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Chapter 1

General introduction

1.1 X-ray photoelectron diffraction as a surface analysis method

The photoelectric effect was first observed by Hertz in 1887 [1] and Hallwachs in 1888 [2]. This

effect is in conflict with classical electrodynamics. Electrons were discovered in 1897, [3] and the

above-mentioned photoelectric effect was found to be associated with the emission of electrons

from a metal under ultraviolet irradiation [4,5]. Based on the dependence of the emitted electron

current on the light intensity and that of the electron velocity on the light frequency, Einstein

proposed the concept of photons in 1905 [6], which paved the way to the development of the

“Old Quantum Theory”. Application of the photoelectric effect to chemistry was hindered by

the poor energy resolution of electrons and low quality of vacuum pumps. Meanwhile, X-ray

diffraction (XRD), which had been discovered in 1898 [7], was examined by W. H. Bragg and

W. L. Bragg in 1913 [8]. Subsequently, crystallography based on XRD was established in the

first half of the 20th century [9–11].

The major breakthrough towards chemical analysis using X-ray photoemission was achieved

in 1957 through the application of a β-ray detector [12] to X-ray photoelectron detection by

K. Siegbahn et al., who succeeded in measuring the electronic binding energies of the atomic

inner shells [13]. They continuously obtained X-ray photoelectron spectra that revealed the

peak position shift, which is called chemical shift, due to the chemical environment of the

photoelectron emitter, such as the types of surrounding atoms, nuclear-nuclear distance and

coordination number. Thus, they established X-ray photoelectron spectroscopy (XPS), which

is also known as electron spectroscopy for chemical analysis (ESCA) [14, 15]. Simultaneously,

7



8 CHAPTER 1. GENERAL INTRODUCTION

ultraviolet photoelectron spectroscopy (UPS) for valence-electronic study was also established

[16,17].

Further, K. Siegbahn et al. observed strong diffraction effects in X-ray photoelectron emis-

sion from single-crystal substrates [18], which was also observed by Fadley and Bergstrom sub-

sequently [19]. These observations paved the way for the use of X-ray photoelectron diffraction

(XPD) and its close relative, Auger electron diffraction (AED), as methods for surface struc-

tural analysis. XPD and AED are element-specific and chemical-state-specific; moreover, they

are sensitive to bond directions, bond distances, and coordination numbers. Nowadays, XPD and

AED are widely used for short-range surface analysis [20–23,27]. Low-energy electron diffraction

(LEED), which is a major long-range surface analytical method, is also noteworthy [24].

1.2 Photoelectron diffraction theories

The simplest method for XPD analysis is based on the single-scattering plane-wave (SSC-PW)

model [20–22,25–27]. However, the potential shape of scattering-sites and the multiple-scattering

(MS) effect sometime influence XPD patterns. Hence, theoretical methods that are more ad-

vanced than the SSC-PW model, such as curved-wave-front correction [28–30], linear superpo-

sition [31], Rehr-Albers expansion [32–34], and the cluster-model approach [35–38], have been

proposed. Fujikawa formulated the MS-XPD theory by renormalization of the scattering path

expansion into the inversion of the multiple scattering matrix [39,40]. This approach simultane-

ously satisfies both full convergence in the scattering path expansion and the computational cost

requirements. Furthermore, it does not use surface symmetry. Thus, it is advantageous for XPD

analysis of low-symmetric molecules, such as complicated organic molecules and biomolecules. It

should be noted that MsSpec–1.0, a software package for electron spectroscopy, including XPD

based on a similar MS approach is available [41].

The MS methods mentioned above are based on partitioning of the scattering potential into

spherical potentials that are attached to one another, namely muffin-tin potential [42]. Hatada

et al. proposed a more sophisticated full-potential MS method with space-filling cells [43, 44],

which has been applied to X-ray absorption spectroscopy (XAS) [45]. Application of this method

to XPD analysis is desired.
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1.3 Inner-shell photoionization of gas-phase molecules

Photoelectron angular distributions (PADs) from isolated gas-phase molecules by X-rays in the

laboratory frame (LF) are of the form

I(θ) =
σ

4π
[1 + βP2(cos θ

′)], (1.3.1)

where σ is the integrated cross section, β is the asymmetry parameter, P2(cos θ) is the Legendre

polynomial of the second order, and θ′ is measured from the electric vector of the light. This

is due to free molecular rotation [46]. In 1976, Dill presented a general formula of PADs from

fixed-in-space molecules, i.e., molecular frame photoelectron angular distributions (MFPADs)

by a general series of the spherical harmonics YKM (θ, ϕ):

I(θ, ϕ) =

2lmax∑
K=0

∑
M

AKMYKM (θ, ϕ), (1.3.2)

where θ and ϕ are measured from the molecular z-axis. This formula is much richer source of

information on photoionization dynamics, providing details that are “washed out” by the freely

rotating molecules in typical gas-phase experiments [47]. In the 1990s, Golovin et al. succeeded

in the measurement of an MFPAD from a valence orbital of an O2 molecule [48]. Then, N2

1s [49] and CO C 1s [50] were measured.

MFPADs from two-atomic molecules are measured using the angle-resolved photoelectron–

ion coincidence technique (see Fig. 1.3.1) [51–53]. The two fragment ions are immediately ejected

after the Auger decay due to Coulomb repulsion. The initial momenta of the fragment ions P1

and P2 give the recoil axis as the direction of the momentum difference of Precoil = P1 − P2.

The initial photoelectron momentum pe is measured in coincidence with the ion momenta;

then, it is transformed from the LF to the recoil frame (RF). The recoil frame photoelectron

angular distributions (RFPADs) measured using this method are regarded as MFPADs with

the axial-recoil approximation [54] if the entire process takes place within a timescale that is

much shorter than the molecular rotational period. The expansion coefficients of the Legendre

polynomials of the MFPADs give the dipole transition matrix elements and the phase shifts for

partial waves [55, 56]. Such complete experiments for obtaining all the dipole transition matrix

elements and phase shifts for photoionization of two-atomic molecules are implemented by the
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coincidence measurement mentioned above [57–63]. Furthermore, RFPADs of linear triatomic

molecules are measured under the assumption that they can be regarded as MFPADs [64–72].

The original apparatuses for angle-resolved photoelectron–photoion coincidence (AR-PEPICO)

measurement [48,51] detect photoelectrons and fragment ions using rotatable analyzers. Hosaka

et al. developed a new apparatus using imaging detectors, which improved the collection ef-

ficiency and allowed for obtaining MFPADs in the energy region above 100 eV [73, 74]. The

difficulty due to the large number of partial waves for the single-centered expansion in such

an energy region was overcome by applying the MS-XPD theory [39, 40] for comparison with

experimentally obtained MFPADs [75–77]. These studies indicate that the XPD picture can

describe MFPADs in a high-energy region. Thus, static molecular structures can be extracted

from MFPADs using the trial-and-error method based on the MS-XPD calculations [78].

1.4 Time-resolved molecular imaging

In the late 20th century, Zewail paved the way to femtosecond molecular imaging during chemical

reactions using an ultrafast laser technique [79]. Since then, the temporal resolution of the

ultrafast laser technique has been reduced to the order of attoseconds, which is sufficient for time-

resolved electron imaging [80–82]. Along with the development of lasers for ultrafast electron

dynamics, X-ray free-electron lasers (XFELs), such as FLASH at DESY in Hamburg [83–85], the

Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in Menlo

Park, California [86], and the SPring-8 Angstrom Compact free-electron LAser (SACLA) at the

RIKEN Harima Institute [87–89], have been developed for ultrafast nuclear dynamics. XFELs

have facilitated considerable progress in ultrafast dynamics, as has been reported [90–92].

For time-resolved imaging of isolated gas-phase molecules in the optical laser pump–XFEL

probe experimental scheme (see Fig. 1.4.1), molecular orientation or alignment is necessary.

Molecular orientation or alignment is usually achieved with the use of strong laser pulses [93].

By combining such pulses with rotational quantum-state selection, Holmegaard et al. realized a

high degree of alignment of < cos2 θ2D >= 0.97 [94]. Molecular orientation or alignment without

a laser field has also been studied to avoid its influence on the probe process [95, 96]. Recently,

Takei et al. succeeded in achieving molecular orientation in the laser-field-free condition by using

rotational-state selection [97]. By assuming or implementing molecular orientation or alignment

based on the above-mentioned methods, many theoretical or experimental studies have been
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Figure 1.3.1: Concept of RFPAD measurement for two-atomic molecules using the
photoelectron–ion coincidence technique. The initial momentum of the photoelectron is mea-
sured in coincidence with those of the fragment ions, which give the molecular recoil axis. The
recoil axis is regarded as the molecular axis at the instant of photoemission if the entire process
takes place within a timescale that is much shorter than the molecular rotational period [54].
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optical laser pulse XFEL

wave packet
τ = 0 τ = t1 τ = t2

propagation

2D XPD image

internuclear distance

optical excitation

Figure 1.4.1: Sketch of an optical laser pump–XFEL probe experimental scheme. An optical
laser prepares vibrational wave packets on an excited state. Then, they are probed by means of
XPD images with XFEL pulses.

conducted for time-resolved XRD [98–102] and time-resolved XPD [78, 103–112]. Recently,

Glownia et al. succeeded in observing nuclear wave packets by using time-dependent XRD [113]

(as did Yang et al. by using ultrafast electron diffraction [114]).

Although theoretical studies of time-resolved XRD and XPD are in progress, those that

consider the wave packet dynamics of molecular rotation and nuclei are limited [98, 112]. Such

studies, involving nonadiabatic dynamics near conical intersections [115, 116], are required for

applying time-resolved XRD and XPD to studies of chemical reactions.

1.5 Outline of the thesis

The remainder of this thesis is organized as follows. Chap. 2 describes the MS-XPD theory to

calculate the static XPD profile for a certain molecular geometry [39,40]. Chap. 3, which is based
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on Refs. [108,109], shows the possibility of extracting molecular structures based on XPD profiles

for molecules that are aligned by an Nd:YAG laser field. The proposed theoretical method is

successfully applied to the analysis of the recent experimental data of the I2 molecule [109], in

which the elongated I2 molecular structure in the laser field is identified by a comparison between

the simulated and experimental XPD patterns. Chap. 4, which is based on Ref. [117], describes

the formulation of XPD from molecules undergoing photochemical reactions induced by optical

laser pulses, and subsequent application of the formula to the simulation of time-dependent

XPD profiles from both dissociating I2 molecules and bending CS2 molecules. The dependence

of nuclear wave packet motions on the intensity and shape of the optical laser pulses is examined.

Consequently, the XPD simulations based on such nuclear wave packet calculations are observed

to exhibit characteristic features, which are compared with the XPD profiles due to the classical

trajectories of nuclear motions. Appendix A, which is based on Ref. [118], presents the C 1s

PADs in coincidence with the CO+–O+ fragment ion pairs of CO2 molecules at photoelectron

energies of 85, 120, and 150 eV. The observed left-right asymmetric PADs are well reproduced

by our theoretical model by considering the two degenerate zero-point bending vibrations. This

leads to a conclusive result on the interpretation of such PADs; although such PADs from

polyatomic molecules obtained in the photoelectron–ion coincidence measurement were thus far

believed to be in the molecular frame, they are actually in the recoil frame. Appendix B, which

is based on Ref. [119], presents the O 1s photoelectron angular distributions in coincidence with

the CO+–O+ fragment ion pairs of CO2 molecules at photoelectron energies of 90, 120 and 150

eV. The observed RFPADs are left-right asymmetric because of an increase in the bond-breaking

probability of the C–O bond involving the O atom with the 1s hole, compared with the other

C–O bond. A comparison between the experimental data and the calculations based on our

semi-empirical model enables us to deduce the value of 1.4 for this increase in the relative bond

breaking probability. Finally, Appendix C presents the derivation of the normal coordinate for

the two-degenerate bending motions.





Chapter 2

Multiple-scattering XPD theory

By using the same one-electron molecular basis for the initial and final electronic states, the

amplitude of core-level photoemission by dipole electron-photon interaction is expressed by⟨
ψ−
k (rA;R)

∣∣ê · rA
∣∣ϕc(rA)⟩, where ψ−

k (rA) denotes the photoelectron wave function of momen-

tum k under the influence of the optical potential; ϕc(rA) denotes the wave function of a core

orbital localized on the atomic site A; ê denotes the polarization vector of the incident light;

and R denotes the position vectors of the nuclei. One can assume that the photoelectron wave

function ψ−
k (rA) depends on a transient molecular structure owing to the nuclear Coulomb field

and electron-electron interaction in the vicinity of the molecule. By using the site-t matrix ex-

pansion of ψ−
k (rA) [39], the photoemission amplitude can be expressed as the multiple-scattering

series ⟨
ψ−
k (rA)

∣∣ê · rA
∣∣ϕc(rA)⟩ = Z0 + Z1 + Z2 + · · · , (2.0.1)

where Z0 denotes the amplitude without scattering from the surrounding atoms (direct term),

Z1 denotes the single-scattering amplitude, Z2 denotes the double-scattering amplitude, and so

on. The direct term Z0 is written as

Z0 =
⟨
ϕ−Ak

∣∣ê · rA
∣∣ϕc⟩ = ∑

lm

Ylm(k̂)Mlm,lcmc , (2.0.2)

where ϕ−Ak denotes the wave function for the photoelectron with momentum k emitted from

an atom A upon absorbing an X-ray, and l and m denote the azimuthal and magnetic quan-

tum numbers, respectively. The photoionization matrix element Mlm,lcmc excited by linearly

15



16 CHAPTER 2. MULTIPLE-SCATTERING XPD THEORY

polarized X-rays parallel to the z-axis is given by

Mlm,lcmc =

√
2

π
i−leiδ

A
l

∫
r2AdrARεl(rA)rARnlc(rA)

×
∫
dr̂AY

∗
lm(r̂A)

√
4π

3
Y10(r̂A)Ylcmc(r̂A),

(2.0.3)

where δAl denotes the phase shift of the l-th partial wave at site A, and Rεl(rA) and Rnlc(rA)

denote the radial part labeled by the angular momentum quantum numbers of (l,m) and (lc,mc)

for ϕ−Ak and ϕc, respectively. The integral of the angular part yields the angular momentum

selection rule of the photoionization. The single-scattering term Z1 is explicitly written as

Z1 =
∑

α( ̸=A)

⟨
ϕ0k

∣∣tαgAê · rA
∣∣ϕc⟩

=
∑

α( ̸=A)

e−ik·RαA
∑

lm,l′m′

Yl′m′(k̂)tαl′(k)Gl′m′,lm(kRαA)Mlm,lcmc ,

(2.0.4)

where ϕ0k denotes the plane wave, and RαA denotes the position vector of the scatterer α

measured from the photoelectron emitter A. Further, gA is expressed by Green’s function g0

and site-t matrix tA : gA = g0 + g0tAg0 (see Fig. 2.0.2) [40, 77]. The angular momentum

representation of site-t matrix tαl at site α due to the phase shift δαl (k) is given as

tαl (k) = −
exp[2iδαl (k)]− 1

2ik
. (2.0.5)

The propagator

Gl′m′,lm(kRαA) = −4πik
∑
l′′m′′

il
′′
h
(1)
l′′ (kRαA)Yl′′m′′(R̂αA)

∫
dr̂Y ∗

lm(r̂)Yl′m′(r̂)Yl′′m′′(r̂), (2.0.6)

where h
(1)
l′′ (kRαA) is the spherical Hankel function of the first kind [120] and, describes electron

propagation from site A with (l,m) to site α with (l′,m′) [39, 78]. By introducing X = tG, we
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can obtain the general renormalized multiple-scattering XPD formula [39,40,77,78] as

⟨
ψ−
k (rA)

∣∣ê · rA
∣∣ϕc(rA)⟩ =

∑
α

e−ik·RαA
∑

lm,l′m′

Yl′m′(k̂){1 +X +X2 +X3 + · · · }αAl′m′,lmMlm,lcmc

=
∑
α

e−ik·RαA
∑

lm,l′m′

Yl′m′(k̂){[1−X]−1}αAl′m′,lmMlm,lcmc ,

(2.0.7)

Xαβ
lm,l′m′ = (1− δαβ)tαl (k)Gl′m′,lm(kRαβ), (2.0.8)

where X denotes a square matrix in which a matrix element is labeled by a set of atomic sites

(A, α, β, . . . ) in a molecule as well as the pair of angular momentum numbers (l,m) (see

Fig. 2.0.1). The dimension of the matrix is N(lmax + 1)2 for a molecule having N atoms and a

maximum angular momentum of lmax. Full multiple scattering is taken into account by use of

the inverse matrix (1 −X)−1. Thus, we can obtain an XPD profile dσ(R)/dk̂ by carrying out

calculations of the MS-XPD formula:

dσ

dk̂
(R) ∝ |

⟨
ψ−
k (rA;R)

∣∣ê · rA
∣∣ϕc(rA)⟩|2. (2.0.9)

X =

..
.

...

. . .

0

0

0

(lmax + 1)2

α β γ

α

β

γ

{

Figure 2.0.1: Graphical representation of the super matrix X. It is an [N × (lmax+1)2]th-order
square matrix, where N is the number of atoms. The indices of α, β, γ, · · · , denote a set of
atomic sites. The diagonal elements are zero because the photoelectrons should propagate to
other atomic sites.
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XFEL

k

k

gA

tα

RαA

tβ
g0

k

gA

tα

RαA

Rβα

+

+

Z0

Z1

Z2
Figure 2.0.2: Pictorial representations of the multiple-scattering series of Z0, Z1, and Z2 (see
text for abbreviations).

As can be understood from the above discussion, the XPD profile contains information on the

molecular structure through the position vectors of Rαβ in the MS-XPD calculations. In other

words, in this work, such a molecular structure, which is defined by a set of positions for atomic

sites (A, α, β, . . . ), is described by a muffin-tin potential. A schematic of the one-dimensional

(1D) muffin-tin potential for a triatomic molecule is shown in Fig. 2.0.3. In general, the muffin-

tin constant is different from the vacuum level. Therefore, the photoelectron energy experienced
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in the molecular region, Ep, is described by Ep = εp + V0, where εp denotes the kinetic energy

of the photoelectron measured from the vacuum level, and V0 denotes the energy between the

vacuum level and the muffin-tin constant. We evaluated the muffin-tin radii and muffin-tin zero

energy of V0 from each of the atomic potentials −Z/r+VHF, where the center-of-gravity energy

for VHF was calculated using the Hartree-Fock program of Cowan [121,122]. Thus, we prepared

atomic potentials centered on the emitter atom A and the neighboring atoms to determine the

muffin-tin radii and V0. For the photoelectron emitter A, an atomic potential with a core hole

was calculated. The muffin-tin radii and V0 were determined from the intersection point of these

two potentials, as the muffin-tin spheres do not overlap with each other. Although this muffin-

tin model potential is very simple, it must be emphasized that for εp > 100 eV, the XPD profiles

calculated with this approach have been confirmed to reproduce the relevant experimental data

adequately [75,76], and are in good agreement with those obtained by more sophisticated density

functional theory calculations [77].
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Figure 2.0.3: Muffin-tin potential of a triatomic molecule. εp: photoelectron kinetic energy from
the vacuum level, V0: energy between the vacuum level and the muffin-tin constant, and Ep:
photoelectron energy in the molecular region.



