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ABSTRACT 

 

【Introduction】 

A new class of host material containing organic nanotubes (ONTs) are formed by the 

self-assembly of amphiphilic molecules, which are composed of two hydrophilic head 

groups and a hydrophobic aliphatic chain. Since the surface properties of ONT are 

controllable by changing the modified groups of the amphiphile, ONTs are expected to 

be novel drug delivery carriers to achieve controlled drug release. In this study, two 

ONTs; ONT-1 and ONT-2, were investigated for encapsulating a poorly water soluble 

drug, ibuprofen (IBU). The inner surfaces of ONT-1 and ONT-2 are functionalized with 

either carboxyl groups or amino groups, respectively. Molecular states of the 

incorporated IBU on the outer surface of ONTs, as well as in their inner hollow 

nanospace, were investigated with multiple solid-state NMR measurements using the 

fast magic-angle spinning (MAS) techniques. Moreover, the dissolution of IBU from the 

ONT was evaluated and discussed based on the molecular states of IBU. 

【Methods】 

ONT-1 an anionic inner surface composed of carboxyl groups and an outer surface of 

2-N-glucosamide groups, and ONT-2 that contains a cationic inner surface composed of 

amino groups and an outer surface of 1-N-glucosamide groups were used. IBU and each 
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ONT were mixed with various weight ratios. The mixtures were dispersed in organic 

solvents, and then evaporated to obtain the evaporation samples (EVPs). Field 

emission-transmission electron microscopy (FE-TEM) measurement, powder X-ray 

diffraction (PXRD) measurement, differential scanning calorimetry (DSC) measurement, 

solid state NMR measurement, and dissolution test were used for analysis of 

IBU/ONT-1 EVP and IBU/ONT-2 EVP. For solid-state NMR measurements, two 

one-dimensional (1D) 
13

C pulse sequences; cross polarization (CP) method and single 

pulse (SP) method, and two-dimensional (2D) 
1
H-

13
C heteronuclear correlation 

(HETCOR) with 40 kHz rotation were utilized. 

【Results＆Discussion】 

1. Encapsulation of IBU into ONT-1 and ONT-2 

FE-TEM images showed that the tubular inner and outer diameter were similar 

between ONT-1 (7.3 and 14.4 nm) and ONT-2 (6.8 and 16.2 nm). From the PXRD and 

DSC measurements, ONT-2 encapsulated a larger amount of IBU than ONT-1. IBU 

content in ONT-1 and ONT-2 EVPs was plotted as a function of heat of fusion of IBU 

crystal on DSC curves. Maximum encapsulated amounts of IBU with ONT-1 and 

ONT-2 were about 9.1 wt% and 29.2 wt%, respectively. This result suggests that 

ONT-2 can encapsulate about 20 wt% more IBU than ONT-1.  
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2. Evaluation of the molecular state of IBU-loaded ONT 

2-1. Quantitative evaluation of IBU in the inner nanospace and the outer surface of 

ONTs 

The nuclei with low mobility are emphasized more in the CP spectra, while those 

with low and high mobility are detected in the SP spectra. IBU in IBU/ONT-1 and 

IBU/ONT-2 EVPs showed two families of peaks emphasized in either the CP or SP 

spectrum. The results indicated that the IBU with either lower mobility or higher 

mobility existed on the outer surface or in the inner hollow nanospace of ONTs, 

respectively. The encapsulation ratio of IBU was estimated using the peak area of C3 

(“inner” and “outer”) after the process of the wave-form separation. As a result, the IBU 

encapsulation ratio in the inner nanospace versus that on the outer surface was 

calculated to be about 1 : 1 for ONT-1 and 2 : 1 for ONT-2. Thus, the IBU was more 

efficiently encapsulated in the hollow nanospace than on the outer surface for 

IBU/ONT-2 EVP. Meanwhile, for IBU/ONT-1 EVP, IBU encapsulation was equimolar 

in the inner hollow nanospace and at the outer surface. The difference in the 

encapsulated amounts could be explained by the different strength of interaction 

between IBU and the inner surfaces of the ONTs with different functional groups.  

2-2. Interaction between IBU and ONT  
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The changes in 
13

C chemical shifts and peak shapes of IBU carboxyl group in the 

inner nanospace of both ONT-1 and ONT-2 were larger than the other groups, 

indicating that IBU interacted with ONT inner surface mainly through the carboxyl 

groups of IBU. For IBU/ONT-1 EVP, IBU loading showed no changes in 
13

C peak of 

the inner surface of ONT-1. In contrast, significant changes of 
13

C peaks of ONT-2 were 

observed. The larger peak changes indicated stronger interactions between IBU and 

inner surface of ONT-2 compared to ONT-1.  

The changes of 
13

C peak of the IBU carboxyl group and ONT glucose group on the 

outer surface of ONT were detected for both IBU/ONT-1 and IBU/ONT-2 EVPs. 

Furthermore, in the 2D 
1
H-

13
C HETCOR spectrum, both the EVPs clearly showed 

well-separated cross peaks between the carboxyl carbon of IBU and the hydroxyl proton 

of the glucose group in ONTs. The interaction at the outer surface between carboxyl 

carbon of IBU and the hydroxyl proton of the ONT glucose group was clearly 

demonstrated. 

There are two types of spaces where IBU could be loaded: the hollow nanospace of 

an ONT and the outer surface of ONTs. In both the IBU/ONT-1 and IBU/ONT-2 EVPs, 

the IBU in the inner nanospace had much higher mobility, while IBU existed at the 

outer surface of the ONT was less mobile. The IBU in the inner hollow nanospace of 
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ONT-1 was weakly encapsulated via interactions between the carboxyl group of IBU 

and the inner surface. In contrast, those in IBU/ONT-2 EVP were strongly encapsulated 

in the inner hollow nanospace through electrostatic interactions of the IBU carboxyl 

group with the amino group on the inner surface of ONT-2. This stronger interaction 

could result in encapsulation of a larger amount of IBU in ONT-2 than ONT-1. At the 

outer surface, weak interaction was formed between the IBU carboxyl group and the 

ONT glucose group for both IBU/ONT-1 and IBU/ONT-2 EVPs.  

3. Dissolution characteristics of IBU from each ONT 

IBU dissolved rapidly from ONT-1 compared to that from IBU crystals. On the other 

hand, IBU released from ONT-2 was significantly suppressed. IBU dissolution from 

each ONT was hypothesized based on the molecular interactions of IBU and different 

functional groups on the ONTs. Dissolution of IBU/ONT EVP shows three stages: (1) 

water penetration into both the inner hollow nanospace and the interstitial spaces 

between the ONTs, (2) dissolution of the IBU from the outer surface of ONT, and (3) 

dissolution of IBU from the inner hollow nanospace of the ONT. In the IBU/ONT-1 

EVP, the interaction between IBU and ONT-1 in the inner nanospace was so weak that 

(2) and (3) occurred at the same time. Hence, almost all the IBU was rapidly released. 

