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Abstract

Quantum Landau formula gives overall features in core-level photoemission spectroscopy, including

plasmon satellite. The final purpose of our theoretical approach is to find out the electron density and

geometry of substances through the behaviors of emitted photoelectrons from the solid, that can be

observed in the nano structure on the quantum physics. We calculate here the plasmon loss spectrum

with this formula and discuss the effect of the elastic scatterings. Li is a light element with elastic

scattering effect and this effect is considered to be weak in the Li metal. We calculate the azimuthal scan

of the 1st plasmon loss peak in an Al metal. This formula takes into account elastic scattering effect, so

it enable us to calculate the azimuthal scan. We focus on the depth dependence of the azimuthal scan of

the plasmon loss peak.
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Chapter 1

General Introduction

Quantum Landau formula gives overall features in core-level photoemission spectroscopy, including

plasmon satellite. Here we present the quantum Landau formula and show the calculation results of Al

2s photoemission and Li 1s photoemission. The final purpose of our theoretical approach is to find out

the electron density and geometry of substances through the behaviors of emitted photoelectrons from

the solid, that can be observed in the nano structure on the quantum physics.

In the end of the 19th century, Photoelectron spectroscopy (PES) was a modern experimental method

based on the Photoelectric Effect [1]. Hertz detected the phenomenon of photoemission in 1887 [2]. In

1905, Einstein found the reason why the kinetic energy of the ejected photoelectron doesn’t depend on

the intensity of the incident light, but it depends only on their wavelength [3]. He succeeded illustrating

what is the Photoelectric Effect by using his new idea about light, the quantum nature of light. The

Einstein Photoelectric law Emax
kin = ℏω−ϕ gives the energy relationship between a photon and an emitted

photoelectron. The energy of the impacting atom, ℏω, with the work function ϕ of the target, which is

the minimum quantity of energy which is required to remove an electron to infinity from the surface of a

given solid, and the kinetic energy, Emax
kin . Kai Siegbahn developed the method of Electron Spectroscopy

for Chemical Analysis (ESCA) , X-ray photoelectron spectroscopy (XPS) [4]. X-ray photoelectron spec-

troscopy (XPS) is a widely utilized method for searching characters of the surface and bulk properties of

various kinds of materials. We study plasmon features in XPS; typical core-level X-ray photoemission

spectra in metals have plasmon satellite peaks with a main noticeable peak. Lars Hedin studied com-

plex electric systems and contributed to make good progress in many ingenious spectroscopic theoretical

equations, by linking theory with experiment [5, 6, 7, 8, 9, 10]. Takashi Fujikawa expanded his stud-
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4 Chap. 1 General Introduction

ies for electron spectroscopy and X-ray spectroscopy, which was related to electron-photon interaction

[11, 10, 12, 13, 14].

Now we focus on how the quantum Landau formula was constructed. Plasmon is the collective

oscillation of electrons that have profound relation to the optical potential. Optical potential is described

as green function and screened Coulomb potential [5] which is described by bare Coulomb potential

and the dielectric function. We have described the phenomena of a high number of electrons including

plasmon by the screened Coulomb potential with the term of the dielectric function.

1.1 Dielectric Function and Plasmon

1.1.1 Dielectric function

In general dielectric function is defined as that for response of the materials to the external electric

field [15]. In the classical physics, this function gives us D = ϵE (ϵ for the response of solids and E is

the external electric field) [16]. The dielectric function describes how the substance behaves when it is

in the external electric field and it leads us the fundamental understandings of materials.

The dielectric function can be derived from the experimental data of the reflection of light. This

function depends on the frequency of light, so it is written as ϵ(ω). The dielectric function is defined

as the square of the complex refraction index;
√
ϵ(ω) ≡ n(ω) + iK(ω), where the real part n(ω) is the

refractive index and the imaginary part K(ω) is the extinction coefficient [16]. The reflectivity coefficient

r(ω) (complex value) described by n(ω) and K(ω). Expressing it in the polar form of complex number,

its square of the absolute value |r(ω)|2 is regarded as the reflectance R(ω) as the phase of the reflected

wave θ(ω). We can experimentally observe the value of reflectance R from the light reflection. These

relations enable us to give the value of the dielectric function by measuring the reflectance R and phase

θ(ω). The value of the phase of reflected waves θ(ω) is hardly obtainable in the experiments, but it is

possible to obtain it by using Kramers-Kronig relation with the value of the experimentally measured

reflectance R, in the case of linear response of solid [16]. It means that the solid gives an output which

is a linear combination of input; for the dielectric function, the electric flax density D can be written as a

linear term of the external electric field. Figure (1.1) shows the Aluminum reflectance, and Figure (1.2)

shows the dielectric function derived from the reflectance [18].
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Figure 1.1: Reflectance of metallic aluminum at room temperature [18]. Reprinted with permission.

Figure 1.2: The phase θ(ω) of the reflectivity of metallic aluminum at room temperature as calculated
from the reflectance values of Figure 1.1 via Kramers-Kronig analysis [18]. Reprinted with permission.
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Another method for acquiring the dielectric function in experiment is Electron Energy Loss Spec-

troscopy (abbreviated as ”EELS”). EELS measures the energy losses ∆E of injected electrons which

transmit a thin film of the solid or reflect at the boundary of the solid [23]. The experimental result for

EELS is described with the imaginary part of inverse of the dielectric function Im(−1/ϵ(ω)), that is the

loss function. Kramers-Kronig relation, gives its real part Re(1/ϵ(ω)). Then we get a dielectric function

from EELS experiment. Mkhoyan et al. showed the analysis of dielectric function of Si [29], see Figure

(1.4) and Figure (1.5).

1.1.2 Plasmon

Plasmon is a quantized plasma oscillation, a collective motion of electrons in a plasma [24]. Plasma

oscillation is a compressional wave of electronic charges, in which the electron density has a periodic

pattern as a longitudinal wave. There are two patterns for an oscillation of electrons; the longitudinal

oscillation which produces the fluctuation of electric density, and the transverse oscillation which doesn’t

change the electric density in a free electron gas. A large number of electrons in a solid behaves collec-

tively. Plasmon behaves differently from an electron in an atom. Plasmon can be excited as a response

for external electric field and it can be described by the dielectric function as we have mentioned.

In general, there are two types of plasmon loss, and both of them have their eigen-frequency which

can be determined by the dielectric function. Bulk plasmon is the oscillation of the electric density

around the slab with the electric density n [23]. In the case of bulk plasmon, electrons oscillate in the

same direction as the plasmon wave propagation. In other words, the electric field with the longitudinal

oscillation is parallel to the plasmon wave vector q. In this case, the magnetic field H by the convection

current from oscillating electrons and that by displacement current from plasmon wave compensate each

other, therefore rotH = 0, there is no magnetic field in the solid [23]. With Maxwell equation, we can

illustrate the condition for the eigen-frequency as ϵ(ω) = 0. This eigen-frequency ω is given as complex

value because the value of the dielectric function is complex. The imaginary part of ω pictures of the

damping of plasmon wave. The value of eigen-frequency ω is determined by the dielectric function.

We take the relaxation time as the time that the plasmon waves vanish by gradual damping. When the

plasmon becomes stable, its relaxation time should be treated as infinite. The eigen-frequency in this

condition becomes the bulk plasma frequency ω = ωp which depends on the electric density n.

When the energy of the external electric field is above ℏωp, bulk plasmon is excited. Surface plasmon
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is a collective excitation which occurs at the boundary between two different materials [23]. Longitudinal

waves of the surface charge density run along the surface as a polarization wave. The displaced charges

produce an electric field with components parallel and components perpendicular to the boundary. In

contrast to the case of balk plasmon, the magnetic field has components Hx or Hy in the plane surface.

This field configuration propagates with the phase velocity ω/kx. The eigen-frequency ω of these waves

is connected with by a dispersion relation deduced from Maxwell equation. For the semi-infinite jellium

model (free electron gas model), we can get the eigen-frequency ω =
ωp√
1 + ϵ0

≡ ωs from the dispersion

relation (See [23]). If we took ωs as 1 (vacuum in a.u. unit), it becomes ωs =
ωp√

2
.

The electric function depends on not only frequency ω but also wave vector q. We obtain the di-

electric function ϵ(ω, q = 0) at q = 0 and that is the dielectric function derived from the experimental

reflectance of the light and the dielectric function of the free electron gas. Lindhard gave the formula

of the dielectric function ϵ(ω, q) of Fremi gas with the wave vector q dependence in the first time. The

external perturbation in this free electron gas model leads to the interband transition. In this model we

can describe the response to the external field as the momentum transfer ℏq with the interband transition.

Using Lindhard dielectric function at the relaxation time τ = ∞, we can obtain the eigen-frequency ω(q)

by the condition for the longitudinal oscillation rotH = 0 at q << qF (qF is fermi wave number). That is

called the theoretical dispersion relation of bulk plasmon.

The dielectric function is a response function and it has a frequency as a variable, corresponding to

the energy loss which changes according to the external electric field. We describe the dielectric function

ϵ(ω, q) when it response to the electron which lost energy ℏω and momentum ℏq.
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1.2 Plasmon Features in Experiment

The characteristic of plasmon loss correlate the polarizability of the material, which relate to the

dielectric function [23]. We observe a solid through plasmon in two ways; in one way we inject the light

(the electromagnetic wave) into the solid, and in the other way we inject electrons into the solid.

1.2.1 Light Absorption

In the first way, the reflection of the light occurs as the phenomenon connecting deeply with the

plasmon, and the bulk plasmon (the longitudinal oscillation) is produced by the gradient of electron

density which is originated in the interaction between the light and charges in surface. That is, the light

resonants and is absorbed in the collective electrons at the light frequency ω > ωp. This absorption is

rather weak, but distinctively observed in the thin metal film. Therefore, the dispersion relation for the

light absorption is obtained with the dispersion relation of the bulk plasmon in free electron gas which

we mentioned and the resonance condition ω > ωp. We show the transmittance of Ag films of different

thickness, and we can see the resonances for volume plasmon frequencies.

Figure 1.3: The transmittance of Ag films of different thickness for p polarized light [25]. The angle of
incidence is 75◦. There is resonances for volume plasmon frequencies at the wave vectors q = nπ

D with
n = 3 and 5. Reprinted with permission.
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1.2.2 Electron Energy Loss Spectroscopy

In the second way, we study the interaction between the electron current and plasmon, for example

EELS and XPS. The electron injected into the solid and inelastically scattered in the solid, and the X-ray

photoemission spectroscopy (XPS) detect photoelectron with the photoexcitation by injected X-ray. Both

of them are affected by the inelastic scattering between electron and plasmon, and they depend on the

loss function, contacted deeply connected to the dielectric function. The excitation of plasmon is firstly

observed in EELS spectra, in which the probe electrons suffered energy loss and scattered inelastically

during the transmission of thin film [26, 27]. The position, half-width and the intensity of energy loss

peak (containing plasmon loss) observed by EELS correlate with the polarizability which is written by

dielectric function ϵ(ω, q) (the polarized electric field is created repulsively against electrons’ propaga-

tion). So, Energy loss intensity of EELS is described in the form of the loss function, the imaginary part

of the inverse of the dielectric function. In EELS, we measure how much electron energy is lost (∆E)

and what angle of the injected electron from the initial direction is diverged (θ⃗). The momentum transfer

ℏq by the inelastic scattering have calculated using the value ∆E and θ⃗ so we can obtain the value of

momentum q from the experimental result.

The EELS have two methods; the reflection method and the transmission method. The former is

the method to observe the reflected electrons so it is sensitive to the surface and we can observe strong

peaks of surface plasmon. Observed multi-plasmon loss structure represents that reflected electrons

suffer multi-inelastic-collision or multi-energy-loss in once collision. The later is the method to observe

transmitted electrons through a thin film. Its intensity depends on the film thickness which should be

thinner than the mean free path of the injected electron (the mean free path is the average distance,

how long electrons can run in a solid interval of inelastic scatterings). Figure (1.5) shows the spectra

with the transmission method in Si film. We can see that it depends on the thickness of the film, and

the multi-plasmon loss peaks become larger as the film becomes thick. The weak 1st surface plasmon

peak is observed in Figure (1.5), which is much smaller than that in Figure (1.4). The surface plasmon

peaks are higher as usual in the reflection EELS according to the surface sensitivity, whereas the bulk

plasmon peaks are too high to compare with the surface plasmon peak in transmission EELS because

probe electrons pass through the solid in long distance.
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Figure 1.4: The refection EELS in Al thin film with injected electron energy 760 eV, 1000 eV, 1520
eV, 2020 eV by C. J. Powell and J. B. Swan [28]. It has bulk plasmon peak at 15.3 eV and the surface
plasmon 10.3 eV in 1st loss peak. Multiple loss peaks are observed. Reprinted with permission.
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Figure 1.5: The real and imaginary parts of the dielectric function of Si deduced from single bulk plasmon
peak [29]. The curves labelled ’corrected’ correspond to results when surface-losses were removed. The
specimen thickness is 420 Å. Reprinted with permission.

Figure 1.6: The real and imaginary parts of the dielectric function of Si deduced from single bulk plasmon
peak [29]. The curves labelled ’corrected’ correspond to results when surface-losses were removed. The
specimen thickness is 420 Å. Reprinted with permission.
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1.2.3 X-ray Photoelectron Spectroscopy (XPS)

XPS is a method of experiment to detect photoelectrons, and it is a powerful method to know the

microscopic information of material. In XPS, we excite the state of solid by injected X-ray and detect

the photoelectron emitted by photoexcitation of solid. Since Koopmans found that the ionization energy

of the solid corresponds to the orbital energy which shows how strongly the core electron bounded,

Siegbehn developed the XPS method in order to figure out the core orbital state. In XPS, we obtain the

peak at the point of the binding energy correspond to the core orbital energy. The value of binding energy

Eb is Eb = hv − Ek − ϕ (hv is the photon energy of injected X-ray, ϵk is the kinetic energy of detected

photoelectron and ϕ is the work function). When we compare the position of a material and that of single

substance in the same core-level, we obtain the chemical bonding state from the chemical shift.

