tonnes, as compared with rapeseed, sunflower and 

soybean which yields 0.75, 0.5 and 0.37 tonnes, respectively (World Growth 2011). The 

oil palm tree produces high-quality oil used primarily for cooking in developing 

countries. It is also used in food products, detergents, cosmetics, and a small extent as 

biofuel.  

From all the worlds, the largest producers of palm oil in the world are still 

dominated by Indonesia and Malaysia (Fig. 1.1). Since early 1980s, oil palm plantation 
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harvested areas in Indonesia and Malaysia have been increased gradually as shown in 

Fig. 1.2. In the period 1995-2014, global palm oil production more than tripled from 

16.2 million tonnes to 58.8 million tonnes (Fig. 1.3), however during the last three years, 

production in Malaysia stagnated due to the limited availability of arable land (Product 

Board MVO 2010).  

 

 

Figure 1.1 Largest producers of palm oil (thousands of tons of oil produced) in 2012 

adapted from Union of Concerned Scientist, 2013.   
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Figure 1.2 Oil palm plantation harvested areas (ha) in Indonesia and Malaysia from 

1980 to 2014 (FAO 2014).  

 

 

Figure 1.3 Palm Oil productions in the world, Indonesia, and Malaysia (FAO 2014).  
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In Indonesia, agricultural land is 47.6 million hectares, while total planted areas 

of oil palm has reach to 10.7 million hectares (IMA 2014). Therefore percentage of oil 

palm plantation is 22.5% from total agricultural land. Oil palm plantations are largely 

concentrated in Sumatera. Geographically location of oil palm plantation, Riau province 

(2.30 million hectares) is positioned as the largest area followed by North Sumatera 

province (1.39 million hectares). The smallest area of oil palm plantation is located in 

West Sulawesi province (0.10 million hectares) as shown in Fig. 1.4. Oil palm 

plantation is approximately 52% owned by private plantations, 39% by smallholders 

and the rest 8% by government plantations (IMA 2012). 

 

 

Figure 1.4 Location of oil palm plantations in Indonesia, 2014.  
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In Malaysia, agricultural land is 7.87 million hectares, while total planted areas 

of oil palm is 5.39 million hectares (MPOB 2014). Therefore percentage of oil palm 

plantation is 68.5% from total agricultural land. Oil palm plantation becomes rapid 

expansion of cultivation area in Sabah and Sarawak. Sabah has the largest plantation 

areas of 1.51 million hectares, while Sarawak has reached to 1.26 million hectares, as 

shown in Fig.1.5. The ownership of oil palm plantation as follows, by private estate 

(61.6%),  Federal Land Development Authority (FELDA) (13.9%), Federal Land 

Consolidation and Rehabilitation Authority (FELCRA) (3.3%), Rubber Industry 

Smallholders' Development Authority (RISDA) (1.5%), Government or state agency 

(6.0%), and independent smallholder (13.6%) in 2012 (MPOB 2012).  

 

 

Figure 1.5 Location of oil palm plantations in Malaysia, 2014.  
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The oil palm is most commonly planted on tropical soils which belong to soil 

order Ultisols, Oxisols, Inceptisols (Ng 2002) and also in Histosols. In Indonesia oil 

palm was planted 78% on mineral soil and 22% on peat soil. While in Malaysia, oil 

palm found 87% on mineral soil and 13% on peat soil. Both in Indonesia and Malaysia, 

oil palm plantations have been largely extended on peat soil. Oil palm plantations have 

been extended on peat soil from 418,000 ha in 1990 to 2.43 Mha in 2010. In Indonesia 

mainly in Sumatera and Kalimantan, oil palm plantation expanded on peat soil as 1.4 

Mha (29%) and 307,515 ha (11%), respectively. In Malaysia, expansion of oil palm 

plantation on peat soil has been reached as 476,000 ha (46%), 215,954 ha (8%), and 

29,000 ha (2%) in Sarawak, Peninsular Malaysia, and in Sabah, respectively (Fig. 1.6) 

(Gunarso et al. 2013). 

 Soil distribution in Indonesia based on soil orders classifications which consist 

of 10 orders, such as: Inceptisols (31.4%), Ultisols (24.9%), Histosols (12.6%), Entisols 

(10.4%), Oxisols (9.6%), Alfisols (4.1%), Andisols (2.6%), Spodosols (2.6%), Vertisols 

(0.9%), and Mollisols (0.9%) in Fig 1.7 (Puslittanak 2000; Sarwani et al. 2012). While 

soil orders in Malaysia are Ultisols and Oxisols (72%), Histosol (20%), and others soil 

orders (8%) (IBSRAM 1985). 
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Figure 1.6 Expansion of oil palm plantation on mineral soil and peat soil between 1990 

and 2010 in Indonesia and Malaysia 

 

 

Figure 1.7 Soil distributions in Indonesia based on classification of soils orders 

(Sarwani et al. 2012) 
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1.2 Agricultural soil as a source of greenhouse gas emission 

Agriculture, forestry and other land use sectors are one of significant sources of 

anthropogenic greenhouse gas emissions (GHGs) that leading to climate change (Fig. 

1.8). GHGs are gases in the atmosphere that capture solar radiation and warm the 

surface of the earth. Increasing concentrations of GHGs can warm the surface of the 

earth and cause changes in global warming (IPCC 2014). Nitrous oxide (N2O) 

emissions come mainly from nitrogen applied to agricultural soils. Methane (NH4
-
) 

emissions come mostly from the digestive processes of ruminant animals, manure 

management and rice cultivation. Carbon dioxide (CO2) emission come mainly from 

fossil fuel use, production of fertilizers and other agro-chemicals, and soil management. 

 

Figure 1.8 Greenhouse Gas Emissions by Sector; LULUCF (Land Use, Land Use 

Change and Forestry) IPCC (2014); MoE (2010); MoNRE (2010). 

https://www.ipcc.ch/report/ar5/wg3/
https://www3.epa.gov/climatechange/ghgemissions/%20https:/www.epa.gov/epahome/exitepa.htm
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Indonesia and Malaysia dominate global production of oil palm, with rapid 

expansion of plantation area by the conversion of tropical forest and peatlands to oil 

palm plantation has been focus of debates due to its potential impact on environment 

(Dewi et al. 2009), and emerged as globally significant driver of greenhouse gas 

emission (Seymour 2014). Over the last 20 years deforestation has been driven 

predominantly by agricultural expansion, especially of oil palm plantation monocultures 

(Singh and Bhagwat 2013). Expanding oil palm plantation cause GHGs emissions when 

the new plantations replaced the forest habitat due to amount of carbon stored in the 

stems, leaves and roots are small compared with carbon stocks of the natural forest 

(Wicke et al. 2008a). While expansion of oil palm converted from peat soils, it creates 

two sources of CO2 emissions, namely emissions due to soil burning and soil drainage. 

Burning land has been chosen to clear the old vegetation to establish new plantation. 

Peat soil will burn down into soil profile until it is sufficiently humid to extinguish the 

fire. Afterwards, upper horizon of peat soil is drained to create suitable soil condition 

for oil palm. These processes changed the ecological condition of soil biota and leads to 

gradual oxidation and decomposition of peat matrix, and as a consequence, peat soil 

release the CO2 (Agus et al. 2009). Expansion of oil palm from forest conversion on 

mineral soil caused a net release emission of approximately 650 Mg CO2eq ha
-1

, while 
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on peat soil released over 1,300 Mg CO2eq ha
-1

 during the first 25 year circle of oil palm 

growth. Emission from peat conversion is even higher due to the composition of drained 

peat and the resulting emission of CO2 and N2O (Germer and Sauerbon 2008). In 

Indonesia, net annual emissions from land use change and emissions from peat soil link 

to the expansion of oil palm plantation were reported approximately at 58 Tg CO2 yr
-1

 

(from 1990 to 2000), 65 Tg CO2 yr
-1 

(from 2001 to 2005), and 127 Tg CO2 yr
-1

 (from 

2006 to 2010). While in Malaysia were estimated at 33 Tg CO2 yr
-1

 (from 1990 to 2000), 

40 Tg CO2 yr
-1 

(from 2001 to 2005), and 57 Tg CO2 yr
-1

 (from 2006 to 2010) (Agus et 

al. 2013).  

 

1.3 Nitrogen fertilizers affect environment and yield 

1.3.1 Nitrogen fertilizers affect environment 

In recent years concern has grown over the contribution of nitrogen (N) 

fertilizers to the environmental problems. Nitrogen and other nutrients are used 

inefficiently in most of the world’s agricultural systems resulting in enormous and 

largely unnecessary losses to the environment. According to IPCC (2007), 60% of N 

fertilizers can be lost as pollutants through leaching of mobile N compounds such as 

nitrate (NO3
-
) and emission of nitrous oxide (N2O) as one of potent greenhouse gas.  
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Once N fertilizers are applied to agricultural systems, the fertilizers are absorbed 

directly by plants or converted into various other forms through the oxidation process. 

Excess nitrogen is lost in ionic or gaseous form through leaching, volatilization, and 

denitrification (Liu 2014). Leaching is the downward movement of N through the soil 

profile. Water movement in the soil profile can be vertical to groundwater of horizontal 

to surface drain. Nitrate leaching has negative impact on groundwater quality and it 

contributes to eutrophication of surface water. Groundwater is very essential source of 

drinking water, therefore concentration of NO3
-
 in the groundwater have a serious 

consideration. The maximum tolerable concentration of NO3
-
 is 10 mg per liter for 

drinking water. Nitrate exceed that tolerable concentration may present serious health 

concern is called blue baby syndrome in human infants (WHO 2011; DEQ 2015).  

From a greenhouse gas perspective, the fertilizers with the largest effects are 

the N-based forms that produce N2O, including ammonium nitrate, ammonium sulphate 

and urea. According to the Intergovernmental Panel on Climate Change ((IPCC) 2007), 

1 kg of N2O has an equivalent impact of approximately 298 kg of CO2. N2O is 

responsible for 6% of the calculated greenhouse effect caused by human activity. The 

concentration of N2O in the atmosphere is increasing at a rate of approximately 0.2% 

per year (IPCC 2007). N2O is produced by both the oxidation of ammonium (NH4
+
) to 
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nitrate (NO3
–
) (i.e., nitrification) and the reduction of NO3

–
 to dinitrogen gas (N2) (i.e., 

denitrification). N2O is either the by-product (nitrification) or the intermediate product 

(denitrification) of these processes (Firestone and Davidson 1989). Because of these 

changes to the N cycling 100-yr lifetime caused by soil disturbance and use of N 

fertilizers, N2O emissions from agricultural soils are particularly large, and obtaining 

reliable estimates is not straightforward (Syväsalo et al. 2004). The amount of N2O 

released is usually related to N application as organic or mineral fertilizers; a linear 

relationship between N2O emission and fertilizer input has been found (Bouwman 1990), 

and it is dependent on the form in which the N fertilizers are used, the location (i.e., soil 

type and climatic conditions) and the cultivated crops present (Corre et al. 1995; 

MacKenzie et al. 1998; Nagano et al. 2012). 

There has been a much stronger focus on N2O emission from soil. However 

there is another gas from the soil which contributes to pollution of atmosphere, namely 

nitric oxide (NO). Even though NO indirectly contributes to global warming, NO works 

to the formation of tropospheric ozone, and the formation of acid rain (McTaggart et al. 

2002). Generally, N2O and NO were emitted from all soils by the microbial process of 

nitrification and denitrification (Bouwman 1990; Granli and Bockman 1994; Smith et al. 

1997: Pilegaard 2013) by cause of N fertilizer application by increasing available N in 
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the soil. Microbial activity and chemical reactions influence the production and 

consumption of NO in soil. Nitrifiers and denitrifier are two most significant of 

micro-organism involved in those processes (Pilegaard 2013).  

The net of chemical reaction of nitrification is: 

 

While, the net of chemical reaction of denitrification is: 

 

The N gases diffuse through the soil pore system and before escaping from the soil to 

the atmosphere, NO in particular rapidly may be taken up by plants or consumed by 

microorganisms when the soil water content increased (Firestone and Davidson 1989). 

Additionally, Bouwman (1998) showed a model of correlations between 

water-filled pore space (WFPS) and production of N gases in Fig. 1.9. Generally, both 

NO and N2O are produced by same processes, however in opposite to N2O, production 

of NO in soils assumes to be nitrification rather than denitrification (Conrad 2002). 
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Figure 1.9 Correlation between water-filled pore space (%) and net flux of nitrogen 

gases (Bouwman 1998). 

Conforming to the model, at 30 – 60% WFPS when nitrification is most active, 

the highest NO fluxes are predicted. The highest N2O fluxes are expected at 50 – 80% 

to 60 – 90% WFPS (depending on the soil properties) when denitrification dominates. 

And at above 80% WFPS when oxygen becomes so limited that N2O is consumed by 

denitrification and N2 becomes the main end product (Bouwman 1998; Pillegard 2013). 

In the agriculture land, topography affects the movement of surface and 

sub-surface water (Hairston and Grigal 1994; Hirobe et al. 1998). Topography has been 

demonstrated large temporal and spatial variability factor of soil processes which 

influence the accurate estimation and prediction of the N2O and CO2 gases exchange 

(Brito et al. 2009; Werner et al. 2007a). Effect of topography on N2O and CO2 gas 

emissions reported not only in temperate ecosystems but also in tropical areas (Fang et 
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al. 2009). A significant amount of N2O emissions originates from agricultural soil as 

direct emission and from aquatic systems as indirect emission (Mosier et al. 1998). 

Indirect N2O emissions are estimated from N leaching in agro-ecosystems. 

 

1.3.2 Nitrogen fertilizers affect yield 

The oil palm is a heavy feeder and requires quite large quantities of fertilizers 

especially with N fertilizer to produce good yield (Comte et al. 2012) and optimum 

economic return (Ahmad 2000). Fertilization is one factor as most contributors which 

accounting for 29% of the yield increment. Requirements of N are up to 1.2 kg N per 

palm per year has been recorded (Kwan 1998). It is reported that applications of 

nitrogen fertilizer and Fresh Fruit Bunch (FFB) production of oil palm on mineral soils 

have a linear correlation. FFB production increased with increasing amount of N 

fertilizer rate (Khasanah et al. 2012). Approximately 18.8 t ha
-1 

yr
-1

 FFB productions 

were produced from the application of 141 kg N ha
-1

 yr
-1

 of N fertilizer application. N 

rates should be higher where planting density are low (112 – 128 palm ha
-1

) and usually 

lower when planting density are high (138 – 148 palm ha
-1

) (Von Uexkull and Fairhurst 

1991). FFB yields are attained peak yield earlier at between 8 and 10 years after 

planting. However, FFB yield will usually decline 16 year after planting, due to 
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increasing difficulty in harvesting and need to maintain number of fronds for better 

harvesting efficiency (Goh and Teo 1997). Any difference in FFB yield responses are 

depends on climate, soil condition, fertilization, uptake and demand of nutrient. Nutrient 

uptake rate is generally influenced by root length, soil nutrient concentration and soil 

water content, and nutrient demand is dominated by oil palm growth and production 

(Tinker and Nye 2000). Therefore, it is necessary to ensure that the oil palm is planted 

on suitable land and keep maintain on fertilizer management to gain high oil palm yield.  

 

1.3.3 Nitrogen fertilizer types 

N is important plant nutrient in biochemical process and affects very important 

physiological process such as photosynthesis which in turn affects growth and yield of 

palm. Oil palm requires four macronutrients from fertilizer such as nitrogen (N), 

phosphorus (P), potassium (K), and magnesium (Mg). N fertilizers namely ammonium 

nitrate (26% N), ammonium sulphate (21% N), ammonium chloride (25% N), urea 

(46% N), blended NPK, NP and PK are commonly used as a form of conventional 

fertilizer. While rock phosphates (27-34% P2O5), muriate of potash (MOP, 62% K2O), 

for kieserite or magnesium sulfate (17% Mg; 23% S), sodium borate are also used (FAO 

2005; Gerendas and Heng 2010). Currently, urea and urea based fertilizers mostly used 
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for oil palm to its high N content and low price (Zakaria and Tarmizi 2007). However, 

conventional N fertilizer is easily be released and lost during its biochemical 

transformation in the soil, water and atmospheric system. Tremendous loss of N from 

conventional fertilizer decreased yield and brought negative impact on the environment 

by leaching, volatilization and nitrous oxide emissions. 