On the other hand, in IBU/ONT-2 EVP, since IBU and ONT-2 displayed a strong 
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electrostatic interaction, the IBU in the inner nanospace was gradually released after the 

IBU on the outer surface was released. 

【Conclusions】 

The molecular state of IBU/ONT EVP was quantitatively and qualitatively evaluated. 

This study clearly indicates the utility of functionalized ONTs as drug carriers that may 

allow controlled encapsulation and dissolution of poorly water-soluble drugs by 

changing the nature of the host-guest interactions. 
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INTRODCTION 

 

Organic nanotube (ONT), a new host material, is formed by the self-assembly of 

amphiphilic molecules which are composed of two hydrophilic head groups at the ends 

of a hydrophobic aliphatic chain. ONTs have an inner hollow nanospace whose size is 

meso-scale, depending on the amphiphilic species. Recent development of preparation 

technique of ONT has enables it to be produced easily and massively.
1-3

 ONT possesses 

many advantages compared to other host materials, such as product safety, good 

dispersibility in water, and controllable size. These features have allowed an ONT to 

receive much attention as a promising host material for drug delivery system (DDS). 

The nanoarchitecture with functionalized surface have been widely used in order to 

control drug encapsulation and dissolution. The inner surface of mesoporous matrices 

are functionalized with chemical groups that are able to interact with the drug molecules 

through ionic or hydrogen bond.
4-7

 The effective drug encapsulation and controlled 

dissolution depending on the external environment changes (e.g. pH, temperature, and 

magnetic field) have been reported using the mesoporous materials with the 

functionalized surface.
8,9

 The surfaces of ONT can be also designed with functional 

groups based on the chemical structures of the amphiphiles used.
2
 Those ONTs with 

functional surface  can selectively and effectively encapsulate water soluble materials 
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such as proteins,
10,11

 DNA,
12

 and doxorubicin (DOX)
13

 into their hollow nanospace 

when they are dispersed in aqueous solution. This encapsulation is caused by the 

electrostatic interaction between each guest and the ONT inner surface. Furthermore, 

the drug dissolution from ONT is also controlled via external stimuli such as pH and 

temperature change.
14

 In order to develop ONT as a drug carrier for poorly 

water-soluble drug, which occupies over 40% of recent drug candidates,
15,16

 it is necessary 

to evaluate their physicochemical properties encapsulated in ONT. As above-mentioned, 

encapsulation and dissolution of a guest drug in ONT is influenced by the appropriate 

modification of the inner surface of the ONT. Here, it is expected that the changes of 

functional group of ONT surface can also control the encapsulation and dissolution of 

poorly water-soluble drugs. 

In order to design the appropriate formulations using ONT, it is necessary to 

characterize the molecular state of a guest drug encapsulated in ONT and the various 

interaction between the drug and the host ONT. Moreover, it has also been observed 

that ONTs are able to encapsulate guest materials into not only the hollow nanospace of 

ONTs but also the interstitial space formed between ONTs.
17,18

 Large guest materials 

such as metal nanoparticles and fluorescent proteins encapsulated inside the hollow 

nanospace have been studied by transmission electron microscopy (TEM) observation 
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and fluorescence microscopy,
19-21

 though unequivocal evidence for the guest molecules 

loading in the interstitial space has not yet been reported. Moreover, it is difficult to 

evaluate the location of the encapsulated drugs whose sizes are smaller than large 

materials described above with TEM observation and fluorescence microscopy. 

Solid-state NMR technique have been widely used as a powerful tool to study the 

structure, molecular dynamics, and interactions of various host-guest system such as 

drug-cyclodextrin inclusion complex and drug-mesoporous material systems.
22-24

 

However, to our best knowledge, there are no detailed reports which describe the 

molecular state of guest drug and the interaction between guest drug and the surface of 

host ONT by solid-state NMR techniques, and, the location of the encapsulated drug 

within and on the ONT can be understood and studied through investigating the 

interaction between the drug and the ONT. 

Herein, we described two ONTs with a similar tubular size and different functional 

groups on the inner and outer surfaces, into which a poorly water-soluble drug, 

ibuprofen (IBU) was encapsulated by an evaporative method using organic solvents.  

In part I, the encapsulation of IBU into ONTs was evaluated. The morphology of 

ONT-1 and ONT-2 was observed by field emission-transmission electron microscopy 

(FE-TEM) and the encapsulation amount of IBU into each ONTs was determined by 
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powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) 

measurements.  

In part II, solid-state NMR study were carried out to characterize the molecular states 

of both the guest IBU and the host ONTs. High-resolution 1D 
1
H spectrum and two 1D 

13
C spectra by single pulse (SP) and cross polarization (CP) methods with fast 

magic-angle spinning (MAS) at 40 kHz were used to investigate the structure and 

molecular dynamics in detail. Additionally, 2D 
1
H-

13
C heteronuclear correlation 

(HETCOR) measurement were performed to assign all the 
1
H and 

13
C peaks of IBU and 

ONTs, and to investigate the intermolecular interactions between IBU and the inner and 

outer surface of each ONT.  

In part III, dissolution characteristics of IBU from each ONT were studied and 

compared in order to assess the properties and feasibility of ONTs as functionalized 

drug carriers. 
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EXPERIMENTAL 

 

Materials 

N-{12-[(2-,-D-glucopyranosyl)carbamoyl]dodecanyl}-glycylglycylglycine acid 

(glycolipid 1) and N-(-D-glucopyranosyl)-N’-(2-glycylglycylglycineamideethyl)-                                                       

octadecanediamide (glycolipid 2) were prepared as reported previously.
25,26

 ONT-1 and 

ONT-2 were formed by self-assembly of glycolipid 1 and glycolipid 2, respectively. 

Ibuprofen (IBU) was purchased from Wako Pure Chemical Industries, Ltd. (Kyoto, 

Japan). The chemical structures of the materials used in this study are represented in 

Figure 1. 

 

Preparation of ONT-1 and ONT-2 

Glycolipid 1 and 2 were dispersed in distilled water at the concentration of 1.0 

mg/mL by sonication and refluxed at 100 ºC for 10 min. The hot resultant solutions of 

glycolipid 1 and 2 were gradually cooled down to room temperature. ONT-1 was 

obtained by freeze drying of glycolipid 1 solution via the freeze dryer FD-1000 

(Rikakikai. Co., Ltd, Tokyo, Japan). For ONT-2, after cooling down to room 

temperature, the HCl salt glycolipid 2 was neutralized by NaOH solution (conc.: 2% 
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v/v) to a pH of about 7. Then, the solution was dialyzed against distilled water for 24 h 

and freeze dried to prepare ONT-2.  