Chapter 3

Determination of molecular

structure in an Nd:YAG laser field

3.1 Introduction

XFELs have considerable potential for determining molecular structures with ångström spatial

resolution and for tracing the structural dynamics of molecules and nanoparticles with femtosec-

ond temporal resolution [123]. Over the last decade, groundbreaking experiments on ultrafast X-

ray diffraction (UXD) using recently developed femtosecond XFELs, such as the Linac Coherent

Light Source [86] at SLAC and SPring-8 Angstrom Compact free electron LAser (SACLA) [88]

at SPring-8, have been reported [100, 124–126]. As an alternative to UXD, ultrafast X-ray

photoelectron diffraction (UXPD) using XFELs serves as a promising means for investigating

femtosecond structural dynamics because the photoionization cross sections of molecules are

four to six orders of magnitude greater than those for X-ray scattering. Therefore, the UXPD

method extends the time-dependent structure investigations of the UXD method to new classes

of samples that are not accessible by any other method, e.g., dilute samples in the gas phase

such as aligned, oriented, or conformer-selected molecules. To exploit this capability, several

proposals [78, 104,111] and test experiments [105–108] based on the UXPD methods have been

reported. However, results on the transient structure of molecules during chemical reaction,

which can be obtained using the UXPD methods, have not yet been reported thus far.

In the UXPD method, the gas-phase molecules must be aligned or oriented in space before

the interaction with the XFEL pulses in order to avoid averaging over all possible orientations. In

21



22CHAPTER 3. DETERMINATIONOFMOLECULAR STRUCTURE IN AN ND:YAG LASER FIELD

the pioneering studies on the UXPD method, sample molecules (C8H5F [105–107], C6H4Br2 [106,

107], and I2 [108]) were adiabatically aligned by the electric fields of nanosecond Nd:YAG lasers.

The reported diffraction profiles for such molecules can be regarded as a snapshot of a “molecular

movie” by visualizing the femtosecond structural dynamics in a pump–probe experiment. Here,

a fundamental question arises as to whether the structure of a molecule in an intense alignment-

laser field is the same as that in its ground state. To answer this question, we applied the UXPD

method to a simple I2 molecule to determine its structure—in other words, its internuclear

distance—in the alignment-laser field.

In this Chapter, we report on the profile of I 2p photoelectron diffraction from I2 molecules

with a higher degree of alignment compared with our previous work [108], which was obtained

using XFEL pulses from SACLA. Owing to the better alignment, we succeeded in determining

the average internuclear distance for the I2 molecular ensemble in alignment Nd:YAG laser fields

by applying our molecular structure determination methodology [78] to the newly observed I 2p

photoelectron diffraction profile. Thus, we established that the internuclear distance of I2 in the

laser field is slightly elongated compared to the equilibrium internuclear distance.

3.2 General formula of PADs

The PAD from a gas of isolated, randomly oriented molecules is of the form

dσ

dΩ
=

σ

4π
[1 + βP2(cos θ

′)], (3.2.1)

where σ is the integrated cross section, β is the asymmetry parameter, and θ′ is measured from

the electric vector of XFEL [46,127]. Further, P2(cosθ
′) denotes the Legendre polynomial of the

second order. On the other hand, if the molecules have a definite orientation, then the angular

distribution is described by a different form from that expressed by Eq. (3.2.1). For example,

when the molecular axis is parallel to the electric vector of XFEL, the angular distribution in

the xz-plane of the molecular frame (see Fig. 3.3.1(b)) is expressed by

dσ

dΩ
=

σ

4π

∑
ALPL(cos θ), (3.2.2)
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where the polar angle θ is measured from the molecular z-axis [47,55,128], PL(cosθ) denotes the

Legendre polynomial of the Lth order, and the coefficients AL are calculated from the relevant

dipole matrix elements. Owing to the parity selection rule, the summation over L is restricted

to even integers for molecules having inversion symmetry (as with the I2 molecule). When the

molecular axis is perpendicular to the electric vector of XFEL, the angular distribution in the

xz-plane is written as

dσ

dΩ
=

σ

4π

∑(
BLPL(cos

π

2
) + CLPL(cos

π

2
) cos 2φ

)
, (3.2.3)

where the azimuthal angle φ is measured from the molecular x-axis [47, 55, 128]. Thus, the

azimuthal angle distribution is restricted by the conservation of angular momentum projection

on the molecular axis for linear molecules. By contrast, the polar angle distribution is dominated

by intramolecular photoelectron diffraction. The derivations of Eq. (3.2.2) and (3.2.3) are

presented in Appendix 3.9.

Regardless of the degrees of alignment, the polar angle distribution of the XPD profile for

linear molecules has the same form as that expressed by Eq. (3.2.2), although the values of the

coefficients AL depend on the degrees of alignment.

3.3 XPD of partially aligned molecules

Consider the photoionization of diatomic molecules in an alignment Nd:YAG laser field with

linearly polarized X-ray pulses. The coordinates of the molecular orientation are given by the

polar and azimuthal angles of (Θ,Φ) in the laboratory frame (LF), where the polarization

direction along the electric field E of the X-ray pulse is taken as the z′-axis and the photon

propagation direction q of the pulse is taken as the x′-axis (see Fig. 3.3.1(a)). Hereafter the

molecular axis distribution is represented by the function P (Θ) and the alignment parameter

is given by
⟨
cos2Θ

⟩
=

∫
sinΘdΘdΦcos2ΘP (Θ) [93]. The molecular axis distribution function

P (Θ) is assumed to be normalized in this section. The differential photoionization cross section

for a fixed molecular direction is calculated in the molecular frame (MF), where the molecular

axis is taken as the z-axis, and the plane spanned by the molecular axis and the polarization

of the electric field E′ of the X-ray pulse is taken as the zx-plane (see Fig. 3.3.1(b)). The

polarization direction and the photon propagation direction in the MF are given by Ê′ = (−Θ, 0)
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Figure 3.3.1: (a) Laboratory frame (LF) and (b) molecular frame (MF) coordinate systems. The
vectors E and q in the LF are the electric field and photon momentum of the X-ray pulse, as is
the case for the vectors E′ and q′ in the MF.

and q̂′ = (π/2 − Θ,Φ), respectively. The orientation of the LF with respect to the MF is

characterized by the set of Euler angles

Rγ = {0,−Θ,−Φ}. (3.3.1)

This causes the MF to be coincident with the LF. The inverse is given by

R = R−1
γ = {Φ,Θ, 0}. (3.3.2)

Conventions with regard to the Euler angles, rotation matrices, and angular momentum phase

factors are the same as those given in Refs. [129,130].

Hereafter, the electron coordinates rA and r′A refer to those in the MF and LF, respectively.

The electron photon interaction operator in the dipole approximation is given by

ê′ · r′A = r

√
4π

3
Y10(r̂

′
A) = r

√
4π

3

∑
mγ

Y1mγ (r̂A)D
1
mγ0(Rγ) = ê · rA. (3.3.3)
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As explained in Chap. 2, the photoemission amplitude in the MF is given by

⟨
ψ−
k (rA)

∣∣ê · rA
∣∣ϕnlcmc(rA)

⟩
=

∑
α

e−ik·RαA
∑

lm,l′m′

Yl′m′(k̂){[1−X]−1}αAl′m′,lmM̄lm,lcmc(Rγ),

(3.3.4)

where

M̄lm,lcmc(Rγ) =

√
2

π
i−leiδ

A
l

∫
r2AdrARεl(rA)rARnlc(rA)

×
∫
dr̂AY

∗
lm(r̂A)

√
4π

3

∑
mγ

Y1mγ (r̂A)Ylcmc(r̂A)D
1
mγ0(Rγ).

(3.3.5)

It should be emphasized that the dipole matrix element in Eq. (2.0.7) for the X-ray pulse

polarized along the z-axis is replaced by that for an X-ray pulse polarized along an arbitrary

direction. The photoemission amplitude can be simply written in the following form:

⟨
ψ−
k (rA)

∣∣ê · rA
∣∣ϕnlcmc(rA)

⟩
=

∑
l′m′

C̄l′m′(k;Rγ)Yl′m′(k̂), (3.3.6)

where

C̄l′m′(k;Rγ) =
∑
α

e−ik·RαA
∑
lm

{[1−X]−1}αMl′m′,lmM̄lm,lcmc(Rγ) (3.3.7)

and k = |k|. The differential photoionization cross section in the MF is given by

d2σnlcmc

dkdRγ
= 4πch̄kα

∣∣⟨ψ−
k (rA)

∣∣ê · rA
∣∣ϕnlcmc(rA)

⟩∣∣2
= 4πch̄kα

∑
l′m′

∑
l̃′m̃′

C̄∗
l̃′m̃′(k;Rγ)C̄l′m′(k;Rγ)Y

∗
l̃′m̃′(k̂)Yl′m′(k̂),

(3.3.8)

where c is the speed of light in vacuum and α is the fine structure constant [131,132]. With the

expansion of products of the spherical harmonics [129,130],

Y ∗
l̃′m̃′(k̂)Yl′m′(k̂) = (−1)m̃

′
Yl̃′m̃′(k̂)Yl′m′(k̂)

= (−1)m̃
′ ∑
LM

√
(2l̃′ + 1)(2l′ + 1)

4π(2L+ 1)

⟨
l̃′0l′0

∣∣L0⟩⟨l̃′m̃′l′m′∣∣LM⟩
YLM (k̂),

(3.3.9)

the differential cross section reduces to the simple expansion

d2σnlcmc

dkdRγ
=

∑
LM

CLM (k;Rγ)YLM (k̂), (3.3.10)
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where

CLM (k;Rγ) = 4πch̄kα
∑
l′m′

∑
l̃′m̃′

C̄∗
l̃′m̃′(k;Rγ)C̄l′m′(k;Rγ)

× (−1)m̃
′

√
(2l̃′ + 1)(2l′ + 1)

4π(2L+ 1)

⟨
l̃′0l′0

∣∣L0⟩⟨l̃′m̃′l′m′∣∣LM⟩
.

(3.3.11)

For practical calculations, the expansion coefficient is obtained by the numerical integral of the

differential cross section multiplied by the spherical harmonics:

CLM (k;Rγ) =

∫
k̂Y ∗

LM (k̂)
d2σnlcmc

dkdRγ
. (3.3.12)

The photoelectron momentum vector with respect to the LF is related to that with respect

to the MF as follows:

k′ = R−1
γ k(= Rk). (3.3.13)

By substituting the inverse of Eq. (3.3.13), i.e.,

k = R−1k′(= Rγk
′), (3.3.14)

for Eq. (3.3.10), the differential photoionization cross section in the LF is obtained. For a

practical calculation to obtain the differential cross section for the photoelectron momentum

of k′ = (k, θ′, ϕ′), we first calculate the XPD profile in the MF by Eq. (3.3.4) and obtain the

expansion coefficients by Eq. (3.3.12). Then, we also calculate YLM (R−1k′) and substitute them

into

d2σnlcmc

dk′dRγ
=

∑
LM

CLM (k;Rγ)YLM (R−1k′). (3.3.15)

The procedure for obtaining the polar and azimuthal angles as the arguments for the spherical

harmonics in Eq. (3.3.15) is as follows. A rotation represented by the Euler angles of {α, β, γ},

as shown in Fig. (3.3.2), is expressed by rotations about the initial axes [129,130]:

R̃(α, β, γ) = RZ(α)RY (β)RZ(γ). (3.3.16)

Thus, the components of the photoelectron momentum vectors in the MF and the LF, k and
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Figure 3.3.2: Euler rotation.

k′, are related as


kx

ky

kz

 =


cosΘ 0 − sinΘ

0 1 0

sinΘ 0 cosΘ




cosΦ sinΦ 0

− sinΦ cosΦ 0

0 0 1



k′x

k′y

k′z

 . (3.3.17)

In this manner, the polar and azimuthal angles (θ, ϕ) with respect to the MF, coincident with

(θ′, ϕ′) in the LF, are obtained.

Considering the molecular axis distribution, the weighted sum of the XPD profiles over all

the molecular axis directions and the degenerate core orbitals is constructed by

dσsumnlc

dk′ =

∫ π

0
sinΘdΘ

∫ 2π

0
dΦP (Θ)

lc∑
mc=−lc

d2σnlcmc

dk′dRγ

∣∣∣
Rγ={0,−Θ,−Φ}

. (3.3.18)

For photoionization of a homonuclear diatomic molecule, such as I2 I 2p photoionization in

the present study, further correction of Eq. (3.3.18) is necessary. In this case, the differential

photoionization cross section for a certain molecular direction is an incoherent superposition of

that for the core orbitals localized on the two atomic sites, ϕLnlcmc
and ϕRnlcmc

:

d2σnlcmc

dk′dRγ

∣∣∣
Rγ={0,−Θ,−Φ}

=
d2σLnlcmc

dk′dRγ

∣∣∣
Rγ={0,−Θ,−Φ}

+
d2σRnlcmc

dk′dRγ

∣∣∣
Rγ={0,−Θ,−Φ}

. (3.3.19)

The molecule under consideration has a space inversion symmetry. Thus, for mc ̸= 0, the core
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orbital ϕLnlcmc
for the molecular direction of (Θ,Φ) is related to ϕRnlc−mc

for that of (π−Θ,Φ+π)

by the space inversion. Therefore, the differential cross section of d2σLnlcmc
/dk′dRγ for Rγ =

{0,−Θ,−Φ} is equivalent to d2σRnlc−mc
/dk′dRγ for Rγ = {0,−π + Θ,−Φ − π}. Then, the

weighted sum of the XPD profiles for the diatomic molecule is corrected as follows:

dσsumnlc

dk′ =

∫ π

0
sinΘdΘ

∫ 2π

0
dΦP (Θ)

×
∑

LandR

{d2σL(R)
nlc0

dk′dRγ
+

1

2

lc∑
mc=1

[d2σL(R)
nlcmc

dk′dRγ
+
d2σ

L(R)
nlc−mc

dk′dRγ

]}∣∣∣
Rγ={0,−Θ,−Φ}

.

(3.3.20)

3.4 Experimental setup and procedure

We will describe the experiment performed by Minemoto et al. The details of the experimental

procedures are described in the Methods section of Ref. [109]. A pulsed supersonic molecular

beam containing sample I2 was introduced into the interaction region between facing velocity-

map imaging spectrometers (VMIs) and was intersected by collinear pulsed lasers (Nd:YAG laser

and XFEL) [108] (see Fig. 3.4.1). The 10-ns-long pulses from the Nd:YAG laser adiabatically

aligned the I2 molecules. The polarization vectors of the Nd:YAG laser and the XFEL were

parallel to each other along the z-direction, as shown in Fig. 3.4.1. Here, alignment refers

to the confinement of a molecular axis along the Nd:YAG laser polarization vector. Electrons

produced by the XFEL pulses were accelerated toward one VMI, which was operating in a

velocity focusing mode, and then detected by a microchannel plate (MCP) detector backed by a

phosphor screen. The two-dimensional (2D) electron images formed on the screen were recorded

with a sCMOS camera, and the data acquired for every single XFEL shot were read out by a

personal computer (PC). Simultaneously, 2D ion images were measured with the other VMI and

a detector system similar to that used for the electrons. From the 2D ion images, the degree of

alignment of the I2 molecules was evaluated. The experiment was performed at the beamline

BL3 in the experimental hatch EH4c of SACLA [88,89]. To analyze the XPD profiles within the

theoretical framework of a photoelectron diffraction model [78], we selected the photon energy

of the XFEL to be 4.7 keV, which is ∼140 eV above the ionization threshold of I 2p3/2 (4.557

keV, Ref. [133]); thus, the kinetic energy εp of the I 2p3/2 photoelectrons was ∼140 eV.
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Figure 3.4.1: Schematic of the experimental setup. Two laser beams propagating along the
x-axis in a collinear arrangement intersect a supersonic pulsed molecular beam along the z-axis
at the center of a vacuum chamber. A Nd:YAG laser is used to adiabatically align the sample
I2 molecules that are probed by the XFEL. XPD images of the photoelectrons are recorded by
the upper VMI. The degree of alignment is quantified using the 2D momentum distributions of
the ionic fragments, which are registered by the lower VMI. Adapted from Ref. [109].
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3.5 Electron and ion images from laser-aligned I2 molecules

The 2D electron and ion images acquired from the aligned I2 molecules using the Nd:YAG laser

pulses are shown in Fig. 3.5.1(a) and (c), respectively. Each image was obtained by alternative

measurements with and without the molecular beam and subtraction of the latter from the

former. In the ion image, an intense central spot and an outer ring appear (see Fig. 3.5.1(c)).

The central peak is due to both the atomic ions of He+ in the buffer gas and the molecular

ions of I+2 . The outer ring originates from the Coulomb-exploding fragment ions In+ and is

distributed along the polarization direction of the Nd:YAG laser pulses, parallel to the z-axis

in Fig. 3.5.1(c). The anisotropic distribution of the fragment ions is due to the alignment of

neutral I2 molecules. Based on a numerical simulation for the 2D ion image, the most probable

rotational temperature was estimated to be 5 K and the effective peak intensity of the Nd:YAG

laser pulses was 6×1011 W/cm2 in the interaction region. These conditions resulted in a degree

of alignment characterized by the alignment parameter [93]
⟨
cos2Θ

⟩
= 0.734± 0.003, where Θ

is the angle between the molecular axis and the polarization direction of the Nd:YAG laser. Fig.

3.5.1(d) shows the polar plot of the angular distribution of fragment ions having radii of 5–10

mm, which correspond to the charge states n, where 4 ≤ n ≤ 6 (Ref. [108]). The details of the

numerical simulation are provided in the Methods section of Ref. [109].

The 2D electron momentum image in Fig. 3.5.1(a) consists of a central part, which originates

from low-energy electrons via shake-off processes induced by Auger cascades, and the outer

ring, corresponding to I 2p photoelectrons. The high kinetic energy (∼140 eV) of the I 2p

photoelectrons allows distinction between the outer photoelectron ring and the intense low-

energy central part. Fig. 3.5.1(b) shows the polar plot of the angular distribution of the I 2p

photoelectrons (detailed in the Methods section of [109]), which is hereafter referred to as the

XPD profile. The XPD profiles of reflection-symmetric molecules, such as the I2 molecule, that

are aligned parallel to the polarization vector of the XFEL pulse can be expressed by a series

of even-order Legendre polynomials Pn(θ) (Refs. [47, 110, 128]), where θ is the photoelectron

ejection direction with respect to the molecular axis. In fact, the measured XPD profile is

well reproduced by the Legendre polynomials of up to the sixth order (see Fig. 3.5.1(b)). The

contributions of higher-order Legendre polynomials, which are responsible for the fine structure

expected in the XPD profile, are smeared out owing to the imperfect alignment of the sample

molecules. However, because of the higher degree of alignment of
⟨
cos2Θ

⟩
= 0.734 ± 0.003
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Figure 3.5.1: 2D momentum images of electrons and ions and their polar plots. (a) I 2p photo-
electron image. The white circles indicate radii of 26 and 30.5 mm to distinguish the central-ring
image of low-energy electrons. (b) I 2p XPD profile expressed as a polar plot. The short bars
denote the statistical errors in the experimental data, and the solid curve represents the fitted
result of the Legendre polynomials of F (θ) ≈ P0(θ) + 1.49P2(θ) + 0.31P4(θ) + 0.24P6(θ). (c)
Fragment-ion image indicating that the molecular axis distributions are aligned along the polar-
ization vector of the Nd:YAG laser parallel to the z-axis. The white circles correspond to radii
of 5 and 10 mm. (d) Molecular axis distributions expressed as a polar plot. The dots represent
the experimental data, in which the background has been eliminated from the raw image and
the solid curve P (Θ) = cos2Θ + 1.82 cos12Θ represents the result of the numerical simulation.
Adapted from Ref. [109].
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compared to that of 0.61± 0.03 achieved in Ref. [108], the intensity minima in the XPD profile

are observed in directions perpendicular to the polarization vector of the Nd:YAG laser, although

the fine structure due to photoelectron diffraction, as will be shown later, cannot be resolved.

The improved XPD profile motivated us to analyze our new results on the basis of multiple-

scattering XPD (MS-XPD) theory [78] in order to extract the molecular structure of I2 in the

10-ns-long adiabatic alignment Nd:YAG laser field.

3.6 Simulated XPD profiles

Now, we discuss how the MS-XPD theory enables us to interpret the observed XPD results.

