
p-saturations of Games
August 2017

Chiba University

Graduate School of Science and Engineering

Yuki Irie





Contents

Abstract iii

Acknowledgments v

1 Games 1
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 How to Play Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Sprague-Grundy Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Appendix 1.A Explicit Formulas for Sprague-Grundy Functions . . . . . . . . . . . 5

1.A.1 Subtraction Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.A.2 Take-and-Break Games . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.A.3 Rim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.A.4 Euclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.A.5 Grossman’s Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.A.6 Nimhoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.A.7 Lim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Digit-Separable Sprague-Grundy Functions 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Inverted Nim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Digit-Separable Functions . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 2-inverted Nim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Frequency Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Solution Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Carries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Explicit Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 p-saturations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Games with p-index k and p-saturations . . . . . . . . . . . . . . . . . 31
2.3.2 Digit-Separable Sprague-Grundy Functions . . . . . . . . . . . . . . . 32

2.4 p-saturation Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Appendix 2.A Designs and Their Game Distributions . . . . . . . . . . . . . . . . 43

2.A.1 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

i



Contents

2.A.2 Game Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 p-saturations of Welter’s Game and the Irreducible Representations of Sym-
metric Groups 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Welter’s game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 p-saturations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 p-core Towers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 p-saturations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 p-saturations of Nim . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 p-saturations of Welter’s Game . . . . . . . . . . . . . . . . . . . . . 60

3.4 Proof of (A1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 pH-options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.2 (A1) for ordpXq “ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.3 (A1) for ordpXq ą 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Proof of (A2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 p*-descendants and Peak Digits . . . . . . . . . . . . . . . . . . . . . 74
3.5.2 Proof of (A2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.3 Easy Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.4 The Condition (P0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.5 Proof of Lemma 3.5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ii



Abstract

We introduce the notion of p-saturations. We then construct a family of (impartial) games
and give explicit formulas for their Sprague-Grundy functions. We also present a connection
between games and representations.

The main results are the following:

1. p-saturations of Welter’s Game and the Irreducible Representations of Symmetric
Groups (Chapter 3)
We establish a relation between the Sprague-Grundy function sg of p-saturations of Wel-
ter’s game and the degrees of the (ordinary) irreducible representations of symmetric
groups. In these games, a position can be regarded as a partition λ . Let ρλ be the irre-
ducible representation of the symmetric group Symp|λ |q corresponding to λ . For every
prime p, we show the following results:

a) sgpλ q ď |λ | with equality if and only if the degree of ρλ is prime to p;

b) the restriction of ρλ to Sympsgpλ qq has an irreducible component with degree prime
to p.

Further, for every integer p greater than 1, we obtain an explicit formula for sgpλ q.

2. Digit-Separable Sprague-Grundy Functions (Chapter 2)
We construct a family of games including Nim and present explicit formulas for their
Sprague-Grundy functions. Let Φ be an integer-valued function on the position set P of
Nim. Let p be an integer greater than 1 and let ΓrΦs be a p-saturation of the subgame of
Nim induced in tX P P : ΦpXq ě 0u. We show that if Φ is digit-separable and a locally
Sprague-Grundy function of ΓrΦs, then Φ is the Sprague-Grundy function of ΓrΦs. The
p-saturation indices of some games in this family are also determined.
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1 Games

In this chapter, we recall the basic definitions and results of the (short impartial) game theory.
Games can be represented as digraphs. In the game theory, Sprague-Grundy functions play a
crucial role. For example, using them, we can describe the winning strategy for games. Sprague-
Grundy functions are defined recursively, and explicit formulas for them are not known in most
cases. The goal of this thesis is constructing a family of games and presenting explicit formulas
for their Sprague-Grundy functions.

1.1 Definitions

Let Γ be a digraph pP,Aq, that is, P is a set and A is a subset of P2. We denote P and A by
PpΓq and ApΓq, respectively. Let X0, . . . ,Xn be elements of PpΓq. The sequence pX0, . . . ,Xnq is
called a path of length n from X0 to Xn if pXi,Xi`1q in ApΓq for each i P rns “ t 0,1, . . . ,n ´ 1 u.
For X P PpΓq, let lgpXq denote the maximum length of a path from X . We call lgpXq the length
of X .

A digraph Γ is called a (short impartial) game if lgpXq is finite for every X P PpΓq. Let Γ be
a game. The set PpΓq is called the position set of Γ, and an element of PpΓq is called a position
in Γ. If X and Y are two positions in Γ and pX ,Y q P ApΓq, then Y is called an option of X . If X
has no option, then X is called a terminal position.

Example 1.1.1. Let us consider the two graphs in Figure 1.1. The lengths of vertices in the left
graph are 2, 1, and 0. Hence this graph is a game. In contrast, the lengths of two vertices in the
right one are infinite, so this one is not a game.

2 1 0 ∞ ∞

Figure 1.1: The left one is a game, but the right one is not.

Example 1.1.2 (Nim). Let m P N and P “ Nm, where N is the set of non-negative integers. For
X P P and i P rms, let X i denote the i-th component of X , that is, X “ pX0, . . . ,Xm´1q. Let

A “
␣

pX ,Y q P P2 : X i
ě Y i for each i P rms and distpX ,Y q “ 1

(

,

1



1 Games

where distpX ,Y q is the Hamming distance between X and Y , that is,

distpX ,Y q “
⏐⏐␣ i P rms : X i

‰ Y i (⏐⏐ .
Let Nm “ pP,Aq. Then Nm is a game. This game is called Nim.

The game Nm can be decomposed into m copies of N 1 as follows. Let Γ and Γ1 be two
games. Let P “ PpΓq ˆPpΓ1q and

A “ tppX ,X 1
q,pY,X 1

qq P P2 : pX ,Y q P ApΓqu Y tppX ,X 1
q,pX ,Y 1

qq P P2 : pX 1,Y 1
q P ApΓ

1
qu .

Then the game pP,Aq is called the disjunctive sum of Γ and Γ1, and is denoted by Γ ‘2 Γ1. For
example,

Nm and N 1
‘2 ¨ ¨ ¨ ‘2 N 1

loooooooomoooooooon

m

are isomorphic as digraphs. As we will see in the next section, the Sprague-Grundy function of
Γ ‘2 Γ1 is easily deduced from that of Γ and Γ1. In particular, to calculate the Sprague-Grundy
function of Nm, we need only compute that of N 1.

In contrast, the following game cannot be decomposed into smaller games.

Example 1.1.3 (Welter’s game). Let

P “
␣

X P Nm : X i
‰ X j for 0 ď i ă j ď m ´ 1

(

.

Let Wm be the subgraph of Nm induced in P , that is, the position set of Wm is P and its arrow
set ApWmq is

t pX ,Y q P ApNm
q : X ,Y P P u .

The game Wm is called Welter’s game. Since this game can not be decomposed into smaller
games, calculating the Sprague-Grundy function of Wm is more difficult than of Nm.

1.2 How to Play Games

Let us play a game Γ. There are two players, say Player 1 and Player 2. We first choose an
initial position and place a coin on it. Two players alternately move the coin to an option of
the position where the coin is placed. The winner is the player who has moved the coin to a
terminal position.

Example 1.2.1. Let us play Nim N 2. Let p2,2q be the initial position. See Figure 1.2. It is the
turn of Player 1. He has the following four options:

p1,2q,p0,2q,p2,1q, and p2,0q.

2



1.3 Sprague-Grundy Functions

He chooses p1,2q. It is the turn of Player 2. He has the following three options

p1,1q,p1,0q, and p0,2q.

He chooses p1,1q. Then Player 1 has no choice but to move to p1,0q or p0,1q. He moves to
p0,1q. Finally, Player 2 moves to p0,0q and wins.

Player 1

Player 1

Player 2

Player 2

(2,2)

(0,2)

(1,2)

(2,0)

(0,0)

(1,0)

(2,1)

(0,1)

(1,1)

(2,2)

(0,2)

(1,2)

(2,0)

(0,0)

(1,0)

(2,1)

(0,1)

(1,1)

Figure 1.2: The winner is Player 2.

Why could Player 2 win? This is because Player 2 has a winning strategy. We say that a
position X in a game is a winning position if the previous player has a winning strategy when
the initial position is X . For example, px,xq in N 2 is a winning position.

1.3 Sprague-Grundy Functions

To give the winning strategy, we define Sprague-Grundy numbers. For a proper subset S of
N, let mexS be the smallest non-negative integer not in S. For example, mexH “ 0 and
mext0,1,3u “ 2. Let X be a position in a game Γ. The Sprague-Grundy number of X is
defined recursively by

sgpXq “ sgΓpXq “ mext sgΓpY q : Y is an option of X u .

The function sgΓ : PpΓq Ñ N is called the Sprague-Grundy function of Γ

Note that if X is a terminal position, then sgpXq “ mexH “ 0. Furthermore, sgpXq is at most
lgpXq.

Example 1.3.1. Let us calculate the Sprague-Grundy numbers of positions in Figure 1.2.

3



1 Games

• p0,0q is terminal, so sgpp0,0qq “ 0.

• p0,1q has one option p0,0q, so sgpp0,1qq “ mexptsgpp0,0qquq “ mexpt0uq “ 1. Similarly,
sgpp1,0qq “ 1.

• p1,1q has two options p0,1q and p1,0q, so sgpp1,1qq “ mexptsgpp0,1qq,sgpp1,0qquq “

mexpt1uq “ 0.

In this way, we can calculate the Sprague-Grundy numbers of positions recursively. See Figure
1.3.

(2,2)

(0,2)

(1,2)

(2,0)

(0,0)

(1,0)

(2,1)

(0,1)

(1,1)

0

1

2

3

0

0 2

3

1

Figure 1.3: Sprague-Grundy numbers.

In fact, the Sprague-Grundy number of X in Nim is

X0
‘2 X1

‘2 ¨ ¨ ¨ ‘2 Xm´1,

where ‘2 is binary addition without carry. For example, 3 ‘2 5 “ p1 ` 2q ‘2 p1 ` 4q “ 6. This
explicit formula was given by Sprague [12] and Grundy [29] independently. More generally,
they proved the following result.

Theorem 1.3.2 (Sprague [12] and Grundy [29]). Let Γ and Γ1 be games. Then for pX ,X 1q P

PpΓ ‘2 Γ1q,
sgΓ‘2Γ1ppX ,X 1

qq “ sgΓpXq ‘2 sgΓpX 1
q.

We now present the winning strategy. Let X be a position in a game Γ. Grundy [12] and
Sprague [29] showed that playing X is essentially the same as playing psgΓpXqq P PpN 1q. In
particular, X is a winning position if and only if sgΓpXq “ 0. Let us explain this. Let g “ sgΓpXq

4



1.A Explicit Formulas for Sprague-Grundy Functions

and Xg “ X . By definition, Xg has options X0, . . . ,Xg´1 with sgΓpXhq “ h for h P rgs, but has no
option Y with sgΓpY q “ g. The position Xg might have an option Xn with sgΓpXnq “ n ą g. If this
is the case, then Xn has an option X 1

g with sgΓpX 1
gq “ g. Hence the effect of the move Xg to Xn

can be immediately reversed by the other player. This implies that if we ignore such reversible
moves, then playing Xg is essentially the same as playing pgq in Nim N 1. In particular, X is a
winning position if and only if sgΓpXq “ 0.

Example 1.3.3. Let X be the position p2,2q in N 2. Since sgpXq “ 2‘2 2 “ 0, every move from
p2,2q is reversible, so it is a winning position. Let us verify this. The position X has four options
p0,2q,p1,2q,p2,0q, and p2,1q. Their Sprague-Grundy numbers are 2, 3, 2, and 3, respectively.
Hence each of them has an option Y with sgpY q “ 0. Indeed, for example, p1,1q is an option of
p1,2q. Similarly, every move from p1,1q is reversible. See Figure 1.4. Hence (2,2) is actually a
winning position.

(2,2) (0,0)

(2,1)

(2,2) (1,1) (0,0)

(2,0)(0,2)

(1,0)(0,1)

2

0

3

1

Figure 1.4: Reversible moves.

Sprague-Grundy numbers are defined by recursively. It seems to be almost impossible to
present an explicit formula for the Sprague-Grundy function of a given game. For example, let
Γ be an induced subgraph of Nim. Excluding trivial cases, such explicit formula was known
only when Γ is Nim or Welter’s game. The following explicit formula of Welter’s game was
given by Welter [30] and Sato [25–27] independently.

sgpXq “ X0
‘2 ¨ ¨ ¨ ‘2 Xm´1

‘2
à

0ďiă jďm´1
2 N2pX i

´ X j
q,

where N2pxq “ x ‘2 px ´ 1q.

Appendix 1.A Explicit Formulas for Sprague-Grundy
Functions

In this section, we list known explicit formulas for some games.

5



1 Games

1.A.1 Subtraction Games

Let P “ N,
A “ tpx,yq P N2 : 0 ă x ´ y ă 4u ,

and Γ “ pP,Aq. The following table shows the Sprague-Grundy numbers of x with 0 ď x ď 10
in Γ.

x 0 1 2 3 4 5 6 7 8 9 10 ¨ ¨ ¨

sgΓpxq 0 1 2 3 0 1 2 3 0 1 2 ¨ ¨ ¨

We see that sgpxq is equal to the remainder of x divided by 4 because

sgpxq “ mextsgpx ´ 1q,sgpx ´ 2q,sgpx ´ 3qu .

We say that Γ has the nim-sequence

01230123 ¨ ¨ ¨ “ 9012 93.

More generally, let S be a subset of Nzt0u. Let P “ N and

A “ tpx,yq P P2 : x ´ y P Su .

The game pP,Aq is called the subtraction game corresponding to S. Table 1.1 shows the nim-
sequences of for some subtraction games (see Chapter 4 of [1] for more details).

Table 1.1: For example, if S “ t1u Y S1 with S1Ďt3,5,7u, then the subtraction game corre-
sponding to S has the nim-sequence 90 91.

S nim-sequence period

1p3,5,7, ¨ ¨ ¨ q 90 91 2
2p6,10,14, ¨ ¨ ¨ q 9001 91 4
1,2p4,5,7,8,10, ¨ ¨ ¨ q 901 92 3

3p9,15,21, ¨ ¨ ¨ q 900011 91 6
2,3p7,8,12,13, ¨ ¨ ¨ q 90011 92 5
1,2,3p5,6,7,9,10,11,13, ¨ ¨ ¨ q 90012 93 4

4p12,20,28, ¨ ¨ ¨ q 90000111 91 8
1,4p6,9,11,14, ¨ ¨ ¨ q 900101 92 5
2,4p3,8,9,10, ¨ ¨ ¨ q 900112 92 6
3,4p10,11,17, ¨ ¨ ¨ q 9000111 92 7
1,3,4p6,8,10,11, ¨ ¨ ¨ q 9010123 92 7
1,2,3,4p6,7,8, ¨ ¨ ¨ q 90123 94 5

6



1.A Explicit Formulas for Sprague-Grundy Functions

1.A.2 Take-and-Break Games

Let d1,d2, . . . P N and dt,L be the L-th digit in the 2-adic expansion of dt , that is,

dt “
ÿ

LPN
dt,L2L and dt,L P t0,1u .

We define the game ¨d1d2 ¨ ¨ ¨ as follows. The position set of this game is
Ť

mPNNm. A position
X P Nm has an option Y if and only if

1. Y “ pX0, . . . ,Xk´1,Z0, . . . ,ZL´1,Xk`1, . . . ,Xm´1q,

2. Zi ě 1 for each i P rLs, and

3. dt,L “ 1, where t “ Xk ´ Z0 ´ ¨¨ ¨ ´ ZL´1 ą 0.

In other words, if we take t coins from a heap, then we must break this heap into L non-empty
heaps for some L with dt,L “ 1. Note that if dt “ 0, then we cannot take t coins from any heaps.

Example 1.A.1 (Kayles). Let us consider the game ¨77. This game is called Kayles. In this
game, we can take one or two coins. After taking, we can break that heap to two heaps. For
example, the options of p4q are

p3q,p2,1q,p1,2q,p2q, and p1,1q.

Kayles can be viewed as the following games. There is a strip of squares. We can put a block
whose length is one or two. Whoever is unable to put a block loses.

Figure 1.5: Kayles.

The nim-sequence of Kayles has the following periodicity:

7



1 Games

Table 1.2: The periodicity of Kayles.
0 0 1 2 3 1 4 3 2 1 4 2 6

12 4 1 2 7 1 4 3 2 1 4 6 7
24 4 1 2 8 5 4 7 2 1 8 6 7
36 4 1 3 8 1 4 7 2 1 8 2 7
48 4 1 2 8 1 4 7 2 1 4 2 7
60 4 1 2 8 1 4 7 2 1 8 6 7
72 4 1 2 8 1 4 7 2 1 8 2 7
84 4 1 2 8 1 4 7 2 1 8 2 7
96 4 1 2 8 1 4 7 2 1 8 2 7

Example 1.A.2 (¨007). Let us consider the game ¨007. The options of p6q are

p3q,p1,2q, and p2,1q.

The game ¨007 can be viewed as a variation of Kayles. In ¨007, we can put a block whose length
is three.

Figure 1.6: ¨007.

In contrast to Kayles, it is an open problem that whether the nim-sequence of ¨007 has a
periodicity. See Chapter 4 of [1] for more details.

n 0 1 2 3 4 5 6 7 8 9 10 11 ¨ ¨ ¨

sgpnq 0 0 0 1 1 1 2 2 0 3 3 1 ¨ ¨ ¨

1.A.3 Rim

Rim was introduced by Flanigan [8]. Let p be an integer greater than 1. The position set of
Rimp is Nm. In Rimp, we first select two non-negative integers L and t with 1 ď t ă 2pL. Then
we can take t coins from a heap. We also have the option of taking precisely pL coins from a
heap. This option may be exercised up to a total of p ´ 2 times in a move. Note that Rim2 is
Nim.

Theorem 1.A.3 ([Flanigan [8]). If X is a position in Rimp, then

sgpXq “ X0
‘p ¨ ¨ ¨ ‘p Xm´1,

where ‘p is p-ary addition without carry.

8



1.A Explicit Formulas for Sprague-Grundy Functions

1.A.4 Euclid

Euclid, which is based on the Euclidean algorithm for computing the greatest common divisor
of two numbers, was introduced by Cole and Davie [4]. The position set of Euclid is N2 and its
arrow set is

␣

pX ,Y q P P2 : X0
“ Y 0 and X0 ˇ

ˇ pX1
´Y 1

q
(

Y
␣

pX ,Y q P P2 : X1
“ Y 1 and X1 ˇ

ˇ pX0
´Y 0

q
(

.

For example, p15,65q has the following four options:

p15,50q,p15,35q,p15,20q, and p15,5q.

Cole and Davie [4] shows that for X0 ă X1, the position pX0,X1q is a winning position if and
only if

X1
ă

1 `
?

5
2

X0.

Cairns, Ho, and Lengyel [3] found an explicit formula for Euclid. Let 0 ă X0 ă X1 and let
rc0, . . . ,cns be the continued fraction expansion of X1{X0, that is,

X1

X0 “ c0 `
1

c1 ` 1
c2` 1

... 1
cn´1` 1

cn

,

where cn ą 1 if n ą 0. Let lpX0,X1q be the largest non-negative integer i such that

c0 “ ¨¨ ¨ “ ci´1 ď ci.

Theorem 1.A.4 (Cairns, Ho, and Lengyel [3]). Let X be a position with 0 ă X0 ď X1 in Euclid,
and let rc0, . . . ,cns be the continued fraction expansion of X1{X0. Then

sgpXq “

Z
⏐⏐⏐⏐X1

X0 ´
X0

X1

⏐⏐⏐⏐^`

#

p´1qn if c0 “ ¨¨ ¨ “ cn,

0 otherwise.

Moreover, if X0 ă X1, then

sgpXq “

Z

X1

X0

^

´

#

0 if lpX0,X1q is even,
1 if lpX0,X1q is odd.

9



1 Games

1.A.5 Grossman’s Game

Grossman’s game was introduced by Grossman [11]. This game is just the misere of Euclid,
that is, its position set is N2ztpa,0q,p0,aq : a P Nu, and its arrow set is

␣

pX ,Y q P P2 : X0
“ Y 0 and X0 ˇ

ˇ pX1
´Y 1

q
(

Y
␣

pX ,Y q P P2 : X1
“ Y 1 and X1 ˇ

ˇ pX0
´Y 0

q
(

.

For example, in Euclid, p3,9q has the following three options:

p3,6q,p3,3q, and p3,0q.

However, in Grossman’s game, p3,0q is not an option of p3,9q.

Theorem 1.A.5 (Nivesch [19]). If X is a position in Grossman’s game, then

sgpXq “

Z
ˇ

ˇ

ˇ

ˇ

X1

X0 ´
X0

X1

ˇ

ˇ

ˇ

ˇ

^

.

1.A.6 Nimhoff

Nimhoff was introduced by Fraenkel and Lorberbom [9] to analyze games lying between Nim
and Wythoff’s game.

Cyclic Nimhoff

Let h be a non-negative integer. The position set of cyclic Nimhoff is Nm and its arrow set is

ApNm
q Y

#

pX ,Y q P Nm : 0 ă

m´1
ÿ

i“0

pX i
´Y i

q ă h

+

,

where Nm is Nim. For example, if h “ 4, then p2,3q has the following eight options:

p1,3q,p0,3q,p2,2q,p2,1q,p2,0q,

p1,2q,p1,1q, and p0,2q.

Let a mod b denote the remainder of a divided by b.

Theorem 1.A.6 (Fraenkel and Lorberbom [9]). If X is a position in cyclic Nimhoff, then

sgpXq “

˜

h mod

˜

m´1
à

i“0
2 X i

¸¸

`

˜˜

m´1
ÿ

i“0

X i

¸

mod h

¸

,

where X i is the quotient of X i divided by h.

10



1.A Explicit Formulas for Sprague-Grundy Functions

Balanced Nimhoff with Powers of 2

Let K be a non-negative integer. The position set of 2K-balanced Nimhoff is Nm and its arrow
set is

ApNm
q Y

!

pX ,Y q P Nm : distpX ,Y q “ 2 and X s
´Y s

“ X t
´Y t

“ 2k for some s ‰ t
)

.

Let
x ˚K y “ x ‘2 y ‘2 xKyK,

where xK is the K-th digit in the 2-adic expansion of x, that is, x “
ř

KPN xK2K and xK P t0,1u.

Theorem 1.A.7 (Fraenkel and Lorberbom [9]). If X is a position in 2K-balanced Nimhoff, then

sgpXq “ X0
˚K ¨ ¨ ¨ ˚K Xm´1.

Double Cyclic Nimhoff

Let h be an integer greater than 1. The positions set of double cyclic Nimhoff is N2 and its
arrow set is

ApNm
q

Y

#

pX ,Y q P P2 : X i
ě Y i for i P r2s and

1
ÿ

i“0

pX i
´Y i

q P t1,2, . . . ,h ´ 1,2hu

+

.

Let x and y be non-negative integers. If x ‰ y and M “ maxtM P N : xL “ yL for 0 ď L ă Mu,
then

macspx,yq “

M´1
ÿ

L“0

xL2L
“

˜

M´1
ÿ

L“0

yL2L

¸

.

If x “ y, then macspx,yq “ xp“ yq.

Theorem 1.A.8 (Fraenkel and Lorberbom [9]). If X is a position in double cyclic Nimhoff, then

sgpXq “

´

h mod pX0 ‘2 X1q

¯

`

´

pX0
` X1

´ macspX0,X1qq mod h
¯

,

where X i is the quotient of X i divided by h.

11



1 Games

Even Balanced Nimhoff

Let l be a positive integer. The position set of even balanced Nimhoff is N2 and its arrow set is

ApN 2
q Y tpX ,Y q P P2 :

1
ÿ

i“0

pX i
´Y i

q “ 4l u .

For example, if l “ 1, then (3,4) has the following ten options:

p2,4q,p1,4q,p0,4q,p3,3q,p3,2q,p3,1q,p3,0q,

p0,3q,p1,2q, and p2,1q.

Let x and y be two non-negative integers. Let macslpx,yq denote the number of times it is
possible to subtract l from x and y without changing the nim-sum, that is,

macslpx,yq “ maxtd P N : x ‘2 y “ px ´ ilq ‘2 py ´ ilq for 0 ď i ď d u .

Note that
macs1px,yq “ macspx,yq.

Theorem 1.A.9 (Fraenkel and Lorberbom [9]). If X is a position in even balanced Nimhoff,
then

sgpXq “

#

X0 ‘2 X1 if macslpX0,X1q is even,
X0 ‘2 X1 ‘2 1 if macslpX0,X1q is odd,

where X i is the quotient of X i divided by 2.

1.A.7 Lim

Lim was introduced and analyzed by Fink, Fraenkel, and Santos [7]. The position set of Lim is
N3 and its arrow set is

tpX ,Y q P P2 : X i
´Y i

“ X j
´Y j

“ Y k
´ Xk

ą 0 for some t i, j,k u “ r3su .

For example, the position p3,4,2q has the following seven options:

p2,3,3q,p1,2,4q,p0,1,5q,p2,5,1q,p1,6,0q,p4,3,1q, and p5,2,0q.