 

IBU loading into ONTs 

The mixture of IBU and ONTs with various weight ratio were dispersed in organic 

solvents at ONT concentration of 1 mg/mL in organic solvents. The organic solvent 

used for ONT-1 and ONT-2 was acetone and methanol, respectively. The mixtures were 

sonicated for 3 min. The solvents were removed by a rotary evaporator and then dried in 

vacuum to obtain evaporated samples (EVPs). 

 

Field emission-transmission electron microscopy (FE-TEM) 

The ONTs were dispersed in water and dripped onto a standard TEM grid supported 

by Excel Support Film


 (Cu 200, Nisshin EM Co. Ltd., Tokyo, Japan). ONTs were left 

to adsorb onto the grid for 3 min, and then the excess solution was blotted with filter 

paper. Each sample was negatively stained with 2 wt% phosphotungstate solution (pH 

7.4) for 3 min. The grid was dried in a desiccator at room temperature for 1 day. 

FE-TEM observations were carried out at 120 kV using JEOL-JEM2100F (JEOL Ltd., 

Tokyo, Japan). 
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Powder X-ray diffraction (PXRD)  

PXRD measurements were performed using a Rigaku MiniFlex II powder diffraction 

system (Tokyo, Japan). The X-ray source was CuK radiation (30 kV and 15 mA). The 

scanning range (2) was 2–35, and the scan speed was 4/min. 

 

Differential scanning calorimetry (DSC) 

DSC measurements were carried out using a SII Nano Technology EXSTAR6000 

DSC6200 (Tokyo, Japan). Samples (ca. 5 mg) were put into crimped aluminum pans. 

N2 was used as the purge gas at a flow rate of 60 mL/min. The temperature range was 

50–150 °C at a heating rate of 5 °C /min. 

 

Solid-state NMR spectroscopy 

All solid-state NMR spectra were recorded by a Varian 600 MHz NMR spectrometer 

using a Varian 1.6 mm T3 NB triple resonance probe (Agilent Technology, California, 

USA) spinning at a MAS rate of 40 kHz, operating at 599.7 MHz for 
1
H and 150.8 MHz 

for 
13

C. The 
1
H spectra were recorded under the following conditions: spectral width of 

100 kHz, acquisition time of 100 ms, recycle delay time of 10 s, 
1
H π/2 pulse lengths of 
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1.3 s. The 
13

C CP/MAS spectra were measured under the following conditions: 

spectral width of 40 kHz, acquisition time of 40 ms, recycle delay time of 7 s, contact 

time of 3.5 ms, 
13

C π/2 pulse lengths of 1.6 s. The 
13

C SP/MAS spectra were obtained 

under the following conditions: spectral width of 40 kHz, acquisition time of 40 ms, 

recycle delay time of 5 s, 
13

C π/2 pulse lengths of 1.2 s. 2D 
1
H-

13
C HETCOR spectra 

were collected under the following conditions: acquisition time of 40 ms, recycle delay 

time of 7 s, contact time of 0.3–5 ms, 
13

C π/2 pulse lengths of 1.6 s, 
1
H π/2 pulse 

lengths of 1.3 s. Adamantane was used as a chemical shift reference at 38.52 ppm for 

13
C and 1.91 ppm for 

1
H. All experiments were performed with the inlet air temperature 

controlled at 10 °C. 

 

Dissolution test 

The dissolution of IBU from EVPs were evaluated using the Japanese Pharmacopeia 

(JP) XVI paddle method with a dissolution tester NTR-VS6P (Toyama Sangyo Co. Ltd., 

Osaka, Japan). The IBU/ONT-1 = 1 : 9 (w/w) and IBU/ONT-2 = 3 : 7 (w/w) EVPs 

equivalent to 3 mg IBU were added to 300 mL acetic acid-sodium acetate buffer 

solution at pH 4.0. The paddles were rotated at 50 rpm at 37.0 ± 0.5 °C. A sample 

volume of 3 mL was withdrawn from the dissolution medium at 3, 5, 10, 20, 30, 60 and 
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120 min. The samples were filtered by 0.20 μm cellulose nitrate membrane filter and 

analyzed with HPLC. All dissolution tests were performed in three replicates.  

 

HPLC analysis 

IBU was analyzed by a Hitachi HPLC system consisting of an L-6000 pump and an 

L-4000 UV-detector (Tokyo, Japan). The analysis was carried out on a TSK GEL ODS 

column (4.6×150 mm). The mobile phase consisted of a 50 : 50 (v/v%) mixture of 

acetonitrile and phosphoric acid solution at pH 3.0. The flow rate was 1.3 mL/min and 

the detection wavelength was 264 nm. The injection volume was 20 L. 

 

Field emission-scanning electron microscopy (FE-SEM) 

The powder of each IBU/ONT EVP was mounted on an SEM stub using carbon 

adhesive tape and dried under vacuum for 24 h. The adhesive samples were coated with 

an osmium plasma coater Meiwafosis Neoc-ST (MEIWAFOSIS. Co. LTD., Tokyo, 

Japan), and the thickness of the osmium coating was kept below 2.5 nm. FE-SEM was 

performed with a JEOL JSM-6330F (JEOL Ltd., Tokyo, Japan) using an acceleration 

voltage of 3.0 kV. 
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Figure 1. Chemical structures of (a) glycolipid 1, (b) gliycolipid 2 and (c) ibuprofen (IBU). 

Glycolipid 1 and glycolipid 2 form ONT-1 and ONT-2 by the self-assembly, respectively.  
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RESULTS AND DISCUSSION 

 

PART I Encapsulation of IBU into ONT-1 and ONT-2 

1. Morphology of ONT-1 and ONT-2 

The morphology and size of ONTs were evaluated by FE-TEM measurement (Figure 

1-1). Both of ONT-1 and ONT-2 showed the tubular structure with the diameter in the 

nanometer gauge and the length in the m gauge. The average outer and inner diameters 

of 250 species of ONTs were determined from FE-TEM images. ONT-1 consisted of 

tubular nanostructure with 14.4 ± 1.7 nm outer diameter and 7.3 ± 0.7 nm inner 

diameter. The outer diameter and inner diameter of ONT-2 was 16.2 ± 2.4 nm and 6.8 

± 1.0 nm, respectively. FE-TEM images showed that ONT-1 yielded tubular structure 

and hollow nanospace similar to ONT-2. It was confirmed that the tubular structure of 

both ONT-1 and ONT-2 was maintained after evaporation from organic solvent, acetone 

and methanol, respectively (Figure 1-2). 

