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ABSTRACT 

 

 

Soft X-ray microscopy has been developed for high resolution imaging of hydrated 

biological specimens due to the availability of water window region. In particular, a 

projection type microscope has a number of advantages in wide viewing area, easy 

zooming function and easy extensibility to CT (Computed Tomography). The blur of 

projection image due to the diffraction of X-rays, which eventually reduces spatial 

resolution, could be corrected by an iteration procedure, i.e., repetition of Fourier and 

inverse Fourier transformations. However, it was found that the correction is not 

sufficiently effective for all images. In this study, we first examined the iteration 

effectiveness by using images of latex particles and chromosomes with various 

magnifications. The results showed that iteration was not effective for the images with 

low contrast such as those of chromosomes. Then, we attempted to apply a contrast 

enhancement method to those same images to make diffraction fringes and specimen 

images clearer prior to the iteration procedure. The method was effective to improve the 

images uncorrectable solely by iteration procedure, and some chromosome images with 

low magnifications (Magnification: 47 ~ 219 times) and relatively high contrast were 

successfully corrected. The results of comparison for grayscale distributions between 

both correctable and uncorrectable images of latex particles and those of chromosomes 

showed that the background noise also may influence the iteration effectiveness. The 

background noise was apparently high for the chromosome images. Thus, we tried a 

noise removal method in combination with the contrast enhancement method as a next 

step. As a result, the chromosome images with magnification of 47 ~ 329 times were 

successfully corrected. However, the chromosome images with higher magnification 

remained at uncorrectable. Therefore, for further improvement of the effectiveness of 

image correction by computer processing, we evaluated the influence of the background 

noise in the iteration procedure through a simulation study. In this simulation study, 

images of the model specimen with known morphology instead of the chromosome 

images with very low contrast or relatively high contrast were used. Under the condition 

that artificial noise was distributed on the images randomly, we have introduced two 

different parameters to evaluate the noise effects with respect to each situation where 

the iteration procedure was not successful, and proposed an upper limit for the noise 

within which the effective iteration procedure for the chromosome images was possible.  
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CHAPTER 1: INTRODUCTION 

 

 

1.1. BACKGROUND AND PURPOSE 

 

There is strong demand of intact and/or in-situ observation of biological specimens at 

cellular and sub-cellular levels, especially in medical and biological fields [1-4]. X-ray 

microscopy has been highly anticipated to be the most suitable method to solve the 

above issue at hand. The X-ray’s wavelength is shorter than that of the visible light. 

Therefore, imaging availability with high resolution is also expected for the X-ray 

microscopy [5].  

Soft X-rays with wavelengths of 2.34-4.38 nm cover a special wavelength region 

called the “water window”, where the X-ray absorption by water is significantly smaller 

than that by organic materials. This enables us to observe the biological specimens in a 

hydrated condition [6-8]. Imaging with smaller radiation damage is also possible for the 

biological specimens compared with electron microscopy [9, 10]. 

The history of the X-ray microscopy started when Wilhelm Roentgen discovered 

X-rays in 1895 and it has been developed for more than a hundred years [5, 11]. 

However, its resolution has not yet reached the level of the optical microscopy, mainly 

due to the fact that X-rays do not reflect or refract easily, unlike the visible light. Recent 

development in contact, scanning and imaging microscopes using soft X-rays has 

enabled high spatial resolution imaging at the scale of a few tens of nanometer, and also 

three dimensional imaging of hydrated biological specimens with cryo-CT system 

[12-17]. However those types of microscopes except contact microscopy have relatively 

complex optical layouts. On the other hand, the projection type microscopy is composed 

of a simple optical layout and has advantages over other types of microscopy 

particularly for the observation of biological specimens because of its wide viewing area, 

easy zooming function and easy extensibility to CT [18]. The projection type of X-ray 

microscopy was originally described by V. E. Cosslett and W. C. Nixon in 1951, first [5, 

19]. As a result of its development about half hundred years, its resolution has been just 

achieved to about 100 nm [20].  

This study aims to develop a soft X-ray projection microscopy which is applicable 

for the intact and/or in situ observation of biological specimens at its cellular and 

molecular levels. However, the image captured by the soft X-ray projection microscopy 



2 

 

is blurred by the diffraction of soft X-rays, resulting in the deterioration of spatial 

resolution. In our earlier studies, the blur was corrected by an iteration procedure, i.e., 

repetition of Fresnel and inverse Fresnel transformations [21-24]. However, the results 

showed that the correction was not necessarily effective for all images. Therefore recent 

studies have been focused on the cause of the ineffective correction and improvement of 

the correction effectiveness. Thus, this study addresses the following two issues. 

(1) To investigate on the cause of the ineffective correction and to propose useful 

methods for image projection that would make the images correctable by the 

iteration procedure. 

(2) To develop the image correction method that would also be effective in images 

even if there is a factor of ineffective correction. 

In the beginning of this study, effectiveness of the correction by the iteration 

procedure was examined on projection images of chromosome and latex particles with 2 

and 10 m diameters in various magnifications. From the comparison of the successful 

corrected case with the insufficient corrected case, the cause of the insufficient 

correction was considered. From this examination, we recognized that the ineffective 

correction was mainly caused by the low image contrast and high background noises on 

the images. Therefore we applied an image improvement method consisting noise 

removal and contrast enhancement methods prior to the iteration procedure. As a result, 

some of images which were not correctable by the iteration procedure only, were 

corrected successfully after the image improvement. However the correction was not 

fully satisfied for the images with very low contrast and with high background noise. 

For consideration of further improvement of the correction effectiveness, we evaluated 

the upper limits of the background noise in which the image is effectively corrected in a 

simulation study. Based on results obtained in this study, the background noise on 

projection images can be evaluated during experiments and the optimization of the 

projection conditions by considering the upper limit of the noise is expected. 
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1.2. THESIS ORGANIZATION: A GUIDE THROUGH THE CHAPTERS 
 

This thesis consists of six chapters. The first chapter introduces the background and 

purpose of this study.  

The second chapter explains the general principles and theories for the soft X-ray 

projection microscopy. Electron storage ring was used as a soft X-ray source in this 

study. Therefore the electron storage ring and a general mechanism to generate 

synchrotron radiations (X-rays) are introduced in the beginning of the section (Section 

2.1), followed by a description of the properties of soft X-rays particularly focusing on 

the water window region as an imaging principle of hydrated biological specimens 

(Section 2.2). In our soft X-ray projection microscopy system, Fresnel diffraction of soft 

X-rays is apparently produced, because monochromatic X-rays are applied. Principle 

and theory of the Fresnel diffraction are introduced in Section 2.3. A Fresnel zone plate 

was used in order to focus the X-ray beam to a point. Section 2.4 describes the Fresnel 

zone plate. Projection images are blurred by Fresnel diffractions. For the blur correction, 

calculations of the X-ray propagation and its inverse propagation were performed by 

Fourier (FT) and inverse Fourier transformations (IFT). Section 2.5 explains the FT and 

IFT. 

In the third chapter, the instrument of the projection microscopy is introduced. In 

the instrument, BL-11A beamline of Photon Factory (PF) of High Energy Accelerator 

Research Organization (KEK), Tsukuba, Japan was used as a soft X-ray source. The PF 

electron storage ring and the BL-11A beamline are explained in section 3.1. Our 

projection microscopy system, which consists of a zone plate, a pinhole and a CCD 

(Charge Coupled Device) camera, is installed to the beamline. Section 3.2 describes 

details of the system.  

Materials and methods of this study are described in the fourth chapter. In the first 

subsection (Section 4.1), projection method and conditions are described in detail. 

Subsequently, preparations of the specimens of chromosome and latex particle are 

presented in section 4.2. The details of iteration procedure and image improvement 

methods are explained in Section 4.3 and 4.4, respectively. In the last subsection 

(Section 4.5), a simulation and its correction procedure for the projection image of 

chromosomes is described. 

In the fifth chapter, results and discussions of this study are presented. This study 

was performed in three steps that involved evaluations of the effectiveness of iteration 

procedure, effectiveness of the image improvement method and determination of the 
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upper limit of background noise on projection images which were corrected effectively. 

They are presented in subsections of 5.1, 5.2 and 5.3, respectively. 

Finally conclusions obtained from the study are explained and the results and 

achievements in this study are outlined as a summary. 
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CHAPTER 2: PRINCIPLE AND THEORY 

 

 

2.1. SYNCHROTRON RADIATION AND ELECTRON STORAGE RING 

 

In this study, synchrotron radiation from electron storage ring was used as a soft X-ray 

source. The theoretical basis and the principles of the synchrotron radiation and the 

electron storage ring are introduced in this section. 

The synchrotron radiation is produced when charged particles moving at the speed 

close to that of light change their direction by the effect of the magnetic fields in the 

electron storage ring. When an electron moves with a speed v   in a magnetic field B   , it 

is effected by a magnetic force 𝐹  defined as equation (2.1) from Lorentz force law [25]. 

 

𝐹 = 𝑞𝑣 × 𝐵   (2.1) 

 

𝐹 : Magnetic force to electron beam 

𝑞: Charge of electron beam 

𝑣 : Speed of electron beam 

𝐵  : Magnetic field 

 

Direction of force can be found according to the right hand rule [26]. In this rule, 

you should hold your index finger, middle finger and thumb finger of your right hand at 

a position of perpendicular to each other, and index finger and middle finger should be 

held in parallel position to the speed of electron and magnetic field, respectively. Then 

the thumb finger points to the direction of the magnetic force. 

Some kinds of magnetic and electric devices are installed in the electron storage 

ring for the purposes such as production of synchrotron radiation, electron acceleration 

for its energy loss and guidance of the electron beam to their reference path. A 

schematic diagram of the electron storage ring is shown in Fig. 2.1.  
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Fig. 2.1: Schematic diagram of the electron storage ring. 

