
Mixing State of the Aqueous Solution of 

Ionic Liquid [P4,4,4,4]CF3COO Near the Critical Point 

Doctor Thesis 

January 2017 

Ayako Nitta 

Department of Nanomaterial Science 

Division of Nanoscience 

Graduate School of Advanced Integration Science 

CHIBA UNIVERSITY 

臨点近傍におけるイオン液体 [P4,4,4,4]CF3COO 水溶液の混合状態





(千葉大学審査学位論文) 

Mixing State of the Aqueous Solution of 

Ionic Liquid [P4,4,4,4]CF3COO Near the Critical Point 

Doctor Thesis 

January 2017 

Ayako Nitta 

Department of Nanomaterial Science 

Division of Nanoscience 

Graduate School of Advanced Integration Science 

CHIBA UNIVERSITY 

 臨点近傍におけるイオン液体 [P4,4,4,4]CF3COO 水溶液の混合状態



 

Contents 

 

Chapter 1     General introduction ................................................................ 1 

1. 1.   Ionic liquids...................................................................................................... 1 

1. 2.   Mixtures of ionic liquids and other materials .................................................. 2 

1. 3.   Study on aqueous solutions of ionic liquids..................................................... 3 

1. 4.   Aqueous solution of [P4,4,4,4]CF3COO ............................................................. 4 

 

Chapter 2     Fluctuations .................................................................................. 6 

2. 1.   Fluctuations for binary systems ....................................................................... 6 

2. 2.   Small-angle X-ray scattering method .............................................................. 7 

2. 3.   Individual density fluctuations ....................................................................... 10 

 

Chapter 3     Experimental to determine fluctuations .......................... 12 

3. 1.   Sample preparation ........................................................................................ 12 

3. 2.   SAXS measurements...................................................................................... 12 

3. 2. 1.   Layout of apparatus ................................................................................ 12 

3. 2. 2.   Procedure for data analysis ..................................................................... 16 

3. 2. 3.   Forward SAXS intensity at zero-angle ................................................... 17 

3. 3.   Density measurements ................................................................................... 20 

3. 3. 1.   Vibration tube density meter................................................................... 20 

3. 3. 2.   Partial molar volumes ............................................................................. 21 

3. 3. 3.   Isothermal compressibility ..................................................................... 24 

 

Chapter 4     Fluctuations in the aqueous solution ................................. 27 

4. 1.   Fluctuations of entire system ......................................................................... 27 

4. 2.   Individual density fluctuations of [P4,4,4,4]CF3COO and water ...................... 28 

4. 3.   Discussion ...................................................................................................... 30 

 

Chapter 5     Concentration dependent mixing schemes ..................... 32 

5. 1.   Differential thermodynamics ......................................................................... 32 

5. 2.   Mixing schemes in aqueous solutions ............................................................ 33 

5. 3.   Volumetric analysis ........................................................................................ 35 

5. 4.   Enthalpic analysis .......................................................................................... 38 

5. 4. 1.   Experimental ........................................................................................... 38 

5. 4. 2.   The third derivative in terms of enthalpy ............................................... 41 



5. 5. Characterization of [P4,4,4,4]
+ and CF3COO－ individual ions ........................ 43

5. 5. 1. 1-propanol probing methodology ........................................................... 43 

5. 5. 2. Experimental ........................................................................................... 45 

5. 5. 3. Results .................................................................................................... 46 

5. 6. Discussion ...................................................................................................... 48 

Chapter 6 Conclusion .................................................................................. 51 

Appendix ..................................................................................................................... 54 

A. Sample preparation................................................................................................. 54 

B. Conditions of SAXS measurements ....................................................................... 55 

C. SAXS profiles and their fitting curves ................................................................... 56 

D. Details of high-pressure density meter ................................................................... 64 

E. Concentration dependence of density ..................................................................... 66 

F. Differentiation by graphical curve fitting with a flexible ruler ............................... 68 

G. Differentiation of volume with respect to mole fraction ........................................ 69 

H. Determination of isothermal compressibility ......................................................... 73 

I. Fluctuations of the aqueous solution of [P4,4,4,4]CF3COO ....................................... 75 

J. Individual density fluctuations ................................................................................ 76 

K. Details of the handmade isothermal titration calorimeter ...................................... 78 

L. Excess partial molar enthalpy of [P4,4,4,4]CF3COO ................................................. 80 

M. Hydrophobicity/hydrophilicity of typical ions composing ionic liquids ............... 83 

N. Fluctuations for the aqueous solution of [C4mim]BF4 ........................................... 84 

O. Comparison of fluctuations of various aqueous solutions ..................................... 88 

P. NMR method ........................................................................................................... 90 

References .................................................................................................................. 92 

Acknowledgments .................................................................................................. 102 



1 

Chapter 1     General introduction 

 

 

1. 1.   Ionic liquids 

 

    Ionic liquids (ILs) are novel types of liquids composed of only cations and anions 

which show the melting points below 100 ºC. [1], [2] ILs have the unique properties [3]–

[5] such as non-volatility, non-flammability, high thermal and chemical stability, high 

solubility towards a large number of solutes and good electric conductivity. Furthermore, 

some authors claimed that ILs show inhomogeneity in liquid structure [6]–[9] while other 

observed anomalous kinetic behaviors associated with freezing/melting processes [10], 

[11]. There have been an extensive activities on investigating such special characteristics 

of ILs in recent years.  

There have been extensive efforts to lower the melting points of salts for various 

purposes including the environmental issue. [12] Now that new room temperature ILs 

have been gradually discovered, they are indeed environmentally friendly solvents. ILs 

have high solubility and selectivity towards gases and are expected as good CO2 

absorbents. [13] They are also electrolytes and can be utilized for electrochemical 

applications. [14] Non-volatility and non-flammability of ILs are useful for electrolytes 

in car batteries. [15] Recently, dissolution for cellulose is one of the most attractive topics 

related to the issues of bioethanol. [16] 

Figure 1-1 shows typical cations and anions composing ILs. Afore mentioned 

properties depend on the combination of constituent cations and anions and the nature of 

each ions. Because many ILs are composed of large organic ions, their final properties 

can be regulated for the given target functions by designing the side chains or the 

functional groups of the cations and the anions. For example, extending alkyl chains and 

etherifying a part of the chains bring about an increase in hydrophobicity. That is, a large 

number of combinations of cations and anions can be possibly tried out. Thus, we could 

obtain various ILs with the variety of desired functions. [14] As a result such ILs as those 

containing metal complexes. [17] Furthermore, zwitterionic ILs [18], polymerized and 

gelatinized ILs [19] and liquid-crystal type ILs [20] have been synthesized. 
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Figure 1-1    Typical ions composing ionic liquids. Cations; (a)imidazolium, 

(b)pyridinium, (c)pyrrolidinium, (d)piperidinium, (e)phosphonium, (f)ammonium.  

Anions; (g)halides, (h)tetrafluoroborate, (i)hexafluorophosphate, (j)nitrate, (k)sulfonate, 

(l)phosphate, (m)amino acid anion and (n)bis(trifluoromethansulfonyl)imide. 

 

 

1. 2.   Mixtures of ionic liquids and other materials 

 

    ILs’ solubility for other solvents is important [21]–[23] because a small amount of 

impurities tends to change the properties of the pure ILs rather drastically. Liquid-liquid 

equilibrium properties for binary or ternary mixtures of ILs and alcohols or water have 

been reported from the view point of removing contaminants. [24]–[27] 

On the other hand, ILs tend to be highly viscous, and cause disadvantage for mass 

transfer or some difficulty in treating them. To overcome such difficulties, mixtures of IL 

with molecular liquids are often used. For example, the mixtures of 1-butyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide, [C4mim]NTf2, with alcohols or 

water show a much lower viscosity than the pure ILs. [28] Furthermore, by mixing, new 

properties are obtained and the drastic change of those properties of the IL mixtures are 

depending on its concentration. They could be used to our advantage. [29] Mixing is 

another technique to control their functions and the properties may be predicted. For the 

mixture of two kinds of ILs, similar advantages were discussed. [30], [31] 
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1. 3.   Study on aqueous solutions of ionic liquids 

 

Because water is the most important liquid for living matters, aqueous solutions of 

ILs have been studied for biochemical reactions and chemical extractions media. [32] 

Also, water itself has the unique characteristics based on three dimensional hydrogen 

bonding. The mixtures of two peculiar materials thus attract increasing attention for 

fundamental investigations. 

The solubility of ILs in water depends on the combination of cations and anions of 

ILs. ILs composed of imidazoliums with short alkyl chain and halides, for example, 1-

ethyl-3-methylidazolium chloride, [C2mim]Cl, and BF4
－  with the same cation, 

[C2mim]BF4, are miscible with water in the complete mole fraction. On the other hand, 

ILs composed of imidazoliums with a longer alkyl chain such as [C6mim]+, and/or a bulky 

anion as NTf2
－ are water immiscible and show biphasic systems at room temperature. 

Some aqueous solutions of ILs show temperature dependent reversible phase separations. 

[32]–[34] For example, the aqueous solution of 1-butyl-3-methylimidazolium 

tetrafluoroborate, [C4mim]BF4, was observed to exhibit phase separation with the upper 

critical solution temperature, UCST, [33], [34] showing the single phase (mixing) at 

higher temperatures and the biphasic system (separating) at lower temperatures. Also 

some aqueous solution of phosphonium-based ILs showing phase separation with the 

lower critical solution temperature, LCST, also have been reported. [35], [36] Using the 

mixtures with those properties are expected as a possible extraction and reaction solvents. 

Figure 1-2 is one of the applications for aqueous solutions of IL with the LCST-type phase 

separation as a reaction solvent [32], as explained in the figure caption of figure 1-2. 

 

 

Figure 1-2    An application for a binary systems of ILs and water with LCST relies on 

the reversible phase separation. [32] (a)Reactants and catalysts are dissolved in the water 

and the IL layers separately. (b)By cooling, the system becomes one phase and the 

chemical reactions occur. (c)By heating the system, the biphasic mixture appears with the 

water-rich phase and the IL-rich phase. Thus the products and the catalysts are separated.  
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A large number of investigations for physicochemical properties of aqueous solution 

of ILs have been reported [37], [38] such as density [39]–[41], surface tension [39], 

viscosity [42], thermophysical quantities [43]–[45] and electrical conductivity [46]–[48]. 

Mixing state of them also have been studied by molecular dynamics simulation [49], [50], 

NMR method [51], [52] and X-ray or neutron scattering method [53]–[55]. Even in dilute 

region, ion pair formations were discussed. [52], [56]–[59] At higher concentration region, 

aggregation of ILs [55], [60]–[62] and unique behavior of water molecules [63]–[66] were 

reported. In some aqueous solutions of ILs, “water pocket” which confine water 

molecules in ILs was demonstrated by molecular dynamics simulation. [61] For the 

mixture of 1-butyl-3-methyl nitrate, [C4mim]NO3, and water, the evidence of water 

pocket was observed by neutron scattering. [53] The aqueous solution of [C4mim]BF4 

which shows UCST-type phase separation was reported a drastic change of mixing state 

by small-angle neutron scattering. [54] 

 

1. 4.   Aqueous solution of [P4,4,4,4]CF3COO 

 

    The most of the sample ILs in previous studies are based on ILs with imidazolium 

cations although there are many other kinds of cations as shown in figure 1-1. Recently, 

phosphonium-based ILs which has four alkyl chains draw much attentions. Their 

properties depend heavily on their symmetries. Also their high solubility for organic 

solvents is advantageous for chemical reactions. [67], [68] The mixtures of phosphonium-

based ILs and water show various behaviors depending on the counter anions. 

Combinations of tetrabutylphosphonium, [P4,4,4,4]
+ and NTf2

－ , BF4
－  and 

trifluoromethanesulfonate are immiscible with water and form liquid/liquid biphasic 

systems. On the other hand, combinations of [P4,4,4,4]
+ and Br － , NO3

－  and 

benzenesulfonate are miscible with water completely. Combinations of [P4,4,4,4]
+ with p-

methylbenzenesulfonate, 2,4-dimethylbenzensulfonate and 2,4,6-trimethylbenzen-

sulfonate are reported to show the LCST-type phase separation. [69] Using the 

temperature-induced phase transition, the mixtures of IL and water are used as extraction 

of biopolymers. The aqueous solution of tetrabutylphosphonium N-

trifluoromethanesulfonyl leucine was reported their effectiveness for protein extraction. 

[32] Furthermore, based on the investigation of aqueous solutions of ILs, such functional 

materials as thermoresponsive polyelectrolyte hydrogels have been synthesized. [70]–

[72] 

Now we selected the aqueous solution of tetrabutylphosphonium trifluoroacetate, 

[P4,4,4,4]CF3COO, because the structure of composing ions are relatively simple. It shows 



5 

the phase separation with the LCST and its critical point is at 𝑥IL= 0.025 and at 𝑇= 

302.35 K [69], where 𝑥IL is mole fraction of [P4,4,4,4]CF3COO and 𝑇 is the absolute 

temperature. Figure 1-3 shows the phase diagram of the aqueous solution of 

[P4,4,4,4]CF3COO and the black solid curve indicates the phase boundary. [69]  

 

 

Figure 1-3    Phase diagram of aqueous solution of tetrabutylphosphonium 

trifluoroactate, [P4,4,4,4]CF3COO. [69] Black line is phase boundary and purple symbol 

indicate the critical point at 𝑥IL= 0.025 and at 𝑇= 302 K. Red diamonds, orange triangles 

and green circles represent observed points for SAXS measurement at 293, 298 and 302 

K. The light blue region indicates the mole fraction/temperature region where differential 

thermodynamic studies were applied. 

 

The objective of this study is to learn the mixing state of aqueous solutions of IL. 

Mixing state is important to design the functional systems using IL. Especially, aqueous 

solution with temperature dependent reversible phase transition have great potential as 

biochemical reaction and extraction media. Furthermore, in the previous studies[73], [74], 

the unique properties near the critical points in aqueous solutions of molecular liquids 

which have UCST- or LCST-type phase separation were studied. We applied the concept 

of fluctuation which have been used for studying on liquid structure of various solution 

with the critical points on the aqueous solution of [P4,4,4,4]CF3COO using small-angle X-

ray scattering technique near the critical point. Also from the view point of differential 

thermodynamics established by Koga, we learned the intermolecular interactions of 

[P4,4,4,4]CF3COO and water in dilute concentration region. 
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Chapter 2     Fluctuations 

 

 

2. 1.   Fluctuations for binary systems  

 

    Fluctuation, the variation from the global average, is an important concept for 

fundamental investigations. [73], [75] Super critical pure fluids, a good example, have 

both properties of gas-like and liquid-like and show large degree of fluctuation [76]. For 

aqueous solutions of molecular liquids, the systems show a large fluctuation near the de-

mixing critical point. [77]–[80] The mixtures with a temperature-dependent phase 

separation were reported to show a large fluctuation near the critical point. For example, 

the aqueous solution of acetonitrile [81] showed the UCST-type phase separation and that 

of 2-butoxyethanol [82] exhibited the LCST-type phase separation. 

Now consider a binary system of component A and B. Figure 2-1 (a) shows the 

schematic view of density fluctuation. The number of particles in a fixed volume 𝑉 is 

fluctuating. Density fluctuation, 〈(∆𝑁)2〉 𝑁̅⁄ , is defined as the mean square of the 

difference of the local or instantaneous particle number from the average particle number 

(𝑁̅), ∆𝑁. On the other hand, concentration fluctuation, 𝑁̅〈(∆𝑥)2〉, expresses the contrast 

of component A and B defined as the mean square difference of concentration from the 

global average, ∆𝑥. The correlation term of the density fluctuation and the concentration 

fluctuation, 〈(∆𝑁)(∆𝑥)〉, is also defined as shown in equation (3) below. 

 

 

Figure 2-1    Schematic views of fluctuations for binary systems. (a)Density fluctuation, 

〈(∆𝑁)2〉 𝑁̅⁄ , and (b)larger and (b’)smaller concentration fluctuation, 𝑁̅〈(∆𝑥)2〉. 
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    These fluctuations are the second derivative quantities of Gibbs energy, 𝐺, written 

as, 

𝑁̅〈(∆𝑥A)2〉 = 𝑁̅𝑘B𝑇 (
𝜕2𝐺

𝜕𝑥A
2 )

𝑇,𝑝,𝑁

⁄ , (1) 

〈(∆𝑁)2〉

𝑁̅
= (

𝑁̅

𝑉
) 𝑘B𝑇𝜅𝑇 + {

𝑁̅

𝑉
(𝑣A − 𝑣B)}

2

𝑁̅〈(∆𝑥A)2〉, (2) 

〈(∆𝑁)(∆𝑥A)〉 = − {
𝑁̅

𝑉
(𝑣A − 𝑣B)} 𝑁̅〈(∆𝑥A)2〉, (3) 

where 𝑘B is Boltzmann’s constant and 𝜇A is chemical potential of component A which 

is the first derivative of 𝐺. 𝜅𝑇 is the isothermal compressibility of the mixture and 𝑣i 

is the partial molar volume of component i. Both 𝜅𝑇  and 𝑣i  are also the second 

derivatives.  

 

2. 2.   Small-angle X-ray scattering method 

 

    Small-angle X-ray Scattering (SAXS) method is one of the powerful tools to observe 

the structure at nanoscopic level (1-100 nm). Mainly SAXS methods have been used for 

structure analysis of nanomaterials and proteins in solution. [83], [84] X-ray is scattered 

by electrons in the sample material and the diffracted image corresponds to the Fourier 

transformation of electron density distribution. Scattering intensity is expressed as a 

function of scattering parameter, 𝑠, defined as, 

𝑠 =
4𝜋 sin 𝜃

𝜆
, (4) 

where 𝜆 is the wavelength of X-ray and 2𝜃 is the scattering angle. The signals from 

electron density variation appear at certain 𝑠 region according to the scale of the shape 

of materials. For materials without specific structures such as fluids and polymer 

solutions, SAXS intensity still gives information of their spatial characteristics. Figure 2-

3 shows the relationship between the region of scattering parameter and the information 

of material structures. [85] 
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Figure 2-3    The information of materials obtained by small-angle and wide-angle X-

ray scattering intensity against scattering parameter [85]; (a)interactions between 

molecules, (b)size of colloids, (c)shape of colloidal particles, (d)surface structure of 

particles and (e)crystal structures. 

 

Bhatia and Thornton connected the SAXS intensity to fluctuations of binary systems. 