2. Preparation of IBU/ONT EVP 

Ibuprofen (IBU) encapsulation into ONTs by evaporation method was evaluated by 

PXRD measurement. Figure 1-3 shows the PXRD patterns of the IBU/ONT EVPs with 

the various contents of IBU. The characteristic IBU peaks disappeared in the 
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IBU/ONT-1 EVPs with the IBU contents of 5 wt%~15 wt%, indicating that crystalline 

IBU changed to the amorphous one by evaporation with ONT-1 at IBU content less than 

15 wt%. Moreover, evaporation with ONT-1 also changed the state of hydrocortisone 

(HCT) and phenytoin (PHE) from crystalline to amorphous by incorporation into 

ONT-1 with the drug contents of 30 wt% (Figure 1-4d, i).
27

 Therefore, the 

amorphization of IBU was induced by incorporation into ONT structure. In contrast, 

diffraction peaks corresponding to excess IBU that had not been incorporated into 

ONT-2 were observed in IBU/ONT-2 EVPs with drug contents of 50 wt%~35 wt% 

(Figure 1-3 i-l). A halo pattern was observed in the diffraction pattern of IBU/ONT-2 

EVP with drug contents of 30 wt% (Figure 1-3m). In ONT-2 EVPs with drug contents 

below 30 wt%, IBU was encapsulated into the ONT-2 structure. These PXRD 

experiments demonstrated that ONT-2 encapsulated IBU more efficiently than ONT-1. 

3. Encapsulation amount of loaded IBU in ONT 

The DSC measurement was carried out in order to determine the encapsulated 

amount of IBU in ONTs. (Figure 1-5) The DSC curves of IBU crystal exhibited an 

endothermic peak at 72 °C (onset temperature), which corresponds to its melting. In the 

DSC curves of IBU/ONT EVPs, no thermal events were detected in the DSC curves of 

ONT-1 and ONT-2 between 50 and 150 °C. No melting peak of IBU was observed in 
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the DSC curve from IBU/ONT-1 and IBU/ONT-2 EVP with the drug content of 5 wt% 

and 30 wt%, respectively. Drugs encapsulated as amorphous state into the mesopores 

show no melting peaks in the DSC curves.
28

 The absence of IBU melting peak in the 

DSC curve of the EVPs indicated that IBU was in amorphous state due to encapsulation 

by ONTs. The amount of encapsulated IBU into ONTs was quantitatively determined by 

the heat of fusion of IBU melting peak on the DSC curves. Figure 1-6 shows the 

plotting of the heat of fusion against IBU content of EVPs. The heat of fusion of IBU 

melting in IBU/ONT-1 and IBU/ONT-2 EVPs were plotted as a function of IBU 

contents. The fitted lines to the plots in both the IBU/ONT-1 and IBU/ONT-2 EVPs 

showed good linearity with high correlation coefficient (R
2
 > 0.99). The Y-axis intercept 

values of each plot represent the maximum encapsulation amount of drug.
29

 The 

maximum amount of IBU encapsulated into ONT-2 was at 29.2 wt% significantly 

higher than that 9.1 wt% in ONT-1. The inner diameters of tubular structure observed 

by FE-TEM images (Figure 1-1) were similar between ONT-1 and ONT-2. Thus, this 

difference of the encapsulated amount of IBU between ONTs could be attributed to the 

characteristic difference of substituent groups of ONT’s inner surface. 

In conclusions, IBU was successfully encapsulated into both of the ONTs via a 

solvent evaporation method. The loaded IBU existed as amorphous state in each ONT. 
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ONT-2 which contains amino groups on the inner surface can encapsulate about 20 wt% 

more IBU than ONT-1, which has carboxyl groups on the inner surface. 
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Figure 1-1. Negative-stained field emission-transmission electron microscopy (FE-TEM) 

images of (a) ONT-1 and (b) ONT-2.  
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Figure 1-2. FE-TEM images of (a) ONT-1 evaporated from acetone and (b) ONT-2 evaporated 

from methanol.  
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Figure 1-3. Powder X-ray diffraction (PXRD) patterns of (a) IBU crystal, (b) ONT-1, (c)-(g) 

IBU/ONT-1 EVPs at the drug contents of (c) 30 wt%, (d) 20 wt%, (e) 15 wt%, (f) 10 wt%, (g) 5 

wt%, and (h) ONT-2, (i)-(m) IBU/ONT-2 EVPs at the drug contents of (i) 50 wt%, (j) 45 wt%, 

(k) 40 wt%, (l) 35 wt%, and (m) 30 wt%.  

 

 

 

 

 

 

 



24 

 

 

 

 

Figure 1-4. Powder X-ray diffraction (PXRD) patterns of HCT/ONT-1 and PHE/ONT-1 

systems with various drug contents: (a) HCT, (b) ONT-1, (c) HCT/ONT-1 30 wt% physical 

mixture (PM), (d) HCT/ONT-1 30 wt% EVP, (e) HCT/ONT-1 50 wt% EVP, (f) PHE, (g) 

ONT-1, (h) PHE/ONT-1 30 wt% PM, (i) PHE/ONT-1 30 wt% EVP, and (j) PHE/ONT-1 50 

wt% EVP. (■) HCT, (●) PHE.  
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Figure 1-5. Differential scanning calorimetry (DSC) curves of (a) IBU crystal, (b) ONT-1, 

(c)-(g) IBU/ONT-1 EVPs at the drug contents of (c) 30 wt%, (d) 20 wt%, (e) 15 wt%, (f) 10 

wt%, (g) 5 wt%, and (h) ONT-2, (i)-(m) IBU/ONT-2 EVPs at the drug contents of (i) 50 wt%, 

(j) 45 wt%, (k) 40 wt%, (l) 35 wt%, and (m) 30 wt%.  
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Figure 1-6. Plots of IBU content against the heat of fusion of IBU crystal melting calculated by 

the DSC curves of EVPs with (a) ONT-1 and (b) ONT-2.  
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PART II Evaluation of the molecular state of IBU-loaded ONT 