 

The electron storage ring consists of four types of magnetic devices called injection 

device, insertion device, bending magnet and quadrupole magnet, and an electric device 

called radio frequency cavity (RF cavity). The bending and quadrupole magnets are 

shown as large and small black squares. The insertion device, injection device and RF 

cavity are shown as a white square and squares filled with black points and waves, 

respectively. This figure also describes the process of producing synchrotron radiation, 

injection of electron beam to the storage ring and guidance of the electron beam to its 

reference path in the storage ring by magnetic devices. The details of those magnetic 

and electric devices will be explained in the next subsections (2.1.1 ~ 2.1.5). 
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The synchrotron radiation has the properties represented below [27, 28]. And it 

gives the possibility for users to select photons with special properties appropriate to 

their experiments. 

(1) Broad and continuous spectrum from infrared to X-rays 

(2) Highly collimated radiation 

(3) Highly polarized radiation 

(4) Pulsed radiation (Pulse width: about 100 psec) 

(5) Radiation with high intensity and high stability 
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2.1.1. Bending magnet 

The purpose of the bending magnet is to change the direction of electron beam. Also it 

is used for the following two purposes in the electron storage ring [28]. 

(1) Production of synchrotron radiation 

(2) Guidance of the electron beam to their reference path in the storage ring 

 

A schematic diagram of the bending magnet is shown in Fig. 2.2.  

 

 

 

Fig. 2.2: Schematic diagram of the bending magnet. 

 

South and north magnetic poles are indicated as S and N characters, respectively. 

Magnetic field is produced between those magnetic poles and described by directing 

arrows with thin lines. The trajectory of electron beam moving through the magnetic 

field is illustrated by a directing arrow with broken line. The magnetic field influences 

the direction of the electron beam by a force with a direction (directing arrows with 

thick line) defined by the right hand rule. As a result, the synchrotron radiation is 

produced (translucent triangle) and the electrons are guided to their reference path. 
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2.1.2. Quadrupole magnet 

The quadrupole magnet is used to focus the electron beam. It consists of four magnets 

configured to produce a quadrupole. When electron beam goes through the quadrupole 

magnets, it is focused into the center of the poles using magnetic field generated from 

two opposing magnetic north poles and two opposing magnetic south poles. Fig. 2.3 

shows the schematic diagram of the quadrupole magnet.  

 

 

Fig. 2.3: Schematic diagram of the quadrupole magnet. 

 

The boxes with S and N characters show the magnetic poles of south and north, 

respectively. The directing arrows with thin line and broken line show the magnetic 

field and trajectory of electron beam, respectively. Also the directing arrows with thick 

line indicates the direction of the magnetic force to the electron beam. 
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2.1.3. Injection device 

The purpose of the injection device is to introduce the electron beam from the linear 

accelerator to the reference path in the electron storage ring. It consists of two kinds of 

magnets called septum and kicker magnets. A schematic diagram of the injection device 

is shown in Fig. 2.4.  

 

 

Fig. 2.4: Schematic diagram of the injection device. 

 

In this figure, septum and kicker magnets are drawn with rectangles. The directing 

arrows with broken line show electron beam for injection and reference path of electron 

beam. The septum magnet directs the beam toward the closed orbit at the center of the 

kicker magnet. Then, the kicker magnet performs a correction of remaining angle for 

the reference path in the electron storage ring. 
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2.1.4. Insertion device 

The insertion device has two major roles: to monochromatize the beam and to make the 

beam intensity higher. As shown in Fig. 2.5, the device consists of many alternating 

north and south magnetic poles [29]. 

 

 

Fig. 2.5: Schematic diagram of the insertion device. 

 

S and N characters in the figure denote the south and north poles, respectively. A 

directing arrow with broken line indicates electron beam passing through magnetic field 

between those magnets. Synchrotron radiation is shown as a translucent plate. This 

device produces an alternating series of inward and outward electron accelerations when 

the electrons pass through its magnetic field and synchrotron radiations are emitted 

from the each pole.  

Two types of insertion devices are used in the electron storage ring called undulator 

and wiggler. For the undulator, the magnetic field is relatively weak and monochromatic 

X-rays with high intensity are possible. The monochromatic photons produced by 

magnetic field of the undulator overlap and interfere with each other, hence the intensity 

of the X-rays becomes higher. In the case of strong magnetic field, continuous spectrum 

with high intensity is possible. This type of insertion device is called “wiggler”. 
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2.1.5. Radio Frequency cavity 

The RF cavity is used for accelerating the electron beam. It is a metallic chamber that 

consists of series of electric poles. A schematic diagram of the RF cavity is shown in Fig. 

2.6. 

 

 

 

 

 

 

Fig. 2.6: Schematic diagram of the radio frequency cavity. 

 

Directing arrows with thin lines or broken lines indicate electric field or electron 

beam, respectively. The electric poles are arranged side by side in the RF cavity. A 

power generator supplies the electric potential to the electric poles, and the positive or 

negative potentials are always switched on the poles during acceleration of the electron 

beam. The switching regime is equal with that of the electron motion. Therefore, the 

electron beam is always influenced by electric force with a direction to which the 

electron beam flies. 
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2.2. SOFT X-RAY 

 

Spectrum of the electromagnetic wave is generally classified into seven regions in the 

order of increasing energy (in the order of decreasing frequency and increasing 

wavelength): radio waves, microwaves, infrared, visible light, ultraviolet, X-rays and 

gamma rays. One of the main differences among them is their source. X-rays are 

generated by the acceleration of electrons, while the gamma rays are generated by 

nuclear decay. X-rays are also divided into two regions i.e. soft X-rays and hard X-rays. 

Soft X-rays have energies of about 100 eV to 4000 eV (Wavelength: 0.1 nm ~ 10 nm). 

The hard X-rays have energy of about 4000 eV or higher (Wavelength: 0.1 nm or 

shorter) [30]. 

In this study, we used the “water window”, a characteristic region of soft X-rays. 

The energy region of the water window is between 280 eV and 550 eV. In this region, 

soft X-rays are mainly absorbed by bio-materials while little by water. Therefore, 

imaging of hydrated bio-specimens is possible by using soft X-rays in the energy region 

of the water window. The absorption spectra of water and protein for the energy region 

of the water window are shown in Fig. 2.7.  

     

 

 

Fig. 2.7: Soft X-ray absorption spectrum for protein and water. 
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The horizontal axis corresponds to photon energy, whereas vertical axis indicates 

absorption length that is the distance within which the X-ray beam is absorbed into 

material. The absorption length is defined as the distance into material where the X-ray 

intensity decreased to 1/e (e: exponential number) of its incident intensity from the 

Beer-Lambert law, and it is described in equation (2.2) [31].  

 

   








Λ

x
exp0IxI  (2.2) 

 

 0I
 

: Intensity of the incident X-ray 

 xI
 

: Intensity of the transmitted X-ray 

𝑥  : Depth of material 

   : Absorption length 

 

A model of the Beer-Lambert law describing the transmission process of X-rays into 

material is shown in Fig. 2.8. 

 

 

Fig. 2.8: X-ray transmission into material. 

 

In this figure, material is described by a gray rectangle, and X-rays incident to or 

transmitted through the material are shown by directing arrows. 

  

 0I

 

 xI  

x  

Material 

Incident 
X-ray 

Transmitted 
X-ray  



15 

 

 

2.3. FRESNEL DIFFRACTION 

 

Diffraction is a phenomenon where wave turns around an opaque object placed in front 

of wave propagation. It can be explained qualitatively by Huygens’ principle [32].  

According to the Huygens’ principle, every point of a wave front becomes the 

source of secondary waves that propagate in all directions with a speed equal to the 

speed of the original wave. 

The diffraction is exhibited if the object size is comparable with the wavelength 

which are described as a record of interference of the waves. Figure 2.9 shows a 

schematic diagram of the wave propagation around an opaque object to describe the 

Huygens’ principle.  

 

 

 

 

 

 

Fig. 2.9: Schematic diagram of wave diffraction process and recording. 

 

The secondary waves from the edges of the object interfere with each other when they 

overlap, and the wave intensity becomes higher or lower depending on the overlap or 

deviation of the wave phases, respectively. Figure 2.10 shows an image of intensity 

distribution recorded on the screen. 

 

Original wave Secondary waves 

Object 

R 

Screen 
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Fig. 2.10: Example image of diffraction fringes recorded on a screen. 

(Wave: soft X-rays, Object: Latex particle) 

 

The object was a latex particle with 2 m diameter and a monochromatic soft X-ray 

with 700 eV energy was used as the wave source. In this figure, light and dark fringes 

around the object image and a light point in the center of it due to X-ray diffraction are 

clearly seen.  

A theoretical calculation of the intensity distribution on the screen is also possible 

from the wave distributions (distribution of complex amplitude) on the object surface.   

The intensity is defined as square of the wave amplitude and the amplitude distribution 

on the screen is calculated as an integral of the wave distributions on the object surface 

(Equation (2.3)) [33]. 
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𝑅  : Distance between object surface and screen 

𝐼  : Imaginary unit of complex number 

𝜆  : Wavelength 

𝑘  : Wave number (= 2𝜋/𝜆) 

 

Fresnel diffraction is a diffraction behavior that is possible to calculate by a method 

proposed by Augustin Jean Fresnel. The method calculates diffraction pattern on the 

screen from the distribution of waves passing through an aperture or turning around an 

object in the case that the object (or aperture) is placed close to the screen. In other 

words, it indicates a case of diffraction described in Fig. 2.9 where the object size is 

sufficiently smaller than the distance between the object surface and the screen. The 

condition formula is as follows:
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The Fresnel equation (equation (2.4)) is defined from the above condition and the 

equation (2.3). 
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2.4. FRESNEL ZONE-PLATE 

 

In this study, a zone plate was used to make a point source of X-rays from synchrotron 

radiation. This section introduces the principles and theories for a zone-plate. 

The purpose of a zone plate is to focus X-ray beam at a point. It is constructed with 

radially symmetric rings where opaque and transparent zones are arranged with a 

mutually turn. The incident X-rays diffract around the opaque zones and focused at its 

focal points by the interference of the diffracted X-rays. A schematic diagram of a 

Fresnel Zone plate is shown in Fig. 2.11.  

 

 

Fig. 2.11: Fresnel zone-plate. 