Considering the problem of conventional N fertilizer, Shoji and Gandeza 

(1992) reported the practical application to increase the efficiency of fertilizer by 

introducing the concept of controlled release fertilizer. One type of controlled release 

fertilizer is coated urea, Meister (41-42% N). Meister is used as raw materials of 

blended fertilizer, since it is a straight fertilizer containing only nitrogen. It is mixed 

with phosphate, potassium, microelement, ammonium fertilizer granules (Sakamoto 

2012). Coated fertilizer is required to avoid N loss through leaching, volatilization, and 

denitrification. Coated fertilizer inhibits the N loss and serve to release N in a mode that 

is compatible with the metabolic requirements of plants. Coated fertilizer is basically 

determined by blending water permeable and water impermeable resins and surfactants. 

The release rate is primarily governed by soil temperature and is hardly affected by 

other soil conditions. Application of coated fertilizer in agriculture is great because of 
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such advantages as labor saving, increased nutrient efficiency, improved yield, and 

reduced negative environmental effects (Trenkel 1997).  

N fertilizer additive which has potentially effective for N loss and reducing of 

N2O emissions is nitrification inhibitors. Nitrification inhibitors are chemicals that slow 

down or delay the nitirification process, thereby decreasing the possibility the large 

losses of nitrate will occur before the fertilizer nitrogen is taken up by the plants 

(Nelson and Huber 2001). Nitrification inhibitors have used in the field to improve the 

efficiency of fertilizers and to reduce both nitrate leaching and denitrification by 

maintaining the N in the soil as NH4
+
. Dicyandiamide (DCD) act as a nitrification 

inhibitor by inhibing the first stage of the nitrification process, the oxidation of NH4
+
 to 

NO2
-
, and rendering bacterial enzymes ineffective. Therefore DCD can regarded as a 

slow release N fertilizer (containing about 65% N) (Di and Cameron 2006; Jumadi 

2008b).  

The development of innovative technologies plays an important priming effect 

of the extensive fertilizers use for agriculture. The potential benefit from any kind of 

fertilizers application depends on a number of site-specific, such as soil type, climate, 

cultural practices, and N management program.  
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1.4 Objective of studies 

Global demand for palm oil is expected to increase and the expansion of oil 

palm plantations raises environmental concern. Assessments to develop alternatives 

relating to soil, fertilizers and topography are necessary to improve high value of oil 

palm more environmentally compatible (Fig. 1.10). Therefore, objectives of studies as 

below: 

1. To determine effect of soil types and N fertilizers on emissions of greenhouse gases, 

N2O and CO2 under tropic oil palm. 

2. To determine effect of topography to control spatial variation on N2O and CO2 

emission and to assess dissolved N2O concentration as a source of indirect emission 

under tropic oil palm. 

3. To determine effect of conventional and coated fertilizers on fresh fruit bunch (FFB) 

yield in different soil types under tropic oil palm. 
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Figure 1.10 Framework of studies showing effect of soil, fertilizer and topography on  

N2O, CO2, and yield of oil palm.  
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Chapter 2 

Effect of soil types and nitrogen fertilizer on nitrous oxide and carbon dioxide 

emissions in oil palm plantations 

 

2.1 Abstract 

Oil palm (Elaeis guineensis Jacq.) production in Indonesia and Malaysia is 

currently the focus of concern due to its potential impact on the environment via 

greenhouse gas emissions. Oil palm plantations have been reported to release large 

quantities of nitrous oxide (N2O) into the atmosphere, which is most likely linked to 

nitrogen (N) fertilizer use. However, there are still limited studies comparing effects of 

the type of soil and N fertilizer on N2O and carbon dioxide (CO2) emissions. This study 

aimed to evaluate the effects of soil types and N fertilizer on N2O and CO2 emissions in 

oil palm plantations. N2O and CO2 emissions were measured for 15–16 months from 

2010–2012 in Tunggal sandy loam soil, Indonesia, and in Simunjan sandy soil and 

Tatau peat soil, Malaysia. Within each site, treatments with coated fertilizer and 

conventional fertilizer, and unfertilized with and without tillage, were established. N2O 

and CO2 fluxes showed high variabilities with seasons, types of soil and fertilizer  

treatments. The mean of the N2O fluxes from each treatment in the Simunjan sandy soil 
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was the lowest among the three soils, ranging from 0.80 to 3.81 and 1.63 to 5.34 μg N 

m
−2

 h
−1

 in the wet and dry seasons, respectively. The mean of the N2O fluxes from each 

treatment in the Tunggal sandy loam soil ranged from 27.4 to 89.7 and 6.27 to 19.1 μg 

N m
−2

 h
−1

 in the wet and dry seasons, respectively. The mean of the N2O fluxes was 

found to be the highest among the three soils in each treatment of the Tatau peat soil, 

ranging from 131 to 523 and 66.1 to 606 μg N m
−2

 h
−1

 in the wet and dry seasons, 

respectively. The N application rate of coated fertilizer was about half that of 

conventional fertilizer and was applied as deep placement. In the Tunggal soil, coated 

fertilizer reduced N2O emissions by 31 and 48% in wet and dry seasons, respectively, 

compared to the conventional fertilizer, and was similar to unfertilized treatment. 

However, N2O emissions increased in Simunjan and Tatau soils during dry seasons. 

There was no significant difference between treatments. These results show that N2O 

and CO2 fluxes in the tropical oil palm plantations were significantly affected by the 

type of soil, but not always by fertilizer treatments. 

Key words: N fertilizer, N2O and CO2 fluxes, sandy loam, sandy, peat soil. 
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2.2 Introduction  

Carbon dioxide (CO2) and nitrous oxide (N2O) account for 76 and 6% of the 

total anthropogenic greenhouse gas (GHG) emissions, respectively, at different values 

of global warming potentials (Rogner et al. 2007; IPCC 2014). Based on limited study, 

the largest anthropogenic source N2O emissions was from agriculture which accounts 

for 67%. Agriculture contributed direct and indirect emissions. Fertilizer and livestock 

manure as direct emissions contributed 42%, and runoff and leaching of fertilizer as 

indirect emissions contributed 25% (IPCC 2007). However, agricultural soils besides as 

a source, also as a sink for carbon and nitrogen (N) gases (Bouwman et al. 1995).  

Oil palm plantations have been reported to release large quantities of N2O into the 

atmosphere, which is most likely linked to N fertilizer use. When examining the GHG 

emissions among land uses in Jambi, Sumatra Island, Indonesia, Murdiyarso et al. 

(2002) found that oil palm plantations released large quantities of N2O into the 

atmosphere. N fertilizer, by increasing N availability, plays a significant role in soil 

carbon sequestration by increasing crop biomass and by influencing the microbial 

decomposition of crop residue (Green et al. 1995; Lal 2004). The emission factor (EF, 

i.e., the ratio of N2O-N emission to input of N fertilizer) is often estimated using the 

default IPCC value as 1% for mineral soil, but 16% for tropical organic soil (peat soils) 
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(IPCC 2006). However, there are large variations in EF due to differences in 

environment, crops and management.  

Although applications of N fertilizer consistently increase crop biomass, its effect 

on soil carbon content varies with the type of soil (Alvarez 2005), which affects the flux 

of CO2 into the atmosphere. Soils in tropical ecosystems emit far more N2O than soils in 

other terrestrial ecosystems (Sanhueza et al. 1990). Because of the variability in soil 

types and soil moisture, some tropical soils emit more N2O than others. Puerto Rican 

Vertisol has been reported to have an EF of approximately 4%, which is five times what 

is reported for unfertilized fields (Mosier and Delgado 1997). Studies on tropical peat 

soils have established that emissions of N2O are related to both season and land use 

changes (Hadi et al. 2000; Inubushi et al. 2003). However, studies that compare the 

effect of soil types with N fertilizer, in relation to N2O and CO2 emission rates, are still 

limited. Coated fertilizer is one of fertilizer forms that have been reported to reduce N2O 

emission rate by effectively controlling the release of NH4
+
, which caused a prolonged 

production period of NO3
–
 in Japanese Andosol (Hou et al. 2000; Amkha et al. 2009). 

In imperfectly drained Gleysol, N release from coated fertilizer matches with plant 

demand and N use efficiency increase, and the resulting low NO3
–
 concentration would 

be expected to limit denitrification, providing an explanation for the low N2O fluxes 



Chapter 2 

25 

 

(Akiyama et al. 2009). Coated fertilizer releases an adequate amount of N to meet the 

crop’s N requirement at various growth stages and enhance the N uptake by deep-side 

placement in clayey and sandy paddy soil (Acquaye and Inubushi 2004). 

In this study, over a period of more than a year, the emissions of the greenhouse 

gases N2O and CO2 evaluated from oil palm plantation fields in Indonesia and Malaysia, 

across three types of soil (sandy loam, sandy and peat soil) in response to treatments of 

N fertilizer application. 

 

2.3 Materials and Methods  

2.3.1 Site descriptions and treatments 

Study sites were located in oil palm plantation areas on tropical land, with one 

site in Indonesia and two sites in Malaysia (Fig. 2.1). The first site was located in 

Tunggal Plantation, Riau Province, Indonesia (S00°20.731’, E102°17.617’) on sandy 

loam soil classified as Ultisols [according to the United States Department of 

Agriculture (USDA) Soil Taxonomy]. The Tunggal Plantation site has a sloping 

topography with an annual rainfall of 1387 mm. The second site was located in 

Simunjan Plantation, Sarawak, Malaysia (N01°03.958’, E110°51.798’) on sandy soil, 

which was also classified as Ultisols. The Simunjan Plantation site is characterized by 
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sloping topography with an annual rainfall of 4095 mm. The third site was located in 

Tatau Plantation, Sarawak, Malaysia (N02°57.924’, E112°45.851’) on peat soil, 

classified as Histosols. The Tatau Plantation site is characterized with a flat topography, 

located along the coast, with an annual rainfall of 2225 mm. Three replications of the 

following four experimental treatments were conducted:  

Treatment B: no nitrogen fertilizer and no tillage.  

Treatment B2: no nitrogen fertilizer, with tillage only in the soil (0–15 cm). 

Treatment C: conventional fertilizer (non-coated) surface application on four spots 

approximately 140 cm away from palm trees, with no tillage.  

Treatment M: coated fertilizer in granular form was applied by the deep placemen 

method: namely, after digging soil to 0–15 cm depth at four different 

spots, approximately 140 cm away from palm trees, fertilizer was 

incorporated and covered with soil.  

Except for B and B2 treatments, the annual rates (kg N ha
−1

) of application for the 

conventional fertilizer were 151 as NPK (Nitrogen-Phosphorous-Potassium) (16-4-25), 

107 in the first year and 121 in the second year as NK1 (1:1 mixture of ammonium 

sulphate and MOP (Muriate of Potash)), and 69 as urea in Tunggal, Simunjan and Tatau, 

respectively. The rate of conventional fertilizer application followed each plantation’s 
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guidelines. It was considered that the coated fertilizers are more efficient due to a lower 

loss rate of N (Shoji and Kanno 1994). Hence, the rates of application for the coated 

fertilizer were about half the rate of the conventional fertilizers, namely 76, 62 and 46 

kg N ha
−1

 in Tunggal, Simunjan and Tatau, respectively. As indicated in Fig. 2.2–2.4, 

solid arrows and dashed arrows indicate conventional and coated fertilization times, 

respectively. In Tunggal, fertilizers were applied once each in the wet season and dry 

season for both conventional and coated fertilizer. In Simunjan, fertilizers were applied 

twice for conventional fertilizer and once for coated fertilizer in the first wet season, 

once for both conventional and coated fertilizer in the dry season, and once for both 

conventional and coated fertilizer in the second wet season. In Tatau, fertilizers were 

applied twice for conventional fertilizer and once for coated fertilizer in the first wet 

season, once for both conventional and coated fertilizer in the dry season, and once for 

coated fertilizer in the second wet season. 

Physicochemical analysis of the soil samples both undisturbed soil cores and 

composite soil samples were collected from the three replications from the 0–10 cm soil 

depth. The soil samples were analyzed for their physical and chemical properties. Prior 

to analysis, the soil samples were maintained at 4°C. The undisturbed soil cores were 

measured for soil volume using a three-phase meter (DIK-1130, Daiki Rika Kogyo Co. 
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Ltd). The core samples were weighed and oven dried at 105°C for 48 h. After drying, 

the core samples were reweighed to calculate soil moisture content, bulk density (BD) 

and water-filled pore space (WFPS). Soil particle size distribution was determined by 

the Bouyoucos hydrometer method (Kroetsch and Wang 2008). Soil samples were air 

dried and passed through a 2-mm sieve, and the sieved soil was extracted with 

potassium chloride (KCl) solution at a 1:2.5 soil-to-solution ratio. The resulting soil 

suspension was shaken for approximately 1 h before filtration through filter paper. The 

soil pH was measured with a glass electrode pH meter (D-52, Horiba Co., Ltd). Total 

carbon and nitrogen contents were determined using a Carbon and Nitrogen Analyzer 

(CN corder; MT-700 Yanaco Analytical Industry Co., Ltd). The inorganic N contents of 

NH4
+
 and NO3

–
 were determined by sieving fresh soil through a 2-mm sieve, extracting 

it in 1 M KCl, and using the nitroprusside method (Anderson and Ingram 1989) and 

hydrazine reduction method (Hayashi et al. 1997), respectively. To investigate the effect 

of soil water on N2O and CO2 productions, soil moisture was monitored and recorded 

using a Watermark and Sensor TR-0306 (equipped with a stainless steel protective tube) 

connected to a Thermo Recorder (TR-71Ui; T&D Corporation). The device measures 

the soil moisture tension (pF unit) to indicate soil moisture level. The lower the reading 

the higher soil moisture content, and conversely, the higher the reading the lower the 
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moisture content (Tan 1996). Soil temperature was measured and recorded using a 

thermo sensor (203AT; T&D Corporation) with a thermo recorder at 10 cm soil depth. 

Every 3 months, the recorded data were downloaded to a computer. The precipitation 

data were collected by oil palm plantation staff members using rain gauges located 

within the oil palm plantation areas. 

 

2.3.2 Measurement of N2O and CO2 fluxes 

Measurement of N2O and CO2 fluxes was conducted at 2-week intervals over a 

period of 15 months from December 2010 to February 2012 at Simunjan and Tatau 

Plantations and over a period of 16 months from March 2011 to June 2012 at Tunggal 

Plantation. Gas sampling was consistently conducted at mid-morning. N2O and CO2 

fluxes were determined by placing a 20.8 cm diameter and 14.2 cm height PVC pipe 

chamber driven to a depth of 5 cm into the soil at approximately 1 m distance from the 

palm tree’s trunk (Handayani et al. 2010) in the area under the shade of the palm tree 

canopy. The chamber was replicated at three different places at least 10 m apart at each 

treatment site, and included the fertilized spot. Gas samples were taken from each 

chamber, after stabilizing the chamber for 5 min, using a 30-mL gas syringe with tubes 

connecting to the chamber. Gas samples were collected at 0-, 10- and 20-min intervals 
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and were injected into glass vials that had been evacuated and closed tightly with a 

butyl rubber seals. The filled vials were transported to the laboratory, where N2O and 

CO2 fluxes were measured by a gas chromatograph (GC-14B, Shimadzu, Japan) 

equipped with an electron capture detector (ECD) and thermal conductivity detector 

(TCD), respectively. The emission factor (EF) was calculated using cumulative N2O 

fluxes to determine the percentage of N2O-N emitted for each fertilizer treatment 

(Dobbie and Smith 2003a; Jumadi et al. 2008). The emission factor (EF) was calculated 

using the following formula: 

EF (%) = (M-B2)/N x 100 or (C-B)/N x 100     (1)  

where M and C are the cumulative N2O fluxes emitted from coated fertilizer and 

conventional fertilizer treatment (kg N2O-N ha
−1

 period
−1

), respectively; B2 and B are 

the cumulative N2O fluxes (kg N2O-N ha
−1 

period
−1

) emitted from non-N fertilizer 

treatment with and without tillage, respectively. 

