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Abstract 

Our recent studies of microRNA (miRNA) expression signatures 

of prostate cancer (PCa) showed that 6 miRNAs (specifically, 

miR-26a, miR-26b, miR-29a, miR-29b, miR-29c and miR-218) were 

markedly reduced in cancer tissues. Moreover, ectopic expression 

of these miRNAs suppressed PCa cell aggressiveness, indicating 

that these miRNAs acted in concert to regulate genes that 

promoted metastasis. Genome-wide gene expression analysis and in 

silico database analysis identified a total of 35 candidate 

genes that promoted metastasis and were targeted by these 6 

miRNAs. Using luciferase reporter assays, we showed that the 

lysyl oxidase-like 2 (LOXL2) gene was directly controlled by 

these tumor-suppressive miRNAs in PCa cells. Overexpression of 

LOXL2 was confirmed in PCa tissues and knockdown of the LOXL2 

gene markedly inhibited the migration and invasion of PCa cells. 

Aberrant expression of LOXL2 enhanced migration and invasion of 

PCa cells. Downregulation of anti-tumor miRNAs might disrupt the 

tightly controlled RNA networks found in normal cells. New 

insights into the novel molecular mechanisms of PCa pathogenesis 

was revealed by anti-tumor miRNAs-regulated RNA networks. 
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Introduction 

The current five-year survival rate of patients with 

localized prostate cancer (PCa) is almost 100% which is 

attributed to efficacy of treatments of early stage disease.1 

Although most patients with PCa are initially responsive to 

androgen deprivation therapy, their cancers eventually become 

resistant to this mode of treatment, and they progress to 

castration-resistant prostate cancer (CRPC).1, 2 Unfortunately, 

most clinical trials for advanced PCa have shown limited 

benefits, eventually resulting in disease progression and 

metastasis.1, 2 Distant metastasis of advanced PCa is common and 

leads to significant morbidity and mortality. Therefore, we have 

proposed that current therapies for advanced PCa could be 

improved by using new genomic approaches to better understand 

the molecular mechanisms of metastasis and disease progression. 

MicroRNAs (miRNAs) are endogenous small non-coding RNA 

molecules (19~22 bases in length) that regulate the expression 

of protein-coding or protein non-coding genes in a sequence-

specific manner.3, 4 There is substantial evidence that miRNAs 

can be oncogenic or act to suppress tumours. Dysregulated 

expression of oncogenic miRNAs can disrupt the nomally 

controlled RNA networks present in normal cells and enhance the 

development of cancer.5-8 Identification of aberrantly expressed 

miRNAs in cancer cells provides important new information 

regarding the initiation, progression and metastasis of cancer 

cells.  

We have identified anti-tumor miRNAs and miRNA-mediated 

oncogenic genes in PCa cells by using our PCa miRNA expression 

signatures.9, 10 Our recent studies showed that 6 miRNAs (miR-26a, 

miR-26b, miR-29a, miR-29b, miR-29c and miR-218) were 

downregulated in PCa tissues and restoration of these miRNAs 

markedly suppressed cancer cellaggressiveness.11-13 Our data 

suggested that these 6 miRNAs act as anti-metastatic miRNAs in 

PCa cells. Therefore, we hypothesized that the genes regulated 

by these miRNAs significantly contributed to PCa metastasis. The 

aim of this study was to identify the genes targeted by these 6 



 

anti-tumor miRNAs and to investigate their functional roles in 

migration and invasion in PCa cells. 

Present study identified that a total of 35 putative 

metastasis-promoting genes were targeted by the 6 abovementioned 

miRNAs. Here, we focused on the lysyl oxidase-like 2 (LOXL2) 

gene, a member of the lysyl oxidase (LOX) family.14 The function 

of LOXL2 is to promote crosslinking of collagen and elastin in 

the extracellular matrix (ECM).15-17 Past studies showed that 

LOXL2 contributed to the regulation of extracellular and 

intracellular cell signaling pathways.15-17 Our recent studies 

demonstrated that LOXL2 was controlled by several tumor 

suppressive miRNAs and promoted cancer cell aggressiveness in 

renal cell carcinoma, head and neck cancer and lung cancer.18-20 

Furthermore, several studies demonstrated that upregulation of 

LOXL2 occurred in many types of cancers and its expression 

contributed to cancer cell metastasis.21-23 Our present data show 

that insights into the molecular mechanisms of PCa pathogenesis 

can be revealed by identification of anti-tumor miRNAs-regulated 

RNA networks. 