 

The opaque zones of the Fresnel zone plate are shown with black rings in the figure 

and the zones are numbered from the smallest one to bigger sizes of the zones. The zone 

radius with number n is calculated by equation (2.5) [33]. 

 

𝑅𝑛 =  𝑛𝜆𝑓 (2.5) 

 

n  : Positive integers for the zone numbers 

𝜆  : Wavelength of incident X-rays 

𝑓 : Focal distance (Distance between central point of zone-plate 

R1 

Rn 
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and focal point) 

 

It is possible to show the focal distance from equation (2.5) as follows (equation (2.6)). 
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(2.6) 

 

Several focal positions are shown in Fig. 2.12 where a parallel beam of X-rays is 

irradiated to the zone-plate along its axis.  

 

 

Fig. 2.12: Focal positions of parallel X-rays on Fresnel zone-plate. 

 

In this figure, X-rays are shown with thin lines. Continuations of diverged X-rays in the 

opposite direction of its propagation are shown with broken lines. The focal points of 

the X-rays are defined as follows (Equation (2.7)) [34]: 
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Positions of the focal points varied depending on the wavelength of X-rays and 

diffraction orders as shown in Fig. 2.12 and equations (2.6, 2.7). Therefore, a pinhole is 

usually placed between the zone plate and the focal point in accordance with the 

condition of the wavelength and requested diffraction order. Thus a spherical wave 

component with particular characteristics could be isolated. 
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2.5. FOURIER TRANSFORMATION AND INVERSE FOURIER 

TRANSFORMATION 

 

In this section, theoretical basis for calculations of the Fresnel diffraction and inverse 

Fresnel diffraction is introduced.  

First, we denote the Fresnel equation (2.4) in one dimension. Then, by briefing the 

part of constant number before the integral sign of the equation for Fresnel diffraction 

and multiplying it with λR , it becomes the same form as the Fourier transformation 

(FT). Therefore it gives the possibility to calculate the wave distributions on the screen 

and the object surface by using the equations of Fourier and inverse Fourier 

transformations (IFT). The FT and IFT equations are shown in equation (2.8) and (2.9), 

respectively [35]. 
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 xF  : Distribution of complex amplitude on screen  

 0xf  : Distribution of complex amplitude on object surface 

𝑥  : Coordinate on screen 

𝑥0  : Coordinate on object surface 

𝑅  : Distance between object surface and screen 

𝑖  : Imaginary unit of complex number 

𝜆  : Wavelength 

𝑘  : Wave number(= 2𝜋/𝜆) 

 

An image describing the coordinates on the object surface and the screen for diffraction 

calculation is shown in Fig. 2.13. 

 



22 

 

 

Fig. 2.13: Coordinates for diffraction calculation. 

 

In order to calculate the equations of FT and IFT by computer, their discrete forms are 

necessary. Therefore the discrete equations of FT and IFT are defined by approximating 

the integrals of equations (2.8) and (2.9). The discrete equations are shown in equations 

(2.10) and (2.11). 
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𝑁  : Total number of sampling 

𝑇0  : Sampling interval on object surface 

𝑇  : Sampling interval on screen 

𝑛, 𝑚 : Positive integers（= 0 , 1 , … , N - 1 ） 

 

For a reversible relation between these equations (2.10) and (2.11), a restraint condition 

for the sampling number and intervals (RC-1) is necessary as shown in equation (2.12). 
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To calculate the discrete FT equation for sampling of N times, calculations of N2 

times which require an enormous amount of time are needed. In order to reduce the 

calculation time, a fast Fourier Transformation (FFT) method is used. To define the FFT 

method, first we change the discrete FT equation (2.10) to the equation (2.13) and 

(2.14). 
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By using the restraint condition of equation (2.12) and an additional replacement of 
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The underlined part of the equation (2.15) has the same form as that of discrete FT 

which the FFT is possible, because exponential part has a symmetric property with N 

period.  The property was formulated in equation (2.16) by using a replacement of 
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𝑘  : Positive integer 

 

In order to show the symmetric property, the equation (2.15) is shown in matrix form by 

using an addition replacement of    mTFmF   and    0nTfnf  . Also, the 



24 

 

constant part in front of summation of the equation was omitted. Equation (2.17) [33] 

shows the matrix. 
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As shown in the matrix, calculations (multiplications) of 
2N  times are needed for the 

discrete FT. However, same calculations are repeated for each symmetric part. In the 

FFT, more simple calculation is possible without the repeated calculations for the 

symmetric parts. Consequently the number of the calculations becomes  /2NlogN 2  

times by using the FFT. To use the FFT, we need to adjust the number of samples to be 
k2N   ( k : positive integer).  
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CHAPTER 3: INSTRUMENT OF PROJECTION MICROSCOPY 

 

 

3.1. ELECTRON STORAGE RING OF PHOTON FACTORY, HIGH ENERGY 

ACCELERATOR RESEARCH ORGANIZATION 

 

In this study, we used the electron storage ring of Photon Factory (PF) of High Energy 

Accelerator Research Organization (KEK), Tsukuba, Japan as a soft X-ray source. Main 

parameters of the PF electron storage ring [36] are shown in Table 3.1. 

 

Table 3.1: Main parameters of PF electron storage ring. 

- Parameter 

Beam energy 2.5 GeV 

Initial beam current 450 mA 

Circumference 187 m 

Bending radius 8.66 m 

Beam emittance 34.6 nm*rad 

Beam lifetime 30~35 h (at 450mA) 

Average ring pressure 6*10
-8

 Pa (at 400mA) 

Radiation loss 400 keV/turn 

Number of bunches 280 

Number of bending magnets 28 

Number of quadrupole magnets 78 

Number of insertion devices 8 

Number of RF cavities 4 

RF frequency 500.1 MHz 

Stability of SR beam position 

SR beam drift is less than 20 m during 

the whole day (at 20 m from source 

point) 
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Layout of PF electron storage ring and positions of experimental stations [37, 38] are 

shown in Fig. 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Layout of PF electron storage ring and positions of experimental stations. 
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Experimental stations are shown with gray and black plates for hard X-rays and soft 

X-rays or vacuum ultra violet (VUV) radiation, respectively. The experimental station 

for BL-11A beamline used in our experiment is shown by a red square. Some 

representative parts of the storage ring in red and broken lines are zoomed up on top of 

the figure and the devices in the zoomed up parts are explained. The bending and 

quadrupole magnets are shown with large and small black squares, respectively. The 

insertion and injection devices and RF cavities are also indicated as white squares and 

by squares filled with black points and waves, respectively.  

In our experiment, a bending magnet with number B11 [39] which produces photon 

energy spectrum as shown in Fig. 3.2, was used 

 

Fig. 3.2: Photon energy spectrum produced by bending magnet in PF electron storage 

ring, KEK. 

 

Horizontal axis corresponds to photon energy, while vertical axis corresponds to 

brilliance of the photon beam. The brilliance is defined as the equation (3.1) [40]. 
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N   : Number of photon 

t   : Time  

   : Solid angle 

S   : Beam size (cross section) 

λ   : Wavelength 

 

BL-11A beamline provides soft X-rays in the energy range between 70 eV and 

1900 eV with a grazing-incidence monochromator from the X-ray spectrum shown in 

Fig. 3.2. Layout of the BL-11A beamline [39] is shown in Fig. 3.3. 

 

 

Fig. 3.3: Layout of BL-11A beamline of PF, KEK. 

S0~S2: Apertures or slits, M0 and M0': Cylindrical mirrors, M1 and M2: Spherical 

mirrors, Mf: Toroidal mirror, VLS-PG: Varied-Line-Spacing Plane Grating. 

 

The figure describes the layout of the beamline viewed from the top view and from the 

side view. In this beamline, the synchrotron radiation from the bending magnet B11 

(maximum horizontal acceptance of 5 mrad) is reflected by two cylindrical mirrors M0 

and M0', first. The reflected beam is monochromatized and focused by a 

grazing-incidence monochromator consisting of spherical mirror (M1 or M2), and 

varied-line-spacing plane grating (VLS-PG), between the entrance and the exit slits (S1 

and S2). Finally, it is refocused by a toroidal mirror (Mf) to the sample position. S0 is 

an aperture to pass center or off-axis beams for linearly or elliptically polarized soft X 

rays, respectively.  

The monochromator is equipped with mechanisms to exchange two spherical 

mirrors (M1 and M2) with different incident angles and three gratings with different 
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groove densities of 300 l/mm, 800 l/mm and 1200 l/mm. The mechanism enables us to 

obtain appropriate energy ranging from 70 eV to 1900 eV without vacuum breakdown. 

A grating with groove density of 800 l/mm was used in our experiment. Available 

energy spectrum in the combination of this grating and the mirror M2 illustrated in Fig. 

3.3 is shown in Fig. 3.4 [39].  

 

 
Fig. 3.4: Available energy spectrum of photon for a grating with groove density of 

800 l/mm. 

 

The horizontal axis and vertical axis show the available photon energy and 

photo-current intensity, respectively. The graph shows the distribution of the available 

X-ray energy. In our experiment, a monochromatic spectrum with an energy of 700 eV 

was chosen which is indicated by the broken line on the figure. The energy resolution 

for the spectrum was 1.4 eV. 
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3.2. PROJECTION MICROSCOPY SYSTEM 

 

We installed a projection microscopy system at the experimental station for BL-11A 

beamline of PF, KEK (Fig. 3.5). In order to make a point source from soft X-ray beam 

of the beamline, the projection system was constructed with a zone-plate and a pinhole 

which is located at the focal point of the zone-plate. A back-illuminated X-ray CCD 

camera was used for imaging. For the imaging, a specimen was placed between the 

pinhole and the CCD camera and magnified images of the specimen were captured on 

the CCD screen as projection images. Optical layout of the projection microscopy 

system is shown in Fig. 3.5. 

 

 
Fig. 3.5: Optical layout and a schematic diagram of structure of the soft X-ray 

projection microscopy. 

