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ABSTRACT: Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, 

fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance 

and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old 

male Sprague-Dawley rats divided into six groups based on the graft materials (n=10 per group): 

sham control, artificial bone (A hydroxyapatite–collagen composite) –alone, autologous bone, 

artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + 

human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks 

after the surgery, we investigated their bone union–related characteristics including amount of 

bone formation, histological characteristics of trabecular bone at remodeling site, and 

biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed 

at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups 

(p<0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. 

Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP 

accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the 

bone with thinner, more tangled, and rigid trabecular bone.  

Statement of clinical significance: FD-PRP provides bone union ability comparable to that of 
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fresh PRP and BMP, and can be prepared in advance safely and cheaply. 

INTRODUCTION 

In orthopedic surgery for conditions such as fracture and unstable spinal pathology, stabilization 

of the unstable segments through rigid bone union is very important and is one of the major 

objectives of arthrodesis surgery.1-3  

Generally, postoperative bone union takes at least a few weeks. However, occasional delayed and 

inadequate bone union causes pseudoarthrosis, which can lead to chronic instability, and pain as 

well as poor activities of daily living and quality of life.4 Thus, accelerated postoperative bone 

union is urgently needed. Among the materials used for bone union, platelet-rich plasma (PRP) 

has the potensial, with its known acceleration for tissue healing in the field of plastic surgery and 

dentistry.5-7 However, only a few studies have reported on its efficacy on bone union in 

orthopedic surgery8,9. 

 In our previous studies, PRP administration in rat spinal fusion models significantly led 

to faster bone union without any complication.10,11 This superior ability to accelerate bone fusion 

can be applied to other orthopedic arthrodesis surgeries12-15. However, one of the possible barriers 

to the clinical application of fresh PRP is its short half-life of merely several days16 . To 

overcome such issues, freeze-dried PRP (FD-PRP) has been suggested.17 
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 FD-PRP is reported to retain growth factors after preparation,18 and clinical trial 

combined with bone allograft has been performed to report its usefulness for periodontal 

endosseous defects19. However, the clinical application of FD-PRP in spinal arthrodesis surgery 

has not yet been investigated. Furthermore, there are no reports of clinical applications of FD-

PRP mixed with artificial bone materials such as hydroxyapatite and collagen, which are 

generally used as carriers and scaffolds in arthrodesis surgeries for more effective bone union. 

 In the current study, we examined the efficacy and properties of FD-PRP in bone union 

with artificial bone materials using lumbar arthrodesis models in rats. 

 

MATERIALS AND METHODS 

Experimental Animals 

Male Sprague-Dawley rats weighing 250 to 300 g were used in this study. All protocols for 

animal procedures were approved by the ethics committees of Chiba University and followed the 

National Institutes of Health Guidelines for the Care and Use of Laboratory Animals (1996 

revision). The protocols for experimental animals were based on our previous study.10  

FD-PRP Preparation 

In the current study, we used allograft blood for the PRP instead of autograft. Ten out of a total of 
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60 rats were used as blood donors for PRP preparation. After they were anesthetized, 

approximately 15 mL of fresh blood was transcardially obtained using a syringe containing 2 mL 

of acid–citrate–dextrose solution A (Terumo, Tokyo, Japan) to prevent coagulation. The whole 

blood was centrifuged (KN70; Kubota, Tokyo, Japan) at 1500 rpm for 10 minutes. Subsequently, 

the plasma fraction was separated from the red blood cells and further centrifuged at 3000 rpm 

for 10 minutes to pellet the platelets as previously described6. The pelleted platelets were 

collected and separated from the supernatant platelet-poor plasma (PPP). PRP was generated by 

mixing the platelets with 2.5 mL of PPP. 