 

 

Materials and Methods 

Prostate cancer cell lines and RNA extraction 

Two human PCa cell lines (PC3 and PC3M) was obtained from ATCC 

(Manassas, VA, USA). The maintenance of PCa cells and RNA 

extraction procedures were described as previously.11, 24 

 

Quantitative real-time reverse transcription-PCR 

TaqMan probes and primers of LOXL2 (P/N: Hs00158757_ml; Applied 

Biosystems, Foster City, CA, USA) and GAPDH (P/N: Hs02758991_gl; 

Applied Biosystems) which was used as an internal control. PCR 

quantification method was described as previously.13, 25, 26 

 

Transfection with miRNA mimic and small-interfering RNA (siRNA) 

The miRNAs mimics were used in the present analysis: Ambion Pre-

miR miRNA precursor for hsa-miR-26a-5p (product ID: PM10249), 



 

hsa-miR-26b-5p (product ID: PM12899), hsa-miR-29a-3p (product 

ID: MC12499), hsa-miR-29b-3p (product ID: MC10103), hsa-miR-29c-

3p (product ID: MC10518) and hsa-miR-218 (product ID: AM17100). 

Following si-RNAs were used in this study: si-LOXL2 (P/N: 

HSS180848, HSS106125; Invitrogen), and negative control 

miRNA/small-interfering RNA (P/N: AM17111; Applied Biosystems). 

The procedures of transfection of miRNAs and siRNAs were 

described as previously.12, 13 

 

Selection of putative miR-26a/b, miR-29a/b/c and miR-218 

regulated targets in PCa cells 

To identify putative targets of these miRNAs, we carried out a 

combination of in silico database analysis and comprehensive 

gene expression analysis, described as previous studies.12, 13, 25 

Our strategy for identification of putative targets is shown in 

Figure 1. 

 

Immunohistochemistry and Western blotting 

A tissue microarray containing PCa, prostatic intraepithelial 

neoplasias (PIN) and prostatic hyperplastic tissues was obtained 

from Provitro (Berlin, Germany) (Cat. #401 2209, Lot #146.1 

P020212, 26-46). The information about these tissues can be 

found at http://www.provitro.com/fileadmin/provitro-

data/TMA/4012209.pdf. Tissue immunostaining of LOXL2 and scoring 

method were described previously.24, 25 

The procedures of LOXL2 Western blotting were described as 

previously.12, 13, 25 

 

Cell proliferation, migration and invasion assays in prostate 

cancer cells 

The functional significance of LOXL2 in PCa cells, we 

investigated the knockdown effects of LOXL2 on cell 

proliferation, migration and invasion assays using si-LOXL2-

transfected PC3 and PC3M cells. These assays were described as 

previously.12, 13, 25 

 



 

Plasmid construction and dual-luciferase reporter assays 

Partial wild-type sequences of the LOXL2 3′-UTR or those with 

deleted sequences of miRNAs (miR-26a/b, miR-29a/b/c and miR-218 

binding sites) were inserted in the hRluc gene in the psiCHECK-2 

vector (C8021; Promega, Madison, WI, USA). The procedure for the 

dual-luciferase reporter assay was described as previously.12, 13, 

25 

 

Statistical analysis 

Relationships between 2 or 3 variables and numerical values were 

investigated using the Mann–Whitney U test or Bonferroni 

adjusted Mann–Whitney U test. Expert StatView software, version 

4, was used in these analyses. 