Because XPS is a surface sensitive method, whose sensitivity depends on how short the photoelec-

tron’s mean free path. To utilize the sensitivity to the surface, we can operate the depth composition

analysis by changing the angles of detection. The refraction method in EELS also has sensitivity. Both

of them use electrons as a probe, which use different phenomena; XPS, the photoelectric effect, and

EELS, the inelastic scattering. They have the similar shapes of the spectra in metals and semiconductors.

XPS gives unique spectra affected by the inelastic scatterings in metals and in semiconductors. They

shows zeroloss peak (Doniach-Sunjic or Mahan lineshape), bulk plasmon peaks, surface plasmon peaks,

and background [30]. Especially, the asymmetry shape of zero loss peak and the plasmon satellite (bulk

plasmon peaks and surface plasmon peaks) are unique in metals and semiconductors (nearly free electron

systems). The reason for the zero loss peak / asymmetry is that the electron-hole pair excitation affects

to only one side of the peak, in the condition that it occurs when there are electrons in conduction band

in the solid with core-hole potential by photoexcitation [30]. The plasmon loss satellite occurs because

photoelectron loses their energy by the shake-up effect with core-hole potential (intrinsic plasmon) and

by inelastic scattering from electrons (extrinsic plasmon). Because this inelastic scattering makes the

solid electrons oscillate collectively (that phenomenon is plasmon), the photoelectrons lose the energy

with the eigen-frequency of plasma. As it gives discrete (quantized) energy loss, a satellite structure

appears in XPS. On the other hand, the electrons also suffer continuous (unquantized) energy loss by

electron-electron and electron-ion collision and this effect makes featureless and smooth background in

XPS spectra [30]. When we analyze XPS, we detect XPS background from XPS spectrum and we make
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the experimental peaks fit with no loss peak and plasmon loss peaks. Figure (1.6) shows the wide range

of Al 2s core-level XPS spectrum in Al single crystal, and zero loss peak and plasmon loss peaks are

given by peak fitting [31]. Both of the no loss peak and plasmon peaks have asymmetry shapes, with

longer tail in the high binding energy side (high loss energy side). The surface plasmon loss peaks appear

at the side of the large bulk plasmon peaks. Plasmon loss structure in XPS has multi-plasmon loss peaks,

as well as that of the reflection EELS. The former has asymmetric form of plasmon loss peaks, but the

latter has symmetric form of those.

Figure 1.7: Wide range Al 2s core-level spectrum recorded at θ = 45◦ (experiment: open circles; fit:
solid line through experimental data) showing multiple (n=1-6) bulk plasmon excitations (nωp) [31].
Vertical arrows indicate the energy positions of the multiple bulk and surface plasmon excitations related
to Al 2s. The deconvoluted n = p line shapes (solid lines) are shown at the bottom. Reprinted with
permission.
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1.2.4 X-ray Photoelectron Diffraction (XPD)

X-ray Photoelectron Diffraction (XPD) is the method of measuring XPS whose purpose is to find

out the scattering features of electron intensity of the final-state [32]. XPD is a established technique that

can research surface structure [33]. XPS is the experiment to measure the photoelectron current in the

condition that specimen is fixed as a function of the photon energy, or as a function the binding energy,

and X-ray Photoelectron Diffraction (XPD) is the experiment to measure the photoelectron current in

the different polar and azimuthal angles [34]. The photoexcited electron is scattered and it pass through

the crystal on its way to the surface, by the crystal potential [30]. A number of photoelectron waves

occur in the elastic scattering of the primary photoelectron beam from the other ions in the crystal. The

interference between elastically scattered waves can make its interference patterns. The interference

pattern is to be measured by varying the azimuthal or polar detection angle of the photoelectrons.

XPS and XPD involve a process that can be linked to a LEED process, and the final state wave

function of XPS and XPD correspond to the LEED-type wave function. Multiple scattering, scattering

effect that a photoelectron experience several scattering events, should be taken into account when we

model all elastic scattering effects [32].

Analysing XPD patterns of plasmon-loss peaks accompanying core lines enable us to distinguish

from how much depth below the surface the emitters contributing to the total intensity come [34]. Ex-

perimental photoemission intensity is observed by the sum over lattice sites of photoelectrons. Each

electron-atom scattering events with the diffraction patterns observed in the experiment have sharp peaks

into the forward direction at energies higher than around 200 eV. XPD experiments are performed by

scanning the azimuthal and polar angles under which the electrons are detected, but cannot be performed

by scanning the depth of photoelectrons. Therefore, a depth profile of photoemission intensity is obtained

from a calculation based on scattering theory. It has been suggested on the basis of multiple scattering

calculations [35, 36] that if more than one scattering atom is placed along the emission direction, these

forward-scattering effects are noticeably reduced according to a dephasing of the electron wave after the

photoelectron passed the atoms nearest to the emitter. There would be more chances that photoelec-

trons pass through atoms if it is emitted from the deeper layer. The defocusing effect depends on the

depth of photoelectron emission. Defocusing length is estimated from the experimental XPD patterns of

plasmon-loss peaks accompanying core lines. Figure (1.8) shows azimuthal scan at θ = 45◦ for the Al
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2s core line, the first, the second, and the third plasmon-loss peak accompanying this line from Al(001)

single crystal.

Figure 1.8: Azimuthal XPD curves from a (001) single crystal of Al, measured with Mg Ka radiation,
for the 2s core level (EB =118 eV) and the first three (n=1,2, and 3) associated plasmon-loss peaks (ℏωp

=15 eV) [34]. The polar angle was θ = 45◦. The scans in the azimuthal direction covered a range of
120◦, including two (011) directions (main maxima for the no-loss line). Reprinted with permission.
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1.3 3 Theoretical Studies of Plasmon Structure in XPS

1.3.1 Discussion of Plasmon loss Studies

Photoemission can be thought of as a three-step process consisting of [37];

(1). photoexcitation of the photoelectrons,

(2). the travel of the photoelectrons through the crystal,

(3). the escape of the electrons over the surface barrier (electron affinity) into the vacuum.

The energy loss for a photoelectron by plasmon excitations (we call this phenomena ”plasmon loss”)

occurs in the case (1) and (2). In the case (1), the sudden potential change caused by the formation of

a core hole attracts the conduction electrons to screen the core-hole and leads to the intrinsic plasmon

excitation. In the case (2), the extrinsic plasmon is excited by the Coulomb interaction of the conduction

electrons with the photoelectron passing through the solid from the photoemission site to the surface.

There are two approaches for treating plasmon peak intensities in photoemission;

a. three step model (Berglund-Spicer (BS) model in ref [9]) In three step model, that intensity is given

by a convolution of the spectral function corresponding to intrinsic plasmon excitation process with

a loss function corresponding to entrinsic plasmon excitation process,

b. one step model (the quantum-mechanical (QM) model in ref [9]) In one step model, that intensity

is given by the square of the total amplitude, which is the sum of intrinsic and extrinsic plasmon

amplitudes.

Berglund and Spicer (1964) presented three step model, and discussed the extrinsic plasmon losses [37].

The three step model is expressed by a convolution of the spectral function A(ω) with a loss function [9].

This model is useful for practical purposes [38, 39, 40, 41].

On the other hand, Inglesfield (1981) demonstrated the calculation of single plasmon peak in one

step model, in which the process of photoemission is studied in the Golden rule formulation using per-

turbation theory [52, 42]. One step model includes quantum-mechanical interference between intrinsic

plasmon loss and extrinsic plasmon loss [42, 7, 9]. Inglesfield (1983) found that interference between

intrinsic and extrinsic excitation reduces the long-wavelength surface and bulk plasmon excitation [42],
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and the plasmon peaks disappear in low photoelectron kinetic energy, this phenomenon was observed in

experiment [43, 44, 42]. Uwatoko et al. (2001) showed that the one step calculation explains well the

experimental features [45].

Hedin et al. (1998) showed the process of the transition from one step model to three step model,

and he discussed about three models [9]:

• Quantum Mechanical (QM) model derived from one step model

• Semi Classical (SC) model, where the photoelectron is put on a trajectory and not allowed to recoil,

• Berglund and Spicer (BS) model derived from three step model.

The interference in QM model caused a strong suppression of the satellite structures as compared to that

in the BS model at low kinetic energy [9]. The SC approach agrees with the quantum mechanical one at

high energies [46]. Shinotsuka et al. (2008) performed QM calculation put forward by Hedin taking the

interference effect into account [47]. Interference plays a destructive role especially at the low energy

(ℏω = 125 eV), whereas extrinsic contribution is dominant at the high energy (ℏω = 1486.6 eV).

1.3.2 Many Body Theory for plasmon loss

Methods to calculate the plasmon loss peaks in photoemission spectra including both elastic and

inelastic scattering have been studied. Fujikawa and Hedin (1989) studied the scattering theory which is

valid for elastic and inelastic scattering [10]. Their results are written in terms of one-electron expressions

involving damped one-electron functions and optical potentials. Fujikawa developed the method of this

scattering theory for deep core excitation EELS [48], EELS [12], XPD [47], and XPS with plasmon loss

peaks [14].

We have studied theoretical approach on plasmon loss peaks in XPS based on quantum mechanics,

using multiple scattering theory. In XPS, the injected X-ray makes a core electron in the bound state

excite, and the core electron becomes a photoelectron in the continuum state. The multiple scattering

theory is available for the calculation for the amplitude of XPS. The amplitude of XPS in multiple

scattering theory describes every states, from the initial state to the final state including scatterings in

their interval. T matrix describes that amplitude and phase of the photoelectron change according to the

scattering of electron by an atom, and the green function describes the propagation of electron. One
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product of green function and t matrix corresponds to one scattering event. The calculation of the XPS

amplitude requires the initial state and the final state, evaluating how much amplitude and phase of the

photoelectron changed by the scattering in an atom, we can calculate the amplitude in XPS. Multiple

scattering theory doesn’t require that the initial state and the final state have same bases. Consequently,

multiple scattering theory is appropriate with the calculation for the amplitude of XPS that has different

the bases for the initial state (the bound state) from that for the final state (the continuum state).

XPS formula (1985) derived by Bardyszewki and Hedin which can explain how single plasmon peak

relates to the optical potential and the fluctuation potential [7]. The fluctuation potential represents a in-

duced potential by the displacement of the electric density. We can associate this potential with plasmon

because plasmon is the longitudinal wave, the density oscillation. The optical potential is complex and

non-local potential. The photoelecric effect observed in XPS makes a electron transit in the one state to in

an another, therefore it can be written by Fermi’s golden rule [6]. In this model, the operator of the elec-

tric magnetic field
∑

i

[− e
mc

pi ·A2(ri)] excites the core electron and makes it a photoelectron. That model

treats one electron formula, but we have to treat electrons which behave together in a solid. Goldberger

and Watson (1964), were taken the basement on their study on the many body model, and presented the

formula for photoelectron intensity with certain solid angle Ω and certain energy ϵ f [49]. This formula

based on Fermi’s golden rule, and takes the initial state as the ground state of the solid (the state before

the excitation) and the final state as the excited state of the solid which lost one electron. The final state

depends on the quasi-particles (for example photon, plasmon and etc.). Bardyszewki and Hedin (1985)

studied on plasmon excitation and constructed the theory which describe the plasmon loss peak in XPS

in metals [7]. They introduced the formula of Goldbarger and Watson to the photocurrent amplitude in

XPS to expand scattering theory. They expressed the final state with Lippman-Schwinger equation with

the green function. They describes the final state with the perturbation. They adapted the perturbation

term in Hamiltonian as the fluctuation potential which Inglesfield (1981, 1983) took into account when

he calculated extrinsic plasmon loss [52, 42]. The amplitude can be calculated independently in each two

parts; intrinsic part and extrinsic part with VG. He explained intrinsic term by the fluctuation potential

limited by core orbital. Langreth (1971) and Lundqvist (1969) calculated multi-plasmon loss satellite

in XPS only focusing on intrinsic term (ignoring extrinsic term) [50, 51]. As a result, Hedin succeeded

to find the dynamical structure factor S (ω) gives the intrinsic plasmon loss intensity. The dynamical

structure S (ω) depend on the dielecric function (this is related with EELS). In addition, the amplitude in



1.3 Theoretical Studies of Plasmon in XPS 19

XPS has the full green function with perturbation V , so we should expand it with the projection method

which divide the part of a certain excitation state from the other parts. This expansion allows us to put the

damping effect in the optical potential in the plain wave for the photoelectron, instead of non-damping

plain wave (that is common use of this equation). The damping of the plain wave can be regarded as the

decrease of the detectable photoelectrons affected by the optical potential. In this expansion, plasmon

loss spectrum in XPS is affected by the fluctuation potential, and the photoelectrons in XPS decreased

by the optical potential.

We have taken the calculation with the term of elastic scattering in XPS, following the Hedin’s

method. The excited optical potential determines the propagation G (the green function). Fujikawa and

Hedin (1989) succeeded to describe the optical potential in the excited state as that in the ground state

shifting its energy [11]. Fujikawa and Arai (2002) demonstrated, the formula for multiple plasmon loss in

the form of Keldysh [13]. Shinotsuka took into account the effect of elastic scattering at the 0th plasmon

loss XPS intensity (the 0 loss peak) and showed the depth distribution function [47].

Meanwhile, we have also explored the formula without the fluctuation potential. Hedin et al. (1998)

found the calculation formula counting multiple plasmon losses with the intrinsic and extrinsic plas-

mon without the elastic scattering effect [9]. He associated the fluctuation potential with the screened

Coulomb potential. Fujikawa (2008) carried on this idea and described the multiple plasmon loss with

the elastic scatterings using approximation which was made under the assumption that the momentum of

the photoelectron does not change in inelastic scattering [14]. In this exploration, we treat the fluctuation

potential as the screened Coulomb potential. The screened Coulomb potential depends on the dielectric

function. Kazama (2014) calculated the 1st plasmon loss with this formula [53].

