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Abstract

We introduce the notion of p-saturations. We then construct a family of (impartial) games
and give explicit formulas for their Sprague-Grundy functions. We also present a connection
between games and representations.

The main results are the following:

1. p-saturations of Welter’s Game and the Irreducible Representations of Symmetric
Groups (Chapter 3)

We establish a relation between the Sprague-Grundy function sg of p-saturations of Wel-
ter’s game and the degrees of the (ordinary) irreducible representations of symmetric
groups. In these games, a position can be regarded as a partition A. Let p)“ be the irre-
ducible representation of the symmetric group Sym(|A|) corresponding to A. For every
prime p, we show the following results:

a) sg(A) < |A| with equality if and only if the degree of p* is prime to p;
b) the restriction of p* to Sym(sg(A)) has an irreducible component with degree prime
to p.

Further, for every integer p greater than 1, we obtain an explicit formula for sg(A).

2. Digit-Separable Sprague-Grundy Functions (Chapter [2)

We construct a family of games including Nim and present explicit formulas for their
Sprague-Grundy functions. Let ® be an integer-valued function on the position set P of
Nim. Let p be an integer greater than 1 and let I'[®] be a p-saturation of the subgame of
Nim induced in {X € P : ®(X) > 0}. We show that if ® is digit-separable and a locally
Sprague-Grundy function of I'[®], then & is the Sprague-Grundy function of I'[®]. The
p-saturation indices of some games in this family are also determined.
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1 Games

In this chapter, we recall the basic definitions and results of the (short impartial) game theory.
Games can be represented as digraphs. In the game theory, Sprague-Grundy functions play a
crucial role. For example, using them, we can describe the winning strategy for games. Sprague-
Grundy functions are defined recursively, and explicit formulas for them are not known in most
cases. The goal of this thesis is constructing a family of games and presenting explicit formulas
for their Sprague-Grundy functions.

1.1 Definitions

Let I' be a digraph (P, A), that is, P is a set and A is a subset of 2. We denote P and A by
P(I') and A(T), respectively. Let X, ..., X, be elements of P(I"). The sequence (X, ...,X,) is
called a path of length n from Xy to X,, if (X;,X;+1) in A(') foreach i€ [n] = {0,1,...,n—1}.
For X € P(I), let Ig(X) denote the maximum length of a path from X. We call 1g(X) the length
of X.

A digraph I is called a (short impartial) game if 1g(X) is finite for every X € P(I"). Let I" be
a game. The set P(I') is called the position set of I', and an element of P(I") is called a position
inT. If X and Y are two positions in I" and (X,Y) € A(I'), then Y is called an option of X. If X
has no option, then X is called a terminal position.

Example 1.1.1. Let us consider the two graphs in Figure[I.1] The lengths of vertices in the left
graph are 2, 1, and 0. Hence this graph is a game. In contrast, the lengths of two vertices in the
right one are infinite, so this one is not a game.

2 1 0 0 _— 00

O—>O0—>0 @) ©)
\ N

Figure 1.1: The left one is a game, but the right one is not.

Example 1.1.2 (Nim). Let m € N and P = N, where N is the set of non-negative integers. For
X € P and i € [m], let X' denote the i-th component of X, that is, X = (X°,..., X"~ 1), Let

AI{(X,Y)epszi>Yi for each i€ [m] and dist(X,Y) =1},



1 Games

where dist(X,Y) is the Hamming distance between X and Y, that is,
dist(X,Y) = [{ie[m]: X' #Y'}|.
Let N = (P, A). Then N is a game. This game is called Nim.

The game AN can be decomposed into m copies of N'' as follows. Let I" and I” be two
games. Let P = P(I') x P(I"’) and

A={((X,X"),r, X)) eP?: (X,Y)e AD)} U{((X,X"),(X,Y") e P?: (X', Y)e A(I")}.

Then the game (P, .A) is called the disjunctive sum of T and I, and is denoted by '@, I"". For
example,

N™  and {\/l®z~-®2./\/'1

are isomorphic as digraphs. As we will see in the next section, the Sprague-Grundy function of
'@, I is easily deduced from that of I" and I"". In particular, to calculate the Sprague-Grundy
function of A, we need only compute that of N'!.

In contrast, the following game cannot be decomposed into smaller games.

Example 1.1.3 (Welter’s game). Let
P={XeN":X'#X/ for 0<i<j<m—1}.

Let W™ be the subgraph of N induced in P, that is, the position set of VW™ is P and its arrow
set AV™) is
{(X,Y)e AN™): X, YeP}.

The game W™ is called Welter’s game. Since this game can not be decomposed into smaller
games, calculating the Sprague-Grundy function of YW™ is more difficult than of A/™.

1.2 How to Play Games

Let us play a game I'. There are two players, say Player 1 and Player 2. We first choose an
initial position and place a coin on it. Two players alternately move the coin to an option of
the position where the coin is placed. The winner is the player who has moved the coin to a
terminal position.

Example 1.2.1. Let us play Nim A2, Let (2,2) be the initial position. See Figure It is the
turn of Player 1. He has the following four options:

(1,2),(0,2),(2,1), and (2,0).
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He chooses (1,2). It is the turn of Player 2. He has the following three options
(1,1),(1,0), and (0,2).

He chooses (1,1). Then Player 1 has no choice but to move to (1,0) or (0,1). He moves to
(0,1). Finally, Player 2 moves to (0,0) and wins.

(2.2)

Q‘ayer 1
1,2)
PIaer
(

1,1)

—

Player 1

(0,1)
Playei/
(0,0) (0,0)
Figure 1.2: The winner is Player 2.
Why could Player 2 win? This is because Player 2 has a winning strategy. We say that a

position X in a game is a winning position if the previous player has a winning strategy when
the initial position is X. For example, (x,x) in N/? is a winning position.

1.3 Sprague-Grundy Functions

To give the winning strategy, we define Sprague-Grundy numbers. For a proper subset S of
N, let mexS be the smallest non-negative integer not in S. For example, mex ¢J = 0 and
mex{0,1,3} = 2. Let X be a position in a game I". The Sprague-Grundy number of X is
defined recursively by

sg(X) = sgr(X) = mex {sgp(Y) : Y is an option of X } .

The function sgr-: P(I') — N is called the Sprague-Grundy function of T
Note that if X is a terminal position, then sg(X) = mex ¢J = 0. Furthermore, sg(X) is at most

1g(X).

Example 1.3.1. Let us calculate the Sprague-Grundy numbers of positions in Figure[I.2]
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e (0,0) is terminal, so sg((0,0)) = 0.

e (0, 1) has one option (0,0), sosg((0,1)) =mex({sg((0,0))}) =mex({0}) = 1. Similarly,

sg((1,0)) = 1.

e (1,1) has two options (0,1) and (1,0), so sg((1,1)) = mex({sg((0,1)),sg((1,0))}) =

mex({1})=0.

In this way, we can calculate the Sprague-Grundy numbers of positions recursively. See Figure

(

—

2,1)

1,0

~

(2.2)

—

1,2

~

—

0,1

~

(0,0)

©

Figure 1.3: Sprague-Grundy numbers.

In fact, the Sprague-Grundy number of X in Nim is

X' X'@y - @ xm !,

where @; is binary addition without carry. For example, 3@®,;5 = (1 +2)@®, (1 +4) = 6. This
explicit formula was given by Sprague [12]] and Grundy [29]] independently. More generally,

they proved the following result.

Theorem 1.3.2 (Sprague [12] and Grundy [29]). Let T and T be games. Then for (X,X’) €

PT @ I),

sgra,r (X, X)) = sgr(X) @2 sgr(X').

We now present the winning strategy. Let X be a position in a game I". Grundy [12] and
Sprague [29] showed that playing X is essentially the same as playing (sgr(X)) € P(N'). In
particular, X is a winning position if and only if sg-(X) = 0. Let us explain this. Let g = sgr(X)
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and X, = X. By definition, X, has options Xy, ..., X, with sgr-(X,) = h for h € [g], but has no
option Y with sgr(Y') = g. The position X, might have an option X,, with sgr(X,,) = n > g. If this
is the case, then X, has an option Xéﬁ with ng(Xéﬁ) = g. Hence the effect of the move X, to X,
can be immediately reversed by the other player. This implies that if we ignore such reversible
moves, then playing X, is essentially the same as playing (g) in Nim A ! In particular, X is a
winning position if and only if sgr-(X) = 0.

Example 1.3.3. Let X be the position (2,2) in A/2. Since sg(X) = 2@, 2 = 0, every move from
(2,2) is reversible, so it is a winning position. Let us verify this. The position X has four options
(0,2),(1,2),(2,0), and (2,1). Their Sprague-Grundy numbers are 2, 3, 2, and 3, respectively.
Hence each of them has an option Y with sg(Y) = 0. Indeed, for example, (1, 1) is an option of
(1,2). Similarly, every move from (1, 1) is reversible. See Figure[I.4] Hence (2,2) is actually a
winning position.

Figure 1.4: Reversible moves.

Sprague-Grundy numbers are defined by recursively. It seems to be almost impossible to
present an explicit formula for the Sprague-Grundy function of a given game. For example, let
I' be an induced subgraph of Nim. Excluding trivial cases, such explicit formula was known
only when I" is Nim or Welter’s game. The following explicit formula of Welter’s game was
given by Welter [30] and Sato [25-27]] independently.

sgX) =X@ - @X" '@ P2 M(X —XI),

0<i<j<m—1

where 9 (x) = x@®, (x—1).

Appendix 1.A Explicit Formulas for Sprague-Grundy
Functions

In this section, we list known explicit formulas for some games.
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1.A.1 Subtraction Games

LetP =N,
A={(xy)eN?>:0<x—y<4},

and I' = (P,.A). The following table shows the Sprague-Grundy numbers of x with 0 < x < 10
inI"

X 01 2 3 45 6 7 8 9 10
sgr(x) 01 23 01 2 3 01 2
We see that sg(x) is equal to the remainder of x divided by 4 because

sg(x) = mex {sg(x—1),sg(x—2),sg(x—3)}.
We say that I" has the nim-sequence
01230123--- = 0123.
More generally, let S be a subset of N\ {0}. Let P = N and
A={(x,y)eP*:x—yeS}.
The game (P,.A) is called the subtraction game corresponding to S. Table [1.1| shows the nim-

sequences of for some subtraction games (see Chapter 4 of [[1]] for more details).

Table 1.1: For example, if § = {1} u S’ with S’ {3,5,7}, then the subtraction game corre-
sponding to § has the nim-sequence 01.

S nim-sequence period
1(3,5,7,-++) 01 2
2(6,10,14,---) 0011 4
1,2(4,5,7,8,10,---) 012 3
3(9,15,21,---) 000111 6
2,3(7,8,12,13,---) 00112 5
1,2,3(5,6,7,9,10,11,13,---) 00123 4
4(12,20,28,---) 00001111 8
1,4(6,9,11,14,---) 001012 5
2,4(3,8,9,10,---) 001122 6
3,4(10,11,17,---) 0001112 7
1,3,4(6,8,10,11,---) 0101232 7
1,2,3,4(6,7,8,---) 01234 5
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1.A.2 Take-and-Break Games

Letd;,d,,... € Nand d; 1 be the L-th digit in the 2-adic expansion of d;, that is,

dy=>Yd 2" and dze{0,1}.
LeN

We define the game -d;d; - - - as follows. The position set of this game is | J,,,.y N”. A position
X € N has an option Y if and only if

1' Y = (XO""7Xk_1;ZO7' "7ZL_17Xk+1;...,Xm_1)7
2. Z' > 1foreachie[L],and
3. d;p =1, wheret —Xxk_70_..._zL-1 4.

In other words, if we take ¢ coins from a heap, then we must break this heap into L non-empty
heaps for some L with d; ; = 1. Note that if d; = 0, then we cannot take ¢ coins from any heaps.

Example 1.A.1 (Kayles). Let us consider the game -77. This game is called Kayles. In this
game, we can take one or two coins. After taking, we can break that heap to two heaps. For
example, the options of (4) are

(3),(2,1),(1,2),(2), and (1,1).

Kayles can be viewed as the following games. There is a strip of squares. We can put a block
whose length is one or two. Whoever is unable to put a block loses.