[75], [86] Consider a mixture composed of component A and B. Generally X-ray 

scattering intensity from the system, 𝐼(𝑠), is written as, 

𝐼(𝑠) = 𝑁A
̅̅ ̅̅ 𝑓A(𝑠)2 + 𝑁B

̅̅ ̅̅ 𝑓B(𝑠)2  

 +
𝑁A
̅̅ ̅̅ 2

𝑓A(𝑠)2

𝑉
∫(𝑔AA

(2)
− 1)

sin 𝑠𝑟

𝑠𝑟
𝑑𝑉 +

𝑁B
̅̅ ̅̅ 2

𝑓B(𝑠)2

𝑉
∫(𝑔BB

(2)
− 1)

sin 𝑠𝑟

𝑠𝑟
𝑑𝑉  

 + 2
𝑁A
̅̅ ̅̅  𝑁B

̅̅ ̅̅ 𝑓A(𝑠)𝑓B(𝑠)

𝑉
∫(𝑔AB

(2)
− 1)

sin 𝑠𝑟

𝑠𝑟
𝑑𝑉 (5) 

where 𝑁i is the number of particles (molecules) of component i in a volume, 𝑉, and 

𝑓i(𝑠) is the form factor of component i. 𝑔ij
(2)

 , two body correlation function, is defined 

as correlation between component i and j at a distance of 𝑟 = |𝑟j − 𝑟i|, namely, the 

probability of existence of component j around i. The value of 𝑔ij
(2)

 approaches to 1 with 

increase of 𝑟. Superscript bar indicates the average.  

First, Bhatia and Thornton defined Fourier transformations of variations from the 

average for the total number density of particles, 𝑛 = 𝑁 𝑉⁄ , ∆𝑛(𝑟), and for the mole 

fraction variation between A and B, ∆𝑐(𝑟) with distance 𝑟  apart. They named the 

resulting Fourier transformations as N(𝑠) and C(𝑠), respectively. [75] 

N(𝑠) = ∫ exp(𝑖𝑠 ∙ 𝑟) ∆𝑛(𝑟)d𝑟, (6) 

C(𝑠) = ∫ exp(𝑖𝑠 ∙ 𝑟) ∆𝑐(𝑟)d𝑟, (7) 
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The density fluctuation, the concentration fluctuation and their correlation term within 

the reciprocal space are written using N(𝑠) and C(𝑠) as, 

〈N(𝑠)∗N(𝑠)〉

𝑁̅
, (8) 

𝑁̅〈C(𝑠)∗C(𝑠)〉, (9) 

Re〈N(𝑠)∗C(𝑠)〉. (10) 

Superscript ∗ indicates conjugate quantity. The intensity of scattered X-ray is then 

written as, 

𝐼(𝑠)

𝑁̅
= 𝑓(̅𝑠)2

〈N(𝑠)∗N(𝑠)〉

𝑁̅
+ (𝑓A + 𝑓B)2𝑁̅〈C(𝑠)∗C(𝑠)〉  

+2𝑓(̅𝑓A − 𝑓B)Re〈N(𝑠)∗C(𝑠)〉, (11) 

where, 

𝑓̅ = 𝑥A𝑓A + 𝑥B𝑓B, (12) 

and 𝑥A and 𝑥B are the mole fractions of component A and B, respectively. 

At the limit of long wavelength,  

lim
𝑠→0

sin 𝑠𝑟

𝑠𝑟
→ 1, (13) 

the amplitudes of component i, 𝑓i, approach to the number of electrons of component i, 

𝑍i, 

𝑓i → 𝑍i, (14) 

𝑍̅ = 𝑥A𝑍A + 𝑥B𝑍B. (15) 

Each term of equation (11) approaches to the fluctuations defined in equation (1), (2) and 

(3) as shown in equation (16), (17) and (18).  

〈N(𝑠)∗N(𝑠)〉

𝑁̅
→

〈(∆𝑁)2〉

𝑁̅
, (16) 

𝑁̅〈C(𝑠)∗C(𝑠)〉 → 𝑁̅〈(∆𝑥)2〉, (17) 

Re〈N(𝑠)∗C(𝑠)〉 → 〈(∆𝑁)(∆𝑥)〉. (18) 
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Namely, the scattering intensity at 𝑠= 0, 𝐼(0), shows the information of the system 

described by thermodynamic quantities. Therefore 𝐼(0) is written as, 

𝐼(0)

𝑁̅
= 𝑍̅2

〈(∆𝑁)2〉

𝑁̅
+ (𝑍A + 𝑍B)2𝑁̅〈(∆𝑥A)2〉 + 2𝑍̅(𝑍A − 𝑍B)〈(∆𝑁)(∆𝑥A)〉. (19) 

Using thermodynamic expressions, 

𝐼(0)

𝑁̅
= 𝑍̅2 (

𝑁̅

𝑉
) 𝑘B𝑇𝜅𝑇 + {𝑍̅(𝑣A − 𝑣B)

𝑁̅

𝑉
− (𝑍A + 𝑍B)}

2

𝑁̅〈(∆𝑥A)2〉. (20) 

Thus, the density fluctuation, the concentration fluctuation and their correlation term are 

determined by combination of 𝐼(0), 𝜅𝑇 and 𝑣A and 𝑣B measured experimentally. In 

SAXS method, we are able to observe the fluctuation in the volume defined by the 

coherent length of X-ray (about 10000 Å).  

By equation (1), the concentration fluctuation can also be calculated by measuring 

chemical potentials as a function of mole fraction, and taking its derivative. However, as 

discussed extensively before [87] and in reference [88], the error bar for the 

thermodynamic route near the maximum tends inevitably quite large. Hence, the SAXS 

route to obtain the concentration fluctuation [74] is more advantageous. 

 

2. 3.   Individual density fluctuations 

 

    To see more details of the mixing state of mixtures, the individual density 

fluctuations which are the density fluctuations focusing on one component in the complex 

system are calculated using Kirkwood-Buff parameters. Figure 2-3 shows a schematic 

view of the individual fluctuations. Kirkwood-Buff parameters [89] connect the 

microscopic quantities to the macroscopic quantities. They are also one of expressions of 

fluctuation defined as, 

𝐺ij = ∫(𝑔ij − 1)4𝜋𝑟2d𝑟 , (21) 

where 𝑔ij  is the two body distribution function of component i and j, and 𝑟  is 

interparticle distance between i and j. Kirk-wood parameters are the integral of the 

variation from the convergent value, 1, in total space. For a binary system composed of 

component A and B, Ben-Nam introduced the relationship between thermodynamic 

quantities and those parameters. [90] 
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Kirkwood-Buff parameters, 𝐺AA, 𝐺BB and 𝐺AB, are connected to fluctuations by 

scattering intensity, 𝐼(0), as, [91] 

𝐼(0)

𝑁̅
= 𝑥A𝑍A

2 + 𝑥B𝑍B
2 + 𝑥A

2𝑍A
2 (

𝑁̅

𝑉
) 𝐺AA + 𝑥B

2𝑍B
2 (

𝑁̅

𝑉
) 𝐺BB  

+2𝑍A𝑍B (
𝑁̅

𝑉
) 𝐺AB. (22) 

Comparing the coefficients of each terms of equations (19) and (22), 

𝐺AA = − (
𝑉

𝑁A
) + 𝜅𝑇𝑘B𝑇 + (

𝑣B

𝑥A
)

2

(
𝑁̅

𝑉
) ∙ 𝑁̅〈(∆𝑥A)2〉, (23) 

𝐺BB = − (
𝑉

𝑁B
) + 𝜅𝑇𝑘B𝑇 + (

𝑣A

𝑥B
)

2

(
𝑁̅

𝑉
) ∙ 𝑁̅〈(∆𝑥A)2〉, (24) 

𝐺AB = 𝜅𝑇𝑘B𝑇 + (
𝑣A𝑣B

𝑥A𝑥B
) (

𝑁̅

𝑉
) ∙ 𝑁̅〈(∆𝑥A)2〉. (25) 

When i = j, the individual density fluctuation of component i is written using the number 

of component i, 𝑁i, as, 

〈(∆𝑁i)
2〉

𝑁i̅

= (
𝑁i̅

𝑉
) 𝐺ii + 1. (26) 

On the other hand, when i ≠ j, the correlation terms between the individual density 

fluctuations of i and j are obtained as, 

〈∆𝑁i∆𝑁j〉

𝑁j̅

= (
𝑁i̅

𝑉
) 𝐺ij. (27) 

〈∆𝑁i∆𝑁j〉 𝑁j̅⁄  indicates the affinity between component i and component j. Positive value 

of the cross term corresponds to high affinity. 

 

 

 

Figure 2-3    Schematic views of individual fluctuations for component (b)A, 

〈(∆𝑁A)2〉 𝑁A
̅̅̅̅⁄ , and (c)B, 〈(∆𝑁B)2〉 𝑁B

̅̅̅̅⁄ , separated from (a)the total fluctuation.  
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Chapter 3     Experimental to determine fluctuations 

 

 

3. 1.   Sample preparation 

 

    The target ionic liquid [P4,4,4,4]CF3COO was donated by Ohno’s group (Tokyo 

University of Agriculture and Technology). [P4,4,4,4]CF3COO was prepared by direct 

neutralization of aqueous solutions of the tetrabutylphosphonium hydroxide (Hokko 

Chem Co.) with trifluoroacetic acid (Wako Chem. Co.). After evaporating water, the 

product was added to a dichloromethane/water biphasic system, and the resulting mixture 

was washed several times with distilled water. The target salt was precipitates in the 

organic phase. The prepared [P4,4,4,4]CF3COO was dried in vacuum for 24 h at 333 K prior 

to use. The structure and the purity of the salt were confirmed by 1H NMR and elemental 

analyses. 

    [P4,4,4,4]CF3COO was dried under vacuum more than 2 days at room temperature 

prior to use because of its high hygroscopicity. If the sample appears as glassy solid 

[P4,4,4,4]CF3COO was turned into powder form by crushing. Then [P4,4,4,4]CF3COO was 

mixed with ultrapure water (Milli-Q, Millipore) to the desired concentration 

gravimetrically. All experiments were performed at 𝑥IL= 0.000-0.079 along isotherms at 

T= 293, 298 and 301 K within a week after preparing mixtures. Details for sample 

preparation is reported in Appendix A. 

 

3. 2.   SAXS measurements 

 

3. 2. 1.   Layout of apparatus 

    SAXS measurements were performed at the BL-6A station in Photon Factory (PF) 

at the National Laboratory for High Energy Accelerator Research Organization (KEK), 

Tsukuba. The high intensity X-rays whose wavelength is 1.5 Å (8.3 keV) and the highly 

accurate detector in the PF are powerful to measure scattering intensity for aqueous 

solutions to quantify fluctuations. Figure 3-1 shows the layout of BL-6A beam station. 

[92] X-rays are focused and monochromatized using a bent mirror and a monochromator. 

The monochromatic X-rays pass through three slits. 
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Figure 3-1    View of the beam line BL-6A layout [92]; (a)bent mirror, 

(b)monochromator, (c)ionization chamber, (d)sample holder, (e)beam stopper with 

photodiode detector and (f)scattered X-ray detector. Monchromatized X-rays drawn as 

red arrows are scattered by sample substance in (d). 

 

    The intensity of incident X-ray was monitored by the ionization chamber set before 

the sample holder. The transmitted X-ray was detected simultaneously by the photodiode 

set on the X-ray beam stopper, which enables determination of precise absorption 

coefficient of each sample to obtain the scattering intensity on absolute scale. [93] The 

X-rays scattered by sample materials passed through vacuum chamber and were detected 

by 2 dimensional semiconductor detector, PILATUS 1M (DECTRIS). The distance from 

the sample to the detector was set at 2 m and its correct value was determined by 

calibration using the silver behenate, AgBh, diffraction pattern. The exposure time was 

300 seconds. Details of conditions are mentioned in Appendix B. 

 

 

 

Figure 3-2    A snapshot of the BL-6A station hatch. Right hand side of figure is up 

stream; (a)ionization chamber, (b)sample holder, (c)vacuum chamber and (d)X-ray 

detector. 
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    Sample holder was made of stainless steel (SUS 304) shown in figure 3-3. In SAXS 

measurement, the scattering volume depends on sample length, 𝑙 , and decrease of 

scattered X-ray by absorption by sample materials follow Lambert-Beer law as, 

𝜇m𝜌𝑙 = ln (
𝐼inc.

𝐼trans.
) , (28) 

where 𝜇m is the mass absorption coefficient, 𝜌 is density of the sample materials and 

𝐼inc. and 𝐼trans. are the intensities of the incident and transmitted X-rays, respectively. A 

large sample length causes high absorption and small scattering intensity. On the other 

hand, thin sample length results in weak scattering. When the optimum sample length, 𝑙0, 

is selected, the intensity of scattered X-ray is maximum. 

𝑙0 =
1

𝜇m𝜌
. (29) 

Mass absorption coefficient, 𝜇m, is specific originated from composing elements. Those 

for molecules are the sum of constituent mass absorption coefficients of elements, 

independent of their physical states. Consider a chemical compound AxBy, A and B 

are composing elements whose atomic weights are 𝑀A  and 𝑀B , respectively. When 

Mass absorption coefficients of A and B are known as 𝜇m,A  and 𝜇m,B , that of the 

compound AxBy is calculated as, 

𝜇m,comp. =
𝜇m,A𝑀A𝑥 + 𝜇m,B𝑀B𝑦

𝑀A𝑥 + 𝑀B𝑦
. (30) 

Similarly, the mass absorption coefficient for mixture composed of component 1 and 2, 

𝜇m,mix. , is calculated as sum of products of 𝜇m,comp.  and mass fraction of each 

component, 𝑤i. 

𝜇m,mix. = 𝜇m,comp.1𝑤1 + 𝜇m,comp.2𝑤2, (31) 

where subscripts 1 and 2 indicate component 1 and 2. Mass absorption coefficients of 

elements at the energy of X-ray used are obtained from XCOM, the database in National 

Institute of Standards and Technology, NIST, U. S. The required mass absorption 

coefficients are calculated on the website of NIST. [94], [95]  

In this study of aqueous solutions, the sample length of the sample holder was based 

on the optimum sample length of water, 1.067 mm. To obtain sufficient scattered X-ray, 

the actual sample length of the sample holder was 1.6 mm. A pair of single crystal disks 

(Sumitomo Electric Hardmetal Co.) of diamond with thickness 0.3 mm and diameter 4.0 

mm, were used as X-ray transmitting windows attached on both parts of P and Q in figure 

3-3 by thermoset epoxy resin. Two parts of P and Q are assembled as shown in figure 3-

3 (b) sealed by fluorinated O-ring (Morisei Kako Co.) of which the outer diameter is 10 
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mm and thickness is 1.0 mm. The parts P and Q are in touch with each other by their 

metal surfaces and the sample length is fixed. 

 

 

 

Figure 3-3    Design of sample holder composed of two parts P and Q. (a) shows details 

of each part; (1)diamond windows, (2)sealing O-ring and (3)sample injection hole. (b) 

shows the assembled sample holder with two parts of P and Q. Space (4) is the sample 

holding space and the distance between pair of diamond disks determines the sample 

length, 1.6 mm. 

 

 

 

Figure 3-4    (a)A snapshot of the sample holder. (b)Setting of the sample stage on the 

beam line BL-6A; (1)the sample holder, (2)fixture of the sample holder, (3)rubber hose 

and (4)thermocouple.  
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For SAXS measurements, only 300 μl sample materials were required and injected 

in the space (4) in figure 3-3 (b) through sample injection hole (3) shown in figure 3-3 (a) 

with a micropipette. After checking the sample material was filled through diamond 

window, the sample holder was set at the sample stage on the beam line shown in figure 

3-4. Temperature of sample materials were controlled by flowing circulating water in 

rubber hose with thermostat bath and monitored by K-type thermocouple set at the sample 

holder. 

 

3. 2. 2.   Procedure for data analysis 

The 2-D images of intensity shown in figure 3-5 (a) were converted to 1-D intensity 

data versus scattering parameter shown in figure 3-5 (b) except for unnecessary signals 

by the program Fit2D [96], [97]. The color band shown below in figure 3-5 (a) represents 

the magnitude of SAXS intensity distinguished by color (white is the strongest). A variety 

of corrections were applied on the resultant raw data shown in figure 3-5 (b) to remove 

spurious scatterings from air and the diamond windows. And the effects of sample 

absorption was also corrected. Another correction is required to the raw data using 

measured incident and transmitted X-ray intensities. 

 

 
Figure 3-5    Conversion of 2-D scattering intensity data to 1-D data using Fit2D 

program [96], [97]; (a)raw 2-D data and (b) converted raw 1-D data prior to various 

corrections. 
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First, because the intensity of incident X-ray fluctuates with time, the raw intensity, 

𝐼raw(𝑠), is normalized by the average of incident X-ray intensity, 𝐼inc., and the exposure 

time, 𝑡. Corrected scattering intensity, 𝐼i(𝑠), is written as, 

𝐼i(𝑠) =
𝐼raw(𝑠)

𝐼inc ∙ 𝑡
. (32) 

Next, consider the ratio of the transmitted intensity to the incident intensity, 𝐴 =

𝐼trans. 𝐼inc⁄ . To remove effects of absorption of X-ray by sample, correction is performed 

on 𝐼i(𝑠) as follows. 

𝐼ii(𝑠) = 𝐼i(𝑠) ∙ (
𝐴back

𝐴
) . (33) 

𝐴back is the ratio of the transmitted intensity to the incident intensity for background. For 

scattering intensity of the back ground, the same correction is also applied and the 

corrected scattering intensity, 𝐼ii(𝑠)back, is written as, 

𝐼ii(𝑠)back = 𝐼i(𝑠)back ∙ (
𝐴back

𝐴back
) = 𝐼i(𝑠)back. (34) 

In the present measurements for aqueous solution of [P4,4,4,4]CF3COO, the intensity data 

of air (no material in the sample holder) at the temperature was used as background. 

Finally to extract the scattering intensity only from the sample, the corrected 

scattering intensity of background, 𝐼ii(𝑠)back, is subtracted from that of the measurement, 

𝐼ii(𝑠). The scattering intensity of the sample, 𝐼(𝑠), is then obtained as, 

𝐼(𝑠) = 𝐼ii(𝑠) − 𝐼ii(𝑠)back. (35) 

 

3. 2. 3.   Forward SAXS intensity at zero-angle 

    Figure 3-6 shows the SAXS profiles against scattering parameter, 𝑠, of aqueous 

solutions of [P4,4,4,4]CF3COO at 301 K. The vertical axis is the absolute scattering 

intensity, 𝐼(𝑠). The profile of water, blue plots, show flat behavior in this 𝑠 range. By 

adding [P4,4,4,4]CF3COO, scattering intensity curls up toward 𝑠= 0 and the intensity at 

𝑥IL= 0.026, the nearest concentration to the critical concentration, exhibited the largest 

increase. And then beyond the critical concentration, scattering intensity comes down. 

However, the magnitudes of the intensities at 293 and 298 K were considerably weaker 

than those at 301 K.  
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Figure 3-6    X-ray scattering profile of aqueous solutions of [P4,4,4,4]CF3COO at 301 

K. The blue symbols are results of pure water. Adding [P4,4,4,4]CF3COO, SAXS intensity, 

𝐼(𝑠), increase toward 𝑠= 0 and that at 𝑥IL= 0.026, 𝐼(𝑠) shows the greatest increase. 