 

Results 

Identification of candidate targets regulated by anti-tumor 

miRNAs in PCa cells 

To identify target genes of the 6 miRNAs, we carried out a 

combination of in silico database analysis and genome-wide gene 

expression analysis. Seed sequences of these miRNAs, miR-26a and 

miR-26b are identical, and miR-29a, miR-29b and miR-29c are 

identical (Figure 1). First, we screened putative target genes 

using the TargetScan database Release 6.2 

(http://www.targetscan.org/) and selected 334 genes that had 

putative binding sequences for these miRNAs in their 3’-UTRs. 

Next, we narrowed down the list of genes by oligomicroarray 

analysis using PC3 cells and found that 35 genes were 

downregulated (log2 ratio < 0) following transfection with miR-

26a or miR-29a or miR-218 as compared with expression levels in 

miR-control transfected cells (Table 1). In this study, we 

focused on LOXL2 because many reports showed that this gene had 

a pivotal role in cancer metastasis. Furthermore, we previously 

reported that miR-29a/b/c acted as anti-tumor miRNAs via 

targeting of LOXL2 in lung squamous cell carcinoma and renal 

cell carcinoma.18, 20  

 



 

Direct regulation of LOXL2 by anti-tumor miRNAs in PCa cells 

First, we investigated qRT–PCR and Western blotting in PC3 

and PC3M cells transfected with miR-26a, miR-26b, miR-29a, miR-

29b, miR-29c or miR-218 to investigate whether LOXL2 expression 

was downregulated by restoration of these miRNAs. The expression 

levels of LOXL2 mRNA and protein were markedly suppressed in 

transfected cells with these miRNAs (Figures 2A,B, 3A,B and 

4A,B). Next, we performed luciferase reporter assays in PC3 

cells to determine whether LOXL2 mRNA had actual target sites 

for these miRNAs. We used vectors encoding either a partial 

wild-type sequence or a sequence in which the miRNA binding 

sequence was deleted from LOXL2 mRNA. The luminescence intensity 

was reduced by co-transfection with miR-26a, miR-26b, miR-29a, 

miR-29b, miR-29c, miR-218 and the vector carrying the wild-type 

LOXL2 3’-UTR in PC3 cells (Figures 2C, 3C and 4C). 

 

Effects of knockdown of LOXL2 on cell proliferation, migration 

and invasion in PCa cell lines 

To investigate the cancer cell promoting role of LOXL2, we 

applied to loss-of-function assays using si-LOXL2 transfectants. 

Knockdown efficiency of si-LOXL2 was evaluated in PC3 and PC3M 

transfectant cells. Both mRNA and protein, expression levels of 

LOXL2 were downregulated in PC3 and PC3M cells (Figures 5A, 5B). 

XTT assays, wound-healing assays and invasion assays 

demonstrated that cell proliferation, migration and invasion 

activities were significantly suppressed in si-LOXL2 

transfectant cells (Figures 5C,D,E).  

 

Immunostaining of LOXL2 in PCa tissues 

We validated the expression levels of LOXL2 in PCa tissues 

using immunostaining. We used a tissue microarray containing 51 

PCa, 10 prostatic intraepithelial neoplasias and 10 prostatic 

hyperplastic specimens. Upregulation of LOXL2 protein was 

confirmed in the PCa tissues compared with noncancerous tissues 

(Figure 6). 

 



 

 