Because the 2p state is triply degenerate, we consider the photoemission from the 2pz orbital

to be aligned along the molecular axis and that from the 2px (2py) orbital to be aligned along

the x-axis (y-axis) orthogonal to the molecular axis. The theoretical results for the XPD, which

were calculated for light polarization along the molecular axis, are depicted as polar plots in the

xz-plane in Fig. 3.6.1 (i.e., XPD from the 2pz orbital: Fig. 3.6.1(b), that from the 2px orbital:

Fig. 3.6.1(c), and their sum: Fig. 3.6.1(a)). Here, we take an incoherent superposition of XPD

from both the left and the right I atoms. As can be seen in Fig. 3.6.1(a), the difference between

XPD by full multiple-scattering calculation and that by single-scattering calculation is small.

This implies that at a photoelectron energy of 140 eV, the single-scattering effect predominates

over XPD, as reported in the literature [75–78].

To elucidate the interference effect in XPD, the results of the computational experiment for

the single-scattering approximation, |Z0 + Z1|2 = |Z0|2 + |Z1|2 + 2ℜ(Z∗
0Z1), are shown in Fig.

3.6.1(d,e). For the polarization geometry corresponding to light polarized along the molecular

axis, the photoionization of the 2pz orbital creates both s- and dz2-partial waves in the local

region of the emitter’s atomic site, owing to the dipole selection rule. However, in Fig. 3.6.1(d),

the primary photoemission amplitude, |Z0|2, exhibits the specific shape of the angular function

of dz2 : Y20(θ, ϕ), where Y20 is a spherical harmonic. This is because the minor component of the

s-partial wave makes a negligible contribution, i.e., the magnitude of the dipole radial integral∫
r2AdrARεl(rA)rAR21(rA) in Eq. (3.3.5) for the s-partial wave (l = 0) is 100 times smaller than

that for d-partial wave (l = 2). However, it should be noted that the interference term between s-

and d-partial waves, which depends on the phase difference of δA2 −δA0 , contributes to the primary

photoemission amplitude. Because the neighboring atom lies in the preferential direction of
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Figure 3.6.1: Calculated I 2p XPD patterns. (a) Blue curve: full multiple-scattering calculation;
red curve: single-scattering calculation. (b) The green bold and dotted curves are the 2pz XPD
patterns from the left and right I atoms under the single-scattering approximation, respectively.
The red curve is an incoherent superposition of the two XPD patterns. (c) Same as (b) but
for the 2px XPD pattern. (d) Purple curve: primary photoemission amplitude from the 2pz
patterns in the left I atom, |Z0|2; black curve: single-scattering amplitude, |Z1|2; and light-blue
curve: interference term of 2ℜ(Z∗

0Z1) (with positive values expressed by the bold curve and
negative values expressed by the dotted curve). (e) Same as (d) but for the 2px. In (e), the
black curve for |Z1|2 and the light-blue curve for 2ℜ(Z∗

0Z1) are barely visible. The insets show
the polarization geometry, in which the double-headed arrow indicates the polarization vector
of the XFEL. Adapted from Ref. [108].
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primary photoemission, the appreciable amplitude, |Z1|2, of the wave scattered by the atom

is observed in the forward direction. Thus, a strong interference effect, 2ℜ(Z∗
0Z1), can be

expected between the primary photoelectron and the scattered waves. In fact, 2ℜ(Z∗
0Z1) strongly

modulates the shape of |Z0+Z1|2 (see Fig. 3.6.1(b,d)). On the other hand, the photoionization

of the 2px orbital produces a dxz-partial wave at the emitter’s atomic site. This is obvious

from Fig. 3.6.1(e): the primary photoemission amplitude, |Z0|2, exhibits the characteristic

shape of the angular function of dxz: (Y2−1(θ, ϕ) − Y21(θ, ϕ))/
√
2. In this case, because the

neighboring atom resides on the angular node of |Z0|2, the amplitude, |Z1|2, of the wave scattered

by this atom is quite small: it is barely visible in Fig. 3.6.1(e). Consequently, the interference

effect, 2ℜ(Z∗
0Z1), between the primary photoelectron and scattered waves appears weakly in

the 2px photoionization (see Fig. 3.6.1(c,e)). Computational experiments were performed to

examine the sensitivity of the XPD profiles to the molecular structure. We calculated the XPD

profiles by changing the internuclear distances for partially and fully aligned molecules. The

profiles for partially aligned molecules are those averaged by the axis distribution expressed by⟨
cos2Θ

⟩
= 0.61± 0.03, which was achieved in the previous experiment [108]. These results are

shown in Fig. 3.6.2. Although the 2px XPD profile is not sensitive to the internuclear distance

owing to the small scattering effect, the total XPD profiles from fully aligned molecules are

sensitive to small changes in the internuclear distance of ±0.5 Å(see Fig. 3.6.2(b)). On the

other hand, the XPD profiles averaged by the axis distribution are not particularly sensitive to

such small changes in the internuclear distance (see Fig. 3.6.2(a)). Thus, it can be concluded that

to definitively determine a molecular structure from a measured XPD profile, a higher degree

of alignment of sample molecules is necessary. In other words, the XPD patterns exhibiting

interference profiles, which would be measurable for highly aligned molecules, are essential for

the application of our molecular-structure-determination methodology, see Ref. [78].

To demonstrate XPD profile dependence on polarization geometries, the XPD profiles de-

pendent on the polarization geometries weighted by the experimentally obtained molecular axis

distribution function of P (Θ) = cos2Θ + 1.82 cos12Θ for the present study as well as their

weighted sum are shown in Fig. 3.6.3. Fig. 3.6.3(a) shows the measured XPD profile relative

to the polarization vector of the XFEL. Each component of the observed XPD profile, which

is illustrated in Fig. 3.6.3(b), depends on the molecular axis because the polarization vector

is fixed in the present experimental geometry. As expected, the molecular axis distributions
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Figure 3.6.2: I 2p XPD patterns depending on internuclear distances. Patterns for (a)
⟨
cos2Θ

⟩
=

0.61 and (b)
⟨
cos2Θ

⟩
= 1. Red curves: equilibrium internuclear distance of 2.666 Å; blue curves:

internuclear distance of (2.666 + 0.5) Å; and green curves: internuclear distance of (2.666 - 0.5)
Å. Adapted from Ref. [108].

strongly affect the measured XPD profiles. In the extreme case of a fully random alignment,

the XPD profiles cannot be measured but the PADs can be observed relative to the polarization

vector of the X-rays.

3.7 Molecular structure determination

We employed the muffin-tin approximation for molecular potentials, which considers spherical

scattering potentials centered on each atom and a constant value in the interstitial region between

atoms (as detailed in Chap. 2). In this model, the photoelectron energy in the molecular region,

Ep, is expressed as Ep = εp+V0, where εp is the photoelectron kinetic energy measured from the

vacuum level, and V0 is the energy between the vacuum level and the muffin-tin constant. For a

given muffin-tin potential—in other words, a certain molecular geometry—we can calculate an

XPD profile within the framework of our MS-XPD theory [78] for a given polarization geometry,

in which the photoelectron energy Ep and the internuclear distance RI−I are free parameters.

The central photon energies of XFEL pulses fluctuate shot-by-shot, but their standard deviation

is much smaller than the bandwidth ∆E (0.5%) at the photon energy of E = 4.7 keV [89].

Thus, owing to this bandwidth of ∆E ∼ 24 eV, the photoelectron peak with the mean energy

of εp ∼ 140 eV has a width of | ±∆E/2| × 2 ∼ 24 eV (full width at half maximum; FWHM).

For convenience, we define a parameter range, ∆Ea, for the photon energy, E = V0 + εa, as

∆Ea = V0 ±∆E. Under this definition, the parameter range of ∆Ea covers the possible range

for the muffin-tin zero energy of V0.
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Figure 3.6.3: XPD profile integrated over the molecular axis distributions (a) and its decompo-
sitions (b). In (a), the reference axis of the XPD profile is the polarization vector of the XFEL,
which is indicated by the double headed arrow. In (b), the central polar plot expresses the
molecular axis distribution P (Θ) = cos2Θ+1.82 cos12Θ. The decomposed XPD profiles exhibit
dramatic changes depending on the geometries of the polarization vector of the X-rays and the
molecular axis. The numbers on the left and right sides of the figures stand for the respective
linear magnifications. Adapted from Ref. [109].
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In general, the XPD profiles are controlled by both the kinematical parameters of the polar-

ization geometries and the dynamical parameters of Ep and RI−I. The former are given, whereas

the latter are retrieved by the following procedure. First, we calculated the profiles for all ge-

ometries by using the set of two dynamical parameters, and we constructed their weighted sum

by considering the axis distribution of the sample I2 molecules (detailed in the Methods section

of [109]). Finally, the weighted sum of the XPD profiles was convoluted over the experimental

acceptance angles (in plane, ±3°; out of plane, ±20°) for the I 2p photoelectrons. To retrieve

the internuclear distance information from the XPD profile calculated by this procedure, we

performed a “trial-and-error” iterative procedure involving a comparison of the experimental

XPD profile, Iexp(θ), with the theoretical ones, Itheor(θ), given by the set of two parameters, Ep

and RI−I. The quality of the fit between the experiment and the theory was evaluated by the

reliability factor, or R-factor [78], defined as

R =

∑
θ[Itheor(θ)− Iexp(θ)]

2∑
θ[Itheor(θ) + Iexp(θ)]2

. (3.7.1)

The intensities Itheor and Iexp are normalized so that the area of each XPD profile is unity.

Because R = 0 corresponds to perfect agreement, we determined the minimum value of the R-

factor to obtain the best solution for the internuclear distance. The R-factor map as a function

of the two parameters is shown within interesting parameter ranges of ∆Ea and (∆RI−I) in Fig.

3.7.1(a). The area (A) surrounded by the solid curve indicates the valley of the R-factor map.

Thus, the best solution for the deviation ((∆RI−I)) from the equilibrium internuclear distance

of 2.666 Åranges from 0.18 to 0.30 Å, i.e., the internuclear distance is elongated by 0.18 to

0.30 Å. Corresponding to this best solution ∆Ea ranges from 45 to 55 eV. By referring to the

value of V0 = 23 eV roughly evaluated by us (see the Method section of [109]), ∆E ∼ +25

eV is obtained, which is comparable to the bandwidth of the photoelectron peak. Considering

both the ambiguity of the V0 value and the photoelectron energy spread, the best solution of

∆Ea ∼ 50 eV is rationalized. To illustrate the quality of the fit, the XPD profiles for the

minimum and maximum values of the R-factor are shown in Fig. 3.7.1(b) along with the

experimental data. The best-fitted curve reproduces the minima of the experimental XPD

profile in the vertical direction. By contrast, the worst-fitted curve reproduces the maxima in

the vertical direction. It is not surprising that one cannot observe prominent differences between
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Figure 3.7.1: R-factor map as a function of parameters ∆Ea and ∆RI−I (a) and relevant I 2p
XPD profiles (b). In (a), a valley exists in region A and a hill exists in region B. In (b), simulated
XPD profiles at the minimum value of the R-factor in region A and at the maximum value in
region B are shown by red and blue curves, respectively. The experimental data are represented
by short bars, as with those in Fig. 3.5.1(b). Adapted from Ref. [109].

the best- and the worst-fitted curves because the XPD profile averaged over the molecular axis

distribution exhibits a fairly simple structure, compared to the XPD profile for a given geometry

(detailed in the Method section of [109]). The slightly insufficient fit between the XPD profile

for the minimum value and the experimental data may be due to relativistic effects, which are

discussed later.

Based on the molecular structure determination methodology described above, we can con-

clude that the internuclear distance of the sample I2 molecules in the alignment Nd:YAG laser

fields of 6× 1011 W/cm2 is elongated from 0.18 to 0.30 Å“ on average”, compared to the equi-

librium internuclear distance of 2.666 Å.

3.8 Discussions

We successfully determined the internuclear distance of I2 molecules in alignment-laser fields by

applying our molecular structure determination methodology, which is based on non-relativistic

MS-XPD theory, to I 2p XPD profiles measured with femtosecond XFEL pulses. Consequently,

we revealed a bond softening of molecules in the alignment-laser fields. This could be mainly

attributed to some portion of the I2 molecular ensemble being electronically excited via multi-

photon processes of the Nd:YAG laser. Although the analysis of the experimental data relies on

quantum computations, there is no doubt that the present experiment is a critical step towards

the goal of femtosecond imaging of chemical reactions, and it paves a new way for the study of
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ultrafast chemical reaction in the gas phase.

Further, we aim to improve the accuracy of the determined internuclear distance. The

relatively large errors are attributed to the following two factors. (i) The I 2p orbital is triply

degenerate; hence, the I 2p XPD profiles obtained from the degenerate states are triply folded.

More importantly, the I 2p XPD profiles are averaged over the axis distributions of the sample

I2 molecules. As a result, the fine structures expected in the XPD profile are smoothed out

owing to the axis distributions (see Fig. 3.6.3); however, we observed one maximum and one

minimum in the XPD profile. (ii) In the deep inner shells (such as I 2p3/2 and I 2p1/2, which

have binding energies of 4557 eV and 4852 eV (Ref. [133]), respectively), the relativistic effects,

which are not considered in our MS-XPD theory, are non-negligible. In fact, within a relativistic

framework, the photoelectron asymmetry parameters for Sb 2p3/2 and 2p1/2 (which have binding

energies of 4137 eV and 4385 eV, respectively) were calculated as 1.23 and 0.97, respectively,

at a photon energy of 4509 eV (Ref. [134]). This implies that the difference in the asymmetry

parameters is appreciable, and this difference must be reduced if these parameters are to be

compared at the same photoelectron energy. Therefore, the XPD profile determined with our

non-relativistic MS-XPD theory may not be fully reliable. Nevertheless, we consider that this

issue is not critical, because although relativistic effects affect the primary PADs, they do not

influence the scattering in the molecules.

The above-mentioned unfavorable conditions can be easily eliminated by using an XFEL

in the soft X-ray region and measuring photoelectrons from non-degenerate s subshells with

binding energies below approximately 3 keV. It must be noted that in these conditions, the

photoelectron angular distributions are well described with a non-relativistic treatment [135].

On the one hand, the structure of molecules in an intense (> 1014 W/cm2), femtosecond

optical laser pulse is known to change dynamically within the pulse duration via, e.g., bond

softening [136], Coulomb explosion [137], and charge-resonance-enhanced ionization [138]. On

the other hand, the structure of molecules in a moderately intense alignment pulse of the order

of 1012 W/cm2 is assumed to remain nearly identical to that of the ground state, except for

bending motions along the shallowest potential directions [139]. In contrast to this assumption,

our present result demonstrates that the change in the internuclear distance, i.e., the excitation

of the stretching motion along the relatively deep potential directions, is likely to be induced

by the moderately intense alignment pulse. Ultrafast imaging [140, 141] of molecular orbitals
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by observing the spectrum of high-order harmonics has attracted considerable attention from

chemists and physicists. The spectrum depends critically on both the shape of the molecular

orbitals and the positions of the nuclei. Once the structure of a molecule aligned by an alignment

pulse is determined by the XPD measurement, the images of the molecular orbitals that are

associated with the deformed molecules can be obtained by retrieving the high-order harmonic

spectra [142,143]. By comparing the orbital images of molecules aligned in the laser fields with

those of molecules aligned in field-free conditions by non-adiabatic alignment [144] or by plasma-

shutter techniques [145], we can investigate the correlations and couplings between electrons in

the ground and excited states using moderately intense laser fields.

3.9 Appendix: Derivation of the general PAD formula

Consider photoionization from the one-electron orbital of
∣∣n0l0λ0⟩ of oriented diatomic molecules

with a fixed direction of the molecular axis n, taken as the z-axis of a molecular coordinate

system, with linearly polarized light. The angular distribution of photoelectrons ejected from

the oriented molecules can be expressed as an expansion in products of spherical harmonics

[47,55,128,146]:

dσ(λ0)(ω)

dêdΩ
= −

√
3σ(λ0)(ω)

∑
L,M

2∑
J

 1 1 J

0 0 0

A
J(λ0)
LM YLM (Ω)YJ−M (ê), (3.9.1)

where ê is the polarization vector, Ω is the solid angle of the photoelectron momentum k,

σ(λ0)(ω) is a partial photoionization cross section for a given photon energy h̄ω, and A
J(λ0)
LM are

the parameters defined by the following equation:

A
J(λ0)
LM = −

√
3[L, J ]

B

∑
l1l2

∑
λ1λ2

∑
m′m′′

√
[l1, l2](−1)m

′+λ2

 l1 l2 L

0 0 0


 l1 l2 L

−λ1 λ2 −M


×

 1 1 J

−m′ m′′ −M

 il1−l2ei(ηl2−ηl1 )
⟨
n0l0λ0

∣∣d∗m′
∣∣εl1λ1⟩⟨εl2λ2∣∣dm′′

∣∣n0l0λ0⟩,
(3.9.2)

where [l] ≡ (2l+1). In the derivation of these equations, it is implied that a photoelectron ejected

in a definite direction is described by the continuous-spectrum one-electron wave function ψ−
k (r).
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In the asymptotic region of large r, this wave function is constructed as a superposition of a

plane wave propagating in the direction of the electron momentum k, and a converging spherical

wave. For further consideration, it is convenient to present this wave function in the following

form:

ψ−
k (r) =

∑
l,λ

Fεlλ(r)i
l exp(−iηl)Y ∗

lλ(k̂), (3.9.3)

where ηl is a Coulomb phase shift. The function Fεlλ(r) does not depend on the direction of

photoelectron propagation. Moreover, it is normalized to the energy δ-function (the energy ε is

connected with the momentum as usual, ε = k2/2), and it has a complex value that includes

the phase shift due to the short-range potential. The dipole matrix elements for Eq.(3.9.2) are

reduced to one-electron integrals by using the same one-electron molecular basis for the initial

and final states. The operator dm =
√

4
3πrY1m(θ, φ) is the dipole transition operator. The

constant B is given by

B =
∑
lλ

∑
m

∣∣∣⟨εlλ∣∣dm∣∣n0l0λ0⟩∣∣∣2. (3.9.4)

First, consider the molecules ionized by linearly polarized light with the polarization vector

ez parallel to the molecular axis n. The process achieves axial symmetry about the molecular

axis; therefore, only the spherical harmonics YJ−M (ê) with M = 0 in Eq. (3.9.1) are present in

the cross section. Consequently, by using explicit forms of the Wigner 3j (or 3jm) symbols [129],

Eq. (3.9.1) can be expressed in terms of the Legendre polynomials as

dσ(λ0)(ω)

dêzdΩ
=
σ(λ0)(ω)

4π

Lmax∑
L=0

√
2L+ 1(A

0(λ0)
L0 −

√
2A

2(λ0)
L0 )PL(cos θ). (3.9.5)

If the relevant one-electron orbitals are degenerate, the differential cross sections are summed

over all the orbitals:

dσ(ω)

dêzdΩ
=
σ(ω)

4π

Lmax∑
L=0

ALPL(cos θ), (3.9.6)

AL ≡ σ(λ0)(ω)

σ(ω)

√
2L+ 1

l0∑
λ0=−l0

(A
0(λ0)
L0 −

√
2A

2(λ0)
L0 ). (3.9.7)

Now, suppose that light is linearly polarized along the x-axis of the molecular frame. Then,
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it follows from Eq. (3.9.1) that

dσ(λ0)(ω)

dêxdΩ

= −
√
3σ(λ0)(ω)

∑
L

[√ 1

4π

 1 1 0

0 0 0

A
0(λ0)
L0 YL0(Ω)−

√
5

16π

 1 1 2

0 0 0

A
2(λ0)
L0 YL0(Ω)

+

√
15

32π

 1 1 2

0 0 0

A
2(λ0)
L−2 YL−2(Ω) +

√
15

32π

 1 1 2

0 0 0

A
2(λ0)
L2 YL2(Ω)

]
.