 

As discussed in 2. 2., the SAXS intensity at 𝑠= 0, 𝐼(0), includes information of 

fluctuations. But in actual measurement, we are not able to obtain the value directly 

because direct beam stopper shade scattered X-rays at zero angle. Each value for 𝐼(0) 

was obtained by extrapolation of the corresponding fitting curve obtained in the range 0.2 

< s < 1.0 nm−1 to 𝑠= 0. 

The SAXS intensity of the system near the critical point follows the Ornstein-

Zernike equation [98] as, 

𝐼(𝑠) =
𝐼(0)

1 + 𝜉2𝑠2
, (36) 

where 𝜉 is the correlation distance. This equation is applied on the systems which have 

various size clusters, namely highly fluctuating systems. Inverse of 𝐼(𝑠) should be linear 

against square of 𝑠 . In the study of aqueous solution of acetonitrile, 𝐼(0) s were 

determined following equation (36) near the critical point. Outside of this region, even 

functions were fitted instead. [81] However, for the present aqueous solution of 

[P4,4,4,4]CF3COO, the SAXS intensities did not follow equation (36) even the result at 

𝑥IL= 0.026 and at 301 K, only a degree lower than the critical point. Molecular dynamics 

simulation studies showed most ILs have strong interactions among themselves in pure 

state [6], [9], [99]. The X-ray scattering study showed broad peak generally at a certain 

𝑠 region larger than what is plotted in figure 3-6. [7], [8] Pure [P4,4,4,4]CF3COO also 

showed an increase of the intensity at larger than 𝑠= 2 nm-1 [100] and a similar increase 
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was observed in X-ray scattering intensity of its aqueous solution at 𝑠 > 1.2 nm-1 as 

shown in figure 3-6. Therefore, the effect of this intensity spilling over from high 𝑠 

region should be corrected. Thus instead of equation (36), we used equation (37) below 

to fit the present data. The attempt was reasonably successful. 𝐼(0) was obtained as the 

sum of 𝐼(0)′ and 𝛼. 

𝐼(𝑠) =
𝐼(0)′

1 + 𝜉2𝑠2
+ 𝛼. (37) 

Figure 3-7 (a) is the examples of fitting curves using equation (37) applied on the result 

at 𝑥IL= 0.026 and at 301 K. On the other hand, figure 3-7 (b) is the Ornstein-Zernike plot 

using equation (36) applied on the same data. The inverse of 𝐼(𝑠) data do not show 

linearity against square of 𝑠  even at small 𝑠  region. This indicates that the fitting 

function, equation (36), is unsuitable. Also Guinier plot which express the system with 

the same size clusters was found to be unsuitable. It indicated that the present aqueous 

solution is fluctuating and shows various size of aggregation. Figure 3-8 shows the 

concentration dependence for the zero-angle scattering intensities, 𝐼(0), at 293, 298 and 

301 K. All the SAXS profiles and the fitting curves are shown in Appendix C. 

 

 

 

 

Figure 3-7    Example of fitting curves on the SAXS profile; (a)fitted by equation (37) 

and (b)fitted by equation (36). 
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Figure 3-8    Concentration dependence of the zero-angle scattering intensity, 𝐼(0), at 

293, 298 and 301 K. 𝐼(0)s describe a peak near the critical concentration, 𝑥IL= 0.025, at 

each temperature. Especially 𝐼(0) at 301 K shows a drastic increase toward the critical 

concentration. 

 

 

3. 3.   Density measurements 

 

3. 3. 1.   Vibration tube density meter 

    In order to obtain the second derivative parameters in equation (20), the partial molar 

volumes of components and its isothermal compressibility were determined. For this 

purpose, we determined the density of the present aqueous solution as a function of mole 

fraction as well as pressure using the vibration tube density meter. We then take 

derivatives of the result in terms of mole fraction to obtain partial molar volumes, and in 

terms of pressure to determine isothermal compressibility. 

The frequency of vibration tube, 𝜔, is proportional to the sum of masses of the tube, 

𝑚, and of the sample, 𝜌𝑉, where 𝜌 is density and 𝑉 is volume of the sample, as, 

𝜔 = [
𝑘

4𝜋2(𝑚 + 𝜌𝑉)
]

1
2⁄

. (38) 

𝑘 represents the apparatus constant. From equation (38), density is written as a function 

of period, 𝜏 = 𝜔−1, 

𝜌 = 𝐴𝜏2 + 𝐵, (39) 
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𝐴 =
𝑘

4𝜋2𝑉
, (40) 

𝐵 = −
𝑚

𝑉
. (41) 

Parameters 𝐴  and 𝐵  are the constants depending on temperature and pressure and 

determined by measuring 𝜏 of two reference materials, nitrogen or air and pure water, at 

the target temperatures and pressures.  

    Partial molar volume of component i, 𝑣i, is defined as, 

𝑣i ≡ (
𝜕𝑉

𝜕𝑛i
)

𝑝,𝑇,𝑛j≠i

, (42) 

where 𝑉 is volume of the system and 𝑛i is the molar amount of component i. However, 

it is more convenient experimentally to use {𝑥i (i= 1, 2, 3, …, k-1), 𝑁} variables in the 

k-component systems, rather than {𝑛i  (i= 1, 2, 3, …, k)} in which thermodynamic 

quantities are generally defined. Using 𝑥i, equation (42) is rewritten as, 

𝑣i = (1 − 𝑥𝑖) (
𝜕𝑉m

𝜕𝑥i
)

𝑝,𝑇

+ 𝑉m, (43) 

where 𝑉m = 𝑉 𝑁⁄  is the molar volume of the mixture and 𝑁 is the total molar amount. 

Partial molar volumes of [P4,4,4,4]CF3COO and water in the solution were obtained using 

equation (43) by measuring concentration dependence of density. The apparatuses used 

for this were DMA 4500 and DMA 4100 (Anton Paar). Parameters 𝐴  and 𝐵  were 

determined using distilled pure water and dry air at 293 K. The corrections for other 

temperatures and also for viscosity were done automatically. 

    On the other hand, isothermal compressibility, 𝜅𝑇, is defined as, 

𝜅𝑇 ≡ −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇,𝑥i

. (44) 

𝜅𝑇  was obtained by measuring pressure dependence of density using high-pressure 

vibration tube density meter DMA HP (Anton Paar). Parameters 𝐴  and 𝐵  were 

determined using distilled pure water and nitrogen gas at all temperature and pressure 

according to the measurement points conditions. Detail of the apparatus is reported in 

Appendix D.  

 

3. 3. 2.   Partial molar volumes 

    Figure 3-9 shows the concentration dependence of density, 𝜌, and the molar volume 

of aqueous solution of [P4,4,4,4]CF3COO, 𝑉m, at 293, 298 and 302 K and at 𝑥IL= 0.000-

0.079. All raw data are reported in Appendix E. Molar volume, 𝑉m, was calculated as, 
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𝑉m =
𝑀IL𝑥IL + 𝑀W(1 − 𝑥IL)

𝜌
. (45) 

𝑀IL and 𝑀W are the formula weight of [P4,4,4,4]CF3COO, 372.46, and the molecular 

weight of water, 18.02, respectively. We note that 𝑉m versus 𝑥IL appears linear up to 

the maximum concentration in the present measurement. 

 

 

Figure 3-9    Concentration dependence of density, 𝜌 , for the aqueous solution of 

[P4,4,4,4]CF3COO at 293, 298 and 301 K. The inset shows the calculated molar volume, 

𝑉m. 

 

Using the equation (43), the molar volume was differentiated with respect to mole 

fraction, 𝑥IL. To see the effect of intermolecular interactions more clearly, the excess 

partial molar volumes should be evaluated. First, the excess molar volume, 𝑉m
E, must be 

obtained, which can be calculated by, 

𝑉m = 𝑉m
id + 𝑉m

E = {𝑉IL𝑥IL + 𝑉W(1 − 𝑥IL)} + 𝑉m
E. (46) 

𝑉IL and 𝑉W are the molar volumes of pure [P4,4,4,4]CF3COO and water, respectively. 

Superscripts id and E represent ideal and excess quantities, excess quantities include all 

information about intermolecular interactions in the mixture. The partial molar volume of 

[P4,4,4,4]CF3COO, 𝑣IL, is written as, 

𝑣IL = 𝑣IL
id + 𝑣IL

E = (1 − 𝑥IL) (
𝜕𝑉m

id

𝜕𝑥IL
) + 𝑉m

id + (1 − 𝑥IL) (
𝜕𝑉m

E

𝜕𝑥IL
) + 𝑉m

E, (47) 
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𝑣IL
id = 𝑉IL. (48) 

And partial molar volume of water, 𝑣W, is obtained in the same manner. 

However, pure [P4,4,4,4]CF3COO is solid at 293-302 K and it is difficult to obtain 𝑉IL 

experimentally. We define the “apparent” ideal molar volume of [P4,4,4,4]CF3COO, 𝑉m,ap
id , 

using the present data set from 𝑥IL= 0.000 to 0.079, assuming that 𝑉m,ap
id  is linear to 𝑥IL, 

𝑉m,ap
id (𝑥IL) = 𝑥IL ∙

𝑉m(𝑥IL=0.079) − 𝑉W

0.079
+ 𝑉W, (49) 

and the “apparent” molar volume of pure [P4,4,4,4]CF3COO at 𝑥IL= 1 is expressed as, 

𝑉IL,ap =
𝑉m(𝑥IL=0.079) − 𝑉𝑊

0.079
+ 𝑉𝑊. (50) 

According to the equation (46), the “apparent” excess molar volume is written as, 

𝑉m,ap
E (𝑥IL) = 𝑉m(𝑥IL) − 𝑉m,ap

id (𝑥IL). (51) 

Figure 3-10 shows the apparent excess molar volumes, 𝑉m,ap
E , at 298 K. In this 

concentration region, 𝑉m,ap
E  shows negative value and concave downward. The solid 

curve is fitting curve drawn with a flexible ruler. The reason why we chose to draw fitting 

curve with a flexible ruler is discussed in Appendix F. We read values off at every 0.01 

mole fraction of [P4,4,4,4]CF3COO and calculate partial molar volume of [P4,4,4,4]CF3COO 

as, 

𝑣IL = 𝑉IL,ap + (1 − 𝑥IL) (
∆𝑉m,ap

E

∆𝑥IL
) + 𝑉m,ap

E . (52) 

∆𝑉m,ap
E  indicates the amount of change of 𝑉m,ap

E  in ∆𝑥IL corresponding to 0.01. Partial 

molar volume of water, 𝑣W, is calculated by the same manner.  

Figure 3-11 shows partial molar volumes of [P4,4,4,4]CF3COO, 𝑣IL, and water, 𝑣W, 

at 293, 298 and 301 K, calculated by equation (52). All resulting values and used fitting 

curves are reported in Appendix G. 𝑣IL and 𝑣W show respectively the minimum and 

the maximum at 𝑥IL= 0.003. The behavior of partial molar volumes for a binary system 

in a dilute region is discussed in 5. 5. 1. In the concentration region 𝑥IL= 0.016-0.06, 𝑣IL 

increases with 𝑥IL, whereas 𝑣W decreases. These results can be attributed to the fact that 

the volume of a [P4444]CF3COO ion pair is about approximately 20 times greater than that 

of a water molecule. Because [P4444]CF3COO is very bulky and has a large steric 

hindrance, it requires large spaces. The water molecules, on the other hand, are likely to 

fill the voids formed by the [P4444]CF3COO packing because of their size difference. 
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Figure 3-10    The apparent excess molar volume of the aqueous solution of 

[P4,4,4,4]CF3COO, 𝑉m,ap
E , at 298 K against 𝑥IL. The solid curve is the fitting curve drawn 

with a flexible ruler. The results at 293 and 301 K is shown in Appendix G. 

 

 

                                                                

Figure 3-11    Concentration dependence of the partial molar volumes of 

(a)[P4,4,4,4]CF3COO, 𝑣IL, and (b)water, 𝑣W, at 293, 298 and 301 K. 

 

 

3. 3. 3.   Isothermal compressibility 

Pressure dependence of density, 𝜌 for aqueous solution of [P4,4,4,4]CF3COO was 

measured at 293 and 301 K and the pressure range from 0.1 to 12.0 MPa at every 1.0 
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MPa. Figure 3-12 shows the results at 301 K. All raw data are shown in Appendix H. In 

this pressure range of 0.1-12.0 MPa, the increase of density or the decrease of molar 

volume, 𝑉m, against pressure was too small to use the fitting functions introduced in a 

previous study [101]. We approximated the pressure dependence of molar volume, 𝑉m, 

by a straight line. We then calculated isothermal compressibility, 𝜅𝑇, which is equal to 

[−𝑉−1(𝜕𝑉 𝜕𝑝⁄ )𝑇,𝑛i
], up to 𝑝= 12 MPa by using its slope. Figure 3-13 shows an example 

of linear fitting at 301 K and 𝑥IL= 0.025. 

 

 

Figure 3-12    Pressure dependence for the density, 𝜌, for the aqueous solutions of 

[P4,4,4,4]CF3COO at 301 K.  

 

Figure 3-14 shows the concentration dependence of the isothermal compressibility 

of the aqueous solution of [P4,4,4,4]CF3COO, 𝜅𝑇 , at 293 and 301 K. Pure water has 

anomaly for isothermal compressibility which shows the minimum value around at 318 

K [102] which is one of the anomalous behavior of liquid water. At 𝑥IL= 0.000, the 

isothermal compressibility at 293 K was larger than that at 301 K. On the other hand, 

adding [P4,4,4,4]CF3COO, the isothermal compressibility at 293 K shows a smaller value 

than that at 301 K and the aqueous solution behaved like normal liquids. However, the 

contribution from the term of 𝜅𝑇 on numerical calculation of fluctuations turned out to 

be smaller than that of SAXS intensity; the values of 𝐼(0) 𝑁̅⁄  62.65 and 

𝑍̅2(𝑁̅ 𝑉⁄ )𝑘B𝑇𝜅𝑇 9.41 at 𝑥IL= 0.027 and 301 K. Thus the value at 298 K we calculated 

by interpolation between results at 293 and 301 K at a given mole fraction. 
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Figure 3-13    Pressure dependence the molar volume for the aqueous solution of 

[P4,4,4,4]CF3COO, 𝑉m, at 301 K and 𝑥IL= 0.025. Black solid line is the fitted linear line. 

Isothermal compressibility was determined using the slope up to 12.0 MPa. 

 

 

 

Figure 3-14    Concentration dependence of isothermal compressibility, 𝜅𝑇 , for the 

aqueous solution of [P4,4,4,4]CF3COO, 𝜅𝑇, at 293 and 301 K were calculated by measured 

density data. That at 298 K was obtained by liner interpolation of the values at 293 and 

301 K. 
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Chapter 4     Fluctuations in the aqueous solution 

 

 

4. 1.   Fluctuations of entire system 

 

    Figure 4-1 shows the density fluctuation, 〈(∆𝑁)2〉 𝑁̅⁄ , and the concentration 

fluctuation, 𝑁̅〈(∆𝑥)2〉, and figure 4-2 shows the cross term of them, 〈(∆𝑁)(∆𝑥)〉, for 

aqueous solution of [P4,4,4,4]CF3COO at 293, 298 and 301 K against 𝑥IL calculated by 

combination of 𝐼(0), 𝑣IL and 𝑣W, and 𝜅𝑇. The values of all fluctuations are reported 

in Appendix I. Both 〈(∆𝑁)2〉 𝑁̅⁄  and 𝑁̅〈(∆𝑥)2〉 showed increase approaching to the 

critical point and sharp peaks at 301 K. These results show the high fluctuation towards 

the critical point at 302 K and 𝑥IL= 0.025. Interestingly, the density fluctuation of the 

present mixture shows much larger value than that for aqueous solution of acetonitrile in 

the previous study [81]; at the respective critical mole fraction the present case shows 

about 1200 at 301 K, a degree lower than the LCST, while the aqueous solution of 

acetonitrile at 272 K, about 85 [81]. Comparison of fluctuations with previous studies is 

shown in Appendix O. 

 

 

Figure 4-1    Fluctuations of the entire system for aqueous solution of [P4444]CF3COO 

at 293, 298 and 301 K; (a)the density fluctuation, 〈(∆𝑁)2〉 𝑁̅⁄ , and (b)the concentration 

fluctuation, 𝑁̅〈(∆𝑥)2〉. 
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Figure 4-2    The cross term of density and concentration fluctuations for the entire 

system of the aqueous solution of [P4444]CF3COO at 293, 298 and 301 K, 〈(∆𝑁)(∆𝑥)〉. 

 

 

4. 2.   Individual density fluctuations of [P4,4,4,4]CF3COO and water 

 

Using Kirkwood-Buff parameters, the individual density fluctuations for 

[P4,4,4,4]CF3COO, 〈(∆𝑁IL)2〉 𝑁IL
̅̅ ̅̅⁄ , and for water, 〈(∆𝑁W)2〉 𝑁W

̅̅ ̅̅⁄ , at 293, 298 and 301 K 

as functions of 𝑥IL were calculated and shown in figure 4-3. Calculated values are shown 

in Appendix J. Both components showed a large fluctuation near the critical point and a 

drastic change at 301 K. However, the individual density fluctuation for water was 10 

times greater than that for [P4,4,4,4]CF3COO. The correlation terms of those two individual 

density fluctuations were also calculated by Kirkwood-Buff parameters and shown in 

figure 4-4. Figure 4-4 (a)〈∆𝑁IL∆𝑁W〉 𝑁IL
̅̅ ̅̅⁄  and (b)〈∆𝑁IL∆𝑁W〉 𝑁W

̅̅ ̅̅⁄  represent affinity 

between [P4,4,4,4]CF3COO and water. The cross terms showed positive values at entire 

concentrations and temperatures. These results indicated that the water molecules in the 

aqueous solution of [P4444]CF3COO were distributed inhomogeneously near the critical 

point and there is a strong affinity between [P4,4,4,4]CF3COO and water.  
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Figure 4-3    Individual density fluctuations for (a)[P4444]CF3COO, 〈(∆𝑁IL)2〉 𝑁IL
̅̅ ̅̅⁄ , 

and (b)water, 〈(∆𝑁W)2〉 𝑁W
̅̅ ̅̅⁄ , as a function of 𝑥IL at 293, 298 and 301 K. 

 

 

 

Figure 4-4    Correlation terms of individual density fluctuations as a function of 𝑥IL 

at 293, 298 and 301 K; (a)〈∆𝑁IL∆𝑁W〉 𝑁IL
̅̅ ̅̅⁄ , and (b)〈∆𝑁IL∆𝑁W〉 𝑁W

̅̅ ̅̅⁄ . 
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4. 3.   Discussion 

 

Figure 4-5 are the contour maps of fluctuations drawn on the phase diagram of the  

aqueous solution of [P4,4,4,4]CF3COO. Approaching to the critical point, respective 

fluctuation functions show large fluctuations, toward the macroscopic phase separation, 

as is clearly indicated in the figure. 