Discussion 

Aberrantly expressed miRNAs might disturb normally regulated 

RNA networks and contribute to cancer cell pathology. Strategies 

to identify aberrant expression of miRNA-mediated RNA networks 

are being developed as a new direction in cancer research in the 

post-genome sequencing era. Based on the miRNA expression 

signature of PCa cells, we have continued the identification of 

tumour-suppressive miRNAs and their regulated novel PCa 

metastatic pathways.10-13, 24-27 Our recent studies showed that 

restoration of anti-tumor miRNAs (miR-26a, miR-26b, miR-29a, 

miR-29b, miR-29c and miR-218) markedly suppressed PCa cell 

aggressiveness via targeting of La-related protein 1 (LARP1), 

laminin γ1 (LAMC1) and LIM and SH3 protein 1 (LASP1), 

respectively.11-13 Moreover, these miRNA-targeted genes were 

overexpressed in PCa tissues and expression of these genes 

enhanced cancer cell migration and invasion.11-13 LASP1 encodes a 

LIM motif at its N-terminus and a src homology 3 (SH3) domain at 

its C-terminus. In LASP1, the SH3 domain functions in protein–

protein interactions28, 29 and LASP1 acts as an actin-binding 

protein and overexpression of LASP1 enhancing cancer cell 

proliferation and invasion.13, 28, 30 Our present data showed that 

LASP1 is a putative candidate of these 6 anti-tumor miRNAs 

regulation, suggesting that LASP1 is a key molecule for cancer 

cell aggressiveness. 

The miR-26 family is comprised of three subtypes in the 

human genome: miR-26a-1 (chromosome 3p22.2), miR-26a-2 (12q14.1) 

and miR-26b (2q35). The seed sequences of these miRNAs are 

identical, suggesting that the miR-26 family might regulate the 

same genes in human cells (miRBase: release 21; 

http://www.mirbase.org/). Downregulation of the miR-26 family 

and its anti-tumor effects have reported in several cancers, 

such as bladder cancer, breast cancer, hepatocellular carcinoma, 

oral cancer and PCa.31-34 Our past study showed that 

downregulation of these miRNAs enhanced cancer cell migration 

and invasion in oral cancer through direct regulation of 

http://www.mirbase.org/


 

TMEM184B.35 In PCa, EZH2, a histone-lysine N-methyltransferase 

enzyme, was directly regulated by miR-26a and miR-26b.36 

Overexpression of EZH2 is observed in several cancers and 

contributes to cancer aggressiveness.36, 37  

The miR-29 family consists of four miRNAs: miR-29a, miR-29b-

1, miR-29b-2 and miR-29c. These miRNAs are formed cluster miRNA 

on two human chromosome loci: miR-29b-1 and miR-29a in 7q32 and 

miR-29b-2 and miR-29c in 1q32 (miRBase: release 21; 

http://www.mirbase.org/). Our miRNA expression signatures showed 

that all member of miR-29 family were downregulated in several 

cancers and that restoration of these miRNAs markedly inhibited 

cancer cell aggressiveness via targeting of ECM-integrin 

pathways.12, 38 Anti-tumor roles of the miR-29 family were 

demonstrated in several cancers.12, 18, 20, 38, 39 Interestingly, 

recent studies demonstrated molecular mechanisms of silencing of 

miR-29 family expression in cancer cells.40 The genome structure 

of miR-29b-1/miR-29a promoter region contains two E-box (MYC-

binding) sites and four NF-κB-binding sites such that 

overexpressed Myc and NF-κB inhibited the expression of miR‑29b-

1/miR-29a at the transcriptional level.40 Overexpression of Myc 

was frequently observed in advanced PCa,41 and this phenomenon 

might enhance PCa cell progression and metastasis.  

The miRNA database indicates that the miR-218 family is 

distributed between 2 human chromosomal loci: miR-218-1 at 

4p15.31 and miR-218-2 at 5q35.1. Likewise miR-26a, miR-26b and 

miR-29-family, anti-tumor function of miR-218 have been 

described in many types of cancers.13, 42-44 Our past studies 

demonstrated that loss of miR-218 enhanced cancer cell migration 

and invasion through dysregulation of genes involved in the 

focal adhesion pathway, including CAV2, LAMA3 and LASP1.13, 42, 44 

Two miRNAs, miR-218-1 and miR-218-2, are located on the introns 

of SLIT2 and SLIT3 genes, respectively, and expression control 

depends on the same promoter in their host genes.45 Several 

reports showed that the promoter regions of these genes were 

frequently methylated in cancer cell lines and clinical 

specimens.45, 46 Thus, hyper-methylation of their promoter regions 

http://www.mirbase.org/


 

caused silencing of miR-218-1 and miR-218-2 expression in cancer 

cells. 