(3.9.8)

The symmetry relations of the Clebsch-Gordan coefficients [129,130]

⟨
j1m1j2m2

∣∣j3m3

⟩
= (−1)j1+j2−j3

⟨
j1 −m1j2 −m2

∣∣j3 −m3

⟩
(3.9.9)

⟨
j1m1j2m2

∣∣j3m3

⟩
= (−1)j1+j2−j3

⟨
j2m2j1m1

∣∣j3m3

⟩
(3.9.10)

and the relation between the Clebsch-Gordan coefficient and the Wigner 3j (or 3jm) symbol [129]

⟨
j1m1j2m2

∣∣j3m3

⟩
= (−1)j1−j2+m3

√
2j3 + 1

 j1 j2 j3

m1 m2 −m3

 (3.9.11)

leads to the symmetry relation of the Wigner 3j (or 3jm) symbol:

 j1 j2 j3

m1 m2 m3

 =

 j1 j2 j3

−m2 −m1 m3

 . (3.9.12)
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By using Eq. (3.9.12), the symmetry relation of the coefficient A
J(λ0)
L−M is obtained:

A
J(λ0)
L−M = −

√
3[L, J ]

B

∑
l1l2

∑
λ1λ2

∑
m′m′′

√
[l1, l2](−1)m

′+λ2

 l1 l2 L

0 0 0


 l1 l2 L

−λ1 λ2 M


×

 1 1 J

−m′ m′′ M

 il1−l2ei(ηl2−ηl1 )
⟨
n0l0λ0

∣∣d∗m′
∣∣εl1λ1⟩⟨εl2λ2∣∣dm′′

∣∣n0l0λ0⟩

= −
√

3[L, J ]

B

∑
l1l2

∑
λ1λ2

∑
m′m′′

√
[l1, l2](−1)m

′′+λ1

 l2 l1 L

0 0 0


 l2 l1 L

−λ2 λ1 −M


×

 1 1 J

−m′′ m′ −M

 (−i)l2−l1e−i(ηl1−ηl2 )
(⟨
n0l0λ0

∣∣d∗m′′
∣∣εl2λ2⟩⟨εl1λ1∣∣dm′

∣∣n0l0λ0⟩)∗
= A

J(λ0)∗
LM .

(3.9.13)

If λ0 = 0, all the coefficients for Eq. (3.9.8) are real:

A
J(0)
L0 = −

√
3[L, J ]

B

∑
l1l2

√
[l1, l2]i

l1−l2ei(ηl2−ηl1 )

 l1 l2 L

0 0 0


×

[ l1 l2 L

1 −1 0


 1 1 J

1 −1 0

⟨
n0l00

∣∣d∗−1

∣∣εl1 − 1
⟩⟨
εl2 − 1

∣∣d−1

∣∣n0l00⟩

+

 l1 l2 L

0 0 0


 1 1 J

0 0 0

⟨
n0l00

∣∣d∗0∣∣εl10⟩⟨εl20∣∣d0∣∣n0l00⟩

+

 l1 l2 L

−1 1 0


 1 1 J

−1 1 0

⟨
n0l00

∣∣d∗1∣∣εl11⟩⟨εl21∣∣d1∣∣n0l00⟩],

(3.9.14)

A
J(0)
L2 = −

√
3[L, J ]

B

∑
l1l2

√
[l1, l2]i

l1−l2ei(ηl2−ηl1 )

 l1 l2 L

0 0 0


×

 l1 l2 L

1 1 −2


 1 1 J

1 1 −2

⟨
n0l00

∣∣d∗−1

∣∣εl1 − 1
⟩⟨
εl2 − 1

∣∣d−1

∣∣n0l00⟩,
(3.9.15)
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because the summations over l1 and l2 are symmetric. Equation (3.9.15) is obtained by using

the integral

∫
dΩY ∗

lm(Ω)Yl1m1(Ω)Yl2m2(Ω) =

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)

⟨
l10l20

∣∣l0⟩⟨l1m1l2m2

∣∣lm⟩
(3.9.16)

and Eq. (3.9.9). This is not the case for λ0 ̸= 0. In the case of λ0 = 1, for example,

A
J(1)
L0 = −

√
3[L, J ]

B

∑
l1l2

√
[l1, l2]i

l1−l2ei(ηl2−ηl1 )

 l1 l2 L

0 0 0


×

[
−

 l1 l2 L

0 0 0


 1 1 J

1 −1 0

⟨
n0l01

∣∣d∗−1

∣∣εl10⟩⟨εl20∣∣d−1

∣∣n0l01⟩

−

 l1 l2 L

−1 1 0


 1 1 J

0 0 0

⟨
n0l01

∣∣d∗0∣∣εl11⟩⟨εl21∣∣d0∣∣n0l01⟩

−

 l1 l2 L

−2 2 0


 1 1 J

−1 1 0

⟨
n0l01

∣∣d∗1∣∣εl12⟩⟨εl22∣∣d1∣∣n0l01⟩],

(3.9.17)

A
J(1)
L2 =

√
3[L, J ]

B

∑
l1l2

√
[l1, l2]i

l1−l2ei(ηl2−ηl1 )

 l1 l2 L

0 0 0


×

 l1 l2 L

0 2 −2


 1 1 J

1 1 −2

⟨
n0l01

∣∣d∗−1

∣∣εl10⟩⟨εl22∣∣d1∣∣n0l01⟩,
(3.9.18)

where l2 = 0 is forbidden for A
J(1)
L2 . Thus, the differential cross section dσ(λ0)(ω)/dêxdΩ is

proportional to cos(2φ+ argA
J(λ0)
L2 ).

The integral (3.9.16) and the symmetry relation (3.9.9) also give the relation A
J(−λ0)
LM =

A
J(λ0)
L−M = A

J(λ0)∗
LM . This leads to the differential photoionization cross section summed over all
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the degenerate one-electron orbitals:

dσ(ω)

dêxdΩ
= −

√
3
∑
L

{√ 1

4π

 1 1 0

0 0 0

( l0∑
λ0=−l0

σ(λ0)A
0(λ0)
L0

)
YL0(Ω)

−
√

5

16π

 1 1 2

0 0 0

( l0∑
λ0=−l0

σ(λ0)A
2(λ0)
L0

)
YL0(Ω)

+

√
15

32π

 1 1 2

0 0 0

[
σ(0)A

2(0)
L−2 + 2

l0∑
λ0=1

ℜ
(
σ(λ0)A

2(λ0)
L−2

)](
YL2(Ω) + YL−2(Ω)

)}

=
1

4π

∑
L

{√
2L+ 1

l0∑
λ0=−l0

σ(λ0)
(
A

0(λ0)
L0 +

√
1

2
A

2(λ0)
L0

)
PL(cos θ)

−

√
3(2L+ 1)(L− 2)!

(L+ 2)!

[
σ(0)A

2(0)
L−2 + 2

l0∑
λ0=1

ℜ
(
σ(λ0)A

2(λ0)
L−2

)]
P 2
L(cos θ) cos 2φ

}
.

(3.9.19)

The explicit forms of the associated Legendre functions [120]

PM
L (z) = (1− z2)M/2 d

M

dzM
PL(z), (3.9.20)

Legendre’s differential equation [120]

(1− z2)
d2f

dz2
− 2z

df

dz
+ L(L+ 1)f = 0, (3.9.21)

and the recursion relation [120]

dPL−1

dz
= −LPL + z

dPL

dz
(3.9.22)

lead to a useful relation:

P 2
L(cos θ) = −L(L− 1)PL(cos θ) + 2

L−2∑
L1=0(1),2(3),...

(2L1 + 1)PL1(cos θ). (3.9.23)

By using Eq. (3.9.23), Eq. (3.9.19) can be transformed into a simpler form:

dσ(ω)

dêxdΩ
=

σ

4π

∑
L

{
BLPL(cos θ) + CLP

2
L(cos θ) cos 2φ

}
, (3.9.24)
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where

BL =
√
2L+ 1

l0∑
λ0=−l0

σ(λ0)

σ

(
A

0(λ0)
L0 +

√
1

2
A

2(λ0)
L0

)
, (3.9.25)

CL =L(L− 1)

√
3(2L+ 1)(L− 2)!

(L+ 2)!

[σ(0)
σ
A

2(0)
L−2 + 2

l0∑
λ0=1

ℜ
(σ(λ0)

σ
A

2(λ0)
L−2

)]
− 2(2L+ 1)

Lmax∑
L′=L+2,L+4,...

√
3(2L′ + 1)(L′ − 2)!

(L′ + 2)!

[σ(0)
σ
A

2(0)
L′−2 + 2

l0∑
λ0=1

ℜ
(σ(λ0)

σ
A

2(λ0)
L′−2

)]
.

(3.9.26)



Chapter 4

Theory of time-resolved XPD

4.1 Introduction

Direct probing of the atomic structure of matter, whether static or dynamic, plays an essential

role in physics, chemistry, and biology [92, 147]. Thus far, most of our knowledge on atomic

structures has been derived from X-ray and electron diffraction measurements [10,11,148,149].

However, with the advent of XFELs [86, 88], ultrafast imaging with femtosecond temporal res-

olution and sub-Ångström spatial resolution has emerged as an active research area with the

potential to prove a “molecular movie” of the dynamics of a chemical process. Indeed, besides

traditional approaches based on X-ray diffraction [10, 11, 148] and ultrafast electron diffrac-

tion [149, 150], new methods using femtosecond pulses from XFELs have been proposed and

successfully tested on isolated free molecules. Examples include pump–probe gas phase X-ray

scattering [100–102] and femtosecond X-ray photoelectron diffraction [78, 104–112]. Although

the analyses of the experimental data in Refs. [100,109] heavily rely on quantum chemical com-

putations, there is no doubt that these experiments constitute a critical step towards the goal

of femtosecond imaging of chemical reactions.

In this Chapter, we report on the theoretical simulation results of time-resolved X-ray pho-

toelectron diffraction (XPD) following the ultrafast dynamics of nuclear wave packets populated

by optical laser pulses. In summary, the present method is based on an optical laser pump–

XFEL probe scheme, which is illustrated schematically in Fig. 1.4.1 of Chap. 1. Aligned or

oriented molecules are first excited electronically by a short optical laser pulse, so that the nu-

clear wave packets on a specific potential energy surface of an electronically excited state start

47
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to move. Their nuclear dynamics is subsequently probed by means of inner-shell XPD profiles at

different time delays τ by ultrafast XFEL pulses. Theoretically, we predict the inner-shell XPD

profiles as functions of the time delay τ , in which the nuclear wave packet evolution is taken

into account within the Born-Oppenheimer approximation. Because one of the objectives of the

present study is to reveal the effects of the shape, i.e., the width and intensity, of the pump-laser

pulse on the XPD profiles, we performed the simulations under ideal conditions. In other words,

we assumed that the sample molecules are fully aligned and that they are fully excited by the

pump-laser pulse. Otherwise, such effects may be blurred by both an insufficient alignment and

mixture of the excited and ground states, which depend on the experimental conditions.

The reminder of this chapter is organized as follows. Sec. 4.2 describes the theoretical

method, i.e., the numerical calculations of nuclear wave packets, calculations of the XPD profile

via multiple-scattering XPD (MS-XPD) theory for a fixed-nuclear geometry, and formulation

of the time-resolved XPD on a path of nuclear wave packet evolution. The main results are

presented in Sec. 4.3, where we simulate the time-dependent XPD profiles for the dissociation

dynamics of I2 molecules and the bending vibrational dynamics of CS2 molecules. Finally, Sec.

4.4 summarizes our study.

4.2 Theoretical method

A nuclear wave packet created by an optical pump-laser pulse is obtained by the numerical

integral of the time-dependent Schrödinger equation (TDSE). XPD profiles for certain molecular

geometries are calculated by the MS-XPD theory described in Chap. 2. Then the XPD profile

for the molecule residing on the electronic excited state is the convolution of the XPD profiles

weighted by the nuclear wave packet over the molecular geometry within the Chase adiabatic

approximation [151].

The nonrelativistic Hamiltonian for an n-electron and N -nuclear molecule coupled with an

electromagnetic field is given in atomic units as

H =

N∑
α=1

1

2Mα
[Pα − ZαA(Rα, t)]

2 +

n∑
i=1

1

2
[pi +A(ri, t)]

2

−
n∑

i=1

N∑
α=1

Zα

|Rα − ri|
+

N∑
α>β

ZαZβ

|Rα −Rβ|
+

n∑
i>j

1

|ri − rj |
,

(4.2.1)
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where {ri}, {Rα}, {Zα}, A(ri, t), and A(Rα, t) represent the spatial coordinates of the i-th

electron, the spatial coordinates of the α-th nucleus, the charge of the α-th nucleus, and the

time-dependent vector potentials of electromagnetic fields at the positions of the i-th electron

and α-th nucleus, respectively. Next, by using the abbreviations R = {R1,R2, . . . ,RN} and

r = {r1, r2, . . . , rn}, the TDSE for this system is written as

i
∂

∂t
Ψ(R, r, t) = HΨ(R, r, t). (4.2.2)

By implementation of the dipole approximation of A(Rα, t) ∼= A(t) and A(ri, t) ∼= A(t) and

unitary transformation of
∏N

α=1 exp[−iZαA(t) ·Rα]
∏n

i=1 exp[−iA(t) · ri] to the wave function

Ψ(R, r, t) in Eq. (4.2.2), the TDSE is expressed as

i
∂

∂t
Ψ(R, r, t) =

[ N∑
α=1

P 2
α

2Mα
+

n∑
i=1

p2
i

2
+E(t) ·

n∑
i=1

ri

−
n∑

i=1

N∑
α=1

Zα

|Rα − ri|
+

N∑
α>β

ZαZβ

|Rα −Rβ|
+

n∑
i>j

1

|ri − rj |

]
Ψ(R, r, t),

(4.2.3)

where E(t) = −∂A(t)/∂t. In Eq. (4.2.3), the interaction between the nucleus and the electro-

magnetic field is ignored.

Here, we introduce the Hamiltonian for electrons without external fields at the fixed nuclear

position of R:

Hel(R) =

n∑
i=1

p2
i

2
−

n∑
i=1

N∑
α=1

Zα

|Rα − ri|
+

n∑
i>j

1

|ri − rj |
. (4.2.4)

Next, under the two-level approximation we consider the ground- and excited-state electronic

wave functions of Φg(r;R) and Φe(r;R), which satisfy the following time-independent Schrödinger

equations: { Hel(R)Φg(r;R) = εg(R)Φg(r;R)

Hel(R)Φe(r;R) = εe(R)Φe(r;R)
. (4.2.5)

In this context, the wave function Ψ(R, r, t), which satisfies the TDSE of Eq. (4.2.3), can be

expressed by the superposition of Φg(r;R) and Φe(r;R) as follows:

Ψ(R, r, t) = χg(R, t)Φg(r;R) + χe(R, t)Φe(r;R). (4.2.6)

By inserting Eq. (4.2.6) into Eq. (4.2.3) and using the orthogonality of Φg(r;R) and Φe(r;R),
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we derive the following coupled TDSE for the nuclear wave packets:

i
∂

∂t

 χg(R, t)

χe(R, t)

 =

 ∑N
α=1

P 2
α

2Mα
+ Vg(R) E(t) ·

⟨
Φg

∣∣∑n
i=1 ri

∣∣Φe

⟩
E(t) ·

⟨
Φe

∣∣∑n
i=1 ri

∣∣Φg

⟩ ∑N
α=1

P 2
α

2Mα
+ Ve(R)


 χg(R, t)

χe(R, t)

 ,
(4.2.7)

where Vg(e)(R) denotes the potential of the nuclei, i.e.,

Vg(e)(R) = εg(e)(R) +

N∑
α>β

ZαZβ

|Rα −Rβ|
. (4.2.8)

In Eq. (4.2.7), the vibronic interaction is ignored, which may be valid within the framework of

the Born-Oppenheimer approximation.

The TDSE of Eq. (4.2.7) for the vibrational wave packets can be integrated for an infinitesi-

mal time step ∆t by a standard computational technique, such as a split operator method [152]

or a higher-order symplectic integrator method [153]:

 χg(R, t+∆t)

χe(R, t+∆t)

 ≈ exp(−i∆tT/2) exp[−i∆tV (t)] exp(−i∆tT/2)

 χg(R, t)

χe(R, t)

 , (4.2.9)

where

T ≡

 ∑N
α=1

P 2
α

2Mα
0

0
∑N

α=1
P 2

α
2Mα

 (4.2.10)

and

V (t) ≡

 Vg(R) E(t) ·
⟨
Φg

∣∣∑n
i=1 ri

∣∣Φe

⟩
E(t) ·

⟨
Φe

∣∣∑n
i=1 ri

∣∣Φg

⟩
Ve(R)

 . (4.2.11)

The two exponential functions, exp(−i∆tT/2) and exp[−i∆tV (t)], each involving a matrix as

its argument, are evaluated as

exp(−i∆tT/2) =

 exp
[
−i∆ t

2

∑N
α=1

P 2
α

2Mα

]
0

0 exp
[
−i∆ t

2

∑N
α=1

P 2
α

2Mα

]
 (4.2.12)
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and

exp[−i∆tV (t)] = C(t)C(t)−1 exp[−i∆tV (t)]C(t)C(t)−1

= C(t)

 exp[−i∆tv1(t)] 0

0 exp[−i∆tv2(t)]

C(t)−1,
(4.2.13)

respectively, where C(t) is a matrix that diagonalizes V (t) such that

C(t)−1V (t)C(t) =

 v1(t) 0

0 v2(t)

 . (4.2.14)

The initial condition for the iteration of Eq. (4.2.9) is given by

χg(R, t = −∞) = χg(R) andχe(R, t = −∞) = 0. (4.2.15)

Thus, the iteration begins from the ground-state vibrational wave function χg(R). Since the

norm of χg(R) is normalized to unity, the integral of |χg(e)(R, t)|2 over the nuclear coordinate R

yields the population of the electronic ground (excited) state. In practical nuclear wave packet

calculations, the normal coordinates are used instead of the spatial coordinates.

In this study, we assumed a Gaussian-shaped pulse for optical lasers:

E(t) = E0 exp[− ln 2(2t/Γ)2] cosω0t, (4.2.16)

where E0, ω0 and Γ represent the electric field strength, the central frequency, and the temporal

pulse width of the laser (full width at half maximum, FWHM), respectively. The laser intensity

is given by I0 = ε0cE
2
0/2, i.e., the electric energy passing through a surface of a unit cube in

unit time. The constant ε0 is the permittivity of vacuum and c is the speed of light in vacuum.

The atomic unit of the electric field strength is the field experienced by an electron in the

ground state of atomic hydrogen, E0 = 5.14× 109 V/cm, and the corresponding laser intensity

is I0 = 3.51× 1016 W/cm2.