 

The projection microscopy system is shown in a rectangle with broken line. A 

zone-plate, a pinhole, a specimen and a CCD camera are shown in the rectangle from 

the left to the right direction, side by side. The electron storage ring and the beamline 

are shown in the left side of the rectangle. Zooming is easily performed by moving the 

specimen along axis of the projection system. For zooming up, the specimen closes to 

the pinhole. In contrast, it moves off from the pinhole for zooming out. 

A photo image of the projection system which shows just an exterior image is 

presented in Fig. 3.6. The zone-plate and the pinhole are contained in the high vacuum 

chamber. The specimen is placed in the chamber with lower vacuum just behind a 

Electron storage ring 
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Beamline 
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window of the vacuum bulkhead. Behind the vacuum chamber, a CCD camera system is 

connected. The position of the specimen is also indicated. 

 

 

Fig. 3.6: Soft X-ray projection system installed for experiment. 

 

The details of the zone-plate, pinhole and CCD camera system are introduced in the 

next subsections (3.2.1 ~ 3.2.3). 
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3.2.1. Zone-plate 

In this study, we used a Fresnel zone-plate (FZP) with binary type made by NTT 

Advanced Technology Corporation. The structure of FZP is schematically shown in Fig. 

3.7.  

 

     

(a) x-y cross section 

 

(b) x-z cross section 

Fig. 3.7: Structure of Fresnel zone-plate. 
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Fig. 3.7 (a) and (b) show x-y and x-z cross-sectional views, respectively. The FZP 

consists of three layers that are called absorber, membrane and substrate. A membrane 

with thickness of 0.2 m is in between an absorber with thickness of 0.4 m and a 

substrate with thickness of 1 mm. The absorber has a structure of radially symmetric 

rings, known as Fresnel zones. The main parameters of this zone-plate are summarized 

in Table 3.2. 

 

Table 3.2: Main parameters of a Fresnel zone-plate used in this study. 

Items Parameters 

Substrate 

Material Si 

Thickness 1000 m 

Shape 10 mm square 

Membrane 
Material SiN 

Thickness 0.2m 

Absorber 

Material Ta 

Thickness 0.4 m 

Total number of zone 1952 

Maximum diameter 625 m 

Radius of inner most circuit 7.071 m 

Minimum zone width  

(outer most zone) 
0.08 m 
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3.2.2. Pinhole 

The pinhole supplied by Kanagawa Academy of Science and Technology (KAST) was 

made using a Focused Ion Beam (FIB) technique [41] which is applied particularly in 

nanofabrication process. In the FIB technique, ion beam from a liquid metal ion source 

was focused by electric and magnetic fields, and the material for the pinhole was placed 

at the focal point of the ion beam to create a hole. 

 A model of the pinhole is shown in Fig. 3.8. 

 

 

(a) x-y cross section 

 

 

(b) x-z cross section 

Fig. 3.8: Pinhole. 

 

Fig. 3.8 (a) and (b) show x-y and x-z cross-sectional views, respectively. The pinhole 

was made from platinum material with 5 m depth and 1 m diameter. 
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3.2.3. CCD camera 

In this study, a back-illuminated X-ray CCD camera (Hamamatsu Photonics 

C4880-30-26WS) was used. The configuration of the CCD camera system is shown in 

Fig. 3.9.  

 

 

Fig. 3.9: Configuration of CCD camera system. 

 

It consists of a back-thinned illuminated CCD, a hermetically vacuum-sealed head, 

a circulating water cooler for the camera head, camera controller, image acquisition unit 

and computer. To import images captured with the CCD camera, from the image 

acquisition unit to the computer, a software “Image-Pro Plus” (Media Cybernetics, 

USA) was used. The image properties are as follows: 

 Pixel-pitch:  24.8 m 

 Image size:  512*512 pixels 

 Bit depth:  16 bit 

 

Fig. 3.10 shows the photo images of the CCD camera system including a set of the 

camera head and the CCD (1) and the circulating water cooler (2).  

  

 

                         

 

               
Computer Image acquisition unit Circulating  

water cooler 

Camera controller Camera head CCD 

Image input board Software 
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Fig. 3.10: CCD camera system installed for experiment. 

  

(2) 

(1) Set of CCD and camera head, (2) Circulating water cooler 

(1) 
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CHAPTER 4: MATERIALS AND METHODS 

 

 

4.1. PROJECTION METHOD AND CONDITION 

 

Projection imaging was performed at various magnifications. The magnification was 

adjusted by moving the specimen between the pinhole and the CCD screen. As 

illustrated in the optical layout (Fig. 4.1), it can be calculated as a ratio of the distance 

from pinhole to CCD screen and to specimen location (equation (4.1)).  

 

d

D
X 

 

(4.1) 

X : Magnification 

D : Distance between pinhole and CCD screen 

d : Distance between pinhole and specimen 

 

 

Fig. 4.1: Optical layout of projection system of the soft X-ray projection microscopy. 

 

In the figure, soft X-rays are shown in gray lines. Soft X-rays, which are focused on 

Zone-plate Pinhole 

Specimen 

CCD 
screen 

d (D - d) 

D 
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the center of the pinhole by the zone-plate, propagate to the CCD screen. Some of the 

X-rays penetrate through the specimen. The X-rays unshielded or penetrated through the 

specimen are then recorded on the CCD screen. As shown in equation (4.1), when the 

specimen is placed close to the pinhole, imaging with high magnification is possible. 

Typical experimental conditions are summarized in Table 4.1. 

 

Table 4.1: Typical experimental conditions. 

- Values 

X-ray energy 700 eV 

Focal distance of zone-plate 28.25 mm 

Focal spot size of zone-plate 97.6 nm 

Pinhole diameter 0.5 or 1 m 

Distance between pinhole and CCD screen 329 mm 

Distance between pinhole and specimen 0.5~7 mm 

Coherence length at the specimen position (for 
the pinhole with 0.5 m diameter) 1.77~24.8 m 

Temporal coherence (Energy resolution) 0.89 m (1.4 eV) 

Magnification 47~658 times 

Projection time 3 min 
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4.2. SPECIMEN PREPARATION 

 

4.2.1. Chromosome 

Chromosome preparation was made from cultured human lymphocyte cell line (IM-9) 

on a silicon nitride window with 1 mm square in size and 100 nm in thickness supported 

by a center-hollowed silicon substrate with 5 mm square in size and 380 m in 

thickness according basically to the standard protocol for light microscopic observation 

with some minor modifications [41]. A brief flow of the chromosome preparation is as 

follows. 

(1) The cells in early logarithmic growth phase (2~3*10
5
 cells /ml) are arrested in 

mitotic phase by treating with 50 g/ml of colcemid at 37 °C for 5 hours and 

centrifuged at 1000 rpm for 5 min.  

(2) The precipitated cells were resuspended in a hypotonic solution (75 mM of KCl or 

0.6 % of sodium citrate) at 37 °C, and kept for 20 min at the same temperature for 

swelling and then fixed with Carnoy fixative (a mixture of methanol/glacial acetic 

acid 3:1).  

(3) A small volume (ca. 30 - 40 l) of the fixed cell suspension was dropped onto the 

silicon nitride window and air dried.  

 

In some cases, the window with chromosome specimen was washed with fresh 

fixative to remove cytoplasmic debris around the chromosomes before the specimen 

was dried up completely. The background of the window surface became rather clean 

with little loss of chromosomes by this wash. 

An example image of the chromosomes prepared for the projection experiment is 

shown in Fig. 4.2. The image was captured using an optical microscopy. As shown in 

the image, the chromosomes with their characteristic morphology could be successfully 

be prepared. Especially, the chromosomes in the red circle have relatively good shape 

without overlapping of excess bending compared to others. Therefore, we chose those 

chromosomes for our projection experiment. 
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Fig. 4.2: Images of chromosomes captured using an optical microscope. 

 

  

Chosen for our projection experiment  
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4.2.2. Latex particle 

Latex is a stable emulsion that consists of biopolimer microparticles dissolved in an 

aqeous medium. In this study, latex particles which were prepared by drying up the 

emulsion were used. The latex particle has the following characteristics. 

 It has a morphology of pure sphere and its size (diameter) is known. 

 It is constructed with biopolimer particles with relatively high density (1.03 g/cm
3
). 

Also it is much thicker than the chromosome specimens. The high density and the 

large thickness of the latex particle prevent X-rays from penetrating through the 

specimens and allows high contrast imaging in comparison with the case for 

chromosome specimens which have far lower contrast than latex particle. 

 

Therefore, projection images of latex particles were used in this study as a standard 

specimen based on its characteristics mentioned above. Effectiveness of the iteration 

procedure was compared between projection images of latex particles and those of 

chromosomes. Also, the effectiveness of the iteration procedure was also compared 

between different sizes (2 and 10 m) of latex particles. An example image of latex 

particles with 2 mφ diameter captured by a scanning electron microscopy is shown in 

Fig. 4.2. 

 

 

Fig. 4.3: Image of latex particle with 2 mφ diameter captured using a scanning electron 

microscopy.  
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4.3. ITERATION PROCEDURE 

 

Projection image of specimen captured with soft X-ray projection microscopy is blurred 

due to diffraction of X-rays. Then, spatial resolution of the specimen image is decreased 

due to influence of the blur. When phase and amplitude distributions of X-rays on CCD 

screen are known, blur correction is possible by using IFT calculation for inverse 

propagation of the X-rays to the specimen surface. The projection image has 

information about the amplitude distribution. However, we do not have any information 

about the phase. Thus the iteration procedure performs many repeated calculations of 

FT and IFT between the CCD screen and the specimen surface for the approximation of 

the X-ray phase distribution on the CCD screen. Finally a corrected specimen image is 

produced as a record of the X-ray intensity on the specimen surface. A diagram of the 

iteration procedure is shown in Fig. 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4: Iteration procedure. 

(Images: Latex particle with 10 mφ diameter, magnification of 329 times, FT: Fourier 

Transformation, IFT: Inverse Fourier Transformation, RC-2: Restraint condition for 

amplitude distribution on specimen surface) 
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All steps of the iteration procedure shown in the diagram are explained as follows: 

(1) Spherical wave which propagates from the pinhole to the CCD screen is calculated 

and phase distribution of the spherical wave is obtained as initail phase distribution 

of X-rays, because we do not have any information about the X-ray phase 

distribution which is essential for the correction of the experimental projection 

image. 