Theorem 1.A.10 (Fink, Fraenkel, and Santos [7]). If X is a position in Lim, then

sgpXq “
X0 ` X1 ` X2 ´ pX0 ‘2 X1 ‘2 X2q

2
.

12



2 Digit-Separable Sprague-Grundy
Functions

We construct a family of games including Nim and give explicit formulas for their Sprague-
Grundy functions. of all positions can be written explicitly. Let Φ be an integer-valued function
on the position set of Nim. Let p be an integer greater than 1 and let ΓrΦs be a p-saturation of
the subgame of Nim induced in tX P P : ΦpXq ě 0u. We show that if Φ is ‘digit-separable’ and
a ‘locally Sprague-Grundy function’ of ΓrΦs, then Φ is the Sprague-Grundy function of ΓrΦs.
The p-saturation indices of some games in this family are also determined.

2.1 Introduction

In the 1930s, Sprague [29] and Grundy [12] showed that impartial games can be analyzed using
Sprague-Grundy functions. Moreover, they gave an explicit formula for the Sprague-Grundy
function of Nim. After that, a lot of studies were conducted. Especially, in 1954, Welter [30]
presented an explicit formula for the Sprague-Grundy function of Welter’s game. As far as the
author knows, Nim and Welter’s game were the only known nontrivial examples of induced
subgames of Nim and their p-saturations whose Sprague-Grundy functions had been written
explicitly.

The purpose of this paper is constructing a family of games and presenting explicit formulas
for their Sprague-Grundy functions. We first construct finite inverted Nim from a distribution
related to Nim and extend this game to inverted Nim. Then, by focusing the fact that the
Sprague-Grundy function of inverted Nim is digit-separable, we construct a family of games
including Nim and inverted Nim, and we present explicit formulas for the Sprague-Grundy
functions of games in this family. We also give the p-saturation indices of some of these games.

2.1.1 Inverted Nim

In this subsection, we construct finite inverted Nim using a frequency distribution related to
Nim and present an explicit formula for the Sprague-Grundy function of this game. Using this
formula, we expand finite inverted Nim to inverted Nim. This process leads us to a family of
games. The proofs of the results in this subsection will be given in Section 2.2.

We first construct games by permuting Nim. Let H be a positive integer, and let Nm,H be the

13



2 Digit-Separable Sprague-Grundy Functions

subgame of Nm induced in r2Hsm. Let W m,H be the winning positions of Nm,H , that is,

W m,H
“ tX P r2H

s
m : X0

‘2 ¨ ¨ ¨ ‘2 Xm´1
“ 0u .

For a permutation σ P Sympr2Hsq, let

σpW m,H
q “ tpσpX0

q, . . . ,σpXm´1
qq : pX0, . . . ,Xm´1

q P W m,H
u ,

and let σpNm,Hq be the maximum induced subgame ∆ of Nm,H such that the winning position
set of ∆ equals σpW m,Hq, that is,

tX P Pp∆q : sg∆pXq “ 0u “ σpW m,H
q.

By the definition of Sprague-Grundy functions, we see that

PpσpNm,H
qq “ σpW m,H

q Y tX P r2H
s
m : pX ,Y q P ApNm

q for some Y P σpW m,H
qu .

Let Fm,H “ tσpNm,Hq : σ P Sympr2Hsqu. We will consider the frequency distribution of |Γ|
for Γ P Fm,H , where |Γ| “ |PpΓq|.

Example 2.1.1. Let m “ 3 and H “ 1. Then Sympr2Hsq “ tpq,p0 1qu and

F3,1
“ tN 3,1,p0 1qpN 3,1

qu .

Let us calculate |Γ| for Γ P F3,1. We have
⏐⏐N 3,1

⏐⏐ “
⏐⏐r2s3

⏐⏐ “ 8. We show that
⏐⏐p0 1qpN 3,1q

⏐⏐ “ 7.
Let σ “ p0 1q. Since

σpW 3,1
q “ σptp0,0,0q,p0,1,1q,p1,0,1q,p1,1,0quq “ tp1,1,1q,p1,0,0q,p0,1,0q,p0,0,1qu ,

we have

tX P r2s
3 : pX ,Y q P ApN 3

q for some Y P σpW 3,1
qu “ tp1,1,0q,p1,0,1q,p0,1,1qu ,

so
Ppp0 1qpN 3,1

qq “ r2s
3
ztp0,0,0qu .

Hence
⏐⏐p0 1qpN 3,1q

⏐⏐ “ 7. Therefore the frequency distribution of F3,1 is as shown in the fol-
lowing table.

7 8
1 1

Proposition 2.1.2. If m is odd, then the frequency distribution of Fm,H is symmetric.

For example, the following table shows the frequency distribution of F3,3.

14



2.1 Introduction

400 406 410 412 ¨ ¨ ¨ 500 502 506 512
1 3 1 5 ¨ ¨ ¨ 5 1 3 1

Let m be odd. Since Nm,H has the largest number of positions in Fm,H , it follows from
Proposition 2.1.2 that there is a unique game Im,H that has the smallest number of positions
in Fm,H . We call this game m-heap finite inverted Nim with height H. For example, I3,1 “

p0,1qpN 3,1q. In general, if σ is the bit inversion x ÞÑ x ‘2 p2H ´ 1q, then Im,H “ σpNm,Hq.
Figure 2.1 shows r2Hs3zPpI3,Hq for H “ 1,2,3,4.

2
1

2
1

2
1

2
2

2
2

2
2

2
3

2
3

2
3

2
4

2
4

2
4

Figure 2.1: For H “ 1,2,3,4, an excluded position pX0,X1,X2q P r2Hs3zPpI3,Hq is represented
by the cube with vertices pX0 ` ε0,X1 ` ε1,X2 ` ε2qpε i P t0,1uq.

To give an explicit formula for the Sprague-Grundy function of finite inverted Nim, we intro-
duce a notation. Let p be an integer greater than 1. For x P N, let xppq

L denote the L-th digit in
the p-adic expansion of x, that is,

x “
ÿ

LPN
xppq

L pL and xppq

L P rps.

For X P Nm, let
X ppq

L “ ppX0
q

ppq

L , . . . ,pXm´1
q

ppq

L q.

When no confusion can arise, we will drop ppq and write xL and XL instead of xppq

L and X ppq

L .
We define ΨH : Nm Ñ Z by

Ψ
H

pXq “ X0
‘2 ¨ ¨ ¨ ‘2 Xm´1

‘2 p2H
´ 1q ´

H´1
ÿ

L“0

δ pX p2q

L q2L`1, (2.1.1)

where

δ pXLq “

#

1 if XL “ p0, . . . ,0q,

0 if XL ‰ p0, . . . ,0q.

Theorem 2.1.3. Let Γ be m-heap finite inverted Nim with height H and X be a position in Γ. If
m ď 3 or H ď 3, then

sgΓpXq “ Ψ
H

pXq.
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2 Digit-Separable Sprague-Grundy Functions

Example 2.1.4. Let H “ 3 and X “ p1,4,5q. We calculate ΨHpXq. Let us express X i as 2-adic
numbers. Then X0 “ 1r2s,X1 “ 100r2s,X2 “ 101r2s. Hence

X0 “ p1,0,1q, X1 “ p0,0,0q, X2 “ p0,1,1q.

This implies that

Ψ
H

pXq “ 1r2s
‘2 100r2s

‘2 101r2s
‘2 111r2s

´ 100r2s
“ 011r2s.

Unfortunately, if m ą 3 and H ą 3, then there exists X P PpIm,Hq such that sgIm,H pXq ‰

ΨHpXq (see Example 2.2.6 and Remark 2.2.13). However, by considering saturations (see Sec-
tion 2.3), we can obtain the following similar result. For an induced subgame Γ of Nm, let Γp-sat

be a p-saturation of Γ. Then ΨH actually gives the Sprague-Grundy function of pIm,Hq2-sat.
Next, we expand finite inverted Nim using ΨH . It is clear that if X is a position in finite

inverted Nim, then ΨHpXq ě 0. In fact, the inverse of this is also true.

Proposition 2.1.5. If X P r2Hsm, then X is a position in Im,H if and only if ΨHpXq ě 0.

In view of Proposition 2.1.5, we can expand finite inverted Nim as follows. Let Γ be the
subgame of Nm induced in

␣

X P Nm : Ψ
H

pXq ě 0
(

.

The game Γ is called m-heap inverted Nim with height H. For example, Nim is inverted Nim
with height 0. In fact, ΨH gives the Sprague-Grundy function of a 2-saturation of inverted Nim
with height H.

We now generalize the above expansion process. Let Γ be a game and Φ be an integer-valued
function from PpΓq. Let ΓrΦs denote the subgame of Γ induced in

tX P PpΓq : ΦpXq ě 0u .

For example, if Γ “ Nm and Φ “ ΨH , then NmrΨHs is inverted Nim with height H and ΨH

gives the Sprague-Grundy function of pNmrΨHsq2-sat. This leads us to the following problem.

Problem 1. Let Φ be an integer-valued function from Nm. When does Φ give the Sprague-
Grundy function of pNmrΦsqp-sat?

In the next section, we give a sufficient condition for Φ that satisfies the above condition.

2.1.2 Digit-Separable Functions

We define digit-separable functions and show that the Sprague-Grundy functions of Nim and
inverted Nim are digit-separable. We then present the main result, which gives a partial answer
to Problem 1. Let p be an integer greater than 1.
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2.1 Introduction

We first define digit-separable functions. An integer-valued function Φ from Nm is said to be
digit-separable in base p if there exists φL : Ωm Ñ Z for each L P N such that

ΦpXq “
ÿ

LPN
φLpX ppq

L q for X P Nm. (2.1.2)

Let rφLsLPN denote the right-hand side of (2.1.2).
For example, the Sprague-Grundy functions of Nim and inverted Nim are digit-separable in

base 2. Indeed, let

ψ
H
L pXLq “

#

X0
L ‘2 ¨ ¨ ¨ ‘2 Xm´1

L ‘2 1 ´ 2δ pXLq if L ă H
X0

L ‘2 ¨ ¨ ¨ ‘2 Xm´1
L if L ě H.

Then ΨHpXq “ rφ H
L sLPN.

Remark 2.1.6. The Sprague-Grundy function of Welter’s game is not digit-separable. Indeed,
let Γ be Welter’s game with 3 heaps, and let X “ p1,2,6q and Y “ p0,2,7q. If sgΓ is digit-
separable, then sgΓpXq “ sgΓpY q since X0 “ p1,0,0q,Y0 “ p0,0,1q, and XL “ YL for L ě 1.
However, the Sprague-Grundy numbers of X and Y are 2 and 6, respectively.

To state the main result, we introduce some notation. Let α be a non-negative integer and let
ξLĎrαLsm for L P N. We define an integer-valued function φ

ξ ,α
L from rpsm by

φ
ξ ,α
L pxq “ x0

‘p ¨ ¨ ¨ ‘p xm´1
ap αL ´ p ¨ IξLpxq,

where IξL is the indicator function of ξL, that is,

IξLpxq “

#

1 if x P ξL,

0 if x R ξL.

Let Φξ ,α denote rφ
ξ ,α
L sLPN. Then

Φ
ξ ,α

pXq “ X0
‘p ¨ ¨ ¨ ‘p Xm´1

ap α ´ p
ÿ

LPN
IξLpXLqpL.

Let Γξ ,α “ NmrΦξ ,α s and Γ
ξ ,α
L “ Nmrφ

ξ ,α
L s for each L P N.

Example 2.1.7 (Inverted Nim). Let p “ 2 and H P N. Let α “ 2H ´ 1 and

ξL “

#

tp0, . . . ,0qu if L ă H
H if L ě H.
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2 Digit-Separable Sprague-Grundy Functions

Then φ
ξ ,α
L “ ψH

L for each L P N. Hence Γξ ,α is inverted Nim with height H and Φξ ,α gives the
Sprague-Grundy function of pΓξ ,αq2-sat. In addition, φ

ξ ,α
L gives the Sprague-Grundy function

of pΓ
ξ ,α
L q2-sat. Indeed, suppose that H ă L. Then

φ
ξ ,α
L pxq “ ψ

H
L pxq “ x0

‘2 ¨ ¨ ¨ ‘2 xm´1
a2 1 ´ 2δ pxq.

Since ψH
L pxq is negative only when x “ p0, . . . ,0q, the game Γ

ξ ,α
L is the subgame of Nm induced

in r2smzp0, . . . ,0q. In other words, Γ
ξ ,α
L is finite inverted Nim with height 1. Hence the Sprague-

Grundy function of pΓ
ξ ,α
L q2-sat is given by φ

ξ ,α
L . Suppose that L ě H. Then

φ
ξ ,α
L pxq “ ψ

H
L pxq “ x0

‘2 ¨ ¨ ¨ ‘2 xm´1.

Hence Γ
ξ ,α
L is the subgame of Nm induced in r2sm, so its Sprague-Grundy function is given by

φ
ξ ,α
L .
In fact, Φξ ,α always gives the Sprague-Grundy function of pΓξ ,αqp-sat in the above situation.

Theorem 2.1.8. Let α P N and ξLĎrαLsm for L P N. If φ
ξ ,α
L gives the Sprague-Grundy function

of pΓ
ξ ,α
L qp-sat for each L P N, that is,

sg
Γ

ξ ,a
L

pxq “ φ
ξ ,a
L pxq for x P PpΓ

ξ ,a
L q, (2.1.3)

then Φξ ,α gives that of pΓξ ,αqp-sat.

We prove this theorem in Section 2.3.

Example 2.1.9. Let α be a non-negative integer. Let

ξL “ tpt0, . . . , tm´1
q P rps

m : t0
` ¨¨ ¨ ` tm´1

ă αL u .

Then φ
ξ ,α
L gives the Sprague-Grundy function of pΓ

ξ ,α
L qp-sat. It follows from Theorem 2.1.8

that
sgΓpXq “ Φ

ξ ,α
pXq for X P PpΓq,

where Γ “ pΓξ ,αqp-sat.
Let α “ pH ´ 1. Then the game Γξ ,α will be called m-heap p-inverted Nim with height H.

Note that 2-inverted Nim is the ordinary inverted Nim. We can also determine the p-saturation
index of p-inverted Nim.

Theorem 2.1.10. If Γ is m-heap p-inverted Nim with height H, then

satppΓq “

#

minpp ` 1,m ` 1q if p “ 2,
minpp,m ` 1q if p ą 2.

The proof of this result is in Section 2.4.
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2.2 2-inverted Nim

2.1.3 Organization

This chapter is organized as follows. In Section 2.2, we examine finite inverted Nim. Section
2.3 contains the proof of Theorem 2.1.8. In Section 2.4, we present the p-saturation index of
p-inverted Nim.

2.2 2-inverted Nim

We investigate 2-inverted Nim. First, we show Proposition 2.1.2, which states that the frequency
distribution of Fm,H is symmetric if m is odd. Next, we give a solution formula for ΨpXq.
Finally, we show that Theorem 2.1.3. In this section, we write ‘ instead of ‘2.

2.2.1 Frequency Distributions

We introduce a notation. Let C “ NmzW m,H and C P C. For i P rms, let

rCi
“ C0

‘ ¨¨ ¨Ci´1
‘Ci`1

‘ ¨¨ ¨ ‘Cm´1. (2.2.1)

Then
C0

‘ ¨¨ ¨ ‘Ci´1
‘ rCi

‘Ci`1
‘ ¨¨ ¨Cm´1

“ 0,

so
pC0, . . . ,Ci´1, rCi,Ci`1, . . . ,Cm´1

q P W m,H .

For σ P Sr2Hs, we have

σpCq “ pσpC0
q, . . . ,σpCm´1

qq P σpCq “ Nm
zσpW m,H

q

and
pσpC0

q, . . . ,σpCi´1
q,σprCi

q,σpCi`1
q, . . . ,σpCm´1

qq P σpW m,H
q.

Let αhpσq be the number of C P C such that the number of i with σprCiq ă σpCiq equals h, that
is,

αhpσq “

⏐⏐⏐tC P C : |ti P rms : σprCi
q ă σpCi

qu| “ hu

⏐⏐⏐ .
Then α0pσq “ |Nm,HzσpNm,Hq|, so

|σpNm,H
q| “ 2mH

´ α0pσq.

We will show the following equation:

α0pσq ` αmpσq “
2Mpm´1qp2M ´ 1q

2m´1 if m is odd. (2.2.2)

19



2 Digit-Separable Sprague-Grundy Functions

From (2.2.2), we can deduce Proposition 2.1.2. Indeed, let τ “ x ÞÑ x ‘p2H ´1qp“ 2H ´1´xq.
Then

σpCi
q ă σprCi

q ðñ τσpCi
q ą τσprCi

q.

It follows that αmpσq “ α0pτσq. Hence

α0pσq ` αmpσq “ α0pσq ` α0pτσq.

By (2.2.2), α0pσq ` α0pτσq does not depend on σ . This implies that the frequency distribution
of Fm,H is symmetric with respect to 2mH ´ pα0pσq ` α0pτσqq{2.

To prove (2.2.2), we need a lemma.

Lemma 2.2.1. If 0 ď k ă m, then

m
ÿ

h“0

ˆ

h
k

˙

αhpσq “
2Mpm´1qp2M ´ 1q

2k

ˆ

m
k

˙

.

proof. Let

S “

"

pC,Jq P C ˆ

ˆ

rms

k

˙

: σprC j
q ă σpC j

q for each j P J
*

.

We count |S| in two ways.
By the definition of αhpσq,

|S| “

m
ÿ

h“0

ˆ

h
k

˙

αhpσq.

We next show that

|S| “
|C ˆ

`

rms

k

˘

|

2k “
2Mpm´1qp2M ´ 1q

2k

ˆ

m
k

˙

. (2.2.3)

We fix J P
`

rms

k

˘

and r P rmszJ. Using them, we will give a partition of C into subsets C1, . . . ,Cl

with |Ci| “ 2k and show that each Ci contains a unique C with pC,Jq P S. Note that this yields
(2.2.3).

We construct a partition of C. For C P C and AĎJ, we define CpAq by

Ci
pAq

“

#

rCi if i P A or pi “ r and |A| is oddq,

Ci otherwise.
(2.2.4)

Let rCs “ tCpAq : A Ď J u. We show that trCs : C P C u is a partition of C. Since
Ť

CPCrCs “ C,
we need only show that (1) CpAq P C and (2) rCs X rC1s “ H or rCs.
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(1) If |A| “ 0, then CpAq “ C P C. Suppose that |A| ą 0. By replacing C with CpA1q, where A1

is an arbitrary subset of A with |A1| “ |A|´ 1, we may assume that |A| “ 1. Let A “ tau. By
(2.2.1),

C0
pAq

‘ ¨¨ ¨ ‘Cm´1
pAq

“ C0
‘ ¨¨ ¨ ‘Cm

‘Ca
‘Cr

‘ rCa
‘ rCr

“ C0
‘ ¨¨ ¨ ‘Cm´1

‰ 0. (2.2.5)

Hence CpAq P C.

(2) If C1
A “ C for some AĎJ, then rC1s “ rCs. If C1

A ‰ C for each AĎJ, then rC1s X rCs “ H.
Hence rCs X rC1s “ H or rCs. Therefore trCs : C P C u is a partition of C.

We now prove (2.2.3). Let C P C and

A “ ta P J : σprCa
q ą σpCa

qu .

By (2.2.4),
σprC j

pAq
q ă σpC j

pAq
q for each j P J.

This implies that pCpAq,Jq P S. We also see that pCpBq,Jq R S for BĎJ with B ‰ A. Therefore
(2.2.3) holds.

We now prove (2.2.2). We calculate

m´1
ÿ

k“0

p´1q
k

m
ÿ

h“0

ˆ

h
k

˙

αhpσq

in two ways.
If h ă m, then

m´1
ÿ

k“0

ˆ

h
k

˙

p´1q
k

“ p1 ´ 1q
h.

If h “ m, then
m´1
ÿ

k“0

ˆ

h
k

˙

p´1q
k

“ p1 ´ 1q
m

´

ˆ

m
m

˙

p´1q
m

“ ´p´1q
m.

Hence

m´1
ÿ

k“0

p´1q
k

m
ÿ

h“0

ˆ

h
k

˙

αhpσq “

m
ÿ

h“0

p

m´1
ÿ

k“0

ˆ

h
k

˙

p´1q
k
qαhpσq

“ α0pσq ´ p´1q
m

αmpσq.
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On the other hand, by Lemma (2.2.1),

m´1
ÿ

k“0

p´1q
k

m
ÿ

h“0

ˆ

h
k

˙

ahpσq “ 2Mpm´1q
p2M

´ 1q

m´1
ÿ

k“0

ˆ

m
k

˙ˆ

´1
2

˙k

“ 2Mpm´1q
p2M

´ 1q

ˆˆ

1 ´
1
2

˙m

´

ˆ

m
m

˙ˆ

´1
2

˙m˙

“
2Mpm´1qp2M ´ 1q

2m´1 .

Therefore (2.2.2) holds.

2.2.2 Solution Formula

Let X be a position in finite inverted Nim with height H. Let

σpXq “ X0
‘ ¨¨ ¨ ‘ Xm´1

and

δ pXq “

H´1
ÿ

L“0

δ pXLq2L.

In this and the next section, we devote to prove Theorem 2.1.3.
In this section, we will show that

X i
“ pΨ

H
pXq ` δ pX piq

qq ‘ δ pX piq
q ‘ σpX piq

q ‘ p2H
´ 1q, (2.2.6)

where X piq is obtained from X by deleting the i-th component, that is,

X piq
“ pX0, . . . ,X i´1,X i`1, . . . ,Xm´1

q P Nm´1.

To prove (2.2.6), we introduce a notation. For a finite subset S of N, a non-negative integer x
is said to be S-free if xS “ 0 for every S P S.

Lemma 2.2.2. If g PN, then there exist xS for S P S such that g`
ř

SPS xS2S is S-free. Moreover,
if g `

ř

SPS x1
S2S is also S-free, then

ř

SPS xS2S “
ř

SPS x1
S2S.

proof. We show by induction on |S|. If gS “ 0 for each S PS, then the lemma is trivial. Suppose
that |S| ą 0 and gS “ 1 for some S P S.

We first show the existence
ř

xS. Let T “ minS and xT “ 1. By the induction hypothesis,
there exist xS for S P SztT u such that pg ` xT 2T q `

ř

SPSztT u xS2S is SztT u-free. Since T “

minS and pg ` xT 2T qT “ 0, we see that pg `
ř

SPS xS2SqT “ 0. Hence g `
ř

SPS xS2S is S-free.
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We next show the uniqueness of
ř

xS. Since gT “ 1, we have x1
T “ 1. Hence

pg ` 2T
q `

ÿ

SPSzt T u

bS2S

is also pSzt T uq-free. By induction hypothesis,
ř

SPS xS2S “
ř

SPS x1
S2S.

If g `
ř

SPS xS2S is S-free, then we denote it FSpgq.

Lemma 2.2.3. If e “ g `
ř

SPS 2S, then FSpgq “ e ´
ř

SPS eS2S.

proof. It is clear that e ´
ř

eS2S is S-free. By Lemma 2.2.2,

e ´
ÿ

SPS
eS2S

“ g `
ÿ

SPS
p1 ´ eSq2S

“ FSpgq.

Lemma 2.2.4. If FSpgq “ g `
ř

SPS xS2S, then

FSpgq `
ÿ

SPS
xS2S

“ pg `
ÿ

SPS
2S

q ‘
ÿ

SPS
2S.

proof. Let e “ g `
ř

SPS 2S. Since
ř

SPS xS2S “ FSpgq ´ g, it follows from Lemma 2.2.3 that

e `
ÿ

SPS
xS2S

“ g `
ÿ

SPS
2S

` FSpgq ´ g “
ÿ

SPS
2S

` FSpgq “
ÿ

SPS
2S

` e ´
ÿ

SPS
eS2S.

Hence
ÿ

SPS
eS2S

`
ÿ

SPS
xS2S

“
ÿ

SPS
2S.

This implies that there is no S P S with eS “ xS “ 1. Hence
ÿ

SPS
eS2S

‘
ÿ

SPS
xS2S

“
ÿ

SPS
2S.

Therefore

e ‘
ÿ

SPS
2S

“ e ‘
ÿ

SPS
eS2S

‘
ÿ

SPS
xS2S

“ FSpgq ‘
ÿ

SPS
xS2S

“ FSpgq `
ÿ

SPS
xS2S.

Proposition 2.2.5. If X is a position in finite inverted Nim with height H, then

X i
“ pΨ

H
pXq ` δ pX piq

qq ‘ δ pX piq
q ‘ σpX piq

q ‘ p2H
´ 1q.
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proof. We may assume that i “ 0. Let X0
“ X0 ‘ p2H ´ 1q and

S “ tL P rHs : pδ pX p0q
qqL “ 1u .