1. 2D 
1
H-

13
C HETCOR spectroscopy for peak assignment 

The 
1
H-

13
C HETCOR measurements were performed to identify the 

1
H and 

13
C peaks 

in the spectra of IBU/ONT-1 EVP and IBU/ONT-2 EVP.
30

 The reported 
1
H and 

13
C 

solid-state NMR spectra of IBU crystal and IBU encapsulated in mesoporous silica 

were used to support the peak assignment.
31

 
1
H-

13
C HETCOR spectra of IBU/ONT-1 

EVP = 1 : 9 (weight ratio of IBU to ONT-1 in EVP) and IBU/ONT-2 EVP = 3 : 7 

(weight ratio of IBU to ONT-2 in EVP) with different contact times are shown in  

Figure 2-1. A 
1
H-

13
C HETCOR spectrum with a short contact time allows for the 

detection of heteronuclear dipolar couplings between 
1
H and 

13
C atoms bound via 

covalent bonding. As shown in the spectra with the short contact time of 0.3 ms, all the 

1
H and 

13
C peaks in IBU were present. Furthermore, the glucose group and methylene 

chain of the ONT in IBU/ONT-1 EVP and IBU/ONT-2 EVP were also identified 

(Figure 2-1a, b). The more distant correlations between 
1
H and 

13
C were observed in the 

1
H-

13
C HETCOR spectra with contact times of 4 and 5 ms for IBU/ONT-1 and 

IBU/ONT-2 EVPs, respectively (Figure 2-1c, d).  

2. 1D 
1
H MAS NMR measurements 

High-resolution 
1
H NMR spectra was performed to evaluate the molecular state of 
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IBU and the ONTs in IBU/ONT EVPs (Figure 2-2). Crystalline IBU presented broad 

peaks characteristic (H2 - 3,10 - 13; H5,6,8,9; H14) of a rigid solid arising from the incomplete 

averaging of the strong homonuclear 
1
H-

1
H dipolar interaction in spite of the fast MAS 

conditions.
30

 In contrast, the 
1
H MAS NMR spectra of encapsulated IBU samples, 

IBU/ONT-1 EVP and IBU/ONT-2 EVP present sharper aliphatic and aromatic lines 

even at low drug loadings (10 wt% for IBU/ONT-1 EVP and 30 wt% for IBU/ONT-2 

EVPs). This sharpening of IBU 
1
H peaks has been previously observed when it is 

encapsulated in mesoporous MCM-41.
32

 The homonuclear 
1
H-

1
H dipolar interactions 

were efficiently averaged by the rapid isotropic motion of IBU in the MCM-41 

mesopores. Thus, the 
1
H spectra of IBU/ONT-1 EVP and IBU/ONT-2 EVP strongly 

indicated a rapid reorientation of mobile IBU in the ONTs. Meanwhile, it is worth 

noting that the peak corresponding to the IBU carboxyl proton was much broader in the 

EVPs than other peaks, and the peak broadening was accompanied by an upfield shift of 

IBU carboxyl proton compared with crystalline IBU. According to previous studies, the 

carboxyl proton of encapsulated IBU was involved in a chemical exchange reaction 

(intermediate exchange regime).
33,34

 Thus, the carboxyl group of IBU could have been 

participating in an interaction with the ONT surface. The spectra of ONT-1 and ONT-2 

both in pristine and EVPs showed much broader peaks, reflecting the lower mobility of 
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the ONTs. No significant difference was found between the ONT peaks in the pristine 

form and the EVPs. However, the peaks at 5–6 ppm in the spectrum of the pristine 

ONTs (indicated by arrows), which correspond to the hydroxyl proton of the glucose 

group on the outer surface of the ONTs, disappeared in the spectra of both EVPs. 

3. 1D 
13

C MAS NMR measurements 

13
C CP and SP spectra are shown in Figure 2-3, and the 

13
C chemical shifts are 

summarized in Tables 1 and 2. The peaks of the nuclei with low mobility are 

emphasized more in the 
13

C CP spectra, while those with high mobility are suppressed. 

On the other hand, 
13

C SP spectra reflect the nuclei independent of their mobility when 

the recycle delay is longer than the 
13

C-spin lattice relaxation time (T1). Only sharp 

peaks were found in the CP spectrum of crystalline IBU, reflecting the high degree of 

crystallinity (Figure 2-3a).
35

 On the other hand, IBU in IBU/ONT-1 and IBU/ONT-2 

EVPs showed two families of peaks corresponding to each 
13

C nucleus in the CP and/or 

SP spectra (Figure 2-3c-d, f-g), whose chemical shifts and peak shapes were very 

different from those of crystalline IBU. The two families of peaks were emphasized in 

either the CP or SP spectrum, indicating the IBU with either lower mobility or higher 

mobility. The dynamics of small guest drugs in host spaces is discussed by comparing 

13
C CP and SP spectra. IBU in mesopores has also been investigated in previous 
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articles.
34,36

 The characteristic peaks enhanced in the SP spectrum were assigned to the 

IBU with extremely fast molecular motion, confined in the mesopores. In this study, the 

peaks emphasized in the SP spectrum (indicated in red font as “inner”) could belong to 

mobile IBU inside the hollow nanospace of ONT, since such highly mobile IBU should 

be inhabited with a certain hollow space formed by the ONT structure. On the other 

hand, the less mobile IBU emphasized in the CP spectrum could be ascribed to the less 

mobile IBU at the outer surface of ONT (indicated in blue font as “outer”).  

3. Quantitative evaluation of loaded IBU in the inner and on the outer surface of ONT 

The quantitative analysis of the encapsulation ratio of IBU inside the hollow 

nanospace against at the outer surface of both ONT-1 and ONT-2 was carried out using 

the SP spectrum (Figure 2-4). The integration ratio was estimated using the peak area of 

C3 (“inner” and “outer”) after the process of the wave-form separation. The 

encapsulation ratio was determined to be 49.9 : 50.1 for IBU/ONT-1 EVP, and 65 : 35 

for IBU/ONT-2 EVP. Namely, the encapsulation ratio of IBU in the hollow nanospace 

versus that on the outer surface can be considered approximately 1 : 1 for ONT-1 and 2 : 

1 for ONT-2. Thus, the IBU was more efficiently encapsulated in the hollow nanospace 

than on the outer surface of ONT-2 for IBU/ONT-2 EVP, whereas for IBU/ONT-1 EVP, 

IBU encapsulation was equimolar between the inner hollow nanospace and the outer 
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surface of ONT-1. The difference in the encapsulated amounts could be explained by the 

different interaction strengths between IBU and the inner surfaces of the ONTs.  