 Each of the PRP aliquots was weighed prior to freeze-drying. The test tubes were then 

rotated in an ethanol bath at 60°C for membranous freezing (preliminary freezing) and then 

immediately frozen at 30°C for 4 h. The tubes were then attached to a vacuum freeze-dryer to 

complete the process and stored for 8 weeks at 4C. The FD-PRP samples were resuspended in 

distilled water prior to assessment. To avoid any changes in component concentrations, the 

weight after dissolving was matched to the weight before freeze-drying (Figure 1A). 

 PRP requires activation before application by adding calcium chloride solution (1 

mEq/mL; Otsuka Pharmaceutical, Tokyo, Japan) and thrombin solution (Mochida 

Pharmaceutical, Tokyo, Japan) to each FD-PRP sample. Each amount is one-tenth of the amount 



 

 

6 

of FD-PRP. The platelet counts in the whole blood, fresh PRP, and FD-PRP were determined with 

a hematology analyzer. 

Lumbar Posterolateral Fusion Models 

Spinal surgery was performed in 50 eight-week-old male Sprague-Dawley rats. Ten rats were 

allocated to the sham group, whose L4–6 transverse processes only exposed but received no 

treatment and 50 rats underwent bilateral posterolateral fusion (PLF) . We divided the 50 rats into 

groups of 10 based on the graft material used: artificial bone group (artificial bone–alone), 

autologous bone group, artificial bone treated with fresh-PRP (fresh-PRP) group, and artificial 

bone with FD-PRP (FD-PRP) group. Positive control was also prepared using human 

recombinant bone morphogenetic protein 2 and artificial bone (BMP group). A hydroxyapatite –

collagen composite, Refit® (Hoya Corporation, Tokyo, Japan), was used as the artificial bone 

graft substitute. The FD-PRP group used a mixture of 0.5 mL Refit and 0.5 mL gel-activated FD-

PRP (Figure 1B and 1C). In the BMP group, 0.5 mL Refit and 5 μg of BMP (Sigma-Aldrich 

Corporation, St. Louis, MO, USA) were mixed and transplanted20,21. In the autologous bone 

group, the rats were implanted with ground spinous processes of T10–L2. All of the various graft 

types were standardized to equal volumes. Corticotomy was not performed in any group. 

 The bilateral posterolateral lumbar spine in each rat was exposed through a midline skin 
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incision followed by two paramedian fascial incisions using blunt dissection to expose the 

bilateral lamina and the transverse processes of L4–L6 (Figure 1D). These graft materials had 

equal volume measured by 500 mm3 of Cryomold (Sakura Finetek Japan Corporation, Tokyo, 

Japan). 

Determination of Growth Factor Concentrations 

To confirm the activity of PRP, concentrations of platelet-derived growth factor BB (PDGF-BB) 

and transforming growth factor β1 (TGF-β1) in blood, activated PRP, and activated FD-PRP were 

measured with enzyme-linked immunosorbent assay (ELISA) technique using a Quantikine 

ELISA kit (R&D Systems, Minneapolis, MN, USA). The immunoassays were performed 

following the manufacturer’s instructions. 

Radiographic Examination (Evaluation of Bone Union) 

To evaluate bone union, rats were anesthetized with sodium pentobarbital (40 mg/kg, i.p.). Then 

lumbar radiographs were obtained in the anteroposterior aspect at 4 and 8 weeks after the surgery 

(Bruker Corp., Billerica, MA, USA). Bone union was considered to be achieved when the 

transverse processes of L4–L6 were bridged. Bone union was determined by three independent 

observers who were blinded to the experiment, and union was accepted if all three observers 

agreed. 
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Histological Examination 

After radiographic examination at 8 weeks, we randomly selected half of the rats in each group 

(n=5 per group), which were perfused transcardially with 300 mL of 4% paraformaldehyde in 

phosphate buffer (0.1 M, pH 7.4). The L4–L6 lumbar vertebrae were harvested and immersed in 

4% paraformaldehyde phosphate buffer solution. The coronal sections including the transverse 

processes of each level were histologically evaluated for the extent bone formation and intrabone 

structure (trabecular bone). 