Then δ pX p0qq “
ř

SPS 2S. Let g “ ΨHpXq and SC “ NzS. Then

g “
ÿ

LPSC

pX0
L ‘ X0

L ‘ ¨¨ ¨ ‘ Xm´1
L q2L

`
ÿ

SPS
pX0

S ‘ X1
S ‘ ¨¨ ¨ ‘ Xm´1

S q2S
´ 2

ÿ

SPS
X0

S2S

“
ÿ

LPSC

pX0
L ‘ X1

L ‘ ¨¨ ¨ ‘ Xm´1
L q2L

`
ÿ

SPS
X0

S2S
´ 2

ÿ

SPS
X0

S2S

“
ÿ

LPSC

pX0
L ‘ X1

L ‘ ¨¨ ¨ ‘ Xm´1
L q2L

´
ÿ

SPS
X0

S2S.

Hence
g `

ÿ

SPS
X0

S2S
“

ÿ

LPSC

pX0
L ‘ X1

L ‘ ¨¨ ¨ ‘ Xm´1
L q2L. (2.2.7)

Since the right-hand side of (2.2.7) is S-free, it follows from Lemma 2.2.2 that

FSpgq “ g `
ÿ

SPS
X0

S2S
“

ÿ

LPSC

pX0
L ‘ X1

L ‘ ¨¨ ¨ ‘ Xm´1
L q2L. (2.2.8)

Note that
X1

‘ ¨¨ ¨ ‘ Xm´1
“

ÿ

LPSC

pX1
S ‘ ¨¨ ¨ ‘ Xm´1

S q2S. (2.2.9)

Adding (2.2.9) to (2.2.8), we get
ÿ

LPSC

X0
L2L

“ FSpgq ‘ X1
‘ ¨¨ ¨ ‘ Xm´1. (2.2.10)

By adding
ř

SPS X0
S2S to (2.2.10),

X0
“ FSpgq ‘ X1

‘ ¨¨ ¨ ‘ Xm´1
‘
ÿ

SPS
X0

S2S.

It follows from (2.2.8) and Lemma 2.2.4 that

X0
“ pFSpgq ‘

ÿ

SPS
X0

S2S
q ‘ X1

‘ ¨¨ ¨ ‘ Xm´1

“ pg `
ÿ

SPS
2S

q ‘
ÿ

SPS
2S

‘ X1
‘ ¨¨ ¨ ‘ Xm´1

“ pg ` δ pX p0q
qq ‘ δ pX p0q

q ‘ σpX p0q
q.
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Example 2.2.6. Let X “ p2,5q. Then

Ψ
1
pXq “ 2 ‘ 5 ‘ p21

´ 1q “ 6.

Hence X is a position in inverted Nim with height 1, although it is not a position in finite inverted
Nim.

Using Proposition 2.2.5, we can find Y 0 and Y 1 with Ψ1ppY 0,X1qq “ Ψ1ppX0,Y 1qq “ h for
any h P N. For example, if h “ 3, then

Y 0
“ p3 ` πpX p1q

qq ‘ πpX p1q
q ‘ σpX p1q

q ‘ p21
´ 1q “ p3 ` 0q ‘ 0 ‘ 5 ‘ 1 “ 7 ą X0,

Y 1
“ p3 ` πpX p2q

qq ‘ πpX p2q
q ‘ σpX p1q

q ‘ p21
´ 1q “ p3 ` 1q ‘ 1 ‘ 2 ‘ 1 “ 6 ą X1.

This means that Ψ1pXq is not equal to the Sprague-Grundy number of X in inverted Nim with
height 1. However, it equals the Sprague-Grundy number of X in 2-saturations of inverted Nim
with height 1.

2.2.3 Carries

In the proof of Theorem 2.1.3, calculation of carries is important. In this subsection, we intro-
duce a notation on carries and give some easy results.

For g,a P N, let

γpg,aq “ pg ` aq ‘ g ‘ a and and γLpg,aq “ pγpg,aqqL for L P N.

Note that γLpg,aq “ 1 means that there is a carry in the L-th digit in the calculation of g ` a. It
is clear that γ0pg,aq “ 0 and

γLpg,aq “ 1 ðñ gL´1 ` aL´1 ` γL´1pg,aq ě 2 for L ě 1.

For example, if g “ 1 ` 2 ` 8 and a “ 1 ` 8, then

γpg,aq “ p11 ` 9q ‘ 11 ‘ 9 “ 2 ‘ 4 ‘ 16.

Let g and h be two distinct non-negative integers. Let

Rpg,hq “ maxtL P N : gL ‰ hL u .

For example, if g “ 1 ` 8 ` 16 and h “ 4 ` 16, then Rpg,hq “ 3.

Remark 2.2.7. Let h,g P N with h ă g. Let R “ Rpg,hq and N “ Rpg ` a,h ` aq. If R ă N, then

1 “ pg ` aqN “ gN ‘ aN ‘ γNpg,aq “ hN ‘ aN ‘ γNpg,aq ‰ hN ‘ aN ‘ γNph,aq “ 0.

This means that γLpg,aq “ 1 for R ă L ď N.
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For g,N P N, let

gąN “ gr2s

ąN “

Y g
2N`1

]

“

8
ÿ

LąN

gL2L´N´1. (2.2.11)

Lemma 2.2.8. If g ´ h ď 2S`1 ´ 1 for some S ă Rpg,hq, then gL “ 0 and hL “ 1 for S ă L ă

Rpg,hq.

proof. Let S ă L ă Rpg,hq. Then g ě gąL2L`1 ` gL2L and h ď hąL2L`1 `hL2L `2L ´ 1. Since
L ă Rpg,hq, we have gąL ´ hąL ě 1. It follows that

g ´ h ě 2L`1
` pgL ´ hLq2L

´ p2L
´ 1q “ 2L

` 1 ` pgL ´ hLq2L.

Hence
2L

` 1 ` pgL ´ hLq2L
ď 2S`1

´ 1.

This yields gL “ 0 and hL “ 1.

2.2.4 Explicit Formula

To prove Theorem 2.1.3, we investigate the function ΨH . Let

Ψ
H
L pXq “ pΨ

H
pXqqL, σLpXq “ pσpXqqL, and δLpXq “ pδ pXqqL.

Example 2.2.9. Let H “ 5 and X “ p11000r2s,10101r2s,10000r2sq, where 10101r2s “ 24 ` 22 `

20. Then Ψ5pXq “ 100110r2s ą 0, so X is a position in finite inverted Nim with height 5.

L 0 1 2 3 4 5
X0

L 0 0 0 0 1 1
X1

L 1 0 1 0 1 0
X2

L 0 0 0 0 0 1
δLpXq 0 1 0 1 0 0
σLpXq 1 0 1 0 0 0
Ψ5

LpXq 0 1 1 0 0 1

Let U “ 1. Then XU “ p0,0,0q. Since Ψ5pXq ě 0, we see that there exists V ą U with
σV pXq “ 0 and XV ‰ p0,0,0q. Indeed, X4 “ p1,1,0q, so V “ 4. Moreover, Ψ5

LpXq “ σLpXq for
U ă L ď V . We summarize this observation in the following lemma.

Lemma 2.2.10. Let X be a position in m-heap finite inverted Nim with height H. If ΨH
N pXq “

σNpXq or XN “ p0, . . . ,0q, then there exist unique U ď N and V ě N satisfying the following
three conditions:
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1. ΨH
U pXq “ σU pXq “ 1 and XU “ p0, . . . ,0q, where σU pXq “ σU pXq ‘ 1.

2. ΨH
V pXq “ σV pXq “ 0 and XV P V “ tx P r2sm : σpxq “ 0 and x ‰ p0, . . . ,0qu.

3. ΨH
L pXq “ σLpXq and XL R V for U ă L ă V .

proof. We first show the existence of U . If ΨH
N pXq ‰ σNpXq, then XN “ p0, . . . ,0q, so ΨH

U pXq “

σU pXq “ 1. Hence U “ N. Suppose that ΨH
N pXq “ σNpXq. Let

U “ tU P N : U ă N and XU “ p0, . . . ,0qu .

Since ΨH
N pXq “ σNpXq, we have U ‰ H. Let

Ũ “ tU P U : Ψ
H
U pXq “ σU pXq “ 1u .

It is easy to see that minU P Ũ , so Ũ ‰ H. Let U “ max Ũ . Then U satisfies (1).
We can similarly show the existence of V . Let

V “ tV P N : V ą N and XV P V u .

Since ΨH
N pXq “ σNpXq, we have V ‰ H. Let V “ minV . Then V satisfies (2). Moreover, U and

V satisfies (3).

Theorem 2.2.11. Let X be a position in finite inverted Nim Im,H . If m ď 3, then sgIm,H pXq “

ΨHpXq.

proof. It suffices to show when m “ 3.
Let g “ ΨHpXq and 0 ď h ă g. For i P t0,1,2u, let

σ
i
“ σpX piq

q, δ
i
“ δ pX piq

q, and γ
i
“ γpg,δ i

q.

By Proposition 2.2.5,
X i

“ pg ` δ
i
q ‘ δ

i
‘ σ

i
‘ p2H

´ 1q. (2.2.12)

Let
Y i

“ ph ` δ
i
q ‘ δ

i
‘ σ

i
‘ p2H

´ 1q. (2.2.13)

Then
Ψ

H
pY 0,X1,X2

q “ Ψ
H

pX0,Y 1,X2
q “ Ψ

H
pX0,X1,Y 2

q “ h.

We will show that Y i ă X i for some i P t0,1,2u .
For i P t0,1,2u, let

Ri
“ RpX i,Y i

q.

By (2.2.12) and (2.2.13),
Ri

“ Rpg ` δ
i,h ` δ

i
q.
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Since h ă g, we have h ` δ i ă g ` δ i. Hence

ph ` δ
i
qRi “ 0, pg ` δ

i
qRi.

Note that

pX i
qRi “ ppg ` δ

i
q ‘ δ

i
‘ σ

i
‘ p2H

´ 1qqRi “ 1 ‘ pδ
i
‘ σ

i
qRi ‘ 1 “ pδ

i
‘ σ

i
qRi.

We deduce a contradiction assuming pδ i ‘ σ iqRi “ 0 for all i. Here X j
Ri “ Xk

Ri “ 1 and X i
Ri “ 0.

Hence Ri are distinct. By relabeling Ri if necessary, we may assume that R0 ă R1 ă R2. Let
R “ Rpg,hq. We split into three cases.

Case 1 (R ă R1). We will show pg ` δ 2qěR1`1 “ ph ` δ 2qěR1`1, which contradicts to pg `

δ 2qR2 ‰ ph ` δ 2qR2 . Since R1 ą R, it follows from Lemma 2.2.7 that γ1
R1 “ 1. Hence

1 “ pg ` δ
1
qR1 “ pg ‘ δ

1
‘ γ

1
qR1 “ gR1 ‘ 1.

This implies gR1 “ 0 and
gR1 ` γ

2
R1 ` δ

2
R1 “ γ

2
R1 ă 2.

Hence γ2
R1`1 “ 0. Therefore pg ` δ 2qěR1`1 “ ph ` δ 2qěR1`1, which is a contradiction.

Case 2 (R ą R1). By Lemma 2.2.8,

gL “ 0 for R0
ă L ă R. (2.2.14)

We show that gU “ 1 for some R0 ă U ă R. By (2.2.14), we have gR1 “ 0. Since σR1pXq “ 0,
Lemma 2.2.10 implies that there exists U ă R1 such that gU “ 1 and R0 ă U ă R. Since
XR0 “ p0,1,1q, we have U ą R0, contrary to gU “ 1 and (2.2.14).

Case 3 (R “ R1). By Lemma 2.2.8,

gL “ 0 for R0
ă L ă R1. (2.2.15)

We also have γ2
R1`1 “ 1. Hence, by Lemma 2.2.7, there exists N ă R ` 1 such that gN `

δNpX p2qq “ 2 and
gL ` δLpX p2q

q “ 1 for N ă L ă R ` 1. (2.2.16)

We show that gV ` δ 2
V “ 0 for some N ă V ă R ` 1. To find V , we show N satisfies the

conditions in Lemma 2.2.10. If X2
N “ 1, then XN “ p0,0,1q, so σN “ 1 “ ΨH

N pXq. If X2
N “ 0,

then XN “ p0,0,0q. Hence, by Lemma 2.2.10, there exists V ą N with gV ` δ 2
V “ 0. Since

gV ` δV pX p2qq “ 0 ` 0 “ 0, it suffices to show that V ă R ` 1.
Since δ 2

R1 “ δ 3
R0 “ 0, it follows from (2.2.15) that N ă R0. By (2.2.16), gR0 “ 1. Since

XR0 “ p0,1,1q, we see that V ă R0 by the definition of V . In particular, V ă R ` 1. By (2.2.16),
1 “ gV ` δV pX p2qq “ 0 ` 0 “ 0, which is a contradiction.
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For x P N, let px “ xą0. For X P Nm, let pX “ pxX0, . . . , zXm´1q.

Theorem 2.2.12. Let X be a position in finite inverted Nim Im,H . If H ď 3, then sgIm,H pXq “

ΨHpXq.

proof. If H “ 1, then the assertion is trivial. Suppose that H ą 1. Assume that

(A) the theorem is true for all positions in Im,H´1.

Note that pX is a position in Im,H´1 and ΨH´1ppXq “ pg ` δ pX0q, where g “ ΦpXq. We show that
X has an option Y with ΨHpY q “ h for any 0 ď h ă g.

Suppose that h0 “ g0. Then ph ` δ pX0q ă pg ` δ pX0q “ ΨH´1ppXq, so (A) implies that pX has an
option Z with ΨH´1pZq “ ph ` δ pX0q . Let

Y “ X0 ` 2Z “ pX0
0 ` 2Z0, . . . ,Xm´1

0 ` 2Zm´1
q.

Then Y is an option of X with ΨHpY q “ h.
Suppose that h0 ‰ g0. We divide into two cases.
Suppose that the number of i P rms with X i

0 ‰ 0 is not equal to one. Since ph ď pg ` δ pX0q, it
follows from (A) that pX has a descendant Z with ΨH´1pZq “ ph and distppX ,Zq ď 1. Suppose that
Z ‰ pX . By relabeling X i, we may assume that Z0 ă pX0. Let Y 0 “ 2Z0 and Y i “ X i for i ą 0.
Then Y0 ‰ p0, . . . ,0q and Ψ1pY0q ‰ Ψ1pX0q “ g0. Hence

Ψ
H

pY q “ 2Ψ
H´1

ppY q ` Ψ
1
pY0q “ 2ph ` h0 “ h.

Suppose that Z “ pX . Then

pΦppY q “ ph “ pg “ pΦppXq “ pg ` πpX0q.

Hence δ pX0q “ 0. This implies that the number of i P rms with X i
0 ‰ 0 is greater than 1. By

relabeling X i, we may assume that X0
0 “ 1. Let Y 0 “ 2Z0 and Y i “ X i for i ą 0. Then Y is an

option of X with the desired properties.
Suppose that the number of i P rms with X i

0 ‰ 0 is equal to one. By relabeling X i, we may
assume that X0 “ p1,0, . . . ,0q. It suffices to show that pX has an option Z satisfying one of the
following two conditions:

1. ΨH´1pZq “ ph and Z j ‰ pX j for some j ‰ 0.

2. ΨH´1pZq “ ph ` 1 and Z0 ‰ pX0.
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Indeed, suppose that Z satisfies (1). Let Y j “ 2Z j and Y i “ X i for j ‰ i. Then Y0 ‰ p0, . . . ,0q,
so ΨHpY q “ h. Suppose that Z satisfies (2). Let Y 0 “ 2Z0. Then Y0 “ p0, . . . ,0q, so ΨHpY q “ h.

Therefore, it suffices to show that there exists Z satisfying (1) or (2) if H P t2,3u. Since
σpXq “ σpX p jqq and δ pXq “ δ pX p jqq if X j “ 0, we may assume that X i ą 0 for i P rms by
deleting j-th digit with X j “ 0. Similarly, since σpXq “ σppX pkqqplqq and δ pXq “ δ ppX pkqqplqq

if X j “ Xk “ X l for some distinct j,k, l, we may also assume that⏐⏐⏐tk P rms : Xk
“ X j

u

⏐⏐⏐ ď 2 for j P rms.

Moreover, if xX0 “ pX i for some i ą 0, then pX has an option Z satisfying (1). Hence we may
assume that xX0 ‰ pX i for i ą 0.

Let H “ 2. By the above discussion, the only possibility is X “ p11r2sq. Since Ψ2pXq “ 0,
there is nothing to prove.

Let H “ 3. By the above discussion, there are the following nine possibilities:

p111,100,100,10,10q,p111,100,100,10q,p111,100,10,10q,

p101,110,110,10,10q,p101,110,110,10q,p101,110,10,10q,

p11,110,110,100,100q,p11,110,110,100q,p11,110,100,100q.

By direct computation, we see that pX has an option with desired properties for each case. For
example, let X “ p111,100,100,10q. Then Ψ3pXq “ 10, so we only need to show X has an
option Y with Ψ3pY q “ 1. Let Y “ p111,100,100,1q. Then Ψ3pY q “ 1.

Remark 2.2.13. If H “ 4, then the above argument does not hold. Indeed, consider X “

p1001,1010,100,100q. Then

Ψ
4
pXq “ 4 ‘ 4 ‘ 9 ‘ 10 ‘ p24

´ 1q “ 12.

However, X has no option Y with Ψ4pXq “ 7. Indeed,

Y 0
“ Y 1

“ p7 ` πpX p2q
qq ‘ πpX p2q

q ‘ σpX p2q
q ‘ 15 “ p7 ` 0q ‘ 0 ‘ 7 ‘ 15 “ 15,

Y 2
“ p7 ` πpX p3q

qq ‘ πpX p3q
q ‘ σpX p3q

q ‘ 15 “ p7 ` 1q ‘ 1 ‘ 10 ‘ 15 “ 12,

Y 3
“ p7 ` πpX p4q

qq ‘ πpX p4q
q ‘ σpX p4q

q ‘ 15 “ p7 ` 2q ‘ 2 ‘ 9 ‘ 15 “ 13.

This implies that the Sprague-Grundy number of X is not 12 in finite inverted Nim with height
4. However, it is equal to 12 in 2-saturations of finite inverted Nim with height 4.
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2.3 p-saturations

2.3 p-saturations

2.3.1 Games with p-index k and p-saturations

p-saturations was introduced in [13]. Roughly speaking, saturation is a state reached when
adding edges by a certain way cannot change the Sprague-Grundy function. For example, Nim
is saturated in base 2. If m ď 3 or H ď 3, then finite inverted Nim Im,H is also saturated in base
2. However, if m ą 3 and H ą 3, then it is not saturated in base 2.

We first explain the way of adding edges. Let X ,Y P Nm and Di “ X i ´Y i. We consider the
following condition:

p˚pq ordp

´

řm´1
i“0 Di

¯

“ min
␣

ordppDiq : 0 ď i ď m ´ 1
(

,

where ordppxq is the p-adic order of x, that is,

ordppxq “

#

maxtL P N : pL | xu if x ‰ 0,
8 if x “ 0.

Using the condition (˚p), we define a game Nm
pp,kq

as follows. Let P “ Nm and

Ak “ tpX ,Y q P P2 : X i
ě Y i for i P rms, 0 ă distpX ,Y q ă k, and p˚pq is satisfiedu

for k P N. Let Nm
pp,kq

denote the game pP,Akq. The greater k, the greater the number of edges.
Note that, by definition, Nm

pp,2q
“ Nm and Nm

pp,kq
“ Nm

pp,m`1q
for k ě m ` 1.

Example 2.3.1. Let us consider options of p2,2,2q in N 3
p2,kq

for k “ 2,3,4. In N 3
p2,2q

, the position
p2,2,2q has the following six options:

p0,2,2q,p1,2,2q,p2,0,2q,p2,1,2q,p2,2,0q,p2,2,1q.

In N 3
p2,3q

, the following six positions are also options of p2,2,2q:

p0,1,2q,p0,2,1q,p1,0,2q,p1,2,0q,p2,0,1q,p2,1,0q.

Indeed, for example, p2,2,2q ´ p0,1,2q “ p2,1,0q, and so

ord2p2 ` 1 ` 0q “ 0 “ mintord2p2q,ord2p1q,ord2p0qu .

In N 3
p2,4q

, two positions p0,0,0q and p1,1,1q are also options of p2,2,2q.
Note that, sgN 3pp2,2,2qq “ 2 ‘2 2 ‘2 2 “ 2 and the Nim sums of the above fourteen options

of p2,2,2q do not equal 2. This means that sgN 3
p2,kq

pp2,2,2qq “ 2 for k P t2,3,4u. In fact,

sgNm
p2,kq

pXq “ sgNmpXq for all X P Nm and k ě 2.
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2 Digit-Separable Sprague-Grundy Functions

We now define saturations. Let Γ be an induced subgame of Nm and Γpp,kq the subgame of
Npp,kq induced in PpΓq for k ě 2. The game Γpp,hq is called a p-saturation of Γ (and said to be
saturated in base p) if

sgΓpp,kq
pXq “ sgΓpp,hq

pXq for all X P PpΓq and k ě h. (2.3.1)

The smallest k satisfying (2.3.1) is called the p-saturation index of Γ and is denoted by
satppΓq. Note that Γpp,m`1q is always a p-saturation of Γ.

Example 2.3.2 ( [13]). Let Γ be a p-saturation of Nm. Then

sgΓpXq “ X0
‘p ¨ ¨ ¨ ‘p Xm´1.

The p-saturation index of Nm is minpp,m ` 1q.

Example 2.3.3 ( [13]). Let Γ be a p-saturation of Welter’s game with m heaps. Then

sgΓpXq “ X0
‘p ¨ ¨ ¨ ‘p Xm´1

ap

˜

à

iă j
p NppX i

´ X j
q

¸

,

where Nppxq “ x ap px ´ 1q. The 2-saturation index of Welter’s game is 2. However, the p-
saturation index of this game is not known for 3 ď p ď m.

2.3.2 Digit-Separable Sprague-Grundy Functions

To prove Theorem 2.1.8, we study Φξ ,α .

Lemma 2.3.4. Let ξ and α be as in Theorem 2.1.8. If Φξ ,α satisfies (2.1.8), then

tx P rps
m : x0

` ¨¨ ¨ ` xm´1
ă αL uĎξL.

proof. Let ∆ “ ΓξL,αL . Recall that Pp∆q “ tx P rpsm : IξLpxq “ 0u. Let c be the smallest sum of
the components of positions in ∆:

c “ mintx0
` ¨¨ ¨ ` xm´1 : x P Pp∆qu .

It suffices to show that c “ αL. Choose a position x in ∆ such that x0 ` ¨¨ ¨ ` xm´1 “ c. Then X
is an end position, so sg∆pxq “ 0. By (2.1.8),

0 “ sg∆pxq “ x0
‘p ¨ ¨ ¨ ‘p xm´1

ap αL ´ IξLpxq “ c ap αL.

This yields c “ αL.
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2.3 p-saturations

A position Y P Nm is called a proper descendant of X if Y ‰ X and Y i ď X i for each i P rms.

Lemma 2.3.5. Let Γ “ NmrΦξ ,α s and X be a position in Γpp,kq. If Y is a proper descendant of
X with distpX ,Y q ă k, then

ordp

´

Φ
ξ ,α

pXq ´ Φ
ξ ,α

pY q

¯

ě mintordppX i
´Y i

q : i P rmsu

with equality if and only if Y is an option of X.

proof. Since distpX ,Y q ă k, the position Y is an option of X if and only if Y satisfies p˚pq. Let
N “ mintordppX i ´Y iq : i P rmsu. Then XL “ YL for 0 ď L ă N. Hence

ordp

´

Φ
ξ ,α

pXq ´ Φ
ξ ,α

pY q

¯

ě N

and
´

Φ
ξ ,α

pXq ´ Φ
ξ ,α

pY q

¯

N
“

¨

˝

ÿ

iPrms

X i
´Y i

˛

‚

N

.

This implies that ordp

´

Φξ ,αpXq ´ Φξ ,αpY q

¯

“ N if and only if Y is an option of X .

Lemma 2.3.6. Let x,y,z P rps. If x ă y, then x‘p z ą y‘p z if and only if x ă p´z and y ě p´z.

proof. This follows from the fact that

x ‘p z “ x ` y ´

#

0 if x ă p ´ z,
p if x ě p ´ z.

We now show Theorem 2.1.8 by induction on α . If α “ 0, then this is trivial. Suppose that
α ą 0. Let ∆ and p∆ be subgames of Nm

pp,mq
induced in PpΓξ ,αq and PpΓ

pξ ,pαq, respectively. Let

X be a position in ∆. Then pX is a position in p∆. Let Φ “ Φξ ,α and pΦ “ Φ
pξ ,pα . By Lemma 2.3.5,

it suffices to show that for 0 ď h ă ΦpXq, the position X has an option Y with ΦpY q “ h in ∆.

Step 1. If h0 “ g0, then X has an option with the desired properties.

proof. Since ph ` Iξ0pX0q ă pg ` Iξ0pX0q “ pΦppXq, it follows from the induction hypothesis that pX
has an option pY with pΦppY q “ ph ` Iξ0pX0q in p∆. Let Y “ X0 ` ppY . Then Y is an option of X with
the desired properties. Indeed, Y is a proper descendant of X and

ordpp
ÿ

iPrms

X i
´Y i

q “ ordpp
ÿ

iPrms

pX i
´ pY i

q ` 1

“ min
!

ordpppX i
´ pY i

q : i P rms

)

` 1 “ min
␣

ordppX i
´Y i

q : i P rms
(

.
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2 Digit-Separable Sprague-Grundy Functions

Hence Y is an option of X . We also have

ΦpY q “ φ
ξ ,α
0 pY q ` ppΦppY q “ h0 ´ pIξ0pX0q ` ppph ` Iξ0pX0qq “ h.