 

 

 

Figure 4-5    Contour maps of fluctuations drawn on the phase diagram of aqueous 

solution of [P4,4,4,4]CF3COO; (a)the density fluctuation for the entire system, 〈(∆𝑁)2〉 𝑁̅⁄ , 

(b)the concentration fluctuation, 𝑁̅〈(∆𝑥)2〉 , (c)the individual density fluctuation for 

water, 〈(∆𝑁W)2〉 𝑁W
̅̅ ̅̅⁄ , and (d)the individual density fluctuation for [P4,4,4,4]CF3COO, 

〈(∆𝑁IL)2〉 𝑁IL
̅̅ ̅̅⁄ . 
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A large difference in the partial molar volumes of [P4,4,4,4]CF3COO and water was 

observed, as discussed in 3. 3. 2. The difference between the two increased as the 

concentration of [P4,4,4,4]CF3COO increased as shown in figure 3-11. The term related to 

the partial molar volume difference, (𝑣IL − 𝑣W) 𝑁̅ 𝑉⁄ , contributes to the fluctuations as 

shown in equation (20). In the area where [P4,4,4,4]CF3COO ion pairs show gathering in 

the process of fluctuation, the total number of both [P4,4,4,4]CF3COO and water per unit 

volume, 𝑁, becomes much less than that in the water-rich area because of the large 

difference in partial molar volumes. Thus, the density fluctuation in aqueous solution of 

[P4,4,4,4]CF3COO is particularly sensitive to the distribution of [P4,4,4,4]CF3COO, when the 

total number, 𝑁, is considered. The individual density fluctuations indicated that the 

water molecules were largely localized near [P4,4,4,4]CF3COO even more so near the 

critical point.  

The aqueous solution of [C4mim]BF4 which shows a UCST-type phase separation 

was reported a large concentration fluctuation near its critical point, 𝑥IL= 0.08, 𝑇= 277 

K. [54] The increase of fluctuations toward the critical point was also observed for the 

same IL aqueous solution. [103] However, one of Kirkwood-Buff parameters, 𝐺IL−W, 

which indicates the correlation between [C4mim]BF4 and water was negative which 

suggests that IL and water molecules are repulsive [54], contrary to the present case where 

𝐺IL−W is positive as discussed above. In the mixture below the LCST, therefore, it is 

considered that [P4,4,4,4]CF3COO clusters are hydrated by a larger number of water 

molecules. Hence, it is proposed that the [P4,4,4,4]CF3COO gather with a large number of 

hydration water molecules, and [P4,4,4,4]CF3COO and water do not completely separate at 

any instance. As approaching to the critical point, the gathering grow drastically. In a 

recent investigation, it was found that 7-14 water molecules exist per [P4,4,4,4]CF3COO 

ion pair, even in the separated IL-rich phase above the LCST, and that the number of 

water molecules in the IL-rich phase decreases with increasing temperature. [69] It was 

argued that a mixture which has a tendency for phase separation with an LCST shows a 

stronger entropic attraction than enthalpic repulsion. [88] In the next section, the enthalpic 

contribution of [P4,4,4,4]CF3COO in the aqueous solution is discussed. However, we are 

not able to determine the driving force of the phase separation because there is no data of 

entropic situation for the mixture. For the aqueous solution of [C4mim]BF4 which shows 

the UCST-type phase separation, enthalpy-entropy compensation was discussed.[44] 
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Chapter 5     Concentration dependent mixing schemes 

 

 

5. 1.   Differential thermodynamics 

 

Higher order derivative quantities of Gibbs energy contain deeper information. The 

differential thermodynamic approach for aqueous solutions have been studied by Koga et 

al. [88], [104], [105] Now, we choose pressure, 𝑝, temperature, 𝑇, and the molar amount 

of component i, 𝑛i , as the independent variables of state functions. Gibbs energy, 

𝐺(𝑝, 𝑇, 𝑛i ), is the 0-th derivative quantity and determines the macroscopic nature of the 

system. The first derivative quantities of Gibbs energy with respect to 𝑝  or 𝑇  are 

volume, 𝑉, entropy, 𝑆, and enthalpy, 𝐻, which describe the average properties of the 

system. Chemical potential of component i is also the first derivative of 𝐺 with respect 

to 𝑛i and express the contribution of component i on the system in terms of Gibbs energy. 

Partial molar quantities of volume, 𝑣i , entropy, 𝑆i , and enthalpy, 𝐻i , are defined as 

differentiation of 𝑉, 𝑆 and 𝐻 with respect to 𝑛i. They are the second derivatives of 𝐺 

and express the contribution of component i on the system in terms of volume, entropy 

and enthalpy, respectively. Thus, they signify the actual volumetric, entropic and 

enthalpic situation of component i in the mixture. 

Furthermore, partial molar quantities are differentiated with respect to 𝑛j again as, 

𝐹i−j ≡ 𝑁 (
𝜕𝐹i

𝜕𝑛j
)

𝑝,𝑇,𝑛k≠j

. (53) 

𝐹 is 𝑉, 𝑆 or 𝐻 and 𝐹i are the respective partial molar quantities. The defined 𝐹i−j is 

the third derivative quantity of Gibbs energy and expresses the effects of component j on 

𝐹i , namely, the interaction between component i and j in terms of appropriate 

thermodynamic quantity. To learn the characteristics of the intermolecular interactions 

more clearly, the excess functions should be used, excess over the sum of thermodynamic 

quantities of all pure components. Thus, they are expressed similarly, 

𝐹i−j
E ≡ 𝑁 (

𝜕𝐹i
E

𝜕𝑛j
)

𝑝,𝑇,𝑛k≠j

. (54) 

It is easy to define higher order derivative quantities of Gibbs energy by 

mathematical expression. The deeper and more important information may be expected 

from the behavior of higher order derivatives. However, determination of them 

experimentally is problematic. 
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5. 2.   Mixing schemes in aqueous solutions 

 

Generally, aqueous solutions are divided into three concentration regions in each of 

which the “mixing scheme”, mixing scenario at molecular level, is qualitatively different 

from the other. [88] We name them “mixing scheme I, II, III” from the water-rich side. In 

mixing scheme I, liquid water retains its integrity, the highly fluctuating three dimensional 

hydrogen bond network system. Although the hydrogen bond probability remains high 

enough to keep the hydrogen bond percolation. Solutes are isolated and interact with each 

other via the water hydrogen bond network. In this concentration region, ion pairs are 

completely dissociated and all the effects of solutes must be additive. On increasing solute 

to the threshold of bond-percolation, solutes begin interacting with each other directly. In 

the region of mixing scheme II, there are two types of clusters, one rich in water and the 

other in solute. The most solute-rich region, mixing scheme III is operative in which 

solute aggregates as in pure liquid and gas-like water molecules interact with them.  

    In the mixing scheme I, the interaction between solute i-i are apparent in the mole 

fraction dependence pattern of the third derivative of Gibbs energy, 𝐹i−i
E , the interaction 

function. The boundaries between the regions of mixing scheme are also appeared on 

𝐹i−i
E  as the change of slope. Figure 5-1 shows relationship between the mixing scheme 

and the 𝐹i−i
E  pattern against mole fraction of solutes i for various kinds of solutes in 

aqueous solutions. Three different kinds of solute, “hydrophobes”, “hydrophiles” and 

“amphiphiles”, are found out as shown in figure 5-1. From a number of previous studies 

[106]–[109], we suggested that the first changing point of slope in figure 5-1, indicates 

the end of mixing scheme I, the threshold of bond percolation of water network, called 

point X, and the second point reflects the beginning of mixing scheme II, called point Y. 

When solute i is a hydrophobe, 𝐹i−i
E  shows a peak type behavior and the peak top 

corresponds to point X. The details of the behavior is discussed below. On the other hand, 

the behavior of 𝐹i−i
E  show no distinction among various solutes in the regions of mixing 

scheme II and III. 
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Figure 5-1    Relationship between the mixing schemes and the behavior of 𝐹i−i
E , 

interaction between solite i-i for the three kinds of solutes, hydrophobes, hydrophiles and 

amphiphiles against concentration of the solute. [88] Point X corresponds to the end of 

the region of mixing scheme I and point Y is the beginning of mixing scheme II. 

 

From various analyses of higher derivative thermodynamic quantities for aqueous 

solutions including the 1-prpanol probing methodology discussed below in 5. 5., an 

additional kind of solutes, [110], [111] “hydration centers” was discovered. Thus in total 

four kinds of solutes were identified in the mixing scheme I according to the solutes’ 

effects on the water network, defined as “hydrophobes”, “hydrophiles”, “amphiphiles” 

and “hydration centers”. Hydrophobesv[106]–[108] are recognized as strangers by water 

and water molecules form hydration shells around them. The hydrogen bond probability 

in the hydration shells is slightly higher than pure liquid water. [112]–[114] However, that 

in bulk water away from hydration shells becomes lower gradually. On increasing the 

solute mole fraction 𝑥i , 𝐹i−i
E  increases sharply to the point X, at which the bond 

percolation of the water network starts to break down, i. e. the system arrives at the 

hydrogen bond percolation threshold. [115] This process of crossover continues to the 

next break point, point Y, where the mixing scheme II sets in. [115], [116] This mole 

fraction width from point X to Y reflects the fact that the wide distribution of the hydrogen 

bond strength is prevalent in water. Hydrophiles [104], [117], [115], on the other hand, 

make hydrogen bonds directly to the water network. Then the characteristic high 

fluctuation of water network becomes smaller. When the mole fraction of hydrophiles 

reach about 0.1, they remains no bulk water to form bond percolating hydrogen bond 

network, and the mixing scheme II sets in. Amphiphiles [104], [115] have contributions 
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of both hydrophobic and hydrophilic moieties additively on water. [118]–[120] Hydration 

centers [111], [121] are similar to hydrophobes. They form hydration shells, but they do 

not lower the probability of hydrogen bond in bulk water away from hydration shells. 

We applied this thermodynamic technique on studying on the aqueous solution of 

[P4444]CF3COO. We focused on partial molar volume and partial molar enthalpy of 

[P4444]CF3COO, the second derivative quantities of Gibbs energy. Then we performed 

differentiation with respect to 𝑛IL, the molar amount of [P4444]CF3COO to obtain the third 

derivative quantities. 

 

5. 3.   Volumetric analysis 

 

    Partial molar volumes for [P4,4,4,4]CF3COO and water are discussed in 3. 3. 2. As 

mentioned above, the partial molar volume of component [P4,4,4,4]CF3COO, 𝑣IL, is the 

second derivative of Gibbs energy. 

 𝑣IL ≡ (
𝜕𝑉

𝜕𝑛IL
)

𝑝, 𝑇, 𝑛W

= {
𝜕

𝜕𝑛IL
(

𝜕𝐺

𝜕𝑝
)}

𝑝, 𝑇, 𝑛W

. (55) 

    Figure 5-2 shows the apparent excess partial molar volume of [P4,4,4,4]CF3COO, 

𝑣IL,ap
E , and that of water, 𝑣W,ap

E , at 298 K in dilute region, 𝑥IL = 0.000-0.025. The 

subscripts ap indicate apparent value as mentioned in 3. 3. 2. 𝑣IL,ap
E  shows a minimum 

at 𝑥IL= 0.003. As can been seen from Gibbs-Duhem relation, 𝑣W,ap
E  shows a maximum 

at the same concentration. Their behaviors suggest that [P4,4,4,4]CF3COO has hydrophobic 

contribution on the water network according to previous studies. [88], [106] When 

[P4,4,4,4]CF3COO which is much more bulky than water is added in pure water, water 

molecules fill the void of [P4,4,4,4]CF3COO. An apparent volume of [P4,4,4,4]CF3COO in 

the infinite dilution is smaller than that in pure [P4,4,4,4]CF3COO and 𝑣IL,ap
E  is negative. 

As mentioned above, a hydrophobic solute forms hydration shells and reduce the 

probability of hydrogen bond probability of the bulk water away from the hydration shells. 

Furthermore, water is not just a small molecule. The net size of water is a little larger due 

to hydrogen bonds. This contributes positively at the infinite dilution. However, the 

existence of a hydrophobic solute reduces the hydrogen bond probability of bulk water 

away from hydration shells, where the next incoming solute settles in. Thus the positive 

contribution is reduced gradually, resulting in an apparent decrease in partial molar 

volume of a hydrophobic solute. [122] 𝑣IL,ap
E  in figure 5-2 shows the same behavior as a 

typical hydrophobic solute, 2-butoxyethanol in its aqueous solution [122].  

By applying differentiation on the partial molar volume of [P4,4,4,4]CF3COO with 

respect to the molar amount of [P4,4,4,4]CF3COO, 𝑣IL−IL
E , the volumetric IL-IL interaction 
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the third derivative quantity of Gibbs energy is calculated by, 

𝑣IL−IL
E ≡ 𝑁 (

𝜕𝑣IL
E

𝜕𝑛IL
)

𝑝,𝑇,𝑛W

= (1 − 𝑥IL) (
𝜕𝑣IL

E

𝜕𝑥IL
)

𝑝,𝑇,𝑁

, (56) 

where 𝑁  is the total molar amount of [P4,4,4,4]CF3COO and water, 𝑁 = 𝑛IL + 𝑛W . 

𝑣IL−IL
E  was obtained in the same manner as determination of 𝑣IL in 3. 3. 2. Black solid 

curve in figure 5-2 (a) is the fitting curve drawn by a flexible ruler. All 𝑣IL,ap
E  values and 

fitting curves are shown in Appendix F. 

 

 

Figure 5-2    Excess partial molar volumes of (a)[P4,4,4,4]CF3COO, 𝑣IL,ap
E , and (b)water, 

𝑣W,ap
E , in dilute region at 298 K. The solid curve in (a) is the fitting curve drawn with a 

flexible ruler. 

 

Figure 5-3 shows the third derivative quantities of Gibbs energy in terms of volume, 

𝑣IL−IL
E , at 293, 298 and 301 K. 𝑣IL−IL

E  at each temperature is approximated with three 

straight lines and shows peak type behavior against mole fraction. The calculated values 

are shown in Appendix G. The results indicate clearly that [P4,4,4,4]CF3COO has a strong 

hydrophobic effect on the water network and water molecules make hydration shells 

around it in the mixing scheme I. These contribution of [P4,4,4,4]CF3COO should be the 

sum of contributions of each constituent ions, [P4,4,4,4]
+ and CF3COO―, because salts are 

dissociate into cations and anions completely and their contributions are additive in the 

mixing scheme I. From the viewpoint of the third derivative, there is no anomaly at 𝑥IL= 

0.003 (𝑣IL−IL
E = 0) where the partial molar volumes of [P4,4,4,4]CF3COO, the second 

derivatives, show the minimum. The water network remains bond percolation and 
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[P4,4,4,4]CF3COO interacts each other via the network. [88] 

 

 

 

Figure 5-3    IL-IL interaction or the third derivative quantity of Gibbs energy in terms 

of volume, 𝑣IL−IL
E , at (a)293, (b)298 and (c)301 K. 𝑣IL−IL

E  showed a peak type behavior 

against mole fraction of [P4,4,4,4]CF3COO and two changing points of slope, point X and 

Y were obtained by approximation with three straight lines. 

 

In previous studies, the loci of point X shift to a lower concentration with increasing 

temperature and define the Koga lines which approach to 353 K at the infinite dilution 

regardless of the identify and kind of solutes. [88], [123], [124] However from the 

obtained 𝑣IL−IL
E  in this study, the shift of point X with increasing temperature, though 

only by 8 K, was not observed. Since we applied graphical differentiation twice on the 
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raw density data to arrive at 𝑣IL−IL
E , the temperature deviation as a function of 𝑇 should 

be regarded with caution. Particularly so, for the loci of point Y. However, all peak type 

behaviors indicate points X and Y at similar concentrations. From differential 

thermodynamical analysis in terms of volume, point X at 298 K was observed around at 

𝑥IL= 0.0064 and point Y is around at 𝑥IL= 0.0104. However we note that the post peak 

region may contain rather gradual decreases and points Y are have some inaccuracy. 

 

 

5. 4.   Enthalpic analysis 

 

5. 4. 1.   Experimental 

    Excess partial molar enthalpy of solute i, 𝐻i
E , is one of the important 

thermodynamic quantities for studying aqueous solutions. For this purpose, isothermal 

titration calorimetry is used to our advantage. Namely, a small amount of a solute is 

titrated in the mixture and 𝐻i
E  is measured directly. 𝐻i

E  is the second derivative of 

Gibbs energy with respect to 𝑇  and 𝑛i . Then the third derivative quantity,  𝐻i
E , is 

calculated by applying differentiation with respect to 𝑛i only once. 

However, as mentioned in 3. 3. 2., [P4,4,4,4]CF3COO is a solid at room temperature. 

To measure the excess partial molar enthalpy of [P4,4,4,4]CF3COO, an mixture of 

[P4,4,4,4]CF3COO and water was used as the titrant and added into pure water, successively. 

The mole fraction of [P4,4,4,4]CF3COO for the titrant was 0.0461.The actual thermal effect 

by titration was obtained using a handmade calorimeter [125] at 298 K. Figure 5-4 shows 

a photo of the calorimeter used. The titrant solution was added into water using a syringe 

pump system with 25 mL gas-tight syringe. Details of the calorimeter and experimental 

conditions are reported in Appendix K. 
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Figure 5-4    The photo of the calorimeter used; (a)the water bath at 298 K, (b)the 

syringe pump system and (c)the operation computer. The sample cell was set in (a). 

 

    To convert the apparent excess partial molar enthalpy to the excess partial molar 

enthalpy of [P4,4,4,4]CF3COO, we consider the case of titration of the titrant aqueous 

solution of [P4,4,4,4]CF3COO into the mixture. [88] The initial base solvent contains 𝑛IL 

mol [P4,4,4,4]CF3COO and 𝑛W  mol water. The concentration of the titrant aqueous 

solution is constant at 𝑥IL
(t)

. When small amount of titrant is added, 𝛿𝑛IL
(t)

 mol 

[P4,4,4,4]CF3COO and 𝛿𝑛W
(t)

 mol water are added in the mixture. This thermal change, 

𝛿𝑞, is written as, 

𝛿𝑞 = 𝐻(𝑛IL + 𝛿𝑛IL, 𝑛W + 𝛿𝑛W) − 𝐻(𝑛IL, 𝑛W) − 𝐻(t)(𝛿𝑛IL
(t)

, 𝛿𝑛W
(t)

), (57) 

𝐻(t) = 𝛿𝑛IL
(t)

𝐻IL
(t)

+ 𝛿𝑛W
(t)

𝐻W
(t)

= constant. (58) 

The superscript (t) indicates the titrant mixture. Define ℎ, the apparent excess partial 

molar enthalpy, as the following, 

ℎ ≡ (
𝛿𝑞

𝛿𝑛IL
) =

𝐻(𝑛IL + 𝛿𝑛IL
(t)

, 𝑛W + 𝛿𝑛W
(t)

) − 𝐻(𝑛IL, 𝑛W + 𝛿𝑛W
(t)

)

𝛿𝑛IL
(t)

  

+
𝐻(𝑛IL, 𝑛W + 𝛿𝑛W

(t)
) − 𝐻(𝑛IL, 𝑛W)

𝑟𝛿𝑛W
(t)

− 𝐻IL
(t)

−
𝐻W

(t)

𝑟
, (59) 

where 
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𝑟 =
𝑥IL

(t)

1 − 𝑥IL
(t)

=
𝛿𝑛IL

(t)

𝛿𝑛W
(t)

. (60) 

In the limit of 𝛿𝑛IL and 𝛿𝑛W → 0, ℎ is rewritten as, 

ℎ = 𝐻IL +
𝐻W

𝑟
− 𝐻IL

(t)
−

𝐻W
(t)

𝑟
. (61) 

Figure 5-5 shows the results of the apparent excess partial molar enthalpy, ℎ, at 298 K 

against mole fraction of [P4,4,4,4]CF3COO. We draw the smoothing curve as shown in the 

figure and read the values off the smooth curve drawn at the increment of 𝛿𝑛IL= 0.0002. 