Amount of Bone Formation 

Histological area measurement was done using ImageJ software (NIH). To eliminate the error of 

the magnitude of the vertebral body of each specimen, the amount of bone formation was 

measured at the horizontal line at the lower (ventral) and upper (dorsal) edges of the spinal 

column. We have measured the entire remodeling part, including the upper part of the vertebral 

arch and the spinous process above the line mentioned above (Figure 2A). 

Trabecular Bone Evaluation 

Total area ratio 

Two remodeling spots on the left and right sides sandwiching the spinous process of the 
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trabecular bone were selected randomly for evaluation. The percentage of trabecular bone area in 

the whole field of view was measured using Image-J software, and the average values for the left 

and right sides were obtained to calculate the ratio to the whole area. 

Number of trabecular branches 

The total number of trabecular branches was counted and statistically evaluated (Figure 2B). 

Width of each trabecular branches 

We randomly chose five trabecular bones with linear portions, and measured the average width of each 

trabecular bone at three points; both ends and the middle point within the part of interest, and their mean 

values were calculated and statistically compared among the groups.  

Mechanical strength examination (three-point bending test) 

L4–L6 lumbar spine specimen (3.5 cm in length) were harvested from 25 rats (five per group) 

(Figure 3A), and both sides of the specimen were fixed with a plastic holder (Cryomold #2, 

Sakura Finetek, Tokyo, Japan) and set on a three-point bending test device (Shimadzu, Tokyo, 

Japan), as is shown in Figure 3B, at room temperature within the day of sacrifice to avoid 

possible temporal alteration in rigidity. 

Continuous pressure was applied on the specimen under real-time monitoring. No rotation or 

slipping of the specimen has been confirmed during the experiment. The bones were preloaded to 
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10 N at a speed of 0.1 mm/s and allowed to adapt for 10 s22. The fracture sites were confirmed 

after mechanical strength measurement (Figure 3C) and hematoxylin and eosin staining of the 

specimen. 

Statistical Analysis 

The number of rats with bone union was presented with 95% confidence intervals, and the 

differences between the efficiencies of union in each group at 4 and 8 weeks after surgery were 

analyzed using Mann–Whitney U test. All other data were expressed as means and standard 

deviations. The correlation of bone volume and state of bone union was described by the 

correlation coefficient. The differences in bone volumes and trabecular bones were analyzed 

using analysis of variance with Bonferroni post hoc correction. The differences in growth factor 

concentrations were analyzed using unpaired t tests. The criterion for significance was p<0.05. 

 

RESULTS 

Confirmation of PRP 

Platelet counts 

The mean platelet count was 96.5 ± 8.6/L in blood and 482.6 ± 24.8/L in PRP (Table 1). The 

platelet count in fresh PRP was about 4.9 times greater and was significantly higher than that in 
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blood (p < 0.05).  

Concentration of growth factors 

The mean concentration of PDGF-BB was 1.6 ± 0.4 ng/mL in blood and 23.1 ± 7.2 ng/mL in 

PRP. The mean concentration of TGF-β1 was 64.3 ± 23.2 ng/mL in blood and 542.7 ± 461.6 

ng/mL in PRP (Table 2). The concentrations of these growth factors were significantly higher in 

PRP than in blood (p < 0.05), and the growth factor concentration in FD-PRP was almost equal to 

that in fresh PRP. In FD-PRP, PDGF-BB was 19.2 ± 12.4 ng/mL and TGF-β1 was 490.1 ± 332.6 

ng/mL. 

Evaluation of bone union 

The transverse process contours in the sham group 4 weeks after the surgery provided the control 

image (Figure 4A). In artificial bone–alone rats (Figure 4B), mottled contours were observed 

between the transverse processes and complete continuity was noted in 5 (50%) of 10 animals. In 

the autologous bone group (Figure 4C), bone union was observed in 5 (50%) of 10 animals. In 

the FD-PRP and BMP groups (Figure 4E and 4F), 8 (80%) of 10 rats showed confirmed bone 

union. The transverse process shadow disappeared and formed a lump, and the FD-PRP and BMP 

groups showed greater bone formation compared with the autologous bone group. At 8 weeks, 

more rats in the five groups showed bone union than the rats in the sham group (Figure 5A). 
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A greater percentage of rats in the FD-PRP and BMP groups showed bone union at 4 weeks 

compared to the other groups. 

