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Abstract 

Autosomal dominant polycystic kidney disease (ADPKD) is a condition in which numerous cysts 

develop in the renal tubules and grows over the lifetime, resulting in compression of renal 

parenchyma and worsens renal function. Conventionally, total kidney volume (TKV) is bluntly 

estimated as a time cross sectional parameter of disease status. In assumption that cyst initiation rate 

and growth speed of cysts would be another prognostic marker for renal function, and regulate the 

morphological feature of the enlarged kidney, we attempted to extract a morphological feature of the 

renal cystic region quantitatively from MRI T2-weighted images. Skeletonization algorithm was 

applied to the binarized cystic region after extracting cystic regions by discriminant analysis. Then, 

morphological feature of the renal cystic region was converted to distribution pattern in number and 

size of cysts, and “branch” of adjacent cysts. The number of “branches” corresponded with the 

number of cysts, and the cumulative probability curves of “branch” length shifted according to cyst 

size distribution. The proposed method successfully quantified morphological feature of cystic region 

objectively in semi-automatic manner. The method would contribute to manage ADPKD patients in 

deciding time to start therapies after affirmation for consistency with cyst initiation rate, growth speed 

of cysts and renal function.  

 

  



Introduction 

Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary, progressive disorder that is 

characterized by a gradual increase of cysts and kidney volume with subsequent renal insufficiency1,2. 

The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) study has 

shown that total kidney volume (TKV) can predict the progression of increasing TKV and subsequent 

renal insufficiency3. However, the good correlation between TKV and the prognosis of this disease is 

confined to only when kidney enlargement advances obviously4.  

While many patients with ADPKD require hemodialysis by the fifth to seventh decade of life, some 

patients do not develop renal insufficiency in their lifetime5. There are substantial individual 

differences in the long-term progression of the disease3,4 that also make a prediction of the likelihood 

of renal insufficiency in the early stage difficult, and should be solved to reduce burden of therapies in 

both physical and economical aspects6. 

In the early stage of the disease, the renal cysts are considered to develop and enlarge without the 

increasing of TKV. In the previous report, a growth speed of cysts was indicated to be a factor 

responsible for increase of TKV7. In contrast, another report revealed that growth speed of cysts was 

rather uniform, and earlier initiation of cysts was potent prognostic factor for developing renal 

insufficiency in relation to cytogenetical findings8. However, the methods to estimate such prognostic 

factors are limited to cytogenetical investigation or use of mathematical models that require manual 

counting of numerous cysts7,8. It could be assumed that multifocal and constant sprout of cyst would 



determine morphological appearance of the kidney afterward, the affinity of cyst initiation in renal 

tubules would be diagnosed by analyzing temporal images of the enlarged kidney, especially using 

magnetic resonance (MR) T2-weighed imaging. Since the most cysts are agglutinated and their 

boundary are often unclear, shape, number of each cyst and agglutinated condition should be 

converted to numerical parameter before analysis. The skeletonization algorithm is used to convert 

shapes into a group of lines for computational recognition and tracking of objects9,10, and the 

morphological analysis using a thinning and skeletonization algorithm has been widely used for 

medical applications11-18. 

The purpose of this study is to develop a software program that contains a semi-automatic binarization 

of renal cyst regions in an MRI T2 image and a skeletonization algorithm, and validated acquired 

numerical parameters using cyst-like geometrical models and MR images of patients with ADPKD.  

 

  



Materials and Methods 

The MRI were performed as routine clinical practice using MAGNETOM Symphony (Siemens, 

Erlangen, Germany), and the images were provided for this study under approval by the local ethics 

committee of Chiba East Hospital and Chiba University Hospital. The imaging protocol was 

T2-weighted imaging (Half-Fourier single-shot turbo spin echo: HASTE), with coronal cross sections, 

slice thickness of 4 - 10 mm, and spatial resolution of 1.67 mm/pixel. One image for processing was 

selected from each image series containing the renal pedicle, and the pixel intensity was compressed 

into an 8-bit value range. The algorithm of image processing was as follows and is shown in Figs. 1 

and 2. 

The first step was image binarization of the cystic region. Since the intensity of cystic region varies 

widely and cause over and under extraction in the binarization process, a look up table (LUT) was 

applied as contrast enhancement for the mid-range values19,20. The LUT curve was generated using a 

sigmoid function as follows,  

ς(𝑥) =
256

1+e−0.05(𝑥−𝑏)
 (1) 

where ς(𝑥) is the output value against the input intensity value 𝑥, and b is a value that determines 

the inflection point of the sigmoid curve. The adjustment of b is mentioned in the next section. 