Hence Y satisfies the desired condition.

Suppose that h0 ‰ g0. By Lemma 2.3.5, we see that if a proper descendant Y of X satisfies
ΨHpY q “ h, then Y is an option of X . Let

ε “

#

1 if h0 ě p ´ α0p ðñ h0 ‘p α0 ă α0q,

0 if h0 ă p ´ α0p ðñ h0 ‘p α0 ě α0q.
(2.3.2)

Step 2. If ph ` ε ă pΦppXq, then X has an option with the desired properties.

proof. By the induction hypothesis, pX has an option pY with pΦppY q “ ph ` ε in p∆. By relabeling
X i, we may assume that pY 0 ă pX0. Let

Y0 “ ph0 ‘p α0,0, . . . ,0q.

By Lemma 2.3.6, h0 ‘p a0 ă a0 if and only if h0 ě p ´ a0. It follows from Lemma 2.3.4 that
Iξ0pY0q “ ε . Hence ΦpY0 ` ppY q “ h and Y0 ` ppY is an option of X .

Step 3. If
ph ` ε ě pΦppXqp“ pg ` Iξ0pX0qq, (2.3.3)

then X has an option with the desired properties.

Proof. We divide into two cases.

Case 1 (h0 ă g0 and X0 R ξ0). Since X0 is a position in ∆ξ0,α0 , it follows from (2.1.3) that X0 has
an option Y0 with

φ
ξ0,α0pY0q “ h0.

By the induction hypothesis, pX has a descendant pY with pΦppY q “ ph. Then Y0 ` ppY is an option
of X with the desired properties.

Case 2 (h0 ą g0 or X0 P ξ0). Suppose that h0 ą g0. Then ph ă pg. By (2.3.3), we have ε “ 1 and
X0 R ξ0. Hence h0 ‘p α0 ă α0 and ph ` 1 “ pg. Since X0 R ξ0, it follows from Lemma 2.3.4 that

X0
0 ` ¨¨ ¨ ` Xm´1

0 ě α0 ą h0 ‘p α0.

This implies that there exists Y i
0 ď X i

0 for each i P rms such that

Y 0
0 ` ¨¨ ¨ `Y m´1

0 “ h0 ‘p α0.
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2.4 p-saturation Indices

By Lemma 2.3.4, we have Y0 P ξ0. This implies that Y0 ` ppX is an option of X with the desired
properties.

Suppose that h0 ă g0 and X0 R Pp∆ξ0,α0q. By (2.3.3), we have ε “ 1. Hence ph “ pg “ pΦppXq´1.
Since

X0
0 ` ¨¨ ¨ ` Xm´1

0 ě g0 ‘p α0 ą h0 ‘p α0,

there exists Y i
0 ď X i

0 for each i P rms such that

Y 0
0 ` ¨¨ ¨ `Y m´1

0 “ h0 ‘p α0.

Then Y0 ` ppX is an option of X with the desired properties. This completes the proof.

2.4 p-saturation Indices

We determine p-saturation indices of games including p-inverted Nim. In this section, we write
‘ instead of ‘p.

Let A be a finite subset of N. Let α “
ř

LPA pL and

ξL “

#

tp0, . . . ,0qu if L P A,

H if L R A.

Then φ
ξ ,α
L satisfies (2.1.3). Hence

sg
Γξ ,α pXq “ Φ

ξ ,α
pXq “ σpXq a a ´ pδ pXq,

where
σpXq “ X0

‘ ¨¨ ¨ ‘ Xm´1 and δ pXq “
ÿ

LPN
IξLpXLqpL.

Theorem 2.4.1. Let α and ξ be as above. Then

satppΓ
ξ ,α

q “

#

minp3,mq if p “ 2 and α ‰ 0,
minpp,mq otherwise.

We introduce some notation. Let ΦpXq “ Φξ ,αpXq and ΦLpXq “ pΦpXqqL.

Lemma 2.4.2. Let Γ “ Γξ ,α . Then

satppΓq ě

#

minpp ` 1,m ` 1q if p “ 2,
minpp,m ` 1q if p ą 2.
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2 Digit-Separable Sprague-Grundy Functions

proof. If m “ 1, then the assertion is clear. Suppose that m ě 2. Since α ‰ 0, we see that αL ‰ 0
for some L P N. Let N be the maximum of such L:

N “ maxtL P N : αL ‰ 0u .

We first show the assertion when p ą 2. Let k “ minpp,m ` 1q. It is sufficient to find a
position X in Γpp,m`1q such that if Y is an option of X with ΦpY q “ 0, then distpX ,Y q “ k ´ 1.
Let

X i
“

$

’

&

’

%

α ` pN`1 if i “ 0,
pN`1 if 1 ď i ă k ´ 1,
0 if k ´ 1 ď i ď m ´ 1.

Since k ď p, we have ΦpXq “ pk ´ 1qpN`1. Hence X is a position in Γpp,m`1q. Let Y be an
option of X with ΦpY q “ 0. By Lemma 2.3.5,

min
␣

ordppX i
´Y i

q : i P rms
(

“ ordpppk ´ 1qpN`1
´ 0q “ N ` 1.

Hence YL “ XL for 0 ď L ă N ` 1. This implies that YN`1 “ p0, . . . ,0q. Therefore distpX ,Y q “

k ´ 1.
Next, suppose that p “ 2.
Using Example 2.2.6, we construct a position X to show sat2pΓq ě 3.
Let

X0
“ α ` 4 ¨ 2N

“ pα ´ 2N
q ` 5 ¨ 2N ,

X1
“ 2 ¨ 2N ,

X i
“ 0 for i ą 2,

and X “ pX0, . . .Xm´1q. Then
ΦpXq “ 6 ¨ 2N .

Let
h “ 3 ¨ 2N

We define Y i by
ΦpX0, . . . ,X i´1,Y i,X i`1, . . . ,Xm´1

q “ h.

Then Y i ą X i. Indeed, if i ą 1, then this is trivial since X i “ 0. We also have

Y 0
“ pα ´ 2N

q ` 6 ¨ 2N

and
Y 1

“ 7 ¨ 2N .

Hence Y 0 ą X0 and Y 1 ą X1. Therefore sat2pΓq ě 3.
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2.4 p-saturation Indices

We now prove Theorem 2.4.1. Let k “ maxp3, pq. It is sufficient to show satppΓq ď k. We
show by induction on α . If α “ 0, then this is trivial. Suppose that α ą 0.

Let ΦpXq “ Φξ ,αpXq. Let h be an integer with 0 ď h ă ΦpXq. We show that X has an option
Y such that

ΦpY q “ h and distpX ,Y q ă k. (2.4.1)

Let g “ ΦpXq.

Step 1. If h ” ΦpXq pmod pq, then X has an option Y satisfying (2.4.1).

proof. By the induction hypothesis, pX has an option pY such that pΦppY q “ ph ` Iξ0pX0q and
distppX ,pY q ă k. Then X0 ` ppY is an option of X with the desired properties.

Hence we may assume that h ı ΦpXq pmod pq.
By the induction hypothesis, if ph ă pΦppXq, then pX has an option pZ such that pΦpZ1q “ ph and

distpZ1, pXq ă k. Let Z “ X0 ` ppZ. When ph “ pΦppXq, let Z “ X .

Step 2. If one of the following three conditions holds, then X has an option Y satisfying (2.4.1).

1. Z “ X ,

2. ξ0 “ H, or

3. h0 ‰ p ´ 1.

proof. Suppose that (1) holds. We first show that

h0 ă X0
` ¨¨ ¨ ` Xm´1

´ α0. (2.4.2)

Since g ą h and pX “ pZ,
pg ě ph “ pΦppZq “ pΦppXq “ pg ` Iξ0pX0q.

Hence X0 R ξ0 and pg “ ph. This implies that X0 ‰ p0, . . . ,0q and h0 ă g0, and hence

h0 ă g0 “ X0
‘ ¨¨ ¨ ‘ Xm´1

a α0 ď X0
` ¨¨ ¨ ` Xm´1

´ α0.

We next construct an option Y of X . By (2.4.2), there exists Y0 P Ωm such that

Y 0
0 ‘ ¨¨ ¨ ‘Y m´1

0 a α0 “ h0 and Y i
0 ď X i

0 for each i P rms.

Since g0 ´h0 ă p, we can take Y0 so that distpX0,Y0q ă k. Let Y “ Y0 ` ppX . Then distpX ,Y q ă k.
It remains to verify ΦpY q “ h. Since ΦpY q “ φ0pY0q` ppΦppY q “ h0 ´ pIξ0pY0q` pph, it is sufficient
to show Y0 R ξ0. This is trivial for α0 “ 0. Suppose that α0 “ 1. Since h0 ă g0 ď p ´ 1, we have
Y0 ‰ p0, . . . ,0q, and hence Y0 R ξ0.
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2 Digit-Separable Sprague-Grundy Functions

Suppose that (2) or (3) holds. By (1), we may assume that pZ ‰ pX . By relabeling X i if nec-
essary, we may also assume that pZ0 ă pX0. Let Y0 “ ph0 ‘ α0 a X1

0 a ¨¨ ¨ a Xm´1
0 ,X1

0 , . . . ,X
m´1
0 q

and Y “ Y0 ` ppZ. Then distpX ,Y q “ distpX ,Zq ă k and Y 0
i ď X0

i for i P rms. Since (2) or (3)
holds, Y0 R ξ0. Hence ΦpY q “ h.

By Step 2, we may assume that

pZ ‰ pX , ξ0 “ tp0, . . . ,0qu , h0 “ p ´ 1. (2.4.3)

Step 3. If X has a descendant W such that pΦp pW q “ ph and distpX ,W q ě 2, then X has an option
Y satisfying (2.4.1).

proof. We may assume that W 0 ă X0 and W 1 ă X1. Let

Y0 “ p1,h0 a 1 a X2
0 a ¨¨ ¨ a Xm´1

0 ,X2
0 , . . . ,X

m´1
0 q

and Y “ Y0 ` p pW . Then distpX ,Y q “ distpX ,W q ă k. Since Y0 R ξ0, we have ΦpY q “ h.

By Step 3, we may assume that distpX ,Zq “ 1. Let Z0 ă X0.

Step 4. If Zi
0 ‰ 0 for some i ą 0, then X has an option Y satisfying (2.4.1).

proof. Let Y0 “ paZ1
0 a ¨¨ ¨ a Zm´1

0 ,Z1
0 , . . . ,Z

m´1
0 q. Since Zi

0 ‰ 0, we have Y0 R ξ0. Therefore
Y0 ` ppZ is an option of X with the desired properties.

By Step 4 and (2.4.3), we may assume that

X0 “ Z0 “ pZ0
0 ,0, . . . ,0q and X0

0 “ Z0
0 ‰ 0. (2.4.4)

Since pZ ‰ pX , we have Z0
L ‰ X0

L for some L P N. Let

K “ max
␣

L P N : Z0
L ‰ X0

L
(

.

Then K ě 1.

Step 5. Suppose that Zk
M ‰ 0 for some 1 ď M ă K and some k ą 0. If one of the following four

conditions holds, then X has an option Y satisfying (2.4.1):

1. ξM “ H,

2. Z0
M ‰ p ´ 1,

3. Zk
M ‰ 1, or
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2.4 p-saturation Indices

4. Zl
M ‰ 0 for some l P rmszt0,k u.

proof. Let
W 0

“ Z0
‘ pM, W k

“ Zk
a pM

“ Zk
´ pM, (2.4.5)

and W i “ Y i for i P rmszt0,k u. Put W “ pW 0, . . . ,W m´1q. Then distpX ,W q “ 2. It is sufficient
to show that W satisfies the condition of Step 3. We first show that W is a descendant of
X . By (2.4.5), we have W k ă Zk “ Xk Since M ă K, we see that W 0

K “ Z0
K ă X0

K , and hence
W 0 ă X0. Thus W is a descendant of X . It remains to show that pΦp pW q “ ph. Since one of the
conditions (1) - (4) holds, IξM pWMq “ IξM pZMq “ 0, and hence φMpWMq “ φMpZMq. Therefore
pΦp pW q “ pΦppZq “ ph.

Let
N “ min

␣

L ě 1 : Z0
L ‰ p ´ 1

(

.

Then K ě N ě 1 since Z0
K ă X0

K ď p ´ 1.

Step 6. If there exists M such that 1 ď M ă N and the following two statements do not hold,
then X has an option Y satisfying (2.4.1):

(Z1) ZM “ pp ´ 1,0, . . . ,0q, and

(Z2) ZM “ pp ´ 1,0, . . . ,0,1,0, . . . ,0q and ξM “ tp0, . . . ,0qu.

proof. By the definition of N, we have Z0
M “ p ´ 1. Since (Z1) does not hold, Zi

M ‰ 0 for some
i ą 0. Since (Z2) does not hold, one of the three conditions (1), (3), and (4) in Step 5 holds.
Hence X has an option with the desired properties.

Therefore we may assume that

Z0 “ pZ1
0 ,0, . . . ,0q, (2.4.6)

ZL “ pp ´ 1,0, . . . ,0q or pp ´ 1,0, . . . ,0,1,0, . . . ,0q and αL “ 1 for 1 ď L ă N.
(2.4.7)

Moreover, if N ă K, then we may also assume that

ZN “ pZ1
N ,0, . . . ,0q Z1

n ‰ p ´ 1. (2.4.8)

Let

Y 0
L “

$

’

&

’

%

0 if L “ 0,
Z0

L ‘ 1 if 0 ă L ď N,

Z0
L if N ě L.

Let Y i “ X i for i ą 0 and Y “ pY 0, . . . ,Y m´1q. The goal is to show that Y is an option of X with
ΦpY q “ h.
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Step 7. We have Y 0 ă X0. In particular, Y is an option of X .

proof. We first show that Y 0 ă X0, If N ă K, then Y 0
K “ Z0

K ă X0
K , so Y 0 ă X0. Suppose that

N “ K. By (2.4.7),
Y 0

0 “ Y 0
1 “ ¨¨ ¨ “ Y 0

K´1 “ 0

and Y 0
K “ Z0

K ‘ 1 “ Z0
K ` 1 ď X0

K . Hence Y 0 ď X0. By (2.4.4), X0
0 ‰ 0, and hence Y 0 ă X0.

To prove ΦpY q “ h, we define βLpXq by

ΦLpXq ‘ βLpXq “ σLpXq a αLpXq a δL´1pXq. (2.4.9)

In other words, βLpXq “ 1 if the L-th digit is borrowed when subtracting

σpXq a α ´
ÿ

IξLpXLqpL`1,

and βLpXq “ 0 if otherwise. By definition, β0pXq “ β1pXq “ 0. For example, if p “ 2,α “ 7,
and X “ p2,4,4q, then

ΦpXq “ 2 ‘ 4 ‘ 4 a 7 ´ 2 “ 1 ‘ 4 ´ 2 “ 3,

and hence β2pXq “ 1 and βLpXq “ 0 for L ‰ 2.
Note that βLpXq “ 1 if and only if σL´1pXq a αL´1 ´ δL´2pXq ´ βL´1pXq ă 0. Therefore

δLpZq “ 0 for 0 ď L ď N ´ 1 (2.4.10)

and
βLpZq “ 0 for 0 ď L ď N ` 1, (2.4.11)

since Z0 ‰ p0, . . . ,0q and Z0
L “ p ´ 1 for 1 ď L ă N.

We give a relation on δ pY q and β pY q.

Step 8.
δL´1pY q ` βLpY q “ 1 for 0 ă L ď N. (2.4.12)

proof. If L “ 1, then δ0pY q “ 1 and β0pY q “ 0, so (2.4.12) holds. Suppose that L ą 1. We
divide into two cases.

First, suppose that αL´1 “ 0. Since δL´1pY q “ 0, it is sufficient to show that βLpY q “ 1. By
(2.4.7), Z0

L´1 “ pp ´ 1,0, . . . ,0q. Hence YL´1 “ p0, . . . ,0q. This implies that

σL´1pY q a αL´1 ´ δL´2pY q ´ βL´1pY q “ 0 ´ 1 ă 0,

and hence βLpY q “ 1.
Next, suppose that αL´1 “ 1. There are two possibilities for Z0

L´1.
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Suppose that Z0
L´1 “ pp´1,0, . . . ,0q. Since YL´1 “ p0, . . . ,0q, we have δL´1pY q “ 1. We also

have
σL´1pY q a αL´1 ´ δL´1pY q ´ σL´1pY q “ 0 a 1 ´ 1 ě 0.

Hence βLpY q “ 0.
Suppose that Z0

L´1 “ pp ´ 1,0, . . . ,0,1,0, . . . ,0q. Then Y 0
L´1 “ p0, . . . ,0,1,0, . . . ,0q. Hence

δL´1pY q “ 0 and

σL´1pY q a αL´1 ´ δL´1pY q ´ σL´1pY q “ 1 a 1 ´ 1 ă 0.

Therefore βLpY q “ 1.

Step 9.
δNpZq “ βN`1pY q (2.4.13)

proof. Suppose that δNpZq “ 1. Then ZN “ p0, . . . ,0q and αN “ 1. Hence σNpY q a αN ´

δN´1pY q ´ βNpY q “ 1 a 1 ´ 1 ă 0, so βN`1pY q “ 1.
Conversely, suppose that βN`1pY q “ 1. Then σNpY q a αN ´ δN´1pY q ´ βNpY q “ σNpY q a

αN ´ 1 ă 0. Hence σNpY q “ αN and σNpZq “ αN a 1. Thus

hN “ ΦNpZq “ σNpZq a αN a δN´1pZq a βNpZq “ p ´ 1. (2.4.14)

We divide into two cases.
First, suppose that N ă K. By (2.4.8), we have ZN “ pZ0

N ,0, . . . ,0q and

p ´ 1 ‰ Z0
N “ σpZNq “ αN a 1.

It follows that αN “ 1 and Z0
N “ 0, and hence δNpZq “ 1.

Next, suppose that N “ K. Let

XěK`1 “ pX0
ěK`1, . . . ,X

m´1
ěK`1q

and
Ψ “ Φ

ξěK`1,αěK`1, where ξěK`1 “ pξK`1,ξK`1, . . .q.

Then
ΨpXěK`1q “ gěK`1 ` δKpXq ` βK`1pXq.

Since XěK`1 “ ZěK`1,

gěK`1 ` δKpXq ` βK`1pXq “ ΨpXěK`1q

“ ΨpZěK`1q “ hěK`1 ` δKpZq ` βK`1pZq “ hěK`1 ` δKpZq.
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Assume that δKpZq “ 0. Then δKpXq “ βK`1pXq “ 0 and gěK`1 “ hěK`1. Since hK “ hN “

p ´ 1, we have gK “ p ´ 1. Since X0
K ‰ Z0

K , we have σKpXq a αK ‰ σKpZq a αK “ p ´ 1.
However,

p ´ 1 “ gK “ ΦKpXq “ σKpXq a αK a δK´1pXq a βKpXq.

This implies that

σKpXq a αK ´ δK´1pXq ´ βKpXq ă 0.

Therefore βK`1pXq “ 1, which is a contradiction. Hence δKpZq “ 1.

Step 10.
ΦpY q “ h.

proof. It suffices to show ΦLpY q “ hL for L P N.
If L “ 0, then h0 “ p ´ 1 “ Φ0pY q.
Let 1 ď L ď N. Then hL “ ΦLpZq. By (2.4.10) and (2.4.11), ΦLpZq “ σLpZq a αL “ σLpY q a

1 a αL. It follows from (2.4.12) that

ΦLpY q “ σLpY q a αL a δL´1pY q a βLpY q

“ σLpY q a αL a 1 “ ΦLpZq “ hL.

Let L “ N ` 1. Then YL “ ZL. By the definition of N, we have Z0
N ‰ p ´ 1. In particular,

Y 0
N ‰ 0. This implies that

ΦN`1pY q “ σN`1pY q a αN`1 a δNpY q a βN`1pY q “ σN`1pY q a αN`1 a βN`1pY q.

By (2.4.11) and (2.4.13),

ΦN`1pZq “ σN`1pZq a αN`1 a δNpZq a βN`1pZq

“ σN`1pY q a αN`1 a δNpZq “ σN`1pY q a αN`1 a βN`1pY q.

Hence ΦN`1pY q “ ΦN`1pZq “ hN`1.
Let L ě N ` 2. It is sufficient to show that βLpY q “ βLpZq. Since δNpY q ` βN`1pY q “

βN`1pY q “ δNpZq “ δNpZq`βN`1pZq, we have βN`2pY q “ βN`2pZq. This implies that βLpY q “

βLpZq for L ě N ` 2. Therefore ΦLpY q “ ΦLpZq “ hL. This completes the proof.

42



2.A Designs and Their Game Distributions

Appendix 2.A Designs and Their Game Distributions

Ryba found a game, called the hexad game, whose winning position set forms a Steiner system
Sp5,6,12q (see [6, 15]). In this section, we introduce the notion of game distributions and show
that the hexad game has the smallest number of positions among games whose winning set
position forms an Sp5,6,12q.

In this section, we use the following set representation of Welter’s game. Let

P “

ˆ

N
m

˙

“ t XĎN : |X | “ m u

and

A “

#

pX ,Y q P P : |X XY | “ m ´ 1,
ÿ

xPX

x ą
ÿ

yPY

y

+

.

Then the game pP,Aq is called the set representation of Welter’s game, and is denoted by Wm

(see Section 3.2.2 for details).

2.A.1 Designs

Definition 2.A.1. Let t,v,k,λ P N. Let V “ rvsp“ t0,1, . . . ,v ´ 1uq and B be a subset of
`V

k

˘

p“

tBĎV : |B| “ k uq. The pair pV,Bq is called a t-pv,k,λ q design if, for each T P
`V

t

˘

, there exist
exactly λ elements B P B with T ĎB. The elements of V is called points and those of B blocks.
Let D be a t-pv,k,λ q design. If λ “ 1, then D is called a Steiner system Spt,k,vq.

Example 2.A.2. Some subsets of the wining position set of Wm form Steiner systems. Let
V “ r7s “ t0,1,2,3,4,5,6u and

B “

"

B P

ˆ

V
3

˙

: B is a winning position in W3

*

“ tt0,1,2u ,t0,3,4u ,t0,5,6u ,t1,3,5u ,t1,4,6u ,t2,3,6u ,t2,4,5uu .

Then pV,Bq is a Steiner system Sp2,3,7q.
0

1

2

3

5 4

6
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2 Digit-Separable Sprague-Grundy Functions

In general, let V “ r2N ´ 1s and

B “

"

B P

ˆ

V
3

˙

: B is a winning position in W3

*

“

"

tb0,b1,b2 u P

ˆ

V
3

˙

: pb0 ` 1q ‘2 pb1 ` 1q ‘2 pb2 ` 1q “ 0
*

.

Then pV,Bq is a Steiner system Sp2,3,2N ´ 1q. This Steiner system is called the projective
Steiner triple system.

Example 2.A.3 (Hexad game). Let H be the subgame of Welter’s game W6 induced in
#

X P

ˆ

r12s

6

˙

:
ÿ

xPX

x ě 21

+

.

This game is called the hexad game. As we have mentioned, Ryba found that the winning
position set of this game forms a Steiner system Sp5,6,12q.

2.A.2 Game Distributions

We construct games whose winning position set forms a Steiner system and generalize the
frequency distribution that was used to construct inverted Nim in Section 2.2.

Let D be a Steiner system Spk ´ 1,k,vq and B be the block set of D. Let ΓD denote the
maximum induced subgame of Wk with PpΓDqĎ

`

rvs

k

˘

and W pΓDq “ B, where W pΓDq is the
winning position set of ΓD. Then we can show that ΓD is the subgame of Wk induced in

BY

"

X P

ˆ

rvs

k

˙

: pB,Xq P ApWmq for some B P B
*

“ BY
ď

BPB
UpBq,

where

UpBq “

#

X P

ˆ

rvs

k

˙

: |B X X | “ k ´ 1 and
ÿ

xPX

x ą
ÿ

bPB

b

+

.

Let
FD

“ tΓ
σpDq : σ P Symprvsqu ,

where σpDq “ prvs,σpBqq (see the example below). We will consider the frequency distribution
of |PpΓq| for Γ P FD. This distribution is called the game distribution of D. Let dD

n denote the
number of Γ in FD that has exactly n positions:

dD
n “

⏐⏐␣Γ P FD : |PpΓq| “ n
(
⏐⏐ .
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Example 2.A.4 (Sp1,2,2kq). Let v “ 4,B “ tt0,1u ,t2,3uu, and D “ pr4s,Bq. Then D is a
Steiner system Sp1,2,4q. We see that

PpΓ
D

q “ tt0,1u ,t2,3uu Y t t0,2u ,t0,3u ,t1,2u ,t1,3u u “

ˆ

r4s

2

˙

.