(2) Noise removal and/or contrast enhancement is performed as image improvement for 

the projection image. Details of the image improvement method will be indroduced 

in the next section (4.4). 

(3) Amplitude distribution on the CCD screen is obtained from the projection image 

after image improvement. 

(4) The amplitude and the phase distributions are used for IFT calculation and an 

inverse propagation of the X-rays from the CCD screen to the specimen surface is 

calculated by the IFT. As a result, the amplitude and the phase distributions of the 

X-rays on the specimen surface are obtained. 

(5) A restraint condition (RC-2) is used for the amplitude distribution on the specimen 

surface. Details of the RC-2 will be explained later. 

(6) The phase and amplitude distributions on the specimen surface obtained from (4) 

and (5) steps are used for FT for calculation of the X-ray propagation from the 

specimen surface to the CCD screen. Then phase distribution of the X-rays on the 

CCD screen is obtained. 

(7) (4)~(6) steps are repeated by using the estimated phase distribution in step (6) 

instead of the phase distribution of spherical wave in step (1). The repetition of the 

cycled calculations is stopped when the specimen boundary on the corrected image 

is not changed even if further calculation is carried out. 

(8) Finally the corrected image is produced by calculating the intensity distribution of 

the X-rays from the amplitude distribution on the specimen surface.  

 

Restraint condition for X-ray amplitude distribution on specimen surface 

There is no reason why X-ray intensity on specimen surface becomes higher than the 

X-ray intensity at a situation without specimen (illumination intensity). Therefore, when 

the X-ray intensity on the specimen surface is higher than the illumination intensity, it is 

replaced with the illumination intensity. Fig. 4.5 shows the restraint condition.  
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Fig. 4.5: Restraint condition. 

 

The graphics in the top and the bottom sides of the figure are for the case before and 

after applying the restraint condition. Horizontal and vertical axes of the graphics are 

coordinate and X-ray intensity, respectively. The pink line shows illumination intensity 

whereas the black line shows the X-ray intensity on specimen surface. 
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Interpolation of sampling number 

For the calculations of FT and IFT in the iteration procedure, the following two 

conditions of the number of samples are necessary: 

 The numbers of samples on the specimen surface and on the CCD screen should be 

equal 

 The number of samples should be defined as 2
n
 (n: positive integer) to use the FFT. 

 

The pixel number of the projection image can be used as the sampling number on 

the CCD screen. However it is not applicable to the sampling number on the specimen 

surface due to the following restraint conditions of the sampling interval and the 

sampling region on the specimen surface. The sampling number is defined as the ratio 

of sampling region to sampling interval. 

 

(1) Sampling interval on the specimen surface 

Sampling interval on the specimen surface is calculated from sampling interval on 

the CCD screen by the equation (4.2) for a reversible relation between FT and IFT 

calculations. 

 

L

λR
T0 

 
(4.2) 

 

0T  : Sampling interval on specimen surface 

λ  : Wavelength of the X-ray 

R  : Distance between the pinhole and the CCD screen 

L  : Sampling region on the CCD screen 

 

The sampling region on the CCD screen is defined as the size of the projection 

image. Therefore the sampling region and the sampling interval on specimen 

surface should not be changed.  

 

(2) The sampling region on the specimen surface 

Since the sampling should be performed for the whole region of the specimen 

surface at least, the sampling region on the specimen surface should be equal or 

higher than the value calculated from the magnification of the imaging and the 

sampling region on the CCD screen by using equation (4.3). 
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X

L
L0 

 
(4.3) 

 

0L  : Sampling region on specimen surface 

L  : Sampling region on the CCD screen 

X  : Magnification 

 

Then, an interpolation for the number of samples is used depending on the 

projection conditions. The interpolation adjusts the number of the samples taking 

the restraint conditions (1) and (2) into account. An example of the interpolation for 

magnification of 166 times, distance between pinhole and CCD screen of 329 mm 

and wavelength of 1.77 nm is shown in Fig. 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6: Interpolation of sampling number. 
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In the panel A, sampling parameters on the CCD screen which were defined 

from region, pixel number and pixel pitch of the projection image are shown. In this 

case, the sampling parameters on the specimen surface were calculated by using the 

equation (4.2) and (4.3) (panel B). At least 1568 samples were necessary in this 

example. Therefore the number of sampling was interpolated to 2048 (2
11

). Thus an 

excluding region is added to the image of specimen surface. The panel C and D 

show the results of interpolation to the CCD screen and the specimen surface, 

respectively.  

 

The successfully corrected image should fulfill the following conditions: 

(1) Contrast of the diffraction fringes against illumination intensity should be lower 

than 2% (A contrast criterion of the human eye’s threshold, which could distinguish 

target contrast difference of 2% against the background intensity [42]) 

(2) The specimen boundary on the corrected image should show the chromosome 

morphology. The pixels of the specimen boundary of which contrast against 

illumination intensity is higher than 2% is traced and checked.  
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4.4. IMAGE IMPROVEMENT METHOD 

 

The iteration procedure was not effective for all images, especially for the chromosome 

images whose diffraction fringes and/ or specimen morphology were not clear due to 

low contrast and high background noises for the images. An example of projection 

image of chromosome and its corrected result is shown in Fig. 4.7.  

 

               

Fig. 4.7: Projection image and its corrected result for chromosome. 

(Magnification: 219 times) 

 

In this example, a bright fringe due to X-ray diffraction was captured around the 

specimen. However, the fringe remained on the corrected image. In other words, the 

iteration correction was not successful. For this projection image, contrast of the 

diffraction fringe was low and the background noise on the image was high compared 

with images that were correctable by the iteration procedure. An example of the images 

which were successfully corrected is shown in Fig. 4.8.  

 

               

Fig. 4.8: Projection image and its corrected result for latex particle with 2.8 m diameter. 

(Magnification: 166 times) 

 

In this projection image, two diffraction fringes were captured clearly around the 

specimen. Contrast of the innermost part was very high. However, contrast of the 

outermost part was not so high and was lower than or equal to the contrast of the 
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correction 

Corrected image 

Corrected image 

5 m 830 m 

2.5 m 550 m 



49 

 

diffraction fringe of the chromosome image in Fig. 4.7. Nevertheless, the iteration 

procedure was highly effective in this case. It is considered that this successful 

correction depended mostly on the information of the innermost fringe. It may be 

concluded that at least one fringe of X-ray diffraction should be captured clearly for 

successful correction. Hence we developed an image improvement method prior to the 

iteration procedure, which consists of noise removal and contrast enhancement methods. 

For the evaluation and comparison of effectiveness of those methods, four processes 

with or without noise removal and/ or contrast enhancement methods could be 

considered as shown in Table 4.2.  

 

Table 4.2: Image improvement prior to the iteration procedure. 

- Diagram
*
 Explanation 

 

(1) 

 

 

 

without noise removal and contrast 

enhancement 

(2) 

 

 

 

only contrast enhancement 

(3) 

 

 

 

only noise removal 

(4) 

 

 

 

noise removal and contrast 

enhancement 

*: The process described with red lines (－) is active and corresponds to the 

explanation in the right side (A: Noise removal, B: Contrast enhancement） 

 

The details of the noise removal and contrast enhancement methods are explained 

in the next subsections (4.4.1 and 4.4.2). For the explanaitions, a schematic diagram of 

the projection image was applied. The model is shown in Fig. 4.9. In the center of a 

circular region representing the X-ray illumanation area, a specimen and diffraction 

fringes around the specimen are described. The noises are distributed randomly over 

whole area of the X-ray illumination. 

In this study, the noise is defined as unnessessary parts of grayscale distributions on 

the projection image which break down the intensity distributions of the diffraction 

fringes, specimen and smooth illumination.  
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Fig. 4.9: Model of projection image. 
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4.4.1. Contrast enhancement 

Intensity distribution of the X-rays on the CCD screen is recorded as the grayscale 

distribution of the projection image. In this case, a linear relation exists between the 

grayscale distribution and the intensity distribution of the X-rays, and this linearity 

should not be influenced by the contrast enhancement. Thus, a linear contrast 

enhancement method calculated by equation (4.4) [43] was used as a method which has 

no influence to the linearity.  

 

 
 

max

minmax

min G'
GG

Gji,G
ji,G' 






 
(4.4)

 

 

 ji,G' : Grayscale value after the contrast enhancement for a pixel 

with coordinate  ji, . 

maxG' :  Maximum value of the grayscale distribution on the image 

after the contrast enhancement 

 ji,G :  Grayscale value before the contrast enhancement for a pixel 

with coordinate  ji, . 

maxG :  Maximum value of the grayscale distribution on the image 

before the contrast enhancement 

minG :  Minimum value of the grayscale distribution on the image 

before the contrast enhancement 

 

When applying the linear contrast enhancement method, minimum and maximum 

values of the original grayscale distribution on the projection image are assigned to a 

new set of values. Therefore, the full range of available grayscale values can be utilized. 

In Fig. 4.10, the same model of projection image as in Fig. 4.9 except background 

noises is also shown. A broken line with red color is a cross-sectional line that refers to 

the grayscale distribution in Fig. 4.11. Two models for the grayscale distributions on a 

cross-sectional line of the model projection image before and after the contrast 

enhancement were illustrated in the figure (blue and red broken lines). In this model, the 

intensity difference of diffraction fringe as shown by blue double arrows could be 

enhanced about twice as described by the red double arrows on the figure. 
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Fig. 4.10: Model of projection image. 

 

 

 

 

Fig. 4.11: Grayscale models before and after contrast enhancement. 
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4.4.2. Noise removal 

In general, a median filter and a moving average methods are applied as non linear noise 

removal method for the background noises which were randomly distributed through 

the whole area of the image. While all edges on the image become obscure by the 

moving average method, the noise removal is possible without any influence to the 

image edges by the median filter method. Since the projection images captured by our 

projection experiment contain some important informations about specimen image and 

diffraction firnges, we chose the median filter method to remove the background noises 

on the projection image. 

In the median filter, the following process is performed for each pixel of the image. 