 

2.3.4 Statistical analysis 

The significance of the cumulative N2O and CO2 fluxes for each treatment and 

study site were analysed using a two-way analysis of variance (ANOVA) test. The 

relationship between N2O and CO2 emissions were analysed using linear regression. 
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Means of N2O and CO2 fluxes for each treatment and study site during wet and dry 

seasons were analysed using a three-way ANOVA test. Correlations between gas 

emission and soil physicochemical properties among the study sites were analysed using 

Pearson’s correlation. Statistical considerations were based on p < 0.05 and p < 0.001 

significance levels. Statistical analyses were conducted using IBM SPSS Statistics 21. 

 

2.4 Results  

2.4.1 Physicochemical soil properties of study sites 

The physicochemical properties of the three soil types were varied (Table 2.1). 

In Tunggal and Simunjan, both were mineral soils with different particle size 

distributions. Sand content was higher in Simunjan than in Tunggal, while clay and silt 

contents were higher in Tunggal than in Simunjan. Other soil parameters such as NO3
–
, 

NH4
+
, total N, total carbon and WFPS were higher in Tatau peat soil than the other two 

mineral soils. Soil pH and BD were lower in the Tatau peat soil than in the other two 

mineral soils. Soil N2O emission for Tunggal, Simunjan and Tatau are shown in Fig. 2.2, 

2.3 and 2.4, respectively. In Tunggal sandy loam soil, it was observed that there were 

high N2O fluxes (279–581 μg N m
−2

 h
−1

) during the wet season, especially after the first 

fertilization, and high precipitation, which gradually declined thereafter. The peak of 

N2O fluxes appeared again after a heavy precipitation in the second wet season (Fig. 
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2.2). In the Simunjan sandy soil, N2O fluxes were lower (up to 52.5 μg N m
−2

 h
−1

) than 

in the Tunggal sandy loam soil, but peaks were observed after heavy rains not only in 

the wet season, but also in the dry season (Fig. 2.3). N2O fluxes in the Tatau peat soil 

were higher and more variable (up to 1022 μg N m
−2

 h
−1

) than the fluxes in the two 

mineral soils during the study period, and only in treatment M, N2O fluxes were highest 

in the dry season, but the N2O fluxes in the other treatments were higher in the wet 

seasons (Fig. 2.4). 

During the study period, N2O fluxes varied across all study sites and treatments 

(Table 2.2). Across all the study sites, the mean of N2O fluxes in the Simunjan sandy 

soil was lowest, ranging from 0.80 to 3.81 and 1.63 to 5.34 μg N m
−2

 h
−1

 in the wet and 

dry seasons, respectively. The mean of N2O fluxes in the Tunggal sandy loam soil 

ranged from 27.4 to 89.7 and 6.27 to 19.1 μg N m
−2

 h
−1

 in the wet and dry seasons, 

respectively. The mean of N2O fluxes was highest in the Tatau peat soil among the three 

soils, ranging from 131 to 523 and 66.1 to 606 μg N m
−2

 h
−1

 in the wet and dry seasons, 

respectively. Coated fertilizer reduced N2O emission by 31 and 48% in wet and dry 

seasons, respectively, compared to conventional fertilizer, and almost equaled the 

unfertilized treatment only in the Tunggal soil, but increased in Simunjan and Tatau 

soils in dry season. Three-way ANOVA for each treatment and study site during wet 
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and dry seasons determined that there were statistically significant differences in means 

of N2O fluxes among the study sites (p = 0.000), sites and treatments (p = 0.038), 

treatments and seasons (p = 0.053) and combination factor of sites, treatments and 

seasons (p = 0.020) (Table 2.2). The cumulative N2O fluxes are summarized in Table 

2.3. Cumulative N2O fluxes ranged from 0.59 to 4.09, 0.11 to 0.42 and 11.1 to 42.7 kg 

N ha
−1 

period
−1

, in Tunggal sandy loam soil, Simunjan sandy soil and Tatau peat soil, 

respectively. Results indicated the highest cumulative N2O fluxes in the Tatau peat soil 

and the lowest cumulative N2O fluxes in Simunjan sandy soil. Two-way ANOVA 

analysis determined that there were statistically significant differences in cumulative 

N2O fluxes among the study sites (p = 0.000), though no significant difference was 

found in the treatments within each study site (p = 0.125) (Table 2.3). Among the three 

study sites, the N2O emission factors were significantly affected by sites (p = 0.000), 

fertilizer treatment, i.e., use of conventional and coated fertilizer (p = 0.038), and 

interaction of the sites and fertilizer treatments (p = 0.010) (Table 2.4). EF for the 

conventional and coated fertilizer applications showed significantly positive correlation 

with the soil parameters such as NO3
–
, NH4

+
, total N, total carbon and WFPS, and has a 

significantly negative correlation with the soil pH and BD (Table 2.5). 
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2.4.2 Soil CO2 emission 

CO2 fluxes are presented in Fig. 2.2, 2.3 and 2.4 for Tunggal, Simunjan and 

Tatau, respectively. During the study period, CO2 fluxes varied across all the study sites 

and treatments (Table 2.6). The mean of the CO2 fluxes in the Tunggal sandy loam soil 

ranged from 45.5 to 56.8 and 56.4 to 96.5 mg C m
−2

 h
−1

 in wet and dry seasons, 

respectively. The mean of the CO2 fluxes in the Simunjan sandy soil ranged from 71.1 

to 114 and 104 to 134 mg C m
−2

 h
−1

 in wet and dry seasons, respectively. The mean of 

the CO2 fluxes was found to be the highest in the Tatau peat soil, ranging from 89.8 to 

223 and 92.7 to 208 mg C m
−2

 h
−1

 in wet and dry seasons, respectively. Three-way 

ANOVA for each treatment and study site during wet and dry seasons determined that 

there were statistically significant differences in means of CO2 fluxes by effect of study 

sites only (p = 0.000) (Table 2.6). In Tatau peat soil, as the soil temperature decreased, 

the soil CO2 fluxes tended to increase. However, these CO2 fluxes included both soil 

and root respiration, but these values might be underestimated due to relatively long 

closure time, as 20 minutes. Cumulative CO2 fluxes ranged from 5302 to 7971, 7638 to 

11431 and 8797 to 16949 kg C ha
−1

 period
−1

, in Tunggal sandy loam soil, Simunjan 

sandy soil and Tatau peat soil, respectively (Table 2.7). Among the three study sites, the 

cumulative CO2 fluxes were the highest in Tatau peat soil and the lowest in Tunggal 
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sandy loam soil. For cumulative CO2 fluxes, there was a statistically significant 

difference among the study sites (p = 0.000) but no significant difference in the 

treatments at each study site (p = 0.064). 

 Soil N2O and CO2 fluxes showed significantly positive linear relationship and 

varied among the study sites (Fig. 2.5). Variability observed in N2O emission explained 

by 2.71%, 7.19%, and 38% soil CO2 emission in Tunggal sandy loam soil, Simunjan 

sandy soil, and Tatau peat soil, respectively.   

 

2.5 Discussion  

2.5.1 N2O fluxes and EF correlated with soil and fertilizer types  

In Tunggal sandy loam soil, the highest N2O fluxes were measured in the wet 

season, March 2011 (Fig. 2.2). High peaks of N2O flux were observed 1 week after the 

first fertilizer application in both conventional fertilizer and coated fertilizer treatments, 

and also during high precipitation and soil moisture content at the site. As reported by 

Clayton et al. (1994) and Webb et al. (2004), increased N2O fluxes after N fertilization 

are not unusual and often show a marked response to precipitation events. The results 

also showed that N2O fluxes increased after N fertilization, reached a peak, then 

decreased rapidly before levelling off after approximately 1 to 2 weeks. Subsequently, 
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N2O fluxes gradually decreased before sharply increasing again in December 2011 with 

both high precipitation and soil moisture. In Simunjan sandy soil, high N2O fluxes were 

shown twice in the wet season and one time in the dry season when precipitation was 

high (Fig. 2.3). Increased fluxes during these periods coincided with high precipitation 

events for 2–3 weeks in duration. Similar results were reported in Minnesota loamy 

sand in which irrigated potato fields fertilized with polymer-coated urea exhibiting 

increased fluxes in response to high precipitation events (Hyatt et al. 2010). Changes in 

the soil moisture content after the precipitation event presumably influenced soil 

porosity, consequently increasing the probability of denitrification and diffusion of N2O 

out of the soil (Inubushi et al. 1996). During the study period, there were negative N2O 

emissions that may be explained by a decrease in gas diffusivity, leading to increased 

microbial consumption of N2O and denitrification before emission (Arah et al. 1991). 

Although production rates of N2O are usually larger than consumption rates, stressed 

soils that are usually considered as net sources of atmospheric N2O can temporarily 

become a sink (Minami 1997; Inubushi et al. 2003). In Tatau peat soil, fluxes of N2O 

were higher than those in sandy loam and sandy soils. Although the pattern of N2O 

fluxes varied during the study period, the coated fertilizer application remained high 

throughout the study period (Fig. 2.4). N2O emissions were particularly high when 
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fertilizer was applied to wet peat soil. N2O emissions from fertilized tropical 

agricultural peat soils are high, sometimes even extremely high, especially under humid 

climate and organic carbon-rich soil conditions (Williams et al. 1999). The variation in 

N2O fluxes is generally relative to the rates of denitrification affected by moisture 

content and the quantities of NO3
–
, NH4

+
 and carbon substrates in soil (Clayton et al. 

1994; Couwenberg 2009). 

Effect of soil water toward the N2O emission explained by Schindlbacher et al. 

(2004), N2O emissions increased with decreasing water tension or increasing 

water-filled pore space (WFPS). Soil texture, total precipitation and water removal 

through soil drainage and evaporation is affected soil moisture which the most 

important factor controlling emissions of N2O and NO (Hatano and Sawamoto 1997; 

Akiyama et al. 2000). In Simunjan (4095 mm yr
-1

), the annual precipitation was higher 

than in Tunggal (1387 mm yr
-1

) , however soil texture in Simunjan is sandy soil with 

high infiltration, drainage, and subsequent high soil aeration caused lower N2O emission 

compared to sandy loam soil in Tunggal. It could be seen clearly as comparison in the 

Fig. 2.2 and Fig. 2.3 where the maximum precipitation at 50 mm, soil moisture tension 

showed as pF 0.5 and pF 2 in Tunggal and Simunjan, respectively. Thus, it explained 

that soil moisture content in Tunggal was higher than in Simunjan, since the lower value 
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of soil moisture tension means the higher soil moisture content, and conversely, the 

higher the value the lower the moisture content (Tan 1996). Moreover, the WFPS was 

higher in Tunggal than in Simunjan (Table 2.1), thus the N2O emission in Tunggal was 

higher compared to Simunjan. Soil water acts as transport medium for NO3
-
 and NH4

+
, 

and control oxygen transport to soil and affect N gases out from the soil (McTaggart et 

al. 2002) and by that it controls whether process of nitrification or denitrification 

dominate inside the soil (Pilegaard 2013). Under soil with better aeration such as sandy 

soil, the aerobic process of nitrification was feasible to be the main source of N2O 

emission, and therefore emission of NO may be more significant (Parton et al. 1988; 

Akiyama et al. 2000). After precipitation, the effect of soil texture in determining 

aeration and gas diffusion in soil was demonstrated important. Thus, soil water mainly 

regulating soil aeration condition as the significant factor for N2O emissions in the 

tropical soil (Davidson 1991; Werner et al. 2007b), whereas by cause of complexity of 

interacting environmental control, it is difficult to capture the only one factor which the 

most predictive value affecting the N2O emissions (Andersson et al. 2003).  

In this study, patterns of N2O emissions were affected by types of soil, 

precipitation and soil moisture. Considering types of soil, peat soil is known as organic 

soil has greater at least 12% organic contents on dry weight basis and more than 50 cm 



Chapter 2 

39 

 

in depth (Inubushi 2015) compare to the mineral soil. The peat soil form where 

prolonged saturation with water results in a deficiency of oxygen, so that soil 

environment became anaerobic. In turn, decomposition of organic matter such as plant 

debris becomes slow, as the results promote the accumulation high amount of organic 

matter in the soil, sometime 50% in volume (Inubushi 2015). Peat soil such waterlogged 

areas are more generally present in wetlands and 10% of the global peatlands occurs in 

tropical lowlands (Hillel and Rosenzweig 2011). Soil organic matter is also a major 

source of N. Soils contain approximately 907 kg N in organic forms for each percent of 

organic matter. Decomposition of this portion of organic matter proceeds at a rather 

slow rate and releases about 22.4 kg N ha
-1 

yr
-1

 for each percent of organic matter. Then 

organic N that is present in soil organic matter and crop residues is converted to 

inorganic N through the process of mineralization (Lamb et al. 2014).  

Freshly wetted soils have the high carbon and N availability that is linked to 

high denitrification rates (Peterjohn and Schlesinger 1991). The occurrence of rainfall 

events stimulates soil N mineralization (Jantalia et al. 2008). Tropical peat land could 

be a potential source of GHG emissions because peat soil contains large amounts of soil 

carbon and N (Ismunadji and Soepardi 1984; Melling et al. 2005). However, 

management practices via physical compaction could increase BD, resulting in higher 
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capillary rise and high moisture content that could decrease the soil CO2 flux (Melling et 

al. 2005). High N2O fluxes in peat soils are further correlated significantly with 

denitrification activity where a high content of NO3
–
, NH4

+
 and WFPS are present in the 

soil (Ismunadji and Soepardi 1984). Large amounts of NH4
+ 

and NO3
–
 accumulate when 

organic matter in peat soil undergoes either aerobic or anaerobic decomposition 

(Ismunadji and Soepardi 1984). This could pose a great threat to the environment by 

emitting N2O. Soil pH has a marked effect on the products of denitrification. 

Denitrification rates would be slower under the strong acid conditions in Tatau peat than 

under the slightly less acid conditions in the other two soils. This is commonly 

attributed to the sensitivity of N2O reductase to proton activity, and it is also likely that 

all denitrifying enzymes are susceptible at low soil pH and produce N2O from other 

intermediate products (Nägele and Conrad 1990). 

In this study, coated fertilizer reduced N2O emission in Tunggal sandy loam 

soil. However, coated fertilizer exhibited higher N2O emission compared to 

conventional fertilizer in Simunjan sandy soil and Tatau peat soil. Delgado and Mosier 

(1996) observed similar results in which N2O emissions from polyolefin-coated urea 

remained higher than non-coated urea through the growing season in a barley (Hordeum 

vulgare L.) field on sandy soil. Coated N fertilizer exhibits an intermediate rate of 
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emissions that continue for a relatively long period. The effectiveness of coated 

fertilizers for N2O emission mitigation depends on increases in the nitrification derived 

N2O emissions after fertilizer application and on N substrate availability in Andosol and 

Fluvisol (Uchida et al. 2013). Application of conventional fertilizer often causes a sharp 

peak immediately after applying the fertilizer, while coated urea shows a broader peak 

(Akiyama et al. 2000). Additional results show that the effectiveness of coated fertilizer 

for N2O mitigation was dependent on soil and land-use type, where coated fertilizer was 

significantly effective for imperfectly drained Gleysol grassland but not effective for 

well-drained Andosol upland fields (Akiyama et al. 2009).  

Impact of fertilizer designed to reduce N2O emission seems are inconsistent 

because of interact with weather factor which directly affect the process to lead to 

gaseous N losses and NO3
-
 leaching and plant uptake factor which indirectly affect these 

N process in the soil (Ogle et al. 2014). Concerning with effectiveness of coated 

fertilizer to decrease N2O emission on sandy loam soil than peat soil, it may be related 

with plant uptake by oil palm plantation which is affected by ages of oil palm. Coated 

fertilizer release N through coating and it has potential to reduce N2O emission if the 

release of N from coated fertilizer is well synchronized with plant uptake (Shaviv 2001). 

However, when N release from coated fertilizer is not match with ability plant uptake, 
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the efficiency coated fertilizer can be decline. It reported by Akhir et al. (2015) that N2O 

emission influenced by ages of palm plantation. It found that N2O emission was highest 

for oil palm aged < 5 years (immature) compared to mature palm in aged 5 – 20 and 21 

– 30 years in Kempas, Malaysia. Furthermore, Basuki et al. (2014) explained that by 

increasing of oil palm age from > 3 to 16 years old, it decreasing gradually the total N 

content. It is indicated that by increasing the age of oil palm is related to greater N 

absorption by plant and consequently will decrease total N in the soil. Oil palm 

plantation as perennial crop, usually in mature palms are able to take complete nutrient 

for growth because of its complete root system compared to the young palm. As 

explained by Corley and Tinker (2003) stated that on the structure of oil palm roots in 

relation to nutrient acquisition, thus less of nutrient will be taken up by the roots when 

fertilizer applied at condition where the amount of roots at its minimum (Kheong et al. 