We calculate here the plasmon loss spectrum with this formula and discuss the effect of the elastic

scatterings. Li is a light element with elastic scattering effect and this effect is considered to be weak in

the Li metal. We calculate the azimuthal scan of the 1st plasmon loss peak in an Al metal. This formula

takes into account elastic scattering effect, so it enable us to calculate the azimuthal scan. We focus on

the depth dependence of the azimuthal scan of the plasmon loss peak.





Chapter 2

Theory of Photoemission in Nearly Free

Electron Systems

Typical core-level X-ray photoemission spectra in nearly free electron systems (i.e. Metal and

Semiconductor) have plasmon loss bands in addition to a main sharp band. In this chapter we try to

present definitions and basic concepts of theory of photoemission. This chapter provides two calculation

formulas derived by Fujikawa; the quantum one-step formula based on many-body theory (section 2.1)

and the quantum Landau formula (section 2.2) [14].

To make the discussion more firm we start with some simple basic definitions and elementary deriva-

tions. For zero temperature the initial state is the ground state of the system, |Ψ0⟩. The final state has a

photoelectron ”k”, and the state of the remaining electrons is defined as ”m”. We need to know the final

state also when the photoelectron is inside the solid, and we use the notation |Ψ−nk⟩ for a wavefunction

where the photoelectron motion is correlated with that of the other electrons.

2.1 Many-body Scattering Theory

Many-body scattering theory is widely used for Electron Spectroscopy. To study XPS, it is neces-

sary to develop a reliable theory to correctly describe the inelastic scattering of the photoelectron. The

general theory of electron scattering from solids has been developed by Fujikawa and Hedin [10]. It de-

scribes important many-body effects and it enable us to derive useful expressions for inelastic scattering.

Here we apply this electron scattering theory to the core-level photoelectron spectroscopy; in particular

21
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we study the 0th plasmon loss peak (main peak) and the 1st loss peak features in detail.

2.1.1 Photoemission Theory

Independent Particle Approximation

Here, we show the photoemission formula in the independent particle approximation. The pho-

tocurrent per unit solid angle and unit energy is given by [6]

∂2J

∂Ω∂ϵ
∼ √ϵ f

occ∑
i

| ⟨ϕ f |∆ |ϕi⟩ |2δ(ϵ f − ϵi − ℏω). (2.1)

ℏω is the energy of the exciting photon and ∆ is the electron-phonon interaction. ϵi and ϵ f are the energies

of the electron in its initial and final states. The initial state wave function ϕi describes a bound electron

and the function ϕ f is the outgoing wave solution of the Schrödinger equation. It is the sum of a outgoing

plane wave and incoming spherical waves and is characterized by the asymptotic behavior

ϕ f (r) ∼ eik f ·r + f (k̂f)
e−ik f r

r
. (2.2)

This is not the wavefunction of the photoelectron. The asymptotic form of the photoelectron wave

function is

ϕ f (r) ∼
(
eik f r

r

)
⟨ϕ f |∆ |ϕi⟩ . (2.3)

The vector r is the vector from the region of excitation to the position of photoelectron. Equation (2.3)

can be applied when the region where ∆ϕi , 0 is sufficiently small compared to r. It follows that the

detector should be set on far from the emitter of photoelectron.

Many-Body Theory

When we go beyond the one-electron model, the photocurrent can be obtained from many-body

scattering theory [49],

∂2J

∂Ω∂ϵ
∼ Ik = 2π

∑
n

|T (n∗k, 0)|2δ(E0 + ω − E∗n − ϵk) (2.4)
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with the transition matrix

T (n∗k, 0) = ⟨Ψ−nk|∆ |Ψ0⟩ . (2.5)

ϵk is the energy of the photoelectron, k2/2. E0 and E0 is the grand state energy of the solid without core

hole and E∗n is the grand state energy of the solid with core hole. ω is the photon energy of the incident

X-ray. The total energy E is given by

E = E0 + ω = E∗n + ϵk. (2.6)

The T (n∗k, 0) is the scattering amplitude for the photocurrent. Ψ0 is the ground state with (N) electrons

and Ψ−nk is the final state with a photoelectron and (N-1) electrons in the target. k denotes one electron

states of the photoelectron and n stands for the excitation state of electrons in the target.

This study bases on blue electron theory. We distinguish the photoelectron from electrons in the

solid, therefore exchange effects between a photoelectron and the electrons in the solid are neglected.

We follow an approach developed by Fujikawa and Hedin [10, 48],

H = Hs + Te + Ves, (2.7)

with

Ves =
∑

i

1
|r − ri|

−
∑
α

Zα
|r − Rα|

. (2.8)

Te is the kinetic energy operator for the photoelectron. Hs is the many-body Hamiltonian for the solid.

Ves is the Coulomb potential between a photoelectron and electrons in the solid. r stands for the photo-

electron coordinate. The index i and α label the sites of the electron and those of the nuclear in the solid.

ri and rα denote the electron and nuclear coordinates in the solid.

Let us introduce some auxiliary expressions for the Hamiltonian in Equation (2.7) given by

H = Hs + hn∗ + Vn∗ (2.9)
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with

hn∗ = Te + ⟨n∗|Ves |n∗⟩

Vn∗ = Ves − ⟨n∗|Ves |n∗⟩
(2.10)

where |n∗⟩ correlated target wave function for electrons in the solid is the eigenstate state of Hs in Equa-

tion (2.9). Vn∗ is the interaction between the target with the state |n∗⟩ and the photoelectron.

We write the final state Ψ−nk in Equation (2.5),

|Ψ−nk⟩ = |n
∗⟩ |ϕ−k⟩ +

1
E − H − iη

Vn∗ |n∗⟩ |ϕ−k⟩ (2.11)

(η→ 0),

where η is a positive infinitesimal. Since we neglect the identity of a photoelectron with electrons in

the target (Blue Electron Theory), we can treat |Ψ−nk⟩ as the direct product of |ϕ−
k
⟩ the scattering state

of a photoelectron and |n∗⟩ the target state after the photoelectron has left. |ϕ−
k
⟩ satisfies outgoing-wave

boundary conditions

hn∗ |ϕ−k⟩ = ϵk |ϕ
−
k⟩ , (2.12)

where ϵk is the free-particle energy of the photoelectron ℏ2k2/2m. Note that the hamiltonian hn∗ is

Hermite so it gives real eigenvalue. We can then rewrite T (n∗k, 0) of Equation (2.5) as

T (n∗k, 0) = ⟨ϕ−k| ⟨n
∗| (1 + Vn∗G(E))∆ |Ψ0⟩ ,

G(E) =
1

E − H + iη
.

(2.13)

To expand the Green’s function G(E) in terms of diagonal operators of the Van Hove type [54], We

use projection-operator techniques [7] given by

P = |n∗⟩ ⟨n∗| ,

Q = 1 − P.
(2.14)
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These projection operators satisfy the relation

P + Q = 1

PQ = QP = 0

P2 = P,Q2 = Q.

(2.15)

They allows us to write

Vn∗ = (P + Q)Vn∗(P + Q)

= PVn∗P + PVn∗Q + QVn∗P + QVn∗Q

= QVn∗Q + QVn∗P + QVn∗Q

(2.16)

since PVn∗P is zero

PVn∗P = PVesP − P ⟨n∗|Ves |n∗⟩ P

= 0.
(2.17)

Using these projection operators, we obtain the another expression for the Hamiltonian of Equation (2.9)

H = hn∗ + Hs + Vn∗

= hn∗ + Hs + QVn∗Q + QVn∗P + QVn∗Q

= H̃ + Ṽ

(2.18)

with

H̃ = hn∗ + Hs + QVn∗Q

Ṽ = PVn∗Q + QVn∗P.
(2.19)
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In Equation (2.19) it trivially follows that

Vn∗ |n∗⟩ = (P + Q)Vn∗(P + Q) |n∗⟩

= QVn∗P |n∗⟩

= QVn∗P |n∗⟩ + PVn∗Q |n∗⟩

= Ṽ |n∗⟩ .

(2.20)

We define Green’s functions G̃ related to H̃,

G̃(E) =
1

E − H̃ + iη
. (2.21)

It satisfies the equations

QG̃P = PG̃Q = 0

PG̃P = PG0P
(2.22)

with

G0 =
1

E − hn∗ − Hs + iη
, (2.23)

since it satisfy the identities

G̃ = G0 +G0QVQG̃

= G0 + G̃QVQG0.

(2.24)

We rewrite ⟨n∗| (1 + Vn∗G) in Equation (2.13) as

⟨n∗| (1 + Vn∗G) = ⟨n∗| (P + Q)(1 + Vn∗G)

= ⟨n∗| P(1 + Vn∗G)

= ⟨n∗| P(1 + ṼG)

= ⟨n∗| P(1 + ṼG)P + ⟨n∗| P(1 + ṼG)Q,

(2.25)

since PVn∗ equals PṼ , PVn∗ = PṼ .
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We expand G of Equation (2.13) in powers of ṼG̃

G =
1

E − H̃ − Ṽ + iη

=
1

G̃−1 − Ṽ

=
G̃

1 − ṼG̃

= G̃(1 + ṼG̃ + ṼG̃ṼG̃ + ...).

(2.26)

This expression for G enable us to rewrite Equation (2.25) as the power series of ṼG̃. First, we rewrite

P(1 + ṼG)P in the first term as

P(1 + ṼG)P = P(1 + ṼG̃ + ṼG̃ṼG̃ + ...)P. (2.27)

Since the term P(ṼG̃)2m+1P, (m = 0, 1...) vanishes, we can write P(1 + ṼG)P as

P(1 + ṼG)P

= P{1 + (ṼG̃)2 + (ṼG̃)4 + ...}

= P
1

1 − (ṼG̃)2
P

= P
1

1 − ṼG̃ṼG̃
P

= P
1

(G̃−1 − ṼG̃Ṽ)G̃
P

= P
G̃−1

G̃−1 − ṼG̃Ṽ
P

= PG̃−1 1
E − H̃ + iη − ṼG̃Ṽ

P

= PG̃−1(P + Q)
1

E − H̃ − ṼG̃Ṽ + iη
P

= PG̃−1P
1

E − H̃ − ṼG̃Ṽ + iη
P + PG̃−1Q

1
E − H̃ − ṼG̃Ṽ + iη

P

= P(E − H̃ + iη)P
1

E − H̃ − ṼG̃Ṽ + iη
P

= P(E − H̃ + iη)PP
1

E − H̃ − ṼG̃Ṽ + iη
P,

(2.28)
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where the underlined terms vanish. We can write the term P(E − H̃ + iη)P as

P(E − H̃ + iη)P = |n∗⟩ ⟨n∗| (E − Hs − hn∗ − QVn∗Q + iη) |n∗⟩ ⟨n∗|

= |n∗⟩ ⟨n∗| (E − En∗ − hn∗ − QVn∗Q + iη) |n∗⟩ ⟨n∗| ,

= P(ϵk − hn∗ + iη)P.

(2.29)

where E = En∗ + ϵk. We can write the term P 1
E − H̃ − ṼG̃Ṽ + iη

P as

P
1

E − H̃ − ṼG̃Ṽ + iη
P = P

1
E − En∗ − hn∗ − QVn∗Q − ṼG̃Ṽ + iη

P

= P
1

ϵk − hn∗ − ṼG̃Ṽ − iη
P.

(2.30)

Second, we rewrite PṼG̃Q in the second term of Equation (2.25) as

PṼG̃Q = PṼ(G̃G̃ṼG̃ + ...)Q

= P(ṼG̃ + (ṼG̃)2 + (ṼG̃)3 + ...)Q.
(2.31)

Since the term P(ṼG̃)2mQ, (m = 1, 2, ...) vanishes, we can write PṼG̃Q as

PṼG̃Q = P(1 + (ṼG̃)2 + (ṼG̃)4 + ...)Q

= PṼG̃
1

1 − ṼG̃ṼG̃
Q

= P
1

1 − ṼG̃ṼG̃
ṼG̃Q

= P
G̃−1

G̃−1 − ṼG̃Ṽ
ṼG̃Q

= PG̃−1 1
G̃−1 − ṼG̃Ṽ

ṼG̃Q

= PG̃−1P
1

G̃−1 − ṼG̃Ṽ
ṼG̃Q + PG̃−1Q

1
G̃−1 − ṼG̃Ṽ

ṼG̃Q

= PG̃−1P
1

G̃−1 − ṼG̃Ṽ
PṼG̃Q + PG̃−1P

1
G̃−1 − ṼG̃Ṽ

QṼG̃Q

= P(ϵk − hn∗ + iη)
1

ϵk − hn∗ − ṼG̃Ṽ + iη
ṼG̃Q.

(2.32)



2.1 Many-body Scattering Theory 29

From Equation (2.30) and Equation (2.32), we have

⟨n∗| P(1 + ṼG) = ⟨N∗| {P(1 + ṼG)P + P(1 + ṼG)Q}

= ⟨n∗| (ϵk − hn∗ + iη)
1

ϵk − hn∗ − ṼG̃Ṽ + iη
(P + ṼG̃Q)

= ⟨n∗| (ϵk − hn∗ + iη)
1

ϵk − hn∗ − Σn∗(E) + iη
(P + ṼG̃Q)

= ⟨n∗| (ϵk − hn∗ + iη)
1

ϵk − hn∗ − Σn∗(E) + iη
(1 + ṼG̃(P + Q))

= ⟨n∗| (ϵk − hn∗ + iη)
1

ϵk − hn∗ − Σn∗(E) + iη
(1 + ṼG̃).