4. Evaluation of the interaction between IBU and ONT 

The changes in 
13

C peaks of IBU and the inner surface of both ONT-1 and ONT-2 

are described as follows: The peak of the IBU carboxyl C1 inner in IBU/ONT-1 and 

IBU/ONT-2 EVPs (Figure 2-5e, g) broadened and shifted to higher magnetic field at 

178.7 and 180.3 ppm compared to the sharp melted IBU peak, which had a chemical 

shift of 181.3 ppm (Figure 2-5b). Fatnassi et al. reported that the peaks of IBU dimer 

and monomer were predicted to appear at 181.3 and 170.7 ppm, respectively.
34

 Thus, 

the carboxyl carbon peak observed in the melted IBU likely derived from dimeric IBU, 

with no interaction with other additives. The chemical shift of C1 inner should be due to 

the breakage of the IBU dimer structure, and subsequent interaction of the IBU 

monomer with ONT inner surface.
34,37

 Moreover, the intensity of each IBU C inner peak 

of IBU/ONT-1 and IBU/ONT-2 EVPs (Figure 2-3d, g) were compared with the melted 

IBU (Figure 2-6). Although all peaks of IBU in the inner nanospace of ONT were 

broaden compared with melted IBU, the peak broadening was strongest in the carboxyl 

group of IBU (Figure 2-3d, g), indicating that IBU interacted with ONT inner surface 

mainly through the carboxyl groups of IBU.
38-40

 It has been reported that the changes in 
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chemical shift of 
13

C peaks between IBU dimer and monomer was around 7~10 ppm.
34

 

Herein, the difference in chemical shift between the carboxyl group of the IBU 

interacted with the ONT inner surface and that of the melted IBU in dimeric structure 

was found to be not larger than 2 ppm. Thus, there could be a larger distribution of 

environments for the IBU carboxyl group, each with a different molecular mobility.
32

 

The exchange between the monomeric IBU bound to the inner surface and the freely 

mobile dimeric IBU inside the hollow nanospace of ONT could result in the broad 

averaged C1 inner peaks.  

The number of resonances in the IBU aromatic groups was reduced in both 

IBU/ONT-1 and IBU/ONT-2 EVPs (Figure 2-3c-d, f-g) compared with those in the 

crystalline IBU (Figure 2-3a). The difference was likely due to a rapid tumbling of the 

IBU aromatic group both in the hollow nanospace and on the outer surface of ONTs, 

leading to an averaging of the resonance peaks.
35

 On the other hand, the particular 

packing of the IBU molecules in the crystalline state resulted in crystallographic 

inequivalence.
41

 The C12 and C13 peaks of crystalline IBU were averaged to a single, 

sharp C12, 13 inner peak whose intensity was enhanced in the SP spectrum compared to the 

CP spectrum in both the IBU/ONT-1 and IBU/ONT-2 EVPs. The single sharp peak of 

IBU C12, 13 inner in ONTs was similar to that of encapsulated IBU in mesoporous 
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MCM-41.
33

 Moreover, the broad peaks observed at the foot of the sharp C12, 13 peak 

could belong to C12 and C13 on the outer surface of ONTs. In order to characterize the 

interactions between IBU and the ONT inner surface, the changes in the host ONTs 

peaks due to encapsulation of IBU were investigated. IBU loading did not show any 

significant changes in chemical shift or peak shape of the inner surface of ONT-1 

(Figure 2-7a, b). In contrast to ONT-1, the ONT-2 in the EVP showed drastic changes 

compared to the pristine form (Figure 2-7c, d). The C47’’ peak on the inner surface of 

ONT-2 showed a chemical shift from 175.6 ppm to 172.5 ppm in IBU/ONT-2 EVP, as 

assigned by the 2D 
1
H-

13
C HETCOR spectrum in Figure 2-8. Furthermore, the C49’’ 

peak derived from the inner surface of ONT-2 in the IBU/ONT-2 EVP showed a change 

in peak shape with respect to ONT-2 (Figure 2-9). These changes could be due to the 

interactions between IBU and ONT-2 at the inner surface. The inner surface of ONT-2 

showed larger peak changes than those in ONT-1, which indicated the stronger 

interactions between IBU and inner surface of ONT-2 compared to ONT-1. 

The interaction between IBU and ONT outer surface was discussed. The peak of the 

IBU C1 outer in both IBU/ONT-1 and IBU/ONT-2 EVPs (Figure 2-5d, f) broadened and 

shifted to higher magnetic field at 178.8 and 179.2 ppm, respectively, compared to the 

sharp melted IBU peak, in a manner similar to that observed in the inner nanospace of 
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ONTs (Figure 2-5b). It has been also reported that the IBU carboxyl carbon in an 

amorphous solid dispersion with polyvinylpyrrolidone shifted to a higher magnetic field 

at 178.3 ppm due to the formation of hydrogen bonds between the carboxyl group of 

IBU and the carbonyl group of polyvinylpyrrolidone.
42

 Here, the peak shift of C1 outer to 

a higher magnetic field can be attributed to intermolecular interactions between the 

carboxyl group of monomeric IBU with the hydroxyl group on the glucose of the ONT 

outer surface. The peaks of ONT outer surface groups were compared with those of 

IBU/ONT EVPs (Figure 2-10). Changes in the shape of peaks derived from the glucose 

group on the outer surface of both the ONTs were observed, particularly the C4’ - 6’, 13’ 

for ONT-1, and the C2’’ - 6’’, 13’’ for ONT-2. It was confirmed that IBU interacted with the 

glucose hydroxyl group of both ONT-1 and ONT-2 at the outer surface. Here, the two 

peaks of C2’ in ONT-1 were assigned to the -anomer (93.3 ppm) and -anomer (96.4 

ppm) of the glucose (Figure 2-10a),
 44

 indicating a mixture of the and-anomers in 

ONT-1. This information also provide a reasonable explanation for the C3 outer peak of 

IBU in IBU/ONT-1 EVP appearing as two peaks in Figure 2-4a. The carboxyl group 

next to C3 in the chemical structure of IBU should interact with the hydroxyl group in 

either the - or -anomer of ONT-1 glucose at the outer surface. Furthermore, the 

interactions between IBU and the outer surfaces of the ONTs were evaluated by using 
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1
H-

13
C HETCOR spectroscopy with a longer contact time (Figure 2-1c, d). The 

HETCOR spectra clearly showed well-separated cross peaks in both the IBU/ONT-1 

and IBU/ONT-2 EVPs (indicated by the dotted lines in Figure 2-11). These correlations 

arose from an interaction between the less mobile C1 outer of IBU and the hydroxyl 

proton from the glucose group on the outer surface of the ONTs. As such, this result 

confirmed that the peaks denoted “outer” belonged to the IBU at the outer surface of the 

ONTs. 