2010). Therefore, maximum uptake of N fertilizer can occur at mature palms compared 

to immature palms. In mature palm has systematic and well established palm canopy 

cover and ground cover than can also reduce the nutrient leaching loss (Akhir et al. 

2015). 

In Tunggal sandy loam soil, oil palm age was 7 years old (mature) while in 

Tatau peat soil, age of oil palm was 4 years old (immature). It could be explained that 
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possible reason coated fertilizer in Tunggal sandy loam soil was more effective because 

it have high plant uptake, so when the N release from coated fertilizer the root can be 

absorb N from the soil sufficiently due to complete root system. Hence, it will increase 

suitability of N for plant, and the amount of N2O from nitrification will reduced. In 

contrast, in Tatau peat soil, one of the most difficult problems to counteract is the poor 

root anchorage provided by the soft peat (Dolmat et al. 1982). It may be difficult to 

reduce N2O emission by coated fertilizer, when N uptake by plant occurs slower due to 

incomplete root system to absorb N from the soil inadequately. Consequently, on peat 

soil, denitrification is considered the main path of N2O production with high 

decomposition of peat. High level of organic matter and application of N fertilizer on 

peat soil may induce higher N2O emission (Bouwman 1996; Bremner 1997). 

The emission factors are the highest for Tatau peat soil compared with Tunggal 

sandy loam and Simunjan sandy soil. These results are similar to the reported values in 

the Netherlands which indicated that the EF of synthetic fertilizer with nitrate was the 

highest in peat soil (3.68%), followed by clay soil (1.38%) and sandy soil (0.57%) 

(Kuikman et al. 2006). In well-drained Alluvial soil in Indonesia, the EF of urea and the 

controlled release factor (CRF-LP30) were 1.61% and 1.42%, respectively (Jumadi et al. 
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2008b). Therefore, these EF values are mostly dependent on management practices, 

fertilizer types, climates and soil types.  

 

2.5.2 CO2 fluxes correlated with soil types  

Soil CO2 flux is generally positively correlated with soil temperature (Lloyd 

and Taylor 1994; Davidson et al. 1998; Nagano et al. 2012) and the rates of soil CO2 

flux vary by ecosystem (Raich and Schlesinger 1992; Melling et al. 2005). In this study, 

the soil CO2 fluxes were not directly influenced by soil temperature. In the Tatau peat 

soil, as the soil temperature decreased, the soil CO2 fluxes tended to increase. This may 

be confounded with the increase in oil palm growth, where higher root biomass would 

result in higher root respiration. The root biomass could have also stimulated the soil 

microbial activity, which enhanced the soil CO2 fluxes. In the other two mineral soils, 

the CO2 fluxes tended to be higher in the Simunjan sandy soil than in the Tunggal sandy 

loam soil. In the Tatau peat soil, CO2 fluxes were the highest among three soils 

examined which may be due to higher soil carbon content. The relationship between 

quantity of soil carbon, soil CO2 flux and litter respiration remains a serious concern 

(Gu et al. 2004). The rate of CO2 transmission from soils to the atmosphere is 

determined by microbial respiration, root respiration and bulk soil respiration and is 
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predominately regulated by soil microorganisms found within the soil organic matter 

(Raich and Schlesinger 1992). 

 In this study the N2O and CO2 correlations revealed the linear regression varied 

depending on the study site. Linear regression between N2O and CO2 found higher in 

Tatau peat soil than in Tunggal sandy loam and in Simunjan sandy soil (Fig. 2.5). The 

variation may reflect the differences in soil carbon and nitrogen composition and the 

effect on climate and soil environmental conditions (Xing et al. 2002). Garcia-Montiel 

et al. (2002) explained the positive correlations between N2O and CO2 as the result of 

O2 availability in soil microsites. A higher soil CO2 emission rate indicates greater 

decomposition, which consumes oxygen, and creates the anaerobic conditions that are 

favourable for N2O production via denitrification. The linear relationship between N2O 

and CO2 fluxes was also found across several types of ecosystems, such as rice paddy, 

dry cropland, bogs and fens, and subtropical and tropical moist forest (Xu et al. 2008). 
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2.6 Conclusion   

The effect of soil types on N2O and CO2 fluxes in the studied tropical oil palm 

plantation was highly significant, but no consistent tendency was observed using 

different N fertilizers. N2O and CO2 fluxes showed high variation with soil types, N 

fertilizer and seasons. N2O fluxes were the highest in the Tatau peat soil, followed by 

the Tunggal sandy loam soil and the Simunjan sandy soil, respectively. There was a 

significantly positive linear correlation between fluxes of N2O and CO2. Applications of 

fertilizer have to be considered with the suitability of the soil type to mitigate the gas 

emission to the atmosphere. Further detailed study is needed to assess a more accurate 

interpretation of the mechanism of N2O and CO2 fluxes in oil palm plantations. 
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Table 2.1 Descriptions and physicochemical characteristics of soils at the oil palm 

plantation study sites 

 

Description Study Sites 

 Tunggal Simunjan Tatau 

Soil type 

 

Ultisols Ultisols Histosols (Peat) 

 

Texture Sandy loam 

(62% sand, 5% 

clay, 33% silt) 

Sandy 

(97% sand,   

0.03% clay, 

2.97% silt) 

-  

Total Area (ha) 14,000  7,900  9,000  

Studied Area (ha) 93.6  4.4  3.52  

Planting Density (palm ha
-1

) 135  136  150  

Age of palm trees 7 yr. (mature) 9 yr. (mature) 4 yr. (immature) 

Pre-oil palm vegetation Rubber 
plantation 

Primary and 
secondary forest 

Acacia garden 

NO3
-
 (mg N kg

-1
ds) 16.2±7.61  1.41±0.93  77.8±18.6  

NH4
+
 (mg N kg

-1
ds) 31.9±8.05  16.2±12.1  122.8±22.1  

Total N (g kg
-1

ds) 2.17±0.31  1.70±0.26  17.2±3.90  

Total C (g kg
-1

ds) 23.4±4.71  18.5±0.56  467±71.0  

pH (KCl) 4.67±0.10  4.77±0.06  3.34±0.08  

Bulk Density (g cm
-3

) 1.1±0.1  1.5±0.0  0.2±0.0  

WFPS (%) 75.9±3.0  74.4±1.2  83.5±4.0  

 

yr., year, means ± standard deviation, n = 3. nitrate (NO3
–
); ammonium (NH4

+
); total 

nitrogen (Total N); total carbon (Total C); bulk density (BD); water-filled pore space 

(WFPS). Rubber (Hevea brasiliensis); Acacia (Acacia mangium). Soil sampling was 

conducted in August 2011, before fertilizer application on fine days with no rain during 

the dry season. 
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Table 2.2 Nitrous oxide (N2O) fluxes for the three study sites during wet and dry 

seasons 

 

Study sites  Treatments 
N2O flux (μg N m

-2
 h

-1
) 

Wet season Dry season 

Tunggal 

B  33.7±49.6 
 

6.27±0.44 

B2 27.4±20.3 
 

19.1±4.52 

C 89.7±14.1 
 

17.3±1.45 

M 28.2±36.0 
 

8.30±5.87 

       

Simunjan 

B 3.81±1.42 
 

2.40±4.79 

B2 0.80±3.65 
 

1.63±1.12 

C 1.60±1.57 
 

3.20±2.51 

M 2.18±2.73 
 

5.34±7.03 

       

Tatau 

B  131±77.2 
 

66.1±49.9 

B2 523±441 
 

93.7±80.6 

C 249±77.3 
 

185±15.5 

M 272±151 
 

606±421 

       
ANOVA df F value p value 

Sites 2 28.925   0.000 

Treatments 3 2.282 
 

0.091 

Seasons 1 0.876 
 

0.354 

Sites x treatments 6 2.449 
 

0.038 

Sites x seasons 2 0.303 
 

0.740 

Treatments x seasons 3 2.755 
 

0.053 

Sites x treatments x seasons  6 2.811   0.020 

 

Data are presented as the means ± standard deviation (n = 3). B, no fertilizer  with no 

tillage; B2, no fertilizer with tillage; C, conventional fertilizer; M, coated fertilizer; N, 

nitrogen; ANOVA, analysis of variance; df, degrees of freedom. Wet season: from 

October to March; dry season: from April to September. 
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Table 2.3 Cumulative nitrous oxide (N2O) fluxes for the three study sites 

 

Study Sites 
Cumulative N2O fluxes (kg N ha

-1
 period

-1
) 

B B2 C M 

Tunggal 0.59±0.11 2.14±0.64 4.09±0.84 1.99±2.16 

Simunjan 0.25±0.14 0.11±0.08 0.18±0.18 0.42±0.30 

Tatau 11.1±7.02 22.5±18.9 24.2±6.58 42.7±24.6 
     

ANOVA df F value p value  

Sites 2 25.937 0.000  

Treatments 3 2.115 0.125  

Sites x treatments 6 1.881 0.126  

 

Data are presented as the means ± standard deviation (n = 3). B, no fertilizer with no 

tillage; B2, no fertilizer with tillage; C, conventional fertilizer; M, coated fertilizer; N, 

nitrogen; ANOVA, analysis of variance; df, degrees of freedom. 
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Table 2.4 Emission factors (EF) calculated for the three study Sites 

 

Study Sites 
EF (%) 

C  M  

Tunggal 2.29±0.33 -0.33±0.35 

Simunjan -0.26±0.08 0.49±0.40 

Tatau 19.13±2.46 43.8±16.7 

      
ANOVA df  F value   p value   

Sites  2 40.012 
 

0.000 
 

Treatments  1 5.415 
 

0.038 
 

Sites x treatments 2 6.931   0.010   

 

Data are presented as the means ± standard deviation (n = 3). C, conventional fertilizer; 

M, coated fertilizer; ANOVA, analysis of variance; df, degrees of freedom. 
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Table 2.5 Pearson correlation of nitrous oxide (N2O) emission factors (EF) between the 

conventional fertilizer and the coated fertilizer among soil parameters for the three study 

sites (n = 9) 

 

 N2O EF (%) 

Soil Parameters C M 

NO3
-
 0.966

**
  0.794

*
  

NH4
+
 0.960

**
  0.832

**
  

Total N 0.951
**

  0.850
**

  

Total C 0.954
**

  0.939
**

  

pH -0.979
**

  -0.943
**

  

BD -0.977
**

  -0.891
**

  

WFPS 0.834
**

  0.729
*
  

 

EF, emission factors; C, conventional fertilizer; M, coated fertilizer; ** significant at 

0.001; * significant at 0.05. nitrate (NO3
–
); ammonium (NH4

+
); total nitrogen (Total N); 

total carbon (Total C); bulk density (BD); water-filled pore space (WFPS). 

 

  



Chapter 2 

52 

 

Table 2.6 Carbon dioxide (CO2) fluxes for the three study sites during the wet and dry 

seasons 

 

Study sites  Treatments 
CO2 flux (mg C m

-2
 h

-1
) 

Wet season Dry season 

Tunggal 

B  45.5±0.93 
 

56.4±2.78 

B2 50.6±11.3 
 

61.3±6.05 

C 49.0±18.9 
 

95.4±10.9 

M 56.8±15.3 
 

96.5±15.1 

       

Simunjan 

B 72.1±10.9 
 

104±8.55 

B2 71.1±3.66 
 

134±34.5 

C 101±14.0 
 

126±10.2 

M 114±7.93 
 

105±46.5 

       

Tatau 

B  89.8±43.5 
 

92.7±23.1 

B2 223±93.2 
 

129±31.7 

C 158±45.0 
 

153±75.7 

M 153±49.9 
 

208±107 

       
ANOVA df F value   p value 

Sites 2 34.525 
  

0.000 

Treatments 3 4.287 
  

0.059 

Seasons 1 1.576 
  

0.215 

Sites x treatments 6 1.608 
  

0.165 

Sites x seasons 2 2.179 
  

0.124 

Treatments x seasons 3 1.051 
  

0.379 

Sites x treatments x seasons  6 1.450     0.216 

 

Data are presented as the means ± standard deviation (n = 3). B, no fertilizer  with no 

tillage; B2, no fertilizer with tillage; C, conventional fertilizer; M, coated fertilizer; 

ANOVA, analysis of variance; df, degrees of freedom. Wet season: from October to 

March; dry season: from April to September. 



Chapter 2 

53 

 

Table 2.7 Cumulative carbon dioxide (CO2) fluxes for the three study sites 

 

Study sites 
Cumulative CO2 fluxes (kg C ha

-1
 period

-1
) 

B B2 C M 

Tunggal 5302±420 5655±634 6888±112 7971±172 

Simunjan 9002±467 7638±139 10803±165 11431±371 

Tatau 8797±364 13588±407 15328±608 16950±690 
     

ANOVA df F value p value  

Sites 2 13.62 0.000  

Treatments 3 3.094 0.064  

Sites x treatments 6 0.657 0.684  

 

Data are presented as the means ± standard deviation (n = 3). B, no fertilizer with no 

tillage; B2, no fertilizer with tillage; C, conventional fertilizer; M, coated fertilizer; 

ANOVA, analysis of variance; df, degrees of freedom. 
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Figure 2.1 Map of study sites in Indonesia and Malaysia. 
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Figure 2.2 Precipitation, soil moisture tension, soil temperature, nitrous oxide (N2O) 

flux and carbon dioxide (CO2) flux in Tunggal sandy loam soil. Vertical bars indicate ± 

standard deviation. Treatment B: no nitrogen (N) fertilizer and no tillage; C: 

conventional fertilizer; B2: no N fertilizer with tillage; M: coated fertilizer. Solid arrows 

and dashed arrows indicate conventional and coated fertilization timing, respectively. 

Vertical dashed lines indicate transition period for dry and wet seasons. 
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Figure 2.3 Precipitation, soil moisture tension, soil temperature, N2O flux, and CO2 flux, 

in Simunjan sandy soil. See details for other remarks in Fig. 2.2.  
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Figure 2.4 Precipitation, soil moisture tension, soil temperature, N2O flux, and CO2 flux, 

in Tatau peat soil. See details for other remarks in Fig. 2.2. 
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(a) Tunggal           (b) Simunjan               (c) Tatau 

 

Figure 2.5 Linear relationship between N2O and CO2 flux in (a) Tunggal, (b) Simunjan, 

and (c) Tatau. Abbreviations of symbols can be found in the materials and methods 

section.  
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Chapter 3 

Effect of topography on N2O and CO2 emissions and dissolved N2O in oil palm 

plantation in Riau, Indonesia 

 

3.1 Abstract 

 The oil palm plantations have been expanding into the different slope positions. 

However the interactions of soil properties and topography influencing greenhouse gas 

fluxes are still poorly understood. Topography affects the movement of surface and 

subsurface water and causes the variability of soil processes, which makes the accurate 

estimation of greenhouse gas fluxes more difficult. This study aimed to assess N2O and 

CO2 emissions, measured by closed chamber method in upper, middle, and lower slope 

positions for a whole year from June 2012 to May 2013 in Tunggal sandy loam soil, 

Indonesia and to assess the dissolved N2O concentration as source of indirect emission 

from oil palm plantation to the atmosphere, measured by headspace method in puddle, 

drains, and wells. N2O and CO2 fluxes showed variability with seasons and slope 

positions. Cumulative N2O fluxes were significantly higher in the lower position than 

upper and middle position, while cumulative CO2 fluxes showed no significant 

difference among the slope positions. Dissolved N2O concentrations varied by water 
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sources and sampling time, sometimes supersaturated than ambient equilibrated 

concentration. These results show that topography even in a short slope affected the 

spatial variability of N2O and CO2 emission, which may need to be taken into account in 

field measurements and estimating the whole emissions of these gases including the 

indirect emissions.  