LT

L T

@ [/ @ [/« |[[[o ] | 8 |

Figure 1.5: Kayles.

The nim-sequence of Kayles has the following periodicity:
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Table 1.2: The periodicity of Kayles.

0 06 1 23143214726
12 4127143 21 46 7
24 4 1 2 8 5 4 7 2 1 8 6 7
36 4 1 3 81 4 7 2 1 8 27
48 4 1 2 8 1 4 7 2 1 4 2 7
60 4 1 2 8 1 4 7 2 1 8 6 7
72 41 2 8 1 4 7 2 1 8 2 7
84 4 1 2 8 1 4 7 2 1 8 2 7
% 4 1 2 8 1 4 7 2 1 8 2 7

Example 1.A.2 (-007). Let us consider the game -007. The options of (6) are
(3),(1,2), and (2,1).

The game -007 can be viewed as a variation of Kayles. In -007, we can put a block whose length
is three.

Figure 1.6: -007.

In contrast to Kayles, it is an open problem that whether the nim-sequence of -007 has a
periodicity. See Chapter 4 of [1]] for more details.

n 01 2 3 45
sgn) 00 0 1 1 1

\S BN @)}
N
S oo

1.A.3 Rim

Rim was introduced by Flanigan [8]]. Let p be an integer greater than 1. The position set of
Rim, is N". In Rim,,, we first select two non-negative integers L and t with 1 <7 < 2p*. Then
we can take ¢ coins from a heap. We also have the option of taking precisely p* coins from a
heap. This option may be exercised up to a total of p —2 times in a move. Note that Rim; is
Nim.

Theorem 1.A.3 ([Flanigan [8]). If X is a position in Rim,, then
sg(X) = x° Sp-- @pxm_l>

where ®,, is p-ary addition without carry.
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1.A.4 Euclid

Euclid, which is based on the Euclidean algorithm for computing the greatest common divisor
of two numbers, was introduced by Cole and Davie [4]. The position set of Euclid is N? and its
arrow set is

{x,Y)eP?:X°=Y° and X°| (X' -Y")}
u{(X,Y)eP*: X' =v" and X' | (X°-1")}.

For example, (15,65) has the following four options:
(15,50), (15,35), (15,20), and (15,5).

Cole and Davie [4] shows that for X < X!, the position (X°,X!) is a winning position if and
only if

1 5
X<~ \FXO.
2
Cairns, Ho, and Lengyel [3] found an explicit formula for Euclid. Let 0 < X° < X! and let
[co, ..., cn] be the continued fraction expansion of X! /X9, that s,
X! N 1
— =0
PR — —
o+ ————
PR
1+ %

where ¢, > 1ifn > 0. Let [(X 0 x 1) be the largest non-negative integer i such that
o =" =Ci—1 SCi.

Theorem 1.A.4 (Cairns, Ho, and Lengyel [3]]). Let X be a position with 0 < X 0 < X' in Euclid,
and let [c,...,c,] be the continued fraction expansion of X' /X°. Then

x! x0
sg(X) = { X0 X1

J+{(—1)n if co=--=cp,

0 otherwise.
Moreover, ifXO < X!, then

XlJ_ 0 if I(X°,X")is even,
1 if 1(X%, X1 is odd.
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1.A.5 Grossman’s Game

Grossman’s game was introduced by Grossman [11]]. This game is just the misere of Euclid,
that is, its position set is N2\ { (a,0),(0,a) : a € N}, and its arrow set is

{(x,Y)eP?: X" =Y and X°| (X' -Y")}
u{(X,Y)eP*: X' =Y" and X' | (X°-Y")}.
For example, in Euclid, (3,9) has the following three options:
(3,6),(3,3), and (3,0).
However, in Grossman’s game, (3,0) is not an option of (3,9).

Theorem 1.A.5 (Nivesch [19]]). If X is a position in Grossman’s game, then

1.A.6 Nimhoff

Nimhoff was introduced by Fraenkel and Lorberbom [9]] to analyze games lying between Nim
and Wythoff’s game.

x! x¢
X0 xt

se(x) - |

Cyclic Nimhoff

Let & be a non-negative integer. The position set of cyclic Nimhoff is N and its arrow set is
m—1

A(Nm)u{<x,y)eNm;0< d(xi-v) <h},

i=0

where A/ is Nim. For example, if & = 4, then (2,3) has the following eight options:

(1,3),(0,3),(2,2),(2,1),(2,0),
(1,2),(1,1), and (0,2).
Let @ mod b denote the remainder of a divided by b.
Theorem 1.A.6 (Fraenkel and Lorberbom [9]). If X is a position in cyclic Nimhoff, then

sg(X) = (h mod (ié%lz )F)) + ((EX) mod h> :

where X' is the quotient of X' divided by h.

10
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Balanced Nimhoff with Powers of 2

Let K be a non-negative integer. The position set of 2X-balanced Nimhoff is N”* and its arrow
set is

A(Nm)u{(X,Y)eNm:dist(X,Y)=2 and X*—Y*=X"—Y" = 2% for some s;«ét}.

Let
X=gy=XxDryDr XkVK,

where x is the K-th digit in the 2-adic expansion of x, that is, x = > gy xx2K and xx € {0,1}.
Theorem 1.A.7 (Fraenkel and Lorberbom [9]). If X is a position in 2X-balanced Nimhoff, then

sg(X) = X sg - s XL

Double Cyclic Nimhoff

Let & be an integer greater than 1. The positions set of double cyclic Nimhoff is N? and its
arrow set 1s

AN™)

1
u{(X,Y)eP2:Xi>Yi for ie[2] and Z(X"—Y”)e{1,2,...,h—1,2h}}.
i=0
Let x and y be non-negative integers. If x # yand M = max{M e N:x; =y, for 0 <L <M},

then
M-1 M1
macs(x,y) = Z x 2k = (Z yL2L> .
L=0 L=0

If x =y, then macs(x,y) = x(=y).

Theorem 1.A.8 (Fraenkel and Lorberbom [9]). If X is a position in double cyclic Nimhoff, then
sg(X) = (h mod (F@ﬂ?)) + <(X0+X] —macs(X9,X1)) mod h) ,

where X' is the quotient of X' divided by h.

11



1 Games

Even Balanced Nimhoff
Let [ be a positive integer. The position set of even balanced Nimhoff is N? and its arrow set is

1
AN U{(X,Y)eP?: Y (X' —Y) =4I}
i=0

For example, if / = 1, then (3,4) has the following ten options:
(2,4),(1,4),(0,4),(3,3),(3,2),(3,1),(3,0),

(0,3),(1,2), and (2,1).

Let x and y be two non-negative integers. Let macs;(x,y) denote the number of times it is
possible to subtract / from x and y without changing the nim-sum, that is,

macs;(x,y) =max{deN:xPry= (x—il)®, (y—il) for 0<i<d}.

Note that
macsi (x,y) = macs(x,y).

Theorem 1.A.9 (Fraenkel and Lorberbom [9]]). If X is a position in even balanced Nimhoff,
then

sg(X) = X0, x! if macsl()é,)z) is even,
X' X '@, 1 if macs;(X0,X1) is odd,

where X' is the quotient of X' divided by 2.

1.A.7 Lim

Lim was introduced and analyzed by Fink, Fraenkel, and Santos [7]]. The position set of Lim is
N3 and its arrow set is

(X, Y)eP?*: X' —Y =X/ —y/ =y*—X*> 0 forsome {i, j,k}=][3]}.
For example, the position (3,4,2) has the following seven options:
(2,3,3),(1,2,4),(0,1,5),(2,5,1),(1,6,0),(4,3,1), and (5,2,0).
Theorem 1.A.10 (Fink, Fraenkel, and Santos [7]]). If X is a position in Lim, then

XO+x'+x2 - (X', X', X2
sg(X) = (2 )

12



2 Digit-Separable Sprague-Grundy
Functions

We construct a family of games including Nim and give explicit formulas for their Sprague-
Grundy functions. of all positions can be written explicitly. Let ® be an integer-valued function
on the position set of Nim. Let p be an integer greater than 1 and let I'|®] be a p-saturation of
the subgame of Nim induced in { X € P : ®(X) > 0}. We show that if ® is ‘digit-separable’ and
a ‘locally Sprague-Grundy function’ of I'[®], then ® is the Sprague-Grundy function of ['[®].
The p-saturation indices of some games in this family are also determined.

2.1 Introduction

In the 1930s, Sprague [29] and Grundy [12] showed that impartial games can be analyzed using
Sprague-Grundy functions. Moreover, they gave an explicit formula for the Sprague-Grundy
function of Nim. After that, a lot of studies were conducted. Especially, in 1954, Welter [30]
presented an explicit formula for the Sprague-Grundy function of Welter’s game. As far as the
author knows, Nim and Welter’s game were the only known nontrivial examples of induced
subgames of Nim and their p-saturations whose Sprague-Grundy functions had been written
explicitly.

The purpose of this paper is constructing a family of games and presenting explicit formulas
for their Sprague-Grundy functions. We first construct finite inverted Nim from a distribution
related to Nim and extend this game to inverted Nim. Then, by focusing the fact that the
Sprague-Grundy function of inverted Nim is digit-separable, we construct a family of games
including Nim and inverted Nim, and we present explicit formulas for the Sprague-Grundy
functions of games in this family. We also give the p-saturation indices of some of these games.

2.1.1 Inverted Nim

In this subsection, we construct finite inverted Nim using a frequency distribution related to
Nim and present an explicit formula for the Sprague-Grundy function of this game. Using this
formula, we expand finite inverted Nim to inverted Nim. This process leads us to a family of
games. The proofs of the results in this subsection will be given in Section[2.2]

We first construct games by permuting Nim. Let H be a positive integer, and let N be the

13



2 Digit-Separable Sprague-Grundy Functions

subgame of N induced in [27]™. Let W™ be the winning positions of N that is,
wrH = (X e2"]": X@, - @ X" =0}.
For a permutation ¢ € Sym([27]), let
oc(W™H) = {(c(X"),...,c(x™ 1) (X°,... . x" Y ewnH},

and let 6(N"™) be the maximum induced subgame A of A" such that the winning position
set of A equals o(W™#), that is,

{XeP(A):sg,(X) =0} = a(W™H).
By the definition of Sprague-Grundy functions, we see that
P(o(N™1)) = a(W™H) U {X e 2] : (X,Y) e AN™) forsome Y e a(W™H)}.

Let 7"H = {o(N™H) : 6 € Sym([2f]) }. We will consider the frequency distribution of |T|
for e F™H where |T'| = [P(T)].

Example 2.1.1. Let m = 3 and H = 1. Then Sym([27]) = {(),(0 1)} and
FH— (3L 0 )

Let us calculate |T'| for I'e 721, We have |[N3!| = |[2]*| = 8. We show that |(0 1)(N>1)| =7.
Let o = (0 1). Since

oW = ({(0,0,0),(0,1,1),(1,0,1),(1,1,0)}) = {(1,1,1),(1,0,0),(0,1,0),(0,0,1) },
we have
{(Xe[2]*: (X,Y)e AN?) forsome Y e (W)} ={(1,1,0),(1,0,1),(0,1,1)},

SO

P((0 A1) =21 {(0,0,0)}.

Hence !(O (N 371)| = 7. Therefore the frequency distribution of F>! is as shown in the fol-
lowing table.

7 8
1 1

Proposition 2.1.2. If m is odd, then the frequency distribution of F™! is symmetric.

For example, the following table shows the frequency distribution of F>3.

14



2.1 Introduction

400 406 410 412 --- 500 502 506 512
1 3 1 5 - 5 1 3 1

Let m be odd. Since AN has the largest number of positions in 7 it follows from
Proposition m that there is a unique game Z™ that has the smallest number of positions
in FH . We call this game m-heap finite inverted Nim with height H. For example, 7! =
(0,1)(N>1). In general, if o is the bit inversion x — x@; (27 — 1), then Z"H = c(N™H).
Figure 2.1]shows 27 2\ P(Z>#) for H = 1,2,3,4.

L 2
2 2

2 2 2 2 2

Figure 2.1: For H = 1,2,3,4, an excluded position (X%, X! X?) e [2H]3\73(Z3’H) is represented
by the cube with vertices (XY + €% X1 + el X2+ €2)(e' € {0,1}).