The highly invasive properties of PCa cells cause distant 

metastasis in patients with PCa, and metastasis is the primary 

reason for the high mortality of advanced PCa.1, 2 Studying the 

non-coding RNA networks could reveal the molecular mechanisms 

underlying metastatic pathways and facilitate the development of 

novel therapies to block progression of the disease. In this 

study, we hypothesized that several anti-tumor miRNAs (the miR-

26a/b, the miR-29 family and miR-218) coordinately regulate 

genes that have key roles in PCa metastasis. 

    Here, we focused on the LOXL2 gene as a putative regulatory 

target of these anti-tumor miRNAs in PCa cells. Recently, we 

showed that LOXL2 was directly regulated by the miR-29a, miR-29b 

and miR-29c and its expression promoted cancer cell 

aggressiveness in renal cell carcinoma, non-small cell lung 

cancer and head and neck squamous cell carcinoma.18-20 Present 

data demonstrated that 6 anti-tumor miRNAs (miR-26a, miR-26b, 

miR-29a, miR-29b, miR-29c and miR-218) directly regulated LOXL2 

in PCa cells. Moreover, overexpression of LOXL2 was confirmed in 

PCa tissues and knockdown of LOXL2 markedly impaired cancer cell 

aggressiveness. Notably, we showed that LOXL2 regulation by 

these miRNAs was also observed in HNSCC cells.20 

The lysyl oxidase (LOX) protein family is comprised of five 

proteins (LOX and LOXL1-L4). Their primary functions appear to 

be covalent crosslinking of collagen to elastin in the ECM.14-17 

Overexpression of the LOX family was observed in several 

cancers,18-20 indicating that dysregulated expression of the LOX 

family enhances ECM deposition and subsequent tissue stiffness. 

Overexpression of ECM component proteins is frequently observed 

in many types of cancer tissues. This aberration promotes cancer 

cell aggressiveness by dysregulation of cell adhesion and ECM 

remodeling.14 Thus, aberrant expression of the LOX family is a 

trigger of malignant transformation of cancer cells through ECM 

dysregulation. Several studies indicated that high expression 

LOXL2 was correlated with poor prognosis in patients with 



 

gastric, breast, lung and laryngeal cancers.19-22 Interestingly, 

transcriptional control of LOXL2 was regulated by HIF1. LOXL2 

directly interacts with transcriptional factor SNAIL1 in the 

nucleus and repressed expression of E-cadherin.47, 48 Thus, 

hypoxic conditions induced LOXL2 expression, and the 

accumulating LOXL2 enhanced the aberrant activation of 

epithelial-mesenchymal transition (EMT) signaling in cancer 

cells. 

In conclusion, direct regulation of LOXL2 by anti-tumor 

miRNAs (miR-26a, miR-26b, miR-29a, miR-29b, miR-29c and miR-218) 

was observed in PCa cells. Overexpression of LOXL2 was validated 

in PCa tissues and aberrantly expressed LOXL2 enhanced PCa cell 

aggressiveness. Understanding of novel RNA networks regulated by 

the anti-tumor miRNAs may lead to a better understanding of PCa 

metastasis. 
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Figure Legends 

Figure 1.  

Workflow of the strategy for selection of putative target genes 

regulated by tumor-suppressive miRNAs (miR-26a/b, miR-29s and 

miR-218) in PCa. We screened candidate targets using the 

TargetScan database. In total, 334 genes were identified as 

putative targets containing binding sites for miR-26a/b, miR-29s 

and miR-218. Among these, 35 genes were downregulated in miR-

26a, miR-29a and miR-218 transfected PC3 cells  

(log2 ratio < 0). 

The sequences of miR-26a/b, miR-29 family and miR-218 miRNAs. 

Seed sequences are shown by red letters. 

 

Figure 2. 

Direct regulation of LOXL2 by miR-26a and miR-26b in PCa cell 

lines. 

(A) LOXL2 mRNA expression 72 h after transfection with miR-26a 

or miR-26b. GAPDH expression was used for normalization. *, P < 

0.0001.  

(B) LOXL2 protein expression 72 h after transfection with miR-

26a/b. GAPDH was used as a loading control.  