Hence the game ΓD has six positions. There are two different Sp1,2,4q, that is, p0 2qpDq and
p0 3qpDq. We have

PpΓ
p0 2qpDq

q “ tt0,3u ,t1,2uu Y tt1,3u ,t2,3uu

and
PpΓ

p0 3qpDq
q “ tt0,2u ,t1,3uu Y tt1,2u ,t0,3u ,t2,3uu .

Hence they have four and five positions, respectively. Therefore the game distribution of D is
as shown in the following table.

4 5 6
1 1 1

Hence dD
4 “ dD

5 “ dD
6 “ 1 and dD

n “ 0 for n ‰ 4,5,6.
In general, let D be an Sp1,2,2kq. Then we can calculate the moment generating function of

the game distribution of D as follows.

1
|FD|

ÿ

nPN
dD

n qn
“

q2

p2k ´ 1q!!

k
ź

i“1

1 ´ q2k´1

1 ´ q
,

where
p2k ´ 1q!! “ 1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ p2k ´ 1q.

Example 2.A.5 (Sp2,3,7q). Let D be the projective Steiner triple system Sp2,3,7q. The game
distribution of D is

14 15 16 17 18 19 20 21
1 3 5 6 6 5 3 1

Note that this distribution is symmetric and the game Γ P FD with |PpΓq| “ 14 is related to
inverted Nim.

Example 2.A.6 (Sp2,3,9)). The game distribution of an Sp2,3,9q is

68 69 70 71 72 73 74 75 76 77 78 79 80
1 6 16 36 77 94 115 129 131 104 74 39 17

Theorem 2.A.7. Let D be an Sp5,6,12q. The game distribution of D is

905 906 907 908 909 910 911 912 913 914 915 916
1 10 42 150 351 650 1012 1237 939 532 115 1

Let Γ be the game in FD with |PpΓq| “ 905. Then Γ is the hexad game.
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3 p-saturations of Welter’s Game and
the Irreducible Representations of
Symmetric Groups

We establish a relation between the Sprague-Grundy function sg of p-saturations of Welter’s
game and the degrees of the ordinary irreducible representations of symmetric groups. In these
games, a position can be regarded as a partition λ . Let ρλ be the irreducible representation of
the symmetric group Symp|λ |q corresponding to λ . For every prime p, we show the following
results: (1) sgpλ q ď |λ | with equality if and only if the degree of ρλ is prime to p; (2) the
restriction of ρλ to Sympsgpλ qq has an irreducible component with degree prime to p. Further,
for every integer p greater than 1, we present an explicit formula for sgpλ q.

It should be noted that the notation in this chapter is slightly different from that in the previous
chapters. For example, for X P Nm, the i-th component of X will be denoted by xi instead of X i.

3.1 Introduction

Sato [28] conjectured that Welter’s game is related to representations of symmetric groups and
classical groups. In support of this conjecture, he pointed out that the Sprague-Grundy function
of this game can be expressed in a form similar to the hook-length formula. In this chapter, we
introduce p-saturations of Welter’s game and establish a relation between the Sprague-Grundy
function of these games and the degrees of the irreducible representations of symmetric groups.
Moreover, we present an explicit formula for this function and a theorem on these degrees.

3.1.1 Welter’s game

Welter’s game is played with coins or a Young diagram. We review known results on the
Sprague-Grundy function of Welter’s game. We also give the definitions of games and their
Sprague-Grundy functions at the end of this subsection.

Welter’s game is played with a finite number of coins. These coins are on a semi-infinite
strip of squares numbered 0,1,2, . . . with no two coins on the same square. See Figure 3.1. This
game has two players. They alternately move a coin to an empty square with a lower number.
The first player that is not able to move loses. We now consider the position X when the coins
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are on the squares numbered x1,x2, . . . ,xm. Welter [30] and Sato [25–27] independently showed
that its Sprague-Grundy number sgpXq can be expressed as

sgpXq “ x1
‘2 ¨ ¨ ¨ ‘2 xm

‘2

˜

à

iă j
2 N2pxi

´ x j
q

¸

, (3.1.1)

where ‘2 is binary addition without carry and N2pxq “ x ‘2 px ´ 1q.

Player 1 moves 3 to 1. 

0 1 2 3 0 1 2 3 0 1 2 3

Player 2 moves 2 to 0
and wins. 

Figure 3.1: An example of Welter’s game.

Welter’s game can also be played with a Young diagram [25]. Let σ be the permutation
of t1,2, . . . ,mu such that xσp1q ą xσp2q ą ¨¨ ¨ ą xσpmq. Let λ pXq be the partition pxσp1q ´ m `

1,xσp2q ´ m ` 2, . . . ,xσpmqq. For example, if m “ 2 and px1,x2q “ p1,2q, then λ pXq “ p2 ´ 1,1 ´

0q “ p1,1q. We identify λ pXq with its Young diagram
!

pi, jq P Z2 : 1 ď i ď m, 1 ď j ď xσpiq
´ m ` i

)

.

As a result, moving a coin corresponds to removing a hook. From this viewpoint, Sato [25–27]
found that (3.1.1) can be written as the following form similar to the hook-length formula:

sgpXq “
ÿ

LPN
wLpXq2L

“
à

pi, jqPλ pXq

2 N2
`
⏐⏐Hi, jpXq

⏐⏐˘ , (3.1.2)

where Hi, jpXq is the hook

Hi, jpXq “
␣

pi1, j1
q P λ pXq : pi1 ě i and j1

“ jq or pi1 “ i and j1
ě jq

(

and wLpXq is the remainder of 2L-weight (the number of Hi, jpXq whose size is divisible by 2L)
of λ pXq divided by 2. In this context, Kawanaka [16] found a family of games that includes
Welter’s game. This family is deeply related to d-complete posets, which were defined by
Proctor [22, 23].

Let us represent Welter’s game as a digraph. Note that the position X can be described by the
m-tuple px1, . . . ,xmq P Nm, where N is the set of all non-negative integers. 1 Let

P “
␣

px1, . . . ,xm
q P Nm : xi

‰ x j for 1 ď i ă j ď m
(

1The position X can also be represented by the set tx1, . . . ,xm u. We will use this representation in latter sections.
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and
A “

␣

pX ,Y q P P2 : xi
ě yi for 1 ď i ď m and distpX ,Y q “ 1

(

,

where X “ px1, . . . ,xmq,Y “ py1, . . . ,ymq, and distpX ,Y q is the Hamming distance between X
and Y , that is, distpX ,Y q “ |t i P t1, . . . ,mu : xi ‰ yi u|. The digraph pP,Aq is called Welter’s
game with m coins and is denoted by Wm.

3.1.2 p-saturations

Let p be an integer greater than 1. As we have seen, we can write the Sprague-Grundy function
of Welter’s game using arithmetic modulo 2. In this subsection, we present a variant of Welter’s
game whose Sprague-Grundy function can be expressed using arithmetic modulo p.

To state our goal precisely, we introduce some notation. Let X be a position in Welter’s
game, and let L be a non-negative integer. A hook in λ pXq is called a ppLq-hook if its length
(size) is divisible by pL. The number of ppLq-hooks in λ pXq is called the pL-weight of λ pXq

and is denoted by wLpXq. Let wLpXq denote the remainder of wLpXq divided by p. We define
wpXq “ wppqpXq “ pwLpXqqLPN and

wpXq “ wppq
pXq “

ÿ

LPN
wLpXqpL. (3.1.3)

We will construct a game whose Sprague-Grundy function is equal to w. To this end, we need
to allow moving multiple coins (removing multiple hooks) with restrictions in one move. Let
us give an example.

Example 3.1.1. Let p “ 3. Let Γ be a game with PpΓq “PpW2q. Assume that for each position
X in Γ, the Sprague-Grundy number of X is equal to wp3qpXq. Let us examine the structure of
Γ.

Figure 3.2 shows wp3qpXq for some positions in Γ. It is easy to verify that if |λ pXq| ď 3, then
wp3qpXq “ |λ pXq| “ wp2qpXq. Let us consider positions X with |λ pXq| “ 4. First, let X “ p2,3q.
Then, in ordinary Welter’s game, X has an option Y with wp3qpY q “ h for each h P t1,2,3u,
but it has no option Y with wp3qpY q “ 0. Since sgΓpXq “ wp3qpXq “ 4, it follows from the
definition of Sprague-Grundy functions that X must have an option Y with wp3qpY q “ 0 in Γ.
Thus pX ,p0,1qq P ApΓq or pX ,p1,0qq P ApΓq. In other words, we need to allow moving two
coins in one move. Next, let X “ p1,4q. Since sgΓpXq “ wp3qpXq “ 1, this position cannot have
an option Y with wp3qpY q “ 1 in Γ. In particular, pX ,p0,2qq R ApΓq. Hence we must restrict
some moves.

Based on the above example, we introduce a game called Wm with p-index k, where k is a
positive integer. This game comes from Moore’s Nimk (Nim with index k) [18] and Flanigan’s

49



3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

4 2 1

1

3 2

2 1

=  (4,0,0,...)
=  1

w
w

3 2 1

3 1

1

=  (3,1,0,...)
=  3

w
w

2 1

2

1

=  (2,0,0,...)
=  2

w
w

1 0

=  (4,1,0,...)
=  4

w
w

=  (1,0,0,...)
=  1

w
w

=  (0,0,0,...)
=  0

w
w

=  (3,1,0,...)
=  3

w
w

=  (2,0,0,...)
=  2

w
w

p = 3

Figure 3.2: wpXq and wpXq for some positions. Positions are represented by the corresponding
Young diagrams.

Rimk.2 Let Dm be the set of all m-tuples pd1, . . . ,dmq P Nm such that

ord

˜

m
ÿ

i“1

di

¸

“ min
␣

ordpdi
q : 1 ď i ď m

(

, (3.1.4)

where ordpxq is the p-adic order of x, that is,

ordpxq “

#

maxtL P N : pL | xu if x ‰ 0,
8 if x “ 0.

Let P “ PpWmq and

Ak “ tpX ,Y q P P2 : X ´Y P Dm, 0 ă distpX ,Y q ă k u. (3.1.5)

The game pP,Akq is called Wm with p-index k and is denoted by Wm
pp,kq

.
Note that Wm

pp,2q
“ Wm. In fact, for every k ě 2, the game Wm

p2,kq
has the same Sprague-

Grundy function as the ordinary Welter’s game Wm
p2,2q

(see Lemma 3.3.5). In contrast, the
Sprague-Grundy functions of W2

p3,3q
and W2

p3,2q
are different as we will see in the next example.

Example 3.1.2. Let us consider Example 3.1.1 again. Let Γ “ W2
p3,3q

. We verify that p1,0q and

p0,1q are options of p2,3q in Γ. This implies that, sgΓpp2,3qq “ 4 “ wp3qpp2,3qq. We also show
that p0,2q is not an option of p1,4q in Γ.

Note that it is easy to show that sgΓpXq “ wp3qpXq for X P PpΓq with |λ pXq| ď 3. Let X “

p2,3q. Since X ´ p1,0q “ p1,3q and X ´ p0,1q “ p2,2q,

ordp1 ` 3q “ 0 “ mintordp1q,ordp3qu and ordp2 ` 2q “ 0 “ mintordp2q,ordp2qu .

2Players can move at most k ´ 1 coins in Nimk and Rimk. The latter is devised by James A. Flanigan in an
unpublished paper entitled “NIM, TRIM and RIM”. In Section 3.3, we show that Rimp and p-saturations of
Nim have the same Sprague-Grundy function.
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This implies that p1,0q and p0,1q are options of X in Γ. In particular, sgΓpXq “ 4 “ wp3qpXq.
Since wp2qpXq “ 0, the Sprague-Grundy functions of W2

p3,3q
and W2

p3,2q
are different. Next, let

X “ p1,4q. In Γ, the position p0,2q is not an option of X . Indeed, X ´ p0,2q “ p1,2q, so

ordp1 ` 2q “ 1 ‰ 0 “ mintordp1q,ordp2qu .

Hence sgΓpXq “ 1 “ wp3qpXq.

We now define p-saturations. The game Wm
pp,kq

is called a p-saturation of Wm if it has the
same Sprague-Grundy function as Wm

pp,m`1q
. The smallest such k is called the p-saturation

index of Wm and is denoted by satppWmq. By definition, if j ě satppWmq, then Wm
pp, jq also has

the same Sprague-Grundy function as Wm
pp,m`1q

. As we have mentioned above, sat2pWmq “ 2
for every positive integer m. In general, satppWmq ě minpp,m ` 1q, but we do not know its
exact value for 3 ď p ď m (see Remark 3.3.6).

3.1.3 Main Results

We first present an explicit formula for the Sprague-Grundy function of p-saturations of Welter’s
game. We begin by introducing some definitions. Let X be a position in Welter’s game, and let
L be a non-negative integer. A hook in λ pXq is called a ppLq-hook if its length (size) is divisible
by pL. The number of ppLq-hooks in λ pXq is called the pL-weight of λ pXq and is denoted by
wLpXq. Let wLpXq denote the remainder of wLpXq divided by p. We define wpXq “ pwLpXqqLPN
and

wpXq “
ÿ

LPN
wLpXqpL. (3.1.6)

Let ‘p and ap be p-ary addition and subtraction without carry, respectively. For each x P Z, let
Nppxq “ x ap px ´ 1q “

řordpxq

L“0 pL.

Theorem 3.1.3. Let X be a position px1, . . . ,xmq in a p-saturation of Wm. Then the following
two assertions hold:

1. There exists a position Y such that λ pY qĎλ pXq and |λ pY q| “ wpY q “ wpXq.

2. The Sprague-Grundy number sgpXq of X is expressed as follows:

sgpXq “ wpXq

“
à

pi, jqPλ pXq

p Np
`⏐⏐Hi, jpXq

⏐⏐˘
“ x1

‘p ¨ ¨ ¨ ‘p xm
ap

˜

à

iă j
p Nppxi

´ x j
q

¸

.

(3.1.7)
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As we will see in Section 3.3, the first assertion of Theorem 3.1.3 is the key ingredient of the
proof of the second one.

Suppose that p is a prime. We next establish a relation between the Sprague-Grundy function
of p-saturations of Wm and the degrees of the irreducible representations of symmetric groups.
Let X be a position in a p-saturation of Wm and let ρX be the ordinary irreducible representation
of the symmetric group Symp|λ pXq|q corresponding to λ pXq. By Macdonald’s result [17], we
see that the degree of ρX is prime to p if and only if wpXq “ |λ pXq|. From Theorem 3.1.3 we
obtain the following corollary.

Corollary 3.1.4. Let X be a position in a p-saturation of Welter’s game. If p is a prime, then
the following assertions hold:

1. sgpXq ď |λ pXq| with equality if and only if the degree of ρX is prime to p.

2. The restriction of ρX to SympsgpXqq has an irreducible component with degree prime to
p.

Example 3.1.5. Let p “ 2 and X be a position p2,4,6q in a 2-saturation of Welter’s game. We
first calculate the degree of ρX and the Sprague-Grundy number of X . Since the multiset of
hook-lengths in λ pXq is t1,1,1,2,3,3,4,5,6u (see Figure 3.3),

degpρ
X

q “
9!

6 ¨ 5 ¨ 4 ¨ 32 ¨ 2
“ 168

by the hook-length formula [10]. We also have

wpXq “ pw0pXq,w1pXq, . . .q “ p9,3,1,0, . . .q.

Hence pw0pXq,w1pXq, . . .q “ p1,1,1,0, . . .q. Thus sgpXq “ wpXq “ 1 ` 2 ` 4 “ 7.
Corollary 3.1.4 asserts that the restriction ρX |Symp7q has an irreducible component with odd

degree. Indeed, by the branching rule (see, for example, [24]),

ρ
X

|Symp7q “ 2ρ
p2,3,5q

‘ 2ρ
p1,4,5q

‘ 2ρ
p1,3,6q

‘ ρ
p0,4,6q.

We find that the degrees of ρp2,3,5q,ρp1,4,5q, and ρp1,3,6q are odd.
By the way, p2,4,5q,p2,3,6q, and p1,4,6q can be obtained by decreasing one entry in X by 1.

Note that the 22-weights of p2,4,5q and p1,4,6q are greater than that of X . In Section 3.4, these
options will be called 2˚-options of X . They will play a key role in the proof of Theorem 3.1.3.

Corollary 3.1.4 suggests the following problem.

Problem 2. Let ρ be an irreducible representation of Sympnq. What is the greatest integer
msgpρq such that the restriction of ρ to Sympmsgpρqq has an irreducible component with degree
prime to p?

Note that Corollary 3.1.4 yields msgpρX q ě sgpXq, where X is a position in a p-saturation of
Welter’s game. This bound is improved in Remark 3.3.8.
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Figure 3.3: The degrees of ρp2,3,5q,ρp1,4,5q, and ρp1,3,6q are odd. The 22-weights of p2,4,5q and
p1,4,6q are 2, which is greater than that of p2,4,6q.

3.1.4 Organization

This chapter is organized as follows. In Section 3.2, we introduce a notation and recall the
concepts of impartial games and p-core towers. In Section 3.3, we reduce Theorem 3.1.3 to two
assertions (A1) and (A2). Section 3.4 contains the definition and basic properties of p˚-options.
Using them, we show (A1) in this section. In Section 3.5, we prove (A2).

3.2 Preliminaries

3.2.1 Notation

Throughout this paper, p is an integer greater than 1. We write ‘ instead of ‘p. We regard
Z{pLZ as t0,1, . . . , pL ´ 1u for L P N. Let Ω denote Z{pZ. In this paper, we will frequently
use p-core towers. For this reason, the following notation is useful.

For a non-negative integer x, let xppq

L denote the L-th digit in the p-adic expansion of x, that
is, x “

ř

LPN xppq

L pL and xppq

L P Ω. We write xL instead of xppq

L when no confusion can arise.
We identify x P N with the infinite sequence px0,x1, . . .q P ΩN. In this notation, for x,y P N,

x ‘ y “ px0 ‘ y0,x1 ‘ y1, . . .q “ px0 ` y0,x1 ` y1, . . .q.

53



3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

Let xăL denote the residue of x modulo pL. We also identify xăL P Z{pLZ with the finite
sequence px0,x1, . . . ,xL´1q P ΩL. Let xěL denote the quotient of x divided by pL, that is, xěL “

pxL,xL`1, . . .q.
Let L,N P N. Let R P ΩL and S P ΩN . We use pR,Sq to denote the concatenation of R and S,

that is,
pR,Sq “ pR0, . . . ,RL´1,S0, . . . ,SN´1q P Ω

L`N .

For x P N and ˚ P t `,´,‘,a u, we define R ˚ x by

R ˚ x “ R ˚ xăL P Ω
L,

where

R ‘ xăL “ pR0 ‘ x0, . . . ,RL´1 ‘ xL´1q and R a xăL “ pR0 a x0, . . . ,RL´1 a xL´1q.

For example, p0,0q a 1 “ pp ´ 1,0q, while p0,0q ´ 1 “ pp ´ 1, p ´ 1q and p0,0q a p2 “ p0,0q.

3.2.2 Games

We recall the concept of impartial games. See [1, 5] for details. We also give the definition of
p-saturations of Nim and some remarks on Welter’s game.

Let Γ be a game. For X P PpΓq, let lgpXq denote the maximum length of a path from X . By
definition, lgpXq is finite for each position X in Γ. By an easy inductive argument, sgpXq ď

lgpXq. For example, in Welter’s game, sgpXq ď lgpXq “ |λ pXq|. Let X and Y be two positions
in Γ. If there exists a path from X to Y , then Y is called a descendant of X . For example, in
Welter’s game, Y is a descendant of X if and only if λ pY q Ď λ pXq. A descendant Y of X is said
to be proper if Y ‰ X .

We give a characterization of Sprague-Grundy functions. Let σ be a function from PpΓq to
N. If σ satisfies the following two conditions, then σ is the Sprague-Grundy function of Γ.

(SG1) X has no option Y with σpY q “ σpXq.

(SG2) X has an option Y with σpY q “ h for 0 ď h ă σpXq.

Example 3.2.1 (Nim and Welter’s game). Let P “ Nm and

A “
␣

pX ,Y q P P2 : xi
ě yi for 1 ď i ď m and distpX ,Y q “ 1

(

,

where X “ px1, . . . ,xmq and Y “ py1, . . . ,ymq. The game pP,Aq is called Nim with m-coins and
is denoted by Nm. See Figure 3.4. Nim was first analyzed by Bouton [2]. The following
explicit formula for the Sprague-Grundy function of Nim was obtained by Sprague [29] and
Grundy [12] independently:

sgpXq “ x1
‘2 ¨ ¨ ¨ ‘2 xm. (3.2.1)

Note that Welter’s game Wm is the subgraph of Nm induced in PpWmq. In other words,
Welter’s game is Nim with the restriction that the coins are on distinct squares.
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Example 3.2.2 (Games with p-index k). In view of Example 3.2.1, we can generalize Welter’s
game with p-index k. Let P be a subset of Nm. Let Γ be the subgraph of Nm induced in P . For
each positive integer k, let

Ak “ tpX ,Y q P P2 : X ´Y P Dm, 0 ă distpX ,Y q ă k u, (3.2.2)

where Dm is defined by (3.1.4). The game pP,Akq is called Γ with p-index k and is denoted by
Γpp,kq. In other words, Γpp,kq is the subgraph of Nm

pp,kq
induced in PpΓq. Figure 3.4 shows a part

of N 2
p2,3q

.
The game Γpp,kq is called a p-saturation of Γ if it has the same Sprague-Grundy function as

Γpp,m`1q. In the next section, we will consider p-saturations not only of Welter’s game, but also
of Nim.

(2,2)

(0,2)

(1,2)

(2,0)

(0,0)

(1,0)

(2,1)

(0,1)

(1,1)

(2,2)

(0,2)

(1,2)

(2,0)

(0,0)

(1,0)

(2,1)

(0,1)

(1,1)

Figure 3.4: Positions in N 2 and N 2
p2,3q

.

Remark 3.2.3. We give two remarks on positions in Welter’s game.
First, we can represent a position in Welter’s game as a set. Let us consider two positions

px1,x2q and px2,x1q in W2. If py1,y2q is an option of px1,x2q, then py2,y1q is an option of px2,x1q.
Therefore we can identify these two positions px1,x2q and px2,x1q and represent them as the set
tx1,x2 u. In general, let

P “

ˆ

N
m

˙

“ tXĎN : |X | “ mu

and Ak be the set of pX ,Y q P P2 such that there exists a bijection Φ : X Q xi ÞÑ yi P Y satisfying

ppx1, . . . ,xm
q,py1, . . . ,ym

qq P ApWm
pp,kq

q. (3.2.3)
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

The game pP,Akq is called the set representation of Wm
pp,kq

and is denoted by Wm
pp,kq

. Note that
Φ satisfies (3.2.3) if and only if x ě Φpxq for x P X and

ord

˜

ÿ

xPX

x ´
ÿ

yPY

y

¸

“ mint ordpx ´ Φpxqq : x P X u . (3.2.4)

We also see that
sgWm

pp,kq

ptx1, . . . ,xm
uq “ sgWm

pp,kq
ppx1, . . . ,xm

qq.

We will use this set representation in the rest of paper. Note that for X P P , we can define
λ pXq,wpXq, and so on.

Second, two positions X and

X r1s
“ tx ` 1 : x P X u Y t0u

are essentially the same, since Y is an option of X if and only if Y r1s is that of X r1s. In general,
let

X rns
“ pX rn´1s

q
r1s (3.2.5)

for n ą 1. Note that λ pX rnsq “ λ pXq for n P N, where X r0s “ X .

0 1 2 3 0 1 2 3

Figure 3.5: t1,2u and t1,2u
r1s.

3.2.3 p-core Towers

In this subsection, we define p-core towers and state their properties. Details can be found in,
for example, [17, 20, 21]. Using p-core towers, we will show Theorem 3.1.3 in latter sections.

Let X be a position in Wm
pp,kq

, that is, X is a finite subset of N. Let L be a non-negative integer.
For each R P ΩL, let

XR “ t xěL : x P X , xăL “ R u . (3.2.6)

For example, if p “ 10 and X “ t12345,67890u, then X0 “ t6789u ,X5 “ t1234u, and Xr “ H

for r P t0,1, . . . ,9uzt0,5u. The position X is uniquely determined by pXRqRPΩL . Indeed, let

rXRsRPΩL “
␣

pR, x̂q : R P Ω
L, x̂ P XR

(

, (3.2.7)

where pR, x̂q “ pR0,R1, . . . ,RL´1, x̂0, x̂1, . . .q. Then X “ rXRsRPΩL . With this notation, we define
the p-core Xppq of X by

Xppq “ rt 0,1, . . . , |Xr|´ 1 usrPΩ
. (3.2.8)
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3.2 Preliminaries

Let τ0pXq denote
⏐⏐λ pXppqq

⏐⏐. As we will see in the next example, λ pXppqq is the partition obtained
by removing all ppq-hooks from λ pXq.