All measured data are shown in Appendix L. 

 

 

Figure 5-5    Apparent excess partial molar enthalpy, ℎ , against mole fraction of 

[P4,4,4,4]CF3COO, 𝑥IL, at 298 K. The black solid curve is the fitting curve drawn with a 

flexible ruler. 

 

By considering variation of ℎ between two adjustment points, 𝛿ℎ, the constant 

terms are eliminated and 𝛿ℎ  is expressed by variation of partial molar enthalpy of 

[P4,4,4,4]CF3COO, that of water and mole fractions of the mixture. Using Gibbs-Duhem 

relation, 

𝛿ℎ = 𝛿𝐻IL +
𝛿𝐻W

𝑟
= 𝛿𝐻IL (1 −

𝑥IL

𝑟𝑥W
) = 𝛿𝐻IL

E (1 −
𝑥IL

𝑟(1 − 𝑥IL)
) . (62) 

Hence, 

𝛿𝐻IL
E = 𝛿ℎ (1 −

𝑥IL

𝑟𝑥W
)⁄ , (63) 
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and 𝐻IL
E  is obtained if necessary as the sum of 𝛿𝐻IL

E .  

𝐻IL
E = ∑ 𝛿𝐻IL

E + 𝐶. (64) 

The constant value, 𝐶 , should be obtained by determination of excess partial molar 

enthalpy of [P4,4,4,4]CF3COO at a certain point directly. The required 𝐻IL−IL
E  is then 

calculated using equation (63) as, 

𝐻IL−IL
E = (1 − 𝑥IL) (

𝛿𝐻IL
E

𝛿𝑥IL
) . (65). 

 

 

5. 4. 2.   The third derivative quantity in terms of enthalpy 

    Figure 5-6 shows the concentration dependence of enthalpic interaction between 

[P4,4,4,4]CF3COO, the third derivative excess quantity of Gibbs energy in terms of enthalpy, 

𝐻IL−IL
E , at 298 K. The calculated values are shown in Appendix L. The peak type behavior 

of 𝐻IL−IL
E  indicates that [P4,4,4,4]CF3COO (the sum of contributions of [P4,4,4,4]

+ and 

CF3COO ― ) has the hydrophobic contribution on the water network in the dilute 

concentration region. Point X, the end of the region of the mixing scheme I exists at 𝑥IL= 

0.0059 and point Y, the beginning of the concentration region of the mixing scheme II 

was found to be at 𝑥IL= 0.0093.  

 

 

Figure 5-6    Concentration dependence of the enthalpic interaction between 

[P4,4,4,4]CF3COO, the third derivative excess quantity of Gibbs energy in terms of enthalpy, 

𝐻IL−IL
E , at 298 K. 𝐻IL−IL

E  showed peak type behavior. Points X and Y determined by 

approximation with three straight lines indicate the boundaries of the mixing schemes. 
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In previous study, the value of enthalpic interaction between solutes at 𝑥IL= 0 should be 

not zero because even at the infinite dilution, solutes have contribution on each other via 

the water network.[104] However, it seems that 𝐻IL−IL
E  approaches zero at 𝑥IL= 0. We 

observe the 𝑥IL dependence pattern may not be simple straight line and two types of 

peak is overlapping. While such patterns with straight lines shown in figure 1 have been 

observed for a number of hydrophobes, for the aqueous solution of 2-butoxyethanol, a 

typical hydrophobe [88], [109], the double peaks appear to overlap[126] hinting 

intramolecular hydrogen bonding between the ether –O– and the end –OH, suggested by 

MD simulation [127], [128]. 

Comparing the third derivative quantities of Gibbs energy in terms of volume, 

𝑉IL−IL
E , and enthalpy, 𝐻IL−IL

E , both quantities shows peak-type behavior against 𝑥IL 

which indicate that the sum of contributions of each constituent ions is hydrophobic in 

the mixing scheme I. The loci of both point X and Y show similar values but values from 

𝐻IL−IL
E  are slightly smaller than those in terms of volume as shown in figure 5-7. However, 

taking into account of the fact that the volumetric third derivative was the result of double 

differentiation, while the enthalpic one was obtained by a single differentiation, the value 

resulting from enthalpy should be more accurate. 

 

 

Figure 5-7    Comparison of third derivative quantities between those in terms of 

enthalpy, green circles, and in terms of volume, pink triangles. Loci of point X and Y of 

enthalpy shift to slightly smaller concentrations than those of volume. 
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5. 5.   Characterization of [P4,4,4,4]+ and CF3COO－ individual ions 

 

5. 5. 1.   1-propanol probing methodology 

Using the behavior of the interaction between solutes, S, in aqueous solution in terms 

of enthalpy, 𝐻S−S
E , the 1-propanol (1P)-probing methodology was established to 

characterize the effect of the chosen solute on water network. [88], [104] In this method, 

hydrophobic and hydrophilic contributions of the chosen solute are evaluated by first 

measuring the excess partial molar enthalpy of the probing 1-propanol, 𝐻1P
E , added into 

the aqueous solution of S. In the mixing scheme I, the effects of solutes work on water 

additively as discussed before. 

Now consider the ternary system of 1-propanol, the solute S and water. The enthalpic 

interaction between 1-propanol, the third derivative quantity in terms of enthalpy, 𝐻1P−1P
E , 

is written as, 

𝐻1P−1P
E ≡ 𝑁 (

𝜕𝐻1P
E

𝜕𝑛1P
)

𝑝,𝑇,𝑛S,𝑛W

= (1 − 𝑥1P) (
𝜕𝐻1P

E

𝜕𝑥1P
)

𝑝,𝑇,𝑁

, (66) 

where 𝑛1P, 𝑛S and 𝑛W represent the molar amount of 1-propanol, the test solute and 

water, respectively. 𝑁 is the total molar amount, i. e. 𝑁 = 𝑛1P + 𝑛S + 𝑛W. 𝑥1P is the 

mole fraction of 1-propanol, 𝑥1P = 𝑛1P 𝑁⁄ . Partial molar enthalpy of 1-propanol is 

obtained experimentally by adding 1-propanol into the aqueous solution of the solute, S. 

The initial mole fraction of the test solute, 𝑥S
0, is defined as, 

𝑥S
0 =

𝑛S

𝑛S + 𝑛W
. (67) 

𝐻1P−1P
E  is determined by applying graphical or numerical differentiation on the measured 

𝐻1P
E  with respect to 𝑥1P. 1-propanol is a typical hydrophobe and 𝐻1P−1P

E  shows a peak 

type behavior against 𝑥1P (see figure 5-1) without the presence of the test solute, S. The 

contributions of the test solute on water appear as the changes of the peak type behavior 

of 𝐻1P−1P
E . Figure 5-8 shows the various pattern changes of 𝐻1P−1P

E  depending on the 

nature of the test solute. When the test solute is a hydrophobe, the induced change is 

described as (a) of the figure. The pattern of 𝐻1P−1P
E  shifts to the left side of the figure. 

By the presence of a hydrophilic test solute, point X of 𝐻1P−1P
E  shifts downward of the 

figure as shown in (b). Amphiphile including both contributions of hydrophilicity and 

hydrophobicity, the pattern of 𝐻1P−1P
E  shifts toward left as well as downward of figure 

5-8 (c). When the test solute is a hydration center which shows similar effects to 

hydrophobe shown in figure 5-8 (a). In addition the values of 𝐻1P−1P
E  at 𝑥1P= 0 and at 

point X are fixed independent of the existence of the solute, S. From this observation, we 
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suggest that hydration centers do not have any effect on the hydrogen bond network in 

the bulk water away from hydration shells. In the 1P-probing methodology, the shift of 

point X toward lower 𝑥1P against 𝑥S
0 is defined as the index of hydrophobicity and that 

toward lower 𝐻1P−1P
E  value is defined as that of hydrophilicity.  

    Also in the mixing scheme I, ion pairs are considered to be completely dissociated 

into anions and cations and their respective contributions are additive. The 1P-probing 

methodology is applied on characterization of an individual ion by choosing chloride or 

sodium for counter ions. Both chloride and sodium ions were found to be hydration 

centers [110], [111] Thus, we can characterize the hydrophobicity/hydrophilicity of any 

individual ion by choosing either Na+ or Cl－ as a counter ion. We then apply the 1P-

probing methodology to the resulting salt. Then the results for the given ion are obtained 

by subtracting the effects of chosen counter ions. 

 

 

Figure 5-8    The shifts of enthalpic interaction between 1-propanol, 𝐻1P−1P
E , patterns 

by the effects of four kinds of solutes, (a)hydrophobes, (b)hydrophiles, (c)amphiphies and 

(d)hydration centers. 
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5. 5. 2.   Experimental 

   To characterize tetrabutylphosphonium, [P4,4,4,4]
+, and CF3COO－ ions separately, 

the 1P-probing methodology was applied on aqueous solution of tetrabutylphosphonium 

chloride, [P4,4,4,4]Cl, and that of sodium trifluroacetate, NaCF3COO. [129] Two test 

solutes, [P4,4,4,4]Cl (Aldrich, > 98 %) and NaCF3COO (Sigma-Aldrich, > 96 %) are mixed 

with milliQ. Excess partial molar enthalpies of 1-propanol, 𝐻1P
E , were measured using 

the isothermal titration calorimeter, TAM III (TA Instruments, New Castle, USA) at 

298.15 K±0.0001 K and in the dynamic correction mode. 1-propanol as titrant was 

supplied from Sigma-Aldrich whose grade was Chromasolv for HPLC 99.9+%. 

    Figure 5-9 shows the partial molar enthalpies of 1-propanol, 𝐻1P
E , for the aqueous 

solutions of [P4,4,4,4]Cl and NaCF3COO for various initial mole fraction of the test samples, 

𝑥S
0.[129] Symbols of blue diamond represent the result of binary system of 1-propanol 

and water. Adding salts, the changes were observed in 𝐻1P
E  pattern for both solutes, 

[P4,4,4,4]Cl and NaCF3COO. 

 

 

Figure 5-9    Partial molar enthalpies of 1-propanol, 𝐻1P
E , on (a)[P4,4,4,4]Cl and 

(b)NaCF3COO for various 𝑥S
0 against 𝑥1P. [129] The blue plots correspond to the result 

of pure water. 
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5. 5. 3.   Results 

    The excess enthalpic interaction between 1-propanol, 𝐻1P−1P
E , were obtained by 

numerical differentiation [129] of 𝐻1P
E  with respect to 𝑥1P. The value of 𝐻1P−1P

E  at the 

i-th point is calculated with the (i+1)-th and (i-1)-th 𝐻1P−1P
E  values as, 

𝐻1P−1P
E (i) = (1 − 𝑥1P(i)) (

𝜕𝐻1P
E (i)

𝜕𝑥1P(i)
)

𝑝,𝑇,𝑁

  

≈
1 − 𝑥1P(i)

𝑥1P(i + 1) − 𝑥1P(i − 1)

× [
𝐻1P

E (i + 1) − 𝐻1P
E (i)

𝑥1P(i + 1) − 𝑥1P(i)
(𝑥1P(i) − 𝑥1P(i − 1))

+
𝐻1P

E (i) − 𝐻1P
E (i − 1)

𝑥1P(i) − 𝑥1P(i − 1)
(𝑥1P(i + 1) − 𝑥1P(i))] . 

(68) 

The 𝑥1P interval from 𝑥1P(i) to 𝑥1P(i + 1), was approximately 0.003 in the present 

measurements. Figure 5-10 shows the results of 𝐻1P−1P
E  for aqueous solutions of 

(a)[P4,4,4,4]Cl and (b)NaCF3COO for various 𝑥S
0. [129] The symbols of blue diamond 

corresponding to the result for binary system of 1-propanol and pure water show a peak 

type behavior. For both test samples the loci of point X shifts toward both left side and 

down side in the figure. The results indicate both [P4,4,4,4]
+ and CF3COO －  are 

amphiphiles after subtracting the effects of counter ions. 

 

Figure 5-10    The shift of 𝐻1P−1P
E  with adding sample materials, (a)[P4,4,4,4]Cl and 

(b)NaCF3COO at 298 K. [129] Points X for both systems shift toward both left and down 

side in the figure. 
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Figure 5-11    The dependences of the loci of point X on the initial mole fraction, 𝑥S
0, 

for S= of [P4,4,4,4]Cl (a) in the 𝑥1P direction and (b) in the 𝐻1P−1P
E  direction. Those for 

NaCF3COO (c) in the  𝑥1P direction and (d) in the 𝐻1P−1P
E  direction. [129] 

 

Figure 5-11 shows 𝑥S
0-dependence of the loci of point X for the aqueous solution of 

[P4,4,4,4]Cl and NaCF3COO. [129] To quantify the hydrophobic and hydrophilic 

contributions, their slope of leftward shift is defined as hydrophobicity, and that of 

downward shift hydrophilicity. [104] Then the slopes of the counter ions were subtracted 

to characterize the hydrophobicity/hydrophilicity of the individual test ions. Also the 

slope for 𝑥1P direction reflects hydration number, 𝑛H, calculated using the 𝑥S
0 value at 

𝑥1P= 0 as discussed in ref. [104], 

𝑥S
0(at 𝑥1P =  0) =

𝑛H

1 + 𝑛H
. (69) 

 

[P4,4,4,4]
+ is characterized with hydrophobicity as -3.49 and hydrophilicity as -5337 

kJ mol-1. The larger the absolute values of hydrophobicity and hydrophilicity are, the 

stronger the effects of both ions are on water. The both contributions which are much 

stronger than other molecules or ions suggest that [P4,4,4,4]
+ is a significant amphiphle. 

Hydration number is also large at 72. CF3COO －  is also an amphiphile with 

hydrophobicity -0.49 and its hydrophilicity -767 kJ mol-1 and the hydration number is 10. 

For [P4,4,4,4]
+, the locus of point X at 𝑥S

0= 0.0100 is deviated from the linear line. It 

hints that there could be a break point for the shift of point X. This may suggest that 

[P4,4,4,4]
+ shows self-aggregation. While the 𝐻1P−1P

E  pattern retains a peak type indicates 
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the three component system is still in the mixing scheme I. This hints that for aqueous 

solution of original ionic liquid, i. e. [P4,4,4,4]CF3COO an aggregation of the cation might 

occur, too. 

 

5. 6.   Discussion  

     

    Applying the differential thermodynamics on the aqueous solution of 

[P4,4,4,4]CF3COO, we found as discussed in 5. 4., that the third derivative quantities of 

Gibbs energy show a peak against the mole fraction of [P4,4,4,4]CF3COO. According to 

the obtained peak top, point X, the mixing scheme I of the aqueous solution of 

[P4,4,4,4]CF3COO ends at 𝑥IL= 0.0059. At lower concentrations than this mole fraction, 

[P4,4,4,4]CF3COO should separate into [P4,4,4,4]
+ cation and CF3COO－ anion completely. 

Electric conductivity of the aqueous solution also shows the evidence for the separation 

of ions at very low concentrations. [129] By the peak-type behavior of both volumetric 

and enthalpic IL-IL interactions, 𝑉IL−IL
E  and 𝐻IL−IL

E , the sum of contributions of each 

constituent ions, [P4,4,4,4]
+ and CF3COO－, is strongly hydrophobic. However, 𝐻IL−IL

E  

suggests 𝐻IL−IL
E  pattern is not able to be described with simple straight lines. 

On the other hand, by the 1-propanol probing methodology, we found that both ions 

are characterized as amphiphiles separately. Especially [P4,4,4,4]
+ is a significant 

amphiphile with a strong hydrophobicity and also strong hydrophilicity. Water forms 

hydration shells around [P4,4,4,4]
+ with 72 water molecules. This value is three times larger 

than an imidazolium cation with butyl group, [C4mim]+. On the other hand, 10 water 

molecules form hydration shell around CF3COO－. Since, in a previous study, a single 

water molecule hydrates on the COO－ group of carboxylates and acts as the hydration 

center [130], nine water molecules must form the hydration shell around a hydrophobic 

trifluoromethyl group. Figure 5-12 is the two dimensional (2-D) map of 

hydrophobicity/hydrophilicity for typical ions composing ionic liquids. [110], [111], 

[129]–[134] The values of hydrophobicity/hydrophilicity of each ions in the figure are 

shown in Appendix M. The vertical axis shows hydrophilicity and the horizontal axis 

indicates hydrophobicity in the upper side of the figure and the hydration number in the 

lower axis. Water define the origin and the probing 1-propanol is necessarily located at (-

1, 0). [104] As is evident in the figure, [P4,4,4,4]
+ shows a stronger contribution on the 

water network. 
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Figure 5-12     The 2-D map of hydrophobicity/hydrophlicity for typical cations (red 

symbols) and anions (blue symbols) composing ionic liquids; (c)[P4,4,4,4]
+, (d)[C2mim]+, 

(e)[C4mim]+, (f)[C4C1mim]+, (g)CF3COO－ , (h)Cl－ , (i)Br－ , (j)CH3COO－ , (k)BF4
－ , 

(l)OTf－, (m)PF6
－ and (n)NTf2

－. [110], [111], [129]–[134] Water (a) defines the origin 

and the probing 1-propanol (b) exists at (-1, 0). 