Under sudden approximation, the amplitude of core-level photoemission from an electroni-
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cally excited molecule is expressed as [78]:

⟨
ψ−
k (r;R)Φh(r

n−1;R)
∣∣ê · r

∣∣Φe(r;R)
⟩
≈

⟨
ψ−
k (rA;R)

∣∣ê · rA
∣∣ϕc(rA)⟩, (4.2.17)

where ψ−
k (rA;R) represents the photoelectron wave function of the momentum k under the

influence of the optical potential; ϕc(rA) represents the wave function of a core orbital localized

on the atomic site A; and ê represents the polarization vector of XFEL. The atomic wave function

ϕc(rA) may hardly be influenced by the molecular structure, whereas it may be assumed that

the photoelectron wave function ψ−
k (rA;R) depends on a transient molecular structure. By

assuming these simple descriptions for the wave functions, the one-electron matrix element of

Eq. (4.2.17) is calculated on the basis of the MS-XPD theory [39, 40, 77, 78]. By conducting

the calculations of the MS-XPD formula explained in Chap. 2, we can obtain an XPD profile

dσ(R)/dk̂:

dσ

dk̂
(R) ∝ |

⟨
ψ−
k (rA;R)

∣∣ê · rA
∣∣ϕc(rA)⟩|2. (4.2.18)

Theoretically, a time-resolved XPD profile dσ(R, τ)/dk̂ with ultrafast XFEL pulses at a time

delay τ after a pump pulse can be formulated as

dσ

dk̂
(R, τ) ∝

∫
dR|χe(R, τ)|2|

⟨
ψ−
k (rA;R)

∣∣ê · rA
∣∣ϕc(rA)⟩|2, (4.2.19)

where χe(R, τ) represents the nuclear wave packet induced by the optical laser pulses and

|
⟨
ψ−
k (rA;R)

∣∣ê · rA
∣∣ϕc(rA)⟩|2 represents the XPD profile for the molecular structure described

by the set of position vectors R. The above equation can be derived within the Chase adiabatic

approximation [151] under the assumption that the nuclei are frozen during the probe pulse. For

the applications of Eq. (4.2.19), we used χe(R, τ), which was obtained by solving Eq. (4.2.7)

numerically for typical intensities and pulse widths of available optical lasers. Next, we used the

R-dependent XPD profiles, which were calculated using Eq. (4.2.18) by assuming muffin-tin

potentials. It should be noted that we assumed that the phase shift δαl (k) was constant over R.

A few remarks on our simulations are in order. The duration of the ultrafast XFEL pulses

was not taken into account, and the convolution of XPD profiles dσ(R)/dk̂ over the photon

spectral bandwidth was not carried out. The effects of these two factors on the XPD profiles

need to be examined later for time-dependent XPD data analyses.
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Classical trajectories for the relevant photochemical reactions were also calculated by the

numerical integral of Newton’s equations of motion:

{ R(t+ dt) = R(t+ dt) + v(t)dt

v(t+ dt) = v(t)− 1
µ
dVe(R)
dR

, (4.2.20)

where v(t) are the classical velocities of dR(t)/dt and µ is the reduced mass of the relevant nor-

mal coordinates. The potential energy surface Ve(R) is the same as that for Eq. (4.2.7), i.e., Eq.

(4.2.8). The initial nuclear positionsR(t = 0) are those for the equilibrium molecular geometry of

the ground state. The initial velocities are given by |v(t = 0)| =
√

2{E0 + ω0 − Ve[R(t = 0)]}/µ,

where E0 is the zero-point vibrational energy for the ground state, and v(t = 0)/|v(t = 0)| =
dVe[R(t=0)]

dR /|dVe[R(t=0)]
dR |. It should be emphasized that iterations of photoabsorption and pho-

toemission for the duration of the optical lasers were not taken into account for the classical

trajectory calculations within the sudden approximation, as a result of which the trajectories

were independent of the laser intensity I0 and the temporal pulse width Γ.

4.3 Simulation of time-dependent XPD profiles

4.3.1 I2 molecules

We considered time-resolved XPD imaging for the photoexcited dissociation process of I2 molecules

with the ultrafast XFEL pulses: Aligned I2 molecules are first excited electronically to the B 3Π+
u

state by optical laser pulses with center wavelength λ0 = 485 nm (206×102 cm−1) and temporal

width Γ = 50 fs [154]. Owing to this pump laser, nuclear wave packets created on the specific

potential energy surface start to move. Their nuclear dynamics is later probed at a different

time delay by means of I 3s XPD profiles of I2 molecules with XFEL pulses. In this pump–probe

scheme, the polarization vectors of the two lasers are parallel to the molecular axis of the aligned

I2 molecules.

To calculate the vibrational wave packets on the B 3Π+
u state, we used the spectroscopic

constants of the dissociation energy De, equilibrium internuclear distance Re, and fundamental

frequency ωe for the infrared spectrum given in Refs. [155, 156], and the analytical forms of

transition moments given in Ref. [157]. The relevant potential energy curves in the form of

the Morse potential [158–161], V (R) = De{exp[−α(R −Re)]− 1}2, where α =
√
µω2

e/2De, are
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Figure 4.3.1: Potential energy curves of an I2 molecule. A vibrational wave packet is induced
on the B 3Π+

u state.

shown in Fig. 4.3.1. The reduced mass of I2 molecules is half of the atomic mass of an iodine

atom. To examine the laser intensity I0 dependence of vibrational wave packet evolution, we

calculated the vibrational wave packets for both I0 = 1.0 × 1012 W/cm2 and I0 = 1.0 × 1013

W/cm2. Fig. 4.3.2 shows the simulation results of the vibrational wave packet evolution. For

I0 = 1.0×1012 W/cm2, the nuclear wave packets simply spread and move on the potential curve.

By contrast, for I0 = 1.0 × 1013 W/cm2, the nuclear wave packet splits into two peaks. This

interesting phenomenon may be due to Rabi oscillations for two-level systems with radiation

fields satisfying resonant conditions [162]. The time evolution of the probability densities, which

are obtained by integrals of |χg(e)(R, τ)|2 over the stretching nuclear coordinate R, are examined

and plotted in Fig. 4.3.3. The molecular ensemble irradiated by the optical laser pulse with

I0 = 1.0 × 1013 experiences photoabsorption process and successive photoemission process,

whereas that irradiated by the pulse with I0 = 1.0 × 1012 only undergoes photoabsorption

process. This dependence to the laser intensity is consistent with that of the angular frequency

for the Rabi’s formula [162].

In our calculations of the XPD profile dσ(R)/dk̂, we selected an XFEL photon energy of 1222

eV, which is 150 eV above the I 3s ionization threshold of 1072 eV [163]. Photoemissions from

the gerade and ungerade molecular orbitals of the I2 molecules cannot be resolved with the broad

band-pass characteristic of XFEL; hence, the XPD profile was calculated as the incoherent sum
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Figure 4.3.2: Nuclear wave packet evolutions on the B 3Π+
u state of the I2 molecule. Left column:

laser intensity I0 = 1.0× 1012 W/cm2 with pulse width Γ = 50 fs. Right column: laser intensity
I0 = 1.0 × 1013 W/cm2 with pulse width Γ = 50 fs. Upper panels: wave packet evolutions
expressed as functions of the delay time τ and internuclear distance R. Lower panels: cross
sections at τ = 100, 1000 and 3000 fs of the upper panels. The vertical scales of |χe(R, τ)|2
are normalized intensities. The norm of χg(R, τ) is normalized to unity so that the integral
of |χe(R, τ)|2 over the stretching nuclear coordinate R yields the population of the electronic
excited state.
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Figure 4.3.3: Time evolution of the probability densities among the X 1Σ+
g and B 3Π+

u electronic
states of I2 molecules for the laser intensity I0 = 1.0× 1012 W/cm2 and I0 = 1.0× 1013 W/cm2.

of the profiles from the left and right I atoms in the I2 molecules. Next, by using the vibrational

wave packet evolution results on the B 3Π+
u state and the XPD profile dσ(R)/dk̂, we simulated

the time-resolved I 3s XPD profiles of the I2 molecules probed by the ultrafast XFEL pulses as

functions of the pump–probe delay time τ . The time-resolved I 3s XPD profiles, induced by the

pump laser with I0 = 1.0×1012 W/cm2 and I0 = 1.0×1013 W/cm2 are shown in Fig. 4.3.4. For

comparison, the XPD profiles for a classical trajectory of the nuclear motions are also shown.

The integrated areas of the XPD profiles are normalized to unity. As can be observed from Fig.

4.3.4, overall, the time-resolved XPD profiles on a path of the nuclear wave packet evolution and

those on the classical trajectory are similar to each other. However, we can observe that the fine

structures of the XPD profiles for the classical trajectory are blurred compared to those based

on the wave packet calculations owing to the conspicuous spreads of the nuclear wave packets

at τ = 1000 and 3000 fs, particularly for I0 = 1.0× 1013 W/cm2 (see Fig. 4.3.4).

4.3.2 CS2 molecules

In this section, we discuss the time-resolved XPD imaging of photochemical reactions of CS2

molecules. In these molecules, bending vibrational motions are induced by 1Σ+
g → 1B2 (

1Σ+
u )

excitation using optical laser pulses with center wavelength λ0 = 198 nm (505 × 102 cm−1)

and laser intensity I0 = 3.0 × 1011 W/cm2 [164]. The nuclear dynamics is probed by means of

time-resolved C 1s XPD profiles of CS2 molecules with ultrafast XFEL pulses at different time

delays. The polarization vector of the pump laser is perpendicular to the S–S direction of CS2

molecules and that of the probe laser is parallel to the direction in the simulations. We used the

potential energy curve of a 1D quadrupole curve along the S–C–S bond angle, which was derived

by Douglas et al. [164] and Arendt et al. [165]. Such a potential curve is plotted in Fig. 4.3.5.
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3000 fs

1000 fs

100 fs

I0 = 1.0 × 1012 W/cm2
I0 = 1.0 × 1013 W/cm2 classical trajectory

Figure 4.3.4: Time-resolved I 3s X-ray photoelectron diffraction (XPD) profiles of I2 molecules.
The delay times are stated on the left of the panel. Left: laser intensity I0 = 1.0× 1012 W/cm2

with pulse width Γ = 50 fs, middle: laser intensity I0 = 1.0× 1013 W/cm2 with pulse width Γ
= 50 fs, and right: a classical trajectory.

Further, we used the dipole moment for the 1Σ+
g → 1B2 (

1Σ+
u ) transition, i.e., the oscillator

strength (f = 1.024) averaged over all the geometries in the Franck-Condon region in Ref. [166].

The normal coordinates for the bending vibration of a molecule in the D∞h symmetry point

group are derived in Appendix A. To investigate the pulse width dependence on vibrational wave

packet evolutions, we calculated the vibrational wave packets for Γ = 7 fs and Γ = 20 fs at laser

intensity I0 = 3.0 × 1011 W/cm2. Fig. 4.3.6 shows the simulation results. The nuclear wave

packets exhibit oscillatory motions for both cases: for Γ = 7 fs, the wave packet concentrated on

the linear structure at τ = 80 fs nearly revives at τ = 160 fs, and for Γ = 20 fs, the wave packet

concentrated on the linear structure at τ = 50 fs nearly revives at τ = 130 fs. The interval of

80 fs is consistent with the experimentally observed periods of the oscillation in the results of

time-resolved photoelectron imaging by Horio et al. [167, 168], who prepared the wave packets

by means of a pump laser with Γ = 7 fs and I0 = 3.0 × 1011 W/cm2. However, it should be

emphasized that the oscillation phases of the nuclear wave packets for Γ = 7 fs and Γ = 20

fs are different from each other. In order to clarify the effect of the temporal pulse width Γ

of the optical laser pulse on the photoexcitation process, the time evolution of the probability

densities, which are obtained by integrals of |χg(e)(R, τ)|2 over the bending nuclear coordinate

R are examined and plotted in Fig. 4.3.7. The molecular ensemble irradiated by the optical

laser pulse with Γ = 20 fs experiences both photoabsorption and photoemission processes, this

is not the case for that irradiated by the pulse with Γ = 7 fs. This indicates that not only the
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Figure 4.3.5: Potential energy curves of a CS2 molecule. A vibrational wave packet is induced
on the 1B2 state.

laser intensity but also the temporal pulse width dominate the time evolution processes when

the pulse width is comparable with the period of Rabi oscillation [162].

We simulated the time-resolved C 1s XPD profiles of CS2 molecules probed by ultrafast

XFEL pulses as functions of the pump–probe delay time τ by using the vibrational wave packet

evolutions on the 1B2 (
1Σ+

u ) state and the XPD profiles dσ(R)/dk̂. In the calculations of the

XPD profiles at a fixed bond angle, we selected an XFEL photon energy of 413 eV, which is 120

eV above the C 1s ionization threshold of 293 eV [169]. Figure 4.3.8 shows the simulation results

of the time-resolved C 1s XPD profiles. The areas surrounding the XPD profiles are normalized

to unity. In the classical trajectory calculations, we prepared the excited states through the

sudden approximation. In this approximation, the relevant trajectories are irrelevant to the

pulse width.

The time-resolved XPD profiles for Γ = 7 fs and Γ = 20 fs and the classical-trajectory exhibit
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Figure 4.3.6: Nuclear wave packet evolutions on the 1B2 state of the CS2 molecule. Left column:
laser intensity I0 = 3.0× 1011 W/cm2 with pulse width Γ = 7 fs. Right column: laser intensity
I0 = 3.0 × 1011 W/cm2 with pulse width Γ = 20 fs. Upper panels: wave packet evolutions
expressed as functions of the delay time τ and S–C–S bond angle. Lower panels: cross sections at
delay times τ = 30, 50, 80, 130, and 160 fs of the upper panels. The vertical scales of |χe(R, τ)|2
are normalized intensities; the norm of χg(R, τ) is normalized to unity so that the integral of
|χe(R, τ)|2 over the bending nuclear coordinate R yields the population of the electronic excited
state.
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Figure 4.3.7: Time evolution of the probability densities among the 1Σ+
g and 1B2 (

1Σ+
u ) electronic

states of CS2 molecules for the temporal pulse width of Γ = 7 fs and Γ = 20 fs.

striking differences in terms of their oscillation phases and shapes, reflecting the remarkable

differences in the nuclear wave packet evolutions for Γ = 7 fs and Γ = 20 fs. In contrast to

the vibrational wave packets of the I2 molecules, the bending vibrational wave packets of the

CS2 molecules change the molecular symmetry from D∞h to C2v. This necessarily causes a

considerable change in the overall molecular structure of the CS2 molecules. Consequently, the

time-dependent XPD profiles dσ(R, τ)/dk̂ of the CS2 molecules are highly sensitive to changes

in the molecular structure, as can be observed from Figs. 4.3.6 and 4.3.8. This is because the

time-dependent XPD profiles dσ(R, τ)/dk̂ reflect the transient molecular structure at the delay

time τ , which varies considerably during the molecular symmetry change from D∞h to C2v.

Γ = 20 fs

classical trajectory

160 fs

130 fs

80 fs

50 fs

30 fs

0 fs
Γ = 7 fs

Figure 4.3.8: Time-resolved C 1s X-ray photoelectron diffraction (XPD) profiles of CS2
molecules. The delay times are stated on the left of the panel. Left: laser intensity I0 = 3.0×1011

W/cm2 with pulse width Γ = 7 fs, middle: laser intensity I0 = 3.0 × 1011 W/cm2 with pulse
width Γ = 20 fs, and right: a classical trajectory.
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4.4 Summary

Based on both the nuclear wave packet and the MS-XPD calculations, we performed simulations

of the time-dependent XPD profiles, which can be measured by the pump–probe experimental

scheme. Our results raise the following points of interest. The time-dependent I2 I 3s XPD

profiles obtained using the nuclear wave packet evolutions are similar to those predicted by the

classical trajectory for nuclear motions, although the fine structures in the latter are blurred in

the former by the spread of the nuclear wave packet. For CS2 molecules, the bending vibrational

wave packets depending on the temporal pulse widths of the pump lasers exhibit complicated

shapes, and their oscillation periods differ from that for the classical trajectory. Accordingly, the

time-dependent C 1s XPD profiles based on the wave packet calculations are strikingly different

from those of the classical motions.

Recently, direct measurements of vibrational wave packets of I2 molecules have been re-

ported by means of ultrafast electron diffraction [114] and X-ray diffraction [113]. The former

has demonstrated high sensitivity not only to the position but also to the shape of the pe-

riodic vibrational wave packets. The latter approach has succeeded in visualizing dispersion,

dissociation, and rotational dephasing of the wave packets. These promising results encourage

researchers, who are developing ultrafast XPD in gas-phase molecules in their imaging studies,

because the photoionization cross sections are considerably larger than the cross sections of

X-ray scattering and high-energy electron scattering.

4.5 Appendix: General formula for the time-resolved XPD

Consider a time-resolved XPD experiment in an optical-laser pump–XFEL probe scheme. The

optical laser pulse appears at t = −top and vanishes at t = top. The XFEL pulse appears at tpr,

which is later than top, and the photoelectron is detected at τ > tpr.

The interaction representation of wave functions and operators are introduced as

φI(t) = eiH0tφ(t), (4.5.1)

AI(t) = eiH0tA(t)e−iH0t, (4.5.2)

where H0 is the Hamiltonian for the molecule without radiation field, φ(t) and A(t) are a wave
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function and an operator in the Schrödinger representation, respectively. Time evolution from

t1 to t2 of a wave function in the interaction representation is achieved by the operator given in

Dyson series as

UI(t2, t1) =
∞∑

m=0

(−i)m
∫ t2

t1

dt′
∫ t′

t1

dt′′ · · ·
∫ t(n−1)

t1

dt(n)VI(t
′)VI(t

′′) · · ·VI(t(n)), (4.5.3)

where VI(t) is the perturbation potential in the interaction representation.

The molecular wave function Ψ(R, r, t), where R and r represent the spacial coordinates of

nuclei and electrons, respectively, is expanded by the Born-Oppenheimer basis set {Φn(r;R)χ
(n)
v (R)}nv.

With the initial condition of

ΨI(R, r, t = −top) = Φ0(r;R)χ
(0)
0 (R), (4.5.4)

the molecular wave function at a certain delay time t (tpr > t > top) in the interaction represen-

tation is given by

ΨI(R, r, t) = UI(top,−top)Φ0(r;R)χ
(0)
0 (R)

=

∫
dr′

∫
dR′δ(r − r′)δ(R−R′)UI(top,−top)Φ0(r;R)χ

(0)
0 (R)

=
∑
n

∑
v

(∫
dr′

∫
dR′χ

(n)∗
I,v (R′)Φ∗

I,n(r
′;R′)UI(top,−top)Φ0(r

′;R′)χ
(0)
0 (R′)

)
× ΦI,n(r;R)χ

(n)
I,v (R)

=
∑
n

∑
v

copnvΦI,n(r;R)χ
(n)
I,v (R),

(4.5.5)

where the closure relations

∑
n

ΦI,n(r;R)Φ∗
I,n(r

′;R′) = δ(r − r′), (4.5.6)

∑
v

χ
(n)
I,v (R)χ

(n)∗
I,v (R′) = δ(R−R′), (4.5.7)

are used and the coefficients

copnv =

∫
dr′

∫
dR′χ

(n)∗
I,v (R′)Φ∗

I,n(r
′;R′)UI(top,−top)Φ0(r

′;R′)χ
(0)
0 (R′) (4.5.8)
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are introduced. Then the molecular wave function at the time τ of photoelectron detection is

expanded as

ΨI(R, r, τ) = UI(τ, t)ΨI(R, r, t)

= UI(τ, tpr)ΨI(R, r, t)

=
∑
n

∑
v

copnvUI(τ, tpr)ΦI,n(r;R)χ
(n)
I,v (R)

=

∫
dr′′

∫
dR′′δ(r − r′′)δ(R−R′′)

∑
n

∑
v

copnvUI(τ, tpr)ΦI,n(r
′′;R′′)χ

(n)
I,v (R

′′)

=

∫
dk

∑
n′

∑
v′

[∫
dr′′

∫
dR′′χ

(n′)∗
I,v′ (R′′) det

(
ψ−
kΦh,n′

)∗

I
(r′′;R′′)

×
∑
n

∑
v

copnvUI(τ, tpr)ΦI,n(r
′′;R′′)χ

(n)
I,v (R

′′)
]
det

(
ψ−
kΦh,n′

)
I
(r;R)χ

(n′)
I,v′ (R),

(4.5.9)

where det
(
ψ−
kΦh,n′

)
(r;R) is the Slater determinant of the photoelectron wave function ψ−

k and

the electronic wave function of the residue ion Φh,n′ .