Key words: N2O flux, CO2 flux, dissolved N2O, indirect emission, topography 

 

3.2 Introduction 

Nitrous oxide (N2O) is potent greenhouse gases with much greater global 

warming potential than carbon dioxide (CO2). N2O emissions have been shown to vary 

across agricultural landscapes in response to variations in several factors such as 

topography, soil, crop types and managements (Izaurralde et al. 2004; Vilain et al. 

2010). Topography is well documented to cause variability of environmental factors 

such soil temperature and moisture, and other properties have to be identified in relation 

to the soil carbon (C) and nitrogen (N) cycling processes (Luizao et al. 2004). Soil 

factors related to topography may also influence nitrifier and denitrifier’s communities 

with respect to N2O turnover and interact with soil respiration (Zhu et al. 2013; 

Philippot et al. 2009; Banerjee and Siciliano 2012). Soil respiration is one of the main 
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components of ecosystem respiration (Granier et al. 2000; Janssens et al. 2001). CO2 

release from soil, commonly referred as soil respiration, and even small changes in soil 

respiration may strongly affect soil carbon sequestration in long-term (Raich and 

Schlesinger 1992). Due to increased global demand of palm oil, plantation area of oil 

palm has been expanding to the hilly area. Annual exchange of CO2 from tropical 

ecosystem has also potential significance for the global carbon cycle and climatic 

change (Sorensen 1993). 

In general, it has been observed that N2O emissions were higher in lower slope 

position than in upper slope positions because the lower slope position have greater soil 

moisture, plant biomass, and soil C content (Hook and Burke 2000). Effects of soil 

temperature and soil water content on CO2 emission was observed in managed forests in 

Canada (Peng and Thomas 2006). Tropical rainforest showed that the temporal 

variability of soil CO2 efflux was depended mainly on soil water content (Kosugi et al. 

2007). 

Indirect N2O emissions are recognized as a quantitatively significant 

component of the total N2O emission budget from agricultural activities (Reay et al. 

2009). The proportion of leached N that is emitted as N2O is termed an emission factor 

(EF), and for aquatic ecosystems, this is referred to as EF5. The EF5 consists of 
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emission factors for groundwater and surface drainage (EF5-g), rivers (EF5-r), and 

estuaries (EF5-e) (IPCC 2006). EF5-g is derived from the ratio of dissolved N2O to 

NO3
-
 concentrations (Mosier et al. 1998). It is thought that N2O emissions through 

groundwater comprise a significant fraction of total agricultural N2O emissions and 

default value of EF5-g (N2O-N / NO3
-
-N) is 0.0025 (IPCC 2006).  

In Indonesia, N2O and CO2 emission from oil palm plantation have reported as 

affected by converted land (Dewi et al. 2009), linked to fertilizer use (Murdiyarso et al. 

2002), related to land use change (Hadi et al. 2012), and affected by the soil types 

(Sakata et al. 2015). However, the interactions of soil properties and topography 

influencing soil N2O and CO2 emissions, and dissolved N2O are still poorly understood. 

Oil palm plantation is located in the different slope variation. Therefore it is necessary 

to conduct study to assess the N2O and CO2 emissions as affected by topography and to 

identify the controlling factors of spatial variations in N2O and CO2 emissions at the 

landscape scale, and to assess the dissolved N2O concentration as source of indirect 

emission.  
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3.3 Materials and methods 

3.3.1 Site descriptions 

The study site was located in Tunggal Plantation, 200 km southeast of 

Pekanbaru City, Airmolek District, Riau Province, Indonesia (S00°20.731′ 

E102°17.617′) on sandy loam soil classified as Ultisols (the United States Department 

of Agriculture (USDA) soil taxonomy) (Fig.3.1). Geographical feature of Tunggal 

Plantation is categorized as hilly slope area, with annual rainfall and mean temperature 

was 1387 mm and 28°C, respectively. Oil palms (Elaeis guineensis Jacq.) in study area 

were planted at a density of 135 palms per hectare. Total study area was 93.6 ha and the 

age of plantation was 7 years (mature palm). Annual rates fertilizer application was 151 

kg N ha
-1

 as NPK (16-4-25) as split applications twice with equal amounts in June and 

September. The precipitation data were collected by oil palm plantation staff members 

from rain gauges located within the oil palm plantations. 

 

3.3.2 Physicochemical analysis of the soil samples 

Along the sloping from 1.3 to 2.2% (Fig. 3.1), undisturbed soil core with three 

replicates and composite soil samples were collected at 0-10 cm depth at upper, middle, 

and lower slope position. The soil sample was collected three times, on 12 June 2012, 2 
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October 2012, and 31 January 2013. The soil samples were analysed for their physical 

and chemical properties. Prior to analysis, the soil samples were maintained at 4°C. The 

undisturbed soil cores were used for soil volume measurements using a three-phase 

meter (DIK-1130, Daiki Rika Kogyo Co. Ltd). The core samples were weighed and then 

oven dried at 105°C for 48 h. After drying, the core samples were reweighed to 

calculate soil moisture content, bulk density (BD), and water-filled pore space (WFPS). 

Soil particle size distribution was determined by the Bouyoucos hydrometer method 

(Kroetsch and Wang 2008). The soil pH was measured by pH meter (D-52, Horiba Co., 

Ltd) with a glass electrode. Part of the soil samples were air-dried and passed through a 

0.5 mm sieve, and the sieved soil was used to determine total carbon and nitrogen 

contents using a Carbon and Nitrogen Analyzer (CN corder; MT-700 Yanaco Analytical 

Industry Co., Ltd). The inorganic N contents of NH4
+
 and NO3

- 
were determined by 

sieving fresh soil through a 2 mm sieve, extracting it in 1 M KCl of 1:2.5 ratio, and 

using the nitroprusside method (Anderson and Ingram 1989) and hydrazine reduction 

method (Hayashi et al. 1997), respectively.  
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3.3.3 Measurement of N2O and CO2 fluxes 

Measurement of N2O and CO2 fluxes was conducted at 2-weeks interval from 

June 2012 to May 2013 at each slope positions. Gas sampling was consistently 

conducted by closed chamber method at mid-morning with 3 replications, based on 

previous study on oil palm plantation (Sakata et al. 2015). N2O and CO2 fluxes were 

measured by a gas chromatograph (GC-14B, Shimadzu, Japan) equipped with an 

electron capture detector and thermal conductivity detector, respectively. 

 

3.3.4 Chemical analysis for the water samples and measurement of dissolved N2O 

concentrations 

Water samples were collected at puddle in lower slope, drains and wells (Fig. 

3.1). It was conducted 3 times, on 2 June 2012, 12 October 2012, and 31 January 2013. 

Each water samples was collected in 50 ml plastic bottle for NH4
+
 and NO3

- 

concentration measurement, and 22 ml vacuum vial for dissolved N2O concentration 

measurement, respectively, and then brought back to the laboratory. The water samples 

were stored in a refrigerator and analysed within one week. NH4
+
 and NO3

- 
were 

determined by filtering the water samples through filter paper (Advantec 131, 150 mm, 

Toyo Roshi Kaisha Ltd., Japan) and analysed using the nitroprusside method (Anderson 
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and Ingram 1989) and hydrazine reduction method (Hayashi et al. 1997), respectively. 

For measurement of dissolved N2O concentrations, 5 ml of each water samples was 

transferred into another vacuum vial, and filling with 17 ml helium gas, and shake 

properly. The N2O gas in the headspace was measured by gas chromatography with 3 

replicates. Dissolved N2O concentration was calculated based on Sawamoto et al. 

(2002). 

 

3.3.5 Statistical analysis 

Statistical analyses were conducted using IBM SPSS Statistics 21. Means of 

N2O and CO2 fluxes for each slope positions during wet and dry seasons were analysed 

using a two-way ANOVA test. While, the significance of the cumulative N2O and CO2 

fluxes for each slope positions were analysed using a one-way ANOVA test. 

Correlations between seasonal mean gas emissions (dry season in 2012, wet and dry 

seasons in 2013) and soil physiochemical properties among the slope positions in June 

and October 2012 and January 2013 were analysed using Pearson’s correlation, 

respectively. Statistical considerations were based on p < 0.05 significance level. 

Correlation between NO3
-
 and dissolved N2O concentration were analysed using simple 

linear regression.  
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3.4 Results 

3.4.1 Physicochemical soil properties by slope positions 

Physicochemical properties of soil varied widely by slope positions (Table 3.1). 

NO3
-
, NH4

+
, and WFPS showed higher tendency in lower slope than in upper and 

middle slope positions, although other soil parameter such as total C, total N contents, 

pH, and bulk density did not show the same tendency. 

 

3.4.2 Soil N2O emission 

N2O fluxes in the upper, middle, and lower slope positions varied by seasonal 

(Fig. 3.2). N2O fluxes were in the range from 0.34 to 36.3, -4.28 to 34.9 and 1.59 to 

61.2 μg N m
-2 

h
-1

 in the upper, middle, and lower slope positions, respectively. High 

peak of N2O fluxes (31.6 – 59.4 μg N m
-2

 h
-1

) were observed after second fertilization 

followed with precipitation, and again reached high peak of N2O (32.6 – 61.2 μg N m
-2

 

h
-1

) during wet season with high precipitation. The highest peak of N2O was observed in 

the lower slope position. The temperature showed no correlation with variation of N2O 

flux in different slope positions. During the study period, N2O fluxes were higher in wet 

season than in dry season (Table 3.2). During the wet season, N2O fluxes were highest 

in the lower slope than upper and middle slope. During the dry season, effect of slope 
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positions was no observed in N2O fluxes. Two-way ANOVA analysis showed 

significant interaction between seasons and slope positions (p = 0.027) (Table 3.2). The 

cumulative N2O fluxes were 460, 560, and 697 g N ha
-1 

y
-1

 in the upper, middle, and 

lower slope positions, respectively. Cumulative N2O fluxes were significantly higher in 

the lower slope, while upper and middle slope positions showed no significant 

difference (Fig. 3.3). Effect of slope positions related with cumulative N2O emissions 

showed positive correlation with the NO3
-
 and WFPS (Table 3.4).  

 

3.4.3 Soil CO2 emission 

CO2 fluxes in the upper, middle, and lower slope positions varied seasonally 

(Fig. 3.2). CO2 fluxes were ranged from 15.2 to 166, 10.1 to 128, and 0.72 to 187 mg C 

m
-2 

h
-1

 in the upper, middle, and lower slope positions, respectively. The precipitation 

and temperature showed no correlation with variation of CO2 flux in different slope 

positions.  

During the study period, CO2 fluxes were higher in dry season than in wet 

season. CO2 fluxes were significantly different among the seasons (p < 0.001). However, 

effect of slope positions on CO2 fluxes showed no significant difference in both wet and 

dry seasons (Table 3.3). The cumulative CO2 fluxes were about 6270, 7370, and 7600 
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kg C ha
-1 

y
-1

 in the upper, middle, and lower slope positions, respectively. Cumulative 

CO2 fluxes were not significantly different among the slope positions (Fig. 3.3). 

Cumulative CO2 emissions showed significantly positive correlation with the WFPS 

(Table 3.4). 

 

3.4.4 NH4
+
, NO3

-
, pH, dissolved N2O and CO2 concentrations in water samples and 

emission factors 

NH4
+
, NO3

-
, pH and dissolved N2O and CO2 concentrations varied among the 

source of water. NH4
+
 concentrations were lower than 1 mg N L

-1
, except in the puddle 

sample taken in June. NO3
-
 concentrations were also lower than 1 mg N L

-1
, except in 

the puddle samples, increasing from June 2012 to January 2013 (Fig. 3.4). The pH value 

in all water samples were range from 5.8 to 6.7 during the measurement. Higher pH 

value showed in all samples taken in June 2012 and pH value slightly decreased in 

October 2012 and January 2013 (Fig. 3.5). Dissolved CO2 concentration showed the 

opposite with pH value. Dissolved CO2 concentrations range from 0.004 to 0.248    

mg L
-1

. High concentration of dissolved CO2 from all water samples observed in 

January 2013 during the wet season (Fig. 3.5). 
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Dissolved N2O was the highest in the drain 1 in October 2012, and the lowest 

in puddle in June 2012. These concentrations were supersaturated (0.45–39.1 times 

higher) than ambient equilibrated concentration as leading possibility to be source of 

indirect emission. NO3
-
 concentration in the well 2 (394 cm depth) was higher than in 

well 1 (515 cm depth). Significant relationship between the N2O-N and NO3
-
-N showed 

significant in drains and puddle, but not significant in wells (Fig. 3.6). Value of ratio 

N2O-N to NO3
-
-N as emission factor for groundwater (EF5-g) for puddle was below the 

IPCC (2006) default EF5-g value, 0.0025, while the EF5-g for drain was above the 

IPCC value. EF5-g in this study varied among source of water and in the range from 

0.0007 to 0.0453.  

 

3.5 Discussion 

3.5.1 N2O and CO2 fluxes correlated with soil physicochemical along the slope 

positions 

Differences in soil moisture levels between slope positions are typically related 

with redistribution of water by runoff, and runoff may occur under high precipitation 

during wet season (Vilain et al. 2010). This study showed high WFPS in lower than 

upper and middle slope positions (Table 3.1). In several Canadian agricultural regions, 
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soil water content has been found to be the main driver of N2O fluxes at the landscape 

scale (Corre et al. 1999; Izaurralde et al. 2004). Since soil water content was relatively 

high, WFPS values reached to favor for denitrification and N2O production (Linn and 

Doran 1984). 

In this study, high N2O flux was observed after the second time of fertilization 

followed by precipitation in dry season, and then showed high peak in the end of wet 

season (Fig. 3.2). As observed by Corre et al. (1999), a particular precipitation level 

occurring immediately after fertilization showed much higher N2O fluxes. Average N2O 

emission was 1.92 to 2.96 times higher during wet season than dry season (Table 3.2). 

Result of this study was similar to the observation in toposequences in Alberta, Canada, 

where the N2O emissions during wet season were higher than dry season (Izaurralde et 

al. 2004). Several studies showed that higher N2O was emitted in a normal or wetter 

year with greater precipitation than in a dry year (Laville et al. 2011; Parkin and Kaspar 

2006). In this study, during wet season, the emitted N2O in the lower position was 1.31 

to 1.63 times more than those in the middle and upper slope positions, respectively 

(Table 3.2). This result indicated that the effect of slope position associated with soil 

moisture on N2O emission is comparable to that of season.  
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The N2O emissions were found to be significantly correlated positively with 

NO3
–
 concentration (Table 3.4). These results indicated that the soils might have a 

stronger denitrification process in the lower part than in the upper part. Qian and 

Schoenau (1995) reported greater NO3
−
 release from the lower slope soils of higher 

organic matter compared to the upper slope soils. More NO3
–
 concentration in the lower 

part also mean that there was more NO3
–
 source therein to fuel the denitrifiers and 

thereby promote denitrification in combination with higher soil water content (lower 

oxygen concentration) (Fang et al. 2009; Vilain et al. 2010), and therefore it found 

higher N2O flux in lower slope than in the middle and upper slope positions. The NO3
−
 

loss from the upper part of the slope could be attributed to crop uptake, low organic 

matter mineralization, and/or NO3
−
 loss due to leaching and denitrification. Although 

crop uptake, leaching, and denitrification would have also occurred on the lower slope, 

mineralization and N transport with runoff from upslope areas might have been 

sufficiently high to compensate for the losses (Priyashantha et al. 2007). 

Mineralization is the conversion of an element from an organic form to an 

inorganic as a result of microbial decomposition. Through mineralization, organic form 

of N in soil is converted to NH4
+
. Soon and Malhi (2005) observed that mineralization 

was less at the upper than at the lower slope position which mainly influenced by low 

http://en.mimi.hu/environment/element.html
http://en.mimi.hu/environment/organic.html
http://en.mimi.hu/environment/inorganic.html
http://en.mimi.hu/environment/decomposition.html
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organic matter content and soil water availability. Topography is a main factor of N 

mineralization, nitrification and denitrification processes through its control on factors 

such as soil moisture, soil temperature and nutrient availability (Stewart et al. 2014).  