(2.33)

with

Σn∗(E) = ⟨n∗| ṼG̃(E)Ṽ |n∗⟩

= ⟨n∗| ṼQG̃(E)QṼ |n∗⟩

=
∑
m,n

∑
m′,n

⟨n∗| Ṽ |m∗⟩ ⟨m∗| G̃ |m′∗⟩ ⟨m′∗| Ṽ |n∗⟩

(2.34)

Σn∗(E) is the optical potential [10]. It operate on the photoelectron state |ϕk⟩, but don’t operate on the

solid state |n∗⟩.
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We thus obtain a expression for the transition matrix of Equation (2.13),

T (n∗k, 0) = ⟨ϕ−k| ⟨n
∗| (1 + Vn∗G)∆ |Ψ0⟩

= ⟨ϕ−k| ⟨n
∗| (1 + ṼG)∆ |Ψ0⟩

= ⟨ϕ−k| ⟨n
∗| (ϵk − hn∗ + iη)

1
ϵk − hn∗ − Σn∗(E) + iη

(1 + ṼG̃)∆ |Ψ0⟩

= ⟨ϕ−k| (ϵk − hn∗ + iη)
1

ϵk − hn∗ − Σn∗(E) + iη
⟨n∗| (1 + ṼG̃)∆ |Ψ0⟩

= iη ⟨ϕ−k|
1

ϵk − hn∗ − Σn∗(E) + iη
⟨n∗| (1 + ṼG̃)∆ |Ψ0⟩

= ⟨ϕ−k| (ϵk − hn∗ − Σn∗(E) + iη)
1

ϵk − hn∗ − Σn∗(E) + iη
⟨n∗| (1 + ṼG̃)∆ |Ψ0⟩

− ⟨ϕ−k| (ϵk − hn∗ − Σn∗)
1

ϵk − hn∗ − Σn∗(E) + iη
⟨n∗| (1 + ṼG̃)∆ |Ψ0⟩

= ⟨ϕ−k| ⟨n
∗| (1 + ṼG̃)∆ |Ψ0⟩

+ ⟨ϕ−k|Σn∗
1

ϵk − hn∗ − Σn∗(E) + iη
⟨n∗| (1 + ṼG̃)∆ |Ψ0⟩

= ⟨ϕ−k|
{

1 + Σn∗
1

ϵk − hn∗ − Σn∗(E) + iη

}
⟨n∗| (1 + ṼG̃)∆ |Ψ0⟩

= ⟨ψ−k| ⟨n
∗| (1 + ṼG̃)∆ |Ψ0⟩ ,

(2.35)

with

|ψ−k⟩ =
1 + 1

ϵk − hn∗ − Σ†n∗ − iη
Σn∗

 |ϕ−k⟩
= |ϕ−k⟩ +

1

ϵk − hn∗ − Σ†n∗ − iη
Σ
†
n∗ |ϕ

−
k⟩ .

(2.36)

|ψ−
k
⟩ is the damped wave function for a photoelectron.

We acquired another expression for T (n∗k, 0) in Equation (2.35) by rearranging the perturbation

expansion in V to make the state |Ψn∗⟩ forbid to appear as an intermediate state. We replace the undamped

wave function |ϕ−
k
⟩ and the green function G in Equation (2.13) by a damped wave function |ψ−

k
⟩ and G̃

in Equation (2.35). Photoelectron waves attenuate as they propagate under the influence of the optical

potential Σn∗ , which is the complex potential and is an imaginary constant inside the solid and zero

outside in the lowest approximation.
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We can write the electron-phonon interaction ∆ in Equation (2.35) as [55],

∆ =
∑
i, j

⟨i|∆ | j⟩ c†i c j, (2.37)

where the indices i and j labels the states of the electron. ⟨i|∆ | j⟩ is a optical transition matrix. c j is the

annihilation operator of the one-electron state | j⟩, and c†i is the creation operator of the state |i⟩.

For a core level photoemission,

1. we can regard the state |i⟩ as a one-electron excited state ketk (When the photo-electron k is fast

enough comparing to the sounding electrons, there are no virtual states i in |Ψ0⟩ to annihilate) and

2. | j⟩ describes a one-electron core state |c⟩ from which a photoelectron is excited.

We then obtain the ∆ for a core level photoemission

∆ =
∑

k

⟨k|∆ |c⟩ c†kb, (2.38)

where b and b† are the annihilation and creation operator of the core state ϕc. We can then write ∆ |Ψ0⟩

in Equation (2.35) as

∆ |Ψ0⟩ =
∑

k

⟨k|∆ |c⟩ c†kb |Ψ0⟩

=
∑

k

⟨k|∆ |c⟩ |k⟩ b |Ψ0⟩

=
∑

k

|k⟩ ⟨k|∆ |c⟩ b |Ψ0⟩

∼ ∆ |c⟩ b |Ψ0⟩ ,

(2.39)

which is approximated by
∑

k |k⟩ ⟨k| ∼ 1.

We obtain the expression for T (n∗k, 0) in Equation (2.35)

T (n∗k, 0) ∼ ⟨ψ−k| ⟨n
∗| (1 + ṼG̃)b |Ψ0⟩∆ |c⟩

= ⟨ψ−k|∆ |c⟩ ⟨n
∗|b|Ψ0⟩ + ⟨ψ−k| ⟨n

∗| ṼG̃b |Ψ0⟩∆ |c⟩

= ⟨ψ−k|∆ |c⟩ ⟨n
∗|b|0⟩ + ⟨ψ−k| ⟨n

∗| ṼG̃b |0⟩∆ |c⟩ ,

(2.40)



32 Chap. 2 Theory of Photoemission

where |Ψ0⟩ stands for |0⟩. We can obtain simple expression for Equation (2.40) by inserting
∑

l |l∗⟩ ⟨l∗| =

1 before the annihilation operator b,

T (n∗k, 0) = ⟨ψ−k|∆ |c⟩ ⟨n
∗|b|0⟩ +

∑
l

⟨ψ−k| ⟨n
∗| ṼG̃ |l∗⟩ ⟨l∗| b |0⟩∆ |c⟩

= ⟨ψ−k|∆ |c⟩ S n +
∑

l

⟨ψ−k| ⟨n
∗| ṼG̃ |l∗⟩∆ |c⟩ S l

(2.41)

with

S n = ⟨n∗| b |0⟩ (n = 0, 1, 2...). (2.42)

We name S n intrinsic amplitude, which describes the process that the core electron is ejected from a core

level. The transition matrix T (n∗k, 0) represents the photoemission process including energy losses by

plasmon excitation. The formula indicate: in the first term in Equation (2.41), the plasmon excitation,

transmission from the state without plasmon to that with plasmon, occurs only in the intrinsic process

S n, and in the second term, the plasmon excitation occurs in the extrinsic process ⟨n∗| ṼG̃ |l∗⟩ after the

intrinsic process S l. The final state of the solid should be |n∗⟩, no matter what process ṼG̃ is taken

between the initial state |l∗⟩ and the final state. That extrinsic process contains the cases of virtual

transition.

In the case that n∗ = 0∗, the transition matrix corresponds to a main peak of core level photoemission.

It is given by

T (0∗k, 0) = ⟨ψ−k|∆ |c⟩ S 0 +
∑

l

⟨ψ−k| ⟨0
∗| ṼG̃ |l∗⟩∆ |c⟩ S l

∼ ⟨ψ−k|∆ |c⟩ S 0

(2.43)

There is no plasmon excitation in the first term in Equation (2.43). The second term means one excitation

takes place in the intrinsic process S l, and deexcitation in extrinsic process ⟨0∗| ṼG̃ |l∗⟩. The plasmon

excitation makes the amplitudes of photoelectrons reduced, therefore the term that contains one excitation

and dexcitaion is rather smaller than the first term, so it can be neglected.

To obtain new expression for the second term in T (n∗k, 0) of Equation (2.41), we introduce the
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expansion in diagonal Green functions [8, 10]. Consider a Hamiltonian,

H = H0 + V (2.44)

with

H0 = hn∗ + Hs +
∑

l

PlVesPl

V = Ves −
∑

l

PlVesPl,

(2.45)

where the diagonal elements of V with respect to eigenstate of H0 are zero, ⟨i|H |i⟩ = 0. We introduce a

complement Qi j of a set of projection operator

Qi j = 1 − Pi − P j. (2.46)

We define the truncated potential QiVQi

Vi = QiVQi. (2.47)

QiVQi is written by Qi j

Vi = QiVQi = (Qi j + Pi)V(Qi j + Pi)

= Qi jVQi j + PiVQi j + Qi jVP j

= Qi jVQi j + Ṽi j.

(2.48)
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We define Green’s functions

Gi =
1

E − H0 − QiVQi + iη

Gī =
Qi

E − H0 − QiVQi + iη

(2.49)

and

Gi j =
1

E − H0 − Qi jVQi j + iη

Gī j =
Qi j

E − H0 − Qi jVQi j + iη
.

(2.50)

By projection-operator techniques Gī | j⟩ is written as,

Gī | j⟩ = Qi
1

E − H0 − QiVQi + iη
| j⟩

= (P j + Qi j)
1

E − H0 − Qi jVQi j − Ṽi j + iη
| j⟩

= (P j + Qi j)(Gi j +Gi jṼi jGi j +Gi jṼi jGi jṼi jGi j + ...)P j | j⟩

= P jGi j(1 + (Ṽi jGi j)2 + ...)P j | j⟩ + Qi jGi jṼi jGi j(1 + (Ṽi jGi j)2 + ...)P j | j⟩

= (P j + Qi jGi jṼi j)Gi j
1

1 − Ṽi jGi jṼi jGi j
P j | j⟩

= (P j + Qi jGi jṼi j)
1

G−1
i j − Ṽi jGi jṼi j

P j | j⟩

= (P j + Qi jGi jṼi j)
1

E − H0 − Ṽi jGi jṼi j − Qi jVQi j + iη
P j | j⟩

= (P j + Qi jGi jṼi j)P j
1

E − H0 − Ṽi jGi jṼi j − Qi jVQi j + iη
P j | j⟩

= (1 +Gī jṼi j)P j
1

E − H0 − Σi j(E) − Qi jVQi j + iη
| j⟩

= (1 +Gī jṼi j)(Pi + Qi)P j
1

E − H0 − Σi j(E) − Qi jVQi j + iη
| j⟩

= (1 +Gī jṼi j)QiP j
1

E − H0 − Σi j(E) − Qi jVQi j + iη
| j⟩

= (1 +Gī jṼi j)Gd
i j(E) | j⟩

(2.51)
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where

Gd
i j(E) = QiP j

1
E − H0 − Σi j(E) − Qi jVQi j + iη

= P j
1

E − H0 − Σi j(E) − Qi jVQi j + iη

(2.52)

with

Σi j(E) = ⟨ j| Ṽi jG0 jṼi j | j⟩

= ⟨ j|VQi jG0 jV | j⟩

= ⟨ j|VG0̄ jV | j⟩ .

(2.53)

Gd
i j is a diagonal Green’s function and Σi j(E) is a self energy. The self-energy provides a shift in energy

and some damping in the coherent propagation.

From the identities in Equation (2.24), we obtain another expression for diagonal Green’s function

Gd
i j = QiP jG0 + QiP jG0(Qi jVQi j + Σi j(E))Gi j

= QiP jG0 + QiP jG0Σi j(E)Gi j

= QiP j
1

E − H0 − Σi j(E) + iη
.

(2.54)

Using the identity, an expansion in terms of diagonal Green’s function is derived,

Gī | j⟩ = Gd
i j(E) | j⟩ +Gī jṼi jGd

i j(E) | j⟩

= Gd
i j(E) | j⟩ +

∑
k,i, j

Qi jGi j |k⟩ ⟨k|VP jGd
i j(E) | j⟩

= Gd
i j(E) | j⟩ +

∑
k,i, j

Gd
i jk ⟨k|V | j⟩G

d
i j(E) | j⟩ + ...

(2.55)

The same intermediate state can never appear more than once. Taking a particular term in this expansion,

the same intermediate state can never appear more than once.
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We have discussed the expansion of diagonal Green’s function. T (n∗k, 0) in Equation (2.43) is then

written by,

T (n∗k, 0) = ⟨ψ−k|∆ |c⟩ S n + ⟨ψ−k| ⟨n
∗| ṼG̃ |0∗⟩∆ |c⟩ S 0 +

∑
l,0

⟨ψ−k| ⟨n
∗| ṼG̃ |l∗⟩∆ |c⟩ S l

∼ ⟨ψ−k|∆ |c⟩ S n + ⟨ψ−k| ⟨n
∗| ṼG̃ |0∗⟩∆ |c⟩ S 0,

(2.56)

where we ignore the third term which considers excitations in the intrinsic process S l and extrinsic

process ⟨n∗| ṼG̃ |l∗⟩. The second term is written by,

⟨n∗| ṼG̃ |0∗⟩ = ⟨n∗| Ṽ(P + Q)G̃ |0∗⟩

= ⟨n∗| ṼQG̃ |0∗⟩

= ⟨n∗|Vn∗QG̃ |0∗⟩

= ⟨n∗|Vn∗Gd
nl(E) |0∗⟩ +

∑
p,n,0

⟨n∗|Vn∗ |p∗⟩Gd
n0p ⟨p

∗|Vn∗ |0∗⟩Gd
n0(E) |0∗⟩ + ...

∼ ⟨n∗|Vn∗Gd
n0(E) |0∗⟩ .

(2.57)

We can obtain the simple expression for the diagonal Green’s function in Equation (2.54)

Gd
n0(E) = P0

1
E − H0 − Σn0(E) + iη

=
1

E − H0 − Σn0(E) + iη
|0∗⟩ ⟨0∗|

=
1

E − hn∗ − Hs − Σn0(E) + iη
|0∗⟩ ⟨0∗|

=
1

E − hn∗ − E0∗ − Σn0(E) + iη
|0∗⟩ ⟨0∗|

=
1

E − hn∗ − E0∗ − Σ0(E − E0∗) + iη
|0∗⟩ ⟨0∗|

=
1

ϵk + En∗ − hn∗ − E0∗ − Σ0(ϵk + En∗ − E0∗) + iη
|0∗⟩ ⟨0∗|

=
1

ϵk + ωn − hn∗ − Σ0(ϵk + ωn) + iη
|0∗⟩ ⟨0∗|

= g(ϵk + ωn)

(2.58)
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with

g(ϵ) =
1

ϵ − h − Σ0(ϵ) + iη
. (2.59)

where g(ϵ) is one-electron green function and we labeled h = hn∗ . We note that E = ω + E0 = ϵk + En∗

and ωn = En∗ − E0∗ .