 

 

In the 1-propanol probing methodology, the pattern changes of the third derivatives 

are observed, namely, the fourth derivative quantities of Gibbs energy are obtained. They 

should give deeper information of the system than the third derivatives. However, Cl－ 

and Na+ were used for counter ions of [P4,4,4,4]CF3COO in 1-propanol probing 

methodology. In the previous study [44], the IL–IL interactions, 𝐻IL−IL
E , for 1-butyl-3-

methylimidazolium tetrafluoroborate, [C4mim]BF4, and the iodide with the same cation, 

[C4mim]I, in their aqueous solutions were reported. Comparing their patterns of 𝐻IL−IL
E  

against IL mole fraction, much stronger hydrophobicity of the BF4
－ salt was observed 

than that of I－.[44], [134] However, the results of characterization of BF4
－[134] and I－

[111] separately by the 1-propanol probing methodology indicated they have similar 

hydrophilic contributions on the water network in the mixing scheme I with a small 
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hydrophobicity for BF4
－[134]. So far, we are not able to discuss the contribution of 

pairing [P4,4,4,4]
+ and CF3COO－ on the total effects of [P4,4,4,4]CF3COO on the water 

network. Characterization of [P4,4,4,4]CF3COO by the 1-propanol probing methodology is 

necessary to understand why hydrophilic contribution was not observed from the third 

derivatives. As for hydrophobic contribution, both ions show hydrophobicity and lower 

the hydrogen bond probability in the bulk water away from hydration shells. The 

threshold of bond percolation of water network starts to break at point X, 𝑥IL= 0.0059. 

Beyond point Y, 𝑥IL= 0.0093, there are [P4,4,4,4]CF3COO-rich clusters and water-rich 

clusters. The loci of point X and Y for the aqueous solution of [P4,4,4,4]CF3COO are at 

much lower mole fractions than those of aqueous solutions of normal molecules.   
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Chapter 6     Conclusion 

 

 

In this thesis, the aqueous solution of tetrabutylphosphonium trifluoroacetate, 

[P4,4,4,4]CF3COO, was characterized from the viewpoints of fluctuation by means of 

small-angle X-ray (SAXS) study and of molecular level scenario by using differential 

thermodynamics. The aqueous solution shows the unique phase behavior, the LCST-type 

reversible phase separation with the critical point at the mole fraction of [P4,4,4,4]CF3COO, 

𝑥IL= 0.025 and at 302.35 K. 

 

The density fluctuation and the concentration fluctuation for the aqueous solution 

around the critical point was determined in the concentration range, 𝑥IL= 0.016-0.056 at 

293, 298 and 301 K. Fluctuations were calculated by combination of three parameters, 

the zero-angle scattering intensity, the partial molar volumes of each components and the 

isothermal compressibility. Both fluctuations increased approaching to the critical point 

and, especially, the density fluctuation showed an extremely large value. Namely, the 

system shows an extremely large fluctuations toward the phase separation. 

Using Kirkwood-Buff parameters, fluctuations for the entire system are divided into 

the individual density components and their correlation terms. Both of the individual 

density fluctuations for [P4,4,4,4]CF3COO and water showed large degree of fluctuations 

toward the critical point. On the other hand, that of water was more than ten times greater 

than that of [P4,4,4,4]CF3COO. The extremely large difference of the partial molar volumes 

between [P4,4,4,4]CF3COO and water must be closely related to the large density 

fluctuations and also to the large individual density fluctuation of water. Wang et al. 

reported the microemulsion-like aggregation of [P4,4,4,4]CF3COO in water by NMR 

spectra, UV-Vis absorption spectra and freeze-fracture transmission electron microscopy. 

[135] In our study, the positive correlation terms of individual density fluctuations 

between [P4,4,4,4]CF3COO and water suggests that a large number of water molecules 

hydrate [P4,4,4,4]CF3COO, and [P4,4,4,4]CF3COO makes aggregates containing hydrating 

water molecules near the critical point. 

 

    Using differential thermodynamics, the concentration region of mixing scheme I and 

II for the aqueous solution of [P4,4,4,4]CF3COO was obtained from the behavior of the 

third derivative quantities of Gibbs energy in terms of volume and of enthalpy at 298 K. 

For volume, the interaction among [P4,4,4,4]CF3COO, 𝑣IL−IL
E , was obtained by applying 

differentiation with respect to the molar amount of [P4,4,4,4]CF3COO on the measured 
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density data twice and, for enthalpy, 𝐻IL−IL
E  was obtained by a single differentiation of 

the measured apparent excess partial molar enthalpy of [P4,4,4,4]CF3COO. Both third 

derivative quantities indicate [P4,4,4,4]CF3COO has a strong hydrophobic characteristics 

in the water network in the dilute concentration region. Namely, water molecules make 

hydration shells around [P4,4,4,4]CF3COO and at the same time, the hydrogen bond 

probability of bulk water away from hydration shells decreases. From the break points of 

the third derivative quantities as a function of mole fraction, the end of the region of 

mixing scheme I and the beginning of the region of mixing scheme II were determined. 

Taking into account of experimental error and that coming from differentiation operation, 

the third derivative quantity in terms of enthalpy could be better than that in terms of 

volume. The former result indicates that mixing scheme I retains up to 𝑥IL= 0.0059, and 

mixing scheme II in which [P4,4,4,4]CF3COO interacts with each other directly is observed 

at higher than 𝑥IL= 0.0093.  

The critical point of phase separation at 𝑥IL= 0.025 exists in the region of mixing II, 

in which there two types of clusters, water-rich and [P4,4,4,4]CF3COO-rich ones. This 

suggestion corresponds to a large individual fluctuations for each components and 

aggregation of [P4,4,4,4]CF3COO containing water. Figure 6-1 shows the relationship 

between density fluctuation of the system and the mixing scheme drawn on the phase 

diagram. In this study the end of mixing scheme II or the beginning of mixing scheme III 

was not obtained. However the boundary of mixing scheme II and III should be at a higher 

concentration region than the concentration region shown in the figure. 

    In the region of the mixing scheme I, it is believed that [P4,4,4,4]CF3COO is 

dissociated into cation and anion completely. Tetrabutylphosphoniu, [P4,4,4,4]
+, and 

trifluoroacrtate, CF3COO－ , were characterized separately by the 1-popanol probing 

methodology as their effects on water network within mixing scheme I. [P4,4,4,4]
+ is a 

significant amphiphile with a strong hydrophobic and a strong hydrophilic contributions. 

Its hydration number 72 indicates water molecules form a large hydration shell. Also 

CF3COO－ is an ampiphile and its hydration number is 10. These strong hydrophobic 

contributions of the composing ions on the water network corresponds to the behavior of 

the third derivatives for the binary system of [P4,4,4,4]CF3COO and water. The existence 

of point X, the end of mixing scheme I, and Y, the beginning of mixing scheme II, the 

start of IL aggregation, were determined. However, by analysis of binary system, 

hydrophilicity of ions is not observed. The results indicate the contribution of 

[P4,4,4,4]CF3COO ion pair is not able to describe by the sum of contributions of each cation 

and anion. 
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Figure 6-1    Mixing states of the aqueous solution of [P4,4,4,4]CF3COO. Black solid 

curve is the phase separation boundary and the contour lines represent distribution of the 

total density fluctuation. The blue concentration/temperature region corresponds to the 

region of mixing scheme I and the yellow region shows that of mixing scheme II. 

However the end of mixing scheme II is not known and may exist at a much higher 

concentration. 

 

 

Using SAXS method, the drastic change of distribution of IL and water and 

information of IL aggregation were observed in the super critical region. Also, from the 

view point of the differential thermodynamics, the manner of interaction between ILs near 

the critical point was obtained. In dilute region, various ions composing ILs were 

characterized by the 1P-propbing methodology. These results should be valuable 

information for fundamental and applied study of aqueous solutions of IL. Comparing 

systematically the present results with various kinds of aqueous solutions of IL showing 

UCST-type phase separations and those not showing any phase separations is important. 
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Appendix 

 

A. Sample preparation 

 

Ionic liquid [P4,4,4,4]CF3COO shows the melting point at 47 ºC and usually, it is solid 

state at room temperature. [P4,4,4,4]CF3COO is needed a freeze dehydration because of its 

high hygroscopicity. First, glassy chunks or powders of [P4,4,4,4]CF3COO in a vial 

container is frozen using liquid nitrogen completely. Then they are crashed and stirred 

[P4,4,4,4]CF3COO is heated, temperature should be increased slowly up to 50-60 ºC. The 

IL shows the decomposition temperature at 178 ºC. During heating while water content 

is high, caution must be exercised not to bump a resulting highly viscous mixture. Until 

[P4,4,4,4]CF3COO becomes powder-like, repeat freezing drying. 

After drying under vacuum, the water content was determined by coulometric Karl-

Fischer titration using the coulometer DL32 (Mettler Toledo) with Coulomat AG and CG 

reagents (Hydranal). A small amount of powders of [P4,4,4,4]CF3COO was dissolved in 

dehydrated methanol which was determined water content beforehand. Water content of 

dried [P4,4,4,4]CF3COO was smaller than 200 ppm. 

Neat [P4,4,4,4]CF3COO was put in a cold store chamber. Preparation of mixtures were 

performed after drying as soon as possible. First we mixed [P4,4,4,4]CF3COO and water at 

𝑥IL= 0.07. Then the sample aqueous solutions was obtained by attenuation of the initial 

mixture. The mixture with too much high concentration need care for moisture absorption. 

Aqueous solutions of [P4,4,4,4]CF3COO were stirred for 1 h and kept in a cool place 

because their phase separation points are near room temperature. 
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B. Conditions of SAXS measurements 

 

All SAXS measurement was performed at the station BL-6A, PF. Table B-1 shows 

the conditions of experiments. 

 

Table B-1 

Date 2 June 2014 

Sample aqueous solution of [P4,4,4,4]CF3COO 

Temperature 293 K 

Camera length 2037.67 mm 

Exposure time 300 s 

 

Date 20 October 2015 

Sample aqueous solution of [P4,4,4,4]CF3COO 

Temperature 298 and 301 K 

Camera length 2036.55 mm 

Exposure time 300 s 
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C. SAXS profiles and their fitting curves 

 

    All SAXS raw data for aqueous solutions of [P4,4,4,4]CF3COO and their fitting curves 

are shown in figures C-1 to 3. The vertical axis is scattering intensity, 𝐼(0) in arbitrary 

unit. Three types of fitting curves, straight line, even function and the Ornstein-Zernike 

equation with constant term as shown in equation (C1) to (C3) were applied on the data.  

𝐼(𝑠) = 𝑎 + 𝑏𝑠, (C1) 

𝐼(𝑠) = 𝑐 + 𝑑𝑠2 + 𝑒𝑠4 + 𝑓𝑠6, (C2) 

𝐼(𝑠) =
𝐼(0)′

1 + 𝜉2𝑠2
+ 𝛼. (C3) 

Equation (C1) was fitted on only the results of water. 𝐼(0)s were determined by applying 

equation (C3) near the critical point. Outside of this region, even functions, equation (C2), 

were fitted instead. These functions were applied on scattering intensity within 0.2 < s < 

1.0 nm−1. The smaller edge of the region was determined based on the results of water. 

However, for the mixture of ionic liquid, unnecessary signals were obtained at smaller s 

region. Those signals were cut for fitting. One of the reasons is that the sample length 

which was determined based on absorption coefficient of water was wide for ionic liquid 

solutions. Table C-1 shows the used equations for fitting and the resulting absolute values 

of 𝐼(0). 
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Figure C-1    SAXS raw data at 301 K. Black lines are the respective fitting functions. 

The equation numbers of used fitting functions were written below the concentrations. 
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Figure C-2    SAXS raw data at 298 K. Black lines are the respective fitting functions. 

The equation numbers of used fitting functions were written below the concentrations. 
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Figure C-3    SAXS raw data at 293 K. Black lines are the respective fitting functions. 

The equation numbers of used fitting functions were written below the concentrations. 
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Table C-1   

𝑥IL Equation 
𝐼(0) 

/ 1023 e.u. cm-3 
 𝑥IL Equation 

𝐼(0) 

/ 1023 e.u. cm-3 

301 K    298 K   

0.000 (C1) 2.07  0.000 (C1) 2.06 

0.012 (C2) 2.05  0.012 (C2) 2.32 

0.016 (C3) 3.72  0.016 (C3) 3.53 

0.020 (C3) 7.15  0.020 (C3) 4.71 

0.023 (C3) 9.40  0.023 (C3) 4.88 

0.024 (C3) 9.15  0.024 (C3) 5.20 

0.026 (C3) 12.14  0.026 (C3) 5.10 

0.027 (C3) 13.91  0.027 (C3) 5.11 

0.029 (C3) 10.71  0.029 (C3) 4.81 

0.031 (C3) 10.94  0.031 (C3) 4.68 

0.038 (C3) 7.46  0.038 (C3) 3.62 

0.046 (C3) 4.17  0.046 (C2) 2.61 

0.056 (C2) 2.58  0.056 (C2) 2.15 

       

293 K       

0.000 (C1) 2.06     

0.016 (C3) 2.54     

0.020 (C3) 3.22     

0.023 (C3) 3.38     

0.025 (C3) 4.57     

0.028 (C3) 4.02     

0.031 (C2) 3.03     

0.038 (C2) 2.68     

0.045 (C2) 2.43     

0.056 (C2) 2.04     

0.079 (C2) 1.81     
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D. Details of high-pressure density meter 

 

Pressure dependence of density for the aqueous solution of [P4,4,4,4]CF3COO was 

measured using high-pressure density meter DMA HP (Anton Paar). The values were 

displayed on DMA 4500. The oscillating period of a Hastelloy U-tube was corrected by 

nitrogen gas and liquid water at each temperature and pressure. Nitrogen was injected by 

gas cylinder and liquids were by pump system shown in figure D-1. Pressure was 

monitored. Temperature was controlled by cooling water and monitored by pressure gage. 

 

 

Figure D-1    Layout of liquid and gas injection system. 

 

Table D-1 shows the measured oscillating periods of nitrogen and water at 293 and 301 

K. Their values of density data sets are referred to the NIST data base [136]. Both 

measurements with pressure increasing direction and that with decreasing direction 

showed the same value. To determine the value at 0.1 MPa carefully, the measurements 

were performed with increasing pressure. Table D-2 shows apparatus constants A and B 

as equation (39). 

 

Table D-1     

p / MPa Period / μs Density / g cm-3 

 N2 water N2 water 

293 K     

0.1 2485.23 2690.47 0.001147 0.99799 

1.0 2487.44 2690.57 0.011486 0.99841 

2.0 2489.92 2690.69 0.023010 0.99886 

3.0 2492.40 2690.81 0.034555 0.99931 
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4.0 2494.88 2690.92 0.046104 0.99977 

5.0 2497.36 2691.03 0.057638 1.0002 

6.0 2499.82 2691.16 0.069141 1.0007 

7.0 2502.27 2691.27 0.080593 1.0011 

     

301 K     

0.1 2488.90 2692.60 0.001119 0.99624 

1.0 2491.09 2692.71 0.011205 0.99664 

2.0 2493.47 2692.82 0.022433 0.99708 

3.0 2495.87 2692.93 0.033670 0.99753 

4.0 2498.27 2693.05 0.044900 0.99797 

5.0 2500.61 2693.18 0.056106 0.99842 

6.0 2503.02 2693.27 0.067272 0.99886 

7.0 2505.41 2693.37 0.078382 0.99930 

8.0 2507.82 2693.49 0.089421 0.99974 

9.0 2510.12 2693.60 0.10037 1.00018 

10.0 2512.45 2693.69 0.11122 1.00062 

11.0 2514.72 2693.81 0.12195 1.00105 

12.0 2517.00 2693.93 0.13256 1.00149 

 

Table D-2     

𝑝 / MPa A B  𝑝 / MPa A B 

293 K    301 K   

0.1 9.3842 -5.7949  0.1 9.4282 -5.8393 

1.0 9.3831 -5.7942  1.0 9.4286 -5.8397 

2.0 9.3822 -5.7937  2.0 9.4271 -5.8387 

3.0 9.3811 -5.7931  3.0 9.4264 -5.8384 

4.0 9.3807 -5.7929  4.0 9.4255 -5.8379 

5.0 9.3803 -5.7927  5.0 9.4215 -5.8352 

6.0 9.3790 -5.7919  6.0 9.4233 -5.8365 

7.0 9.3778 -5.7912  7.0 9.4244 -5.8374 

    8.0 9.4262 -5.8389 

    9.0 9.4243 -5.8376 

    10.0 9.4260 -5.8388 

    11.0 9.4244 -5.8379 

    12.0 9.4247 -5.8383 
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E. Concentration dependence of density 

 

    Concentration dependence of density for the aqueous solution of [P4,4,4,4]CF3COO at 

293, 298 and 301 K measured by the vibration tube density meter, DMA 4500 and DMA 

4100 (Anton Paar). The accuracy of temperature is ±0.03 ºC and that of density is 

±0.00005 g cm-3 for DMA 4500. For DMA 4100, temperature is ±0.05 ºC and density is 

±0.0001 g cm-3. The glass tubes were cleaned by pure water, methanol and acetone to 

remove ionic liquid before each measurement. After drying with air, check the density 

value of air at 20 ºC. 

    Table E-1 shows the raw density data at 293, 298 and 301 K using DMA 4500. Table 

E-2 shows those using DMA 4100. Both results showed good agreement. 

     

Table E-1     

𝑥IL Molar mass Density / g cm-3 

  293 K 298 K 301 K 

0.000000 18.020 0.99820 0.99704 0.99623 

0.002402 18.871 1.00176 1.00042 0.99950 

0.004862 19.743 1.00534 1.00376 1.00270 

0.007505 20.680 1.00875 1.00683 1.00558 

0.010038 21.578 1.01135 1.00915 1.00775 

0.012579 22.479 1.01352 1.01111 1.00960 

0.015910 23.659 1.01592 1.01330 1.01166 

0.022918 26.143 1.02000 1.01703 1.01520 

0.024982 26.874 1.02099 1.01796 1.01608 

0.028066 27.967 1.02241 1.01927 1.01733 

0.032179 29.425 1.02404 1.02079 1.01879 

0.038260 31.580 1.02616 1.02278 1.02070 

0.045182 34.034 1.02811 1.02461 1.02248 

0.077637 45.537 1.03390 1.03013 1.02786 
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Table E-2     

𝑥IL Molar mass Density / g cm-3 

  293 K 298 K 301 K 

0.000000 18.020 0.9983 0.9971 0.9963 

0.001004 18.376 0.9998 0.9985 0.9977 

0.002218 18.806 1.0016 1.0003 0.9994 

0.002872 19.038 1.0025 1.0012 1.0002 

0.003905 19.404 1.0041 1.0026 1.0016 

0.004175 19.500 1.0044 1.0030 1.0019 

0.004986 19.787 1.0056 1.0040 1.0030 

0.005443 19.949 1.0062 1.0046 1.0035 

0.006039 20.160 1.0070 1.0053 1.0042 

0.006721 20.402 1.0078 1.0060 1.0048 

0.007482 20.672 1.0088 1.0069 1.0057 

0.008803 21.140 1.0102 1.0082 1.0069 

0.009859 21.515 1.0112 1.0091 1.0077 

0.010878 21.876 1.0122 1.0099 1.0085 

0.011959 22.259 1.0131 1.0107 1.0093 

0.012876 22.584 1.0138 1.0114 1.0099 

0.013941 22.961 1.0146 1.0121 1.0106 

0.015102 23.373 1.0154 1.0129 1.0113 

0.016013 23.696 1.0161 1.0135 1.0118 

0.019455 24.916 1.0182 1.0154 1.0136 

0.023012 26.176 1.0201 1.0172 1.0153 

0.023825 26.464 1.0205 1.0175 1.0157 

0.025274 26.978 1.0212 1.0182 1.0163 

0.025973 27.226 1.0215 1.0185 1.0166 

0.026857 27.539 1.0219 1.0188 1.0169 

0.028139 27.994 1.0226 1.0195 1.0176 

0.031195 29.077 1.0237 1.0205 1.0185 

0.037292 31.238 1.0259 1.0226 1.0205 

0.044608 33.831 1.0280 1.0246 1.0225 

0.056365 37.998 1.0310 1.0274 1.0252 

0.064871 41.013 1.0322 1.0285 1.0263 

0.079021 46.028 1.0341 1.0304 1.0281 
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F. Differentiation by graphical curve fitting with a flexible ruler 

 

To differentiate apparent excess molar volumes, we draw a smooth curve using a 

flexible ruler. Redlich-Kister polynomial [137] is known as one of the famous fitting 

functions of excess quantities for binary systems as, 

𝑉m
E(𝑥) = 𝑥(1 − 𝑥) ∑ 𝐴i(2𝑥 − 1)i

n

i=0

, (F1) 

where 𝑥 is mole fraction of a component, 𝐴i are the polynomial coefficients and 𝑛 is 

the polynomial degree. For this system, equation (F1) was not suitable at low 

concentration region as shown in figure F-1. Accurate fitting curve is important at such 

low concentration region for the differential thermos dynamics. 