Histological Analysis 

Bone formation 

At 8 weeks postoperatively, the region of bone graft showed a lump, including the region of the 

transverse processes, vertebral arch, and spinous process. The bone graft was subsequently 

replaced by new bone tissue, and remodeling was observed. The amounts of bone formation were 

as follows (in mm2): sham group, 1.45 ± 0.51; artificial bone–alone group, 4.47 ± 0.47; 

autologous bone group, 5.19 ± 0.89; fresh-PRP group, 5.87 ± 0.64; FD-PRP group, 5.73 ± 0.68; 

BMP group, 5.4 ± 0.82 (Figure 5B). The fresh-PRP group showed maximum bone formation, 

followed by the FD-PRP group. 

Trabecular bone 

Characteristic histological findings in the trabecular bone were observed in each group (Figure 

6). The artificial bone–alone group showed a small plaque. The autologous bone group showed 

more thickness and lesser branching. The fresh-PRP group, FD-PRP group and the BMP group 

showed thinning and branching. 

Total area ratio 
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The percentage of the trabecular bone area (Figure 7A) in the each field of view was 17.6 ± 2.3% 

in the artificial bone–alone group, 24 ± 4.9% in the autologous bone alone group, 20.8 ± 2.6% in 

the fresh-PRP group , 21.7 ± 2.4% in the FD-PRP group, and 20.8 ± 2.2% in BMP group. The 

FD-PRP group was inferior to that of the autologous bone group in terms of percentage of 

trabecular bone area. 

Number of trabecular branches 

The number of trabecular branches (Figure 7B) of the remodeling part was 6.8 ± 1.7 in the 

artificial bone–alone group, 5.1 ± 1.0 in the autologous bone group, 8.9 ± 1.7 in the fresh-PRP 

group, 9.1 ± 1.8 in the FD-PRP group, and 8.4 ± 1.2 in the BMP group. The FD-PRP group 

showed almost the same results as the fresh-PRP and BMP groups, and more branches compared 

with the artificial bone–alone and autologous bone groups.  

Width of each trabecular branches 

The width of each trabecular branches (Figure 7C) in the remodeling bone was 25.9 ±4.9 m in 

the artificial bone–alone group, 41.5 ±3.9 m in the autologous bone group, 27.2 ±2.5 m in the 

fresh-PRP group, 29.3 ±6.7 m in the FD-PRP group, and 30.1 ±3.7 m in the BMP group. 

Trabecular branches in the FD-PRP group formed significantly formed thinner branches 

compared with those in autologous bone groups. 
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Mechanical Strength Examination 

Figure 8 demonstrates the result of strength measurement. The average values of the initial peak 

pressure were as follows: sham group, 89.4 ± 20.7 N; artificial bone–alone group, 103.7 ± 30.1N; 

autologous bone group, 116.7  10N; fresh-PRP group, 113.7  5.8N; FD-PRP group, 112.0  

15.6N; BMP group, 109.6  9.7N. The FD-PRP group was significantly stronger than that of the 

artificial bone–alone group (p < 0.05) and slightly inferior compared with the autologous bone 

group with no significance. The fracture locations in the spinal tissue specimen in all cases were 

observed to be on the endplate of the vertebral body cartilage. 

Complications 

No significant complications such as infection and tumor generation / formation were observed in 

the FD-PRP group. An accumulation of inflammatory cells was seen at the bone remodeling site 

in two rats in the BMP group. 