We obtain the expression for the transition matrix T (m∗k, 0) in the case of single plasmon loss exci-

tation n∗ = m∗ (n denotes for the excitation state and m denotes for the boson mode)

T (m∗k, 0) ∼ ⟨ψ−k|∆ |ϕc⟩ S m∗ + ⟨ψ−k| ⟨m
∗|Vm∗ |0∗⟩ g(ϵk + ωm)∆ |ϕc⟩ S 0∗ (2.60)

2.1.2 No loss Intensity

The intensity of no plasmon loss without energy loss is described by the transition matrix 　

T (0∗k, 0) in Equation (2.43). The virtual loss by the optical potential occurs in this transition without

energy loss. In the virtual loss, the amplitude of photoelectron wave damps and it means the number of

the photoelectrons, that is their intensity, damps. Therefore in the calculation T (0∗k, 0), we should take

into account not only ordinary potential scattering corresponding to elastic scattering but also damping

effect by the optical potential.

Main XPS peak (no plasmon loss peak) measuring photoelectrons with momentum k excited by

X-ray photons with energy ω is given by,

I(k, ω)0
c = 2π|T (0∗k, 0)|2δ(E0 + ω − E∗0 − ϵk)

T (0∗k, 0) = ⟨ψ−k|∆|ϕc⟩S 0.

(2.61)

The ground state energies with and without core hole are E∗0 and E0. S 0 is intrinsic amplitude defined in

Equation (2.42) and it will be discussed in section 2.1.3. The photoelectron wave amplitude ⟨ψ−
k
|∆|ϕcA⟩

can be calculated by full multiple scattering formula in photoelectron diffraction [56, 57, 58]. The deriva-

tion of the photoelectron wave amplitude acquires to consider the optical potential, which is a complex

potential. We follow the Fujikawa, Shinotsuka method to calculate the photoelectron wave amplitude.
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T matrix expansion with the complex optical potential

In the previous section 2.1, we discussed how the damping scattering waves |ψ−p⟩ is given in Equation

(2.36). The damping scattering wave function for the photoelectron without energy loss (n∗ = 0∗) is given

by,

|ψ−k⟩ = |ϕ
−
k⟩ +

1
ϵ − h0∗ − Σ0∗ + iη

Σ0∗ |ϕ−k⟩

= |ϕ−k⟩ +
1

ϵ − Te − ⟨0∗|Ves|0∗⟩ − Σ0∗ + iη
Σ0∗ |ϕ−k⟩ .

(2.62)

⟨0∗|Ves|0∗⟩ is the Hartree (Coulomb) potential VH and Σ0∗ is the nonlocal optical potential Σ. Since the

optical potential is non-Hermite, it has two different parts,

Σ(ϵk) = ReΣ(ϵk) − iΓ(ϵk) (2.63)

The real (Hermitian) part ReΣ has substantial effects on the T-matrix tαl (k) (the elastic scattering), and the

imaginary (anti-Hermitian) part −iΓ is responsible for the photoelectron wave damping which is usually

approximated by a constant.

Actually the amplitude is calculated by dividing for each atomic potential in different site. When the

potential is given as a sum of non overlapping atomic potential,

V = VH + Σ =
∑
α

vα, (2.64)

we have two different expressions for the propagator expanded in terms of site T matrix [14],

g(ϵ) =
1

ϵ − Te + ⟨0∗|Ves|0∗⟩ − Σ0∗ + iη

=
1

ϵ − Te − VH − ReΣ + iΓ + iη

= g0 + g0(VH + ReΣ)g0 + ... (2.65)

= ḡ0 + ḡ0(VH + ReΣ − iΓ)ḡ0 + ... (2.66)
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and the free propagators g0(ϵ) and ḡ0(ϵ) are given by,

g0(ϵ) =
1

ϵ − Te + iΓ
, (2.67)

ḡ0(ϵ) =
1

ϵ − Te + iη
, (η→ +0). (2.68)

In the first expansion in Equation (2.65), the muffin-tin constant is a real constant value v0, on the

other hand it is v0 − iΓ in the second expansion in terms of ḡ0 . The former choice gives unperturbed

plane wave ϕ0
k

the complex wave number k̃

k̃ =
√

2(ϵk + iΓ) = Rek̃ + iκ, (k̃||k) (2.69)

When Γ as a muffin-tin constant is determined and it is small enough in each atomic sphere, the phase

shift calculations are only affected by the real potential. In the high-energy region, we have the widely-

used formula

κ ∼ Γ/k ∼ −ImΣ/k. (2.70)

In the second expansion we cannot reject the redundant scatterings from complex potential −iΓ in the

interstitial region. Thus we do the first expansion in Equation (2.65).

We apply the site T-matrix expansion for ψ−
k

,

⟨ψ−k|∆|ϕc⟩ = ⟨ϕ−k|(gA +
∑
β

g0τβgA + ...)∆|ϕc⟩

= ⟨ϕ−k|gA∆|ϕc⟩ + +⟨ϕ−k|
∑
β

g0τβgA∆|ϕc⟩ + ....

= Z1(k) + Z2(k) + ...

(2.71)

where Z1(k) is the amplitude without scatterings from surrounding atoms (direct terms), Z2(k) is the

single-scattering amplitude, and so on. The direct term Z1 is written by

Z1(k) = ⟨ϕ−Ak|∆|ϕc⟩

=
∑

L

e−κDA(k̂)YL(k̂)MLLc ,
(2.72)
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where ϕ−Ak the photoelectron wave function emitted from an x-ray absorbed atom A, and L is the abbre-

viated form of the pair of angular momentum, L = (l,m). Dα(k̂) is the distance from the site A to the

surface of the solid along the direction of a photoelectron propagation k̂. e−κDA(k̂) gives the damping of

photoelectron. In the dipole approximation, the photoexcitation matrix element MLLc excited by linearly

polarized light parallel to the z axis is given by

MLLc =

√
2
π

i−leiδA
l ρ(l)cG(Lc10|L) (2.73)

with

ρ(l)c =

∫
Rl(kr)Rlc(r)r3dr. (2.74)

where δA
l is the phase shift of lth partial wave at site A, and Rl(kr) and Rlc(r) describe the radial part

labeled by the orbital angular momentum of ϕ−Ak and ϕcA , respectively. Gaunt integral G(Lc10|L) =∫
YLc(r)Y10(r)Y∗L(r)dr̂ is responsible for the angular momentum selection rule of the photoexcitation.

The single-scattering term Z2 is explicitly written by

Z2 =
∑
⟨ϕ0

k|tαgA∆|ϕc⟩

=
∑
α,A

e−κDα(k̂)e−ik·RαA
∑
LL′

YL′(k̂)tαl′ (k)GL′L(kRαA)e−κRαA MLLc ,
(2.75)

gA = g0 + g0tAg0 (2.76)

where ϕ0
k is the plane wave and RαA is the position vector of scatterer α measured from a photoelectron

emitter A. The angular momentum representation of the site-t matrix tαl (k) at site α is given by

tαl (k) = −e2iδαl − 1
2ik

(2.77)

in terms of the phase shift δαl at site α and the photoelectron wave number k. The propagator GL′L(kRαA)

describes electron propagation from the site A with L to the site α with L′.

In terms of X = tG, we are given the general renormalized multiple scattering XPD formula which
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contains the damping effects,

⟨ψ−k|∆|ϕc⟩ =
∑
α

e−κdα(k̂)e−ik·RαA
∑
LL′

YL′(k̂)
[
(1 − X)−1

]αA

LL′
MLLc , (2.78)

with

Xαβ
LL′ = tαl′ (k)GL′L(kRαβ)exp(−κRαβ)(1 − δαβ), (2.79)

where X is a square matrix, whose element is labeled by a set of atomic sites (A, α, β, ... ) and angular

momentum L, and matrixX have dimension N(lmax+1)2 for the cluster of N atoms and maximum angular

momentum lmax. We use the inverse matrix (1 − X)−1 to take into account the full multiple scattering.

2.1.3 Single loss Intensity

The intensity of single plasmon loss is described by the transition matrix　 T (m∗k, 0) in Equation

(2.84). Index m denotes boson mode which describe the state with the plasmon excitation. Transition

from 0∗ to m∗ describes that the process of the excitation which a photoelectron once make a inelastic

scattering with electrons in the solid, and transfers energy and momentum to the electrons. During this

process, the photoelectron lose a part of its energy ωm, and this lost energy is given to the electrons in

the solid and make it excite. These excitations have two cases: one is that the plasmon excites in the

photoelectron photoexcitation process, intrinsic process, and the other is that the plasmon excites in the

process of the photoelectron transmission in the solid (it is so called the extrinsic process). Here, we

explain how these two process can be described.

We obtained the expression for the transition matrix T (m∗k, 0) in the case of single plasmon loss

excitation n∗ = m∗ (n denotes for the excitation state and m denotes for the boson mode)

T (m∗k, 0) ∼ ⟨ψ−k|∆ |ϕc⟩ S m∗ + ⟨ψ−k| ⟨m
∗|Vm∗ |0∗⟩ g(ϵk + ωm)∆ |ϕc⟩ S 0∗ (2.60)

Here, potential Vnm∗ is written as,

Vm∗(r) = Ves − ⟨m∗|Ves |m∗⟩

=

∫
v(r − r′)δρm∗(r

′)dr′
(2.80)
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with

δρm(r) = ρ(r) − ⟨m| ρ(r) |m⟩ . (2.81)

The expression for Vn∗ of Equation (2.80) enable us to rewrite ⟨m∗|Vm∗ |0∗⟩ in Equation (2.60) as

⟨m∗|Vm∗ |0∗⟩ = ⟨m∗|
{∫

v(r − r′)δρm∗(r
′)dr′

}
|0∗⟩

=

∫
v(r − r′) ⟨m∗| δρm∗(r

′) |0∗⟩ dr′

= vm∗(r).

(2.82)

The fluctuation potential vm(r) is defined by [9, 13]

vm(r) =
∫

v(r − r′) ⟨m| δρm(r′) |0⟩ dr′. (2.83)

We can regard vm∗(r) as vm(r) in Equation (2.82) [9]. Thus, we obtain T (m∗k, 0),

T (m∗k, 0) = ⟨ψ−k|∆ |ϕc⟩ S m + ⟨ψ−k| vmg(ϵk + ωm)∆ |ϕc⟩ S 0 (2.84)

Single-loss XPS intensity, whose loss energy is ωm, is written by Equation (2.60),

I(k;ω)1 = 2π
∑

m

|T (m∗k, 0)|2δ(E0 + ω − E∗0 − ωm − εk)

T (0∗k, 0) = ⟨ψ−k|∆|ϕc⟩S m + ⟨ψ−k|vmg(εk + ωm)∆|ϕc⟩S 0

(2.85)

where vm is the fluctuation potential defined in Equation (2.83). It gives amplitude for the terms of

extrinsic and intrinsic plasmon excitations.

Here, we show how intrinsic amplitudes S 0, S m (m = 0, 1, 2...) in Equation (2.42) are given. We

introduce quasi-boson Hamiltonian [6],

H = Hv + εcb†b + Vcbb†. (2.86)

Hv is a full many-electron Hamiltonian for valence electrons, Vc is an interaction between a core-hole

and valence electrons, and εc is a core electron energy. The solid state without core hole |0⟩ and with
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core hole |m∗⟩ is the eigenstate of this Hamiltonian,

Hs |0⟩ = (Hv + ϵc) |0⟩ ≡ Hs0 |0⟩ (2.87)

Hs |n∗⟩ = (Hv + Vc) |m∗⟩ ≡ H∗s0 |m∗⟩ . (2.88)

We can treat |0⟩ and |m∗⟩ as the direct products of core electron state and valence electron state,

|0⟩ = |0v⟩ |Nc⟩

|m∗⟩ = |Nc − 1,m⟩ |m∗v⟩ .
(2.89)

The annihilation operator b operate on the core electron state and S n in Equation (2.42) is given as

S n = {⟨m∗v | ⟨Nc − 1,m|}b{|Nc⟩ |0v⟩}

= ⟨m∗v | ⟨Nc − 1,m| b |Nc⟩ |0v⟩

= ⟨Nc − 1,m| b |Nc⟩ ⟨m∗v |0v⟩

∼ ⟨m∗v |0v⟩,

(2.90)

where we ignore core electron excitations and only consider completely relaxed overlap integral

⟨Nc − 1,m| b |Nc⟩ ∼ 1. We thus obtain the intrinsic amplitudes

S 0 = ⟨0∗v |0v⟩ (2.91)

S m = ⟨m∗v |0v⟩ (2.92)

In order to obtain intrinsic amplitude S m, we write |m∗v⟩ in terms of |mv⟩ by using the Hamiltonian

Hs0 = Hv + Vc and conventional perturbation theory. By lowest order perturbation theory we have

|m∗v⟩ = |mv⟩ +
∑
m′

|m′v⟩ ⟨m′v|Vc |mv⟩
Ev

m − Ev
m′

. (2.93)
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We can rewrite S m as

⟨m∗v |0v⟩ = ⟨mv|0v⟩ +
∑
m′

⟨mv|Vc |m′v⟩
Ev

m − Ev
m′
⟨m′v|0v⟩

=
⟨mv|Vc |0v⟩

Ev
m − Ev

0
.