 

 

Figure F-1    Smooth curve fitted on the measured apparent excess partial molar 

volume, 𝑉m
E,ap

, at 298 K. the solid line was obtained by Redlich-Kister polynomial and 

the dotted line is drawn using a flexible ruler.  

 

Numerical differentiation as equation (68) is the best method because it reflects 

experimental fact well without any assumptions. However, for the apparent excess molar 

volume, their value was too small and the experimental error was too large. And for partial 

molar enthalpy, the number of measured points was few. Because of them, the numerical 

differentiation was inappropriate. 
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G. Differentiation of volume with respect to mole fraction 

 

Raw density data shown in Appendix E were converted to molar volume, 𝑉m. Then 

using the two data point at 𝑥IL= 0.000 and 0.079 in table D-2, the apparent excess molar 

volume, 𝑉m,ap
E , was calculated. Figure G-1 shows 𝑣m,ap

E  at 293 and 301 and their fitting 

curves drawn by a flexible ruler. At 𝑥IL> 0.05, the volumetric ratio of [P4,4,4,4]CF3COO 

is larger than that of water and [P4,4,4,4]CF3COO ion pairs occupy the volume of aqueous 

solution. Then, the molar volume of the mixture of [P4,4,4,4]CF3COO and water increased 

almost linearly and, at high concentration region, there were larger error as seen in the 

figure. Table G-1 shows the values of resulting partial molar volumes of 

[P4,4,4,4]CF3COO, 𝑣IL, and water, 𝑣W. 

 

 

 

Figure G-1    The apparent excess molar volume of the aqueous solution of 

[P4,4,4,4]CF3COO, 𝑉m,ap
E , at (a)293 and (b)301 K against 𝑥IL. The solid lines are fitting 

curves drawn with a flexible ruler. 
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Table G-1  

𝑥IL 𝑣IL / cm3 mol-1 𝑣W / cm3 mol-1 

 293 K 298 K 301 K 293 K 298 K 301 K 

0.002 344.50 346.29 347.98 18.05 18.07 18.07 

0.004 343.75 345.84 347.26 18.05 18.07 18.08 

0.006 344.24 347.16 348.18 18.05 18.07 18.07 

0.008 346.53 349.67 351.38 18.03 18.05 18.05 

0.010 348.93 351.62 353.37 18.01 18.03 18.03 

0.012 350.32 352.71 354.23 18.00 18.02 18.02 

0.014 351.06 353.28 354.82 17.99 18.01 18.01 

0.016 351.57 353.67 355.07 17.98 18.01 18.01 

0.018 351.99 353.99 355.19 17.97 18.00 18.01 

0.020 352.31 354.26 355.46 17.97 18.00 18.00 

0.024 352.85 354.65 355.83 17.95 17.99 17.99 

0.028 353.19 354.99 356.10 17.95 17.98 17.99 

0.032 353.36 355.19 356.29 17.94 17.97 17.98 

0.036 353.53 355.33 356.39 17.93 17.97 17.98 

0.040 353.89 355.57 356.58 17.92 17.96 17.97 

0.044 354.27 355.86 356.82 17.90 17.94 17.96 

0.048 354.51 356.17 357.01 17.89 17.93 17.95 

0.052 354.61 356.24 357.06 17.89 17.93 17.95 

0.056 354.75 356.43 357.27 17.88 17.92 17.93 

0.060 354.96 356.53 357.46 17.87 17.91 17.92 

0.064 355.12 356.50 357.39 17.85 17.91 17.93 

0.068 355.29 356.62 357.60 17.84 17.90 17.91 

0.072 355.43 356.76 357.72 17.83 17.89 17.90 

0.076 355.57 356.81 357.92 17.82 17.89 17.89 
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To obtain the third derivative quantity, smooth curves drawn again on apparent 

excess partial molar volumes of [P4,4,4,4]CF3COO, 𝑣IL,ap
E . Figure G-2 shows 𝑣IL,ap

E  at 

293 and 301 and their fitting curves by the same manner. And table G-2 shows the values 

of calculated the third derivative quantity in terms of volume or volumetric interaction 

among [P4,4,4,4]CF3COO, 𝑣IL−IL
E . 

 

 

 

 

Figure G-2    Excess partial molar volumes of [P4,4,4,4]CF3COO, 𝑣IL,ap
E , in dilute region 

at (a)293 and (b)301 K. The solid lines are the fitting curve drawn with a flexible ruler. 
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Table G-2 

𝑥IL 𝑣IL−IL
E   𝑥IL 𝑣IL−IL

E  

 293 K 298 K 301 K   293 K 298 K 301 K 

0.0015 -1046.73 -1196.35 -697.75  0.0155 315.04 206.75 177.21 

0.0020 -946.28 -946.38 -647.73  0.0160 285.36 196.80 157.44 

0.0025 -895.71 -600.89 -699.65  0.0165 255.71 186.87 157.36 

0.0030 -298.45 -53.09 47.31  0.0170 235.92 186.77 167.11 

0.0035 -99.50 199.30 368.70  0.0175 216.15 176.85 167.03 

0.0040 -198.20 249.00 527.88  0.0180 196.40 166.94 166.94 

0.0045 -153.61 497.75 696.85  0.0185 176.67 157.04 147.23 

0.0050 64.87 855.70 835.80  0.0190 156.96 137.34 147.15 

0.0055 745.87 1193.40 1034.28  0.0195 147.08 127.47 147.08 

0.0060 1341.90 1500.94 1312.08  0.0200 147.00 127.40 137.20 

0.0065 1698.89 1549.86 1549.86  0.0205 127.34 97.95 127.34 

0.0070 1827.12 1439.85 1539.15  0.0210 127.27 97.90 117.48 

0.0075 1558.23 1379.58 1399.43  0.0215 136.99 107.64 97.85 

0.0080 1170.56 1259.84 1249.92  0.0220 117.36 107.58 78.24 

0.0085 951.84 1021.25 1031.16  0.0225 117.30 107.53 68.43 

0.0090 822.53 792.80 812.62  0.0230 127.01 107.47 48.85 

0.0095 693.35 663.63 643.82  0.0235 117.18 107.42 39.06 

0.0100 623.70 534.60 514.80  0.0240 126.88 107.36 58.56 

0.0105 603.59 435.38 425.49  0.0245 126.82 97.55 58.53 

0.0110 583.51 405.49 385.71  0.0250 107.25 97.50 29.25 

0.0115 543.67 375.63 326.21  0.0255 107.20 87.70 19.49 

0.0120 494.00 326.04 316.16  0.0260 107.14 87.66 19.48 

0.0125 464.13 306.13 296.25  0.0265 107.09 97.35 19.47 

0.0130 434.28 296.10 256.62  0.0270 107.03 97.30 9.73 

0.0135 394.60 266.36 246.63  0.0275 116.70 97.25 0.00 

0.0140 384.54 246.50 216.92  0.0280 126.36 97.20 0.00 

0.0145 364.64 236.52 206.96  0.0285 116.58 97.15 9.71 

0.0150 325.05 216.70 197.00  0.0290 116.52 87.39 9.71 
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H. Determination of isothermal compressibility 

 

    Table H-1 shows the oscillation periods measured with the high pressure density 

meter, DMA HP, at 293 K and 301 K. These data were converted into density using the 

apparatus constants A and B shown in Appendix D. 

 

Table H-1     

𝑝 / MPa Period / μs 

293 K      

𝑥IL = 0.016 0.02 0.023 0.025 0.028 

0.1 2693.73 2694.24 2694.5 2694.77 2694.99 

1.0 2693.84 2694.35 2694.6100 2694.87 2695.1 

2.0 2693.95 2694.46 2694.7000 2694.99 2695.22 

3.0 2694.06 2694.57 2694.8200 2695.1 2695.33 

4.0 2694.17 2694.68 2694.9400 2695.21 2695.44 

5.0 2694.28 2694.79 2695.0500 2695.32 2695.55 

6.0 2694.39 2694.91 2695.1700 2695.43 2695.66 

7.0 2694.50 2695.02 2695.2800 2695.54 2695.77 

      

𝑥IL = 0.031 0.038 0.045 0.056 0.079 

0.1 2695.25 2695.72 2696.16 2696.74 2697.17 

1.0 2695.36 2695.83 2696.27 2696.86 2697.28 

2.0 2695.48 2695.95 2696.39 2696.97 2697.4 

3.0 2695.59 2696.06 2696.5 2697.09 2697.51 

4.0 2695.69 2696.18 2696.62 2697.22 2697.63 

5.0 2695.81 2696.29 2696.72 2697.32 2697.74 

6.0 2695.91 2696.4 2696.84 2697.42 2697.85 

7.0 2696.02 2696.51 2696.95 2697.54 2697.97 

      

301 K      

𝑥IL = 0.016 0.02 0.023 0.025 0.028 

0.1 2695.65 2696.06 2696.28 2696.49 2696.73 

1.0 2695.76 2696.17 2696.40 2696.60 2696.84 

2.0 2695.87 2696.28 2696.52 2696.72 2696.95 

3.0 2695.98 2696.39 2696.63 2696.83 2697.07 

4.0 2696.09 2696.50 2696.74 2696.94 2697.18 
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5.0 2696.20 2696.62 2696.86 2697.06 2697.30 

6.0 2696.32 2696.73 2696.98 2697.17 2697.41 

7.0 2696.42 2696.84 2697.08 2697.28 2697.52 

8.0 2696.52 2696.95 2697.19 2697.39 2697.64 

9.0 2696.63 2697.06 2697.30 2697.50 2697.75 

10.0 2696.74 2697.17 2697.41 2697.61 2697.86 

11.0 2696.85 2697.28 2697.53 2697.72 2697.97 

12.0 2696.97 2697.39 2697.65 2697.83 2698.08 

      

𝑥IL = 0.031 0.038 0.045 0.056 0.079 

0.1 2696.97 2697.37 2697.71 2698.17 2698.82 

1.0 2697.08 2697.48 2697.83 2698.28 2698.94 

2.0 2697.19 2697.60 2697.95 2698.40 2699.05 

3.0 2697.30 2697.71 2698.06 2698.53 2699.16 

4.0 2697.41 2697.82 2698.17 2698.63 2699.29 

5.0 2697.53 2697.93 2698.28 2698.75 2699.41 

6.0 2697.64 2698.05 2698.39 2698.86 2699.52 

7.0 2697.76 2698.16 2698.51 2698.97 2699.64 

8.0 2697.87 2698.28 2698.62 2699.09 2699.75 

9.0 2697.98 2698.39 2698.74 2699.20 2699.87 

10.0 2698.09 2698.51 2698.85 2699.31 2699.99 

11.0 2698.20 2698.64 2698.98 2699.42 2700.10 

12.0 2698.32 2698.73 2699.08 2699.54 2700.22 

 

Table H-2 

𝑥IL 𝜅𝑇 / 10-4 MPa-1  𝑥IL 𝜅𝑇 / 10-4 MPa-1 

 293 K 298 K   293 K 298 K 

0.000 4.5825 4.4840  0.028 4.2193 4.4665 

0.016 4.1750 4.3004  0.031 4.1368 4.4378 

0.020 4.2369 4.3849  0.038 4.2948 4.5112 

0.023 4.2723 4.4712  0.045 4.2678 4.4897 

0.025 4.1842 4.4033  0.056 4.3071 4.4722 

    0.079 4.3027 4.6009 
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I. Fluctuations of the aqueous solution of [P4,4,4,4]CF3COO 

 

    The fluctuations of the aqueous solution of [P4,4,4,4]CF3COO was obtained by SAXS 

method at 293, 298 and 301 K. Table I-1 shows the calculated values of density 

fluctuation, 〈(∆𝑁)2〉 𝑁̅⁄ , concentration fluctuation, 𝑁̅〈(∆𝑥)2〉 , and their cross term, 

〈∆𝑁∆𝑥〉, from combination of forward scattering intensities, 𝐼(0), partial molar volumes 

and isothermal compressibilies. 

 

Table I-1 

𝑥IL 𝑁̅〈(∆𝑥)2〉 
〈(∆𝑁)2〉

𝑁̅
 〈∆𝑁∆𝑥〉  𝑥IL 𝑁̅〈(∆𝑥)2〉 

〈(∆𝑁)2〉

𝑁̅
 〈∆𝑁∆𝑥〉 

301 K     298 K    

0.016 0.47 97.10 -6.74  0.012 0.04 10.19 -0.67 

0.020 1.92 357.91 -26.25  0.016 0.32 65.74 -4.57 

0.023 3.45 593.11 -45.24  0.020 0.79 145.79 -10.71 

0.024 3.60 603.23 -46.60  0.023 1.04 178.23 -13.62 

0.026 5.80 924.60 -73.25  0.024 1.24 206.31 -15.97 

0.027 7.38 1148.02 -92.07  0.026 1.37 217.60 -17.27 

0.029 6.11 905.29 -74.39  0.027 1.48 228.82 -18.39 

0.031 6.89 972.75 -81.87  0.029 1.52 224.15 -18.45 

0.038 6.06 730.80 -66.57  0.031 1.60 224.98 -18.96 

0.046 3.88 395.91 -39.18  0.038 1.38 166.44 -15.18 

0.056 1.43 120.75 -13.14  0.046 0.83 85.04 -8.42 

     0.056 0.15 12.78 -1.39 

         

293 K         

0.016 0.09 19.37 -1.35      

0.020 0.28 51.72 -3.81      

0.023 0.40 68.11 -5.22      

0.025 0.84 136.59 -10.73      

0.028 0.81 121.15 -9.87      

0.031 0.48 67.66 -5.71      

0.038 0.48 57.52 -5.25      

0.045 0.50 51.83 -5.09      

0.056 0.08 6.44 -0.70      
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J. Individual density fluctuations 

 

    Table J-1 shows the Kirkwood-Buff parameters, 𝐺IL−IL , 𝐺W−W  and 𝐺IL−W , 

individual fluctuations of [P4,4,4,4]CF3COO, 〈(∆𝑁IL)2〉 𝑁IL
̅̅ ̅̅⁄ , those of water, 

〈(∆𝑁W)2〉 𝑁W
̅̅ ̅̅⁄ , and the cross term of individual fluctuations, 〈∆𝑁IL∆𝑁W〉 𝑁IL

̅̅ ̅̅⁄ , at 293, 

298 and 301 K. The units of the Kirkwood-Buff parameters are cm3 molecule-1. 

 

Table J-1 

𝑥IL 𝐺IL−IL 𝐺W−W 𝐺IL−W 
〈(∆𝑁IL)2〉

𝑁IL
̅̅ ̅̅

 
〈(∆𝑁W)2〉

𝑁W
̅̅ ̅̅

 
〈∆𝑁IL∆𝑁W〉

𝑁IL
̅̅ ̅̅

 

301 K       

0.016 39646 4287 18727 17.31 109.49 473.95 

0.020 102627 16961 63544 50.91 405.21 1514.33 

0.023 134374 29463 101028 73.20 673.48 2305.90 

0.024 127001 30420 101626 71.29 685.64 2287.23 

0.026 170664 48046 152913 100.75 1053.02 3348.19 

0.027 199136 60544 188403 120.36 1308.76 4069.50 

0.029 138931 49123 146668 88.27 1034.11 3084.60 

0.031 133757 54289 156040 88.68 1113.43 3197.43 

0.038 71728 44809 115133 54.21 842.46 2162.06 

0.046 28035 26816 62305 24.14 460.11 1066.74 

0.056 5503 9149 19289 6.02 141.78 296.81 

       

298 K       

0.012 4421 387 2248 2.45 11.45 60.70 

0.016 26241 2886 12686 11.82 74.16 321.55 

0.020 40786 6874 25878 20.87 165.11 617.79 

0.023 39249 8809 30342 22.13 202.44 693.86 

0.024 42440 10358 34738 24.53 234.56 783.33 

0.026 39019 11254 35963 23.85 247.89 788.93 

0.027 38517 12012 37527 24.13 260.94 812.10 

0.029 33333 12107 36285 21.98 256.11 764.59 

0.031 29877 12499 36061 20.62 257.59 740.27 

0.038 15345 10146 26188 12.41 191.92 492.80 

0.046 5081 5703 13360 5.20 98.85 229.22 

0.056 -394 908 2036 0.64 15.01 31.40 
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301 K       

0.016 6074 821 3734 3.51 21.86 94.89 

0.020 13227 2406 9171 7.46 58.59 219.52 

0.023 13923 3331 11580 8.52 77.39 265.55 

0.025 25682 6928 22743 15.69 155.50 507.23 

0.028 18469 6412 19699 12.40 138.34 421.91 

0.031 7960 3714 10823 6.24 77.49 222.88 

0.038 4443 3461 9029 4.31 66.34 170.45 

0.045 2756 3400 8115 3.26 60.20 141.27 

0.056 -736 424 1021 0.32 7.56 15.80 
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K. Details of the handmade isothermal titration calorimeter 

 

The excess partial molar enthalpy was measured using a handmade isothermal 

titration calorimeter of a design similar to an LKB Bromma 8700 calorimetry system. 

[125] Figure K-1 shows a sketch of the sample cell and figure K-2 shows a schematic 

diagram of the electrical circuity. The sample cell was set in a metallic container and then, 

the container was put in 25 ºC water bath. Temperature was controlled within ±0.02 ºC. 

The volume of initial base solvent in the sample cell was about 50 cm3. The titrant 

was injected into the sample cell by a syringe pump system (CX07100, ISIS Co.) with 25 

mL gas-tight syringe (1025TLL, Hamilton). Temperature change following titration was 

monitored by a 2 kΩ thermistor. To convert the temperature change to energy, the sample 

mixture was heated with a known energy before and after titration. The energy input of 

heating was determined by using a standard resistance connected on series of the heater. 