To determine a proper threshold value for cyst region extraction, outlines of both kidneys were 

pre-segmented manually by a urologist as two polygonal regions. Then a threshold value was 

determined to divide renal parenchyma and cyst into two classes using a discriminant analysis 



according to Otsu’s method. 

In the second step, the morphological analysis was processed to the binarized cystic area to quantify 

the features of the cystic region, such as density and size distribution of the renal cysts. In this study, a 

skeletonization algorithm was applied to the binary image that would show the morphological 

characteristics of the cysts without recognizing and counting individual cysts. 

 

Implementation 

MR images for processing were reviewed, selected, and compressed into 8-bit TIFF format with an 

open source DICOM viewer OsiriX. The algorithm was implemented using MATLAB® 2014b 

(Mathworks, Inc., Natick, MA, USA). On the originally designed Graphical User Interface (GUI), the 

operator can select an option of wiener-filtering, the “wiener2” function in MATLAB®, as a 

noise-reducing pre-processing step. Besides, the user can manually change the value of b in equation 

(1) with a slider interface. The GUI showed the result of contrast enhancement and binarization 

images simultaneously so that the operator can find a proper value with iterative trials. The 

discriminant analysis and skeletonization method were applied using the built-in functions 

“graythresh” and “bwmorph (skel)” in MATLAB® and Image Processing ToolboxTM, respectively. 

Finally, the software provided the skeletonized image of the renal cystic regions. The branch points 

were extracted using “bwmorph (branchpoint)” in MATLAB®, and then the points were eroded and 

subtracted from the skeletonized image to separate each branch. The length of each branch was 



calculated using a labeling algorithm. 

 

Basic evaluation with the cyst-like geometric model 

To evaluate whether the branches acquired with the proposed algorithm substitutes the morphological 

features of the cystic region, the developed software was tested with the cyst-like geometric models 

that simulate various densities (number) and sizes of renal cysts in the polycystic kidney. The 

experimental data that assume a binarized cystic region were designed on a 256×256-pixel image. The 

relationship of cysts and branches were tested using two sets of test images. The first set consisted of 

20 images with different numbers (n=10, 15, 20, 25, and 30) of uniform size of cysts (radius S:5, 

M:10, L:15, LL:20 pixels, respectively, Fig. 3). For another set of five images, a mixture of different 

sizes (M, L, LL) and a fixed number (n=30) of cysts were depicted in each image (Fig. 4). In Fig. 4, 

each image consists of (a) 20 M size and 10 L size, (b) 10 M size and 20 L size, (c) 10 M size, 10 L 

size, and 10 LL size, (d) 20 L size and 10 LL size, and (e) 10 L size and 20 LL size circles, 

respectively. Since each center of the circle was placed randomly, the circles are unintentionally 

merged that express the similar condition of the cystic regions in renal parenchyma.  

With the former image set, the linearity between number of branches and cysts, and the stability of the 

value for the cyst size were tested. While the length and number of extracted branches from the latter 

group images were displayed as the cumulative density functions (CDF) to investigate the relationship 

between branch length distribution and different mixture property of cyst size.   



Evaluation with MR images of ADPKD 

The 18 MR images of 12 patients with ADPKD were used in the present study. The patients had been 

followed up at Chiba East Hospital from August 2009 to May 2015. Their age ranged from 42 to 67 

years, and estimated Glomerular Filtration Rate ranged between 8.4 to 90.1 ml/min/1.73 m2. The 18 

series of T2-weighted coronal abdominal MR image set were processed with the proposed algorithm. 

To evaluate the processing accuracy, each cyst was manually traced by a urologist. The minimum 

countable cyst size of manual tracing was 1×1 pixel (approximately 1.9 mm2). Then, the total cyst 

area and distribution of approximate radius of each renal cyst, that is derived using the area of each 

cyst, were utilized as the reference data. 

First, the accuracy of the area of the extracted cystic region was calculated to evaluate the binarization 

process. Secondly, we evaluated whether the distribution of branch length translates the mixture 

property of the cystic size. The subjects were dichotomized by the number of cysts from the reference 

data. The larger number group tended to have numerous small cysts (Group A), while the other group 

consisted of scattered large cysts (Group B). The distribution of branch length of each subject was 

expressed as a CDF and the area under the curve (AUC) of the CDF21 was compared between the two 

groups. 