(2.94)

The interaction between a core-hole and valence electrons Vc is given as

Vc = −
∑

i j

⟨ic| jc⟩c†i c j

= −
∫ ∫

ψ†(x)ϕ∗c(x′)v(r − r′)ψ(x)ϕc(x′)dxdx′

= −
∫ ∫

ρ(x)v(r − r′)|ϕc(r′)|2xdx′

(2.95)

where density operator ρ(x) has the relation ρ(x) = ψ†(x)ψ(x) and x denotes its coordinate r and spin.

The numerator of S m in Equation (2.94) is given as

⟨mv|Vc |0v⟩ = ⟨mv|
(
−

∫ ∫
ρ(x)v(r − r′)|ϕc(r′)|2xdx′

)
|0v⟩

= −
∫ ∫

⟨mv| ρ(x) |0v⟩ v(r − r′)|ϕc(r′)|2xdx′

= −
∫ ∫

⟨mv| δρ(x) |0v⟩ v(r − r′)|ϕc(r′)|2xdx′

= −
∫ ∫

vm(x′)|ϕc(r′)|2dx′

= − ⟨ϕc| vm |ϕc⟩ .

(2.96)

Then we obtain the intrinsic amplitude S m

S m = −
⟨ϕc| vm |ϕc⟩

ωm
(2.97)

where ωm = Ev
m − Ev

0.

Next, we will obtain intrinsic amplitude S 0 in Equation (2.91) by renormalization. Using the fact

that

∑
n,0

|⟨n∗v |0v⟩|2 + |⟨0∗v |0v⟩|2 = ⟨0v|0v⟩ = 1 (2.98)
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we have

|⟨0∗v |0v⟩|2 = 1 − a (2.99)

with

a =
∑
n,0

∣∣∣∣∣ ⟨ϕc| vn |ϕc⟩
ωn

∣∣∣∣∣2 . (2.100)

a is renormalization factor. We thus obtain the intrinsic amplitude S 0

S 0 = ⟨0∗v |0v⟩ ∼
√

1 − a ∼ e−a/2. (2.101)

We apply the site t-matrix expansion again to calculate the extrinsic loss term.

⟨ψ−k|vmg(εp + ωm)∆|ϕc⟩

= ⟨ϕ0
k|
(
1 +

∑
α

tαg0 +
∑
α,α′

tα′g0tαg0 + · · ·
)
vm

(
g′A +

∑
β

g′0t′βg
′
A + · · ·

)
∆|ϕc⟩.

(2.102)

Here an abbreviation g′A = gA(εk + ωm) is used. The damping plane wave ϕ0
k

has complex momentum

kz = k̃ and real parallel components k∥ = (kx, ky),

ϕ0
k = exp(ik∥ · r∥) exp(ik̃z) (2.103)

The fluctuation potential vm defined by Equation (2.82) can be specified by wave vector Qm = (qx, qy, 0)

with the aid of translational symmetry parallel to the surface,

vm(r) = exp(iQm · r∥)Vm(z). (2.104)

r∥ is parallel component,

r = (r∥, z). (2.105)
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We assume that the solid occupies the region z ≤ 0. Then, the z component of ϕ0
p should be

k̃ =
√

k2
z − 2iΓ. (2.106)

The amplitude

τ(0)
ex (k) = ⟨ϕ0

k|vmg′A∆|ϕc⟩ (2.107)

neglects whole elastic scatterings from surrounding atoms before and after the loss. The propagator

gA(r, r′) in the amplitude τ(0)
ex is given in angular momentum representation

gA(r, r′) = −2ik′
∑

L

hl(k′r>)YL(r̂)RA
l (p′r<)Y∗L(r̂′) exp(iδA

l ), (2.108)

where RA
l is the regular radial solution for the spherically symmetric potential vA at x-ray absorbing atom

A. As the core function ϕc is strongly localized on the atomic site A, we can assumed that the condition

r > rc ≥ r′ is always satisfied. We introduce the integral representation

−2ik′hl(k′r)YL(r̂) =
i−l

π2

∫
dpYL(p̂)

exp(ip · r)
k′2 − p2 + 2iΓ

, (2.109)

and thus

τ(0)
ex =

∑
L

i−l

π2

∫
Yl(k̂)

p′2 − k2 + 2iΓ
⟨ϕ0

k|vm|eip·(r−RA)⟩dpM′LLc
, (2.110)

where M′LLc
is an atomic excitation operator with energy εk + ωm.

M′LLc
(k) = exp(iδA

l )ρ(l)cG(Lc10|L). (2.111)
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Now we evaluate the amplitude of ⟨ϕ0
k
|vm|eip·(r−RA)⟩.

τ0
ex is given by

τ0
ex(k) =

∑
L

i−l

π2 (2π)1/2e−ik̃∗zA

×
∫

dpz
YL(p̂′)

κ2 − p2
z + 2iΓ

∫ ∞

−∞
Vm(z)ei(pz−k̃∗)(z−zA)dz M′LLc

,

(2.112)

with

p′ = (k∥ −Qm, pz),

κ =
√

k′2 − (k∥ −Qm)2 =

√
k2 + 2ωm − (k∥ −Qm)2.

The main contribution to the integral over pz in Equation (2.112) comes from very small region near

pz ∼ κ because of the factor (κ2 − p2
z + 2iΓ)−1. The spherical harmonics YL(p̂′) changes very slowly with

kz and YL(p̂′) can be replaced by YL(K̂′), where

K′ = (p∥ −Qm, κ). (2.113)

Then the integral over pz is calculated as

∫
dpz

exp[ipz(z − zA)]
p2

z − κ2 + 2iΓ
=


πi
κ̃ eiκ̃(z−zA) (z − zA > 0)

πi
κ̃ e−iκ̃(z−zA) (z − zA < 0)

=
πi
κ̃

eiκ|z−zA |, (2.114)

with

κ̃ =
√
κ2 + 2iΓ.
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Substituting Equation (2.114) into (2.112), Eqs. (2.115) and (2.119) are obtained.

τ(0)
ex (k) ≈ −gm

ex(A;k) exp(−ik̃∗zA)

√
2
π

∑
L

i−lYL(K̂′)M′L′Lc
,

K′ = (k∥ −Qm, κ),

κ =

√
k2

z + 2ωm − (k∥ −Qm)2.

(2.115)

The loss amplitude during the travel from site A to the detector is given by

gm
ex(A;k) =

i
κ̃

( ∫ zA

−∞
dz Vm(z)e−i(κ̃+k̃∗)(z−zA) +

∫ ∞

zA

dz Vm(z)ei(κ̃−k̃∗)(z−zA)
)
,

κ̃ =
√
κ2 + 2iΓ.

(2.116)

In the same way, an practical formula, which includes single-elastic scatterings before and after the

loss, is obtained as follows:

τ(1)
ex (k) =

∑
β

⟨ϕ0
k|vmg0tβgA∆|ϕc⟩

= −
∑
β

gm
ex(β;k)e−i(k̃∗zβ+k∥·Rβ∥)

√
2
π

∑
LL′

i−l′YL′(K̂′)tβl′(k
′)GL′L(k′Rβ)M′LLc

(2.117)

The multiple scattering series before the loss is given by

τ(1)
ex (k) + τ(1)

ex (k) + ....

=
∑
β

gm
ex(β;k) exp

[
−i(k̃zβ + k∥ ·Rβ∥)

] √
2
π

∑
LL′β

i−l′YL′(K̂′)[(1 − X)−1]βA
L′LMLLc ,

(2.118)

with

Xαβ
L′L = tαl′ (k

′)GLL′(k′Rαβ)exp(−κRαβ)(1 − δαβ). (2.79)

The loss amplitude gm
ex defined by Equation (2.116) can be expressed in the alternative form in terms

of the damping propagator g0 written by Equation (2.65);

gm
ex(β;k) = −(2π)3/2

∫
drϕ0∗

k (r)vm(r)g0(r −Rβ; k′). (2.119)
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We have taken multiple elastic scatterings into account before the loss. We can taken then into

account after the loss by replacing ϕ0∗
k

with ψ0∗
k

.

gm
ex(β;k) = −(2π)3/2

∫
drψ0∗

k (r)vm(r)g0(r −Rβ; k′). (2.120)
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2.2 Quantum Landau Formula

Fujikawa et al. wrote the overall photoemission profile with elastic scattering by exponential form,

I(k;ω)∞c = |⟨ψ−k|∆|ϕc⟩|2

×
∫ ∞

−∞
dt exp[i(ω + E0 − E∗0 − εk)t] exp

[ ∫ ∞

0
dε
α(ε)
ε

(e−iεt − 1)
]
,

(2.121)

where they have defined an ”asymmetric function”, which fully includes intrinsic and extrinsic losses.

This function defined as

α(ϵ)
ϵ
=

∑
m

|τm|2δ(ω − ωm),

τm(k) =τex
m (k) + S m/S 0.

(2.122)

Similar quantum derivation is developed by Hedin et al. [8, 55] where the damping plane wave in the

normal to the surface is used as the time-reversed LEED function. The damping wave function ψ−
k

is

renormalized by considering the elastic scattering by neighbor atoms. Full multiple scattering formula in

photoelectron diffraction can calculate the photoelectron wave amplitude ⟨ψ−
k
|∆|ϕcA⟩ ([56, 57, 58]). The

damping of the photoelectron wave should be considered from first principle theory, because the non-

Hermitian optical potential affects ψ−
k

. We do caliculation of the amplitude ⟨ψ−
k
|∆|ϕcA⟩ using the quantum

depth distribution function (DDF) as the function take into account the electron attenuation during its

propagation [47].

Both τex
m and S m/S 0 can be written in terms of the fluctuation potential vm and thus τm can be written

as follows:

τm(k) =
∫

fA(r)vm(r)dr, (2.123)

fA(r) = − |ϕc(r)|2
ϵ

+ (2π)3/2ψ−∗k (r)g0(r −RA; p′), (2.124)

where ϵ = ω + E0 − E∗0 − εp is the excitation energy measured from the threshold. The first term of fA

corresonds to intrinsic losses, whereas the second one corresponds to extrinsic losses. Assuming that vm
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is always real, an alternative expression for α(ϵ)/ϵ is obtained as

α(ϵ)
ϵ
=

∫
drdr′ f ∗A(r′) fA(r)

∑
m

vm(r′)vm(r)δ(ω − ωm)

= −1
π

∫
drdr′ f ∗A(r′) fA(r)ImW(r, r′; ϵ),

(2.125)

where W(ϵ) is the screened Coulomb propagator. The spectral features are primarily determined by

α(ϵ)/ϵ.

Quantum Landau formula gives multiple plasmon loss intensity,

I(k;ω)∞c =|⟨ψ−k|∆|ϕc⟩|2

× exp
[
−

∫ ∞

0
β(ε′)dϵ′

] [
δ(ε) + β(ε) +

1
2
β · β(ε) + ...

] (2.126)

where we write α(ω)
ω as βω, α(ω)

ω = β(ω). The δ function (the first term) in Equation (2.126) gives the no

loss intensity (main peak intensity), the β(ε) (the second term) gives the single plasmon loss intensity,

β · β(ε) (the third term) gives the double plasmon loss intensity, and so on.
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2.3 Quantum One-Step Model in High Energy Approximation

In the high-energy case, the site dependence of gm
ex(β;k) can be neglected [53] so gm

ex(β;k) can be re-

placed with gm
ex(A;k). Then in the case of high-energy region and near normal photoemission, it is

possible to put K̂′ ≈ k̂. The renormalization of the multiple scattering series before the loss is written

as

τ(0)
ex (k) + τ(1)

ex (k) + · · ·

= −gm
ex(A;k)

∑
β

e−i(k̃∗zβ+k∥·Rβ∥)

√
2
π

∑
LL′β

i−l′YL′(k̂)
[
(1 − X)−1

]βA

L′L
M′LLc

= −gm
ex(A;k)⟨ψ−k′ |∆|ϕc⟩,

(2.127)

where X is defined in Eq. (2.79).

Then the full multiple scatterings are taken into account before the loss. Elastic scatterings after the

loss also can be fully taken into account by replacing ϕ0∗
k

with ψ−
k′ .

τex(k) ≈ (2π)3/2⟨ψ−k′ |∆|ϕc⟩
∫

drψ−∗k (r)vm(r)g0(r −RA; k′) (2.128)

In the high-energy photoemission, ⟨ψ−
k′ |∆|ϕc⟩ can be safely replaced with ⟨ψ−

k
|∆|ϕc⟩, which yields an

approximate extrinsic loss amplitude (the second term in | · · · |2 in Eq. (2.85))

⟨ψ−k|vmg(εk + ωm)∆|ϕc⟩ ≈ τex
m (k)⟨ψ−k|∆|ϕc⟩,

τex
m (k) = (2π)3/2

∫
drψ−∗k (r)vm(r)g0(r −RA; k′).

(2.129)
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2.4 Quantum Landau Formula for Our Studies

Here we show the formula for our numerical calculation. From quantum Landau formula in Equa-

tion (2.126), we obtain the expression for the no loss and single loss spectra,

I(k;ω)0
cA
=|⟨ψ−k|∆|ϕcA⟩|2 × exp

[
−

∫ ∞

0
β(ε′)dϵ′

]
δ(ε) (2.130)

I(k;ω)1
cA
=|⟨ψ−k|∆|ϕcA⟩|2 × exp

[
−

∫ ∞

0
β(ε′)dϵ′

]
β(ε). (2.131)

where cA is the core wave function at site A. Quantum Landau formula is derived within the high-energy

approximation and is basically not adequate in low kinetic energy region. Ohori et al. have studied the

applicability of this formula [59] indicating that the formula can be available also in the intermediate

state (for example, several hundred eV) unless we consider grazing photoemission.

Computation of multiple-scattering costs too much because it requires a large number of matrix

elements for X given in Eq. (2.79). The number of the matrix elements exponentially increases as the

number of surrounding atoms or angular momentum lmax become larger.