Example 3.2.4. Let p “ 3 and X “ t2,4,6,7,10u. To calculate τ0pXq, it is convenient to use
the p-abacus introduced by James [14]. First, we place five beads on 2, 4, 6, 7, and 10 as the
left picture in Figure 3.6. Next, we move all beads upwards as high as possible. Then we obtain
the 3-core t0,1,2,4,7u of X . Therefore τ0pXq “

⏐⏐λ pXp3qq
⏐⏐ “ 4. Note that moving upward one

bead corresponds removing one p3q-hook. Hence λ pXp3qq contains no p3q-hooks. We also find
that τ0pXq “ 4 “ 19 ´ 3 ¨ 5 “ |λ pXq|´ pw1pXq “ w0pXq ´ pw1pXq.

0    1    2
3    4    5
6    7    8
9   10  11

0    1    2
3    4    5
6    7    8
9   10  11

Figure 3.6: X and Xp3q on 3-abacuses.

The sequence ppXRqppqqRPΩL is called the L-th row of the p-core tower of X . We define

τLpXq “
ÿ

RPΩL

τ0pXRq. (3.2.9)

Let τLpXq be the remainder of τLpXq divided by p. Let τpXq and τpXq denote the sequences
whose L-th terms are τLpXq and τLpXq, respectively. For example, τLptxuq “ xL for x P N.

Example 3.2.5. Let us consider Example 3.2.4 again. We calculate τ1pXq. Since

X0 “ t6ě1 u “ t2u , X1 “ t4ě1,7ě1,10ě1 u “ t1,2,3u , and X2 “ t2ě1 u “ t0u ,

we have pX0qp3q “ t2u ,pX1qp3q “ t0,1,2u, and pX2qp3q “ t0u. Hence τ1pXq “ 2. In this way,
we obtain

τpXq “ p4,2,1,0, . . .q and τpXq “ p1,2,1,0, . . .q.

We next give the basic properties of τLpXq. As we have seen in Example 3.2.4, τ0pXq “

w0pXq ´ pw1pXq. In general,

τLpXq “ wLpXq ´ pwL`1pXq. (3.2.10)

By (3.2.10), we have τLpXq “ wLpXq and τpXq “ wpXq. Moreover,
ÿ

LPN
τLpXqpL

“ pw0pXq ´ pw1pXqq ` pw1pXq ´ pw2pXqqp ` ¨¨ ¨ “ w0pXq “ |λ pXq| . (3.2.11)
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Therefore τpXq “ |λ pXq| if and only if τpXq “ τpXq, that is, the total size of the p-cores at each
level of the p-core tower of X is at most p ´ 1.

Furthermore,
τěLpXq “

ÿ

RPΩL

τpXRq, (3.2.12)

wěLpXq “
ÿ

RPΩL

wpXRq, (3.2.13)

where τěLpXq “ pτLpXq,τL`1pXq, . . .q and wěLpXq “ pwLpXq,wL`1pXq, . . .q. In particular,

wLpXq “
ÿ

RPΩL

w0pXRq “
ÿ

RPΩL

˜

ÿ

xPXR

x ´ p0 ` 1 ` ¨¨ ¨ ` p|XR|´ 1qq

¸

“
ÿ

xPX

xěL ´
ÿ

RPΩL

ˆ

|XR|
2

˙

.

(3.2.14)

Remark 3.2.6. Let X be a position
␣

x1, . . . ,xm
(

in Wm. We close this section by proving

τpXq “ x1
‘ ¨¨ ¨ ‘ xm

a

˜

à

iă j
Nppxi

´ x j
q

¸

“
à

pi, jqPλ pXq

Np
`
⏐⏐Hi, jpXq

⏐⏐˘ .
We may assume that x1 ą ¨¨ ¨ ą xm. Since Nppxq “

řordpxq

L“0 pL, it follows that
˜

à

pi, jqPλ pXq

Np
`
⏐⏐Hi, jpXq

⏐⏐˘¸
L

” wLpXq pmod pq.

Hence
À

pi, jqPλ pXqNpp|Hi, jpXq|q “ wpXq “ τpXq. We also have

à

pi, jqPλ pXq

Np
`
⏐⏐Hi, jpXq

⏐⏐˘ “

m
à

i“1

¨

˝

à

0ďyăxi, yRX

Nppxi
´ yq

˛

‚

“

m
à

i“1

¨

˝

à

0ďyăxi

Nppxi
´ yq a

˜

à

iă j
Nppxi

´ x j
q

¸

˛

‚

“ x1
‘ ¨¨ ¨ ‘ xm

a

˜

à

iă j
Nppxi

´ x j
q

¸

.

3.3 p-saturations

In this section, we will study p-saturations of Nim and Welter’s game. The aim of this section
is to reduce Theorem 3.1.3 to two assertions in Subsection 3.3.2.
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3.3.1 p-saturations of Nim

In some cases, we can reduce the problem of Welter’s game to that of Nim. This is because, by
(3.2.12),

τě1pXq “ τpX0q ‘ ¨ ¨ ¨ ‘ τpXp´1q,

where X is a position in Wm and τě1pXq “ pτ1pXq,τ2pXq, . . .q. In this subsection, we will prove

sgpXq “ x1
‘ ¨¨ ¨ ‘ xm, (3.3.1)

where X is a position px1, . . . ,xmq in p-saturations of Nim. Let σpXq be the right-hand side of
(3.3.1) for X P Nm. To prove (3.3.1), it is sufficient to show (SG1) and (SG2).

The next lemma provides a necessary and sufficient condition for a descendant to be an option
in Nm

pp,kq
. In particular, (SG1) holds.

Lemma 3.3.1. Let X be a position px1, . . . ,xmq in Nm
pp,kq

. If Y is a proper descendant py1, . . . ,ymq

of X such that distpX ,Y q ă k, then

ordpσpXq ´ σpY qq ě mintordpxi
´ yi

q : 1 ď i ď mu

with equality if and only if Y is an option of X.

proof. Since distpX ,Y q ă k, the position Y is an option of X if and only if X ´Y P Dm. Let
N “ mintordpxi ´ yiq : 1 ď i ď mu. Then xi

L “ yi
L for 0 ď L ă N. Hence

ordpσpXq ´ σpY qq ě N

and

pσpXq ´ σpY qqN “

˜

m
ÿ

i“1

xi
´ yi

¸

N
.

Therefore ordpσpXq ´ σpY qq “ N if and only if Y is an option of X .

It remains to show (SG2).

Lemma 3.3.2. Let X be a position px1, . . . ,xmq in Nm
p,k. Suppose that k ě minpp,m ` 1q. Then

X has an option Y with σpY q “ h for 0 ď h ă σpXq. In particular, sgpXq “ σpXq.

proof. We first construct a descendant Y of X such that σpY q “ h. Let n “ σpXq and N “

maxt L P N : nL ‰ hL u. Since h ă n, it follows that hN ă nN “ x1
N ` ¨¨ ¨ ` xm

N . Thus there exist
r1, . . . ,rm P Ω such that

r1
` ¨¨ ¨ ` rm

“ hN and ri
ď xi

N for 1 ď i ď m.
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

By rearranging xi if necessary, we may assume that r1 ă x1
N . Since nN ď p ´ 1, we may also

assume that
dist

`

pr1, . . . ,rm
q, px1

N , . . . ,x
m
Nq
˘

ă k.

Let
y1

“
`

x1
0 ´ n0 ` h0, . . . ,x1

N´1 ´ nN´1 ` hN´1,r1,x1
N`1,x

1
N`2, . . .

˘

,

yi
“
`

xi
0, . . . ,x

i
N´1,r

i,xi
N`1,x

i
N`2 . . .

˘

for 2 ď i ď m,

and Y “ py1, . . . ,ymq. Then Y is a proper descendant of X with σpY q “ h.
It remains to verify that Y is an option of X . Since distpX ,Y q ă k and

ordpσpXq ´ σpY qq “ ordpx1
´ y1

q “ min
␣

ordpxi
´ yi

q : 1 ď i ď m
(

,

it follows from Lemma 3.3.1 that Y is an option of X .

Remark 3.3.3. Using Lemma 3.2.11, we can show that the p-saturation index of Nm equals
minpp,m ` 1q. Indeed, if m “ 0, then there is nothing to prove. Suppose that m ě 1. Then
minpp,m ` 1q ě 2. Let k “ minpp,m ` 1q and

X “ pp, . . . , p
loomoon

k´1

,0, . . . ,0q P Nm.

This position X has no option py1, . . . ,ymq with y1 ‘ ¨¨ ¨ ‘ ym “ 0 in Nm
p,k´1. Thus satppNmq “ k

by Lemma 3.2.11.

3.3.2 p-saturations of Welter’s Game

In the rest of this paper, positions mean positions in Wm
pp,m`1q

, unless otherwise specified.
Theorem 3.1.3 follows immediately from the next result.

Theorem 3.3.4. Let X be a position.

1. The following two assertions hold:

(A1) If τpXq “ |λ pXq| ą 0, then X has a descendant Y with τpY q “ τpXq ´ 1. 3

(A2) If τpXq ă |λ pXq|, then X has a proper descendant Y with τpY q ě τpXq.

2. sgpXq “ τpXq.

3Note that Y satisfies (A1) if and only if τpY q “ |λ pY q| “ |λ pXq|´ 1.
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Let X be a position. We will prove the above theorem by induction on |λ pXq|. If |λ pXq| “ 0,
then there is nothing to prove. Suppose that |λ pXq| ą 0. By the induction hypothesis,

sgpZq “ τpZq for Z with |λ pZq| ă |λ pXq| . (3.3.2)

The assertions (A1) and (A2) are proven in Sections 3.4 and 3.5, respectively. In this subsection,
we show how (A1) and (A2) imply that sgpXq “ τpXq. It is sufficient to show (SG1) and (SG2).

The next lemma, which is an analog of Lemma 3.3.1, provides a necessary and sufficient
condition for a descendant to be an option in Wm

pp,kq
.

Lemma 3.3.5. Let X be a position px1, . . . ,xmq in Wm
p,k. If Y is a proper descendant py1, . . . ,ymq

of X such that distpX ,Y q ă k, then

ordpτpX 1
q ´ τpY 1

qq ě mintordpxi
´ yi

q : 1 ď i ď mu

with equality if and only if Y is an option of X, where X 1 “ tx1, . . . ,xm u and Y 1 “ ty1, . . . ,ym u.

proof. Since distpX ,Y q ă k, the position Y is an option of X if and only if X ´Y P Dm. Let
N “ mintordpxi ´ yiq : 1 ď i ď mu.

We first show that ordpτpX 1q ´ τpY 1qq ě N, By the definition of N, we have xi
ăN “ yi

ăN for
1 ď i ď m. Hence |X 1

R| “ |Y 1
R| for each R P ΩL with 0 ď L ď N. Thus τăNpX 1q “ τăNpY 1q,

where τăNpX 1q “ pτ0pX 1q,τ1pX 1q, . . . ,τN´1pX 1qq. This shows that ordpτpX 1q ´ τpY 1qq ě N. By
(3.2.14), we have

wNpX 1
q ´ wNpY 1

q “

m
ÿ

i“1

xi
ěN ´

m
ÿ

i“1

yi
ěN “

˜

m
ÿ

i“1

xi
´ yi

¸

ěN
.

It follows that

τNpX 1
q ´ τNpY 1

q ” wNpX 1
q ´ wNpY 1

q ”

˜

m
ÿ

i“1

xi
´ yi

¸

N
pmod pq.

Therefore ordpτpX 1q ´ τpY 1qq “ N if and only if Y is an option of X .

We now prove (SG1) using Lemma 3.3.5. Let Y be an option of X . Then there exists a
bijection Φ : X Q xi ÞÑ yi P Y such that py1, . . . ,ymq is an option of px1, . . . ,xmq in Wm

pp,m`1q
.

Hence
ordpτpXq ´ τpY qq “ mintordpxi

´ yi
q : 1 ď i ď mu ă 8

by Lemma 3.3.5. This yields τpY q ‰ τpXq.
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Remark 3.3.6. Using Lemma 3.3.5 and Theorem 3.1.3, we can show that

satppWm
q ě minpp,m ` 1q.

Indeed, if m “ 0, then the assertion is trivial. Suppose that m ě 1. Let k “ minpp,m ` 1q and

X “ t p, p ` 1, . . . , p ` k ´ 2 u
rm´k`1s

defined in (3.2.5). Then k ě 2 and τpXq “ ppk ´ 1q ą 0, but X has no option Y with τpY q “ 0 in
Wm

pp,k´1q
by Lemma 3.3.5. Hence satppWmq ě k by Theorem 3.1.3.

We next show (SG2) assuming (A1) and (A2). Recall that we also assume that (3.3.2). Let
n “ τpXq. If n “ 0, then (SG2) is trivial. Suppose that n ą 0. We divide into three cases.

Case 1 (h “ n ´ 1). It suffices to show that X has a descendant Y with τpY q “ n ´ 1 because if
τpY q “ n ´ 1, then

ordpτpXq ´ τpY qq “ ordp1q “ 0,

so Y is an option of X by Lemma 3.3.5. If n “ |λ pXq|, then there is nothing to prove by (A1).
Suppose that n ă |λ pXq|. By (A2), the position X has a proper descendant Z with τpZq ě τpXq.
By (3.3.2), we have

sgpZq “ τpZq ą n ´ 1.

Hence Z has an option Y with sgpY q “ τpY q “ n ´ 1. This position Y is a descendant of X .

Case 2 (h ă n´1 and h ı n pmod pq). By Case 1, X has an option Y with sgpY q “ τpY q “ n´1.
This position Y has an option Z with sgpZq “ τpZq “ h ă n´1. Since ordpn´hq “ 0, the position
Z is also an option of X by Lemma 3.3.5.

Case 3 (h ” n pmod pq). We first construct a descendant Z of X with τpZq “ h using Lemma
3.2. Let N “ ordpn ´ hq. Since h ” n pmod pq and h ă n, it follows that N ą 0 and hě1 ă ně1.
Let ar “ τpXrq for each r P Ω. Then

a0
‘ ¨¨ ¨ ‘ ap´1

“ ně1 ą hě1.

By Lemma 3.3.2, there exists pb0, . . . ,bp´1q P Np such that

1.
À

rPΩ
br “ hě1,

2. br ď ar for each r P Ω,

3. N ´ 1 “ ordp
À

rPΩ
ar ´

À

rPΩ
brq “ mint ordpar ´ brq : r P Ω u.
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Since |λ pXrq| ă |λ pXq|, it follows from (3.3.2) that

sgpXrq “ τpXrq “ ar
ě br.

When br ă ar, let Zr be an option of Xr with sgpZrq “ τpZrq “ br. When br “ ar, let Zr “ Xr.
We set Z “ rZrsrPΩ. Then τpZq “ h.

We next show that Z is an option of X . By Lemma 3.3.5, it suffices to find a bijection
Φ : X Ñ Z such that

mintordpx ´ Φpxqq : x P X u “ N (3.3.3)

and Φpxq ď x for x P X .
We first construct a bijection Φ : X Ñ Z. Since Zr is an option of Xr when br ă ar, there exists

a bijection Φr : Xr Ñ Zr such that

ordpar
´ br

q “ mintordpx̂ ´ Φ
r
px̂qq : x̂ P Xr u (3.3.4)

and Φrpx̂q ď x̂ for x̂ P Xr by Lemma 3.3.5. Let Φr : Xr Ñ Zr be the identity map when br “ ar.
We now define a bijection Φ : X Ñ Z by

Φpxq “ pr,Φr
px̂qq “ pr,pΦ

r
px̂qq

ppq

0 ,pΦ
r
px̂qq

ppq

1 , . . .q P Z,

where r “ x0 and x̂ “ xě1. Since Φrpx̂q ď x̂, we have Φpxq ď x for x P X .
It remains to show (3.3.3). By (3.3.4) and (3),

mint ordpx̂ ´ Φ
r
px̂qq : x̂ P Xr, r P Ω u “ mint ordpar

´ br
q : r P Ω u “ N ´ 1.

Since ordpx ´ Φpxqq “ ordpx̂ ´ Φrpx̂qq ` 1 if x ‰ Φpxq, we obtain (3.3.3). Therefore Z is an
option of X by Lemma 3.3.5. This completes the proof of (SG2).

In the rest of the paper, we will show (A1) and (A2).

Remark 3.3.7. Suppose that p is a prime. Then (A1) follows from the branching rule and the
fact that τpXq “ |λ pXq| if and only if the degree of ρX is prime to p. Indeed, let X be a position
such that τpXq “ |λ pXq| ą 0, and let degpρX q be the degree of ρX . By the branching rule,

degpρ
X

q “
ÿ

Y

degpρ
Y

q,

where the sum is over all descendants Y of X with |λ pY q| “ |λ pXq|´ 1. Since τpXq “ |λ pXq|
and p is a prime,

degpρ
X

q ı 0 pmod pq.

This implies that degpρY q ı 0 pmod pq for some descendant Y of X with |λ pY q| “ |λ pXq|´ 1.
Therefore τpY q “ τpXq ´ 1.
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Remark 3.3.8. For a position X , let

msgpXq “ maxt τpY q : Y is a descendant of X with τpY q “ |λ pY q| u
p “ maxt sgpY q : Y is a descendant of X u by assuming Theorem 1.1q.

The assertion (A2) yields msgpXq ě τpXq. As we have mentioned in the introduction, we can
improve this bound as follows. If τpXq “ |λ pXq|, then msgpXq “ τpXq because when Y is a
descendant of X , we see that τpY q “ sgpY q ď |λ pY q| ď |λ pXq| by Theorem 3.1.3. Suppose that
τpXq ă |λ pXq|. Then τpXq ‰ τpXq, so there exists L such that τLpXq ě p. Let N be the largest
such L. In Section 3.5, we will show that

msgpXq ě pεpp ´ 1q, p ´ 1, . . . , p ´ 1
looooooomooooooon

N

,τN`1pXq,τN`2pXq, . . .q, (3.3.5)

where ε “ 1 if τNpXq ě p ` 1 and ε “ 0 if τNpXq “ p. For example, if p “ 3 and X “

t3,4,5,9,10,11u, then τpXq “ p0,0,3,0, . . .q and msgpXq “ p0,2,2,0, . . .q.

3.4 Proof of (A1)

We introduce pH-options for H P N. p0-options play a key role in the proof of (A1). In fact,
let X be a non-terminal position with τpXq “ |λ pXq|. We first show that if X has a p0-option
Y , then τpY q “ τpXq ´ 1 in Lemma 3.4.3. We then prove that X always has a p0-option. This
implies that (A1) holds.

3.4.1 pH-options

To define pH-options, we first introduce a total order. Let pαLqLPN and pβLqLPN be two non-
negative integer sequences with finitely many nonzero terms. Suppose that pαLqLPN ‰ pβLqLPN.
Let N “ maxt L P N : αL ‰ βL u. If αN ă βN , then we write

pαLqLPN ă pβLqLPN. (3.4.1)

For example, for two non-negative integers x and y, we see that τpt x uq ă τpt y uq if and only if
x ă y. Furthermore, for two positions X and Y ,

wpXq ă wpY q ðñ τpXq ă τpY q. (3.4.2)

Let us show (3.4.2). Note that wpXq ‰ wpY q ðñ τpXq ‰ τpY q since τLpXq “ wLpXq ´

pwL`1pXq. Suppose that wpXq ‰ wpY q, and let N “ maxtL P N : wLpXq ‰ wLpY qu. Then for
L ě N ` 1,

τLpXq “ wLpXq ´ pwL`1pXq “ wLpY q ´ pwL`1pY q “ τLpY q.
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Moreover,

τNpXq ´ τNpY q “ pwNpXq ´ pwN`1pXqq ´ pwNpY q ´ pwN`1pY qq “ wNpXq ´ wNpY q,

which gives (3.4.2).
We next define the (p-adic) order of a position. For a non-terminal position X (that is, X has

an option), the order ordpXq of X is defined by

ordpXq “ mint L P N : τLpXq ‰ 0 u . (3.4.3)

If X is a terminal position, then we define ordpXq “ 8. For example, ordpt x uq “ ordpxq for
each x P N.

For a position X , let px x ´ dqpXq denote the option obtained from X by replacing x P X with
x ´ d P NzX , that is,

px x ´ dqpXq “ X Y tx ´ d uztxu for x P X and x ´ d P NzX with x ´ d ă x.

Definition 3.4.1 (pH-options). Let H P N. Let X be a position with order M and Y an option
px x ´ pHqpXq of X . The position Y is called a pH-option of X if it has the following two
properties:

(O1) τLpY q ” τLpXq ´ 1 pmod pq for H ď L ď M.

(O2) τěM`1pY q ľ τěM`1pXq.

Example 3.4.2. Let p “ 3. Let X “ t2,3,5,10u ,Y “ p2 1qpXq,Z “ p5 4qpXq, and W “

p10 9qpXq. The position Z is a 30-option of X , but Y and W are not. Indeed,

τpXq “ p2,1,1,0, . . .q,
τpY q “ p1,4,0,0, . . .q,
τpZq “ p1,1,1,0, . . .q,

τpW q “ p4,0,1,0, . . .q.

Hence they satisfy (O1), but only Z satisfies (O2), since ordpXq “ 0. Note that τpZq “ 13 “

14 ´ 1 “ τpXq ´ 1, so X satisfies (A1). In fact, this is always true by the next lemma.

Lemma 3.4.3. Let X be a position with τpXq “ |λ pXq|. If X has a p0-option Y , then τpY q “

τpXq ´ 1.

proof. By the definition of p0-options, |λ pY q| “ |λ pXq|´ 1 “ τpXq ´ 1. Hence it is sufficient
to show that τpY q “ |λ pY q|. Let M “ ordpXq.

We first show that τěM`1pY q “ |λ pY q|ěM`1. Since |λ pXq| “ τpXq “ τpXq, we have

|λ pXq|M “ τMpXq ‰ 0.
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This implies that

|λ pY q| “ |λ pXq|´ 1 “ pp ´ 1, . . . , p ´ 1
looooooomooooooon

M

,τMpXq ´ 1,τM`1pXq,τM`2pXq, . . .q.

By (O2),
τěM`1pY q ľ τěM`1pXq “ |λ pY q|ěM`1 .

Hence τěM`1pY q “ |λ pY q|ěM`1 for otherwise
ř

LPN τLpY qpL ą |λ pY q|, contrary to (3.2.11).
It remains to show that τăM`1pY q “ |λ pY q|ăM`1. By (O1),

τLpY q ” τLpXq ´ 1 ” |λ pY q|L pmod pq for 0 ď L ď M.

Hence τăM`1pY q “ |λ pY q|ăM`1. Therefore τpY q “ |λ pY q| “ τpXq ´ 1.

3.4.2 (A1) for ordpXq “ 0

To show (A1) using Lemma 3.4.3, we will show that if X is a non-terminal position with τpXq “

|λ pXq|, then X has a p0-option.
Some non-terminal positions have no p0-options. However, we will prove that every non-

terminal position X has a pM-option, where M “ ordpXq. For this reason, we give the next
definition.

Definition 3.4.4 (p˚-options). Let X be a position with order M. A pM-option of X is called a
p˚-option of X .

The next lemma is an essential property of p˚-options.

Lemma 3.4.5. Every non-terminal position has a p˚-option.

By Lemmas 3.4.3 and 3.4.5, (A1) holds when ordpXq “ 0. To prove Lemma 3.4.5, we study
p˚-options.

We first give a recursive property of p˚-options. From this property, we only need to show
Lemma 3.4.5 when ordpXq “ 0.

Lemma 3.4.6. Let X be a position whose order M is positive. Then the following assertions
hold:

(1) ordpXsq “ M ´ 1 for some s P Ω.

(2) Let Yr “ Xr for each r P Ωztsu. If Ys is a p˚-option of Xs, then rYrsrPΩ is a p˚-option of
X.
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3.4 Proof of (A1)

proof. We first show (1). By (3.2.12),
ÿ

rPΩ

τpXrq “ τě1pXq “ p0, . . . ,0
loomoon

M´1

,τMpXq, . . .q.

Hence τM´1pXsq ‰ 0 for some s P Ω. In particular, ordpXsq “ M ´ 1.
We next show (2). Let Y “ rYrsrPΩ. By (1), the position Ys is a ppM´1q-option of Xs. Hence

τMpY q “
ÿ

rPΩ

τM´1pYrq ”
ÿ

rPΩ

τM´1pXrq ´ 1 ” τMpXq ´ 1 pmod pq

and
τěM`1pY q “

ÿ

rPΩ

τěMpYrq ľ
ÿ

rPΩ

τěMpXrq “ τěM`1pXq.

To prove Lemma 3.4.5, we compare the difference between p˚-options and non-p˚-options.
Let us give an example.

Example 3.4.7. Let us consider Example 3.4.2 again. To clarify the difference between the
30-option Z and the other options Y and W , we investigate

⏐⏐Xpr,Rq

⏐⏐ for r P Ω1 and R P Ω0 Y Ω1.
Recall that Z “ p5 4qpXq,Y “ p2 1qpXq, and W “ p10 9qpXq.