 



Results 

Evaluation with the cyst-like geometric model 

Fig. 3 revealed the results of skeletonization of the geometric cyst-like models that contained the 

same-sized circle. The dependency of the circle count on circle size was tested, and the branch tended 

to be depicted like a radius of each circle even if the circles contacted or overlaid each other. Since the 

skeletonization algorithm returned one branch point and four branches for each independent circle, the 

regression coefficient between the number of branches and circles will be four if all circles are 

isolated. As shown in Fig. 5, the numbers of branches were clearly correlated with the designed circle 

count (r=0.99, 0.99, 0.99 and 0.98, respectively from S to LL) and the regression coefficient (Coef) 

was comparable among M, L and LL (3.4, 2.7 and 2.0, respectively). On the other hand, the Coef of S 

size group stayed in a small rate of 1.3, indicating the presence of lower limit size to detect cyst 

properly.  

Next, Fig. 6 shows the CDF of the lengths of branches in each processed image appeared in Fig. 4. 

With an increase in the ratio of small-sized circles, the curve increased earlier than the pattern, which 

is filled with uniformly large circles.  

These two empirical observations showed that the count of branches should translate the number of 

the cysts (except for the very small cysts), and a number of the same length branch would correlate to 

a number of cysts with a radius same as the branch length. In addition, the CDF of branch length was 

also suggested to be useful to compare the mixture property of the cyst size. 

 



Evaluation with MR images 

The total area of the cysts of each image contoured by a urologist ranged from 85 to 330 cm² (median 

153 cm²), while the total renal cyst area measured with the binarization process ranged from 96 to 341 

cm² (median 181 cm²). These two values were strongly correlated (Fig.7, r=0.97) with a high Coef 

(0.99), however, the regression line also suggested 22.7 cm2 of positive bias of the segmented area to 

the reference. The average error was 13.7 %. In addition, the geometrical model test has shown that 

the total number of the extracted branches for each subject was positively correlated with the cyst 

count (r =0.81, Coef = 0.73) even for the cystic region in a MR image which is an imperfect circular 

composition (Fig. 8).  

Nine images included in the Group A had the significantly larger number of cysts and branches than 

the other group (Table 1). Fig.9 shows example images of both groups with skeletonization and Fig. 

10A shows the CDF against the cyst area intervals of 4 samples illustrated in Fig. 9. The renal region 

contained many small cysts in Group A (shown as red lines) in this study; thus, the curve was shown 

in the upper area than the Group B (shown as blue lines). At the same time, in the CDF of the branch 

length (Fig. 10B), the pattern of distribution corresponded to the reference. In addition, the average 

curves of each group (Fig. 11) also revealed upward shift for group A for both reference and branch 

analysis. Furthermore, the average AUC of group A was significantly greater than that of group B 

with the reference data, and marginal significance was observed in the branch data (Table 1).  

  



Discussion 

The binarization process for MR image 

In the present study, automatic extraction of cystic regions was still challenging. One reason was the 

intensity values of cysts overlap with those of renal blood vessels and liver cysts, which is a frequent 

complication in patients with ADPKD. As with the progress of the disease, kidneys often extended 

and had close contact with the liver. Since such conditions inhibit automated segmentation renal cysts, 

manual pre-segmentation of the renal region was required in the current software to separate the liver 

and kidney regions roughly. This process may be replaced with automated segmentation on the prior 

statistical information of kidney location22 for the further application. In addition, the manual contrast 

adjustment was required in the present study. As shown in Fig. 7, the consistent region of the cyst was 

successfully extracted, though the procedure was subjective manner. Limitation of the study is “one-man 

handling” of all the images that lacks verification of reproducibility by several operators. However, our 

preliminary trials suggested the proper parameter (b) in the contrast enhancement has proper range, and the 

result quality was rather deteriorated with out of range values (data not shown). Thus, we expect such 

property can minimize the variability by the operator and would roughly ensure the reproducibility of the 

result. In addition, the constant error, +13.7 % to the actual area, was attributable to the 

under-segmentation of the reference data, because the agglutinated cyst must be counted separately 

and includes systematic error at the unit conversion. Therefore, the bias was expected not to affect the 

distribution pattern of the branch length. 