For our calculations, we approximate the core function and the photoelectron wave in Eq. (2.124) as:

|ϕcA(r)|2 ≈ δ(r −RA),

ψ−k ≈ ϕ
0
k(r) =

1
(2π)3/2 exp(ik∥ · r∥) exp(ik̃z).

(2.132)

In the approximation in Equation (2.132), we ignore elastic scatterings after the plasmon excitation and

the effect of elastic scatterings for the spectral function α(ϵ) are neglected for the numerical calculation.

Note that we can consider elastic scattering before the excitation because the elastic scatterings are taken

into account in the calculation of the amplitude ⟨ψ−
k
|∆|ϕc⟩.

We study semi-infinite jellium model so photoelectrons damp only along z-direction during their

propagation inside the solid. We can treat z-axis component of momentum k̃ as complex number and the

parallel component k∥ as real.
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Analytical solutions for β(ϵ) = α(ϵ)/ϵ are obtained by the approximations in Equation (2.132),

αint(ϵ)
ϵ
= −1

π
Im

[∫
drdr′

(
f int
A (r′)

)∗
f int
A (r)W(r, r′; ϵ)

]

= −1
π

∑
Q

1
|ϵ |2 ImW(Q, zA, zA; ϵ) (2.133)

αext(ϵ)
ϵ
= −1

π
Im

[∫
drdr′

(
f ext
A (r′)

)∗
f ext
A (r)W(r, r′; ϵ)

]

= −1
π

∑
Q

1
|κ̃|2 Im

[∫ ∞

−∞
dzdz′eip̃(z′−zA)e−ip̃∗(z−zA)eiκ̃|z−zA |e−iκ̃∗ |z′−zA |W(Q, z, z′; ϵ)

]
(2.134)

αinf(ϵ)
ϵ
= −1

π
Im

[∫ ∞

−∞
drdr′

{(
f int
A (r′)

)∗
f ext
A (r) +

(
f ext
A (r′)

)∗
f int
A (r)

}
W(r, r′; ϵ)

]

= −1
π

∑
Q

Im
[

i
ϵ∗κ̃

∫ ∞

−∞
dze−ip̃∗(z−zA)eiκ̃|z−zA |W(Q, z, zA; ϵ)

− i
ϵκ̃∗

∫ ∞

−∞
dz′eip̃(z′−zA)e−iκ̃∗ |z′−zA |W(Q, zA, z′; ϵ)

]
(2.135)

Bechstedt’s screened Coulomb potential W is used to calculate α(ϵ)/ϵ [61].

W(Q, z, z′; ϵ) =
2π
Q

[
θ(z)θ(z′)

{
e−Q|z−z′ | + (1 − t1)e−Q(z+z′)

}
+ t1

{
θ(z)θ(−z′)a(−z′)e−Qz + θ(−z)θ(z′)a(−z)e−Qz′

}
+ θ(−z)θ(−z′)

{
a(|z − z′|) + a(−z − z′) − t1a(−z)a(−z′)

}]
,

(2.136)

where a(z) = 2/{1 + a(0)}−1 and a(z) ≡ a(Q, z, ω) is related to the bulk dielectric function ϵ0(q, ω),

a(Q, z, ω) =
Q
π

∫
dqz

eiqzz

|q|2ϵ0(|q|, ω)
, (2.137)

Q =
√

q2
x + q2

y .



Chapter 3

The Plasmon Losses from Li 1s level in

core-level Photoemission Spectra

3.1 Motivation of this Experiment

Typical core-level X-ray photoemission spectra have plasmon loss bands in addition to a main sharp

band from simple metals and some semiconductors, notably Na, Al, Mg, Si, and Ge. The loss of energy

from the photoelectron may simultaneously occur in the excitation process (intrinsic loss) or when the

photoelectron travels in the solid on its way out through the surface (extrinsic loss). They can interfere

each other, so these two loss mechanisms are not possible to be separated.

The quantum Landau formula originally derived by Hedin et al. can explain overall plasmon loss

features accompanied by core level photoemission where elastic scatterings before and after the losses

are completely neglected [9]. Ohori et al. have studied the applicability of the quantum Landau for-

mula where they have considered no elastic scattering [59]. Their results show that the quantum Landau

formula gives results quite similar to those without use of the high-energy approximation in the photo-

electron kinetic energy range from 60 to 1000 eV. Uwatoko et al. have measured and calculated single

plasmon loss spectra associated with Al 2p photoemission on the basis of Hedin’s formalism [45], which

shows rather good results as far as we include the interference. However, plasmon peaks are strongly

influenced by the photoelectron diffraction [34], and it is thus important to consider the elastic scatterings

to analyze the experimental results in detail [47].

So far Fujikawa et al. have derived a quantum Landau formula which fully takes multiple elastic scat-

55
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terings before and after the losses into account [14]. This formula is a powerful tool to study the plasmon

losses including higher order satellites. So far Kazama et al. have applied the theoretical approach to the

plasmon losses associated with Al 2s and Na 2s photoemission. The single elastic scattering model gives

rise to unexpected large loss intensities from deep emitters, and the overestimated strong bulk plasmon

loss intensity [62].

In this work we calculate plasmon loss features associated with Li 1s photoemission using the quan-

tum Landau formula that includes elastic multiple scatterings before and after the losses. We compare

the calculated results with the plasmon losses associated with Na 2s photoemission.

3.2 Theory

We discuss only the single plasmon loss peak. From Equation (2.126), we obtain the explicit expression

for single loss spectra,

I1(k) = | ⟨ψ−k|∆|ϕcA⟩ |2β(ϵ) exp [−
∫ ∞

0
dωβ(ϵ)]. (3.1)

3.3 Calculated result

Here we show some calculated plasmon loss profiles excited from Li 1s and Na 2s core levels by use

of Equation 3.1. Figure 3.1 (a) shows the schematic view of the setup. The incident x-rays are linearly

polarized and the electric vector tilts 10 degrees from the surface normal. Photon energy is 170 eV, and

photoelectrons are measured normal to the surface. We use the cylinder model including 52 atoms (8

layers) which is shown in Fig. 3.1 (b).

Figures 3.2 (a) and (b) show the depth profiles of the Li 1s single loss intensity with and without full

multiple-scatterings.

The ”total” shows sum of ”the intrinsic loss”, ”the extrinsic loss”, and ”the interference”. The total

plasmon loss intensities without elastic scatterings in Fig. 3.2 (a) smoothly decay with increasing ZA. ZA

is the depth of an atom which emits a photoelectron from the surface. On the other hand, in Fig. 3.2 (b),

the elastic scatterings give rise to some structures caused by photoelectron diffraction from surrounding

lithium atoms, although lithium atom is quite weak scatterer. The observed peaks at ZA = −5.23 Å and

ZA = −8.72 Å correspond to the photoexcitation from the 3rd and 5th layers. These photoelectrons are
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Figure 3.1: The schematic view of the calculation setup.

strongly scattered in the forward direction and provide prominent peaks. This characteristic features are

noticed as ”forward focusing effect”. Lithium has a bcc structure with lattice constant 3.5 Å.

The side view shown in Fig. 3.1 (b) clearly shows that in the normal emission other lithium atoms sit

on the line along surface normal for the photoemission from the 3rd and 5th layers. We thus can explain

the two peaks observed in Fig. 3.2 (b). In contrast the depth profiles shown in Fig. 3.2 (a) have no such

structure where no elastic scattering is taken into account there.
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Figure 3.2: Depth profiles of integrated surface and bulk single plasmon loss intensities excited from
Li 1s level. The results are shown for those calculated without elastic scatterings (a), and with full
multiple-scatterings (b). The incident photon energy is 170 eV.
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Figure 3.3: Depth profiles of integrated surface and bulk single plasmon losses excited from Li 1s and
Na 2s level. The energy of photoelectrons from Li 1s and Na 2s are both about 100 eV.

Additionally the plasmon loss intensities including elastic scatterings rapidly decrease with the depth

of the emitter compared with the case where elastic scatterings are neglected. This behavior can be due

to defocusing effect: It has been suggested on the basis of multiple-scattering calculation that if several

atoms are linearly arranged along the emission direction, the destructive interference actually reduces the

intensity [35, 36]. Kazama et al. have investigated the Al 2s and Na 2s single-plasmon losses without

elastic scatterings, with single-scatterings, and with full multiple-scatterings [62, 53]. Depth profiles of

single-loss spectra of Na 2s calculated with full multiple-scatterings decay faster than without elastic

scatterings. Figure 3 shows a difference between the depth profiles of the Li 1s and Na 2s single-loss

intensities calculated with full multiple-scatterings. Only total intensities of plasmon losses are plotted.

Sodium has the body-centered cubic structure similar to lithium metal. Therefore Na 2s photoemissions

from the 3rd and 5th layer are also emphasized due to the focusing effect. The loss intensities of lithium

decay faster than that of sodium because lithium is light and a weak scatterer.

Figures 3.4 (a) and (b) show the Li 1s single plasmon loss spectra calculated with and without elastic

scattering. These are obtained by summing up the contributions from all of the emitters. The surface

plasmon and the bulk plasmon are broad, and have clear peaks at 6 eV and 9 eV. Our calculated plasmon

loss energies are larger than experimental surface and bulk plasmon energies 5.0 eV and 7.4 eV, measured

by XPS [63]. In our calculation, the photoelectron kinetic energy is about 140 eV. In this low energy

region, calculated energy loss peaks shift has been observed [60, 7]. Their spectral features are quite



60 Chap. 3 The Plasmon Losses from Li 1s level

similar although the depth profiles are quite different. In the total spectrum with full multiple-scatterings,

the relative peak intensity of (surface plasmon)/(bulk plasmon) is slightly larger than that without elastic

scattering. This result is against with that of sodium. It can be attributed to the faster decay as a function

of the depth for Li 1s than that for Na 2s excitation.
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Figure 3.4: Calculated bulk and surface plasmon losses excited from Li 1s detected at normal emission
with (a) and without full multiple scatterings (b).

3.4 Conclusion

In this paper we have calculated the plasmon loss features associated with Li 1s photoemission using the

quantum Landau formula that includes elastic scatterings before and after the losses [14]. The quantum

Landau formula allows us to calculate the multiple plasmon loss features. The depth profiles of the
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Li 1s single loss intensity is considerably altered by including the elastic scatterings. When the elastic

scatterings are considered, depth profiles have some peaks due to the focusing effect as observed sodium.

On the other hand, these profiles of lithium decay faster than those of sodium because lithium is weak

scatterer.

We also have found that the elastic scatterings can considerably change the relative intensities of bulk

and surface plasmon peaks. In case of lithium, the relative peak intensity of (surface plasmon)/(bulk plas-

mon) is slightly larger than that without elastic scattering. This result depends on composite elements.

If these elements are weak scatterers, only the shallow emitters have dominant effects on the loss spectra

because of the defocusing effects.





Chapter 4

Azimuthal Angular Dependence of

Plasmon Losses in Core-level

Photoemission

4.1 Introduction

Plasmon produced by collective electron excitation influenced by electrical state of materials is stud-

ied in order to evaluate its mean free path and escape depth [64, 66]. Core-level X-ray photoemission

spectra (XPS) have clear plasmon loss bands in low energy side in addition to the main sharp band

for simple metals and semiconductors. Plasmon losses observed in XPS spectra are classified into two

types: intrinsic loss (shake-up in the excitation process) and extrinsic loss (inelastic scatterings during

the photoelectron propagation). We should note that these two loss can interfere each other.

Intensity of plasmon losses in photoemission bands have been studied on the point of an emission

angle; polar (θ) angle and azimuthal (ϕ) angle. Biswas et al. studied the θ dependence of plasmon loss

intensities and discussed the relative importance of intrinsic, extrinsic, and then interference [31]. Both

peaks of bulk and surface plasmon have an asymmetric shape in normal emission and a symmetric shape

in gazing emission. They indicated the surface the surface plasmon intensity is markedly enhanced at

low θ.

Osterwalder et al. studied the ϕ scan of the plasmon losses in photoemission from Al 2s level
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[34, 66]. ϕ scans of Al 2s photoelectron and plasmon loss peaks with θ = 45◦ are similar and show

two types of peaks produced by elastic scatterings; geometrical forward-scattering peaks of [011] atoms

and peaks appeared as diffraction pattern.Geometrical forward-scattering peak intensities of plasmon loss

are reduced by increasing the number of plasmon loss, where photoelectrons experience energy losses as

they travel from deep emitters. It follows that the defocusing effect reducing peak intensities should oc-

cur by multiple scattering effect as the emitters of photoelectrons become deeper. The defocusing effect

also appeared in the multiple scattering calculation [35, 36].

In order to analyze ϕ dependance of plasmon-loss, Fujikawa’s quantum Landau formula is very

appropriate method because it takes multiple elastic scattering into account before and after plasmon

loss [14]. The Quamtum Landau formula gives the similar results to those without the high-energy

approximation in the case where the photoelectron kinetic energy is over 100 eV and the polar angle θ

is over 30◦ [59]. By considering multiple elastic scattering, depth dependence produced by local atomic

arrangements [47] and the double slit effect which occurs between two scatters can be considered[65].

Kazama et al. have applied these formulas to the plasmon losses excited from Al 2s and Na 2s [53]. They

explain the main features observed by Biswas et. al.

In this work, we calculated ϕ scan of plasmon loss associated with Al 2s photoemission by using

the quantum Landau formula that includes elastic multiple scatterings before and after losses. We also

discuss the difference of the loss bands for the bulk plasmon and the surface plasmon loss.

4.2 Theory

We discuss only the single plasmon loss peak. From Equation (2.126), we obtain the explicit expression

for single loss spectra,

I1(k) = | ⟨ f −k |∆|ϕcA⟩ |2β(ϵ) exp [−
∫ ∞

0
dωβ(ϵ)]. (4.1)

4.3 Calculated results and discussion

Here, we show some calculated plasmon loss profiles excited from Al 2s core levels. Figure 4.1 (a) shows

the schematic view of the setup.