The influence of topography on cumulative CO2 flux along the slope was not 

significant in this study (Fig. 3.3). The study result was similar to those observed in tea 

plantation on Typic Hapludalfs, in Malino, South Sulawesi province, Indonesia (Jumadi 

et al. 2008a). Even the cumulative CO2 flux showed no significance, it tended to be 

higher in lower and middle slopes rather than in the upper slope. This may be attributed 

to soil erosion, therefore in the lowered parts, plant growth, belowground C allocation, 

and soil C content increase, providing more C substrate for the activities and respiration 

of plant roots and soil microorganisms (Liu et al. 2007). Significant effects of 

topography on CO2 flux were observed 6% higher in the lower than upper slope during 

growing season in semiarid grassland, northern China (Xu and Wan 2008). In this study, 

means of CO2 fluxes were higher in dry season than in wet season (Table 3.3).  

Variations in soil air components exist with different seasons. High soil moisture as in 

the wet season may induce low oxygen and high CO2 level in the soil air. Because soils 

are normally drier in the dry season, opportunity for gaseous exchange is greater during 

this period. However, there are some exemptions to this rule. Since high temperature in 
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the dry season may also encourage rapid microbiological release of CO2, a given soil 

containing easily decomposable organic matter may have higher CO2 level than in the 

wet reason (Yerima and Ranst 2005). 

In perennial crops, variation in soil properties over the topography position 

showed that concentration of soil chemical properties was higher on lower slope that on 

eroded upper slope (Steinwald et al.1996). Apart from soil properties, as function of 

slope position also has been revealed vary on crop yields (Mahli et al. 1993). Due to 

increasing nutrient accumulation toward the lower slope as effect of nutrient movement 

to the bottom part (Tan et al. 2014), therefore at lower slope positions allocated greatest 

potential yield (Nolan et al. 1995).  

In Indonesia, some of the oil palm plantations are located in hilly area. 

Balasundram et al. (2006) observed that the highest yield occurring at the lower slope 

and the lowest yield from the upper slope in oil palm plantation, in South Sumatera, 

Indonesia. It is clearly explained that topography affected soil fertility and oil palm 

yield with 4-12% degree of slope. In Addition, in Malaysia estimation of potential yield 

from different region which located in sloping area reported that degree of steep 

influences yield of oil palm. In wet region on 7 years of harvesting showed the fresh 

fruit bunch (FFB) yield as 31-32, 29-30, 24-25 ton ha
-1 

at undulating area (0-12%), 
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rolling area (12-24%), and hilly or steep area (24-50%), respectively. While in dry 

region, it showed FFB yield as 20-22, 18-19, 16-17 ton ha
-1 

at undulating area (0-12%), 

rolling area (12-24%), and hilly or steep area (24-50%), respectively (Paramananthan 

2013). Generally, the yield trend is attributable to topographic difference. It can be 

explain that topography affect the movement of water nutrient which is affected by 

precipitation pattern of plantation areas.  

 Fertilizer management on sloping or hilly area which used for oil palm 

plantation is very essential to be taken. It is related to maintain fertility of the soil and to 

minimize soil erosion and nutrient loss from the area of plantation. Decreasing of 

nutrients through leaching and runoff reduces both crop productivity and economic 

gains. It recommended that frequence of fertilizer application at low rates is preferred 

on sloping land where the risk of nutrient losses through runoff or drainage is great 

(Goh and Chew 1995). The optimal frequency of fertilizer application depends on crop 

requirements, tree age, ground conditions, type of fertilizer available and precipitation. 

To diminish soil erosion and to sustain the soil moisture, frond heap as a plant residues 

added to ground surface of oil palm area (Redshaw 2003) and the threshed fronds are 

normally placed between palm trees as sources of nutrients (Kee and Chew 1997) as 

well. Besides as erosion control, frond heaps can supply organic matter and nutrients to 
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soil through decomposition and influence nutrient cycling between the plant and soil 

systems (Yusuyin et al. 2015). On the steep areas where are prone to soil erosion, 

comprise the buffer strip, platform or terrace on each different of slope positions to 

improve the fertilizer use efficiency and yield harvesting is suggested (Gillbank 2003).  

 

3.5.2 Dissolved N2O concentration and emission factor for ground water 

In this study, change of dissolved N2O concentrations in the puddle may 

indicate that the relative importance of N2O formation by nitrification of NH4
+
 (Fig. 3.4). 

It demonstrated that seasonal changes of NH4
+
 and NO3

−
 in the puddle were different. 

NH4
+
 sharply decreased from 2.08 to 0.47 mg N L

-1 
from June to October and then 

stayed constant, while NO3
−
 increased constantly from 0.38 to 5.62 mg N L

-1 
in the 

experimental period. As NH4
+
 was nitrified to NO3

− 
then transported entering to 

groundwater, thus potentially contributing NO3
−
 to N2O production (Hinshaw and 

Dahlgren 2013). Aquatic ecosystems can be a significant source of N2O emissions by 

both nitrification and denitrification to be considered as the two main processes 

producing N2O. Nitrification, an aerobic microbial process, oxidizes NH4
+
 to NO3

-
, in 

which N2O is formed as a byproduct (Knowles 1982). Denitrification is an anaerobic 

respiration process that reduces NO3
-
 to dinitrogen gas (N2), with N2O as the 
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intermediate gas product (Seitzinger et al. 2000).  As a result of NO3
−
 consumption in 

denitrifying in the aquifers, NO3
−
 concentration in deeper groundwater is lower 

(Weymann et al. 2008). In this study, it was observed that NO3
−
 concentration in the 

well 2 (in 394 cm depth) was higher than in well 1 (in 515 cm depth), while the 

dissolved N2O tended to be higher in the well 1 than in the well 2 in October when 

decreasing NH4
+
 concentration became stable. The other possibility to explain the 

difference between two wells is that the diffusion of N2O from water and air inside the 

well to the open ambient atmosphere. It may be possible that the deeper the well, more 

time need to diffuse N2O to the atmosphere. These could explain that both processes of 

denitrification and diffusion might be more effective in the well 1 than the well 2 and 

far more in the puddle.   

In the drain, high dissolved N2O concentration observed was probably also due 

to increasing the denitrification process. As explained by Sawamoto et al. (2003), in 

cultivation onion area in central Hokkaido, the dissolved N2O concentration was 

increased due to the denitrification process in the subsoil during and after nitrate 

leaching in the subsurface-drainage. NO3
-
 concentrations in groundwater decrease as a 

result of increased denitrification in the riparian (Watts and Seitzinger 2000), and the 

increased denitrification by trading a decrease in NO3
-
 transport to surface water for 
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increased N2O emissions (Groffman et al. 2000). Concentration of N2O in the surface 

water of the drainage tended to be higher than in the well and puddle in the same level 

of NO3
-
 concentration (Fig. 3.5), so it could be explained that the N2O dissolved in 

water was evolved to the ambient air during water flow to downstream as reported by 

Minami and Fukushi (1984). It may also be explained by the location of sampling sites 

(Fig. 3.1) as drain 1(D1 (in 100 cm depth)) and well 1(W1) may be more close to the 

source of N2O and fertilized area than drain 2 (D2 (in 200 cm depth)) and well 2 (W2), 

although more detail examination is needed in the sites. 

N2O emission factor from aquifers and agricultural drainage water (EF5-g) was 

corrected downward from 0.015 to 0.0025 by IPCC in 2006, based on the data of Reay 

et al. (2005) and Sawamoto et al. (2005). In this study, the EF5-g was determined lower 

in puddle than the IPCC (2006) default value, while it were higher in drains and in wells 

compared with the range of the IPCC default value. Dissolved N2O concentration in 

drains observed higher than puddle and wells, as affected by water movement inside the 

drain. N2O produced in flowing waters is rapidly emitted to the atmosphere due to high 

gas exchange rates and turbulent flows, whereas N2O produced in reservoirs such as 

puddle and wells are likely to reside in the water body for a longer period of time where 

it may be further reduced to N2. N2O production in reservoirs is determined over longer 
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time scales than in flowing waters (Beaulieu et al. 2014). And inside the drain, there is a 

number of processes remove N from the water column, including assimilation into 

microbial and plant biomass, sorption to sediments, and burial of particulate N 

(Wollheim et al. 2008). 

The observed relationships between dissolved N2O and NO3
-
 suggest that 

emission factors were different in each location due to relation with denitrification rate, 

groundwater residence time, sampling depth, and water movement. It has been 

explained that denitrification rates and N2O fluxes should be more closely examined in 

relation to drain geomorphology (depth, residence time), hydrology (residence time and 

flow), and the dynamics of the nitrate load over distance and time. A study by Reay et al. 

(2003) demonstrated how rapidly N2O degassing from drainage waters can occur, 

indicating that degassing of N2O already present in the groundwater (Clough et al. 

2006). Principally, the vertical diffusive fluxes from the aquifer surface should be added 

to the potential total groundwater-derived emission (Deurer et al. 2008). Solid estimates 

of diffusive fluxes are thus needed in order to check if the inclusion of this path leads to 

higher emission factors as suggested by Weymann et al. (2009). Perhaps the most 

important criticism of the EF5-g value is in its application to open systems. This EF was 

adopted to help account for degassing of groundwater and water from drains, which can 
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have very high concentrations of N2O. However, because surface drainages, like puddle 

in this study, are open to gas exchange, rapid degassing of excess N2O may occur and 

the ratio of N2O-N / NO3
–
-N may change over very short distances (Reay et al. 2003; 

Baulch et al. 2012). This study observed dissolved N2O concentration tended to be 

higher in drains than that in puddle and wells. It could be explained that different values 

of EF5-g may related with feature of topography, since the sources of water was 

sampled in the different locations along the slope (Fig. 3.1). 

Due to measurement in short time period in this study, there might be still 

uncertainties in the estimation of EF5-g. It is known that NO3
−
 and dissolved N2O are 

subject to interacting during subsurface transport in the water (Dobbie and Smith 

2003b). Furthermore, determination of N2O in the aquifers as an intermediate product 

from denitrification is permanently influenced by different enzyme kinetics of various 

denitrifying communities. Groundwater N2O concentration is the net result of 

simultaneous production and reduction reactions (Well et al. 2005). So it is needed to 

conduct observation in long-time period for accurate and detail estimation of N2O 

concentration in the aquatic ecosystem.  
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3.5.3 pH, dissolved CO2 concentration and water quality 

Value of pH from all water samples during the measurement were almost the 

same (Fig. 3.5). pH value varied seasonally, in June 2012 measurement during dry 

season showed a slightly higher of pH value in all water samples, while in October 2012 

and January 2013 during wet season, the pH value decreased. Higher precipitation 

during wet season may initiate to attribute acidic condition in water source by 

decreasing pH value (Shabalala et al. 2013). The seasonal variation of pH values 

observed in this study was similar with result reported by Abowei (2010) in Nkoro river, 

Nigeria. The highest pH value showed in the dry season and lower pH value in the wet 

season. It was explained that seasonality of the pH water may be due to the influx and 

decay of debris in area and imbalance level of H
+
 ions input from surface runoff during 

the precipitation. Precipitation is naturally acidic because of exposure to atmospheric 

carbon dioxide. As precipitation occurred, rainwater combines with carbon dioxide can 

influence the water toward acidity and pH is lowered (Wurts and Durborow 1992). 

Value of pH may change due to changes in photosynthesis and other chemical reactions. 

Photosynthesis uses up dissolved carbon dioxide, which acts like carbonic acid (H2CO3) 

in water. CO2 removal, in effect, reduces the acidity of the water and so pH increases. In 
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contrast, respiration of organic matter produces CO2, which dissolves in water as 

carbonic acid, thereby lowering the pH (Michaud 1991). 

Carbon dioxide is dissolved in groundwater and determination of dissolved 

CO2 could be measured by indirectly method by monitoring in changing in pH where 

the CO2 is dependent on shift pH value (Macpherson 2009). In this study (Fig. 3.5), 

dissolved CO2 concentrations in all water sources were very low from the normal value 

in the natural reservoir (5 to 10 mg L
-1

) (Wurts and Durborow 1992). The dissolved CO2 

concentrations were estimated by using indirectly calculation method by change of pH 

value (Lower 1996) which explained that the concentrations of dissolved CO2 and pH 

values influence each other. Therefore it is complicated to explain which factors 

affecting in the different of dissolved CO2 concentrations among the water sources 

sample, except by the pH value. Generally, groundwater has high CO2 concentration, 

and low pH and oxygen concentration. CO2 is high in groundwater because of bacterial 

process in the soils and various reactions in the groundwater, particulate mineral 

formations through water movement (Wurts and Durborow 1992). In the next future, 

directly measurement of dissolved CO2 concentration by using a chemical test 

procedure from water sources is preferred, thus it can explain more detail factors 

affecting the dissolved CO2 concentration accurately.  
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Concerning with water quality in this study, it described below by criteria of 

level of pH, NO3
-
 and NH4

+
 concentrations in the water samples of the oil palm 

plantation area. The pH balance of a water supply describes how acidic or alkaline it is. 

The acidity or alkalinity of a water supply can affect plant growth, irrigation equipment, 

and drinking water suitability. Most natural waters are range from 5 to 8. The generally 

acceptable range of pH for irrigation water is between 5.5 and 8.5. While pH water 

quality standard for drinking water requiring disinfection only is 6.5 to 8.5 (Colin and 

McKean 1991). Based on pH standard criteria, the water sources in the oil palm 

plantation was slightly lower than which proposed by WHO (2008). The pH of drinking 

water is not health matters. However the acidic water or low pH is possible to leach 

metals from plumbing systems, which have potential to cause health problems (EPA 

2001).  

Chemical fertilizer application as anthropogenic sources of nitrogen 

contamination in groundwater from agricultural activities are significantly influence the 

water sources (Kumazawa 2002). In the most countries, nitrate levels in drinking water 

derived from surface water do not exceed 10 mg L
-1

, although nitrate levels in 

well-water often exceed 50 mg L
-1

. A high nitrate concentration in drinking water can 

cause methemoglobinemia in infants and in the stomach in adults (Gatseva and Argirova 
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2008). Ammonia in drinking water is not of immediate health relevance, and thus no 

health-based guideline value is suggested. Ammonia is, however, an indicator of 

possible bacterial, sewage, and animal waste pollution (WHO 2008). A high ammonia 

concentration has the potential to increase the nitrate concentration through nitrification. 

Generally, ammonia in the groundwater is below 0.2 mg L
-1

, but anaerobic groundwater 

may contain ammonia up to 3 mg L
-1

. The threshold odor concentration of ammonia at 

alkaline pH is approximately 1.5 mg L
-1

, and a taste threshold of 35 mg L
-1

 has been 

proposed for the ammonium cation (WHO 2003).  

Result of this study observed that from all water sources the mean of 

concentration of NH4
+
 and NO3

-
 were 0.32 to 1.06, and 0.11 to 2.79 mg L

-1
, respectively. 

Therefore, it could be stated that water quality in the area of plantation is in the range of 

standard based on criteria for drinking-water.  
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3.6 Conclusion 

Topography affected spatial and temporal variation of N2O and CO2 fluxes in 

oil palm plantation. Soil properties such as NO3
-
 and WFPS were explained most of 

cumulative N2O flux variability, while cumulative CO2 flux influenced by WFPS only. 