At first, the method selects N x N pixel region and arranges the grayscale values of the 

selected pixels. Then the grayscale value of the pixel at the center of selected pixel 

regions is replaced with a median value of the arranged grayscales. Algorithm of the 

median filter (An example with 3 x 3 pixel region) is shown in Fig. 4.12 [44]. 

 

 

 

 

 

 

Before noise removal            After noise removal 

 

Fig. 4.12: Algorithm of noise removal by median filter. 

 

In this example, the grayscale value of a pixel with noise (90) was removed by 

replacing with the median value (30) of the selected regions. Any size of the pixel 

region is possible for this median filter. However, the median filter with 3 x 3 pixel 

region was applied for this study. 

Background noise on the projection image has a different property from that of the 

diffraction fringes, and the specimen image recorded on only one or a few pixels. 

Therefore it is possible to remove most of the noise by the median filter with the 

smallest pixel region (3 x 3). On the other hand, it might induce a loss to the diffraction 

fringes and the specimen image by the median filter with larger region of pixels. A 

model of grayscale distributions for specimen image and background noises before and 

after noise removal is shown in Fig. 4.13. Fig. 4.13 (a) and (b) show grayscale 

distributions of the pixel regions with different sizes estimated by the median filter. In 

this case, comparison was made for 3 x 3 and 5 x 5 pixel regions. The horizontal and 
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vertical axes are pixel and grayscale distribution, respectively. For the region of 3 x 3 

pixels, the medean filter could remove the background noises without influencing the 

grayscale distribution of the specimen. However, position of the grayscale boundary for 

the specimen was deviated for the region of 5 x 5 pixels. 
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(a) Pixel region for median filter: 3x3 

 

 

    (b) Pixel region for median filter: 5x5 

 

Fig. 4.13: Grayscale distributions on a model for a part of projection image before and 

after the noise removal. (Comparison of noise removal effectiveness in the cases of 3x3 

and 5x5 pixel regions for the median filter) 
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4.5. SIMULATION OF PROJECTION IMAGE 

 

In order to evaluate the limits of the background noise on the projection image where 

the iteration procedure can work effectively, a simulation study was performed. In the 

simulation study, we prepared a model specimen of known morphology with the 

background illumination of X-rays which was obtained experimentally, because the 

critical factor which affects the iteration calculation and results in lowering the spatial 

resolution is supposed to be the spatial variation of X-ray illumination. Therefore, the 

correction of the illumination variation has been a main issue in our imaging 

experiments. The process is shown in Fig. 4.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.14: Simulation and correction procedure for the projection image. 

(a) X-ray image of illumination by experiment, (b) X-ray image of illumination for 

simulation, (c) Specimen image, (d) Phase distribution of spherical wave, (e) Projection 

image without noise, (f) Projection image with noise, (g) Corrected image 

 

At first an X-ray image of illumination was captured experimentally (a), and the 

image for simulation on the specimen surface (b) was obtained by removing the 

background noise with a simple moving average process and by applying IFT on the 

image (a). Then the specimen image (c) was prepared by adding a model specimen on 

the image (b). 
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Projection image (e) was calculated using FT. The calculation used amplitude 

distribution from the specimen image (c) and the phase distribution of spherical wave 

on the specimen surface (d), because X-ray spherical wave was used for projection 

experiments. Then artificial noises were added to the projection image (e) directly for 

evaluation of the noise influence, leading to the projection image (f). The noise 

distribution was set up randomly, and the sizes and the number of noise were based on 

the noise information of experimental projection images, where the blur correction by 

the iteration procedure was not effective. Noise contrast, defined as a ratio of the 

difference between the highest and lowest value of intensity for the noise to the 

illumination intensity, was introduced as variables. 

To correct the projection image (f), the iteration procedure was applied to the X-ray 

intensity distribution on the specimen surface of the opposite side of the X-ray source.  

The noise contrast divided by the contrast of diffraction fringe, which was defined 

below, was adopted to evaluate the noise for the chromosome image with relatively high 

contrast, because some of the images with relatively high contrast were successfully 

corrected by adjusting the contrast of noise and diffraction fringes. Therefore the ratio 

of the noise contrast to the contrast of diffraction fringes was considered as a good 

measure of noise in this case. The contrast of the diffraction fringes was defined 

similarly to the noise contrast as a ratio of the difference between the highest and lowest 

values of intensity for the diffraction fringes to the illumination intensity. A relationship 

between the contrast ratio in the projection image (f) and contrast of the diffraction 

fringes in the corrected image (g) was examined, because the problem in this case was 

that the diffraction fringes remained in the corrected image. 

On the other hand, the relationship between contrast of the target in the corrected 

image (g) and noise MSE (Mean Squared Error) [45, 46] of the projection image (f) was 

studied for the chromosome image with very low contrast where the diffraction fringes 

were hardly detected and the contrast of target (specimen morphology) was lost by the 

iteration procedure. The noise MSE was adopted to evaluate the noise by taking all the 

parameters of the noise (noise number, size and contrast) into account, because the 

images were not correctable even if the contrast enhancement was performed prior to 

the iteration procedure while some images with relatively high contrast were corrected 

effectively. The noise MSE was defined using equation (4.5) as a value of square 

grayscale per pixel [45]. 

 

 
N

n_1

20

nn G-G
N

1
MSE

 

(4.5) 
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nG :  Grayscale value of n in a pixel of the projection image with 

noise (panel f) 

0

nG : Grayscale value of n in a pixel of the projection image without 

noise (panel e) 

N :  Total number of the image pixels (=512*512) 

 

To evaluate the contrast of the target, we chose “equation (4.6)” based on the 

“Weber diffraction definition of contrast [47]”.  

 

max

21

G

GG
Contrast




 

(4.6) 

 

G1 :  An average value of the grayscale distribution around the 

target in an area between the large square and the small 

square 

G2 :  An average value of the grayscale distributions on the target 

in the small square 

Gmax (= 2
16

): 16 bit depth, is maximum value of the grayscale (Fig. 

4.15) 

 

 

Fig. 4.15: Area selections for contrast evaluation of specimen image. 

 

  

G1 G2 



59 

 

 

 

CHAPTER 5: RESULTS AND DISCUSSION 

 

 

5.1. EFFECTIVENESS OF ITERATION PROCEDURE 

 

Effectiveness of the iteration procedure was tested on projection images of chromosome 

and latex particles with 2 and 10 m diameters. The projection images were captured at 

the magnification of 47 ~ 658 times and the effectiveness of the iteration procedure is 

summarized in Table 5.1, which depends on the magnification.  

 

Table 5.1: Effectiveness of iteration procedure. 

Specimen 

Magnification (times) 

low high 

47 66 165 219 329 504 658 

Chromosome 3.3 3.1 3.9 4.0 3.4  X X 

Latex particle (2 m) 0.1 0.0 0.2 0.0 0.0  0.0 

Latex particle (10 m) 0.2 0.3 0.2 23.5 21.2  18.5 

*1) The numbers in the red rectangle show the contrast of diffraction 

fringes (%). 

*2) Gray highlights: the corrected images fulfilled the condition of 

successful correction, which the contrast of diffraction fringes is 

below 2%. 

*3) X: excluded (diffraction fringes in the projection images were not 

observable. Some or the whole parts of the target were lost by the 

iteration procedure) 

 

As shown in Table 5.1, the following results were obtained. 

(1) All images were not correctable for chromosome. Representative examples of 

projection images of the chromosome and its corrected results are shown in Fig. 

5.1. For the images with high magnifications of 504 times or more, the contrast 

of projection images was very low, which was frequently experienced in the 

case of chromosomes and the diffraction fringes were hardly detected. In this 

case the corrected images should be the same as the projection images. In other 
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words, the morphology of the projection image should not be changed by the 

iteration procedure. However some or the whole part of the specimen image 

were lost by the iteration procedure as shown in Fig. 5.1 (a).  

For the images with 329 times magnifications or lower, diffraction fringes 

remained on the images after the iteration correction even in the situation 

where diffraction fringes were observable on the projection images. The 

contrast of the diffraction fringes in the corrected images was 3%~4% which is 

obviously higher than the contrast criterion (2%). In order to show the 

diffraction fringes clearer, grayscale distributions on the cross-sectional lines of 

the images in Fig. 5.1 (b) are shown in Fig. 5.2. Broken lines with black color 

show the diffraction fringes. 

(2) All images of a latex particle with 2 m diameter were corrected successfully. 

A representative example of the projection and corrected images is shown in 

Fig. 5.3. In the successfully corrected images, the diffraction fringes 

disappeared and the contrast of the diffraction fringes was examined to be 0%. 

The particle size (the specimen boundary which was traced on the corrected 

image) was equal to the estimated value of its size. 

(3) Some images of the latex particle with 10 m diameter with 165 times 

magnifiaction or lower were corrected successfully. However, the effectiveness 

of the iteration procedure was not enough for images with magnification of 219 

times or more. Representative examples of the images for successful and 

insufficient corrections are shown in Fig. 5.4 (a) and (b), respectively. For the 

images with insufficient correction (b), diffraction fringes remained after the 

iteration procedure and contrast of the innermost diffraction fringes was about 

20%. On the other hand, the diffraction fringes disappeared and the contrast of 

the diffraction fringes was calculated to be 0%. The particle size (the specimen 

boundary which was traced on the corrected image) was equal with an 

estimated value of its size for the images with successful correction (a). 

 

 

 

 

 

 

 

 

Projection image Corrected image 
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(a) Magnification: 504 times 

 

             

(b) Magnification: 219 times 

 

Fig. 5.1: Representative examples of projection and corrected images of chromosome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iteration 

correction 

2.5 m 550 m 

Iteration 

correction 

? 

Projection image Corrected image 

2000m 4m 



62 

 

 

Fig. 5.2: Grayscale distribution on a cross-sectional line of chromosome image with 

magnification of 219 times. 

(The red and blue expressions correspond to the lines in Fig. 5.1 (a), respectively) 

 

             

Fig. 5.3: Representative example of projection and corrected images of latex particle 

with 2 m diameter (Magnification: 165 times). 
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(a) Example of successful correction (Magnification: 165 times). 