(C) The miR-26a and miR-26b binding site in the 3’-UTR of LOXL2 

mRNA. Luciferase reporter assays were performed using vectors 

that included (WT) or lacked (DEL) the wild-type sequences of 

the putative miR-26a and miR-26b target site. *, P < 0.0001. 

 

Figure 3. 

Direct regulation of LOXL2 by miR-29a, miR-29b and miR-29c in 

PCa cell lines. 

(A) LOXL2 mRNA expression 72 h after transfection with miR-29s. 

GAPDH expression was used for normalization. *, P < 0.0001.  

(B) LOXL2 protein expression 72 h after transfection with miR-

29s. GAPDH was used as a loading control.  

(C) The miR-29s binding site in the 3’-UTR of LOXL2 mRNA. 

Luciferase reporter assays were performed using vectors that 

included (WT) or lacked (DEL) the wild-type sequences of the 



 

putative miR-29s target site. *, P < 0.0001. 

 

Figure 4. 

Direct regulation of LOXL2 by miR-218 in PCa cell lines. 

(A) LOXL2 mRNA expression 72 h after transfection with miR-218. 

GAPDH expression was used for normalization. *, P < 0.0001. **, 

P = 0.0002. 

(B) LOXL2 protein expression 48 h after transfection with miR-

218. GAPDH was used as a loading control.  

(C) The miR-218 binding site in the 3’-UTR of LOXL2 mRNA. 

Luciferase reporter assays were performed using vectors that 

included (WT) or lacked (DEL) the wild-type sequences of the 

putative miR-218 target site. Renilla luciferase assays were 

normalized to firefly luciferase values. *, P < 0.0001. 

 

Figure 5. 

Effects of si-LOXL2 transfection on cell proliferation, 

migration, and invasion in PCa cell lines. 

(A) LOXL2 mRNA expression levels were measured by qRT-PCR 72 h 

after transfection with 10 nM si-LOXL2. GAPDH was used for 

normalization. *, P < 0.0001. 

(B) LOXL2 protein expression 72 h after transfection with 10 nM 

si-LOXL2. GAPDH was used as a loading control.  

(C) Cell proliferation was determined by XTT assay 72 h after 

transfection with 10 nM si-LOXL2. *, P < 0.0001. 

(D) Cell migration activity was determined by migration assay 48 

h after transfection with 10 nM si-LOXL2. *, P < 0.0001. 

(E) Cell invasion activity was determined by Matrigel invasion 

assay 48 h after transfection with 10 nM si-LOXL2. *, P < 

0.0001. 

 

Figure 6. 

Immunohistochemical staining of LOXL2 in PCa clinical specimens. 

LOXL2 was expressed more strongly in several cancer lesions, 

weakly stained in PIN lesions than in normal tissues. (A) 

Prostate cancer, pT4N0, Grade3a, Gleason score 3+4; (B) Prostate 



 

cancer, pT2bN0, Grade3a, Gleason score 4+3; (C) PIN; (D) normal 

prostate tissue. (E) Quantification of LOXL2 expression. 

Expression of LOXL2 was upregulated in PCa and PIN specimens 

compared with normal prostate tissues. 

 

Table 1. 

Putative target genes regulated by miR-26a, miR-29a and miR-218 

in PCa cells. 

 

Table 2. 

Immunohistochemical status and characteristics of PCa, PIN and 

normal prostate cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table1.  Putativ e target genes regulated by  miR-26a , miR-29a  and miR-218  in PCa cells.

conserv ed poorly conserv ed poorly conserv ed poorly

HAS3 NM_001199280 hy aluronan sy nthase 3 -1.56 -2.10 -3.25 1 0 3 0 0 1

LOXL2 NM_002318 ly sy l oxidase-like 2 -2.09 -2.18 -2.12 2 0 1 1 0 1

LASP1 NM_006148 LIM and SH3 protein 1 -0.51 -0.49 -1.96 1 0 2 0 1 2

SLC4A7 NM_003615 solute carrier f amily  4, sodium bicarbonate cotransporter, member 7 -0.30 -1.35 -1.95 0 1 0 1 0 1