Suppose that the electronic and vibrational states of the residue ion are not resolved for the

photoelectron detection. Then the photoionization cross section is an incoherent superposition of

those for all electronic and vibrational states, because the system composed of the photoelectron

and the residue ion contracts to an energy eigenstate for the photoelectron detection. In this

case, the differential cross section is simplified using the closure relation Eq. (4.5.7) as

dσ(τ)

dk
∝

∑
n′

∑
v′

∣∣∣∫ dr′′
∫
dR′′χ

(n′)∗
I,v′ (R′′) det

(
ψ−
kΦh,n′

)∗

I
(r′′;R′′)

×
∑
n

∑
v

copnvUI(τ, tpr)ΦI,n(r
′′;R′′)χ

(n)
I,v (R

′′)
∣∣∣2

=
∑
n′

∫
dR′′

∣∣∣∫ dr′′ det
(
ψ−
kΦh,n′

)∗

I
(r′′;R′′)

∑
n

∑
v

copnvUI(τ, tpr)ΦI,n(r
′′;R′′)χ

(n)
I,v (R

′′)
∣∣∣2.

(4.5.10)

If the same one-electron molecular basis set is used for the wave functions of the electronic

excited state ΦI,n(r
′′;R′′) and the final state det

(
ψ−
kΦh,n′

)
I
(r′′;R′′), the n-electron integral

reduces to a one-electron integral in Eq. (4.5.10). Using the relation between the interaction

and the Schrödinger representations Eq. (4.5.1, 4.5.2), and applying the sudden approximation,
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the differential cross section is recast as

dσ(τ)

dk
∝

∑
n′

∫
dR′′

∣∣∣∫ drAψ
−∗
k (rA;R

′′)V prϕc(rA)
∣∣∣2∣∣∣X(n′)(R′′, τ)

∣∣∣2, (4.5.11)

where ϕc(rA) is the core orbital from which the photoelectron is ejected, and V pr is the in-

teraction potential between the core electron and the XFEL. The nuclear wave packet of the

electronic state n′, X(n′)(R′′, τ), is defined by

X(n′)(R′′, τ) =
∑
v

copn′v exp(−iE
(n′)
v τ)χ(n′)

v (R′′), (4.5.12)

where E
(n′)
v is the energy eigenvalue corresponding to the vibrational wave function χ

(n′)
v (R′′).

The Chase adiabatic approximation [151] is employed in Eq. (4.5.11), i.e., it is assumed that

the magnitudes of the expansion coefficients of the nuclear wave packets are unchanged th the

instant of photoionization.

For the practical calculation, the nuclear wave packets are obtained by the numerical integral

of the time-dependent Schrödinger equation under the two-level approximation. The procedure

is described in Sec. 4.2.



Appendix A

C 1s PAD in recoil frame for

CO+–O+

A.1 Introduction

In an axial recoil approximation process, the two fragments of diatomic molecules fly off exactly

anti-parallel to each other. If the dissociation is initiated by the ejection of an electron, and

that electron is detected in coincidence with one and/or two ionic fragments, then the electron

is tied to the direction of the molecular axis at the moment of dissociation. If we assume

that this entire process takes place on a timescale that is shorter than a rotational period, the

measurement of the RFPAD is equivalent to that ot the MFPAD referenced in the direction of

the breaking bond [51–53]. This basic idea to obtain the MFPAD has been applied to polyatomic

molecules having linear equilibrium geometry [65, 68–72]. Here a question arises as to whether

PADs detected in coincidence with the fragment ion pairs of the linear polyatomic molecules are

equivalent to the MFPAD. This is mainly because on the one hand, the instantaneous character

of the photoemission samples the entire geometries for an ensemble of molecules having zero-

point vibrational motions, whereas on the other hand, the two-body fragmentation measurement

of the linear polyatomic molecules does not provide information about the relevant geometries

(see Fig. A.1.1).

Since, for example, the CO2 molecule is a “linear” molecule, at first grance, one might

expect the most probable bond angle to be 180°for an ensemble of molecules. However, the

CO2 molecule has three zero-point vibrational motions: symmetric stretching, anti-symmetric

65



66 APPENDIX A. C 1S PAD IN RECOIL FRAME FOR CO+–O+

e
-

y

z

x

ΘΦ

θ

dΩe

dΩ1

dΩ2

Figure A.1.1: Conceptual drawing of photoelectron–photoion coincidence measurement for a
’linear’ triatomic molecule. The solid angles dΩe, dΩ1, dΩ2 are acceptance angles of the photo-
electron and fragment ions, respectively.

stretching, and two degenerate bending motions. Then, a snapshot of the molecule at the instant

of photoionization will only show a linear geometry if both bending vibrations pass through the

equilibrium configuration at that time, which is quite improbable. In reality, although the

bending vibration function has a peak at the bond angle of 180°, the bond-angle population

function has a peak at a somewhat smaller angle than 180°, see Fig. A.2.3 and also Refs.

[170–174]. As a natural consequence, in previous studies [66, 67] on C 1s, PADs detected in

coincidence with the fragment ion pairs of CO+–O+ are not MFPADs but RFPADs. Thus, the

azimuthal angle distributions of the CO+ fragment relative to the recoil axis are averaged in the

experimental data of the previous studies. It should be emphasized that this geometrical effect

on the zero-point motion has been overlooked thus far.

In this Appendix, we report the experimental results on C 1s RFPADs for the CO+–O+

fragment ion pair, which were obtained by Adachi et al. by using the undulator beam line BL-

2C of the Photon Factory multi-coincidence velocity-map imaging spectrometer [73, 74]. These

measurements were carried out at photoelectron energies of 85, 120 and 150 eV to avoid the

broad shape resonance peak centered at ∼20 eV [175]. To account for our left-right asymmetric

C 1s RFPADs from CO+–O+, we propose a simple model based on the MS-XPD theory [39,

40]. Photoelectron scattering within a molecule in the high-energy off-resonance region is well

described by the proposed model [75, 76, 78]. Using the model, we calculated C 1s PADs by

considering the entire geometries for an ensemble of molecules having zero-point vibrational

motions. The experimentally obtained asymmetric C 1s RFPADs are well reproduced by the

calculated results. More importantly, in contrast to the theoretical results of Miyabe et al.

[176, 177], our theoretical results reveal that the issue of the asymmetric C 1s RFPADs is not
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due to the anti-symmetric zero-point stretching vibration but due to the two degenerate zero-

point bending vibrations.

A.2 Bond-angle population function of CO2 molecules

The classical Hamiltonian for vibration of a multi-atomic molecule is given by

H =
∑
αi

p2αi
2mα

+ V0 +
∑
α

∑
i=x,y,z

( ∂V

∂xαi

)∣∣∣
0
(xαi − xαi0)

+
1

2

∑
α

∑
i=x,y,z

∑
β

∑
j=x,y,z

( ∂2V

∂xαi∂xβj

)∣∣∣
0
(xαi − xαi0)(xβj − xβj0) + · · · .

(A.2.1)

To quantize the molecular vibration, cross terms for the potential must be eliminated as follows:

H =
∑
k

P 2
k

2
+

∑
k

ω2
kQ

2
k

2
(A.2.2)

under the harmonic approximation. The coordinate Qk has the dimension (mass)1/2(length)

and is called the normal coordinate. The normal coordinate is given by a linear combination of

atomic displacements. The conjugate momentum of Qk is represented by Pk.

CO2 is a linear triatomic molecule having four degrees of freedom. Although normal co-

ordinates are generally given by linear combinations of atomic displacements in Cartesian co-

ordinates [158, 178–180], the GF-matrix method using internal coordinates is more elegant in

the cases of small molecules [178]. In the following subsections, the general description of the

GF-matrix method is given, and the normal coordinates of CO2 are derived in the subsequent

subsection.

A.2.1 GF-matrix method

The coordinate st represents an internal coordinate such as bond length and bond angle. The

matrix B relating st and atomic infinitesimal displacement in the Cartesian coordinate ξi is

defined by

st =

3N∑
i=1

Btiξi t = 3N − 6. (A.2.3)

Displacements {ξi} 3N−6
i=1 refer to (∆x1x,∆x1y,∆x1z,∆x2x, · · · ,∆xNy,∆xNz). The number of

internal coordinates is 3N−6 even if the molecule is linear at the minimum vibrational potential.
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Using the mass-weighed Cartesian coordinate qi =
√
miξi, the kinetic energy is given by

T =
1

2

∑
i

q̇i
2. (A.2.4)

A dot over a symbol denotes the time derivative, i.e., q̇i = dqi
dt . Introducing the conjugate

momentum of qi as

pi =
∂T

∂q̇i
= q̇i (A.2.5)

gives

T =
1

2

∑
i

p2i . (A.2.6)

By defining the transformation from the mass-weighted coordinates to the internal coordinates

as

st =
∑
i

Dtiqi, (A.2.7)

the kinetic energy T is derived as a function of the internal velocity ṡt. Using the chain rule

pi =
∂T

∂q̇i
=

∑
t

∂T

∂ṡt

∂ṡt
∂q̇i

=
∑
t

∂T

∂ṡt

∂st
∂qi

=
∑
t

PtDti

(A.2.8)

and substituting Eq. (A.2.8) into Eq. (A.2.6) gives

T =
1

2

∑
t

∑
t′

∑
i

PtDtiDt′iPt′ , (A.2.9)

where Pt is the conjugate momentum of st. By defining matrix G as

Gtt′ =

3N∑
i=1

1

mi
BtiBt′i, (A.2.10)

it is related to matrix D in Eq. (A.2.7) and matrix B in Eq. (A.2.3):

∑
i

DtiDt′i =
∑
i

1

mi
BtiBt′i = Gtt′ . (A.2.11)
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Then, the molecular kinetic energy is expressed by

T =
1

2

∑
tt′

Gtt′PtPt′ . (A.2.12)

By implementing the harmonic approximation as

V =
1

2

∑
tt′

Ftt′stst′ , (A.2.13)

the Hamiltonian is expressed in terms of the internal coordinates and their conjugate momenta:

H = T + V =
1

2

∑
tt′

Gtt′PtPt′ +
1

2

∑
tt′

Ftt′stst′ . (A.2.14)

The Hamilton equation

ṡt =
∂H

∂Pt
, Ṗt = −∂H

∂st
(A.2.15)

gives the equations of motion for the internal coordinates:

s̈t =
d

dt

(∂H
∂Pt

)
=

∑
t′

Gtt′Ṗt′

=
∑
t′

Gtt′

(
− ∂H

∂st′

)
= −

∑
t′

∑
t′′

Gtt′Ft′t′′st′′

= −
∑
t′′

(GF )tt′′st′′ .

(A.2.16)

By representing the internal coordinates in periodic displacements as

st = s0t e
iωt (A.2.17)

and substituting them into Eq. (A.2.16), the simultaneous equation

∑
t′

(GF )tt′s
0
t′ = ω2s0t (A.2.18)

is derived. Then the proper frequencies are obtained by solving the secular equation

|GF − ω2I| = 0. (A.2.19)
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To obtain the normal coordinates, a matrix L that relates them to the internal coordinates

as

st =
∑
k

nkAtkQk =
∑
k

LtkQk (A.2.20)

is required, where the vectors A are the eigenvectors of the matrix GF and the factor nk is

the normalization factor of the normal coordinates. In general, the matrix L is not a diagonal

matrix. Substituting Eq. (A.2.20) into Eq. (A.2.13) transforms the potential:

V =
1

2

∑
tt′

∑
kk′

Ftt′nknk′AtkAt′k′QkQk′ . (A.2.21)

By comparing it with the potential in the harmonic form of the normal coordinates,

V =
∑
s

ω2
sQ

2
s

2
, (A.2.22)

the normalization factor of the vector A is obtained:

nk = eiδ
ωk∑

tt′ Ftt′AtkAt′k
. (A.2.23)

The phase factor of the normal coordinate eiδ is arbitrary. By determining the matrix L in this

manner, the normal coordinates are obtained:

Qk =
∑
t

(L−1)ktst. (A.2.24)

A.2.2 Application of the GF-matrix method to a CO2 molecule

Assume that a CO2 molecule is on the z-axis in its equilibrium geometry and displaces with its

center of mass fixed （Fig. A.2.1）. The bond lengths ∆rR and ∆rL are of the right and left

C–O bonds in Fig. A.2.1, respectively, and their equilibrium value is represented by re. Assume

that all of the constituent atoms are fixed on the zx-plane and the positive direction of the

O–C–O bond angle Θ is from the first quadrant toward the second quadrant. Displacements of
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Figure A.2.1: Definitions of the internal coordinates and infinitesimal displacement of the bond
angle by positive infinitesimal displacement along the x-axis of (a) the left O, (b) the C, and (c)
the right O atoms

the bond angle are related to the atomic displacements in Cartesian coordinates:

∆rR = ∆zOR
−∆zC (A.2.25)

∆rL = ∆zC −∆zOL
. (A.2.26)

Each infinitesimal atomic displacement along the x direction changes the bond angle as

∂Θ

∂xOR

= − 1

re
,

∂Θ

∂xC
=

2

re
,

∂Θ

∂xOL

= − 1

re
(A.2.27)

with the equilibrium bond length re. In this context, the total differential of the bond angle is

∆Θ =
( ∂Θ

∂xOR

)
∆xOR

+
( ∂Θ
∂xC

)
∆xC +

( ∂Θ

∂xOL

)
∆xOL

=
1

re
(−∆xOR

+ 2∆xC −∆xOL
).

(A.2.28)

Group-theoretical consideration simplifies the eigenvalue problem of the matrix GF . An atomic

displacement along the z-axis direction is invariant under rotation about the molecular axis,

whereas displacements along the x- and y-axis directions are transformed under such a rotation
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by an azimuthal angle Φ:

x −→ x′ = x cosΦ− y sinΦ

y −→ y′ = x sinΦ + y cosΦ. (A.2.29)

Thus, the displacement along the z-axis direction is a basis of a one-dimensional irreducible

representation of the D∞h point group, whereas the displacements along the x- and y-axis span

a two-dimensional irreducible representation. Because normal coordinates constitute a basis of

the relevant point group [180], the former and the latter displacements form separate normal

coordinates. Furthermore, the infinitesimal atomic displacements along and perpendicular to the

z-axis only change the bond lengths and the bond angle for the equilibrium molecular geometry,

respectively. These factors imply that the GF-matrix method can be applied to the changes in

the bond lengths and bond angle separately.

First, the GF-matrix method is applied to the bond length displacement. The rows and

columns of the matrix Bbond are correlated with ∆rR,∆rL, and ∆zOR
,∆zC,∆zOL

, respectively:

Bbond =

1 −1 0

0 1 −1

 (A.2.30)

Then the matrix Gbond is given by

Gbond =


1

mO
+

1

mC
− 1

mC

− 1

mC

1

mO
+

1

mC

 , (A.2.31)

where mO and mC are the masses of O and C atoms, respectively. The molecular symmetry

imposes the relations

∂2V

∂r2R

∣∣∣∣
0

=
∂2V

∂r2L

∣∣∣∣
0

= fRR

∂2V

∂rR∂rL

∣∣∣∣
0

= fRL (A.2.32)
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on the force constants. Then the matrix Fbond is of the form

Fbond =

fRR fRL

fRL fRR

 . (A.2.33)

Then, the matrix GF is obtained:

GbondFbond =


fRR

( 1

mO
+

1

mC

)
− fRL

mC
−fRR

mC
+ fRL

( 1

mO
+

1

mC

)

−fRR

mC
+ fRL

( 1

mO
+

1

mC

)
fRR

( 1

mO
+

1

mC

)
− fRL

mC

 . (A.2.34)

Solving the eigenvalue problem gives two eigenvalues:

ω2
1 =

fRR + fRL

mO
, ω2

3 = (fRR − fRL)
( 1

mO
+

2

mC

)
. (A.2.35)

By fixing the eigenvectors for the normal modes for GbondFbond as

A1 =

1
1

 , A3 =

 1

−1

 , (A.2.36)

Eq. (A.2.23) gives the normalization factors:

n1 =

√
1

2mO
, n3 =

√
1

2

√
1

mO
+

2

mC
. (A.2.37)

Thus, the matrix that relates the normal coordinates to the internal coordinates is given by

Lbond =



√
1

2mO

√
1

2

√
1

mO
+

2

mC

1

2mO
−
√

1

2

√
1

mO
+

2

mC

 , (A.2.38)

where the rows and columns are correlated with ∆rR,∆rL and vibrational modes 1, 3, respec-
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tively. Further, its inverse matrix is given by

L−1
bond =



√
mO

2

√
mO

2

√
1

2

√
mOmC

2mO +mC
−
√

1

2

√
mOmC

2mO +mC

 . (A.2.39)

Next, the same procedure is applied to the bond angle displacement. The matrix that relates

the bond angle displacement to ∆xOR
,∆xC,∆xOL

is given by

Bangle =

[
− 1

re
,

2

re
, − 1

re

]
. (A.2.40)

Here, the 1× 1 “matrix”

gbond =
1

mO

2

r2e
+

1

mC

4

r2e
(A.2.41)

corresponds to Eq. (A.2.10). By giving the force constant with the bond angle displacement

fbond, the proper frequency is

ω2
2 = gbondfbond = fbond

( 1

mO

2

r2e
+

1

mC

4

r2e

)
. (A.2.42)

Then, Eq. (A.2.23) gives the factor that transforms the normal coordinate to the bond angle

displacement:

langle =
1

re

√
2

mO
+

4

mC
, (A.2.43)

and its inverse is

l−1
angle =

re
2

√
2mOmC

2mO +mC
. (A.2.44)

Equations (A.2.24), (A.2.39), and (A.2.44) give the normal coordinates of total symmetric

vibration, bending vibration, and anti-symmetric vibration of a CO2 molecule, as shown in Fig.
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(1) (3)(2)

Figure A.2.2: Displacement along the normal coordinates of CO2: (1) total symmetric, (2)
bending, and (3) anti-symmetric vibration.

A.2.2. The normal coordinates are generally chosen to be real:

Q1 =
√
mO

∆rR +∆rL√
2

, ω1 =

√
fRR + fRL

mO
(A.2.45)

Q2 =

√
2mOmC

2mO +mC

re
2
|∆Θ|, ω2 =

√
fbond

( 1

mO

2

r2e
+

1

mC

4

r2e

)
(A.2.46)

Q3 =

√
2mOmC

2mO +mC

∆rR −∆rL
2

, ω3 =

√
(fRR − fRL)

( 1

mO
+

2

mC

)
. (A.2.47)

For convenience, the range of the bond angle is defined as Θ =[0°, 360°] for the derivation of Eq.

(A.2.28). In reality, Q2 is proportional to |∆Θ|.

A.2.3 Derivation of bond-angle distribution function

For a linear triatomic molecule such as CO2, the degrees of freedom of translation, rotation and

vibration are considered to be three, two, and four, respectively. Then, four degrees of freedom

are assigned to the normal vibrational modes: one total symmetric vibration, two degenerate

bending vibrations, and one anti-symmetric vibration. The two degenerate bending vibration

correspond to the bond angle displacement and rotation about the z-axis [181]; thus, the normal

coordinates of Eq. (A.2.46) represent the bond angle deviation. The wave function of Q2 under

the harmonic approximation is given by

χ
(2)
0 (Q2) ∝ exp

(
−ω2Q

2
2

2

)
, (A.2.48)

which is derived in Appendix C. Although the wave function intensity
∣∣∣χ(2)

0

∣∣∣2 has its peak at

Q2 = 0, i.e., at the linear molecular geometry, the bond-angle population function has its peak

at an angle somewhat smaller than 180°. The reason is explained below.

For simplicity, the right C–O bond of a CO2 molecule is fixed to the z-axis and is regarded

as the rotational axis (see the inset of Fig. A.2.3). This is possible because the bond-angle

distribution function does not depend on rotational axis selection. The C–O bond length of the
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Figure A.2.3: Bond-angle population function of the CO2 molecule in the vibrational “ground
state”. Its peak position is not 180°but 174.7°even though the equilibrium structure of CO2

molecules is linear. The inset shows the definition of the coordinate system. Adapted from
Ref. [118].