 

             

(b) Example of insufficient correction (Magnification: 219 times). 

 

Fig. 5.4: Representative example of successful and insufficient correction for projection 

images of latex particle with 10 m diameter. 

 

In considering the cause and finding the solution for the insufficient correction in 

the chromosome images, we have analyzed the grayscale distributions on the projection 

images. The grayscale distributions on the chromsome images were compared with the 

projection images of the latex particle which were successfully corrected by the iteration 

procedure. The grayscale values of the images with high and low magnifications were 

also compared. Representative example for the comparison of grayscale distributions is 

shown in Table 5.2.  
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Table 5.2: Comparison of grayscale distributions on projection images. 
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In the table, projection images and their corrected images of the latex particle with 

10 m diameter, chromosomes with different magnifications and their grayscale 

distributions on cross sectional lines on the projection images are shown.  
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For the chromosome images, background noise was very high compared with that 

of the latex image. The noise may mainly come from scattering X-rays from debris of 

fragmented intracellular components around the chromosome specimen and from the 

chromosome itself, since the chromosome specimen is structurally heterogeneous 

compared with the latex particles. Therefore for the chromosome images with low 

magnification and relatively high contrast, the X-ray diffraction fringes were considered 

to be interrupted by the background noise, resulting in difficulty in identifying the 

diffraction fringes in the iteration procedure.  

For the high magnification images, contrast of the target was very low. 

Consequently the specimen image disappeared after the iteration procedure due to the 

high background noise in addition to its too low contrast. Totally low signal to noise 

ratio may result from the fact that X-rays were shielded largely by the specimen 

resulting in decrease in image contrast due to the decrease of the X-ray intensity on the 

CCD screen. For the high magnification imaging, specimen should be placed close to 

the point source (pinhole). Increase in the scattering X-rays and background noise due 

to high illumination intensity on the specimen surface should be considered for the high 

magnification imaging.  

Also for the low correction effectiveness on the high magnification images of large 

latex particle, the same reasons i.e. high background noise and low image contrast 

which leads to low contrast of diffraction fringes and poor iteration effectiveness are 

considered.  

Therefore we tried to enhance the image contrast for the specimen and the 

diffraction fringes prior to the iteration procedure. An image improvement method 

consisting of contrast enhancement and noise removal methods were tried. The results 

are introduced in next section (Section 5.2). 
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5.2. EFFECTIVENESS OF IMAGE IMPROVEMENT PRIOR TO ITERATION 

PROCEDURE 

 

Effectiveness of the image improvement method as mentioned in the section 4.4 was 

evaluated on the projection images of the latex particles with 10 m diameter and 

chromosomes. In the image improvement, noise removal and contrast enhancement 

methods were used in individually or in a combination of them. The results are 

summarized in Table 5.3. 

 

Table 5.3: Effectiveness of the iteration procedure with or without image improvement. 

－ 

Magnification (times) 

low high 

4
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A→C  

(only C) 

Latex particle (10 m) 0.2 0.3 0.2 23.5 21.2  18.5 

Chromosome 3.3 3.1 3.9 4.0 3.4  X X 

B→C 
Latex particle (10 m) 0.0 0.0 0.1 0.2 20.2  19.0 

Chromosome 0.0 0.2 0.4 0.4 3.3 X  X 

A→B→

C 

Latex particle (10 m) 0.0 0.0 0.1 0.0 0.0  0.0 

Chromosome 0.0 0.2 0.3 0.2 0.4 X  X 

*1) A: noise removal, B: contrast enhancement, C: iteration procedure 

*2) The numbers in the red rectangle show the contrast of diffraction fringes (%). 

*3) Gray highlights: the corrected images fulfilled the condition of successful correction 

which the contrast of diffraction fringes is below 2%. 

*4) X: excluded (diffraction fringes in the projection images were not observable. Some 

or whole parts of the target were lost by the iteration procedure) 

 

Successful corrections were shown by the gray highlights in the table. Contrast of 

diffraction fringes in the successfully corrected images was obtained to be almost 0%. 

On the other hand, the contrast of the innermost diffraction fringes was about 20% for 

the images of latex particle with insufficient correction. The contrast of the diffraction 

fringe was 3%~4% for the chromosome images with insufficient correction except the 

images with high magnification (504 times or more). The chromosome images with 
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high magnification were lost by the iteration procedure and its morphology was not 

observable in the corrected images. 

In the beginning of this study, effectiveness of iteration procedure was evaluated on 

the images from which background noise was removed. However, the result was the 

same as the case where the background noise was not removed.  

Contrast enhancement prior to the iteration procedure provided successful 

correction for the images with magnification of 219 times or lower. A representative 

example for the effectiveness of the contrast enhancement method is shown in Table 5.4. 

In the table, projection (with and without contrast enhancement) and corrected images 

of chromosome and latex particle with magnification of 219 times were shown as 

examples, which were not correctable solely by the iteration procedure and corrected 

effectively after the contrast enhancement. Grayscale distributions on cross-sectional 

lines of the chromosome images are shown in Fig. 5.5 for the confirmation of the 

diffraction fringes.  

 

Table 5.4: Representative images for effectiveness of contrast enhancement method 

(Magnification: 219 times). 
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Fig. 5.5: Grayscale distribution on a line of chromosome image. 

 

Horizontal and vertical axes show position on the lines and grayscale value, 

respectively. Blue, green and red graphs correspond to the broken lines on the 

projection images without and with contrast enhancement and corrected image. 

The contrast enhancement method was effective especially for the correction of the 

chromosome images which are not correctable solely by iteration procedure. The results 

suggested that sharpening and deepening the image contrast made enough difference for 

the iteration correction between the contrast of diffraction fringes and background 

grayscale distributions. In the case of chromosome image shown in Table 5.5, the 

diffraction fringe contrast was enhanced by about 1.7 times as described in the blue and 

green curves on Fig. 5.5. 

Finally, effectiveness of the iteration procedure with contrast enhancement was also 

evaluated after applying the noise removal method. The correction effectiveness became 

even better and all images of the latex particle and images of the chromosome with 329 

times magnification or lower were corrected successfully. Projection images before and 

after noise removal, and correction results by the iteration procedure with contrast 

enhancement are shown in Fig. 5.6. Grayscale distributions on the cross sectional lines 

of these images are also shown in graphics of Fig. 5.7 for the confirmation of the noise 

removal effectiveness and the correction effectiveness of the diffraction fringes.  
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Fig. 5.6: A representative example of the iteration correction for the chromosome image 

with low magnification (Magnification: 329 times). 

(a) Projection image (without noise removal), (b) Corrected image (without noise 

removal), (c) Projection image (with noise removal), (d) Corrected image (with noise 

removal), A: Noise removal, B: Contrast enhancement, C: Iteration procedure 

Broken lines (  ) correspond to the grayscale distributions described in Fig.5.7. 
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(a) for the projection images 

 

 

(b) for the corrected images  

 

Fig. 5.7: Comparison of grayscale distributions on a line of projection and corrected 

images with and without noise removal. (The images are shown in Fig. 5.3) 

 

Horizontal and vertical axes of the graphics are position on the lines and grayscale 

distribution, respectively.  

By the noise removal method, the background noise on the projection image was 

removed effectively but not completely. Fig. 5.7 (a) shows the grayscale distribution of 

the projection images before and after the noise removal. The blue and red lines of the 

graphic correspond to broken lines on the images in Fig 5.6 (a) and (c), respectively. By 
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applying noise removal, the iteration procedure with contrast enhancement could correct 

some images which were not correctable before. Fig. 5.7 (b) shows the grayscale 

distribution of the corrected images. The green and orange lines correspond to broken 

lines on the images in Fig 5.6 (b) and (d), respectively. The diffraction fringes on the 

corrected image disappeared in the case with noise removal. Conversely the diffraction 

fringes remained on the corrected image in the case without noise removal as shown in 

black curves on the figure.  

We have continued to investigate on how to further improve the correction 

effectiveness. One candidate for the improvement was to evaluate the upper limit of 

background noise. The evaluation of the upper limit of background noise for the 

effective correction was attempted on a simulation study. The result was compared with 

the noise removal effectiveness of the median filter method. Details of the result are 

described in the next section (Section 5.6). A simple and effective washing of the 

specimen using fresh fixative has been also adopted to clean up the debris with few loss 

of chromosomes. The effectiveness of washing specimens will be evaluated in the next 

study. 
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5.3. EVALUATION OF NOISE LIMITS 

 

The following two simulation studies were separately executed for the chromosome 

images with relatively high contrast or with very low contrast. 

(1) Iteration effect for the chromosome image with relatively high contrast:                                                                                                                      

The noise contrast was changed from 0 to the equal level with the contrast of the 

diffraction fringes for the simulated projection image. The ratio of the noise contrast to 

the contrast of the diffraction fringes, abbreviated as “ratio K” in the following text, is 

introduced. The iteration effect was examined for each level of the noise contrast in Figs. 

5.8 to 5.10. Below 0.95 of the ratio K, the correction was found to be successful. 

Therefore the upper limit for successful correction was determined as 0.95. Image 

examples at each step in the simulation and the iteration procedures are shown in Fig. 

5.8. The images in Fig. 5.8 correspond to those in Fig. 4.12 with same numbers (a ~ g). 

The X-ray illumination image (a) was captured by a projection experiment and the 

simulation conditions were adjusted to be the same as the projection experiment at the 

magnification of 329 times. The magnification was calculated as the ratio of distances 

from pinhole to CCD screen and to specimen position based on its optical layout. The 

size of the square for specimen (c) was 4 m * 4 m. The ratio K was adjusted to 0.95 

or 1.00 in the projection images (f-1) and (f-2), respectively.  

In order to show the correction effectiveness more clearly, a comparison between 

grayscale distributions of Fig. 5.8(g-1) and (g-2) is shown in Fig. 5.9A and Fig. 5.9B. 