Photon energy is 307 eV and the mean free path of photoelectron is set as 7.2 Å which is calculated
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Figure 4.1: (a) The schematic view of the calculation setup. (b) The model cluster for Al (001) surface.

by TPP2M [67]. The sample and the X-ray electron vector are fixed and the position of detector is

altered. The photoelectrons are detected at θ = 45◦ for different azimuthal angle ϕ. The azimuthal angle

is set from 0◦ to 360◦ by 1◦ step.

The incident X-rays are linearly polarized, whose electric vector is normal to the surface. In this

calculation, the effect of total reflection is not considered. This setup corresponds to the spectra of

azimuthal angle scanning normalized for the polarization dependency in θ = 45◦. In experiment of the

azimuthal scanning by Osterwalder et al., the polar angle is set to 45◦ and the incident X-ray enters at

82◦ from the surface [34]. In this condition, total reflection is negligible. To make corespondent with

experimental, the effect of total reflaction is not considered in the calculation. This calculation spectra is

equivalent to the experimental data which is normalized by the term of the polarization dependency of

linearly p wave.

We use the cylinder model including 324 atoms (six layers) shown in Fig. 4.1 (b). Aluminum has a

face-centered cubic structure with a lattice constant of 4.05 Å.

A full 360◦ azimuthal ϕ scan of bulk plasmon loss peak for the Al 2s photoemission with full multiple

scatterings is shown in Figure 4.2.
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Figure 4.2: Azimuthal scans of the 1st plasmon loss in Al 2s photoemission from Al (001) single crystal
calculated by quantum Landau formula (4.1) with full multiple scatterings. The incident photon energy
is 307 eV.

This calculation is done by quantum Landau formula (4.1). The ϕ scan of plasmon-loss without

scattering should be constant, on the other hand the ϕ scan of bulk plasmon losses with elastic scatterings

shows diffraction patterns. It has similar feature with the previous experiment one [34], which clearly

show the fourfold symmetry.

There are 4 prominent peaks in 360◦ azimuthal scan of Figure 4.2 and 3 small peaks between the

prominent peaks. Prominent peaks at ϕ = 0◦, 90◦, 180◦ and 270◦ correspond to the forward scatterings

from surrounding Al atoms along < 011 > directions. Along these directions one are linearly arranged,

so that forward scatterings play an important role to these prominent peaks. This effect is called the

’forward focusing effect’. Whereas three small peaks are observed between these prominent peaks,

because scattering photoelectron waves from surrounding atom interfere with each other.
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Figure 4.3: Calculated azimuthal scans of the 1st bulk plasmon loss shown in Fig. 4.2 are separately
shown for each layer. Full multiple scatterings are taken into account.
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 (a) Zc = 2

 (b) Zc = 3

Figure 4.4: The schematic view of the model of Al single crystal and the mapping of the first plasmon
loss in Al 2s photoemission spectra. (a) is explanation of the double slit peak at ϕ = 45◦ which occurs
in the 2nd layer. The mapping shows the plasmon loss intensities of the 2nd layer photoelectron. (b) is
the explanation of the double slit peak at ϕ = 36◦ and 54◦ in the 3rd layer. The incident photon energy is
307 eV.

Figure 4.3 shows the azimuthal scan of the 1st plasmon loss excited from each layer shown in Fig.

2. The ’1st’ means that the photoelectron comes from the 1st layer of model. The 1st layer means the

surface layer, and the 2nd means a next layer under the 1st layer and so on. The interlayer distance is

2.03 Å.

The ϕ scan excited from the 1st layer show no prominent peak because the photoelectrons from the
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1st layer never suffer forward scatterings at large take off angle. Interference of electrons scattered from

different direction show the weak oscillation in the ϕ scan.

The loss band from the 2nd layer shows strong peaks at ϕ = 0◦, 90◦ attributed to the forward focusing

effect and a small peak at ϕ = 45◦. Small peak is attributed to the ’double slit effect’ where peak

intensities enhanced between two emitters. In this case, two atoms in < 011 > directions in the 1st layers

enhanced a peak intensity at ϕ = 45◦.

Figure 4.4 (a) shows the schematic view of the photoemission at θ = 45◦ and ϕ = 45◦ and the

mapping of the plasmon loss emitted from the 2nd layer in Al single crystal. The schematic view shows

the geometrical origin of the peaks at ϕ = 45◦ in Figure 4.3. The red lined circle is the emitter of

photoelectron and the red circles are the surrounding atoms which relate the peak at ϕ = 45◦. The arrow

is the direction of the photoelectron propagation. The elastic scattering waves of the red atoms in the 1st

layer interfere and the peak appears by double slit effect. The circle shows the forward focusing peak by

Al atom and the arrow means the double slit peak which occurred by two colored atoms at θ = 45◦ in the

plasmon loss mapping. The peak appears between the forward focusing peak at ϕ = 0◦ and 90◦.

The loss bands from the 3rd layer show two types of peak, strong peaks at ϕ = 0◦, 90◦ and a small

peak at ϕ = 36◦ and 54◦ in Figure 4.3 (a). The strong peaks are due to the forward focusing peak scattered

by the atoms of the 1st layer and the 2nd layer linearly arranged in these directions. The small peak is

due to the double slit effect between the 1st and 2nd layers.

Figure 4.4 (b) shows the schematic view of the photoemission at θ = 45◦, ϕ = 36◦ and 54◦, and

the mapping of the plasmon loss emitted from the 3nd layer in Al single crystal. The double slit peaks

occurred between orange circles in the 1st and the 2nd layer. The direction of the atom in 2nd layer is

equivalent to θ = 45◦ and ϕ = 0◦ and that in the 1st layer is equivalent to θ = 36◦ and ϕ = 45◦ in the

angle scanning. In the plasmon loss mapping, the peaks occurs between the orange circled peak occurred

the forward focusing peak of the 1st and 2nd layer atoms.

The loss band from the 4th layer shows small forward focusing peaks and relatively high peaks at

ϕ = 30◦ and 60◦ in Figure 4.3. These peak occurred by the effect of Kikuchi electrons, which are Bragg

reflected from mirror-index crystal planes and emphasized by multiple scattering waves from atoms.

These peaks appears at experimental result [34]. Intensities of the loss band much smaller than the 3rd

one because of the damping by the mean free path.

The forward focusing peak almost disappeared in the plasmon loss features from the 5th layer. This
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Figure 4.5: Depth profiles of the 1st bulk plasmon loss intensities excited from the Al 2s levels. The
results are shown for those calculated at ϕ = 0◦, 30◦, 36◦, 45◦. The incident photon energy is 307 eV.

is because of the defocusing effect which occurs attenuation by multiple scattering in several atoms. The

peaks by Kikuchi electrons can be seen at ϕ = 30◦ and 60◦ in the plasmon loss band.

Figure 4.5 shows the depth profiles of the Al 2s single loss plasmon intensities detected in ϕ = 0◦,

30◦, 36◦,45◦ with and without full multiple scatterings. The total plasmon loss intensities without elastic

scatterings smoothly decay with depth, which are independent on ϕ. The reason why the intensity of the

2nd layer is higher than that of the 1st one is due to the extrinsic plasmon which become higher as the

emitters of photoelectrons is deeper.

Origin of peak in Figure 4.5 with ϕ = 0◦ in the < 011 > direction is the forward focusing effect. Peak

intensity with elastic scattering does not decrease constantly. Intensities of the 2nd and 3rd layer with

elastic scatterings are stronger than without elastic scatterings, on the other hand intensities of layers

under the 3rd layer are lower than intensities without elastic scatterings. This is due to the‘ focusing

effect ’and the‘ defocusing focusing effect ’. The focusing effect, which occurs when one atom

exists in forward direction of photoelectron, heightens intensities along the direction of atom. This effect

appears on plasmon-loss in the 2nd layer. The defocusing effect, which occurs when several atoms exist

in forward direction of photoelectron, heightens or weakens intensities. This effect appears on plasmon-

loss under 3rd layer: the intensity of the 3rd layer is heightened and intensities from the 4th and the 5th

layers are weaken by the defocusing effect. By the defocusing effect, the convergence is faster than that

of without elastic scatterings.
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In the depth profile with elastic scatterings in Figure 4.5, with ϕ = 30◦, a plasmon-loss peak at

this angle appears as diffraction pattern of Kikuchi electrons. The intensities with elastic scatterings are

lower than the intensities without elastic scatterings because peak intensities of this angle are reduced by

interference of elastic scattering waves. The peak intensity decreases till the 3rd layer and then it rise at

4th layer and later decreases.

In the depth profile with elastic scatterings in Figure 4.5 with ϕ = 36◦, intensity decreases till the 2nd

layers and peak appears at the 3rd layers and then decreases later. The large intensity at the 3rd layer is

due to the double slit effect.

In the depth profile with elastic scatterings in Figure 4.5 with ϕ = 45◦, intensities at the 1st and the

2nd layers are strong and decrease under the 3rd layer. The large intensity at the 2nd layer is due to

the double slit effect. Rapid decrease from the 3rd layer shows that the peaks of diffraction are easy to

disappeared than the peaks by the forward focusing effect.
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Figure 4.6: Azimuthal scans of the 1st bulk and surface plasmon loss from Al (001) surface calculated
by use of full multiple scatterings.

Figure 4.6 shows the differences between ϕ scans of bulk plasmon loss and that of surface plasmon

loss. In this study, bulk and surface plasmon energy is evaluated as 16.6 eV and 12.4 eV. The lowest

value of peak intensities the surface plasmon is higher than that in the bulk plasmon. Comparing the

feature of the bulk plasmon, the peak intensity at ϕ = 45◦ is relatively high in surface plasmon. Surface

plasmon-loss intensity is dominantly attributed to photoelectrons from surface layers comparing to that

of bulk plasmon. The behaviors of surface plasmon-loss have similarities with the 1st layer and the 2nd
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Figure 4.7: The normalized azimuthal scan of main peak and the 1st bulk plasmon loss excited from the
Al 2s levels. The polar angle is set to θ = 45◦. The incident photon energy is 307 eV.

Figure 4.7 is shown the normalized azimuthal angle scans of the main peak and the 1st plasmon loss

from Al single crystal. The lowest value of peak intensities the main peak is higher than that in the bulk

plasmon. The top of forward focusing peak splits over and the peak shift of small peaks occurred. This

is because the peak intensity from the surface layer is relatively high in the calculation of the main peak.

Figure 4.8: (a) The schematic view of the calculation setup. (b) The model cluster for Al (001) surface.
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Figure 4.8 (a) shows the schematic view of the setup for the comparison of high and low photon

energy calculation. The calculation condition is same with Figure 4.1 except the model. We use the

smaller model including 116 atoms (eight layers) shown in Fig. 4.8 (b).
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Figure 4.9: Azimuthal scans of the 1st bulk plasmon loss from Al (001) surface. The incident photon
energy of solid line is 307 eV and that of dotted line is 607 eV.

Figure 4.9 shows the ϕ scans of plasmon-loss which compare the one where the photoelectron kinetic

energy energy is 185 eV and the other where it is 485 eV. The plasmon-loss of 500 eV have prominent

peaks at ϕ = 0◦, 90◦ and small peaks at 23◦, 45◦, 67◦ with slight peaks appear between small peaks.These

peaks are attributed to the forward focusing effect and the diffraction pattern respectively, as is the case

with 185 eV. The intensities of prominent peaks are larger than that of 185 eV because more photoelec-

trons from deep layers are detected by increasing their mean free path. The number of peaks increase

and the peak widths are narrower than that of 185 eV. This is because diffraction pattern become more

complicated by increasing photoelectron kinetic energy.

4.4 Conclusion

In this paper, we have calculated the azimuthal scan of the plasmon loss associated with Al 2s pho-

toemission using the quantum Landau formula that includes elastic scatterings before and after losses.

The azimuthal scans with elastic scattering well replicated the previous experimental one whereas these
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without elastic scatterings could not. The azimuthal scans separated by layers clearly show the influence

of the ’forward focusing effect’ and ’double slit effect’. The depth profiles of peak intensities on the

direction of < 011 > have peaks as a result of the focusing effect and the intensities decreases by the

defocusing effect as the emitter exists deeper. The double slit peak appeared between atoms near the

emitters. The differences of structure in azimuthal scans can be seen in bulk and surface plasmon peaks.

This is because surface plasmon occurs near surface. The forward-scattering peaks became strong as

the photoelectron kinetic energy energy became high due to the increase of the photoelectron from deep

layers.



Chapter 5

Conclusion

We have theoretically studied the energy dependence of surface and bulk plasmon losses in Li 1s

photoemission spectra and the azimuthal angular dependence of surface and bulk plasmon losses in Al

2s photoemission spectra. Here, full multiple scatterings of photoelectrons are taken into account before

and after plasmon losses within the quantum Landau formula, which can describe overall features of

the photoemission bands. We discussed depth profile and energy dependence in the calculation of one

plasmon loss of Li solid. Comparing the depth dependence with elastic and inelastic scattering, we found

that the intensity of plasmon loss with elastic scattering is affected by defocusing effect, it follows that

the intensity become lower than that without elastic scattering. Li is light element, but it reflects the

effect of elastic scattering clearly. Comparing Li and Na, the intensity of photoelectron in Li is lower and

decay faster than that in Na.

We also discussed depth profile and azimuthal dependence in the calculation of single plasmon loss

in Al XPD. When the elastic scattering is not taken into account, the intensity of single plasmon loss

doesn’t depend on azimuthal angles. In the calculation of plasmon loss with full multiple scattering, we

acquired the similar result as the XPD plasmon loss patterns in the experiment [34]. The XPD patterns

for the single plasmon loss depend on the geometrical structure; there observed forward focusing peaks

and double slit peaks in XPD patterns for plasmon loss.

The quantum landau Formula contains the elastic scattering effect. We can calculate the intensity of

photoelectrons introducing the effect, and we found that contribution of photoelectron emission from the

shallow layers for the total emission in the calculation with elastic scattering is larger than that without

it.
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