R
⏐⏐Xp0,Rq

⏐⏐ ⏐⏐Xp1,Rq

⏐⏐ ⏐⏐Xp2,Rq

⏐⏐
pq 1 1 2

p0q 0 1 1
p1q 1 0 1
p2q 0 0 0

Let x P t2,5,10u. Then the following inequality holds only when x “ 5:⏐⏐Xpx´1qăL

⏐⏐ ă
⏐⏐XxqăL

⏐⏐ for every L ě 1. (3.4.4)

Indeed, ⏐⏐Xp40q

⏐⏐ “
⏐⏐Xp1q

⏐⏐ “ 1 ă 2 “
⏐⏐Xp2q

⏐⏐ “
⏐⏐Xp50q

⏐⏐ and |X4ăL | “ 0 ă 1 “ |X5ăL |

for every L ě 2. We also have⏐⏐Xp90q

⏐⏐ “
⏐⏐Xp0q

⏐⏐ “ 1 “
⏐⏐Xp1q

⏐⏐ “
⏐⏐Xp100q

⏐⏐
and ⏐⏐Xp10,11q

⏐⏐ “
⏐⏐Xp1,0q

⏐⏐ “ 1 “
⏐⏐Xp2,0q

⏐⏐ “
⏐⏐Xp20,21q

⏐⏐ .
In fact, we will show that if x0 ‰ 0 (this assumption is only for simplicity) and (3.4.4) holds,
then the option px x ´ 1qpXq is a p0-option in Lemma 3.4.8. Furthermore, we will show that if⏐⏐Xr´1

⏐⏐ ă
⏐⏐Xr

⏐⏐ for some r P Ω with r ‰ 0,

then there exists x satisfying (3.4.4) in Lemma 3.4.9. Using these results, we will prove Lemma
3.4.5.
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As we have mentioned in the example above, we first give a sufficient condition for an option
to be a p˚-option. Let δx “ 1 if x “ 0, and δx “ 0 otherwise.

Lemma 3.4.8. Let X be a position and Y an option px x ´ pHqpXq of X. Then the following two
assertions hold:

1. wLpY q ´ wLpXq “

#

´pH´L if L ď H,

|XxăL |´ |Xpx´pHqăL
|´ δ ´ 1 if L ě H ` 1,

where δ “ δxH δxH`1 ¨ ¨ ¨δxL´1 .

2. Let M “ ordpXq. If H “ M and⏐⏐Xpx´pMqăL

⏐⏐` δxM δxM`1 ¨ ¨ ¨δxL´1 ă
⏐⏐XxăL

⏐⏐ for every L ě M ` 1, (3.4.5)

then Y is a p˚-option of X.

proof. We first prove (1). Let Z “ Xzt x u. By (3.2.13) and (3.2.14), we have

wLpXq ´ wLpZq “
ÿ

RPΩL

w0pXRq ´ w0pZRq “ w0pXxăLq ´ w0pZxăLq

“ xěL ´ p|XxăL |´ 1q.

Since Z “ Y z
␣

x ´ pH
(

, we also have

wLpY q ´ wLpZq “ px ´ pH
qěL ´ p|Ypx´pHqăL

|´ 1q.

Thus
wLpY q ´ wLpXq “ |XxăL |´ |Ypx´pHqăL

|` px ´ pH
qěL ´ xěL.

If L ď H, then xăL “ px´ pHqăL, and hence wLpY q´wLpXq “ ´pH´L. Suppose that L ě H `1.
Then |Ypx´pHqăL

| “ |Xpx´pHqăL
|` 1 and px ´ pHqěL “ xěL ´ δ , which gives (1).

We next prove (2). By (1) and (3.4.5), wLpY q ´ wLpXq ě 0 for every L ě M ` 1. This shows
that wěM`1pY q ľ wěM`1pXq. Hence, by (3.4.2), τěM`1pY q ľ τěM`1pXq. Since τMpY q ”

τMpXq ´ 1 pmod pq, the position Y is a p˚-option of X .

Finally, we present a sufficient condition for a position to have a p˚-option. In fact, every
non-terminal position satisfies this condition as we will show after the next result.

Lemma 3.4.9. Let X be a position with order M. Let H and N be non-negative integers with
H ď M ď N ´ 1. Suppose that there exists S P ΩN such that⏐⏐XS´pH

⏐⏐` δ ă
⏐⏐XS

⏐⏐, (3.4.6)

where δ “ δSH δSH`1 ¨ ¨ ¨δSN´1 . Then X has an option Y such that τěNpY q ľ τěNpXq and Y “

px x ´ pHqpXq for some x P X with xăN “ S. In particular, if H “ M “ N ´ 1, then Y is a
p˚-option of X.
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proof. We first construct x such that

|Xpx´pHqăL
|` δxH δxH`1 ¨ ¨ ¨δxL´1 ă |XxăL | for every L ě N. (3.4.7)

Since |XS| “
ř

rPΩ
|XpS,rq| and

ř

rPΩ
|XpS,rq´pH | “

ř

rPΩ
|XpS´pH ,rq|, we have

ÿ

rPΩ

⏐⏐XpS,rq´pH

⏐⏐` δ “
⏐⏐XS´pH

⏐⏐` δ ă
⏐⏐XS

⏐⏐ “
ÿ

rPΩ

⏐⏐XpS,rq

⏐⏐.
This implies that ⏐⏐XpS,SNq´pH

⏐⏐` δδSN ă
⏐⏐XpS,SNq

⏐⏐
for some SN P Ω. Continuing this process, we obtain SN ,SN`1, . . . P Ω. Let x “ pS0,S1, . . .q.
Then xăN “ S and (3.4.7) holds.

Let Y “ px x ´ pHqpXq. If Y is an option of X , then τěNpY q ľ τěNpXq by Lemma 3.4.8.
Hence it suffices to show that Y is an option of X , that is, x P X and x ´ pH P NzX . Let

L “ mintL P N : x1
ěL “ 0 for every x1

P X u .

Then for each R P ΩL,
XR “ tx1

ěL : x1
P X ,x1

ăL “ Ru Ď t0u ,

and hence |XR| P t0,1u. Since |Xpx´pHqăL
|` δxH δxH`1 ¨ ¨ ¨δxL´1 ă |XxăL |, we have |Xpx´pHqăL

|`
δxH δxH`1 ¨ ¨ ¨δxL´1 “ 0 and |XxăL | “ 1. This implies that x ´ pH P NzX and x P X .

Lemma 3.4.5. Let X be a non-terminal position. By Lemma 3.4.6, we may assume that the
order of X is 0. By Lemma 3.4.9, it suffices to show that |Xs´1|` δs ă |Xs| for some s P Ω.
Hence we may assume that |X0| ě |X1| ě ¨¨ ¨ ě |Xp´1|. If |X0| P t |Xp´1|, |Xp´1|` 1u, then there
exists s P Ω such that

|Xr| “ |X0|´

#

0 if r ď s
1 if r ą s.

Hence τ0pXq “ 0. This shows that |X0| ą |Xp´1|` 1.
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3.4.3 (A1) for ordpXq ą 0

In this subsection, we give a sufficient condition for a position to have a p0-option and prove
that if |λ pXq| “ τpXq ą 0, then X satisfies this condition. This implies that (A1) holds. To this
end, it is important to compare the difference between positions that have a p0-option and those
that do not. Let us give an example.

Example 3.4.10. Let p “ 3,X “ t3,4,5,9,10,11u, and rX “ t1,2,3,9,13,14u. Then

τpXq “ τprXq “ p0,0,3,0, . . .q.

The position rX has a 30-option. Indeed, let rY “ p1 0qprXq. Then

τprY q “ p2,2,2,0, . . .q,

so rY is a 30-option of rX . However, X does not have a 30-option. Indeed, if Y is a 30-option of
X , then Y must be p3 2qpXq or p9 8qpXq. Let Y be one of them. Then

τpY q “ p5,1,2,0, . . .q.

Therefore rX does not have a 30-option.
To illustrate the difference between X and rX , let us calculate

⏐⏐Xpr,Rq

⏐⏐ and
⏐⏐
rXpr,Rq

⏐⏐ for r P Ω1

and R P Ω0 Y Ω1 Y Ω2. The results are in Table 3.1. We see that⏐⏐
rXp0,0,0q

⏐⏐ “ 0 ‰ 1 “
⏐⏐
rXp1,0,0q

⏐⏐,
but ⏐⏐Xpr,Rqa1

⏐⏐ “
⏐⏐Xpr,Rq

⏐⏐ for r P Ω
1 and R P Ω

0
Y Ω

1
Y Ω

2.

In view of Example 3.4.10, we introduce an equivalence relation on positions. Let X and X 1

be two positions, and let N be a non-negative integer. We write

X ” X 1
pmod pN

q (3.4.8)

to mean that |XR| “ |X 1
R| for each R P ΩN . We see that X ” X 1 pmod pNq if and only if there

exists a bijection Φ : X Ñ X 1 with x ” Φpxq pmod pNq for every x P X .
For example, txu ” tx1 u pmod pNq if and only if x ” x1 pmod pNq for x,x1 P N. Let X and

rX be as in Example 3.4.10. Then

X0 ” X1 ” X2 pmod 3q and X0 ” X1 ” X2 pmod 32
q,

but
rX0 ” rX1 ” rX2 pmod 3q and rX0 ı rX1 ” rX2 pmod 32

q.

By definition, this relation has the following properties.
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Table 3.1:
⏐⏐Xpr,Rq

⏐⏐ and
⏐⏐
rXpr,Rq

⏐⏐ for r P Ω1 and R P Ω0 Y Ω1 Y Ω2

R
⏐⏐Xp0,Rq

⏐⏐ ⏐⏐Xp1,Rq

⏐⏐ ⏐⏐Xp2,Rq

⏐⏐
pq 2 2 2

p0q 1 1 1
p1q 1 1 1
p2q 0 0 0

p0,0q 0 0 0
p0,1q 1 1 1
p0,2q 0 0 0
p1,0q 1 1 1
p1,1q 0 0 0
p1,2q 0 0 0
p2,0q 0 0 0
p2,1q 0 0 0
p2,2q 0 0 0

R
⏐⏐
rXp0,Rq

⏐⏐ ⏐⏐
rXp1,Rq

⏐⏐ ⏐⏐
rXp2,Rq

⏐⏐
pq 2 2 2
p0q 1 1 1
p1q 1 1 1
p2q 0 0 0

p0,0q 0 1 1
p0,1q 1 0 0
p0,2q 0 0 0
p1,0q 1 0 0
p1,1q 0 1 1
p1,2q 0 0 0
p2,0q 0 0 0
p2,1q 0 0 0
p2,2q 0 0 0

Lemma 3.4.11. Suppose that X and X 1 are two positions satisfying X ” X 1 pmod pNq for some
N P N. Then X ” X 1 pmod pLq for 0 ď L ď N, and τăNpXq “ τăNpX 1q.

The following lemma gives a sufficient condition for a position to have a p0-option.

Lemma 3.4.12. Let X be a non-terminal position with order M. If

(P0) pX rnsqs´1 ı pX rnsqs pmod pMq for some s P Ω and some n P N with |X rns| ” 0 pmod pMq,

then X has a p0-option.

proof. If M “ 0, then the assertion follows from Lemma 3.4.5. Suppose that M ą 0. By
replacing X with X rns, we may assume that |X | ” 0 pmod pMq

We first show that |XR| “ |X |{pL when 0 ď L ď M and R P ΩL by induction on L. This is
trivial for L “ 0. Suppose that 0 ă L ď M. Note that if Y is a position with |Y | ” 0 pmod pq,
then τ0pY q “ 0 if and only if |Yr| “ |Y |{p for every r P Ω1. Let R1 P ΩL´1. Then |X 1

R| “ |X |{pL´1

by the induction hypothesis. In particular, |X 1
R| ” 0 pmod pq. We also have τ0pXR1q “ 0, since

ř

V PΩL´1 τ0pXV q “ τL´1pXq “ 0. Hence |XpR1,rq| “ |X 1
R|{p “ |X |{pL for r P Ω1.

Assuming the next claim for the moment, we complete the proof.

Claim. There exists T P ΩM`1 such that T0 ‰ 0 and |XT a1| ă |XT |.

Since T0 ‰ 0, we have |XT a1| “ |XT ´1| “ |XT ´1|` δT0 ¨ ¨ ¨δTM . By Lemma 3.4.9, X has an
option Y such that τěM`1pY q ľ τěM`1pXq and Y “ px x´1qpXq for some x P X with xăM`1 “ T .
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We show that Y is a p0-option of X . By Lemma 3.4.8, τ0pY q ´ τ0pXq ” ´1 pmod pq and

τLpY q ´ τLpXq ” |XxăL |´ |Xpx´1qăL |´ δx0 ¨ ¨ ¨δxL´1 ´ 1

” |X |{pL
´ |X |{pL

´ 1 ” ´1 pmod pq for 0 ă L ď M.

Thus Y is a p0-option of X .
It remains to prove the claim. Since X satisfies (P0), we find that |XSa1| ‰ |XS| for some

S P ΩM`1. Hence there exists s P Ω such that |XSasa1| ă |XSas|, since otherwise |XSa1| ą

|XS| ě |XS‘1| ě ¨ ¨ ¨ ě |XS‘pp´1q| “ |XSa1|. Let

U “ S a s and pU “ pU1, . . . ,UM´1q.

If U0 ‰ 0, then U satisfies the desired condition. Suppose that U0 “ 0. We show that there exist
T0,TM P Ω such that T0 ‰ 0 and ⏐⏐X

pT0,pU ,TMqa1

⏐⏐ ă
⏐⏐X

pT0,pU ,TMq

⏐⏐, (3.4.9)

where pT0, pU ,TMq “ pT0,U1, . . . ,UM´1,TMq. Since M ą 0, we have pU0, pUq,pU0 a 1, pUq P ΩM.
Hence ⏐⏐X

pU0a1,pUq

⏐⏐ “
⏐⏐X⏐⏐{pM

“
⏐⏐X

pU0,pUq

⏐⏐.
This implies that

ÿ

rPΩ

⏐⏐X
pU0a1,pU ,rq

⏐⏐ “
⏐⏐X

pU0a1,pUq

⏐⏐ “
⏐⏐X⏐⏐{pM

“
⏐⏐X

pU0,pUq

⏐⏐ “
ÿ

rPΩ

⏐⏐X
pU0,pU ,rq

⏐⏐.
Since |X

pU0a1,pU ,UMq
| “ |XUa1| ă |XU | “ |X

pU0,pU ,UMq
|, we find that

|X
pU0a1,pU ,TMq

| ą |X
pU0,pU ,TMq

|

for some TM P Ω. As we have seen above, there exists T0 P Ω satisfying T0 ‰ U0 “ 0 and (3.4.9).

We now prove (A1) for ordpXq ą 0. Let M be the order of X . We may assume that |X | ” 0
pmod pMq. By Lemmas 3.4.3 and 3.4.12, it is sufficient to show that X satisfies (P0). Assume
that X does not satisfy (P0). By Lemma 3.4.11, τM´1pXr´1q “ τM´1pXrq for each r P Ω. Hence

0 ‰ τMpXq “
ÿ

rPΩ

τM´1pXrq “ pτM´1pX0q ě p,

which contradicts τpXq “ τpXq. Thus X satisfies (P0). This completes the proof of (A1).
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Remark 3.4.13. Let X be a non-terminal position with order M. The condition (P0) is indepen-
dent of the choice of n, that is, if X satisfies (P0) and |X rhs| ” 0 pmod pMq, then

pX rhs
qt´1 ı pX rhs

qt pmod pM
q for some t P Ω. (3.4.10)

Indeed, if M “ 0, then X rhs always satisfies (3.4.10) since otherwise τ0pX rhsq “ 0. Suppose that
M ą 0. By replacing X with X rhs, we may assume that h “ 0. It suffices to show that⏐⏐pX rpMs

qR
⏐⏐´

⏐⏐pX rpMs
qRa1

⏐⏐ “
⏐⏐XRapM

⏐⏐´
⏐⏐XRapMa1

⏐⏐ for R P Ω
M`1.

Recall that
X rpMs

“ tx ` pM : x P X u Y t0,1, . . . pM
´ 1u .

Hence
pX rpMs

qR “
␣

x ` pM : x P X
(

R Y
␣

0,1, . . . pM
´ 1

(

R (3.4.11)

for R P ΩM`1. Let us calculate the right hand-side of (3.4.11). We have
␣

x ` pM : x P X
(

R “
␣

px ` pM
qěM`1 : x P X , px ` pM

qăM`1 “ R
(

“
␣

px ` pM
qěM`1 : x P X , xăM`1 “ R a pM (

and
␣

0,1, . . . pM
´ 1

(

R “

#

t0u if R ă pM,

H if R ě pM.

Hence ⏐⏐pX rpMs
qR
⏐⏐ “

⏐⏐XRapM

⏐⏐` δRM .

Note that RM “ pR a 1qM since M ą 0. It follows that⏐⏐pX rpMs
qR
⏐⏐´

⏐⏐pX rpMs
qRa1

⏐⏐ “
⏐⏐XRapM

⏐⏐` δRM ´
⏐⏐XRa1apM

⏐⏐´ δpRa1qM

“
⏐⏐XRapM

⏐⏐´
⏐⏐XRa1apM

⏐⏐.
Therefore (P0) is independent of the choice of n.

3.5 Proof of (A2)

In this section, we prove (A2) using p*-descendants and peak digits. We first introduce them and
present their properties. The key result is Lemma 3.5.7 in Subsection 3.5.2. In this subsection,
we prove (A2) assuming this lemma. To prove this lemma, we study the condition (P0) of
Lemma 3.4.12 in Subsection 3.5.4. Finally, in Subsection 3.5.5, we prove Lemma 3.5.7.
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3.5.1 p*-descendants and Peak Digits

Definition 3.5.1 (p*-descendants). Let n P N. Let pX0,X1, . . . ,Xnq be a position sequence. If
X i`1 is a p˚-option of X i for 0 ď i ď n ´ 1, then this sequence is called a p˚-path from X0 to
Xn, and Xn is called a p˚-descendant of X0.

Using p˚-descendants, we might find a descendant satisfying (A2). Let us give an example.

Example 3.5.2. Let p “ 3. Let X0 “ t2,4,5u. Let X1 “ p2 1qpX0q and X2 “ p1 0qpX1q. Then

τpX0
q “ p5,1,0, . . .q,

τpX1
q “ p4,1,0, . . .q,

τpX2
q “ p0,2,0, . . .q,

so pX0,X1,X2q is a 3˚-path. We also have

τpX2
q “ p0,2,0, . . .q ą p2,1,0, . . .q “ τpX0

q.

Hence X2 satisfies (A2).

The above example leads us the following definition.

Definition 3.5.3 (peak digits). Let X be a position. The peak digit pkpXq of X is defined by

pkpXq “ maxt L P N : τěLpY q ą τěLpXq for some p˚-descendant Y of X u ,

where maxH “ ´1.

For example, if X is as in Example 3.5.2, then pkpXq “ 1.
In the next subsection, we will deduce (A2) from a lemma on peak-digits. To this end,

we give the basic properties of peak-digits. It follows from (3.2.11) that if pkpXq ą ´1, then
pkpXq ą ordpXq ě 0. In particular, pkpXq ‰ 0. Peak digits also have the following properties.

Lemma 3.5.4. If Y is a p˚-option of a position X, then the following assertions hold:

(1) τěNpY q “ τěNpXq, where N “ maxt pkpXq,ordpXq u ` 1.

(2) pkpY q ď pkpXq.

proof. (1) By definition,
τěppkpXq`1qpY q ĺ τěppkpXq`1qpXq.

On the other hand,
τěpordpXq`1qpY q ľ τěpordpXq`1qpXq,

since Y is a p˚-option of X . Thus τěNpY q “ τěNpXq.

74



3.5 Proof of (A2)

(2) Let K “ pkpY q. The assertion is trivial if K “ ´1. Suppose that K ą ´1. Then Y has a
p˚-descendant Z with τěKpZq ą τěKpY q. Since Z is also a p˚-descendant of X , it suffices to
show that τěKpZq ą τěKpXq. We have

K “ pkpY q ą ordpY q ě ordpXq.

Since Y is a p˚-option of X , it follows that

τěKpXq ĺ τěKpY q ă τěKpZq.

Corollary 3.5.5. If pX0, . . . ,Xnq is a p˚-path with n ą 0, then τěNpX iq “ τěNpX0q for 0 ď i ď n,
where N “ maxtpkpX0q,ordpXn´1qu ` 1.

proof. For 0 ď i ď n ´ 1, let Ni “ max
␣

pkpX iq,ordpX iq
(

` 1. It follows from Lemma 3.5.4
that τěNipX i`1q “ τěNipX iq and

pkpX0
q ě pkpX1

q ě ¨ ¨ ¨ ě pkpXn´1
q.

Since
ordpX0

q ď ordpX1
q ď ¨ ¨ ¨ ď ordpXn´1

q,

we have N ě Ni for 0 ď i ď n ´ 1. Hence τěNpX iq “ τěNpX0q for 0 ď i ď n.

The next result provides a lower bound for pkpXq.

Lemma 3.5.6. Let X be a position with order M, and let N be an integer with N ě M ` 1. If
|XS´pM |` δSM δSM`1 ¨ ¨ ¨δSN´1 ` 1 ă |XS| for some S P ΩN , then pkpXq ě N.

proof. It suffices to show that X has a p˚-option Y with τěNpY q ą τěNpXq. By Lemma 3.4.9,
X has an option Y such that τěNpY q ľ τěNpXq and Y “ px x ´ pMqpXq for some x P X with
xăN “ S. We have wěNpY q ľ wěNpXq and

wNpY q ´ wNpXq “
⏐⏐XxăN

⏐⏐´
⏐⏐Xpx´pMqăN

⏐⏐´ δxM δxM`1 ¨ ¨ ¨δxN´1 ´ 1 ą 0

by Lemma 3.4.8. It follows that wěNpY q ą wěNpXq, and hence τěNpY q ą τěNpXq. Therefore
Y is a desired p˚-option of X .
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3.5.2 Proof of (A2)

In this subsection, we will deduce (A2) from the next result.

Lemma 3.5.7. Let X be a position with peak digit K. If K is positive, then X has a descendant
Y with the following four properties:

1. (P0) is satisfied.

2. ordpY q “ K.

3. Either τKpXq ă τKpY q ă p or τKpY q “ p.

4. τěK`1pY q “ τěK`1pXq.

We will prove Lemma 3.5.7 in Subsection 3.5.5. To prove (A2) using this lemma, we need a
variation of Lemma 3.4.3.

Lemma 3.5.8. Let X be a position with the following two properties:

1. τMpXq “ p, where M “ ordpXq.

2. τěM`1pXq “ τěM`1pXqp“ pτM`1pXq,τM`2pXq, . . .qq.

If X has a p0-option Y , then τpY q “ |λ pXq|´ 1.

proof. Since
|λ pXq| “

ÿ

LPN
τLpXqpL

“ p ¨ pM
`

ÿ

LěM`1

τLpXqpL

and τěM`1pXq “ τěM`1pXq, we have

|λ pY q| “ |λ pXq|´ 1 “ pp ´ 1, . . . , p ´ 1
looooooomooooooon

M`1

,τM`1pXq,τM`2pXq, . . .q.

Thus τěM`1pY q “ |λ pY q|ěM`1 for otherwise

ÿ

LPN
τLpY qpL

ą |λ pY q| ,

which contradicts (3.2.11). Since τLpY q ” τLpXq ´ 1 ” p ´ 1 pmod pq for 0 ď L ď M, we find
that τpY q “ |λ pY q| “ |λ pXq|´ 1.
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We now prove (A2). Recall that the proof is by induction on |λ pXq|.
We first show (A2) when τpXsq ă |λ pXsq| for some s P Ω. By the induction hypothesis, Xs

has a proper descendant Ys with τpYsq ě τpXsq. We may assume that τpYsq “ τpXsq. Indeed,
suppose that τpYsq ą τpXsq. Since τpYsq “ sgpYsq by (3.3.2), it follows that Ys has an option Y 1

s
with τpY 1

s q “ τpXsq. Hence we may assume that τpYsq “ τpXsq by replacing Ys by Y 1
s . Let Yr “ Xr

for r P Ωztsu and Y “ rYrsrPΩ. Then Y is a proper descendant of X with τpY q “ τpXq.
We next show (A2) when τpXrq “ |λ pXrq| for each r P Ω. Since τpXq ă |λ pXq|, it follows

that τLpXq ě p for some L P N. Let

N “ maxt L P N : τLpXq ě p u .

Then τěN`1pXq “ τěN`1pXq. We divide into two cases.

Case 1 (N ą 0). Since
τNpXq ă p ď τNpXq “

ÿ

rPΩ

τN´1pXrq,

there exist s0, . . .sp´1 P Ω such that
ř

rPΩ
sr “ τNpXq and sr ď τN´1pXrq “ τN´1pXrq for each

r P Ω. Since sgpXrq “ τpXrq, the position Xr has a descendant Yr such that

τLpYrq “

#

sr if L “ N ´ 1,
τLpXrq if L ‰ N ´ 1.

Let Y “ rYrsrPΩ. Then τpY q “ τpXq and Y ‰ X .

Case 2 (N “ 0). Since τ0pXq ě p, we have ordpXq “ 0. Let K be the peak digit of X .
Suppose that K “ ´1. By Lemma 3.5.4, if Y is a p˚-option of X , then pkpY q “ ´1 and

τpY q “ pτ0pXq ´ 1,τ1pXq,τ2pXq, . . .q.