The vertical axis is the difference between grayscale distributions on cross-sectional 

lines of the corrected image in Fig. 5.8(g-1) or (g-2) and the X-ray image of 

illumination (b). The horizontal axis is the pixel position. Zoomed-up images of four 

edge areas on the grayscale profiles in corrected specimen images indicated by 

rectangles with broken lines were also shown in Fig. 5.9. The diffraction fringes 

remained in the corrected image and the edge of the specimen image was not clear in 

the case when the contrast was almost equal between noise and diffraction fringe (the 

ratio K of 1.00, Fig. 5.9B). On the other hand, by lowering the ratio K by 0.05, the 

correction was greatly improved where the diffraction fringes were removed and the 

specimen edge was corrected clearly (Fig. 5.9A). 

A relationship between the ratio K and the contrast of the diffraction fringes in the 

corrected image is shown in Fig. 5.10. The criterion of the contrast of the diffraction 

fringes in the corrected image whether the correction is successful or not (2%) was 

described by the horizontal broken line. “O” and “X” characters show correctable and 
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uncorrectable region of the ratio K, respectively.  

In the successfully corrected images with the ratio K of 0.95 or lower, contrast of the 

diffraction fringes in the corrected image was lower than 0.5% (Fig. 5.10) and the 

diffraction fringes disappeared. Traced line of the specimen boundary was also 

equivalent to that of the model specimen for all corrected images in these cases. On the 

other hand, diffraction fringes remained in the corrected image where the ratio K 

exceeded 0.95. The contrast of the diffraction fringes in the corrected image was in the 

range between 2% and 3.5%. A blurred part is still visible in the image despite of 

correction. In the case where the correction was insufficient, the X-ray diffraction 

fringes were considered to be interrupted by the noises with the ratio K higher than 0.95, 

resulting in inability to identify the diffraction fringes in the iteration procedure.  

The results suggested that the diffraction fringes accompanied with the experimental 

projection image of chromosome would be corrected effectively by the iteration 

procedure when the ratio K is lower than 0.95 of the diffraction fringe contrast. 

 

         

 

Fig. 5.8: Representative results of the iteration effect on a model specimen image with 

high contrast. 

(a) X-ray illumination image in the experiments, (b) X-ray illumination image for 

simulation, (c) Image of model specimen (square opaque substance), (e) Projection 

image without noise, (f-1) Projection image with noise added (“Noise 

contrast”/”Contrast of diffraction fringes” ≃1), (f-2) Projection image with noise added 

(“Noise contrast”/”Contrast of diffraction fringes” ≃0.95), (g-1) and (g-2) Corrected 

images, (1) Noise removal and IFT, (2) Add target figure, (3) FT, (4) Add noise, (5) 
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 (A) “Noise contrast”/“Contrast of diffraction fringes” ≃0.95, Fig. 5.8 (g-1) 

        

 

(B) “Noise contrast”/“Contrast of diffraction fringes” ≃1.00, Fig. 5.8 (g-2) 

Fig. 5.9: Comparision of grayscale distributions on a cross-sectional line of correction 

images shown in Fig. 5.8 (g-1) and (g-2). 

Thick line (   ): Corrected images (Fig.5.8 (g)), Thin line (   ): X-ray illumination 

image (Fig.5.8 (b)) 
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Fig. 5.10: Relationship between noise contrast of projection image and contrast of 

diffraction fringes in corrected image. (Simulation results for a chromosome image with 

relatively high contrast) 

 O and X: Correctable and uncorrectable regions for the ratio of the noise contrast to 

the contrast of the diffraction fringes, respectively. 

 

(2) Iteration effect for the chromosome image with very low contrast: 

The contrast for the target on the simulated projection image was adjusted to be same as 

that of an experimental projection image of chromosome with the magnification of 504 

times, because the chromosome morphology was captured clearly on the image. The 

noise MSE was adjusted from 0 to 4*10
6
.  

Relationship between contrast of target in the corrected image and noise MSE on the 

simulated projection image was examined for model specimens with small (0.7 m * 

0.7 m) and big (1.4 m * 1.4 m) sizes. The specimen sizes were decided as the 

maximum and minimum when magnification of 500 times is required. The result is 

shown in Fig. 5.11. The horizontal axis is noise MSE on the simulated projection image 

and the vertical axis is the contrast of the target on the corrected image which was 

evaluated by equation (2) and normalized by the value for the noise MSE of 0. “O” and 

“X” characters show correctable and uncorrectable region of noise MSE, respectively 

(Our consideration for the judgment of correctable or uncorrectable region is explained 

in the second paragraph below).  
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Some representative images with noises of high and low noise MSE are shown in Fig. 

5.12. The simulated projection images and their corrected images were shown in the left 

and the right side, respectively. An image of the model specimen prepared by simulation 

was also shown on the right side of the corrected images. The background noise on the 

simulated projection images was observable or unobservable for the image with high 

noise MSE (4*10
6
) or with low noise MSE (4*10

4
), respectively. For the corrected 

image with low noise MSE, traced line of the specimen boundary was equivalent to that 

of its projection images. It was also equivalent to the model specimen boundary. On the 

other hand, for the corrected image with high noise MSE, the contrast of the specimen 

image was lost by iteration procedure, resulting in inability to identify its morphology.  

As shown in Figs. 5.11 and 5.12, the results were the same in the both cases of the 

specimen size. The image contrast decreased as the noise MSE became larger. The 

decreasing rate was slow until noise MSE reached about 10
5
. The contrast decreased 

down to about 10%, and the decrease was not observable at the noise MSE less than 10
5
. 

However, the decreasing rate became rapid when the noise MSE exceeded 10
5
. 

Therefore, we concluded that the upper limit of the noise MSE where the image was 

corrected effectively by iteration procedure is 10
5
 for the chromosome image. Since the 

noise MSE for an experimental projection image which was shown in Fig. 5.1 (a) was 

about 10
6
, the result is consistent with our estimation as shown by the “A” character in 

Fig. 5.11. 

Based on the evaluation obtained in this study, images should be captured with 

noises less than their upper limits after examining the noise on the image during 

experiments and optimizing the projection conditions. Moreover, development of new 

noise removal methods in image processing while keeping target morphology would be 

essential for better image correction. 
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Fig. 5.11: Relationship between noise MSE of projection image and contrast of target in 

corrected image. (Simulation results for a chromosome image with very low contrast) 

O: Correctable region of the noise MSE, X: Uncorrectable region of the noise MSE,  

A: Noise MSE for the projection image of chromosome with the magnification of 504 

times, Table 5.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12: Representative result of iteration effects on the projection images with very 

low contrast. 
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CHAPTER 6: CONCLUSION 

 

 

In this study, we aimed at improving effectiveness of the iteration procedure and 

performed three steps of tests. In the first two steps, we applied projection images of 

two types of latex particles and chromosomes with magnification of 47 ~ 658 times to 

the iteration procedure, and evaluated the effectiveness of the iteration procedure and 

the effectiveness of an image improvement method prior to the iteration procedure. It 

was examined that the ineffective correction is mainly caused by high background noise 

on the projection image. Thus upper limit of the background noises on the projection 

image where the images were corrected effectively by the iteration procedure was 

evaluated as the third step. 

Evaluation of the effectiveness of the iteration procedure was executed to consider 

the cause and the solutions of the ineffective correction. For the images of latex 

particles, iteration effect was good in the case of small size particle (diameter: 2 m) or 

lower magnification (47 ~ 165 times). In contrast, the correction was not successful for 

those with larger size (diameter: 10 m) and higher magnification (219 times or more). 

For the imaging of high magnification, the specimen is placed close to the point source 

of the soft X-ray. Therefore it was considered that majority of the illumination was 

shielded by the large latex particles, making the contrast of the diffraction fringe to 

decrease due to the decrease in the illumination intensity on the CCD screen. Thus, the 

contrast of the diffraction fringes was not identifiable by the iteration procedure. 

All chromosome images were not correctable by the iteration procedure only. The 

reason was considered to be attributed to the decreased contrast of the diffraction 

fringes and specimen images due to the high transmittance of X-rays through the 

chromosome specimens and high background noise due to scattering from the specimen 

itself and debris of fragmented intracellular components of the specimen. For the 

corrected image with low magnifications (47 ~ 329 times), image contrast was 

relatively high and the diffraction fringes remained on the corrected image. The X-ray 

diffraction fringes were probably interrupted by the background noises, and resulted in 

inability to identify them solely by the iteration procedure. 

For the corrected image with higher magnifications (504 ~ 658 times), the contrast 

of the specimen image was lost by the iteration procedure due to its extremely low 

contrast, resulting in the inability to identify its morphology. 
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Next we tried the individual and combined methods of contrast enhancement and 

noise removal prior to the iteration procedure (image improvement method). All images 

of latex particles and some images of chromosome with low magnification up to 329 

times could be successfully corrected. However, the images with high magnification of 

504 times or more were not correctable, yet. Therefore for the consideration of further 

improvement of the iteration procedure, we evaluated the upper limits of the noise 

where chromosome images could be corrected effectively by the iteration procedure by 

using a simulation study. As a result the upper limit of the noise MSE was determined as 

10
5
 which were 10 times lower than the noise MSE which was actually observed in the 

experiment.  

In summary, we reached the following two achievements. 

(1) The chromosome images with magnification of 47 ~ 329 times which were not 

correctable by the iteration procedure only could be corrected successfully by 

using an image improvement method consisting of a contrast enhancement and 

a noise removal methods prior to the iteration procedure. 

(2) By using a simulation study, we evaluated an upper limit of the background 

noises on the images which is correctable by the iteration procedure with the 

image improvement. Also, the quantity of noise evaluation was decided. As a 

result, it became possible to examine the noise on projection images during 

experiments and to optimize the projection conditions by comparing the 

examination result to the upper limit of the noises. 

 

The projection and correction methods are going to be developed further, especially 

for effective correction of the images with very low contrast.  

Future problems to be addressed would be listed as follows: 

(1) A simple and effective washing of the specimen using fresh fixative has been 

adopted to clean up the debris with few loss of the chromosomes. The 

effectiveness of washing specimens will be examined by in future studies. 

(2) More noise removal methods of image processing are going to be investigated 

and the effectiveness of them will be compared for the better image correction.  
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