To give an explicit formula for the Sprague-Grundy function of finite inverted Nim, we intro-

duce a notation. Let p be an integer greater than 1. For x € N, let xgp ) denote the L-th digit in
the p-adic expansion of x, that is,

x=2x£p)pL and xip)e[p].
LeN

For X e N let
X7 = (XOF, xm P,
When no confusion can arise, we will drop (P) and write xz, and X; instead of xép ) and X L(P ).
We define ¥ : N — Z by

H—-1
W (X) = X0@ - Do X" @ (27 - 1) - Y S(x D)2, (2.1.1)
L=0

sy — {1 i X=(0,.0),
Y70 i X, #(0,...,0).

where

Theorem 2.1.3. Let I" be m-heap finite inverted Nim with height H and X be a position in T'. If
m<3orH <3, then
ser(X) =¥ (X).

15



2 Digit-Separable Sprague-Grundy Functions

Example 2.1.4. Let H = 3 and X = (1,4,5). We calculate WY (X). Let us express X' as 2-adic
numbers. Then X0 = 1[2],X1 = 100[2],X2 = 101[2]. Hence

Xo = (1,0,1), X; =(0,0,0), X, =(0,1,1).
This implies that
v (x) = 121 @, 1002 @, 101 @, 111121 — 1002] = 01112,

Unfortunately, if m > 3 and H > 3, then there exists X € P(Z"™) such that sgzmu(X) #
PH(X) (see Example and Remark . However, by considering saturations (see Sec-
tion , we can obtain the following similar result. For an induced subgame I" of N, let [P~
be a p-saturation of I'. Then ¥¥ actually gives the Sprague-Grundy function of (Z™ )22,

Next, we expand finite inverted Nim using W. It is clear that if X is a position in finite
inverted Nim, then W (X) > 0. In fact, the inverse of this is also true.

Proposition 2.1.5. If X € [2H]™, then X is a position in ™! if and only if P (X) = 0.

In view of Proposition we can expand finite inverted Nim as follows. Let I" be the
subgame of A/ induced in
{XeN": ¥/ (X)=>0}.

The game I is called m-heap inverted Nim with height H. For example, Nim is inverted Nim
with height 0. In fact, ¥ gives the Sprague-Grundy function of a 2-saturation of inverted Nim
with height H.

We now generalize the above expansion process. Let I be a game and ® be an integer-valued
function from P(T"). Let I'[®] denote the subgame of I" induced in

[(XeP): d(X)=0}.

For example, if ' = "™ and ® = WH then N"[W!] is inverted Nim with height H and ¥¥
gives the Sprague-Grundy function of (N”"[¥H])2-52, This leads us to the following problem.

Problem 1. Let ® be an integer-valued function from N”. When does & give the Sprague-
Grundy function of (N™[®])P2?

In the next section, we give a sufficient condition for & that satisfies the above condition.

2.1.2 Digit-Separable Functions

We define digit-separable functions and show that the Sprague-Grundy functions of Nim and
inverted Nim are digit-separable. We then present the main result, which gives a partial answer
to Problem[I] Let p be an integer greater than 1.

16



2.1 Introduction

We first define digit-separable functions. An integer-valued function ® from N is said to be
digit-separable in base p if there exists ¢y : Q" — Z for each L € N such that

o(X) = Y. gr(X”) for X e N", (2.1.2)
LeN

Let [@r].cn denote the right-hand side of (2.1.2)).
For example, the Sprague-Grundy functions of Nim and inverted Nim are digit-separable in

base 2. Indeed, let

) = | K@ X @21 228X, if L<H
T (XL XB@Z"'@zxin_l i L>H.
Then ¥ (X) = [¢{] en.

Remark 2.1.6. The Sprague-Grundy function of Welter’s game is not digit-separable. Indeed,
let I' be Welter’s game with 3 heaps, and let X = (1,2,6) and Y = (0,2,7). If sgp is digit-
separable, then sgr(X) = sgp(Y) since Xy = (1,0,0),Yy = (0,0,1), and X;, = ¥z for L > 1.
However, the Sprague-Grundy numbers of X and Y are 2 and 6, respectively.

To state the main result, we introduce some notation. Let & be a non-negative integer and let
E <oy )™ for L € N. We define an integer-valued function (])Lé’a from [p]™ by

o (x) :xo@p . '@pxmil@p O‘L—P'IéL(X%

where 1% is the indicator function of &, that is,

& _ 1 if xe éL,
I (x) {o if x¢ &L

Let &5 denote [¢f’°‘] LeN- Then

P *(X) = X° Dy BpX" ' e,a—p Z 15 (Xp) p*.
LeN

Let 5% = N [®%%] and F?a = N"™[¢;“] for each L e N.

Example 2.1.7 (Inverted Nim). Let p =2 and H € N. Let o« = 2 — 1 and

5__{®wwm}ﬁL<H
" Vo if L=H.

17



2 Digit-Separable Sprague-Grundy Functions

Then ¢ % l//f for each L € N. Hence I'**® is inverted Nim with height H and ot gives the
Sprague-Grundy function of (I'%-*)2%2_ In addition, (/)E“x gives the Sprague-Grundy function
of (Ff’a)z‘sat. Indeed, suppose that H < L. Then

00 () =y () =" @ @ 2 1 28 (x).

Since y¥ (x) is negative only when x = (0,...,0), the game FE’OC is the subgame of A/ induced
in [2]™\(0,...,0). In other words, FE’O‘ is finite inverted Nim with height 1. Hence the Sprague-
Grundy function of (" f’a)z'sa‘ is given by ¢f '*Suppose that L > H. Then

£ = v () =20 @

Hence F%’a is the subgame of A" induced in [2]™, so its Sprague-Grundy function is given by

,a
o

In fact, @5 always gives the Sprague-Grundy function of (I'>*®)P2 in the above situation.

Theorem 2.1.8. Let o€ N and § <[ | for Le N. If (Z)f’a gives the Sprague-Grundy function
of (l"f’a)p'“”for each L e N, that is,

sg2a(x) = 07 (x) for xe P(T2Y), (2.1.3)

then ®5% gives that of (TS:®)P-sat,
We prove this theorem in Section [2.3]

Example 2.1.9. Let o be a non-negative integer. Let

&= (... Nelp": O+ 4" <o}

Then ¢L’a gives the Sprague-Grundy function of (Ff’a)p'sa‘. It follows from Theorem [2.1.8

that
sgr(X) = ®5%(X)  for X e P(I),

where I = (I'6:®)Psat,

Let = p — 1. Then the game %% will be called m-heap p-inverted Nim with height H.
Note that 2-inverted Nim is the ordinary inverted Nim. We can also determine the p-saturation
index of p-inverted Nim.

Theorem 2.1.10. If T is m-heap p-inverted Nim with height H, then

min(p+1,m+1) if p=2,
min(p,m+1) if p>2.

sat,(I') = {

The proof of this result is in Section [2.4]
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2.2 2-inverted Nim

2.1.3 Organization

This chapter is organized as follows. In Section [2.2] we examine finite inverted Nim. Section
[2.3] contains the proof of Theorem [2.1.8] In Section [2.4] we present the p-saturation index of
p-inverted Nim.

2.2 2-inverted Nim

We investigate 2-inverted Nim. First, we show Proposition[2.1.2] which states that the frequency
distribution of 7™ is symmetric if m is odd. Next, we give a solution formula for ¥(X).
Finally, we show that Theorem In this section, we write @ instead of @,.

2.2.1 Frequency Distributions

We introduce a notation. Let C = N"™\W"™# and C € C. For i € [m], let
C=Ce c'oce e (2.2.1)

Then . ‘ ‘

SO
(®,....,c=t.c.c*, .. .o ewn

For ¢ € S[2H], we have
o(C) = (G(CO), .. .,G(Cmfl)) €eo(C) = Nm\G(Wm’H)

and
(0(C?),...,0(C™),6(C),o(C'*h),...,c(C" ")) e a(W™H).

Let a,(0) be the number of C € C such that the number of i with 6(C') < 6(C") equals h, that
is,

o(0) = [{CeC:|{ie[m]:o(C)) <o(C)}| =h}|.
Then (o) = N\ o(N™H)]|, so
[o(N™)] = 2" — ag(0).
We will show the following equation:

M(m—1)(H»M _
0p(0) + o (0) = 2 2m(21 D if m is odd. (2.2.2)

19



2 Digit-Separable Sprague-Grundy Functions

From (2.2.2), we can deduce Proposition Indeed, let T =x+—x® (2 —1)(=2" — 1 —x).
Then

6(C") < 6(C") < 106(C") > 10(C)).
It follows that o, (o) = 0(70). Hence
% (0) + (o) = ap(0) + 0(70).

By (2.2.2), on(0) + ap(t0) does not depend on ©. This implies that the frequency distribution
of F™H is symmetric with respect to 2™ — (a(0) + 0otp(70)) /2.
To prove (2.2.2)), we need a lemma.

Lemma 2.2.1. If0 < k < m, then

proof. Let

S = {(C,J) eC x <[’Z]> - 6(C7) < 6(CY) for each jeJ}.

We count |S| in two ways.
By the definition of oy, (o),

‘We next show that

[m] M(m—1) (7M _
€GOl _2 (2 1)("1). (2.2.3)

S == =
1 2k 2k k

We fix J € ([’Z]) and r € [m]\J. Using them, we will give a partition of C into subsets Cy,...,C;
with |C;| = 2¥ and show that each C; contains a unique C with (C,J) € S. Note that this yields

(2.2.3).
We construct a partition of C. For C € C and AcJ, we define C(,) by

CEA) _ {5’ if icAor (i=r and |A|is odd), (2.2.4)

C otherwise.

Let [C] = {C(4): A= J}. We show that {[C]: CeC} is a partition of C. Since | Jc[C] = C,
we need only show that (1) C4) € C and (2) [C] n [C'] = & or [C].

20



2.2 2-inverted Nim

(1) If |A] = 0, then C(4) = C € C. Suppose that |A| > 0. By replacing C with C(4/), where A’
is an arbitrary subset of A with |A’| = |A| — 1, we may assume that |A| = 1. Let A = {a}. By

@.2.1),

Chy®--aCl' =@ -oc"oCeC aC'@C =C"®---aC" ' £0.  (22.5)

Hence C4) € C.

(2) If C, = C for some A<J, then [C'] = [C]. If C}; # C for each ACJ, then [C'] n [C] = &.
Hence [C] n [C'] = & or [C]. Therefore {[C] : C € C} is a partition of C.

We now prove (2.2.3). Let C € C and
A={act:co(C")>c(C}.

By (2.2.4), , ,
O'(CZA)) < G(C(JA)) for each jeJ.

This implies that (C4),J) € S. We also see that (C(p),J) ¢ S for BEJ with B # A. Therefore

(2.2.3)) holds.
]

We now prove (2.2.2)). We calculate

k=0 h=0
in two ways.
If h < m, then
m—1 h
(})er-a-y
k=0
If i = m, then
m—1 h m
()= a=im= (M) om =~
k=0
Hence
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2 Digit-Separable Sprague-Grundy Functions

On the other hand, by Lemma (2.2.1J),

S S (Bator =2 'S () (1Y

k=0 h=0

Therefore (2.2.2) holds.

2.2.2 Solution Formula

Let X be a position in finite inverted Nim with height H. Let
oX)=X"@.--@xm!

and

H—-1
5(X) =) 8(xp)2"
L=0

In this and the next section, we devote to prove Theorem [2.1.3]
In this section, we will show that

X' = (P x)+8(xD))@s(xN@o(xD)@ 2" - 1), (2.2.6)
where X () is obtained from X by deleting the i-th component, that is,
X0 = (x0 o xx™ L xm enrl

To prove (2.2.6), we introduce a notation. For a finite subset S of N, a non-negative integer x
is said to be S-free if xg = 0 for every S € S.

Lemma 2.2.2. If g€ N, then there exist xs for S € S such that g+ ¢ x525 is S-free. Moreover,
if g+ Y ges X525 is also S-free, then Y e g %525 = > g g X525,

proof. We show by induction on |S|. If gg = 0 for each S € S, then the lemma is trivial. Suppose
that |S| > 0 and gg = 1 for some S € S.