LIF NM_002309 leukemia inhibitory  f actor (cholinergic dif f erentiation f actor) -1.02 -0.13 -1.91 1 0 1 0 0 1

VAMP7 NM_001145149 v esicle-associated membrane protein 7 -0.43 -1.24 -1.86 0 2 1 0 2 1

TRAK2 NM_015049 traf f icking protein, kinesin binding 2 -0.18 -0.66 -1.67 0 1 0 1 0 1

RBBP9 NM_006606 retinoblastoma binding protein 9 -0.80 -0.32 -1.57 0 2 0 1 0 3

EMP2 NM_001424 epithelial membrane protein 2 -0.61 -0.32 -1.42 0 1 1 0 0 1

PTP4A1 NM_003463 protein ty rosine phosphatase ty pe IVA, member 1 -0.73 -0.12 -1.05 1 0 1 0 2 0

ZHX3 NM_015035 zinc f ingers and homeoboxes 3 -0.04 -0.88 -0.95 0 1 1 0 0 3

EPB41L1 NM_012156 ery throcy te membrane protein band 4.1-like 1 -0.57 -0.64 -0.73 0 1 0 2 1 0

SP100 NM_001080391 SP100 nuclear antigen -0.30 -0.31 -0.72 0 1 0 1 0 1

LARP4B NM_015155 La ribonucleoprotein domain f amily , member 4B -0.54 -0.22 -0.69 2 0 1 0 1 0

VPS13D NM_015378 v acuolar protein sorting 13 homolog D (S. cerev isiae) -0.26 -1.31 -0.55 0 1 0 1 0 1

PBX2 NM_002586 pre-B-cell leukemia homeobox 2 -0.48 -0.53 -0.54 0 1 0 1 1 0

NRAS NM_002524 neuroblastoma RAS v iral (v -ras) oncogene homolog -0.01 -0.71 -0.52 1 2 1 0 0 4

ZNF592 NM_014630 zinc f inger protein 592 -0.19 -0.79 -0.47 0 1 0 1 0 1

MYO5A NM_000259 my osin VA (heav y  chain 12, my oxin) -0.09 -0.34 -0.44 0 1 0 2 0 1

ACER3 NM_018367 alkaline ceramidase 3 -0.64 -0.02 -0.42 1 2 0 1 0 1

WDR33 NM_018383 WD repeat domain 33 -0.52 -0.24 -0.42 1 1 0 2 1 0

HDAC4 NM_006037 histone deacety lase 4 -0.69 -0.50 -0.37 0 1 1 0 0 1

PIKFYVE NM_015040 phosphoinositide kinase, FYVE f inger containing -0.47 0.00 -0.27 0 3 0 1 0 1

DTWD2 NM_173666 DTW domain containing 2 -0.18 -0.71 -0.27 0 1 1 0 0 1

SERBP1 NM_001018067 SERPINE1 mRNA binding protein 1 -1.25 -0.73 -0.27 2 1 1 0 1 0

RBM33 NM_053043 RNA binding motif  protein 33 -0.34 -0.72 -0.27 0 1 0 1 0 1

REPS2 NM_001080975 RALBP1 associated Eps domain containing 2 -0.76 -0.76 -0.24 1 1 1 0 2 2

GTF2H5 NM_207118 general transcription f actor IIH, poly peptide 5 -0.10 -0.02 -0.21 0 1 0 1 0 1

CACNA1C NM_000719 calcium channel, v oltage-dependent, L ty pe, alpha 1C subunit -0.15 -0.02 -0.20 1 1 0 2 0 1

EXD2 NM_001193360 exonuclease 3'-5' domain containing 2 -1.16 -0.03 -0.15 0 1 0 1 1 0

USP31 NM_020718 ubiquitin specif ic peptidase 31 -0.88 -0.56 -0.14 0 1 1 0 1 1

TDP1 NM_001008744 ty rosy l-DNA phosphodiesterase 1 -0.41 -0.08 -0.14 0 1 0 1 0 1