Figure 2-12 shows schematic illustrations of both the IBU/ONT EVPs. As shown in 

FE-SEM images of the IBU/ONT EVPs, ONT fibers existed in a network, and 

individual fibers showed widths of 30–60 nm, while the diameters of both ONT-1 and 

ONT-2 was ca. 14–16 nm as shown in the FE-TEM images (Figure 1-1). It has been 

reported that tubular structures that possess high aspect ratios and flexibilities, such as 

carbon nanotubes and ONTs, have a high probability of entanglement and close packing 

with each other.
18,44 

Thus, the ONTs used in this study could form bundles, and in the 

EVPs these bundles were randomly arranged and aggregated with each other. There are 

two types of spaces where IBU could be loaded: either the hollow nanospace of an ONT, 

or on the outer surface of ONTs. In both the IBU/ONT-1 and IBU/ONT-2 EVPs, the 

IBU in the inner nanospace had much higher mobility, while IBU existed at the outer 
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surface of the ONT was less mobile. Meanwhile, the IBU in the inner hollow nanospace 

had much higher mobility, exhibiting isotropic motion, and there was exchange between 

the monomeric IBU bound to the inner surface and the dimeric IBU that was freely 

mobile in the hollow nanospace. The maximum amounts of IBU encapsulation for 

ONT-1 and ONT-2 were ca. 10 wt% and 30 wt%, respectively. The encapsulation ratio 

for IBU at the inner hollow nanospace versus at the outer surface was about 1 : 1 for 

IBU/ONT-1 EVP, and 2 : 1 for IBU/ONT-2 EVP. Thus, the amounts of IBU associated 

with the inner hollow nanospace and outer surface in ONT-1 were calculated to be 5 

wt% and 5 wt%, while in ONT-2 those were 20 wt% and 10 wt%, respectively. The IBU 

in the inner hollow nanospace of ONT-1 was weakly held via interactions between the 

carboxyl group of IBU and the inner surface. In contrast, those in IBU/ONT-2 EVP 

were strongly held in the inner hollow nanospace through electrostatic interactions of 

the IBU carboxyl group with the amino group on the inner surface of ONT-2. This 

stronger interaction could result in encapsulation of a larger amount of IBU into ONT-2 

than that into ONT-1. At the outer surface, weak interaction was formed between the 

IBU carboxyl group and the ONT glucose group for both IBU/ONT-1 and IBU/ONT-2 

EVPs. Comparing the ONT-1 and ONT-2 EVPs, ONT-2 showed approximately three 

times greater IBU encapsulation than ONT-1. The difference in the amounts 



37 

 

encapsulated by ONT-1 and ONT-2 could be explained by the different interaction 

strengths between IBU and the inner surfaces of the ONTs. IBU is a propionic acid with 

a pKa of 4.4~5.4.
45

 ONT-1 had an anionic inner surface of carboxyl groups, while 

ONT-2 had a cationic inner surface of amino groups. The amino group on the inner 

surface of the cationic ONT-2 could retain higher amounts of IBU via electrostatic 

interactions with the carboxyl group during the evaporation process. On the other hand, 

the smaller amount of IBU encapsulated within ONT-1 could be due to the presence of a 

carboxyl group on the anionic ONT-1 inner surface, which could repel the IBU. The 

maximum encapsulation of neutral drugs (HCT and PHE) within ONT-1 was about 30 

wt% (Figure 1-4), similar to the IBU maximum amount loaded into ONT-2 (Figure 1-3). 

This result supported the fact that the drug encapsulation efficacy strongly depends on 

the interaction mode between the drug and the inner and outer surfaces of the ONT. 
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Figure 2-1. 2D 
1
H-

13
C heteronuclear correlation (HETCOR) spectra of (a) IBU/ONT-1 = 1 : 9 

EVP (contact time = 0.3 ms), (b) IBU/ONT-2 = 3 : 7 EVP (contact time = 0.3 ms), (c) 

IBU/ONT-1 = 1 : 9 EVP (contact time = 4 ms), and (d) IBU/ONT-2 = 3 : 7 EVP (contact time = 

5 ms).  
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Figure 2-2. 1D 
1
H NMR spectra (MAS = 40 kHz) of (a) IBU crystal, (b) ONT-1, (c) 

IBU/ONT-1 = 1 : 9 EVP, (d) ONT-2, and (e) IBU/ONT-2 = 3 : 7 EVP. The asterisks represent 

the peak of the impurity in each ONT, and the arrows represent the peak of hydroxyl group in 

glucose group of ONT.  
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Figure 2-3. 1D 
13

C NMR spectra (MAS = 40 kHz) of (a) crystalline IBU (CP), (b) ONT-1 (CP), 

(c) IBU/ONT-1 = 1:9 EVP (CP), (d) IBU/ONT-1 = 1:9 EVP (SP), (e) ONT-2 (CP), (f) 

IBU/ONT-2 = 3:7 EVP (CP), and (g) IBU/ONT-2 = 3:7 EVP (SP). The asterisks represent the 

impurity peak in each ONT.  
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Table 1. 
13

C CP chemical shift of IBU, ONT-1, ONT-2, and in IBU/ONT EVPs. 
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Table 2. 
13

C SP chemical shift of IBU in IBU/ONT EVPs. 
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Figure 2-4. Wave-form separation of 
13

C SP NMR spectra (MAS = 40 kHz) for (a) IBU/ONT-1 

= 1 : 9 EVP and (b) IBU/ONT-2 = 3 : 7 EVP from 12 ppm to 21 ppm.  
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Figure 2-5. 1D 
13

C NMR spectra (MAS = 40 kHz) spectra of (a) IBU crystal (CP), (b) melted 

IBU measured at 70 ºC (SP), (c) ONT-1 (SP), (d) IBU/ONT-1 = 1 : 9 EVP (CP), (e) 

IBU/ONT-1 = 1 : 9 EVP (SP), (f) IBU/ONT-2 = 3 : 7 EVP (CP), and (g) IBU/ONT-2 = 3 : 7 

EVP (SP) from 170 ppm to 184 ppm.  
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Figure 2-6. 
13

C SP spectrum (MAS = 40 kHz) of melted IBU at 70 ºC from 10–190 ppm. 