We first show the existence Y ,xs. Let T = minS and xp = 1. By the induction hypothesis,
there exist xg for S € S\ { T} such that (g +x727) + ZSES\{T}xSZS is S\{T }-free. Since T =

minS and (g +x727)7 = 0, we see that (g + Y . xs25)7 = 0. Hence g + Y . g xs2° is S-free.
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2.2 2-inverted Nim

We next show the uniqueness of > xs. Since g7 = 1, we have x’T = 1. Hence

g+2")+ >, bs2°
SeS\{T}

is also (S\ { T })-free. By induction hypothesis, > g xs2° = Y ¢ g x52°

O
If g + Y g g X525 is S-free, then we denote it F5(g).
Lemma 2.2.3. [fe = g+ Y.¢. 25, then Fs(g) = e — > g g es25.
proof. Ttis clear that e — > 25 is S-free. By Lemma[2.2.2]
e— > es2® =g+ ) (1—e5)2% = Fs(g).
Ses SeS
O]
Lemma 2.2.4. [f Fs(g) = g+ Y g gXs25, then
Fs(g)+ Y xs25 = (g+ > 25 @ > 25
SeS SeS SeS
proof. Lete =g+ > 525 Since Y ¢ sxs2% = Fs(g) — g, it follows from Lemma that
e+2x525—g+22S+F3(g ZZS—i-FS ):ZZS—l—e—ZeSZS.
SeS SeS SeS SeS SeS
Hence
Dles2S+ ) xs28 = 125,
SeS Ses SeS
This implies that there is no S € S with eg = xg = 1. Hence
Dles2S@ ) xs25 = )25,
SeS Ses Ses
Therefore
ed Z 2 =ed Z es25 @ ZxSZS =Fs(g)® ZxSZS = Fs(g) + ZXSZS.
SeS Ses SeS SeS SeS
O]

Proposition 2.2.5. If X is a position in finite inverted Nim with height H, then

X =WHX)+8xN)@sxN@oxe @2 -1).
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proof. We may assume that i = 0. Let X' = X°@ (2 —1) and
S={Le[H]: (X)) =1}.
Then §(X©)) = 3¢ 525. Let g = ¥¥(X) and S¢ = N\S. Then

g= Y X@xXP® @x )2+ ) (Xg@xj@ - oxr)25 -2 XS

LeSC Ses Se$
= Y (Xjexj@ - exp k4 Y X5 -2y X2
LeS€¢ SeSs N
=0 _ =0
=) Xpexi@--@Xx 2k - > X5,
LeS€¢ N
Hence 0 0
g+ ). X25= ) (X oXx/ @---@x; )2k (2.2.7)
Ses LeSC€

Since the right-hand side of (2.2.7) is S-free, it follows from Lemma that

Fs(g) =g+ ), Xg25 = > Xrox'®---@xr )2k (2.2.8)
SeS LeS€
Note that
X'@-oxm = Y (Xjo---oxy )25, (2.2.9)
LeS¢

Adding (2.2.9) to (2.2.8]), we get

N X2t =Fs(g)ex' @ - exm . (2.2.10)
LeS¢

By adding s X325 to (2.2.10),

X' =Fs(g)eX'@ -ox" e X2
SeS
It follows from (2.2.8)) and Lemma that
X' = (Fs(g)@ Y. Xg25)@x' @ @x"!
SeS
=g+, 2%)e) Pex'e -ox"!
SeS Ses

= (g+8(x"))@s(x ) @ox).
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2.2 2-inverted Nim

Example 2.2.6. Let X = (2,5). Then

6.

?l(X)=2050(2'-1)

Hence X is a position in inverted Nim with height 1, although it is not a position in finite inverted
Nim.

Using Proposition we can find Y° and Y! with P! ((Y?,x1)) = ¢! ((X°,v")) = h for
any h € N. For example, if 4 = 3, then

Y= Q@B+rxM)erxMocxMeR! -1)=3+0)@00501=7> X",

Y'=GB+aXerxP)ecxMeR' - 1) =GB+ 1)dl1e2®1 =6> X

This means that ¥!(X) is not equal to the Sprague-Grundy number of X in inverted Nim with
height 1. However, it equals the Sprague-Grundy number of X in 2-saturations of inverted Nim
with height 1.

2.2.3 Carries

In the proof of Theorem [2.1.3| calculation of carries is important. In this subsection, we intro-
duce a notation on carries and give some easy results.
For g,ae N, let

Y(g.a)=(g+a)®g®a and and y.(g,a) = (y(g,a))L for LeN.

Note that ¥;.(g,a) = 1 means that there is a carry in the L-th digit in the calculation of g +a. It
is clear that y(g,a) = 0 and

1(g,a) =1 < g 1+ar—1+Y-1(g,a) =2 for L>1.
For example, if g=1+2+8 and a = 1 + 8, then
Y(g,a) = (11+9)®11P9I =204P 16.
Let g and & be two distinct non-negative integers. Let

R(g,h) =max{LeN:gy #h}.
For example, if g = 1 +8+ 16 and h = 4 + 16, then R(g,h) = 3.
Remark 2.2.7. Let h,g e Nwithh < g. Let R = R(g,h) and N = R(g +a,h+a). If R < N, then

l=(g+ay=gv®avdW(g,a) =hv@av®(g,a) # hyDay Dyv(h,a) = 0.

This means that y;.(g,a) = 1 for R < L <N.
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For g,N e N, let
o0
2 _N—
gon =82k = [2Ng+1J = Y g2t 2.2.11)
L>N

Lemma 2.2.8. If g —h < 25! — 1 for some S < R(g,h), then gr =0 and hy = 1 for S <L <
R(g;h).

proof. LetS <L <R(g,h). Then g > g~ 2 +g72F and h < hop 281 + 28 + 28 — 1. Since
L < R(g,h), we have g~; — h~y > 1. It follows that

g—h=28" 1 (g —hp)2b—(2F —1) = 2L 4 1+ (g — hp)2E.

Hence
2414 (g —hp )2k <251 1.

This yields g7 = 0 and i = 1.

2.2.4 Explicit Formula
To prove Theorem [2.1.3] we investigate the function ¥ Let

W (X) = (P1(X)), ou(X)=(o(X)r, and & (X)=(8(X))L.

Example 2.2.9. Let H = 5 and X = (110002, 1010121, 100002]), where 101012l = 24 4+ 22 +
20, Then ¥ (X) = 100110[2! > 0, so X is a position in finite inverted Nim with height 5.

L 0 1 2 3 45
X 00001 1
X} 1 01010
X? 00000 1
S(X) 0 1.0 1 0 0
o(X) 1.0 1 0 0 0
¥(X) 01 10 0 1

Let U = 1. Then Xy = (0,0,0). Since ¥>(X) > 0, we see that there exists V > U with
ov(X) = 0and Xy # (0,0,0). Indeed, X4 = (1,1,0), so V = 4. Moreover, ¥; (X) = or.(X) for
U < L <V. We summarize this observation in the following lemma.

Lemma 2.2.10. Let X be a position in m-heap finite inverted Nim with height H. If P§(X) =
on(X) or Xy = (0,...,0), then there exist unique U < N and V > N satisfying the following
three conditions:
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2.2 2-inverted Nim

L YEX)=0oy(X)=1 and Xy=1(0,...,0), where oy(X)=oy(X)®1.
2 PH(X)=0y(X)=0 and XyeV={xe[2]":0(x)=0 and x# (0,...,0)}.
3 WH(X)=0.(X) and X, ¢V for U<L<V.

proof. We first show the existence of U. If WX (X) # oy (X), then Xy = (0,...,0), so P (X) =
oy (X) = 1. Hence U = N. Suppose that P4 (X) = on(X). Let

U={UeN:U<N and Xy = (0,...,0)}.
Since W (X) = on(X), we have U # . Let
U={Uel :YE(X)=0oy(X)=1}.

It is easy to see that minU € U,sold # &F. Let U = max¥{. Then U satisfies (1).
We can similarly show the existence of V. Let

V={VeN:V>N and Xy e V}.

Since WX (X) = on(X), we have V # (J. Let V = min V. Then V satisfies (2). Moreover, U and
V satisfies (3).
0

Theorem 2.2.11. Let X be a position in finite inverted Nim ™. If m < 3, then sgrmu (X) =
P (X).

proof. It suffices to show when m = 3.
Letg =P (X)and0< h<g. Forie {0,1,2}, let

o' =o(x¥), &=5(x"), and ¥ =78

By Proposition[2.2.5] . ‘ o
X' =(g+8osdsc@2”-1). (2.2.12)
Let . . . .
Yi=h+§)osdac o2 -1). (2.2.13)
Then

wH(y0 x1 x2) =wH(x% y! x?) = wH(x° x'v?) = h.
We will show that Y? < X’ for some i € {0,1,2} .
Forie {0,1,2}, let . o
R =R(X',Y").

By €212 and @2T3).

R =R(g+8' ,h+8").
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Since h < g, we have h + &' < g + 8. Hence
(h+ 8k =0, (g+8 )
Note that
(Xx = ((g+8)@8 @' @2~ 1)) = 1®(8'@©0" ) @1 = (8'® ")y

We deduce a contradiction assuming (8'® 6') g = 0 for all i. Here X1§' = Xll!fi =1 and X1iei =0.

Hence R' are distinct. By relabeling R’ if necessary, we may assume that R® < R' < R?. Let
R = R(g,h). We split into three cases.

Case 1 (R < R'). We will show (g+ 8%)=p1,; = (h+ 6?)=g1,, which contradicts to (g +
8%) g2 # (h+ 8?)g2. Since R! > R, it follows from Lemma that }/I%I = 1. Hence

1=(g+8"p = (38" ®Y g = gr ®1.
This implies gz1 = 0 and
gRl +y1%1 +6I%1 :'}/1231 <2

Hence 7’1%1+1 = 0. Therefore (g + 6%)=g141 = (h+ 8%)=1, 1, Which is a contradiction.

Case 2 (R > R'). By Lemma[2.2.8]

g.=0 for R'<L<R (2.2.14)

We show that gy = 1 for some RO <U <R. By (2.2.14)), we have gp1 = 0. Since Op1 (X) =0,
Lemma [2.2.10| implies that there exists U < R' such that gy = 1 and R® < U < R. Since

Xpo = (0,1,1), we have U > RO, contrary to gy = 1 and (2.2.14).
Case 3 (R = R'). By Lemma[2.2.8]

gr=0 for R°<L<R" (2.2.15)

We also have Y;%l 4 = 1. Hence, by Lemma , there exists N < R + 1 such that gy +
Sy(X@)=2and
g+ X?P)=1 for N<L<R+1. (2.2.16)

We show that gy + 82 = 0 for some N <V <R+ 1. To find V, we show N satisfies the
conditions in Lemma If X2 = 1, then Xy = (0,0,1), so oy = 1 = P (X). If X} =0,
then Xy = (0,0,0). Hence, by Lemma there exists V > N with gy + 2 = 0. Since
gv+ 5V(X(2)) =0+0=0, it suffices to show that V < R+ 1.

Since 51%1 = 820 = 0, it follows from that N < R’. By , gro = 1. Since
Xgo = (0,1,1), we see that V < RV by the definition of V. In particular, V < R+ 1. By ,
1 =gy +38y(X®) =040 =0, which is a contradiction.
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2.2 2-inverted Nim

0
ForxeN, let £ = x-¢. For X e N let X = ()/(B,...,)ﬁ?]).

Theorem 2.2.12. Let X be a position in finite inverted Nim T™H. If H < 3, then sgzmu(X) =
P (X).

proof. 1If H = 1, then the assertion is trivial. Suppose that H > 1. Assume that
(A) the theorem is true for all positions in Z"™H =1,

Note that X is a position in Z"#~1 and ¥H#~1(X) = g+ 8(X,), where g = ®(X). We show that
X has an option Y with W#(Y) = hforany 0 < h < g.