 

 

 

       

Figure K-1    A sketch and photo of the sample cell. The titrant was injected by the 

syringe pump system (CX07100, ISIS Co.) with 25 mL gas-tight syringe (1025TLL, 

Hamilton). The glass stirrer ensures mixing. To obtain energy change by titration, the 

temperature change at the titration was calibrated using the heating runs before and after 

the titration.  
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Figure K-2    The schematic diagram of the electric circuitry; (a)multimeter 

(HP34401A, Hewlett Packrd), (b)power supply (PA18-2A, TEXIO), (c)timer (Matsushita 

Electric Works) and (d)metallic foil resister with 99.991 Ω at 25 ºC (Alpha Electronics). 

 

 

Figure K-3 shows the trace of the resistance of the thermistor as a function of time. 

The computer programs for data acquisition and analysis were written by J. Lai, Y. Koga 

and I. Lai. 

 

 

 

Figure K-3    A photo displaying the time dependent of the value of thermistor. The 

first and third steps indicate the temperature traces by calibration heating before and after 

the titration. The second shows an exotherm by the titration. 
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L. Excess partial molar enthalpy of [P4,4,4,4]CF3COO 

 

    Excess partial molar enthalpy of [P4,4,4,4]CF3COO was measured by the isothermal 

titration calorimetry mentioned in Appendix K. Because of the high melting point of the 

ionic liquid, an aqueous solution of [P4,4,4,4]CF3COO (𝑥IL= 0.0461) was used for titrant. 

At the concentration, viscosity of the titrant is low enough and the mole fraction is far 

from the critical point. The 1.0204 g of titrant (= 0.01373 mol of [P4,4,4,4]CF3COO) was 

injected at one time. The mole fraction change was 0.0003-0.0005. Table L-1 shows the 

apparent excess partial molar enthalpy, ℎ, converted from the raw data using equation 

(61) in 5. 4. 1. Smoothing curve was fitted on ℎ with a flexible ruler as shown in figure 

5-5. The values were read off from the smooth curve drawn and calculate 𝛿ℎ in steps of 

𝛿𝑥IL= 0.0006. Then the third derivative 𝐻IL−IL
E  was calculated as shown in Table L-2. 

 

Table L-1    

𝑥IL ℎ / kJ mol-1  𝑥IL ℎ / kJ mol-1 

0.001721 -26.040  0.009662 -4.449 

0.002189 -19.665  0.010113 -4.091 

0.002647 -25.058  0.010553 -3.723 

0.003096 -23.727  0.010982 -3.346 

0.003535 -22.794  0.011402 -3.153 

0.004498 -20.232  0.012012 -2.856 

0.004981 -17.701  0.012407 -2.593 

0.005337 -15.018  0.013045 -2.079 

0.005570 -14.362  0.013478 -2.014 

0.006160 -13.164  0.013899 -1.988 

0.006625 -11.406  0.014310 -1.809 

0.007079 -9.902  0.014710 -1.742 

0.007522 -8.159  0.015005 -1.691 

0.007956 -7.464  0.015292 -1.576 

0.008588 -6.137  0.016123 -1.523 

0.008998 -5.517  0.016938 -1.403 

   0.017710 -1.270 
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Table L-2     

𝑥IL 𝐻IL−IL
E  / kJ mol-1  𝑥IL 𝐻IL−IL

E  / kJ mol-1 

0.002400 5260.6  0.01040 4120.0 

0.002600 5810.9  0.01060 3185.8 

0.002800 6631.2  0.01080 3202.6 

0.003000 6925.7  0.01100 2897.6 

0.003200 7222.8  0.01120 2913.1 

0.003400 7791.0  0.01140 2603.3 

0.003600 8364.2  0.01160 1963.0 

0.003800 8942.4  0.01180 1644.7 

0.004000 9253.5  0.01200 1653.7 

0.004200 10114.1  0.01220 1662.8 

0.004400 11256.8  0.01240 1672.0 

0.004600 11858.1  0.01260 1681.3 

0.004800 12741.8  0.01280 1690.8 

0.005000 13355.3  0.01300 1360.3 

0.005200 13974.2  0.01320 1026.0 

0.005400 14598.8  0.01340 1375.8 

0.005600 14101.1  0.01360 1383.7 

0.005800 14448.8  0.01380 1078.6 

0.006000 14515.1  0.01400 1049.9 

0.006200 14296.2  0.01420 1408.1 

0.006400 13500.8  0.01440 1558.1 

0.006600 12698.0  0.01460 1068.6 

0.006800 12177.7  0.01480 716.7 

0.007000 11652.5  0.01500 901.3 

0.007200 10537.0  0.01520 1088.1 

0.007400 9705.0  0.01540 1094.8 

0.007600 8865.1  0.01560 1101.5 

0.007800 8017.1  0.01580 738.9 

0.008000 7459.2  0.01600 557.6 

0.008200 6596.1  0.01620 374.1 

0.008400 6628.5  0.01640 564.7 

0.008600 5752.9  0.01660 568.3 

0.008800 5781.4  0.01680 381.3 

0.009000 4892.9  0.01700 575.7 



82 

0.009200 4610.1  0.01720 772.6 

0.009400 4324.5  0.01740 1166.5 

0.009600 4346.5  0.01760 782.8 

0.009800 4056.7  0.01325 -176.5 

0.010000 4391.2  0.00885 15213.6 

0.010200 3783.4  0.00895 15251.5 

   0.00450 9866.8 
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M. Hydrophobicity/hydrophilicity of typical ions composing ionic liquids  

 

     The effects on water of typical cations and anions composing ILs are characterized 

by the 1-propanol probing methodology. Table M-1 shows their value of hydrophobicity, 

hydrophilicity and hydration number, 𝑛H. 

 

Table M-1 

 Ions character Hydrophobicity 𝑛H Hydrophilicity Ref. 

 Cations      

c [P4,4,4,4]+ Amphiphile -3.49 72 -5337 [129] 

d [C2mim]+ Amphiphile -0.39 7 -1970 [131] 

e [C4mim]+ Amphiphile -1.31 26 -3227 [133] 

f [C4C1mim]+(a Amphiphile -1.85 37 -6760 [131] 

       

 Anions      

g CF3COO－ Amphiphile -0.49 10 -767 [129] 

h Cl－ Hydration center -0.16 2.3 0 
[110], 

[111] 

i Br－ Hydrophile 0 0 -920 [111] 

j CH3COO－ Hydrophobe -0.22 3.7 0 [130] 

k BF4
－ Hydrophile -0.26 5.5 -2060 [134] 

l [OTf]－(b Amophiphile -0.67 13 -2370 [133] 

m PF6
－ Amophiphile -0.67 13 -3835 [133] 

n [NTf2]
－ Amphiphile -4.08 84 -8156 [132] 

a) 1-butyl-2,3-dimethyl imidazolium 

b) Trifluoromethylsulfonate  
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N. Fluctuations for the aqueous solution of [C4mim]BF4 

 

    Ionic Liquid 1-butyl 3-methyl imidazolium tetrafluoroborate, [C4mim]BF4, is one of 

the most popular imidazolium-based ILs and its aqueous solution shows UCST-type 

phase separation. The critical point is shown at 𝑥IL= 0.07 and at 277 K, where 𝑥IL is the 

mole fraction of [C4mim]BF4.[33] The fluctuations of aqueous solution of [C4mim]BF4 

at 298 and 284 K (and only one point at 278 K) were determined by SAXS method. As 

discussed in 2. 2., fluctuations were obtained by combination of the zero-angle scattering 

intensity, 𝐼(0), partial molar volumes, 𝑣i, and isothermal compressibility, 𝜅𝑇. However, 

𝜅𝑇 of water was used for calculation of the fluctuation of the mixtures. Because it was 

difficult to control the temperature of high-pressure density meter DMA HP at low 

temperature. For this system, the contribution of 𝜅𝑇  on the fluctuations is small as 

discussed in 3. 3. 3. Other parameters were obtained in same technique as for the aqueous 

solution of [P4,4,4,4]CF3COO. 

Figure N-1 shows the density fluctuation, 〈(∆𝑁)2〉 𝑁̅⁄ , and the concentration 

fluctuation, 𝑁̅〈(∆𝑥)2〉 , for the aqueous solution. The system becomes fluctuating 

approaching to the critical point. 〈(∆𝑁)2〉 𝑁̅⁄  shows a large value. The size difference 

between [C4mim]BF4 and water has a large contribution probably. Almásy et al. 

determined the concentration fluctuation of the aqueous solution by SANS method[54] 

as shown in Appendix O.  

 

 

Figure N-1    Mole fraction dependence of (a)density fluctuation, 〈(∆𝑁)2〉 𝑁̅⁄ , and 

(b)cncentration fluctuation, 𝑁̅〈(∆𝑥)2〉, for the aqueous solution of [C4mim]BF4 at 298, 

284 and 278 K. 
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Using Kirkwood-Buff parameters, the individual density fluctuations of [C4mim]BF4, 

〈(∆𝑁IL)2〉 𝑁IL
̅̅ ̅̅⁄ , and water, 〈(∆𝑁W)2〉 𝑁W

̅̅ ̅̅⁄ , and their cross term, 〈∆𝑁IL∆𝑁W〉 𝑁IL
̅̅ ̅̅⁄ , were 

also obtained as shown in figure N-2. The individual density fluctuations of [C4mim]BF4 

shows slightly larger value than that of water. Furthermore, the cross term showed 

negative value near the critical point. It indicate that each [C4mim]BF4 and water show 

aggregations of each. However, the accuracy of these value is poor especially around the 

critical point. Because the critical temperature is too low to keep the system stable. 

 

 

 

Figure N-2    Individual density fluctuations for (a)[C4mim]BF4, 〈(∆𝑁IL)2〉 𝑁IL
̅̅ ̅̅⁄ , 

(b)water, 〈(∆𝑁W)2〉 𝑁W
̅̅ ̅̅⁄ , and (c)their coross term, 〈∆𝑁IL∆𝑁W〉 𝑁IL

̅̅ ̅̅⁄ , in the aqueous 

solution of [C4mim]BF4 at 298, 284 and 278 K. 
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Figure N-3 shows the excess molar volume, 𝑉m
E, and the partial molar volumes for 

[C4mim]BF4,𝑣IL. [C4mim]BF4 is a liquid at room temperature and the actual excess molar 

volume can be measured. 𝑉m
E shows positive value almost entirely including the critical 

point excluding in the dilute region around at 𝑥IL = 0.010 where 𝑉m
E  is negative. 

However, the deep analysis of the dilute region is done yet. On the other hand, the poor 

accuracy of 𝑉m
E  at higher concentration region may be the effect of the high 

hygroscopicity of IL. 

By differentiation with respect to 𝑥IL  using a flexible ruler, 𝑣IL  and 𝑣W  are 

obtained. Figure N-4 shows the concentration dependence of 𝑣IL at 298 K. There is a 

large size difference between them as for [P4,4,4,4]CF3COO and water. However, 𝑣IL 

decreases and 𝑣W (about 18 cm3 mol-1 in pure water) increases with 𝑥IL increasing. 

There is repulsive force between [C4mim]BF4 and water. 

 

 

Figure N-3    Mole fraction dependence of the excess molar volume, 𝑉m
E, at 298 K. 
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Figure N-4    The partial molar volumes of [C4mim]BF4, 𝑣IL, at 298 K (a)for entire 

concentration region and (b)for dilute concentration region including the critical 

concentration, 𝑥IL= 0.07. 

 

 

These results indicate the aqueous solutions of [P4,4,4,4]CF3COO with the LCST-type 

phase separation and [C4mim]BF4 with the UCST-type phase separation show different 

mixing state completely.  
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O. Comparison of fluctuations of various aqueous solutions 

 

    Table O-1 shows values of the density and the concentration fluctuation for various 

aqueous solutions as a function of mole fraction of solute, 𝑥 ; 1-butyl-3-

methylimidazolium tetrafluoroborate ([C4mim]BF4) [54], acetonitrile [81] and ethanol 

[138]. Aqueous solutions of [C4mim]BF4 and acetonitrile shows UCST-type phase 

separation. To compare those with the aqueous solution of [P4,4,4,4]CF3COO, the relative 

temperature, 𝑇r, and mole fraction, 𝑥r, is defined as, 

𝑇r =
|𝑇 − 𝑇c|

𝑇c
, (O1) 

𝑥r =
|𝑥|

𝑥c
, (O2) 

where subscripts c indicate the value at critical point. At the critical point, 𝑇r is equal to 

0 and 𝑥r to 1. 

 

Table O-1 

𝑥 𝑥r 𝑁̅〈(∆𝑥)2〉 
〈(∆𝑁)2〉

𝑁̅
  𝑥 𝑥r 𝑁̅〈(∆𝑥)2〉 

〈(∆𝑁)2〉

𝑁̅
 

[C4mim]BF4  (UCST 𝑇c= 277 K, 𝑥c= 0.075) [54] 

𝑇r= 0.076       

0.01 0.13 0.017   0.06 0.80 1.029  

0.02 0.27 0.048   0.07 0.93 1.249  

0.03 0.40 0.167   0.08 1.07 1.436  

0.04 0.53 0.428   0.10 1.33 1.314  

0.05 0.67 0.761   0.12 1.60 1.061  

     0.16 2.13 0.624  

         

Acetonitrile  (UCST 𝑇c= 272 K, 𝑥c= 0.38) [81] 

𝑇r= 0.0036  𝑇r= 0.025 

0.20 0.53 5.0 9.0  0.20 0.53 3.4 6.2 

0.30 0.79 22.1 33.4  0.30 0.79 12.6 19.1 

0.35 0.92 49.0 66.4  0.35 0.92 18.6 25.3 

0.38 1.00 65.9 83.4  0.38 1.00 20.5 26.0 

0.40 1.05 46.8 57.0  0.40 1.05 18.8 23.0 

0.45 1.18 39.1 39.1  0.45 1.18 16.2 17.8 

0.50 1.32 17.0 17.0  0.50 1.32 10.3 10.3 
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𝑇r= 0.095      

0.20 0.53 1.70 3.34  0.38 1.00 6.17 8.08 

0.30 0.79 4.82 7.52  0.40 1.05 6.17 7.77 

0.35 0.92 6.17 8.63  0.45 1.18 5.86 6.67 

     0.50 1.32 4.40 4.55 

         

Ethanol  (water miscible at 293 K) [138] 

0.05  0.036 0.17  0.32  0.76 1.40 

0.09  0.089 0.30  0.40  0.96 1.45 

0.15  0.17 0.48  0.50  0.88 1.11 

0.18  0.28 0.71  0.72  0.42 0.39 

0.24  0.47 1.05  1.00  0.00 0.049 

         

[P4,4,4,4]CF3COO  (LCST 𝑇c= 302 K, 𝑥c= 0.025) 

𝑇r= 0.0044  𝑇r= 0.014 

0.016 0.64 0.47 97.1  0.012 0.48 0.04 10.19 

0.02 0.80 1.92 357.91  0.016 0.64 0.32 65.74 

0.023 0.92 3.45 593.11  0.02 0.80 0.79 145.79 

0.024 0.96 3.6 603.23  0.023 0.92 1.04 178.23 

0.026 1.04 5.8 924.6  0.024 0.96 1.24 206.31 

0.027 1.08 7.38 1148.02  0.026 1.04 1.37 217.6 

0.029 1.16 6.11 905.29  0.027 1.08 1.48 228.82 

0.031 1.24 6.89 972.75  0.029 1.16 1.52 224.15 

0.038 1.52 6.06 730.8  0.031 1.24 1.6 224.98 

0.046 1.84 3.88 395.91  0.038 1.52 1.38 166.44 

0.056 2.24 1.43 120.75  0.046 1.84 0.83 85.04 

     0.056 2.24 0.15 12.78 

         

𝑇r= 0.031      

0.016 0.64 0.09 19.37  0.028 1.12 0.81 121.15 

0.02 0.80 0.28 51.72  0.031 1.24 0.48 67.66 

0.023 0.92 0.4 68.11  0.038 1.52 0.48 57.52 

0.025 1.00 0.84 136.59  0.045 1.80 0.5 51.83 

     0.056 2.24 0.08 6.44 
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P. NMR method 

 

    NMR (Nuclear Magnetic Resonance) method is one of the powerful tool to analysis 

the chemical structure at atomic level. To determine the sites of water molecules on 

[P4,4,4,4]CF3COO, concentration and temperature dependence of 1H chemical shift was 

obtained. The measurement were performed using JNM-ECA500 spectrometer (JEOL). 

The sample aqueous solutions were contained in the inner NMR tube and deuterated 

chloroform, CDCl3, with tetramethylsilane, TMS, was filled in the outer tube. TMS was 

used as internal reference. Figure O-1 shows the 1H spectrum at 𝑥IL= 0.025 and at 298 

K. Water showed a much stronger signal because the mole fraction 𝑥IL too small. 

 

 

Figure O-1    1H NMR spectrum of aqueous solution of [P4,4,4,4]CF3COO at 𝑥IL= 0.025 

and at 298 K; (a)H of water and (b)(c)(d)H on butyl chains of [P4,4,4,4]
+. The inset focuses 

on the spectra of the cation. 

 

Focusing on the chemical shift of (a) and (d), the change of chemical shifts at 𝑥IL= 

0.025 and 0.070 from 294 to 305 K. H atom on the terminal of the butyl chains may be 

sensitive to surroundings. Figure O-2 shows the temperature dependence of those 

chemical shifts of 1H on water and on terminal of butyl chains. Both of them became 

smaller with temperature increasing monotonically. For various protons and carbons 13C, 

the change of chemical shifts with temperature were measured. The changes of them were 

too small to discuss. Also concentration dependence of chemical shifts of them showed 

linear behavior. We were not able to know which site on [P4,4,4,4]CF3COO had strong 

interaction with water molecule when [P4,4,4,4]CF3COO showed aggregation near the 
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critical point. Probably, the critical point are shown at very small mole fraction because 

of the large size difference between [P4,4,4,4]CF3COO and water. 

However, at 𝑥IL=0.025, the chemical shift of (d) deviated from the linear change at 

303 K beyond the critical point. The signal of water split into two at the same temperature. 

This result indicates there are two type water molecules in different surroundings after 

phase separation, in water-rich phase and in [P4,4,4,4]CF3COO-rich phase. 

 

     

Figure O-2    Temperature dependence of chemical shifts of 1H (a)on water and (d)on 

terminal of butyl chains for the aqueous solution of [P4,4,4,4]CF3COO. The filled markers 

are the results at 𝑥IL= 0.025 and the opened markers are at 𝑥IL= 0.070. The dashed lines 

for the results 𝑥IL= 0.025 indicate the phase separation temperature, namely the critical 

temperature 302 K. For the mixture at 𝑥IL= 0.070, the phase separation temperature is 

higher than measured temperature region.  
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