Topography even in a short slope affected N2O and CO2 emissions, therefore it may 

need to be taken into account in field measurements and modelling. Dissolved N2O 

concentrations in water sources were supersaturated as leading to possibility to be 

source of indirect emissions and varied widely according to the locations and sampling 

situations. Agricultural landscape may play an important role in relation to hydrological 

process.  
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Table 3.1 Physicochemical soil properties in study site according to sampling time and slope 

positions 

 

Sampling 

time 

Slope 

Positions 

TC TN NO3
-
  NH4

+
 pH 

Bulk 

Density 
WFPS 

(g kg
-1

ds) (mg N kg
-1

ds)   (g cm
-3

) (%) 

Jun. 2012 

Upper 18.8±0.75 1.60±0.08 5.86±0.96 8.51±0.55 4.93±0.42 1.15±0.01 57.4±4.94 

Middle 19.7±0.51 1.64±0.06 6.24±0.24 5.68±0.57 4.77±0.21 1.15±0.01 62.5±1.76 

Lower 21.3±0.92 1.79±0.12 7.47±0.81 9.26±0.35 4.35±0.25 1.12±0.02 74.6±4.14 

         

Oct. 2012 

Upper 21.8±1.67 1.78±0.24 8.16±0.71 10.8±0.41 4.21±0.63 1.13±0.02 51.6±3.08 

Middle 18.3±1.01 1.57±0.08 10.7±0.75 11.4±0.25 4.06±0.62 1.11±0.03 66.3±6.93 

Lower 20.2±1.33 1.69±0.10 19.1±0.83 14.5±0.56 4.09±0.23 1.12±0.03 76.0±2.29 

         

Jan. 2013 

Upper 22.9±1.50 1.88±0.13 4.05±0.73 11.4±0.07 3.90±0.12 1.11±0.02 61.8±2.25 

Middle 18.2±1.18 1.55±0.11 1.17±0.11 10.3±0.03 3.66±0.40 1.08±0.03 76.2±1.82 

Lower 18.8±0.98 1.59±0.07 14.6±0.57 9.54±0.36 3.94±0.22 1.09±0.01 78.6±2.78 

 

Data are presented as the means ± standard deviation (n = 3). TC, total carbon; TN, total 

nitrogen; NO3
-
, nitrate; NH4

+
, ammonium; BD, bulk density; WFPS, water-filled pore 

space.  
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Table 3.2 Means of N2O fluxes for the three slope position during wet and dry seasons 

       

Slope position 
  N2O flux (μg N m

-2
 h

-1
) 

 
  Wet season Dry season 

 
Upper 

 
10.4±2.46 5.40±2.16 

 
Middle 

 
 13.0±1.32 5.01±2.62 

 
Lower   17.0±0.99 5.75±2.95 

 
ANOVA df F value p value 

 
Seasons 1 99.106 

 
<0.001 

 
Slope  2 6.268 

 
0.014 

 
Seasons x slope 2 4.928   0.027 

 

Data are presented as the means ± standard deviation (n = 3).  

Wet season: from October to March; Dry season: from April to September. 
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Table 3.3 Means of CO2 fluxes for the three slope position during wet and dry seasons 

       

Slope position 
  CO2 flux (mg C m

-2
 h

-1
) 

 
  Wet season Dry season 

 
Upper 

 
71.8±10.9 89.4±10.1 

 
Middle 

 
79.7±11.2 99.1±13.3 

 
Lower   77.1±9.41 114±9.14 

 
ANOVA df F value p value 

 
Seasons 1 24.074 

 
<0.001 

 
Slope  2 3.095 

 
0.082 

 
Seasons x slope 2 1.593   0.243 

 
 

Data are presented as the means ± standard deviation (n = 3).  

Wet season: from October to March; Dry season: from April to September.  
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Table 3.4 Pearson correlation soil properties and cumulative nitrous oxide (N2O) and 

carbon dioxide (CO2) emissions by different slope positions (n = 9).  

 

Soil parameters# N2O 
  

CO2 
  

    

  TC 0.074 
 

-0.396   

  NO3
-
 0.729

*
 

 
0.493   

  NH4
+
 0.371 

 
-0.050   

  WFPS 0.704
*
 

 
0.689

*
 

 
 

TC, total carbon; NO3
-
, nitrate; NH4

+
, ammonium; WFPS, water-filled pore space;  

* Significant at 0.05, # other soil parameters showed no significance. 
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Figure 3.1 Map of study site at Tunggal Plantation, Riau Province and topography 

positions of data measurement.  
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Figure 3.2 Precipitation, temperature, N2O flux, and CO2 flux in the upper, middle, and 

lower slope in Tunggal. Vertical bars ± indicated standard deviation (n=3). Solid arrows 

indicate fertilization timing. Vertical dashed lines indicate transition period for dry and 

wet seasons. 
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Figure 3.3 Cumulative nitrous oxide (N2O) (a) and carbon dioxide (CO2) (b) fluxes in 

the upper, middle, and lower slope positions. The vertical bars indicate the standard 

error (n = 3). Cumulative N2O fluxes showed significant differences between slope were 

determined with a one-way ANOVA (p = 0.043) and are displayed as different letters. 

There was no effect of slope on cumulative CO2 fluxes (p = 0.075) 
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Figure 3.4 NH4
+
, NO3

-
, and dissolved N2O concentrations in water samples. Vertical 

bars ± indicated standard deviation.  
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Figure 3.5 pH and dissolved CO2 concentrations in water samples. Vertical bars ± 

indicated standard deviation.  
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Figure 3.6 Relationship between NO3
-
 and dissolved N2O concentrations by source of 

water. EF5-g, emission factor for ground water; p, value of statistical linear regression. 
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Chapter 4 

Effect of soil types and nitrogen fertilizer on yield in oil palm plantations 

 

4.1 Abstract 

 In the oil palm plantation, one of the most important targets to be achieved is 

Fresh Fruit Bunches (FFB) yield. Oil palm depends on many interrelated factors which 

vary from one environment to another. Soils and fertilizers are essential factors on the 

growth and production of oil palm. This study aimed to determine effect of soil types 

and nitrogen fertilizers on FFB yield on mineral soil in Tunggal, Indonesia and in 

Simunjan, Malaysia, and also on peat soil in Tatau, Malaysia, from 2011 to 2012. 

Within each site, the N fertilizer applied with conventional and coated fertilizers. 

Dosage of coated fertilizer application was half and quarter of dosage from conventional 

fertilizer. FFB yields were recorded and summarized on an annual basis based on data 

collection. Results showed that by different dosage of conventional fertilizer and coated 

fertilizer had no different on FFB yields in each study area. Application of coated 

fertilizer with half dosage from dosage of conventional fertilizer were more effective on 

Partial Factor Productivity (PFP) as 53.2%, 45.4%, 49.1% and 57.1% in Tunggal, 

Simunjan, Tatau (immature), Tatau (mature), respectively. Application with quarter 
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dosage of coated fertilizer from dosage of conventional fertilizer showed that PFP by 

coated fertilizer was 72.9% more effective in Tunggal. Therefore, reducing the dosage 

of coated fertilizer in each soils type showed that coated fertilizer is more productive on 

FFB yields.  

Key words: mineral soil, peat soil, fertilizers, FFB yields, PFP (see page 101). 

 

4.2 Introduction 

The oil palm is the most productive oil crop in the world. Despite the absence 

of mineral elements in the oil produced, large quantities of nutrients are used by the 

plant for its vegetative growth and its yields. Fresh Fruit Bunch (FFB) yield of oil palm 

plantation is the most important indicator in measuring the efficiency and effectiveness 

of the plantation. Yield of the oil palm plantation achieved at the same time can also be 

a measure whether the cultivated plantation industry is economically viable (Anwar et 

al. 2014). 

Oil palms mature rapidly and fruit can be harvested as soon as 2-3 years after 

planting (Basiron 2007), although trees aged 9-15 years are the most productive 

(BisInfocus 2006). The FFB typically are 52% dry weight and have an extractable oil 

content of 15-25% depending on ripeness at harvesting time. Under optimal condition 
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yields may reach 25-30 t FFB ha
-1

yr
 -1

, and with an average extraction rate of 21-23% 

this corresponds with an approximate 6 t oil ha
-1 

(Verheye 2010). Harvesting rounds 

should be made as frequent as possible to avoid over ripening of bunches. Harvesting 

rounds of 7-14 days are generally practiced. Under well-managed conditions, 10-15 

bunches can be harvested per palm per year, weighing 15-20 kg each, total yields are 

13-30 ha
-1

yr
 -1

. The typical commercial lifespan of an oil palm is approximately 25 years. 

After 25-30 years trees become too tall to harvest and are replaced (Basiron 2007).  

Regarding to the soil type, oil palm have a reasonably high tolerance and can 

grow at the diverse soil characteristics soil with a fairly wide interval on various soil 

types ranging from organic soil of Histosols to mineral soils of Andisols, Oxisols, 

Entisols, Inceptisols and Ultisols. Histosols are known by various other names in other 

countries, such as peat or muck (Anwar et al. 2014), as long as it is well watered 

(NewCROP 1996). In Indonesia and Malaysia, the oil palm is mainly planted on highly 

weathered soils which belong to the orders Ultisols and Oxisols (Shamshuddin et al. 

2015). These soils exits under tropical environment which are subjected to high rainfall 

and temperature throughout the year, therefore the soils are predominantly acidic and 

deficient of macronutrients or low in fertility (Shamshuddin and Anda 2012). 

Consequently fertilizer input is very necessary applied regularly at the appropriate rate. 

https://en.wikipedia.org/wiki/Peat
https://en.wikipedia.org/wiki/Muck_(soil)
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Oil palm needs humid equatorial conditions to thrive, and soil and climatic conditions 

play roles in the growth of oil palm, hence conditions in Indonesia and Malaysia are 

suitable for its uninterrupted growth (Basiron 2007).  

Fertilizers are crucial in oil palm production, accounting for 50–70% of field 

operational costs and about 25% of the total cost of production (Caliman et al. 2007; 

Goh and Hardter 2003). Especially during the fruiting season, oil palms is requiring 

high amounts of nutrients which are contain N, P, K, Ca, Mg and S as well as 

micronutrients such as boron, copper, zinc, iron and manganese and molybdenum (IPI 

1991). Nitrogen is the most important nutrient for oil palm growth and a key input to 

food production. Nitrogen is required for the formation of protein (IPI 1991). The 

potential needs of the crop at level of growth and yield must be determined in order to 

draw up an appropriate and balanced fertilizer use (Foster and Dolmat 1986). In the 

management practices, approaches to improve crop nutrient use efficiency and fertilizer 

efficiency is very important (Aziz and El-Asry 2009; Prasad 2009). Significant 

improvements must be made in N use efficiency to produce enough yields and to avoid 

large-scale degradation of ecosystems caused by excess N (Tilman et al. 2001).  

To determine the efficiency of applied nutrients, Cassman et al. (1996) 

introduced the term Partial Factor Productivity (PFP). The advantage of this index is to 
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quantify total economic output from any particular factor or nutrient, relative to its 

utilization from all resources in the system, including indigenous soil nutrients and 

nutrients from applied inputs. The PFP for N over the years can be used to indicate the 

sustainability of the oil palm production system. Therefore, the objective of this study 

was to determine the effect and efficiency of reducing fertilizer rate of coated fertilizers 

compare to conventional fertilizer on FFB yield in different soil types. 

 

4.3 Materials and Methods 

Study sites were located in oil palm plantation areas on tropical land, in 

Indonesia and in Malaysia from 2011 to 2012. The one site was located in Tunggal on 

sandy loam soil, and other 2 sites were located in Simunjan on sandy soil and in Tatau 

on peat soil, respectively. The annual rainfall is about 1387, 4095, and 2225 mm in 

Tunggal, Simunjan, and Tatau, respectively. Physicochemical properties of the soils 

were described in chapter 2. Growth of oil palm plantation was monitored by measuring 

the production of FFB according to age of oil palm in each study sites. The N fertilizer 

rates applied were as conventional rate as plantation practices (C), coated fertilizer with 

half (M1) and quarter (M2) dosages of conventional fertilizer (Table 4.1). The 

conventional fertilizer was applied by surface-placed on the ring under the canopy of 
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palm, while the coated fertilizer applied in the 4 holes (in 10 cm depth) under the 

canopy of palm. Area studied are consisted with 525 palms (mature, 7 years) in 3.9 ha in 

Tunggal, 50 palms (mature, 9 years) in 0.37 ha in Simunjan, 40 palms (immature, 4 

years) in 0.27 ha, and 48 palms (mature, 5 years) at 0.32 ha in Tatau (Figure 4.1). FFB 

yields were recorded and summarized on an annual basis based on data collection. To 

compare the efficiency of N applications, the PFP was analyzed for each fertilizer 

treatments in each study site. 

Partial Factor Productivity (PFP) is determined the efficiency of applied 

nutrient (Goh et al. 2003) and it was calculated as below by Cassman et al. (1996): 

PFP = Y/Na  

Where Y is FFB yield (kg ha
-1

), (Na) is N applied (kg ha
-1

)  

 

4.4 Results 

As described in Chapter 2 already, soils of each site have different in 

physicochemical characteristics. Based classification of soil nutrient content for oil 

palm, soil condition in each site is described in Table 4.2. Soil pH, total C and total N 

on mineral soil both in Tunggal and Simunjan was categorized as “high”. On peat soil, 
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pH was categorized as “very low”, while total C and N was categorized as “very high” 

according to Goh (2005) Table 4.3.   

Fresh Fruit Bunch (FFB) weight is described in Fig. 4.2. The FFB calculated in 

Tunggal as harvest day average, in Simunjan as quarterly average, in Tatau as monthly 

average. Result showed that accumulation of FFB production by different dosage of 

conventional fertilizer and coated fertilizer had no different in each study area. Annual 

FFB production in each study area showed that treatment with coated fertilizer by a half 

of conventional fertilizer dosage were higher compared with conventional fertilizer 

treatment. Annual FFB production in Tunggal was 10185, 10958, and 9561 kg ha
-1

 yr
-1

 

in C, M1, and M2 fertilizer applied, respectively. Annual FFB production in Simunjan 

was 10959 and 11622 kg ha
-1

 yr
-1

 in C, and M1 fertilizer applied, respectively. Annual 

FFB production in Tatau for immature was 8963 and 9170 kg ha
-1

 yr
-1

 and for mature 

was 8880 and 9270 kg ha
-1

 yr
-1

 in C and M1 fertilizer applied, respectively (Fig. 4.3). 

Results show that coated fertilizer showed same pattern in each type of soil in 

increasing FFB production even if applied a half of conventional fertilizer.  

By applying N fertilizer, the PFP with conventional fertilizer and coated 

fertilizer can be compared. Result showed by applied half dosage of conventional 

fertilizer that PFP by coated fertilizer were more effective 53.2%, 45.4%, 49.1 % and 
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57.1% in Tunggal, Simunjan, Tatau (immature), and Tatau (mature), respectively. And 

by applied a quarter dosage of conventional fertilizer showed that PFP by coated 

fertilizer was more effective 72.9% in Tunggal (Fig. 4.4). By reducing the rate of coated 

fertilizer in each soil type and age of palm, showed that coated fertilizer is more 

effective. PFP explained how much of yield is produced for each kg of nutrient applied.  

 

4.5 Discussion 

Soil pH is important because it can influence nutrient availability. A pH range 

of 5.6–6.0 is “optimal”. Areas with pH <4 or >7 are “unfavorable” for the oil palm 

(Stenek and Connell 2011). In this study, soil pH on mineral soil both in Tunggal and 

Simunjan was categorized “high” but still in the optimal range for oil palm. While on 

peat soil classified as “unsuitable”. Even the soil pH is very low seems no problem in 

oil palm growth. As explained by Auxtero and Shamshuddin (1991), with appropriate 

management, oil palm plantations can be productive on a wide range of soils, including 

“problem soil” such as acid sulphate soils, deep peat and acidic high aluminium soils, 

where few other crops are successful. There were large hectares of peat land being 

development for agriculture uses due to the high contents of C and N as well as other 

nutrient in peat soil. Generally total nitrogen contents in peat soil are high that 
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compared with mineral soil. Moreover, it has been reported that FFB yield prospects on 

peat soil can be similar with FFB yields generated by oil palm cultivated on mineral 

soils (Fang and Jun 2014). There is evidence from plantations in Central and West 

Kalimantan that large yields can be achieved even on soils of low fertility status 

provided sufficient mineral fertilizer is applied to correct nutrient deficiencies, coupled 

with use of cover crops, recycling of empty bunches and other proper agronomic 

practices (Fairhurst and McLaughlin 2009). 

Regarding to fertilizers type, comparing with conventional fertilizer, coated 

fertilizer have a coating protects the nutrients from leaching and volatilisation while the 

release pattern matches the plants needs during the growing cycle. Plausible reason 

could be put that run-off of losses of surface applied fertilizer such as broadcasting onto 

the palm circles, N uptake by the palms would be much lower resulting in poorer palm 

growth and production as experienced in the experiment (Kwan 2002). It reported that 

by burying fertilizer one can reduce its application by 20% to account for no runoff 

losses (Cheong et al. 2000).  

Compared with uncoated urea, the coated urea had improved early palm growth. 

It is clearly showed that utilization of coated urea showed better result in girth size and 

front length for immature (1 to 3 years) oil palm growth. Therefore coated urea fertilizer 
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can be used as alternative urea fertilizer especially for the dry regions where the 

volatilization rate occur a higher rate (Rasid et al. 2014). Therefore, even by reducing 

the fertilizer rate of coated fertilizer compared to conventional fertilizer, FFB of oil 

palm were almost similar in each soil types.  