YPEL1 NM_013313 y ippee-like 1 (Drosophila) -0.24 -0.37 -0.14 1 3 0 1 0 1

IQCJ NM_001042706 IQ motif  containing J -0.13 -0.11 -0.14 0 1 0 1 0 1

LOX NM_001178102 ly sy l oxidase -0.25 -1.06 -0.03 0 1 3 0 1 1

miR-26ab miR-29abc miR-218
Gene sy mbol

Representativ e

 transcript
gene name

miR-26a

 transf ection

miR-29a

transf ection

miR-218

transf ection



 

 

Table 2. Clnical characteristics and IHC score of LOXL2 in tissue microarray   

No. Diagnosis Age  Gleason score Stage pT Stage pN IHC score of LOXL2 

1 PCa 64 4+3 3b 0 5 

2 PCa 67 3+4 2b 0 5 

3 PCa 58 3+4 2b 0 5 

4 PCa 63 7 3b 0 6 

5 PCa 65 3+3 2b 0 5 

6 PCa 61 4+4 3b × 5 

7 PCa 62 3+4 2b × 4 

8 PCa 66 4+4 2b × 4 

9 PCa 61 3+4 3a × 4 

10 PCa 74 4+3 2b × 5 

11 PCa 54 3+4 2c × 5 

12 PCa 68 3+4 3a 0 5 

13 PCa 58 3+4 3a 0 5 

14 PCa 65 3+3 2a 0 5 

15 PCa 77 3+4 4 0 5 

16 PCa 58 3+4 3a 0 5 

17 PCa 50 4+3 2b 0 5 

18 PCa 53 3+3 2b 0 5 

19 PCa 59 4+5 3a 0 5 

20 PCa 70 2+3 2b 0 5 

21 PCa 65 5+4 3a 0 4 

22 PCa 57 3+5 2b 0 4 

23 PCa 68 4+4 2b 0 5 

24 PCa 58 3+3 2b 0 5 

25 PCa 63 3+4 2b 0 5 

26 PCa 56 3+4 2b 0 5 

27 PCa 63 5+3 3a 0 3 

28 PCa 64 3+5 3a 0 5 

29 PCa 60 3+4 2b 0 5 

30 PCa 60 3+3 3a 0 4 

31 PCa 57 3+2 2b 0 4 

32 PCa 50 3+3 2a 0 5 

33 PCa 68 3+3 3a 0 4 



 

34 PCa 65 3+4 3b 1 3 

35 PCa 69 5+5 3a 1 3 

36 PCa 51 2+3 2b 0 4 

37 PCa 62 3+3 3a 0 5 

38 PCa 61 3+4 3a 0 4 

39 PCa 53 4+4 3b 1 3 

40 PCa 56 4+3 2b 0 4 

41 PCa 59 2+3 2b 0 3 

42 PCa 61 3+4 2b 0 4 

43 PCa 62 3+4 3b 1 3 

44 PCa 66 3+3 3a 0 5 

45 PCa 62 3+3 2b 0 5 

46 PCa 56 3+3 2b 0 5 

47 PCa 58 3+3 3a 0 5 

48 PCa 66 5+4 3a 0 4 

49 PCa 55 3+4 3a 0 4 

50 PCa 67 2+3 2b 0 4 

51 PCa 61 3+5 2b 0 4 

52 PIN 59 - - - 0 

53 PIN 58 - - - 2 

54 PIN 62 - - - 0 

55 PIN 51 - - - 2 

56 PIN 58 - - - 3 

57 PIN 68 - - - 3 

58 PIN 64 - - - 4 

59 PIN 56 - - - 5 

60 PIN 61 - - - 3 

61 PIN 51 - - - 4 

62 non-PCa 70 - - - 4 

63 non-PCa 63 - - - 0 

64 non-PCa 62 - - - 2 

65 non-PCa 81 - - - 0 

66 non-PCa 67 - - - 2 

67 non-PCa 76 - - - 0 

68 non-PCa 66 - - - 3 

69 non-PCa 69 - - - 3 



 

70 non-PCa 63 - - - 3 

71 non-PCa 71 - - - 4 
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