Suppose that /iy = go. Then h + 8(Xo) < g+ 8(Xo) = PH-1(X), so (A) implies that X has an
option Z with ¥#~1(z) = h+ 0(Xop) . Let

Y =Xo+2Z = (XJ+22°,..., x50+ 2z,

Then Y is an option of X with ¥ (Y) = h.
Suppose that iy # go. We divide into two cases.
Suppose that the number of i € [m] with X # 0 is not equal to one. Since h < g+ §(Xp), it

follows from (A) that X has a descendant Z with W7~ 1( ) = hand dist(X,Z) < 1. Suppose that
Z+X. By relabeling X/, we may assume that Z0 < X0, Let Y0 =27 and Y/ = X' for i > 0.
Then Yy # (0, ...,0) and ! (Yo) # W' (Xo) = go. Hence

P (y) = 29 1Y) + W (Yy) = 20+ g = h.
Suppose that Z = X. Then
DY) =h=g=>(X) = g+7r(Xo).
Hence 6(Xo) = 0. This implies that the number of i € [m] with X 4 # 0 is greater than 1. By
relabeling X', we may assume that X(? = 1. Let YO = 27% and Y/ = X’ for i > 0. Then Y is an
option of X with the desired properties.

Suppose that the number of i € [m] with Xé # 0 is equal to one. By relabeling X', we may

assume that Xy = (1,0,...,0). It suffices to show that X has an option Z satisfying one of the
following two conditions:

1. $¥i-1(z) — hand Z/ + X7 for some j # 0.

2. WH=1(Z) = h+1and Z° # X°.
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Indeed, suppose that Z satisfies (1). Let Y/ = 2Z/ and Y’ = X’ for j # i. Then ¥, # (0,...,0),
so WH(Y) = h. Suppose that Z satisfies (2). Let Y* = 2Z°. Then ¥y = (0,...,0), so ¥ (Y) = h.

Therefore, it suffices to show that there exists Z satisfying (1) or (2) if H € {2,3}. Since
o(X) = o(X")) and §(X) = §(X) if X/ = 0, we may assume that X’ > 0 for i € [m] by
deleting j-th digit with X/ = 0. Similarly, since 6(X) = ¢((X®))) and §(X) = §((x*))®)
if X/ = X* = X! for some distinct j, k,/, we may also assume that

{ke[m]:X*=X/}| <2 for je[m].

Moreover, if )/(B — X' for some i > 0, then X has an option Z satisfying (1). Hence we may

assume that X0 % X/ for i > 0.

Let H = 2. By the above discussion, the only possibility is X = (112]). Since W2(X) = 0,
there is nothing to prove.

Let H = 3. By the above discussion, there are the following nine possibilities:

(111,100,100, 10, 10), (111, 100, 100, 10), (111, 100, 10, 10),

(101,110,110, 10,10), (101,110,110, 10), (101, 110, 10, 10),
(11,110,110, 100, 100), (11,110,110, 100), (11, 110, 100, 100).

By direct computation, we see that X has an option with desired properties for each case. For
example, let X = (111,100,100, 10). Then ¥*(X) = 10, so we only need to show X has an
option Y with W3(Y) = 1. Let Y = (111,100,100, 1). Then ¥3(Y) = 1.

O

Remark 2.2.13. If H = 4, then the above argument does not hold. Indeed, consider X =
(1001, 1010, 100, 100). Then

PHX) = 404090100 (24 —1) = 12.
However, X has no option Y with ¥* (X) ="7. Indeed,
Y=y = (7+2(X?)orX)@cx?)@15=(7+0)@0@7® 15 = 15,
V2= 7+aXMerx®)ecx@15=(7+1)@1@10015 = 12,

YV =T+axerxMecx®)@15=(7+2)@209@®15 = 13.

This implies that the Sprague-Grundy number of X is not 12 in finite inverted Nim with height
4. However, it is equal to 12 in 2-saturations of finite inverted Nim with height 4.
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2.3 p-saturations

2.3 p-saturations

2.3.1 Games with p-index k and p-saturations

p-saturations was introduced in [13]]. Roughly speaking, saturation is a state reached when
adding edges by a certain way cannot change the Sprague-Grundy function. For example, Nim
is saturated in base 2. If m < 3 or H < 3, then finite inverted Nim Z" is also saturated in base
2. However, if m > 3 and H > 3, then it is not saturated in base 2.

We first explain the way of adding edges. Let X,Y € N" and D; = X' —Y'. We consider the
following condition:

(+p) ord, (Z?:ol Di) =min{ord,(D'):0<i<m—1},
where ord),(x) is the p-adic order of x, that is,

max{LeN:pt|x} if x#0,
o0 if x=0.

ord,(x) = {
Using the condition (*,), we define a game J\/'(’Z K 38 follows. Let P = N and

A ={(X,Y)eP?: X' =Y for ie[m], 0<dist(X,Y)<k, and (x,)is satisfied}

for k € N. Let ./\f("; X denote the game (P,.A;). The greater k, the greater the number of edges.

Note that, by definition, /\/('272) = N" and ./\/'("; = Mn;,m ) fork>m+1.

Example 2.3.1. Let us consider options of (2,2,2) in ./\f(32 0 fork=2,3,4.In ./\f(32 2): the position
(2,2,2) has the following six options:

(0,2,2),(1,2,2),(2,0,2),(2,1,2),(2,2,0),(2,2,1).
In /\f(3273), the following six positions are also options of (2,2,2):
(0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0).
Indeed, for example, (2,2,2) — (0,1,2) = (2,1,0), and so
ordy(2+140) =0 = min{ordy(2),ord,(1),ord,(0) }.

In /\f(g’2 4)» tWO positions (0,0,0) and (1,1,1) are also options of (2,2,2).
Note that, sg\((2,2,2)) = 2@, 2,2 = 2 and the Nim sums of the above fourteen options
of (2,2,2) do not equal 2. This means that SEu3 )((2, 2,2)) =2forke{2,3,4}. In fact,
2.k

sgym (X) =sgym(X) forall XeN" and k> 2.

(2.6)
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We now define saturations. Let I" be an induced subgame of N and I'(p k) the subgame of
J\/'(p7k) induced in P(T') for k > 2. The game I'(,  is called a p-saturation of T" (and said to be
saturated in base p) if

sgr,, (X) =sgr, (X) forall XeP(I) and k> h. (2.3.1)

ph)

The smallest k satisfying (2.3.1)) is called the p-saturation index of I" and is denoted by
sat,(I"). Note that I, ,,, 1 is always a p-saturation of I".

Example 2.3.2 ( [13]]). Let I" be a p-saturation of N"™. Then
sgr(X) = Xo@p v '@pxmil-
The p-saturation index of N is min(p,m+ 1).
Example 2.3.3 ( [13]]). Let I" be a p-saturation of Welter’s game with m heaps. Then
ser(X) =X @) @p X" O, (@P N, (X' —Xj)> :
i<j

where 91,(x) = x©, (x—1). The 2-saturation index of Welter’s game is 2. However, the p-
saturation index of this game is not known for 3 < p < m.

2.3.2 Digit-Separable Sprague-Grundy Functions
To prove Theorem we study &%,

Lemma 2.3.4. Let & and o be as in Theorem If D% satisfies , then
{xe [p]m :x0+---+x'"_1 < (XL}QéL.

proof. Let A = I'1:% Recall that P(A) = {x e [p]™: I%(x) = 0}. Let ¢ be the smallest sum of
the components of positions in A:

c=min{x’+---+x"T:xeP(A)}.

It suffices to show that ¢ = ¢z. Choose a position x in A such that x* 4 --- +x"~! = ¢. Then X
is an end position, so sg,(x) = 0. By (2.1.8),

0=sga(x) =x°@, - @, ¥" ' O, 0 — I (x) = cO, 0.

This yields ¢ = 0.
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A position Y € N" is called a proper descendant of X if Y # X and Y* < X' for each i € [m].

Lemma 2.3.5. Let ' = N [@5 %] and X be a position in U, ). If Y is a proper descendant of
X with dist(X,Y) <k, then

ord, (@57“(X) —¢§’“(Y)> > min {ord,(X' —Y") :ie [m]}
with equality if and only if Y is an option of X.
proof. Since dist(X,Y) < k, the position Y is an option of X if and only if ¥ satisfies (x,). Let
N =min{ord,(X'—Y") :ie [m]}. Then X, =Y, for 0 < L < N. Hence
ord, (d)é’“(X) - @57“(1/)) >N

and

®E(X) 5] = X -yl
(@) —at<r)) = | X
ie(m N
This implies that ord,, (CI)57O‘(X) - d)é*o‘(Y)) = N if and only if Y is an option of X.
0
Lemma 2.3.6. Let x,y,z€ [p]. If x <y, thenx@®,z > y®pzifand onlyif x <p—zandy > p—z

proof. This follows from the fact that

0 if x<p—z,
XOpz=x+y— .
p ifx=p—z
O

We now show Theorem- by induction on o. If & = 0, then this is trivial. Suppose that
o > 0. Let A and A be subgames of N (p.m) induced in P(I%%) and 73(1“£j @), respectively. Let

X be a position in A. Then Xisa posmon inA. Let ® = d5% and d = CI>§7°‘. By Lemma|2.3.5]
it suffices to show that for 0 < & < ®(X), the position X has an option Y with ®(Y) = h in A.

Step 1. If iy = go, then X has an option with the desired properties.

proof. Since i+ 1% (XO) <g+! %0 (Xp) = CID(X ), it follows from the induction hypothesis that X
has an option ¥ with CID(Y ) = h+1% (Xp) in A.LetY = Xo+ pY. ThenY is an option of X with
the desired properties. Indeed, Y is a proper descendant of X and

ord,( Y X —Y') =ord,( Y X —¥)+1
i€[m] i€[m]
min{ordp()?i—?i) i€ [m] } +1=min{ord,(X'~Y"):ie[m]}.
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Hence Y is an option of X. We also have
®(Y) = 95 *(¥) + p®(¥) = ho — pI* (Xo) + p(h + 19 (Xo)) = .

Hence Y satisfies the desired condition.
O

Suppose that hg # go. By Lemma we see that if a proper descendant Y of X satisfies
WH(Y) = h, then Y is an option of X. Let

S0 if Ry < p—ao( < ho®, o > ap).
Step 2. If h+e< CTD()? ), then X has an option with the desired properties.

proof. By the induction hypothesis, X has an option Y with CID(Y) h+¢€inA. By relabeling
X', we may assume that Y0 < X0, Let

YQ = (ho@pao,o,...,()).

By Lemma [2.3.6] 2o ®) ap < ~ag if and only if ho p — a. It follows from Lemma [2.3.4] that
1%(Yy) = €. Hence ®(Yy + pY) = h and Y, + pY is an option of X.
]

Step 3. If R R
h+e>®X)(=g+1%(Xp)), (2.3.3)

then X has an option with the desired properties.
Proof. We divide into two cases.

Case 1 (hg < go and Xp ¢ &p). Since X is a position in A%0:% , it follows from -i that X; has
an option Yy with
0% (¥g) = hy.

By the induction hypothesis, X has a descendant ¥ with CTD(IA/ ) = h. Then Yo+ pIA/ is an option
of X with the desired properties.

Case 2 (hy > go or Xp € &p). Suppose that hO > go. Then h< g. By (2.3.3), we have € = 1 and
Xo ¢ &o. Hence ho®), 0tg < 0fp and h+ 1 = g. Since X 0 ¢ &, it follows from Lemmammat

X(§)+-~~+X(’)"_1 = o > ho @) 0.
This implies that there exists Y < X/ for each i € [m] such that

Y9+ + Y = ho @) .
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By Lemma , we have Yj € &). This implies that Y + p)? is an option of X with the desired
properties.
Suppose that iy < go and Xo ¢ P(A%0-%). By , we have € = 1. Hence h = g = d(X) — 1.
Since
Xp + -+ Xy = g0@p 00 > ho @y 00,

there exists Y} < X/ for each i € [m] such that
Y9+ Y = ho®) ap.

Then Yy + p)? is an option of X with the desired properties. This completes the proof.