Any difference in FFB yield responses to methods of N application were 

probably a function of soil loss process, nutrient uptake and nutrient demand (e.g. 

higher demand during high cropping years). The soil losses process are mainly caused 

by runoff and leaching (Goh et al. 1999), nutrient uptake rate is generally influenced by 

root length, soil nutrient concentration and soil water content (Tinker and Nye 2000), 

and nutrient demand is dominated by oil palm growth and production. According to 

Cassman et al. (1996), PFP can be increased by increasing the amount, uptake and 

utilization of indigenous nutrients, and by increasing the efficiency with which applied 

nutrients are taken up by the crop and utilized to produce yields.  

Karim and Ramasamy (2000) suggested that higher fertilizer use efficiency 

which is always associated with low fertilizer rate and cultural practices which meant 

for promoting integrated nutrient management. It will help to effect saving in the 

amount of fertilizer applied to the crops and there to improve fertilizer use efficiency. 

Resin coats have better control of the fertilizer release. Polymer coats also look 
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promising for widespread use in agriculture because it can be designed to release 

nutrients in a more controlled manner by manipulating properties of polymer coating. It 

is hypothesized that the volatilization rate and nutrient leaching of urea fertilizer can be 

minimized and improved fertilizer efficiency can be achieved as compared to 

conventional urea fertilizer. Concerning with N2O emission, coated fertilizer was 

effective to reduce N2O emissions by 31 and 48% in wet and dry seasons, respectively, 

compared to the conventional fertilizer in Tunggal plantation on mineral soil. However, 

the effectivity on reducing N2O and CO2 fluxes in tropical oil palm plantation not 

always by fertilizer treatment, but it more significantly affected by the types of soil as 

explained in the Chapter 2.  

Fertilizers are usually the largest variable cost item in oil palm production and 

therefore, it should be used at the highest possible recovery efficiency by minimizing 

soil nutrient losses. Every effort and input in the plantations should be geared towards 

producing the optimum or maximum yields. Including fertilizer, yield depends on a 

variety of factors, such as soil and climatic conditions, age, seed quality, and quality of 

plantation management. 
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4.6 Conclusion 

Due to adaptability of oil palm to cultivate in wide range of soils types, oil 

palm can be grown and produce yield of FFB on mineral and peat soil. The yield 

supported by high content of nitrogen, carbon, and others nutrient in the soil. 

Considering to the growth of oil palm, applying coated fertilizer even with almost half 

rate and quarter rate in Tunggal, were effective to support yield of FFB of oil palm 

plantations. Coated fertilizer was effective to produce FFB on mineral and peat soils. 
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Table 4.1 Application of fertilizer in each study sites. 

Study sites Dosage Measurement period  Age of palm trees 

   (kg N ha-1)   
 

Tunggal 

151 (C) 

2 Nov. 2011 - 30 Oct. 2012 
 

7 years (mature) 76 (M1) 

38 (M2) 

Simunjan 
107 (C) 

1st-4th Quarter (2011-2012) 
 

9 years (mature) 
62 (M1) 

Tatau 

69 (C)  
11 Nov. 2011 - 12 Dec. 2012 

 
4 years (immature) 

36 (M1) 

87 (C) 
11 Nov. 2011 - 12 Dec. 2012 

 
5 years (mature) 

39 (M1) 

C; conventional fertilizer, M1; coated fertilizer with half dosages of conventional 

fertilizer, M2; coated fertilizer with quarter dosages of conventional fertilizer 
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Table 4.2 Soil fertility condition in each study sites based on classification of soil 

fertility for oil palm 

Description 
Study Sites 

Tunggal Simunjan Tatau 

Soil type Mineral (Ultisols) Mineral (Ultisols) Peat 

pH (KCl)  4.67±0.10 (high) 4.77±0.06 (high) 3.34±0.08 (very low) 

Total C (%) 2.34±4.71 (high) 1.85±0.56 (high) 46.7±71.0 (very high) 

Total N (%) 0.217±0.31 (high) 0.170±0.26 (high) 1.72±3.90 (very high) 

 

      

Table 4.3 Classification of soil nutrient status for oil palm (adapted from Goh 2005) 

Properties very low low moderate high very high 

pH <3.5 3.5 - 4.0 4.0 - 4.2 4.2 - 5.5 >5.5 

Total C (%) <0.8 0.8 - 1.2 1.2 - 1.5 1.5 - 2.5 >2.5 

Total N (%) <0.08 0.08 - 0.12 0.12 - 0.15 0.15 - 0.25 >0.25 
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Figure 4.1 Layout of each treatment in study sites  
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Figure 4.2 Accumulation of FFB productions per palms in each site study by different 

fertilizer treatments. C; conventional fertilizer, M1; coated fertilizer with a half of C 

dosage, M2; coated fertilizer with a quarter of C dosage 

0

10

20

30

40

50

60

70

80

90

100

11
/2

11
/2

8

12
/3

12
/1

7

1/
4

1/
11

1/
25 2/

1

2/
8

2/
15

2/
22

2/
29

3/
20 4/

2

4/
9

4/
14

4/
20

4/
25 5/

7

5/
17

5/
22 6/

8

6/
27 7/

4

7/
11

8/
28

9/
14

9/
21

9/
28

9/
16

10
/1

5

10
/3

0

11
/1

11
/8

11
/1

6

1/
7

FF
B 

(k
g/

tr
ee

s)
Tunggal: 7 years (mature)

C

M2

M1

0

10

20

30

40

50

60

70

80

90

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

FF
B 

(k
g/

tr
ee

s)

Simunjan: 9 years (mature)

C

M1

2011 2012

0

10

20

30

40

50

60

70

80

N
ov

-1
1

D
ec

-1
1

Ja
n-

12

Fe
b-

12

M
ar

-1
2

A
pr

-1
2

M
ay

-1
2

Ju
n-

12

Ju
l-1

2

A
ug

-1
2

Se
pt

-1
2

O
ct

-1
2

N
ov

-1
2

D
ec

-1
2

FF
B 

(k
g/

tr
ee

s)

Tatau: 4 years (immature)

C

M1

0

10

20

30

40

50

60

70

80

N
ov

-1
1

D
ec

-1
1

Ja
n-

12

Fe
b-

12

M
ar

-1
2

A
pr

-1
2

M
ay

-1
2

Ju
n-

12

Ju
l-1

2

A
ug

-1
2

Se
pt

-1
2

O
ct

-1
2

N
ov

-1
2

D
ec

-1
2

FF
B 

(k
g/

tr
ee

s)

Tatau: 5 years (mature)

C

M 1

Insignificant 
difference at 5%

Insignificant 
difference at 5%

Insignificant 
difference at 5%



Chapter 4 

112 

 

 

Figure 4.3 Annual FFB productions in each site study by different fertilizer treatments. 

C; conventional fertilizer, M1; coated fertilizer with a half of C dosage, M2; coated 

fertilizer with a quarter of C dosage 
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Figure 4.4 Partial Factor Productivity (PFP) in each site study by different fertilizer 

treatments. C; conventional fertilizer, M1; coated fertilizer with a half of C dosage, M2; 

coated fertilizer with a quarter of C dosage 
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Chapter 5 

General Discussion and Conclusions 

 

5.1 General Discussion 

Climate change have been became an important environmental topics which 

related the agricultural sector. It well known that anthropogenic activities in the 

agricultural sector is considered as the sources of GHGs emissions. On agricultural 

sector, oil palm plantation has been increased as the sources of GHGs emissions 

through land use change and agricultural practices as introduced in the chapter 1 of this 

study. Whereby, agriculture sectors contribute 60% from anthropogenic N2O sources 

(IPCC 2007; Schmidt 2010). In Indonesia and Malaysia, expanding large area of oil 

palm plantation has been increased critics concern due to its potential impact to induce 

GHG emissions. Among those sources, land use change and land preparation by 

burning method are serious problem and became the most important factor define level 

of GHG emission. Especially, when oil palm plantations are developed on peat soil, the 

carbon is lost as CO2 because of oxidation of the peat soil due to drainage, fires and loss 

from biomass due to clearing vegetation (Arina et al. 2013). In Indonesia the largest 

land use change was from forest to oil palm, while in Malaysia oil palm development 
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has been mainly at the expense of other permanent crops, rather than directly from 

deforestation (Wicke et al. 2008b).  

Another source of GHGs emissions related to the expanding oil palm 

plantations practice is the application of N fertilizers (Yew et al. 2012). The application 

of N fertilizers in oil palm plantation may result in high acceleration release of N2O 

emission into the atmosphere, and eventually leading to significant global warming. 

N2O is an important greenhouse gas, due to its high global warming potential (298 times 

higher than CO2). The use of N-fertilizer is important to provide that plants reach a 

desirable yield, on the other hand, a portion of this added N can be lost to the 

atmosphere as N2O, enhancing the greenhouse effect. The increase in available mineral 

N in soil may enhance the formation of N2O through the process of nitrification and 

denitrification (Hewitta et al. 2009). According to Treseder (2008), fertilization has 

strong effect not only N2O emission but also on CO2 emissions. Due to N-fertilizer is 

also applied to enhance the root respiration for rapid plant growth and generally will 

lead to the increasing of total CO2 emission in the atmosphere. Soil CO2 emissions are 

usually larger in the growing season because of higher carbon inputs from plant 

photosynthesis and more suitable microclimatic environment in soils for microbial 

decomposition. Soil CO2 emission is basically controlled by two processes: CO2 
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production within the soil and its transport from the soil into the atmosphere (Fang and 

Moncrieff 1999). Microbial activity and root respiration are the major sources of CO2 

production, and the transport of the gas is controlled by diffusion.  

In fact, the amounts of N2O emitted from soils depend on complex interactions 

between soil properties, climatic factors, topography and agricultural practices. The 

proportion of N2O gases emitted from soils is influenced by soil type. On mineral soil, 

clayey soils tend to show greater N2O emissions than sandy soils. N2O emission 

increases with higher clay content of the soil, because the chance on anaerobic 

conditions increases (Velthof and Oenema 1995). It reported that under maize land, it 

found much higher N2O emissions on clay soil compared to sandy soil (Van Groenigen 

et al. 2004). Peat soils have higher N2O emissions than clay and sandy soils because of 

the higher organic matter content with related higher denitrification potential (Velthof et 

al. 1996). In the chapter 2 of this study, N2O emission more affected by soils type rather 

than by fertilizers type. The highest mean of N2O fluxes on peat soil in Tatau plantation, 

Malaysia, followed by sandy loam soil (5% content of clay) in Tunggal plantation, 

Indonesia and sandy soil (0.03% content of clay) in Simunjan plantation, Malaysia. N2O 

emissions were not always affected by application of fertilizers whether by conventional 

fertilizer or coated fertilizer. However, on sandy loam soil in Tunggal plantation, 
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Indonesia, application of coated fertilizer reduced N2O emissions during wet and dry 

seasons. Concerning with CO2 fluxes, it tended to increase with the increase in oil palm 

growth, higher root biomass would release in higher root respiration. On the climatic 

factor, precipitation is an important indicator for the risk of anaerobic conditions in soils. 

Many studies found significantly positive correlations N2O emissions with precipitation 

and soil moisture (Smith et al. 1998; Zhang and Han 2008). In this study, high of N2O 

fluxes appeared after a heavy precipitation. During the wet season, diffusion is no 

longer restricted and the accumulated inorganic N becomes available for microbial 

activity throughout the soil, which rapidly exploits the N pools and emits N2O into the 

atmosphere (Melling et al. 2007).  

Topography is one of the factors which effect of N2O and CO2 emissions. The 

highest N2O emission is observed in the lower slope position where optimal water-filled 

pore space (WFPS) is encountered. Related with WFPS, high N2O emission at the lower 

slope position may be driven by the denitrification pathways (Pennock et al. 1992; 

Izaurralde et al. 2004). Besides the N2O emission into the atmosphere as direct emission, 

the important of N2O emission from farmland drainage water as indirect emission is 

poorly understood. Indirect N2O emissions account for one third of the total global 

agricultural N2O source and approximately two thirds of the uncertainty in the total 
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source (Mosier et al. 1998). It reported that on the drain water, the dissolved N2O was 

very quickly lost to the atmosphere. Supersaturated concentrations of N2O in 

groundwater and in surface water draining agricultural lands may occur due to leaching 

of NO3
-
 from the soil towards drainage and groundwater, or production during 

nitrification and denitrification of fertilizer N in the groundwater or drainage. In the 

chapter 3 of this study, it explained that topography was correlated with N2O emission. 

It observed that higher N2O flux in the lower slope compared to upper and middle slope 

position. Concerning with concentration of dissolved N2O in water resources, it 

observed in the supersaturated concentration as leading to possibility to be source of 

indirect emission. 

 Regarding with fertilization, it have to be considered the best practice for oil 

palm development to involve investigation on the soil, through a study to assess the 

potential affecting the GHGs emissions and increasing the efficiency of fertilizer N on 

FFB yield. High FFB yields are sustained in soil with high and balanced nutrient status 

(Goh 2005). In the Chapter 4 of this study, regarding with the fertilizers types in 

effectivity to produce high FFB, it described that application of coated fertilizer was 

more productive on FFB yield compared to conventional fertilizer on each soil types. 

Considering both of effect of fertilizer toward environment and growth of oil palm, it 
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was explained that by applying coated fertilizer were effective to support production the 

FFB of oil palm plantation. However to mitigate the gas emission to the atmosphere, it 

is still needed careful attention with the suitability of soil types. 

Since oil palm sector has been increased and created new jobs as well reduced 

poverty both in Indonesia and Malaysia, it seems that expanding oil palm plantations 

are still increasing in the future. As the oil palm is a perennial crop, it is important to 

understand how to improve intensive cultivation and to decrease the negative effect in 

the environment. On sandy loam soil based on the result in improve fertilizer efficiency 

and reduce N2O emission, as compared to conventional fertilizers, the use of coated 

seems to be promising to utilize in oil palm plantation. However on peat soil, due to 

large amounts of N content, the application rate of N fertilizers should be considered 

carefully. With high organic carbon content and high ratio of C/N, affecting N 

mineralization on peat (Lim et al. 2012), as the result peat soils may release high 

amount of N from the second year after planting onwards, therefore the N application 

rate should be reduced (Corley and Tinker 2003). Application rate of N fertilizer on peat 

soil consider to be lower compare to mineral soil, as recommended by Ng (2002), N 

application rate for Ultisols and Histosols (peat soil) as 0.8-1.0 and 0.6-0.8 kg palm
-1

 

yr
-1

, respectively. By carefully management of oil palm, the FFB yield obtainable to 
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harvest for about 25 years once planted in the plantations. Due to old age, when the oil 

palm had reached the time for no longer valuable, the palms need to be replanted. The 

zero burning is recommended during the process of replanting to decrease the negative 

impact to the environment. In the practice of zero burning, Bakar et al. (2011) suggested 

utilization of the trunk, leaves, and empty fruit bunch (EFB) to be buried in the ground 

in the oil palm area. That technique will accumulate biomass and increase organic 

matter, so it could improve and maintain soil fertility.  

By improving agriculture management, oil palm plantation on mineral and peat 

soil can be carried out sustainably on properly by long term observation. Further 

detailed study to asses a more accurate interpretation of the mechanism of N2O and CO2 

fluxes in oil palm plantation and FFB yield is needed. 

 

5.2 Conclusions 

Based on situation of oil palm expansion and increasing GHGs (Chapter 1), it could be 

concluded as follows (Fig. 5.1): 

- Soil types are affecting N2O and CO2 emissions comparing to the fertilizer types. 

However, depend on soil types, coated fertilizer have potential to reduce N2O 

emission. (Chapter 2) 
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- N2O emission is affected by topography, and ground water on the agriculture land 

have to considered carefully in calculating dissolved N2O concentration as a source 

of indirect emission. (Chapter 3) 

- The effectiveness fertilizer type to produce high FFB yield on various soil types 

both on mineral and peat soil showed that coated fertilizer is more effective than the 

conventional fertilizer. (Chapter 4) 
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Figure 5.1 General conclusions of studies on soil, fertilizer and topography affect N2O, 

CO2 and yield of oil palm in Indonesia and Malaysia.  
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