 

DISCUSSION 

The current study showed that application of FD-PRP combined with artificial bone significantly 

accelerated bone fusion comparable to that of fresh-PRP and BMP. In addition, trabecular bone 

formation showed a more tangled structure with many thin branches at the stage of 8 weeks after 
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the surgery with comparable rigidity to autologous bone. 

 The resulting bone union in this study was considered to have been achieved with PRP, 

which has been reported to contain a large number of growth factors and to exert tissue repair 

effects.23-25 In the current study, FD-PRP prepared 8 week before the surgery accelerated bone 

formation with artificial bone in a rat PLF model. 

 The details of the properties of the trabecular bone achieved by the application of FD-

PRP were considered to be significant. Histologically, in all of the groups except the sham, bone 

grafts showed remodeling and fusion with new bone structures. In evaluating the trabecular bone 

strength, the thickness, number of branches, and total area are important factors26, although no 

previous reports have compared the detailed properties on trabecular bone. The FD-PRP group 

showed characteristic findings of large stitch structures with thin branches, whereas the total area 

is slightly inferior to that of the autologous bone group. However, the results of the mechanical 

strength test of FD-PRP–treated spine showed comparable strength to autologous bone. This 

result indicates that FD-PRP achieved more rigidity by more tangled trabecular structures rather 

than thick ones as well as accelerated bone union. Furthermore the current study adopted BMP as 

the positive control, as its bone formation effect has already been confirmed and it is being 

commonly used clinically; however, it is also known for its risks such as tumor formation and 
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excessive inflammation and it is expensive as well27-29, leading to its unavailability in some 

countries. The result of the current study that the FD-PRP group showed comparable to BMP in 

terms of bone union ability can be extremely important, especially in those countries where BMP 

is unavailable and even in countries where BMP is available, considering its possible risk. 

Furthermore, PRP is safer because it is made from the patient’s own blood. Clinical usage of PRP 

has been reported to have few significant complications7, which coincides with the finding of the 

current study. The fact that FD-PRP achieved the similar tendency for trabecular formation and 

mechanical strength to BMP indicates that FD-PRP achieves accelerated bone formation in the 

osteoinductive manner as BMP does30. This should be investigated in detail in a future study. 

The current study suggests the usefulness of FD-PRP, as it can be prepared and stored 

beforehand, unlike fresh PRP, which should be prepared immediately just before the time of an 

operation because of the short half-life of its growth factors. In the future, clinical trials on the 

safety and efficacy of FD-PRP on spine surgery should be performed, considering possible 

application to other fields of orthopedic surgery such as trauma.  

 The current study includes some limitations. First, we should be more specific in 

evaluating the histology. For instance, with respect to bone union between the transverse 

processes, only simple radiography was performed. We should be more specific in evaluating the 
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bone union using other radiographic modalities such as micro-computed tomography scan in a 

future study. The evaluation of the amount of bone formation has a slight inaccuracy because 

parts of the original spinous process and lamina were included. Second, we should explore the 

result at earlier or later time points other than 4 and 8 weeks. Third, a single-animal model using 

rat can be inadequate in proving the efficacy of FD-PRP. Considering future clinical applications, 

we should examine other species such as rabbits and dogs, which are used in traditional bone 

fracture experiments and have longer bone-union period similar to humans. Fourth, with respect 

to bone strength, only the three-point bending test was performed. We should be more specific in 

evaluating bone strength using other tests, such as torsion test, in a future study21. 

Furthermore, we evaluated the effectiveness of FD-PRP, focusing its ability for bone union and 

formation, and it should be evaluated in detail from the bone metabolic point of view, including 

the reaction of osteoclasts and osteoblasts. We also mainly focused on the effectiveness of FD-

PRP focusing on the ability for bone union and formation in the current study. In terms of bone 

formation, new bone formation should also be evaluated. These should be investigated for more 

robust evidence. 