2.4 p-saturation Indices

We determine p-saturation indices of games including p-inverted Nim. In this section, we write
@ instead of @®,,.
Let A be a finite subset of N. Let @ = Y., _ 4 p* and

£, = {(0,...,0)} if Le A,
"o if LA

Then q)f % satisfies (2.1.3). Hence

sgrea(X) = @5%(X) = 6(X)©a— pd(X),
where

o(X)=X'@ -@x" ! and §(X)= ) I%(X.)p"
LeN

Theorem 2.4.1. Let o and & be as above. Then

min(3,m) if p=2 and a #0,

min(p,m)  otherwise.

sat, (1%%) = {

We introduce some notation. Let ®(X) = ®5%(X) and &7 (X) = (P(X)).

Lemma 2.4.2. Let T = I'S%. Then

in(p+1,m+1 f p=2,
sat,(I') > m%n(p m+1) l,fp
min(p,m+1) if p>2.

35



2 Digit-Separable Sprague-Grundy Functions

proof. If m = 1, then the assertion is clear. Suppose that m > 2. Since o # 0, we see that o7, # 0
for some L € N. Let N be the maximum of such L:

N=max{LeN:a. #0}.

We first show the assertion when p > 2. Let k = min(p,m + 1). It is sufficient to find a
position X in ', ,, 1) such that if Y is an option of X with ®(Y) = 0, then dist(X,Y) = k— 1.
Let

a+pNtl if i=0,
X'={ pNt! if 1<i<k—1,
0 ifk—1<i<m-—1.

Since k < p, we have ®(X) = (k—1)p"*!. Hence X is a position in L(pms1)- LetY be an
option of X with ®(Y) = 0. By Lemma2.3.5]

min { ord,(X' —Y") :ie[m] } = ord,((k— DN —0)=N+1.

Hence Y, = X;, for 0 < L < N+ 1. This implies that Yy; = (0,...,0). Therefore dist(X,Y) =
k—1.
Next, suppose that p = 2.
Using Example [2.2.6 we construct a position X to show sat, (") > 3.
Let
XO=—o+42V = (a—2V)+5.2V,

xt=2.2VN
X'=0 for i>2,

and X = (X°,...X""1). Then
d(X) =62V,

Let
h=3-2N

We define Y b
’ o(x0, ... x~lyl xi+ o xmh = p

Then Y > X'. Indeed, if i > 1, then this is trivial since X’ = 0. We also have
Y9 = (a—2")+6-2V

and
y' =72V

Hence Y° > X% and Y! > X'. Therefore saty(T") > 3.
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We now prove Theorem Let k = max(3, p). It is sufficient to show sat,(I') < k. We
show by induction on «. If o = 0, then this is trivial. Suppose that o > 0.
Let ®(X) = ®5*(X). Let h be an integer with 0 < h < ®(X). We show that X has an option
Y such that
®(Y) =h and dist(X,Y) < k. (2.4.1)

Let g = ®(X).
Step 1. If = ®(X) (mod p), then X has an option Y satisfying (2.4.1]).

proof. By the induction hypothesis, X has an option Y such that CID(Y ) = h+ 1% (Xo) and

dlst(X Y ) < k. Then Xy + pY is an option of X with the desired properties.
]

Hence we may assume that i # ®(X ) (mod D).
By the induction hypothesis, if h < CID(X ) then X has an option Z such that CID(Z' ) = h and
dist(Z',X) < k. Let Z = Xo+ pZ. When h = ®(X),let Z = X.

Step 2. If one of the following three conditions holds, then X has an option Y satisfying (2.4.1).

1. Z=X,
2. 6=, or
3. hp #p—1.

proof. Suppose that (1) holds. We first show that
hog <X+ + X" — g, (2.4.2)

Sinceg>hand)?=2, A PR
§>h=32) = dX) =g+1%(Xp).

Hence X ¢ &y and g = h. This implies that Xy # (0,...,0) and o < go, and hence
hg<go=X"'@ - ®X" 'Oy <X+ + X" — .
We next construct an option Y of X. By (2.4.2)), there exists ¥y € Q™ such that
Y@ @Y 'oay=hy and Y, <X{ foreach ie[m].

Since go —ho < p, we can take ¥ so that dist(Xy,Yy) < k. LetY =Y +p)? Then dist(X Y)<k.
It remains to verify ®(Y) = h. Since ®(Y) = ¢o(Yo) + p®(Y) = ho— pI® (Yy) + ph, it is sufficient
to show Yy ¢ &. This is trivial for oy = 0. Suppose that o = 1. Since hy < go < p — 1, we have
Yo # (0,...,0), and hence Y ¢ &.
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Suppose that (2) or (3) holds. By (1), we may assume that Z+X. By relabeling X' if nec-
essary, we may also assume that 79 < X0 Let Yo = (ho® Oco@X& o--- @X(’)"_l,X(},. .. ,Xé”_l)
and Y = Yy + pZ. Then dist(X,Y) = dist(X,Z) < k and Y0 < X° for i € [m]. Since (2) or (3)
holds, ¥y ¢ &y. Hence ®(Y) = h.

O

By Step[2] we may assume that
Z#X, &={(0,...,0)}, hy=p—1. (2.4.3)

Step 3. If X has a descendant W such that (W) = h and dist(X ,W) =2, then X has an option
Y satisfying (2.4.1).

proof. We may assume that W0 < X0 and W' < X!, Let
Yo=(1LhhOloX;o - oXy " X5,... X" ")

and Y = Yy + pW. Then dist(X,Y) = dist(X,W) < k. Since Yy ¢ &, we have ®(Y) = h.

By Step 3| we may assume that dist(X,Z) = 1. Let Z° < X°.
Step 4. If Zé # 0 for some i > 0, then X has an option Y satisfying li

proof. LetYy = (©z o---0zy1,7},..., 20 "). Since Z| # 0, we have ¥, ¢ &. Therefore
Yo+ pZ is an option of X with the desired properties.
O

By Step{]and (2.4.3)), we may assume that
Xo=2y=(2),0,...,0) and XJ=23+0. (2.4.4)
Since Z # X, we have 7Y # X? for some L € N. Let
K=max{LeN:Z} X} }.
Then K > 1.

Step 5. Suppose that Z,]f4 # 0 for some 1 < M < K and some k > 0. If one of the following four
conditions holds, then X has an option Y satisfying (2.4.1):

1' éMZQ’
2. Zy #p—1,
3. Zﬁ#l,or
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4. 7%, # 0 for some [ € [m]\ {0,k }.

proof. Let
wl=2@pM, wt=ZzkopM =zF_pM, (2.4.5)
and Wi = Y/ for i e [m]\{0,k}. Put W = (WO, ... W™"=1). Then dist(X,W) = 2. It is sufficient
to show that W satisfies the condition of Step I We first show that W is a descendant of
X. By (2.4.5), we have Wk < Z* = X* Since M < K, we see that WK = Z) < X2, and hence
w0 < x9. 0. Thus W is a descendant of X. It remains to show that CID(W) — h. Since one of the
conditions (1) - (4) holds, I (Wy;) = I (Zy;) = 0, and hence @y (War) = @pr(Zyr). Therefore
D(W) = D(Z) = h.
[
Let
N=min{L> 1 :Zg;«ép—l}.

Then K >N > 1 sinceZIO(<X2<p—l.

Step 6. If there exists M such that 1 <M < N and the following two statements do not hold,
then X has an option Y satisfying (2.4.1)):

(Z1) Zyy = (p—1,0,...,0), and
(Z2) Zy = (p—1,0,...,0,1,0,...,0) and &y = {(0,...,0) .

proof. By the definition of N, we have Z]?,I p— 1. Since (Z1) does not hold, ZM # 0 for some
i > 0. Since (Z2) does not hold, one of the three conditions (1), (3), and (4) in Step [5| holds.
Hence X has an option with the desired properties.

]
Therefore we may assume that
Zo = (Z3,0,...,0), (2.4.6)
Zr=(p-1,0,...,00 or (p—1,0,...,0,1,0,...,0) and o =1 for I <L <N.
(2.4.7)
Moreover, if N < K, then we may also assume that
Zy = (Z},,0,...,0) Z' #p—1. (2.4.8)
Let
0 if L=0,
VW=<2Z0@1 if 0<L<N,
4 if N>L.

LetY'=Xifori>0andY = (Y°,...,Y""!). The goal is to show that Y is an option of X with
oY) - h.
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Step 7. We have Y° < X°. In particular, Y is an option of X.

proof. We first show that Y < X9 If N < K, then YI? = ZI(} < X,?, so Y9 < X9 Suppose that
N =K. By (2.4.7),

Yo=1r=--=Y2,=0
and YI? = ZIO(@)I = Z,()(—i— 1< X,(g. Hence Y < XO. By 1' X(()) # 0, and hence Y° < XO.
0
To prove ®(Y) = h, we define B (X) by
PL(X) D PLX) = or(X) O a(X)© 61 (X). (2.4.9)

In other words, B (X) = 1 if the L-th digit is borrowed when subtracting
o(X)oa—Y I (x)pt",

and B (X) = 0 if otherwise. By definition, By(X) = B1(X) = 0. For example, if p =2, a =7,
and X = (2,4,4), then

D(X) =204D407 -2 =1@4—2 =3,

and hence B,(X) = 1 and B (X) = 0 for L # 2.
Note that B, (X) = 1 if and only if 6,1 (X)©0z—1 —d.—2(X) — Br—1(X) < 0. Therefore
5.(Z) =0 for 0OSL<N-—1 (2.4.10)
and
BL(Z)=0 for 0OSL<N+]1, (2.4.11)

since Zp # (0,...,0)and Z? = p— 1 for 1 <L < N.
We give a relation on 8(Y) and B(Y).

Step 8.
o, 1(Y)+B(Y)=1 for 0O<L<N. (2.4.12)

proof. If L =1, then &(Y) =1 and By(Y) = 0, so (2.4.12) holds. Suppose that L > 1. We
divide into two cases.

First, suppose that o1 = 0. Since 6,1 (Y) = 0, it is sufficient to show that B.(Y) = 1. By
2.4.7).2)_, = (p—1,0,...,0). Hence ¥, | = (0,...,0). This implies that

oL-1(Y)©or—1 —6.2(Y)—Pr1(Y)=0-1<0,

and hence B (Y) = 1.
Next, suppose that oz 1 = 1. There are two possibilities for ngl-
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Suppose that Z? | = (p—1,0,...,0). Since ¥,_; = (0,...,0), we have &, (Y) = 1. We also
have
GL_l(Y)@OtL_l — 5L_1(Y) — GL_I(Y) =0681-1=>=0.

Hence B.(Y) = 0.
Suppose that Zg_l = (p-1,0,...,0,1,0,...,0). Then YLO_1 = (0,...,0,1,0,...,0). Hence
Or—1(Y) =0and

GL_I(Y)@OCL_l —SL_I(Y) —GL_l(Y) =161-1<0.

Therefore B.(Y) = 1.

Step 9.
ON(Z) = By+1(Y) (2.4.13)

proof. Suppose that 6y(Z) = 1. Then Zy = (0,...,0) and ooy = 1. Hence oy(Y) © ay —
ON—1(Y)—Bn(Y)=1601—-1<0,s0 By4+1(Y) = 1.

Conversely, suppose that By.1(Y) = 1. Then oy(Y)© ay —oy—1(Y) —Bn(Y) = on(Y) O
oy —1 < 0. Hence oy(Y) = ay and on(Z) = oy © 1. Thus

hy = ®N(Z) = on(Z) Oy © On—1(Z) O BN(Z) = p— 1. (2.4.14)

We divide into two cases.
First, suppose that N < K. By (2.4.8), we have Zy = (Z3,,0,...,0) and

p—1 #ZZ%ZG(ZN)ZOCN@L

It follows that oy = 1 and Z3 = 0, and hence y(Z) = 1.
Next, suppose that N = K. Let

0 m—1
XZK—i—l = (X>K+17 ce 7X>K+1)

and
W= @Kk where  Exgit = (Ekt1,Eki1e-s).

Then
Y(X>k11) = g=k+1 + 0k (X) + Br+1(X).

Since Xax 11 =Z>k+1,

8=k+1+ 0k (X)+ Br+1(X) = ¥(X=k+1)
=W(Zok+1) = h=k+1+ 0k(Z)+ Bx+1(Z) = h=k+1 + Ok (Z).
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2 Digit-Separable Sprague-Grundy Functions

Assume that 6k (Z) = 0. Then 0x(X) = Bgx+1(X) =0 and g=x+1 = h>g+1. Since hg = hy =
p—1, we have gg = p—1. Since X,g # 7%, we have ox(X)O ok # ox(Z)Qag = p— 1.
However,

p—1=gkx =Pk(X) = ox(X)Oax©6—1(X) OBk (X).