CO2 molecule is fixed at re = 1.1600 Å [182]. Then, the coordinate of the left O atom is given

by the polar axis frame of the z-axis and the bond angle. The area element of the left O atom’s

position is sinΘdΘdΦ and the bond-angle distribution function is given by
∣∣χ(2)

0

∣∣2 sinΘdΘdΦ.
By the integral over the azimuthal angle Φ and normalization with respect to the integration

over the polar angle Θ, the analytical form of the bond-angle population function results in

P (Θ) = 2ω2
r2e
4

2mOmC

2mO +mC
exp(−ω2Q

2
2) sinΘ. (A.2.49)

The approximation sinΘ ≈ |∆Θ| holds for the width of exp(−ω2Q
2
2), and the integral is per-

formed in [0, π] for normalization:

∫ π

0
exp(−ω2Q

2
2)|∆Θ|d|∆Θ|. (A.2.50)

The bond-angle population function P (Θ) is plotted in Fig. A.2.3. It has a peak at the bond



A.2. BOND-ANGLE POPULATION FUNCTION OF CO2 MOLECULES 77

y

z

x

ΘsinΘdΘ

r2dr

(a) (b)

r

Figure A.2.4: (a) Circular area element for observation of a CO2 molecule with fixed bond length
and (b) spherical volume element for observation of 1s electron in a hydrogen atom.

angle of 174.7°and bending molecules rather than linear structures are expected to contribute to

RFPAD profiles for C 1s photoelectron detection in the recoil frame for CO+–O+. The character

of the bond-angle population function originates from the circular area element sinΘdΘ for the

left O atom (see Fig. A.2.4). The relation between the wave function of Q2 and the bond-angle

population function is similar to that between the wave function and the radial population

function of the 1s electron in a hydrogen atom. The wave function of the electron is

Ψ1s(r) = R1s(r)Y00(Ω) = 2
1√
4π

exp(−r). (A.2.51)

If the position of the electron is observed in Cartesian coordinate, i.e., the volume element is

dxdydz, the most probable position of the 1s electron is the nuclear position. If the distance

of the electron from the nuclear position is considered, the volume element is r2 sinΘdΘdΦ and

the wave function intensity is integrated over Θ and Φ, thus the volume element becomes r2dr

(see Fig. A.2.4). In this manner, the radial distribution function

Pradial(r) = |R1s(r)|2r2 = 4r2 exp(−2r) (A.2.52)

has a peak at the Bohr radius.

The bond-angle population function P (Θ) is derived for the fixed C–O bond length even

though the normal coordinate and the proper frequency (A.2.46) vary with the bond length.

Furthermore, the zero-point vibration of the anti-symmetric mode may skew the symmetry of

a CO2 molecule in a snapshot from D∞h to C∞v. Then, the normal coordinate and the proper
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frequency become

Q2 =

√
mOmC(rR + rL)2

mO(rR + rL)2 +mC(r2R + r2L)

rRrL
rR + rL

|∆Θ| (A.2.53)

ω2 =

√
fbond

[
1

mO

1

r2R
+

1

mO

1

r2L
+

1

mC

( 1

rR
+

1

rL

)2
]
. (A.2.54)

Thus the bond-angle population function P (Θ) depends on the instantaneous structure of the

CO2 molecule. However, there is no visible difference between P (Θ) of the fixed bond-length

molecule and that of the stretching bond-length. Thus, for further discussion, we take only the

zero-point bending vibrational motion into consideration.

A.3 RFPAD considering the degenerate bending vibration

In our theoretical model, to account for the target vibrational motions, we obtain the Born-

Oppenheimer approximation for the initial state and the final scattering state, and we ex-

press them as the products of electronic and vibrational functions: the former is expressed as

Ψi(r;Q)χi,0(Q) and the latter is expressed as Ψf (r
n−1;Q)ψ−

k (r;Q)χf,v′(Q), where r and Q

represent n-electron coordinates and the normal coordinates for the vibrational motions, re-

spectively. The photoelectron is represented by ψ−
k (r;Q) for the final state. Here, the dipole

approximation is employed. It is also assumed that the ionization and Auger decay are described

separately (two-step approximation). Then, the RFPAD formula considering the molecular vi-

bration is obtained:

I(k̂) =
∑
v′

∣∣∣⟨Ψf (r
n−1;Q)ψ−

k (r;Q)χf,v′(Q)
∣∣ê · r

∣∣Ψi(r;Q)χi,0(Q)
⟩∣∣∣2. (A.3.1)

As the vibrational levels are not resolved in C 1s photoelectron measurements for the present

study, we can sum over the final vibrational levels of v′ to compute the photoemission intensity

and can the closure relation

∑
v′

χf,v′(Q)χf,v′(Q
′) = δ(Q−Q′). (A.3.2)
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Then, the RFPAD formula reduces to

I(k̂) =

∫ ∣∣∣⟨Ψf (r
n−1;Q)ψ−

k (r;Q)
∣∣ê · r

∣∣Ψi(r;Q)
⟩∣∣∣2∣∣∣χi,0(Q)

∣∣∣2dQ. (A.3.3)

In the molecular ground state, the totally symmetric stretching frequency ω1, the two-

degenerate bending frequency ω2, and the anti-symmetric stretching frequency ω3 are 165, 83,

and 291 meV, respectively [182]. At room temperature, the bending modes with higher vibration

levels than v = 0 are populated less than 4%. Therefore, it was assumed that all the modes are

in the ground state of v = 0 because the temperature in the molecular beam is lower than room

temperature. In this context, the RFPAD intensity is the integration of static photoelectron

intensities over all molecular structures in the zero-point vibrational ensemble for the initial

electronic state.

As stated in Sec. A.2, only the bending vibration is taken into account hereafter. Because

the recoil axis along the line from the center of gravity of O–C+ to O+ differs slightly from

the direction of the C–O bond that dissociates because of Coulomb explosion, their geometrical

relation needs to be examined. Suppose that a CO2 molecule bears an infinitesimally bent

structure with a fixed center of gravity. It is assumed that the fragment ion O–C+ is a rigid

body and that both the ions obey the classical momentum conservation law. Then, the recoil

axis is at the center of gravity of the parent CO2 molecule. The equilibrium bond length is

re = 1.1600 Å [182], the geometrical relation shown in Fig. A.3.1, and the relations

∆xC =
2mO

2mO +mC

re
2
∆Θ (A.3.4)

∆xO = − 2mC

2mO +mC

re
2
∆Θ, (A.3.5)

derived from Eq. (A.2.27), give the angle between the recoil axis and the dissociationg C–O

bond. The angles are 1.8°and 3.7°when the bond angles are 175°and 170°, respectively. These

values are much smaller than the relevant experimental acceptance angles of the recoil ions (in

plane, ±10°; out of plane, ±20°), hence, we approximate the dissociation bond direction by the

recoil axis.

Under these circumstances, the RFPADs for observing CO+ going to the left and O+ going to

the right, for the light polarization parallel (ẑ ∥ n̂) and perpendicular (x̂ ⊥ n̂) to the molecular
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Figure A.3.1: CO2 molecule bearing infinitesimally bent structure with fixed center of gravity.
The broken line at the center of gravity is the recoil axis for the OC+–O+ dissociation.

axis n̂, are given by

I(k̂)|ẑ∥n̂(x̂⊥n̂) ∼
∫
P (Θ)dΘ

∣∣∣⟨Ψf (r
n−1; Θ)ψ−

k (r; Θ)
∣∣z(x)∣∣Ψi(r; Θ)

⟩∣∣∣2. (A.3.6)

Thus, we arrive at the intuitive result that the observed RFPAD is obtained by integrating the

fixed-nuclei RFPAD over the entire internal geometries weighted by the bond-angle population

function. The use of the same one-electron molecular basis for the initial and final electronic

states reduces the n-electron integral to a one-electron integral in Eq. (A.3.6), which is the case

in our calculations. The molecular-geometry-dependent RFPADs for the photoemission from

the C atom were calculated by our XPD theory described in Chap. 2 [39,40]. Here, we assumed

that within the framework of the two-step approximation the probabilities of the left and right

bond dissociations after the Auger decay following the C 1s photoemission are the same, because

the two O atoms in CO+
2 with the C 1s−1 hole are identical in the zero-point bending vibration

motion.

The calculation results for parallel and perpendicular RFPADs at photoelectron kinetic en-

ergies (KEs) of 85, 120, and 150 eV are shown in Fig. A.3.2. The left-right asymmetry is well

reproduced at all the photoelectron energies and for both the parallel geometry (Fig. A.3.2

(a), (c) and (e)) and the perpendicular geometry (Fig. A.3.2 (b), (d) and (f)). The observed

asymmetry for the parallel geometry can be interpreted as follows: (i) the bond-angle popu-

lation function reflects the fact that the contribution of nonlinear structures at the instant of

photoemission is much more than that of linear structures (see Fig. A.2.3). (ii) Furthermore, for

KEs greater than approximately 100 eV, the photoelectrons from the central C atom are emitted
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Figure A.3.2: Polar plots of the C 1s RFPADs from CO2 at the photoelectron kinetic energies
of 85 eV (a), (b), 120 eV (c), (d), and 150 eV (e), (f). The filled circles with statistical error
bars indicate the experimental data. The bold solid curves indicate the theoretical results. The
theoretical results are convoluted by the relevant experimental acceptance angles for the electrons
and ions (in plane, ±10°; out of plane, ±20°; for both photoelectrons and fragment ions). The
experimental results are normalized to the theoretical maximum. The polarization vector of
the incident photons and the dissociation directions of the fragment ion pairs of CO+–O+ are
indicated in the figure. Adapted from Ref. [118].
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predominantly toward the O atom of the C–O+ fragment, which is slightly tilted from the z-axis,

owing to the forward-focusing effect [27]. For the perpendicular geometry, the forward-focusing

effect due to the finite-volume O atomic potential has a greater bearing on the broader lobes of

the left half than on those of the right half in Fig. A.3.2 (d) and (f), although the effect is not

significantly strong.

A.4 Reexamination of previous suggestions

Miyabe et al. suggested that the asymmetric RFPADs measured by Liu et al. [66] at KE = 14.2

and 23.3 eV can be reasonably explained if the zero-point anti-symmetric stretching vibration is

properly treated [176,177]. To confirm the validity of their model, we examined the influence of

the zero-point anti-symmetric vibrational motion using our model. To describe the observation

of the asymmetric ion pair of CO+–O+ in the experiment, we introduced the parameters Plong

and Pshort, which satisfy Plong+Pshort = 1, where Plong is the probability of the longer dissociated

C–O bond, and Pshort is that of the shorter C–O bond (details are provided in Appendix B).

Thus, the parallel RFPAD for observing CO+ going to the left and O+ going to the right is

given by

I(k̂)|ẑ∥n̂ =

∫ 0

−∞
Pshort

∣∣∣⟨Ψfψ
−
k

∣∣z∣∣Ψi

⟩∣∣∣2∣∣∣χ(3)
0 (Q3)

∣∣∣2dQ3

+

∫ ∞

0
Plong

∣∣∣⟨Ψfψ
−
k

∣∣z∣∣Ψi

⟩∣∣∣2∣∣∣χ(3)
0 (Q3)

∣∣∣2dQ3,

(A.4.1)

where the positive value of Q3 corresponds to the structure in which the right C–O bond is longer

than the left one, and vice versa (see A.2.47). The calculation results for parallel RFPADs at

KE = 85 and 150 eV are shown in Fig. A.4.1. On the one hand, the asymmetric parallel RFPAD

at KE = 85 eV is well reproduced when we set Plong = 0.7 and Pshort = 0.3. On the other hand,

the RFPAD at KE = 150 eV is explained when we set Plong = 0 and Pshort = 1.0. Further, Plong

and Pshort are independent of the incident photon energy within the two-step model. Thus, this

inconsistency of the Plong and Pshort values implies that the issue of the left-right asymmetry of

CO2 C 1s RFPAD is not due to the zero-point anti-symmetric vibration.

Sturm et al. measured the parallel RFPADs at KE = 24.3 eV and found that their asymmetry

depends on the kinetic energy release (KER) of the fragment ion pair of CO+–O+ [67]. In their

measurement, the recoil-ion acceptance angle was constant at 21°despite different KERs. Thus,
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it is obvious that the effective acceptance angle of the ions in the momentum space changes

according to KER. The zero-point bending vibrational effect on the left-right asymmetry is

influenced by the acceptance angle of the recoil ions; hence, the KER-dependent asymmetry

may not be due to the zero-point anti-symmetric vibration but due to the bending vibrational

effect.



84 APPENDIX A. C 1S PAD IN RECOIL FRAME FOR CO+–O+

(a)

(b)

OO C

Figure A.4.1: Polar plots of the C 1s RFPADs from CO2 considering the zero-point anti-
symmetric stretching motions at the photoelectron energy of 85 eV (a) and 150 eV (b). The
filled circles with statistical error bars represent the same experimental data as that in Figure
A.3.2 (a) and (c). The solid and dashed lines are the theoretical results for Plong = 0.7 and
Pshort = 0.3 and for Plong = 0 and Pshort = 1.0, respectively (see text). The theoretical results
are convoluted by the relevant experimental acceptance angles for the electrons and ions (in
plane, ±10°; out of plane, ±20°; for both photoelectrons and fragment ions). The experimental
results are normalized to the theoretical maximum. The polarization vector of the incident
photons and the dissociation directions of the fragment ion pairs of CO+–O+ are indicated in
the figure. Adapted from Ref. [118].
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A.5 Summary

We calculated C 1s PADs detected in coincidence with the fragment ion pairs of CO+–O+ of CO2

molecules by considering the zero-point vibrations to explain the observed left-right asymmetry.

Our calculations revealed that the issue of asymmetry is not due to the zero-point anti-symmetric

vibration and concomitant selective C–O bond dissociation but due to both the two degenerate

zero-point bending vibrations and the CO+–O+ two-body fragmentation detection. Thus, C 1s

PADs detected in coincidence with the fragment ion pairs of CO+–O+ of CO2 molecules should

be considered as RFPADs, although they have long been considered as MFPADs.





Appendix B

O 1s PAD in recoil frame for

CO+–O+

B.1 Introduction

In conventional angle-resolved photoelectron spectroscopy of gaseous molecules, detailed infor-

mation on photoionization dynamics is washed out by the freely rotating molecules. A break-

through in this field was achieved in mid-1990s by the application of angle-resolved electron-

ion coincidence techniques, which allow the selection of molecules with a well-defined spatial

orientation from an ensemble of randomly oriented molecules [48–50]. Photoelectron angular

distributions measured by such coincidence techniques are called recoil frame photoelectron an-

gular distributions (RFPADs). In an axial recoil dissociation process, the two fragment ions

fly off exactly anti-parallel to one another. If the dissociation is initiated by the ejection of a

photoelectron from a core orbital, which is followed by the Auger decay, and also from a valence

orbital, then the photoelectron is tied to the direction of the molecular axis at the moment of

photoionization. Assuming that this entire process takes place on a timescale that is shorter than

a rotational period, the measurement of the RFPAD is equivalent to the molecular frame PAD

(MFPAD) referenced in the direction of the breaking bond. Nowadays, MFPAD measurements

are growing in importance owing to their sensitivity to photoionization dynamics [51–53,183].

In this scenario, the fragment ion pair detection has two roles: one is to record the LF

direction of the molecular axis, and the other is to select a specific dissociation channel after

the Auger decay. The former is necessarily used in the RFPAD/MFPAD measurements. How-
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ever, the latter has not been intensively considered thus far, although several studies have been

conducted [64, 66, 67, 72, 176, 177, 185–187]. In this context, we manage the latter as well as

the former to usher in a new era of RFPADs, by considering the site-specific fragmentation. A

simple illustration of the dissociation channel selected RFPADs of CO2 molecules is given in Fig.

B.2.1. At the instant of photoionization (t = 0), the O 1s photoelectron is ejected from either

the left or right the O atom as a result of the dynamical symmetry breaking because of vibronic

coupling and concomitant core-hole localization [188, 189]. The Auger decay (t > 0) can gener-

ally leave the CO2+
2 ions in any number of dissociative electronic states. Then, if one focuses on

the two-body fragmentation of CO2+
2 , the ensemble of the core-ionized molecules splits into two

sub-ensembles: one is the right bond breaking (Channel 1 and Channel 2) and the other is the

left bond breaking (Channel 3 and Channel 4). Thus, it is evident that the RFPAD obtained

by the CO+–O+ fragment ion pair is the incoherent superposition of the RFPAD initiated by

the electron ejection from the right O (Channel 1) and that from the left O (Channel 2). The

purpose of the present work is to account for the left-right asymmetric RFPADs from the CO+–

O+ fragment ion pair and to determine the factor responsible for the site-specific fragmentation,

which will be defined later. To the best of our knowledge, such a factor has not been determined

by Auger-electron–fragment ion coincidence studies thus far, e.g., [190,191].

In this Appendix, we report the experimental results on O 1s RFPADs for the CO+–O+

fragment ion pair, which were obtained by Adachi et al. by using the undulator beam line

BL-2C of the Photon Factory multi-coincidence velocity-map imaging spectrometer [73, 74].

These measurements were carried out at the photoelectron energies of 90, 120, and 150 eV

to avoid the broad shape resonance peak centered at ∼20 eV [175]. To account for our left-

right asymmetric RFPADs for CO+–O+, we propose a simple model based on the MS-XPD

theory [39, 40]. Photoelectron scattering within a molecule in the high-energy off-resonance

region is well described by the proposed model [75–78].

B.2 Introducing a semi-empirical model

To account for the target vibrational motion, we obtain the Born-Oppenheimer approximation

for the initial state and the final scattering state, and we express them as the products of

electronic and vibrational functions: the former is expressed as Ψi(r;Q)χi,0(Q) and the latter

is expressed as Ψ
R(L)
f (rn−1;Q)ψ−

k (r;Q)χf,v′(Q), where Q is the normal coordinate and the
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superscript R(L) stands for the (1s)−1 hole site localized on the right(left) O atom of CO2. As

individual vibrational levels are not resolved in our O 1s photoelectron measurements, we can

sum over the final vibrational levels of v′ to compute the photoemission intensity and use the

closure relation Eq. (A.3.2).

In the molecular ground state, the asymmetric stretching frequency is 291 meV [182]. Hence,

it was assumed that the stretching mode is in the ground vibrational state of v = 0 because the

temperature in the molecular beam is lower than room temperature. Furthermore, to describe

the observation of the asymmetric ion pair of CO+–O+ in the experiment, we introduced the

partial Auger decay width ΓR(L)→R(Q), leading to the right C–O bond scission of CO+
2 having

the (1s)−1 hole on the right(left) O atom. The equilibrium structures for the two diabatic states

for the right and left O (1s)−1 hole occur at ±Q3,eq (see Fig. B.2.1). Note that in the equilibrium

structures for the diabatic states, the bond between the C atom and the O atom with the O

(1s)−1 hole is longer than the other CO bond [192]. Keeping the time scale—[the Auger decay

period (∼4 fs [188]) is shorter than the vibrational period (∼13.5 fs [188]) of the anti-symmetric

stretching mode]—in mind and from Fig. B.2.1, one can discuss the O 1s RFPAD in coincidence

with the asymmetric ion pair of CO+–O+ from a time-dependent point of view. The vibrational

wave packet of CO+
2 , formed at the instant of the O 1s photoionization, starts to move in the

+Q3,eq direction in the diabatic potential or in the −Q3,eq direction; then, during its motion, the

Auger decay leads to the destruction of the initially localized wave packet. For the wave packets

moving in the ±Q3,eq directions, two different right-bond dissociation channels are possible: one

is the longer C–O bond dissociation ΓR→R(Q), Channel 1 and the other is the shorter C–O bond

dissociation ΓL→R(Q), Channel 2.