 In conclusion, the current study indicated that FD-PRP enabled earlier bone union in the 

rat PLF model. The amount of bone formation and trabecular bone remodeling was increased in 
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the FD-PRP–treated samples, with confirmed more trabecular branches and biomechanical 

rigidity. Mechanical strength was stronger when FD-PRP was added to artificial bone at 8 weeks 

after surgery, with bone union and rigidity comparable to fresh-PRP and BMP.
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FIGURE LEGENDS 

Figure 1. (A) FD-PRP preparation. FD-PRP appears as powder, which can be dissolved in 

distilled water with the same concentration of fresh PRP. (B) The artificial bone is crushed into 

powder. (C) FD-PRP is mixed with the powdered artificial bone followed by activation using 

thrombin and calcium chloride before use. (D) Schema of the spine (transplantation site). The 

graft material was implanted over the transverse processes of L4–L6. 

Figure 2. Histological image of the lumbar spine (hematoxylin and eosin stain). (A) Dashed line: 

horizontal line at the lower edge of the dural sac. We have measured the entire remodeling part 

above the dotted line, including the upper part of the vertebral arch and the spinous process. (B) 

Arrowheads indicate the trabecular bone branches. 

Figure 3. Mechanical strength evaluation: three-point bending test. (A) Harvested lumbar spine 

(L4–L6). (B) Three-point bending. (C) Representative plotting for initial peak pressure 

measurement. 

Figure 4. Anteroposterior radiographs of the spinal segment of the platelet-rich plasma group 4 

weeks after the surgery. (A) Sham group. (B) Artificial bone–alone group. (C) Autologous bone 

group. (D) Artificial bone + fresh-PRP group. (E) Artificial bone + FD-PRP group. (F) Artificial 

bone + BMP group. Arrowheads indicate the part of bone union, and arrows show the transverse 
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process shadow. 

The FD-PRP group showed greater bone formation compared with the other groups. 

Figure 5. (A) Evaluation of bone union. The FD-PRP and BMP groups showed earlier bone 

formation compared with the artificial bone–alone and autologous bone groups. (B) Amount of 

bone formation 8 weeks after the surgery. n.s., no significance. The FD-PRP group showed more 

bone formation (p < 0.05), comparable to the fresh-PRP and BMP groups. 

Figure 6. Histological images of trabecular bone. (A) Artificial bone–alone group. (B) 

Autologous bone group. (C) Artificial bone + fresh-PRP group. (D) Artificial bone + FD-PRP 

group. (E) Artificial bone + BMP group. Trabecular bone formation of the FD-PRP group 

consisted of a tangled structure with more thin branches, compared with the autologous bone 

group. The trabecular bone formation is similar to that of the fresh-PRP and BMP groups. 

Figure 7. (A) Total area ratio: the FD-PRP group was slightly inferior to the autologous bone 

group. (B) Number of trabecular branches: the FD-PRP group had almost the same results as the 

fresh-PRP and BMP groups but had more branches compared with the artificial bone–alone and 

autologous bone groups. (C) Quantified value of the trabecular width. The trabecular branches in 

the FD-PRP group formed significantly thinner branches compared with those in autologous bone groups. 

Figure 8. Mechanical strength tasted with the by three-point bending test. n.s. no significance. 
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The FD-PRP group was significantly stronger than the sham group and the artificial bone–alone 

group (p < 0.05), but comparison with the autologous bone group showed no significance. 
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Table 1. Mean platelet counts (/L) 

Blood PRP 

96.5 ± 8.6 482.6 ± 24.8 

Values are presented as mean ± standard deviation. 

PRP, platelet-rich plasma
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Table 2. Concentration of growth factors (ng/mL) 

 Blood PRP FD-PRP 

PDGF-BB 1.6 ± 0.4 23.1 ± 7.2 19.2 ± 12.4 

TGF-β1 64.3 ± 23.2 542.7 ± 461.6 490.1 ± 332.6 

Values are presented as mean ± standard deviation. 

PRP, platelet-rich plasma; FD-PRP, freeze-dried platelet-rich plasma; PDGF-BB, 

platelet-derived growth factor BB; TGF-β1, transforming growth factor β1. 
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