The skeletonization algorithm 

The branches, extracted as a morphological descriptor in cysts, should encompass linearity between a 

total number of cysts and branches without the dependency on the cyst size and the ratio of 

agglutination. The branches were grown to the diagonal direction and generally consisted of a fewer 

number of pixel than the Euclid distance. The geometric models’ evaluation suggested the branches 

from S size (5-pixel radius) circles were undercounted comparing to the other larger circles. The 

branches with short Chebyshev distance were eliminated, because the dilated regions of each 

cross-point were used for isolating the connected branches. While, the process positively affected for 

the large cyst component to remove noisy branches. Our preliminary study observed the lower limit of 

proper branch extraction was a circle of six-pixel radius, which represents a cyst of about 15 mm in 

diameter for the MR images in this study. Since this limitation simply depends on the spatial 

resolution ability of the imaging modality, the imaging protocol optimization may improve the 

restriction. For example, the current development of MRI enabled visual detection of tiny cysts, with 

diameters of around 1 mm23.  

On the other hand, the data correlation of the geometrical data (using M, L and LL) showed Coef=2.7 

and r=0.99 for M, L, and LL data, and Coef =2.3 and r=0.57 for the MR data after the exclusion of the 

data under limitation, respectively. The similarity of two regression coefficient also suggested the 

dependency of number of branch lines on both the cyst size and the agglutinated ratio.  

For these reasons, the distribution of branch length may under-evaluate the mixture rate of small cyst 



and is discussed further in a following section. 

 

Effect of CDF & AUC  

The CDF of the branch length was used to show the mixture pattern of cyst size and compare them 

among the different TKV. As shown in Fig. 11, the CDF curve of the branch lines has implied a 

method to identify the mixture pattern of the cyst size as well as the manually counted data. Though 

the difference between the curves was not statistically significant, it is attributable to small sample 

size and separation method using the median value of number of cysts. Besides, differences between 

groups become rather small at the short branch length region. That might be resulted from the 

miscounting error of branches in tiny cysts. Thus, the improvement of algorithm to count the short 

branches consistently would show the difference more clearly between the different cyst growth 

patterns.  

These results would afford us to consider that the CDF comparison would be an indicator to track the 

chronological behavior of the cysts. In patients with high cyst initiation rate, the CDF curve would 

shift to the left, and in the case of rapid growth speed of cyst, the CDF curve would shift to the right. 

Cyst growth parameters such as cyst initiation rate and growth speed would not change over a 

lifetime8. Though changes of cysts on MR images over subsequent years are generally small and 

difficult to recognize visually, we expect that the CDF pattern would be potent to quantify cyst growth 

parameters combined with the statistical analysis24. Besides, CDF pattern describe personalized 



character of cysts’ growth without manually counting and would add prognostic information at TKV 

measurement. 

Further studies were required to track and analyze the chronological CDF changes in various 

progression pattern of ADPKD using prospective protocol and/or animals. 

 

  



Conclusion 

A skeletonization algorithm was applied to renal MR images in patients with ADPKD. Distribution of 

branch length showed a mixed style of cyst size without tracing each cyst and would enable detection 

of morphological and chronological changes of renal cysts to help prediction of the prognosis of renal 

function in these patients. 
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Figure 1. The image processing algorithm 

 

 

 

  



Figure 2. Steps of skeletonization(A) Original MR image, (B) Renal cystic 

region obtained by binarization, (C) Extracted branches, (D) 

Magnified part of (C). Orange lines are branches, and branch points 

are depicted as green dots. 

 

 

  



Figure 3. The cyst-like geometric models of uniform size and different numbers 

of circles with extracted skeletons 

 

  



Figure 4. The cyst-like geometric models consist of 30 various sized circles with 

extracted skeletons  

 

 

  



Figure 5. Relationship between number of circles and number of branches 

Radius of circles:  S 10 pixels, M 20 pixels, L 30 pixels, and LL 40 

pixels 

 

 

  



Figure 6. The cumulative probability curves of the branch length processed  

from Fig.4. 

 

 

  



Figure 7. Relationship between the total cyst area measured manually and by 

the proposed method and the reference value (correlation coefficient 

0.97, p<0.01) 

 

 

  



Figure 8. Relationship between number of cyst and number of branches  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 9. Differences of skeletonization results by morphological characteristics 

of renal cysts in MR images. Group A is the images in which the 

number of cyst was more than the average and Group B includes the 

other images. 

 

 

 

  



Figure 10. Distribution pattern of cysts in the four samples in Fig.8 using results 

of (A) manual counting and (B) skeletonization. Red and blue lines 

correspond to Group A and B in Fig.8, respectively. 

 

  



Figure 11. Difference in the average distribution pattern of cysts in all 18 

samples in (A) manual counting and (B) skeletonization. Color of 

lines corresponds to Fig. 9. 

 

 

  



Table 1. Statistical comparison between the separated groups of number of cyst 

and branches and AUC of cyst area and branch length. 
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