Under these circumstances and the two-step approximation, the RFPAD for observing O+

going to the right and CO+ going to the left, for light polarization parallel to the recoil axis, is

given by the incoherent superposition of the RFPAD for Channel 1 and that for Channel 2 in

Fig. B.2.1:

IR(k̂)|ẑ∥n̂ ∼
∫

ΓR→R(Q)
∣∣∣⟨ΨR

f ψ
−
k

∣∣z∣∣Ψi

⟩∣∣∣2∣∣∣χi,0(Q)
∣∣∣2dQ

+

∫
ΓL→R(Q)

∣∣∣⟨ΨL
fψ

−
k

∣∣z∣∣Ψi

⟩∣∣∣2∣∣∣χi,0(Q)
∣∣∣2dQ. (B.2.1)

The use of the same one-electron molecular basis for the initial and final electronic states
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Figure B.2.1: Vibrational potential energy curves of CO2, CO
+∗
2 and CO2+

2 in the direction of
the anti-symmetric vibration Q3. The diabatic potential of CO+∗

2 and vibrational wave packets
for CO+∗

2 are constructed using the experimental results of Ref. [188]. The vibrational wave
packets are destroyed by the Auger decay of 1&3 and 2&4 during their motion. Adapted from
Ref. [119].
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reduces the n-electron integral to a one-electron integral in Eq. (B.2.1), which is the case in

our calculations. Here we approximate the initial vibrational wave function χi,0 as a harmonic-

oscillator function using the force constant of Ref. [182]. The molecular geometry (Q) dependent

RFPADs for the photoemission from the left O and right O atoms were calculated by the MS-

XPD theory described in Chap. 2 [39,40]. It is noteworthy that we could not find any significant

difference between the RFPADs obtained by integrating the dipole matrix elements over the

entire internal geometry of the vibrational ground state, with each geometry weighted by the

square of χi,0, and those obtained by fixed-nuclei calculations at the equilibrium geometry (see

Appendix B.5). Moreover, the ratio of the integral of the partial Auger decay width Γ(Q) over

the molecular geometry (Q), i.e., the bond breaking probability of the C–O without the O

(1s)−1 hole relative to that of the C–O with the O (1s)−1 hole in Eq. (B.2.1), is treated as a

free parameter:
∫
ΓL→R(Q)dQ∫
ΓR→R(Q)dQ

= RL→R
R→R. Then, Eq. (B.2.1) is recast as

IR(k̂)|ẑ∥n̂ ∼
∣∣∣⟨ψ−

k

∣∣z∣∣ψR
1s

⟩
Q=0

∣∣∣2 +RL→R
R→R

∣∣∣⟨ψ−
k

∣∣z∣∣ψL
1s

⟩
Q=0

∣∣∣2. (B.2.2)

B.3 RFPAD calculations dependent on the parameter

The RFPADs for the photoemission from the left O and right O atoms are mirror-symmetric

with respect to a plane containing the central C atom; hence, their sum results in the left-right

symmetric RFPAD, if the ratio of the decay probabilities RL→R
R→R is unity. This implies that the

left-right asymmetry of the RFPAD observed in coincidence with the asymmetric fragment ion

pair of CO+–O+ is the result of RL→R
R→R ̸= 1. In fact, the best results shown in Fig. B.3.1 were

obtained as RL→R
R→R = 0.70.

Thus, we arrive at the following intuitive interpretation. The photoelectron will have left the

vicinity of the molecule within a fraction of a femtosecond; thus, the molecular structure sampled

by the photoelectron is the initial-state equilibrium geometry. Then, the dissociation, which is

controlled by the partial Auger decay probability, occurs at Q3 ̸= 0 for t > 0 in the diabatic

potential. This effect is incorporated in the free parameter that describes the decay probability.

From the nearly complete agreement between experiment and theory, we conclude that site-

specific fragmentation, which is characterized by the parameter RL→R
R→R, plays an essential role

in the observed left-right asymmetric RFPADs.

To examine the effect of the site-specific fragmentation on the RFPADs in greater detail,
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(a)

(b)

(c)

Figure B.3.1: Polar plots of the O 1s RFPADs from CO2 at the photoelectron energies of 90 (a),
120 (b), and 150 eV (c). The filled circles with error bars represent the experimental data. The
bold solid curves represent the theoretical results, which have been constructed by incoherent
superposition of the RFPAD (thin solid curve) for photoemission from the right O atom and
that (thin broken curve) for photoemission from the left O atom. The latter is multiplied by
0.70. The theoretical results are convoluted by the relevant experimental acceptance angles for
the electrons and ions (in plane, ±5°, and out of plane, ±20°, for photoelectrons; in plane, ±10°,
and out of plane, ±20°, for fragment ions). The polarization vector of the incident X-ray and
the dissociation directions of the fragment ion pairs of CO+–O+ are indicated in the figure.
Adapted from Ref. [119].
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0.0

0.3

0.7

1.0

Figure B.3.2: Dependence of the O 1s RFPADs from CO2, at the photoelectron energy of 90
eV, on the ratio of the partial Auger decay width. The numbers in the legend are the ratios of
RL→R

R→R (see text). The polarization vector of the incident X-ray and the dissociation directions
of the fragment ion pairs of CO+–O+ are indicated in the figure. Adapted from Ref. [119].
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we calculated them by changing the values of RL→R
R→R (see Fig. B.3.2). As can be understood

from Eq. (B.2.2), at RL→R
R→R = 0 the photoelectron is emitted exclusively from the right O atom;

hence, the RFPAD exhibits the strongest left-right asymmetric profile. In the other extreme

case of RL→R
R→R = 1, the photoelectrons emitted from the left and right atoms contribute equally

to the RFPAD; then, it becomes the symmetric profile. At RL→R
R→R = 0.70, the experimental

RFPADs were extremely well reproduced by our model. Owing to the theory based on the

lifetime-vibrational interference, the most probable relevant ratio is 0.33 [185]. This value is

simply obtained from the partial Auger decay width of 27.726 meV, leading to the direct frag-

mentation states of CO2+
2 and that of 26.732 meV, which in turn lead to the pre-dissociation

states of CO2+
2 , under the assumption that in the former case, the longer O–C bond dissoci-

ates with 100% probability, and in the latter case, the two O–C bonds dissociate with equal

probability. The difference between 0.70 of the present result and 0.33 of Ref. [185] is not sur-

prising, because the two approaches are totally different. In Ref. [185], RL→R
R→R was calculated

under some restricted conditions: (i) not all the Auger final states were taken into account;

(ii) a highly simplistic dissociation mechanism for the Auger final states was assumed without

calculations of the potential energy surfaces of CO2+
2 ; and (iii) the partial Auger decay widths

were assumed to be independent of the molecular geometry expressed by Q. By contrast, in the

present work, RL→R
R→R has been parameterized as shown in Eq. (B.2.2), which has been deter-

mined from the experimental data. Assuming that the RFPADs for the photoemission from the

O atom by our XPD theory are correct, the uncertainty of our RL→R
R→R value is estimated to be

less than ±0.20. It should be noted that the experimental left-right asymmetric RFPADs were

approximately reproduced by the theoretical ones [185] in the shape resonance region, although

there are some noticeable differences between theory and experiment. The discrepancy may be

due to the inaccurate resonance mechanism itself for polyatomic molecules, e.g., [65, 68,71].

B.4 Summary

The observed left-right asymmetric O 1s RFPADs were reproduced nearly completely by our

semi-empirical model based on the MS-XPD theory. From the excellent agreement between

the experimental RFPADs and those from theoretical calculations, we have derived the ratio of

RL→R
R→R = 0.70, i.e., the site-specific fragmentation probability: The bond breaking probability of

the C–O without the O (1s)−1 hole is 70% of that of the C–O with the O (1s)−1 hole. Because all
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previous studies of site-specific fragmentation after inner-shell excitation/ionization have been

limited to qualitative discussions, for example [184], the present quantitative result on the site-

specific fragmentation is of great significance, and it is a breakthrough in the important area of

physical and chemical studies of unique bond cleavage.

B.5 Appendix: Dipole matrix element as a function of normal

coordinates

There is no visible difference between the RFPADs integrated over the molecular geometry and

those at a fixed geometry. This is because the variances of the zero-point vibration are sufficiently

small compared to the de Broglie wavelength of the photoelectron. As derived in Appendix A,

the normal coordinates of the total-symmetric vibration Q1 and the anti-symmetric vibration

Q3 are represented by normal coordinates having dimensions of

Q1 =
√
µ1X1

µ1 = mO (B.5.1)

X1 =
∆zOR

−∆zOL√
2

=
∆rR +∆rL√

2
(B.5.2)

Q3 =
√
µ3X3

µ3 =
2mOmC

2mO +mC
(B.5.3)

X3 =
∆zOR

− 2∆zC +∆zOL

2
=

∆rR −∆rL
2

, (B.5.4)

(B.5.5)

and the wave functions of the vibrational ground states are given by

χ
(1)
0 (X1) =

(ω1

π

)1/4
exp

(
−µ1ω1X

2
1

2

)
(B.5.6)

χ
(3)
0 (X3) =

(ω3

π

)1/4
exp

(
−µ3ω3X

2
3

2

)
. (B.5.7)

The displacement of the bond length is related to the normal coordinates as

∆rR =
1√
2
X1 +X3. (B.5.8)
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Then, its variance is

⟨(∆rR)2⟩ =
⟨( 1√

2
X1 +X3

)2
⟩

=
1

2
⟨X2

1 ⟩+ ⟨X2
3 ⟩ =

1

4µ1ω1
+

1

2µ3ω3
.

(B.5.9)

The variance of the C–O bond length of a CO2 molecule in the vibrational ground states is

0.03489 Å, which is of the order of 10−2 compared to the de Broglie wavelength of 1.29, 1.12

and 1.00 Åfor photoelectrons of KE = 90, 120, and 150 eV. Thus, the dipole matrix element

does not depend on the molecular geometry for the symmetric zero-point vibrational ensemble.



Appendix C

Bending vibration of linear triatomic

molecules

In this Appendix, the quantization procedure of the degenerate bending vibration of triatomic

molecules, such as CO2, and the derivations of the energy eigenvalues and eigenfunctions are

reviewed. Although the two degrees of freedom actually represent the bond-angle deviation

and rotation, quantization is achieved by replacing the position coordinates and their conjugate

momenta with quantum-mechanical operators of the classical Hamiltonian in Cartesian coordi-

nates. Thus, the normal coordinates should be represented by Q2x, Q2y, which coincide with

displacements in the x and y directions, respectively. The coordinates

Q2 =

√
2mOmC

2mO +mC

re
2
|∆Θ| (C.1)

∆Θ =
1

re
(−∆ρOR

+ 2∆ρC −∆ρOL
) (C.2)

ω2 =

√
fbond

( 1

mO

2

r2e
+

1

mC

4

r2e

)
(C.3)

derived in Appendix A are related to Q2x, Q2y as

Q2x = Q2 cosα

Q2y = Q2 sinα, (C.4)

where α is the azimuthal angle of the rotation about the z-axis. Here ∆ρOR
,∆ρC,∆ρOL

are

the amplitudes of the atomic deviation in the periodic bending vibration without mass-center
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displacement nor rotation. Their projections to the x- and y-axis are given by

∆x = ∆ρ cosα,

∆y = ∆ρ sinα. (C.5)

Equations (C.4) and (C.5) give

Q2x =

√
2mOmC

2mO +mC

1

2
(−∆xOL

+ 2∆xC −∆xOR
), (C.6)

Q2y =

√
2mOmC

2mO +mC

1

2
(−∆yOL

+ 2∆yC −∆yOR
). (C.7)

Further,

Q2
2x =

2mOmC

2mO +mC

1

4
[(∆xOL

)2 + 4(∆xC)
2 − (∆xOR

)2], (C.8)

Q2
2y =

2mOmC

2mO +mC

1

4
[(∆yOL

)2 + 4(∆yC)
2 − (∆yOR

)2] (C.9)

must hold to satisfy Q2 =
√
Q2

2x +Q2
2y. Thus, the restrictions

∆xOL
= ∆xOR

= 4∆xC, (C.10)

∆yOL
= ∆yOR

= 4∆yC (C.11)

are imposed on the atomic displacement amplitudes. Under these restrictions, the classical

Hamiltonian of the degenerate bending vibration in Cartesian coordinates is obtained:

H2 =
P 2
Q2x

2
+
P 2
Q2y

2
+
ω2
2Q

2
2x

2
+
ω2
2Q

2
2y

2
. (C.12)

where PQ2x , PQ2y are the conjugate momenta of Q2x, Q2y. Quantization is accomplished by

replacing

PQ2x → −i ∂

∂Q2x
, PQ2y → −i ∂

∂Q2y
(C.13)
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for Eq. (C.12). The fundamental commutation relations

[Q2x, P2y] = [Q2y, P2x] = 0, (C.14)

[Q2x, P2x] = [Q2y, P2y] = i (C.15)

hold. The Hamiltonian is transformed as

H2 =
1

2

[
−
( ∂2

∂Q2
2

+
1

Q2

∂

∂Q2
+

1

Q2
2

∂2

∂α2

)
+ ω2

2Q
2
2

]
(C.16)

by using the differential chain rule for Eq. (C.4). An analytical method [159] and an algebraic

[181, 193] method are available to obtain the energy eigenvalues and the corresponding wave

functions in the coordinates of Q2, α. Here, the algebraic method is introduced.

The Hamiltonian H2 commutes with the vibrational angular momentum operator

M = Q2xP2x −Q2yP2y = −i ∂
∂α

. (C.17)

Thus, the wave functions are simultaneous eigenfunctions of H2 and M , and they are of the

form

Ψv,l = Fv,l(Q2)e
ilα. (C.18)

By introducing new operators

Q± = Q2x ± iQ2y, (C.19)

P± = P2x ± iP2y, (C.20)

multiplication relations

P+P− = P 2
2x + P 2

2y, (C.21)

Q+Q− = Q2
2x +Q2

2y (C.22)

are derived, and the Hamiltonian is transformed as

H2 =
1

2
(P+P− + ω2

2Q
+Q−). (C.23)
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Here, four types of ladder operators are defined:

R±(±) = P (±) ± iω2Q
(±), (C.24)

where the signs ± are correlated with one another. The commutators of Q± and P± are derived

as

[Q+, Q+] = [Q+, Q−] = [Q−, Q−] = 0, (C.25)

[P+, P+] = [P+, P−] = [P−, P−] = 0, (C.26)

[P+, Q+] = [P−, Q−] = 0, (C.27)

and

[P+, Q−] = [P−, Q+] = −2i, (C.28)

and the commutation relations between H2 and the ladder operators R±(±) are given by

[H2, R
±(±)] = ω2R

±(±). (C.29)

The commutation relations between the vibrational angular momentum operator M and the

ladder operators R±(±) are given by

[M,R±(±)] = (±)R±(±). (C.30)

The signs (±) on the right-hand side of Eq. (C.30) coincide with (±) of the ladder operators.

The commutators of Eq. (C.29) are applied to one of the simultaneous eigenfunctions of H2

and M as

[H2, R
±(±)]Ψv,l = ±ω2R

±(±)Ψv,l

= H2R
±(±)Ψv,l − EvR

±(±)Ψv,l.

(C.31)

Thus, the wave functions multiplied by the ladder operator are also eigenfunctions of the Hamil-

tonian

H2R
±(±)Ψv,l = (Ev ± ω2)R

±(±)Ψv,l. (C.32)
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Similarly, the commutators of Eq. (C.30) are applied to the wave functions as

[M,R±(±)]Ψv,l = (±)R±(±)Ψv,l

=MR±(±)Ψv,l − lR±(±)Ψv,l,

(C.33)

Thus, R±(±)Ψv,l are also eigenfunctions of the vibrational angular momentum operator:

MR±(±)Ψv,l = [l(±)1]R±(±)Ψv,l. (C.34)

The ladder operators R±(±) change the energy eigenvalues as follows:

Table C.1: Creation and annihilation by the ladder operators R±(±)

energy eigenvalue l

R+(+) ω2 increase increase by 1

R+(−) ω2 increase decrease by 1

R−(+) ω2 decrease increase by 1

R−(−) ω2 decrease decrease by 1

The ladder operators restrict the energy eigenvalues. Multiplications of the ladder operators,

R+(+)R−(−) = 2H2 + 2ω2M − 2ω2, (C.35)

R+(−)R−(+) = 2H2 − 2ω2M − 2ω2, (C.36)

lead to a transformation of the Hamiltonian:

H2 =
1

4
(R+(+)R−(−) +R+(−)R−(+)) + ω2. (C.37)

Thus, the energy eigenfunctions are simultaneous eigenfunctions of the Hamiltonian and the

operator R+(+)R−(−) +R+(−)R−(+). The operator commutes with the vibrational angular mo-

mentum operator M and gives eigenvalues as (R+(+)R−(−) + R+(−)R−(+))Ψs,l = sΨs,l. The

relations (R±(±))† = R∓(∓) restrict the eigenvalue s:

s =
⟨
Ψs,l|(R+(+)R−(−) +R+(−)R−(+))Ψs,l

⟩
=

⟨
R−(−)Ψs,l|R−(−)Ψs,l

⟩
+

⟨
R−(+)Ψs,l|R−(+)Ψs,l

⟩
≥ 0.

(C.38)
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This restriction imposes the lower limit of s/4 + ω2 on the energy eigenvalue, i.e.,

R−(±)Ψ0,l = 0, (C.39)

where Ψ0,l is the wave function of the ground state. Equations (C.35), (C.36), and (C.39) lead

to

R+(+)R−(−)Ψ0,l = (2H2 + 2ω2M − 2ω2)Ψ0,l = 0, (C.40)

R+(−)R−(+)Ψ0,l = (2H2 − 2ω2M − 2ω2)Ψ0,l = 0. (C.41)

Addition of Eq. (C.41) and Eq. (C.40) gives

H2Ψ0,l = ω2Ψ0,l, (C.42)

i.e., the energy eigenvalue for the ground state E0 is ω2. Subtraction of Eq. (C.41) from (C.40)

gives

MΨ0,l = 0. (C.43)

This means that the quantum number of the vibrational angular momentum for the ground

state is l = 0. Solving the differential equation

R−(−)Ψ0,0 = 0 (C.44)

gives the wave function of the ground state:

Ψ0,0 ∝ exp
(
−ω2Q

2
2

2

)
. (C.45)

Iterative application of the ladder operators to the ground state wave function Ψ0,0 gives all the

energy eigenstates and wave functions. The ladder operator increases or decreases the energy

eigenvalue by ω2:

Ev = ω2(v + 1), v = 0, 1, 2, · · · . (C.46)

The quantum number v is related to the quantum number s of the operator R+(+)R−(−) +

R+(−)R−(+) as s = 4vω2. If the operators R+(+) and R+(−) are applied to Ψ0,0 n+ and n−



103

times, respectively,

n+ + n− = v, (C.47)

n+ − n− = l. (C.48)

Thus, the wave functions of the excited states are given by

Ψv,l ∝ [R+(−)]
v−l
2 [R+(+)]

v+l
2 Ψ0,0. (C.49)

The quantum number l must be even (odd) when v is even (odd). Further, the inequalities

v − l

2
≥ 0,

v + l

2
≥ 0 (C.50)

restrict the vibrational angular momentum quantum number as

l = v, v − 2, · · · ,−v. (C.51)

In the classical picture, a linear triatomic molecule does not exhibit the degree of freedom

of rotation about the z-axis, but does so when it is bent. The quantization process discussed in

this Appendix gives the quantum mechanical picture corresponding to the classical one: value 0

of the vibrational angular momentum M is always observed for the ground state of the bending

vibration, but this is not the case for excited states. It should be emphasized that the observed

left-right asymmetry of the C 1s PAD in the recoil frame for CO+–O+ is due to the zero-point

vibration of the vibrational ground state and not due to that of the vibrational excitation.
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