Asterisks indicate peaks of remaining crystalline IBU.  
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Figure 2-7. 1D 
13

C CP NMR spectra (MAS = 40 kHz) spectra of (a) ONT-1, (b) IBU/ONT-1 = 

1:9 EVP, (c) ONT-2, and (d) IBU/ONT-2 = 3:7 EVP from 165 –185 ppm.  
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Figure 2-8. 2D 
1
H-

13
C heteronuclear correlation (HETCOR) spectra of (a) ONT-2 and (b) 

IBU/ONT-2 = 3:7 EVP.  
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Figure 2-9. 1D 
13

C CP NMR spectra (MAS = 40 kHz) spectra of ONT-2 (red line), and 

IBU/ONT-2 = 3:7 EVP (blue line) from 13–50 ppm.  
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Figure 2-10. 1D 
13

C CP NMR spectra (MAS = 40 kHz) spectra of (a) ONT-1, (b) IBU/ONT-1 = 

1:9 EVP, (c) ONT-2, and (d) IBU/ONT-2 = 3:7 EVP from 50–100 ppm.    
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Figure 2-11. 2D 
1
H-

13
C heteronuclear correlation (HETCOR) spectra of (a) IBU/ONT-1 = 1 : 9 

EVP (contact time = 4 ms) and (b) IBU/ONT-2 = 3 : 7 EVP (contact time = 5 ms).  
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Figure 2-12. Field emission-scanning electron microscopy (FE-SEM) images (left) and 

schematic illustrations (right) of (a) IBU/ONT-1 = 1:9 EVP and (b) IBU/ONT-2 = 3:7 EVP. 

: strong interaction (inner surface); : weak interaction (inner surface); : weak 

interaction (outer surface); : high rotation; : exchange. 

 

 

 



52 

 

PART III  Dissolution characteristics of IBU from each ONT  

Dissolution properties of IBU from ONT-1 and ONT-2 in acetate buffer solution (pH 

4.0, 37˚C) were investigated. The IBU dissolution profiles from crystalline IBU, 

IBU/ONT-1 = 1 : 9 EVP and IBU/ONT-2 = 3 : 7 EVP are represented in Figure 3-1. The 

IBU/ONT-1 = 1 : 9 EVP exhibited much fast dissolution from the initial stage of 

dissolution profile. The concentration of dissolved IBU from IBU/ONT-1 EVP at 

sampling times of 5 min accumulated to 7.0 g/mL, much higher than that of crystalline 

IBU of 2.7 g/mL. The dissolution improvement could be largely attributed to 

amorphization of IBU. The dissolution behavior coincide with the result that amorphous 

HCT and PHE encapsulated in ONT-1 showed rapid dissolution (Figure 3-2).
27

 On the 

contrary, the dissolution profile of IBU from IBU/ONT-2 = 3 : 7 EVP sample was 

significantly different. The IBU concentration reached to 2.3 g/mL at 5 min, due to the 

initial burst dissolution of IBU. Then, the rest of IBU followed a typical sustained 

dissolution and dissolved slowly than crystalline IBU. The difference in IBU dissolution 

behavior between IBU/ONT-1 EVP and IBU/ONT-2 EVP could be attributed to the 

different interaction with functional groups of ONT inner and outer surface. 

Dissolution of IBU from the ONTs shows three identifiable stages (Figure 3-3).
44 

Firstly, water molecules penetrate into both the inner hollow nanospace and the 
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interstitial spaces between the ONTs, causing the ONTs to separate from the bundles. 

The second process is the diffusion of ONTs into the dissolution medium, accompanied 

by the release of IBU from the interstitial space. The final stage is the release of IBU 

from the inner hollow nanospace. When the IBU/ONT-1 EVP was dispersed in a 

dissolution medium, IBU at the outer surface was immediately released, and the IBU 

inside the hollow nanospace rapidly diffused out. The interaction between IBU and the 

inner surface of anionic ONT-1 was so weak that IBU was difficult to retain within the 

hollow nanospace. On the other hand, the IBU/ONT-2 EVP showed two-step IBU 

dissolution. The burst release of IBU from ONT-2 over the first 5 min could be mainly 

attributed to the release of IBU from the outer surface of ONT-2. The slow dissolution 

of IBU after this step was due to the release of the remaining IBU from the inner hollow 

nanospace, which was slowed by the strong electrostatic interactions between IBU and 

the inner surface of cationic ONT-2. 
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Figure 3-1. Dissolution profiles of (▲) IBU/ONT-1 = 1 : 9 EVP, (◆) IBU crystal, and (■) 

IBU/ONT-2 = 3 : 7 EVP in acetate buffer solution at pH 4.0, 37 ºC ( n = 3, mean ± S.D.). 
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Figure 3-2. Dissolution profiles of HCT/ONT-1 and PHE/ONT-1 systems using a dissolution 

test apparatus according to the Japanese Pharmacopeia (JP) XVI paddle method at 37 ºC. ( n = 3, 

mean ± S.D.) (a) HCT/ONT-1 system in JP 2
nd

 fluid (pH 6.8); (□) HCT, (△) HCT/ONT-1 

30 wt% PM, and (○) HCT/ONT-1 30 wt% EVP, (b) HCT/ONT-1 system in JP 1stfluid (pH 

1.2); (■) HCT,(▲) HCT/ONT-1 30wt% PM, and (●) HCT/ONT-1 30 wt% EVP, and (c) 

PHE/ONT-1 system in JP 2
nd

 fluid (pH 6.8); (☆) PHE, (▽) PHE/ONT-1 30 wt% PM, and (◇) 

PHE/ONT-1 30 wt% EVP. 
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Figure 3-3. Schematic illustration of IBU dissolution from IBU/ONT-1 = 1 : 9 EVP (top) and 

IBU/ONT-2 = 3 : 7 EVP (bottom).  



57 

 

CONCLUSIONS 

 

The encapsulation of IBU by ONTs was investigated by FE-TEM, PXRD, DSC, and 

FE-SEM. In addition, multiple solid-state NMR spectroscopies provided insights into 

the molecular-level interactions between IBU and the ONTs. The molecular states 

clearly explained the behavior of the IBU encapsulation and dissolution from ONT-1 

and ONT-2, which had different functional groups on their surfaces. These findings 

showed that both ONT-1 and ONT-2 encapsulated IBU not only in their inner hollow 

nanospace but also on their outer surfaces. The ratio of IBU encapsulation in the inner 

hollow nanospace versus on the outer surface was 1 : 1 and 2 : 1 for ONT-1 and ONT-2, 

respectively. IBU encapsulated in the hollow nanospace of both ONTs possessed 

substantially higher mobility than when attached to the outer surface of the ONTs. The 

interaction between the carboxyl group of IBU and the glucose hydroxyl group on the 

outer surface of the ONT was highlighted by 2D HETCOR spectroscopy. The 

differences in the interaction strengths of IBU/ONT-1 and IBU/ONT-2 affected the 

amount of IBU encapsulated and the dissolution rate from the different functionalized 

ONTs. Thus, the encapsulation and dissolution behaviors of guest drugs can be 

controlled by introducing different functional groups to the surface of host ONTs. This 
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study clearly illustrates the utility of functionalized ONTs as drug carriers, which can 

enable controlled encapsulation and dissolution of poorly water-soluble drugs by 

altering the nature of the host-guest interactions. 
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