This implies that
GK(X)@OCK — (SK,l(X) fﬁK(X) < 0.

Therefore Bx1(X) = 1, which is a contradiction. Hence 8g(Z) = 1.

Step 10.
DY) =h.

proof. Tt suffices to show @, (Y) = hy for L€ N.

IfL =0, then hy = p— 1 = do(Y).

Let 1 <L <N. Then h; = CDL(Z). By q2410D and 42411[), (I)L(Z) = GL(Z) oo = GL(Y) )
1© ay. It follows from that

OL(Y)=0LY)Ou©d.-1(Y)OBL(Y)
= GL(Y)@OCL@I = q)L(Z) = hL.

Let L =N+ 1. Then Y, = Z;. By the definition of N, we have Z]Q, # p — 1. In particular,
Yy # 0. This implies that

Sy 1(Y)=0on+1(Y)Oon11©n(Y)OBN1(Y) = on+1(Y)O oy 41 ©Br+1(Y).

By @41T) and @4T3).

Dy 1(Z) = ont1(Z) O N1 ©ON(Z) © Bn+1(Z)
=on+1(Y)Oan+1©n(Z) = on1(Y) O oy 1 ©Brn+1(Y).

Hence @y (Y) = Py41(Z) = hv1.

Let L > N +2. It is sufficient to show that B.(Y) = Br(Z). Since dn(Y) + By+1(Y) =
Bn+1(Y)=6n(Z) = On(Z) + Bn+1(Z), we have By12(Y) = Bv+2(Z). This implies that B (Y) =
BL(Z) for L > N + 2. Therefore ®;(Y) = ®1(Z) = hr. This completes the proof.

[
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2.A Designs and Their Game Distributions

Appendix 2.A Designs and Their Game Distributions

Ryba found a game, called the hexad game, whose winning position set forms a Steiner system
S(5,6,12) (see [6,/135]). In this section, we introduce the notion of game distributions and show
that the hexad game has the smallest number of positions among games whose winning set
position forms an S(5,6,12).

In this section, we use the following set representation of Welter’s game. Let

P (S) _ {XCN: |X] = m)

and

A={(X,Y)EP:\XﬁY\zm—l,2x>Zy}.

xeX yeY

Then the game (P,A) is called the set representation of Welter’s game, and is denoted by W™
(see Section [3.2.2] for details).

2.A.1 Designs

Definition 2.A.1. Lett,v,k,A € N. Let V = [v](= {0,1,...,v—1}) and B be a subset of (})(=
{B<V :|B| = k}). The pair (V,B) is called a t-(v,k,A) design if, for each T € (V), there exist
exactly A elements B € B with T<B. The elements of V is called points and those of B blocks.
Let D be at-(v,k,A) design. If A = 1, then D is called a Steiner system S(t,k,v).

Example 2.A.2. Some subsets of the wining position set of A" form Steiner systems. Let
Y =1[7]=1{0,1,2,3,4,5,6} and

B = {B € (1,;> : B is a winning position inW}
= {{07172}7{07374}7{07576}7{17375}7{17476}7{27376}7{27475}}'

Then (V, B) is a Steiner system S(2,3,7).
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2 Digit-Separable Sprague-Grundy Functions
In general, let V = [2¥ — 1] and
1% . o ey
B=<Be 3 : B is a winning position in W3
1%
= {bo,bl,bz} € 3 : (b0+ 1)@2 (bl + 1)@2 (b2+ 1) =0 ;.

Then (V, B) is a Steiner system S(2,3,2" —1). This Steiner system is called the projective
Steiner triple system.

Example 2.A.3 (Hexad game). Let H be the subgame of Welter’s game WO induced in

xe (U2 vzl
e () g

This game is called the hexad game. As we have mentioned, Ryba found that the winning
position set of this game forms a Steiner system S(5,6,12).

2.A.2 Game Distributions

We construct games whose winning position set forms a Steiner system and generalize the
frequency distribution that was used to construct inverted Nim in Section
Let D be a Steiner system S(k — 1,k,v) and B be the block set of D. Let I'” denote the

maximum induced subgame of W with P(I'° )g([lvc]) and W(T'?) = B, where W (T'?) is the
winning position set of I'”. Then we can show that I"” is the subgame of W* induced in

By {Xe <[Z]> : (B,X) e AOM™) for some BEB}

zBuUZ/{(B),
BeB
where
AW
U(B)Z{Xe(k BAX|=k—1and > x>>by.
xeX beB
Let

FP={1°®): 6 e Sym([v])},

where (D) = ([v],5(B)) (see the example below). We will consider the frequency distribution
of |P(T')| for T e FP. This distribution is called the game distribution of D. Let dP denote the
number of I" in FP? that has exactly n positions:

db = HFEFD:\P(F)\ =n}.
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2.A Designs and Their Game Distributions

Example 2.A.4 (5(1,2,2k)). Letv=4,8={{0,1},{2,3}}, and D = ([4],B). Then D is a
Steiner system S(1,2,4). We see that

PTY) = ({01} (231} o {02). {031, (1,20, 1.3} = ().
Hence the game I'” has six positions. There are two different S(1,2,4), that is, (0 2)(D) and
(03)(D). We have
PrO2®) = {{0,3},{1,2}} u{{1.3}.{2,3}}

and

PrOI®) = {{0,2},{1,3}} v {{1,2},{0,3},{2,3}}.
Hence they have four and five positions, respectively. Therefore the game distribution of D is
as shown in the following table.

4 5 6
I 1 1

Hence df = dP = dP = 1 and d? = 0 for n +# 4,5,6.
In general, let D be an S(1,2,2k). Then we can calculate the moment generating function of
the game distribution of D as follows.

1 qz k 1_q2k—1
qun: 7
]FD\% " (2k—1)!!1_!

l—g¢q

where
2k—1)!'=1-3-5----. (2k—1).

Example 2.A.5 (S(2,3,7)). Let D be the projective Steiner triple system S(2,3,7). The game
distribution of D is

14 15 16 17 18 19 20 21
1 3 5 6 6 5 3 1

Note that this distribution is symmetric and the game I € F? with |P(T')| = 14 is related to
inverted Nim.

Example 2.A.6 (5(2,3,9)). The game distribution of an §(2,3,9) is

68 69 70 71 72 73 74 75 76 77 78 79 80
1 616 36 77 94 115 129 131 104 74 39 17

Theorem 2.A.7. Let D be an S(5,6,12). The game distribution of D is

905 906 907 908 909 910 911 912 913 914 915 916
I 10 42 150 351 650 1012 1237 939 532 115 1

Let T be the game in FP with |P(T')| = 905. Then T is the hexad game.
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3 p-saturations of Welter’'s Game and
the Irreducible Representations of
Symmetric Groups

We establish a relation between the Sprague-Grundy function sg of p-saturations of Welter’s
game and the degrees of the ordinary irreducible representations of symmetric groups. In these
games, a position can be regarded as a partition A. Let p* be the irreducible representation of
the symmetric group Sym(|A|) corresponding to A. For every prime p, we show the following
results: (1) sg(A) < |A| with equality if and only if the degree of p# is prime to p; (2) the
restriction of p* to Sym(sg(2)) has an irreducible component with degree prime to p. Further,
for every integer p greater than 1, we present an explicit formula for sg(4).

It should be noted that the notation in this chapter is slightly different from that in the previous
chapters. For example, for X € N, the i-th component of X will be denoted by x' instead of X'.

3.1 Introduction

Sato [28] conjectured that Welter’s game is related to representations of symmetric groups and
classical groups. In support of this conjecture, he pointed out that the Sprague-Grundy function
of this game can be expressed in a form similar to the hook-length formula. In this chapter, we
introduce p-saturations of Welter’s game and establish a relation between the Sprague-Grundy
function of these games and the degrees of the irreducible representations of symmetric groups.
Moreover, we present an explicit formula for this function and a theorem on these degrees.

3.1.1 Welter’'s game

Welter’s game is played with coins or a Young diagram. We review known results on the
Sprague-Grundy function of Welter’s game. We also give the definitions of games and their
Sprague-Grundy functions at the end of this subsection.

Welter’s game is played with a finite number of coins. These coins are on a semi-infinite
strip of squares numbered 0, 1,2, ... with no two coins on the same square. See Figure[3.1] This
game has two players. They alternately move a coin to an empty square with a lower number.
The first player that is not able to move loses. We now consider the position X when the coins
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

are on the squares numbered X! ,xz, ...,x"™. Welter [30] and Sato [25-27] independently showed
that its Sprague-Grundy number sg(X) can be expressed as

sg(X) =x'@y - " D, (@2 mz(xi—xj)> ; (3.1.1)

i<j

where @, is binary addition without carry and 9% (x) = x@, (x — 1).

lo|1]2]3]~ lo|1]2]3]~
o+ °
[ [ o <
Player 1 moves 3to 1. Player 2 moves 2 to 0
and wins.

Figure 3.1: An example of Welter’s game.

Welter’s game can also be played with a Young diagram [25]]. Let o be the permutation
of {1,2,...,m} such that x> x0@) > o5 xom) | et A(X) be the partition (x®() —m +
1,x9%) —m+42,...,x°). For example, if m = 2 and (x',x?) = (1,2), then A(X) = (2 — 1,1 —
0) = (1,1). We identify A(X) with its Young diagram

[Gi)ez?i<i<m 1<j<20 moi).

As a result, moving a coin corresponds to removing a hook. From this viewpoint, Sato [25-27]]
found that (3.1.1)) can be written as the following form similar to the hook-length formula:

sg(X) = ) wi(X)2h = @ M (|H;,;(X)]), (3.12)

LeN (i,/))eA(X)
where H; j(X) is the hook
Hij(X)={(",j)eA(X): (=i and j=j)or (=i and j > j)}

and wy,(X) is the remainder of 2F-weight (the number of H; j(X) whose size is divisible by 2F)
of A(X) divided by 2. In this context, Kawanaka [16] found a family of games that includes
Welter’s game. This family is deeply related to d-complete posets, which were defined by
Proctor [[22,23]].

Let us represent Welter’s game as a digraph. Note that the position X can be described by the
m-tuple (x',...,x™) e N, where N is the set of all non-negative integers. E|Let

Pz{(xl,...,xm)eNm:xiaéxj for 1<i<j<m}

!The position X can also be represented by the set {x!,...,¥™}. We will use this representation in latter sections.
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3.1 Introduction

and
A:{(X,Y)EP2:xi>yi for 1 <i<m and dist(X,Y):l}7

where X = (x!,...,x"),Y = (y',...,y"), and dist(X,Y) is the Hamming distance between X
and Y, that is, dist(X,Y) = |[{i€ {1,...,m} :x' #y'}|. The digraph (P,.A) is called Welter’s
game with m coins and is denoted by W™.

3.1.2 p-saturations

Let p be an integer greater than 1. As we have seen, we can write the Sprague-Grundy function
of Welter’s game using arithmetic modulo 2. In this subsection, we present a variant of Welter’s
game whose Sprague-Grundy function can be expressed using arithmetic modulo p.

To state our goal precisely, we introduce some notation. Let X be a position in Welter’s
game, and let L be a non-negative integer. A hook in A(X) is called a (p*)-hook if its length
(size) is divisible by pL. The number of (pF)-hooks in A (X) is called the pt-weight of A(X)
and is denoted by wy (X). Let wz(X) denote the remainder of wy (X) divided by p. We define
w(X) = wlP)(X) = (wr(X))Len and

w(X) =w)(X) = w(X)p". (3.1.3)
LeN

We will construct a game whose Sprague-Grundy function is equal to w. To this end, we need
to allow moving multiple coins (removing multiple hooks) with restrictions in one move. Let
us give an example.

Example 3.1.1. Let p = 3. Let I" be a game with P(T") = P(W?). Assume that for each position
X in T, the Sprague-Grundy number of X is equal to w(*) (X). Let us examine the structure of
I.