Hence we obtain a descendant with the desired properties by repeatedly applying Lemma 3.4.5.
Suppose that K ą ´1. Then X has a descendant Y with the four properties in Lemma 3.5.7.

If τKpXq ă τKpY q ă p, then τpY q ą τpXq, so Y satisfies the desired condition. Suppose that
τKpY q “ p. Since Y satisfies (P0), this position has a p0-option Z by Lemma 3.4.12. Since
τěK`1pY q “ τěK`1pXq “ τěK`1pXq, we have τěK`1pY q “ τěK`1pY q. It follows from Lemma
3.5.8 that

τpZq “ |λ pY q|´ 1 “ pp ´ 1, . . . , p ´ 1
looooooomooooooon

K`1

,τK`1pY q,τK`2pY q, . . .q

“ pp ´ 1, . . . , p ´ 1
looooooomooooooon

K`1

,τK`1pXq,τK`2pXq, . . .q ě τpXq.
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3.5.3 Easy Cases

In this subsection, we will prove Lemma 3.5.7 for some easy cases using the next result, which
is a variant of Lemma 3.5.7.

Lemma 3.5.9. Let X be a position with order M. If pkpXq “ ´1 and τMpXq ě p ` 1, then X
has a descendant Y with the following four properties:

1. (P0) is satisfied.

2. ordpY q “ M.

3. τMpY q “ p.

4. τěM`1pY q “ τěM`1pXq.

proof. Suppose that M “ 0. By repeatedly applying Lemma 3.4.5, we obtain a p˚-descendant Y
of X such that τ0pY q “ p and τě1pY q “ τě1pXq since pkpXq “ ´1. The position Y also satisfies
(P0), since otherwise τ0pY q “ 0.

Suppose that M ą 0. For each r P Ω, let ar “ τM´1pXrq.
We first show that there exists pb0, . . . ,bp´1q P Np such that

ř

rPΩ
br “ p,

br
ď ar for each r P Ω, bs

‰ bt for some s, t P Ω.
(3.5.1)

It suffices to show the claim when
ř

rPΩ
ar “ p ` 1. By rearranging ai if necessary, we may

assume that a0 ě . . . ě ap´1. Let

pb0, . . . ,bp´1
q “

#

pa0 ´ 1,a1,a2, . . . ,ap´1q if a1 “ 0,
pa0,a1 ´ 1,a2, . . . ,ap´1q if a1 ‰ 0.

Then b0 ‰ b1. Hence pb0, . . . ,bp´1q satisfies (3.5.1).
To construct a p˚-descendant Y with the desired properties, we next show that Xr has a p˚-

descendant Yr such that

τM´1pYrq “ br and τěMpYrq “ τěMpXrq (3.5.2)

for each r P Ω. If br “ ar, then Xr itself satisfies (3.5.2). Suppose that br ă ar. Then ordpXrq “

M ´ 1 since τM´1pXrq “ ar ‰ 0. Let Zr be a p˚-option of Xr. It is sufficient to show

τpZrq “ p0, . . . ,0
loomoon

M´1

,ar
´ 1,τMpXrq,τM`1pXrq, . . .q. (3.5.3)
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Let Zs “ Xs for s P Ωztr u and Z “ rZsssPΩ. Then Z is a p˚-option of X by Lemma 3.4.6. Since
pkpXq “ ´1, it follows that

τpZq “ p0, . . . ,0
loomoon

M

,τMpXq ´ 1,τM`1pXq, . . .q,

which gives (3.5.3). Therefore we can obtain a p˚-descendant Yr of Xr satisfying (3.5.2) by
repeatedly applying Lemma 3.4.5.

Let Y “ rYrsrPΩ. Then Y is a p˚-descendant of X with

τMpY q “ p and τěM`1pY q “ τěM`1pXq.

Since τM´1pYsq “ bs ‰ bt “ τM´1pYtq for some s, t P Ω, the position Y also satisfies (P0) by
Lemma 3.4.11.

Remark 3.5.10. We can now prove Remark 3.3.8 assuming Theorem 3.1.3 and Lemma 3.5.7.
Let g be the right-hand side of (3.3.5). It suffices to show that X has a descendant Y with
msgpY q ě g. Let K be the peak digit of X . We split into two cases.

Case 1 (K ě N). The position X has a descendant Y satisfying the conditions in Lemma 3.5.7.
If τKpXq ă τKpY q ă p, then msgpY q ě τpY q ą g. If τKpY q “ p, then msgpY q ě g by Lemma
3.5.8.

Case 2 (K ă N). Let X0 “ X . By repeatedly applying Lemma 3.4.5, we obtain a p˚-path
pX0, . . . ,Xnq such that

(R1) ordpXnq ě N,

(R2) ordpXhq ă N for 0 ď h ă n.

Corollary 3.5.5 yields τěNpXnq “ τěNpXq. Suppose that τNpXnq “ τNpXq ě p ` 1. Since
pkpXnq ď pkpX0q “ K ă N “ ordpXnq, we have pkpXnq “ ´1. Hence Xn has a descendant Y with
the four properties in Lemma 3.5.9. Since τěN`1pY q “ τěN`1pXq “ τěN`1pXq “ τěN`1pY q, it
follows from Lemmas 3.4.12 and 3.5.8 that msgpXnq ě g. Suppose that τNpXnq “ τNpXq “ p.
If Xn satisfies (P0), then this position has a p0-option by Lemma 3.4.12, so msgpXnq ě g. Sup-
pose that Xn does not satisfy (P0). Then

ř

rPΩ
τN´1pXn

r q “ τNpXnq “ p and τN´1pXn
0 q “ ¨ ¨ ¨ “

τN´1pXn
p´1q. Hence

τpXn
r q “ p0, . . . ,0

loomoon

N´1

,1,τNpXn
r q, ¨ ¨ ¨ q for r P Ω.

By Theorem 3.1.3, sgpXn
r q “ τpXn

r q “ τpXn
r q. Therefore Xn

0 has an option Y0 such that

τpY0q “ pp ´ 1, . . . , p ´ 1
looooooomooooooon

N´1

,0,τNpXn
0 q, ¨ ¨ ¨ qpă τpXn

0 qq.

Let Yr “ Xn
r for r P Ωzt0u and Y “ rYrsrPΩ. Then msgpY q ě τpY q “ g.
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Let X0 be a position and N P N. As we have seen above, there exists a p˚-path pX0, . . . ,Xnq

satisfying (R1) and (R2). We call Xn an pN ´ 1q-rounded p˚-descendant of X0.
We now turn to Lemma 3.5.7. Let X be a position whose peak digit K is positive. We may

assume that |X | ” 0 pmod pKq. Let Z be a p˚-descendant of X such that

τKpZq ě τKpY q (3.5.4)

for every p˚-descendant Y of X . Then Z ‰ X . We also see that τěK`1pZq “ τěK`1pXq by
Corollary 3.5.5. Let Y be a pK ´ 1q-rounded p˚-descendant of Z. The choices of Z and Y imply
that

ordpY q “ K ą pkpZq ě pkpY q.

Thus pkpY q “ ´1 and τěKpY q “ τěKpZq. If τKpY q ă p, then Y satisfies the four properties in
Lemma 3.5.7. If τKpY q ą p, then Lemma 3.5.9 ensures that Y has a descendant with these four
properties. We will show Lemma 3.5.7 for τKpY q “ p in the remaining two subsections.

3.5.4 The Condition (P0)

Let X ,Y,Z, and K be as in the previous subsection, that is, X is a position whose peak digit K is
positive, Z is a p˚-descendant of X satisfying (3.5.4), and Y is a pK ´1q-rounded p˚-descendant
of Z with τKpY q “ p. If Y satisfies (P0), then this position satisfies the four properties in Lemma
3.5.7. Suppose that Y does not satisfy (P0). Then τ0pYpr,Rqq “ τ0pYp0,Rqq for r P Ω1 and R P ΩK´1.
Therefore

there exists S P Ω
K´1 such that τ0pYpr,Rqq “

#

1 if R “ S,r P Ω1,

0 if R ‰ S,r P Ω1.
(3.5.5)

R τ0pYp0,Rqq τ0pYp1,Rqq ¨ ¨ ¨ τ0pYpp´1,Rqq

p0, . . . ,0q 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

S ´ 1 0 0 ¨ ¨ ¨ 0
S 1 1 ¨ ¨ ¨ 1

S ` 1 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

pp ´ 1, . . . , p ´ 1q 0 0 ¨ ¨ ¨ 0

Our goal is to construct another pK ´ 1q-rounded p˚-descendant rY of X such that τKprY q “ p
and rY does not satisfy (2.4.1). If rY is such a position, then rY satisfies (P0) and the other three
properties in Lemma 3.5.7.

Let X0 “ X and Xn “ Y . Let pX0, . . . ,Xnq be a p˚-path from X0 to Xn through Z, that is,
Xh “ Z for some h with 0 ă h ď n. Replacing Xh by Xh´1 if necessary, we may also assume
that τKpXh´1q ă τKpXhq “ p. Let

X i`1
“ pxi xi

´ pMi
qpX i

q, Si
“ xi

ăK, and T i
“ Si

´ pMi
for 0 ď i ă n.
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3.5 Proof of (A2)

Then ⏐⏐X i`1
R

⏐⏐ “
⏐⏐X i

R
⏐⏐`

$

’

&

’

%

´1 if R “ Si,

1 if R “ T i,

0 if R P ΩKz
␣

Si,T i
(

.

(3.5.6)

The next lemma shows that if τ0pX j
S jq ` τ0pX j

T jq is at least two for some j P th, ¨ ¨ ¨ ,n ´ 1u,
then X has a pK ´ 1q-rounded p˚-descendant with the desired properties.

Lemma 3.5.11. Let X be a position and Y a p˚-option px x ´ pMqpXq of X. Let N be a non-
negative integer with N ě maxtM ` 1,pkpXqu. If τ0pYSq ` τ0pYT q ě 2, where S “ xăN and
T “ S ´ pM, then X has a p˚-option rY such that

1. rY ” Y pmod pNq,

2. τ0prYSq ě 2 or τ0prYT q ě 2.

Before proving Lemma 3.5.11, let us give an easy example.
Let p “ 3. Let X “ t1,4,6u and Y “ p1 0qpXq. Then τpXq “ p2,2,0, . . .q and τpY q “

p1,2,0, . . .q. Hence Y is a 3˚-option of X . Note that τ0pYp0qq “ τ0pYp1qq “ 1. Lemma 3.5.11
asserts that X has another 3*-option. Indeed, let rY “ p4 3qpXq. Then τprY q “ p1,2,0, . . .q, so rY
is a 3˚-option of X . Moreover, τ0prYp0qq “ 2.

R
⏐⏐Xp0,Rq

⏐⏐ ⏐⏐Xp1,Rq

⏐⏐ ⏐⏐Xp2,Rq

⏐⏐
(0) 0 1 0
(1) 0 1 0
(2) 1 0 0

R
⏐⏐Yp0,Rq

⏐⏐ ⏐⏐Yp1,Rq

⏐⏐ ⏐⏐Yp2,Rq

⏐⏐
(0) 1 0 0
(1) 0 1 0
(2) 1 0 0

R
⏐⏐⏐rYp0,Rq

⏐⏐⏐ ⏐⏐⏐rYp1,Rq

⏐⏐⏐ ⏐⏐⏐rYp2,Rq

⏐⏐⏐
(0) 0 1 0
(1) 1 0 0
(2) 1 0 0

Lemma 3.5.11. We may assume that τ0pYSq “ τ0pYT q “ 1. Then

pYSqppq “ t1u
r|YS|´1s and pYT qppq “ t1u

r|YT |´1s , (3.5.7)

where pYSqppq is the p-core of YS. Replacing X by X rpMs if necessary, we may assume that
xM ‰ 0. Let ∆ “ τNpY q ´ τNpXq.

We divide the proof into two parts. First, we prove ∆ P t0,1,2u and the following three
relations: ⏐⏐YS

⏐⏐ “
⏐⏐YT

⏐⏐` ∆ ´ 1. (3.5.8)
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⏐⏐YpS,rq

⏐⏐ ď
⏐⏐YpT,rq

⏐⏐` 1 for r P Ω. (3.5.9)⏐⏐YpS,xNq

⏐⏐ “
⏐⏐YpT,xNq

⏐⏐´ 1. (3.5.10)

Next, we split into three cases depending on ∆.
Part 1 We first show that ∆ P t0,1,2u. Since N ě maxtM ` 1,pkpXqu, it follows from Lemma
3.5.4 that τěN`1pY q “ τěN`1pXq. This implies that ∆ ě 0 since Y is a p˚-option of X . We also
have

∆ “
ÿ

RPΩN

τ0pYRq ´ τ0pXRq “ τ0pYSq ` τ0pYT q ´ τ0pXSq ´ τ0pXT q.

Since τ0pYSq ` τ0pYT q “ 2 and ∆ ě 0, it follows that ∆ P t 0,1,2 u.
We next show (3.5.8). Since τěN`1pY q “ τěN`1pXq, it follows that

wěN`1pY q “ wěN`1pXq,

so ∆ “ wNpY q ´ wNpXq. Hence, by Lemma 3.4.8, |XS| “ |XT |` ∆ ` 1. Since |YS| “ |XS|´ 1 and
|YT | “ |XT |` 1, we have (3.5.8).

Finally, we show (3.5.9) and (3.5.10). Since N ` 1 ą pkpXq, we see that

|XpS,rq| ď |XpS,rq´pM |` δSM ¨ ¨ ¨δSN ` 1 “ |XpT,rq|` 1

by Lemma 3.5.6. Hence (3.5.9) holds. Since wN`1pY q “ wN`1pXq, it follows from Lemm 3.4.8
that |XpS,xNq| “ |XpT,xNq|` 1. Thus we obtain (3.5.10).

Part 2 Let t “ |YT |0. We split into three cases depending on ∆.

Case 1 (∆ “ 0). We have |YS| “ |YT |´ 1. Suppose that p “ 2. By (3.5.7),⏐⏐YpS,tq
⏐⏐ “ |YpT,tq|´ 2 and

⏐⏐YpS,t´1q

⏐⏐ “ |YpT,t´1q|` 1.

See Table 3.2. This contradicts (3.5.10). Suppose that p ą 2. By (3.5.7),

⏐⏐YpS,rq

⏐⏐ “
⏐⏐YpT,rq

⏐⏐`

$

’

&

’

%

´1 if r P t t, t ´ 2 u ,

1 if r “ t ´ 1,
0 if r P Ωzt t, t ´ 1, t ´ 2 u .

See Table 3.3. Thus xN P t t, t ´ 2u and |XpS,t´1q| “ |XpS,t´1q´pM |` 1. It follows from Lemma
3.4.9 that X has an option rY such that τěN`1prY q ľ τěN`1pXq and rY “ px̃ x̃ ´ pMqpXq for some
x̃ P X with x̃ăN`1 “ pS, t ´ 1q. Since x̃N “ t ´ 1, we find that

pτ0prYSq,τ0prYT qq “

#

p2,0q if xN “ t,
p0,2q if xN “ t ´ 2.

It remains to show that rY is a p˚-option of X such that rY ” Y pmod pNq. Since τěN`1prY q ľ

τěN`1pXq and wNprY q ´ wNpXq “ |XS|´ |XT |´ 1 “ 0, we have τěNprY q ľ τěNpXq “ τěNpY q.
Moreover, since x̃ăN “ xăN , it follows that rY ” Y pmod pNq, and hence that τăNprY q “ τăNpY q.
Therefore τěM`1prY q ľ τěM`1pY q ľ τěM`1pXq.
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3.5 Proof of (A2)

Case 2 (∆ “ 1). We have |YS| “ |YT |. Hence |YpS,rq| “ |YpT,rq| for each r P Ω, which is a contra-
diction.

Case 3 (∆ “ 2). We have |YS| “ |YT |` 1. If p “ 2, then by (3.5.7),

|YpS,t´1q| “ |YpT,t´1q|` 2,

which contradicts (3.5.9). Suppose that p ą 2. By (3.5.7),

⏐⏐YpS,rq

⏐⏐ “
⏐⏐YpT,rq

⏐⏐`

$

’

&

’

%

´1 if r “ t,
1 if r P t t ´ 1, t ` 1 u ,

0 if r P Ωzt t, t ´ 1, t ` 1 u .

Thus xN “ t. By Lemma 3.4.9, the position X has an option rY such that rY “ px̃ x̃ ´ pMqpXq for
some x̃ P X with x̃ăN`1 “ pS, t ´ 1q. It follows that τNprY q “ τNpXq ` 2,rY ” Y pmod pNq, and
τ0prYSq “ 2. Therefore rY is a desired p˚-option of X .

Table 3.2: p “ 2.
|YT | 2a ´ 1 2a 2a ` 1

|YpT,0q| a ´ 1 a ` 1 a
|YpT,1q| a a ´ 1 a ` 1

Table 3.3: p ą 2.
|YT | pa ´ 1 pa pa ` 1 ¨ ¨ ¨ pa ` s ´ 1 pa ` s

|YpT,0q| a a ` 1 a a ` 1 a ` 1
|YpT,1q| a a a ` 1 a ` 1 a ` 1

...
...

...
...

...
|YpT,s´3q| a a a a ` 1 a ` 1
|YpT,s´2q| a a a a a ` 1
|YpT,s´1q| a a a a ` 1 a
|YpT,sq| a a a a a ` 1
|YpT,s`1q| a a a a a

...
...

...
...

...
|YpT,p´2q| a ´ 1 a a a a
|YpT,p´1q| a a ´ 1 a a a

It remains to prove Lemma 3.5.7 when τ0pX i
Siq ` τ0pX i

T iq ď 1 for h ď i ď n ´ 1. We first show
that Xh´1 has another p˚-option rXh such that rXh ” Xh pmod pKq in Lemma 3.5.12. We next
show that there exists a p˚-path prXh, . . . , rXnq such that rX i ” X i for every i P th, . . . ,nu in Lemma
3.5.13. Finally, we prove that rXn satisfies (P0).

Lemma 3.5.12. Let X ,Y,M,N,S, and T be as in Lemma 3.5.11. Let ∆ “ τNpY q ´ τNpXq. Sup-
pose that τ0pYSq ` τ0pYT q “ 1. Then the following assertions hold:
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(1) If ∆ “ 1, then X has a p˚-option rY such that rY ” Y pmod pNq and
`

τ0prYSq,τ0prYT q
˘

“
`

τ0pYT q,τ0pYSq
˘

.

(2) If ∆ “ 0, then
`

τ0pXSq,τ0pXT q
˘

“
`

τ0pYT q,τ0pYSq
˘

.

proof. Suppose that ∆ “ 1. Then τ0pXSq “ τ0pXT q “ 0. Replacing X by X rpMs if necessary, we
may assume that xM ‰ 0. Lemma 3.4.8 yields |XS| “ |XT |` 2. Let t “ |XT |0. Since pXSqppq “

Hr|XS|s and pXT qppq “ Hr|XT |s, we have

⏐⏐XpS,rq

⏐⏐ “
⏐⏐XpT,rq

⏐⏐`

#

1 if r P t t, t ` 1 u ,

0 if r P Ωzt t, t ` 1 u .

If xN “ t, then τ0pYSq “ 1. If xN “ t ` 1, then τ0pYT q “ 1. It follows from Lemma 3.4.9 that X
has a p˚-option with the desired properties.

The proof for ∆ “ 0 is similar.

We next show the existence of another p˚-path.

Lemma 3.5.13. Let pX0, . . . ,Xnq be a p˚-path and rX0 a position such that rX0 ” X0 pmod pNq

for some N P N. Suppose that τěNpX iq “ τěNpX0q for 0 ď i ď n. Then there exists a p˚-path
prX0, . . . , rXnq such that for 0 ď i ď n ´ 1,

1. ordprX iq “ ordpX iq,

2. x̃i ” xi pmod pNq,

where X i`1 “ pxi xi ´ pMi
qpX iq and rX i`1 “ px̃i x̃i ´ pMi

qprX iq. In particular, X i ” rX i pmod pNq

for 0 ď i ď n.

proof. The proof is by induction on n. If n “ 0, then the assertion is trivial. Suppose that n ą 0.
By the induction hypothesis, there exists a p˚-path prX0, . . . , rXn´1q satisfying (1) and (2). Let
X “ Xn´1, rX “ rXn´1, and Y “ Xn “ px x ´ pMqpXq.

We first show that ordprXq “ ordpXq “ M. Since rX ” X pmod pNq, it follows from Lemma
3.4.11 that τăNprXq “ τăNpXq. Since τěNpXq “ τěNpY q, we also have M ă N. Hence ordprXq “

ordpXq “ M.
We next construct a p˚-option rY of rX such that rY “ px̃ x̃ ´ pMqprXq for some x̃ P rX with x̃ ” x

pmod pNq. Since rX ” X pmod pNq and wNpXq “ wNpY q, it follows from Lemma 3.4.8 that⏐⏐
rXpx´pMqăN

⏐⏐` δxM ¨ ¨ ¨δxN´1 ` 1 “
⏐⏐Xpx´pMqăN

⏐⏐` δxM ¨ ¨ ¨δxN´1 ` 1

“
⏐⏐XxăN

⏐⏐ “
⏐⏐
rXxăN

⏐⏐.
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Lemma 3.4.9 implies that rX has an option rY such that τěNprY q ľ τěNprXq and rY “ px̃ x̃´ pMqpXq

for some x̃ P rX with x̃ “ x pmod pNq. Since rX ” X pmod pNq, we have rY ” Y pmod pNq. It
remains to verify τěM`1prY q ľ τěM`1prXq. Recall that

τěNprY q ľ τěNprXq, τěNpY q “ τěNpXq,

τěM`1pY q ľ τěM`1pXq, and τăNprXq “ τăNpXq.

In addition, since rY ” Y pmod pNq, it follows that τăNprY q “ τăNpY q. This shows that

τěM`1prY q ľ τěM`1prXq.

Therefore rY is a p˚-option of rX .

3.5.5 Proof of Lemma 3.5.7

proof. Let X ,Y,Z,K, and pX0, . . . ,Xh, . . . ,Xnq be as in the previous subsection. Let W “ Xh´1

and Z “ pw w ´ pMqpW q, and let S “ wăK and T “ S ´ pM. Since τKpW q ă τKpZq “ p
and ordpW q ă pkpW q “ K, it follows from Lemma 3.5.11 that we may assume that τ0pZSq `

τ0pZT q “ 1. Hence τKpW q “ p ´ 1 and
`

τ0pZSq, τ0pZT q
˘

P t p0,1q,p1,0q u .

Lemma 3.5.12 implies that W has another p˚-option rZ such that

rZ ” Z pmod pK
q,

`

τ0prZSq, τ0prZT q
˘

“
`

τ0pZT q, τ0pZSq
˘

,

τ0prZRq “ τ0pZRq for each R P Ω
K

ztS,T u .

(3.5.11)

Note that τKprZq “ p, and that τěK`1prZq “ τěK`1pXq by Corollary 3.5.5. Let rXh “ rZ. Since
τěKpX iq “ τěKpXhq for h ď i ď n, it follows from Lemma 3.5.13 that there exists a p˚-path
prXh, . . . , rXnq such that for h ď i ď n ´ 1,

ordprX i
q “ ordpX i

q and x̃i
” xi

pmod pK
q,

where
X i`1

“ pxi xi
´ pMi

qpX i
q and rX i`1

“ px̃i x̃i
´ pMi

qprX i
q.

Let rY “ rXn. Then rY ” Y pmod pKq. We show that rY satisfies the desired four properties.
Since K ě maxtpkprXhq,ordprXn´1qu`1, it follows from Corollary 3.5.5 that τěKprY q “ τěKprZq.
Hence τKprY q “ p, ordprY q “ K, and τěK`1prY q “ τěK`1pXq.
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It remains to show that rY satisfies (P0). It suffices to show that rY does not satisfy (2.4.1). Let
Si “ xi

ăK and T i “ Si ´ pMi
for h ď i ď n ´ 1. Recall that, for each R P ΩKztSi,T i u, we have

X i`1
R “ X i

R and rX i`1
R “ rX i

R . By Lemma 3.5.11, we may assume that

`

τ0pX i
Siq,τ0pX i

T iq
˘

,
`

τ0prX i
Siq,τ0prX i

T iq
˘

P t p0,0q,p0,1q,p1,0q u

for h ď i ď n ´ 1. It follows from Lemma 3.5.12 that
`

τ0pX i`1
Si q, τ0pX i`1

T i q
˘

“
`

τ0pX i
T iq, τ0pX i

Siq
˘

,
`

τ0prX i`1
Si q, τ0prX i`1

T i q
˘

“
`

τ0prX i
T iq, τ0prX i

Siq
˘

.
(3.5.12)

By (3.5.11) and (3.5.12),
`

τ0prYU q, τ0prYV q
˘

“
`

τ0pYV q, τ0pYU q
˘

“ p0,1q for some U,V P Ω
K,

τ0prYRq “ τ0pYRq for each R P Ω
K

ztU,V u .

Since Y satisfies (2.4.1), the position rY does not satisfy this. Therefore rY satisfies the condition
(P0).
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