Figure 3.2| shows w() (X) for some positions in I'. It is easy to verify that if |1 (X)| < 3, then
w3 (X) = |A(X)| = W (X). Let us consider positions X with |4 (X)| = 4. First, let X = (2,3).
Then, in ordinary Welter’s game, X has an option ¥ with w(®)(Y) = h for each h e {1,2,3},
but it has no option ¥ with w()(¥) = 0. Since sgr(X) = w)(X) = 4, it follows from the
definition of Sprague-Grundy functions that X must have an option ¥ with W(3)(Y )=0inT.
Thus (X,(0,1)) € A(T") or (X,(1,0)) € A(T"). In other words, we need to allow moving two
coins in one move. Next, let X = (1,4). Since sgp(X) = w() (X) = 1, this position cannot have
an option ¥ with w(®)(Y) = 1 in I'. In particular, (X,(0,2)) ¢ A(I'). Hence we must restrict
some moves.

Based on the above example, we introduce a game called W™ with p-index k, where k is a
positive integer. This game comes from Moore’s Nim; (Nim with index k) [18] and Flanigan’s
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3]2 3[1] )]
21 il il
w=(410.) w=310.) w=(200.) w=(100.) w=(000.)
w=4 w=3 w=2 w=1 w=0
4l2]1] [3]2[1] [2[1]
1
w=(400.) w=(310.) w=(200.) p=3
w=1 w=3 w=2

Figure 3.2: w(X) and w(X) for some positions. Positions are represented by the corresponding
Young diagrams.

RimkE| Let D™ be the set of all m-tuples (d I ...,d™) e N" such that
m . .
ord (Z d’) =min{ord(d'): 1 <i<m}, (3.1.4)
i=1

where ord(x) is the p-adic order of x, that is,

max{LeN:pk|x} if x#0,
ord(x) = {oo if x=0

Let P = P(W") and
Ay ={(X,Y)eP?>: X -YeD", 0<dist(X,Y) < k}. (3.1.5)

The game (P, Ay) is called W™ with p-index k and is denoted by Wi k-
Note that WE’; 2 = W™, In fact, for every k > 2, the game W(”E X has the same Sprague-

Grundy function as the ordinary Welter’s game W(”zl 2) (see Lemma . In contrast, the

Sprague-Grundy functions of W(23.3) and W(23 7y are different as we will see in the next example.

Example 3.1.2. Let us consider Example(3.1.1|again. Let ' = W(23.3)' We verify that (1,0) and

(0,1) are options of (2,3) in I". This implies that, sgr-((2,3)) = 4 = w®((2,3)). We also show
that (0,2) is not an option of (1,4) inT".

Note that it is easy to show that sgr(X) = w3 (X) for X € P(I') with [A(X)| < 3. Let X =
(2,3). Since X — (1,0) = (1,3) and X — (0,1) = (2,2),

ord(1+43) =0 =min{ord(1),ord(3)} and ord(2+2) =0 = min{ord(2),ord(2)}.

ZPlayers can move at most k — 1 coins in Nim; and Rimy. The latter is devised by James A. Flanigan in an
unpublished paper entitled “NIM, TRIM and RIM”. In Section @, we show that Rim,, and p-saturations of
Nim have the same Sprague-Grundy function.
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This implies that (1,0) and (0, 1) are options of X in I. In particular, sgr(X) = 4 = w(®) (X).
Since W) (X) = 0, the Sprague-Grundy functions of Wé 3) and W(23 y) are different. Next, let
X = (1,4). In T, the position (0,2) is not an option of X. Indeed, X — (0,2) = (1,2), so

ord(1+2) =1 0=min{ord(1),ord(2)}.
Hence sgr-(X) = 1 = w®)(X).

We now define p-saturations. The game W(’; X is called a p-saturation of VW™ if it has the
same Sprague-Grundy function as W}

(pm1)" The smallest such k is called the p-saturation

index of W™ and is denoted by sat,()V™). By definition, if j > sat,(WW'""), then W, ;) also has

the same Sprague-Grundy function as WE’; ) As we have mentioned above, saty(W") =2

;m+1
for every positive integer m. In general, sat,(W™) = min(p,m + 1), but we do not know its

exact value for 3 < p < m (see Remark[3.3.6)).

3.1.3 Main Results

We first present an explicit formula for the Sprague-Grundy function of p-saturations of Welter’s
game. We begin by introducing some definitions. Let X be a position in Welter’s game, and let
L be a non-negative integer. A hook in A (X) is called a (p*)-hook if its length (size) is divisible
by p“. The number of (p’)-hooks in A (X) is called the pt-weight of A(X) and is denoted by
wr(X). Let wr (X ) denote the remainder of wz,(X) divided by p. We define w(X) = (wr(X))Len
and

w(X) = Y wi(X)ph. (3.1.6)
LeN

Let ®, and ©, be p-ary addition and subtraction without carry, respectively. For each x € Z, let
My(x) =x, (x— 1) = X740 ot

Theorem 3.1.3. Let X be a position (x',...,x™) in a p-saturation of W™. Then the following

two assertions hold:
1. There exists a position Y such that A(Y)SA(X) and |A(Y)| =w(Y) = w(X).
2. The Sprague-Grundy number sg(X) of X is expressed as follows:
sg(X) = w(X)

= (‘Dp mp(}Hi,j(X)D
(i,/))eA(X) (3.1.7)

=x' @p - Dpx" Op ((‘Bp mp(xi—xj)> .

i<j
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

As we will see in Section the first assertion of Theorem is the key ingredient of the
proof of the second one.

Suppose that p is a prime. We next establish a relation between the Sprague-Grundy function
of p-saturations of YW and the degrees of the irreducible representations of symmetric groups.
Let X be a position in a p-saturation of W' and let pX be the ordinary irreducible representation
of the symmetric group Sym(|A(X)|) corresponding to A (X). By Macdonald’s result [17], we
see that the degree of p*X is prime to p if and only if W(X) = |A(X)|. From Theorem we
obtain the following corollary.

Corollary 3.1.4. Let X be a position in a p-saturation of Welter’s game. If p is a prime, then
the following assertions hold:

1. sg(X) < |A(X)| with equality if and only if the degree of p* is prime to p.

2. The restriction of pX to Sym(sg(X)) has an irreducible component with degree prime to
p.
Example 3.1.5. Let p = 2 and X be a position (2,4,6) in a 2-saturation of Welter’s game. We

first calculate the degree of pX and the Sprague-Grundy number of X. Since the multiset of
hook-lengths in A (X) is {1,1,1,2,3,3,4,5,6} (see Figure3.3),

deg(p*X) — 168

T 6.54.32.0
by the hook-length formula [[10]. We also have
w(X) = (wo(X),w1(X),...) =(9,3,1,0,...).

Hence (wo(X),w;(X),...) =(1,1,1,0,...). Thus sg(X) =w(X) =1+2+4=1.
Corollary asserts that the restriction p¥| sym(7) has an irreducible component with odd
degree. Indeed, by the branching rule (see, for example, [24]),

PX\Sym(7) = 2p239) 2p1:45) 2 (1:3.6) g n(0:4.6),

We find that the degrees of p(2’3’5),p(1’4’5), and p(173’6) are odd.

By the way, (2,4,5),(2,3,6), and (1,4,6) can be obtained by decreasing one entry in X by 1.
Note that the 22-weights of (2,4,5) and (1,4,6) are greater than that of X. In Section these
options will be called 2*-options of X. They will play a key role in the proof of Theorem [3.1.3]

Corollary suggests the following problem.

Problem 2. Let p be an irreducible representation of Sym(n). What is the greatest integer
msg(p) such that the restriction of p to Sym(msg(p)) has an irreducible component with degree
prime to p?

Note that Corollary yields msg(p*) = sg(X), where X is a position in a p-saturation of
Welter’s game. This bound is improved in Remark [3.3.8]
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6[5[3[1] w=0931.)
431 sg=7
201 deg = 168
s(4l2] W=10842.) [g]5]2 ] w= 840,..) [g 3[1] W= (8,4,2,..)
4]3]1]%9=0 3)2 sg=0 421 s9=0
IE deg = 42 K deg = 56 0 deg = 70
5141 ‘ w = (7,3,1,.) 5 2 w = (7,3,1,.) 6|42 ‘ 1 ‘ w = (7,3,1,..) 5(4(31 ‘W =(7,21,..)
312 sg=7 421 sg=7 3017 sg=7 Ik sg=5
211 dEQ =21 L deg =21 L deg = 35 deg =14

Figure 3.3: The degrees ofp(2’375),p(17475), and p(17376) are odd. The 22-weights of (2,4,5) and
(1,4,6) are 2, which is greater than that of (2,4,6).

3.1.4 Organization

This chapter is organized as follows. In Section [3.2] we introduce a notation and recall the
concepts of impartial games and p-core towers. In Section[3.3] we reduce Theorem [3.1.3]to two
assertions and (A2)). Section[3.4]contains the definition and basic properties of p*-options.
Using them, we show in this section. In Section 3.5 we prove (A2).

3.2 Preliminaries

3.2.1 Notation

Throughout this paper, p is an integer greater than 1. We write @ instead of @®,. We regard
Z/p*7 as {0,1,...,p* — 1} for Le N. Let Q denote Z/pZ. In this paper, we will frequently
use p-core towers. For this reason, the following notation is useful.

For a non-negative integer x, let xgp ) denote the L-th digit in the p-adic expansion of x, that

(p) (p) (p)

is,x=>, LeNXT, pL and x;"’ € Q. We write xz, instead of x;”” when no confusion can arise.
We identify x € N with the infinite sequence (xq,xj,...) € QN In this notation, for x, yveN,

x®y = (X0 ®yo,Xx1 ®y1,-..) = (X0 +Yo,x1 +y1,...).
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

Let x-; denote the residue of x modulo pL. We also identify x.; € Z/ pLZ with the finite
sequence (xg,x1,...,x7_1) € QL. Let x> denote the quotient of x divided by p’, that is, x>7 =

()CL,)CL_H, .. )
Let L,N e N. Let Re QF and S € QY. We use (R,S) to denote the concatenation of R and S,
that 1s,
(R,S) = (Ro,...,R;_1,50,-..,Sny_1) € QL.

ForxeNand =€ { +,—,®,0}, we define R = x by
R*x:R*x<LeQL,
where
R®x.p = (Ry®x0,...,RL_1®Dx.—1) and ROx.p = (RgOxp,...,RL_1Ox1_1).
For example, (0,0)©1 = (p—1,0), while (0,0)— 1= (p—1,p—1) and (0,0)© p*> = (0,0).

3.2.2 Games

We recall the concept of impartial games. See [1, 5] for details. We also give the definition of
p-saturations of Nim and some remarks on Welter’s game.

Let I be a game. For X € P(I'), let Ig(X) denote the maximum length of a path from X. By
definition, 1g(X) is finite for each position X in I'. By an easy inductive argument, sg(X) <
lg(X). For example, in Welter’s game, sg(X) < lg(X) = |A(X)|. Let X and Y be two positions
in I'. If there exists a path from X to Y, then Y is called a descendant of X. For example, in
Welter’s game, Y is a descendant of X if and only if A(Y) < A(X). A descendant Y of X is said
to be proper if Y # X.

We give a characterization of Sprague-Grundy functions. Let ¢ be a function from P(I') to
N. If o satisfies the following two conditions, then ¢ is the Sprague-Grundy function of I'.

(SG1) X has no option Y with 6(Y) = o(X).

(SG2) X has an option Y with 6(Y) =hfor0 <h < o(X).

Example 3.2.1 (Nim and Welter’s game). Let P = N and
Az{(X,Y)ePQ:xi>yi for 1 <i<m and dist(X,Y) =1},

where X = (x!,....x™) and Y = (y!,...,y™). The game (P, A) is called Nim with m-coins and
is denoted by N™. See Figure Nim was first analyzed by Bouton [2]. The following
explicit formula for the Sprague-Grundy function of Nim was obtained by Sprague [29] and
Grundy [|12] independently:

sg(X)=x'@, - @™ (3.2.1)

Note that Welter’s game W™ is the subgraph of N induced in P(WW™). In other words,
Welter’s game is Nim with the restriction that the coins are on distinct squares.
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Example 3.2.2 (Games with p-index k). In view of Example [3.2.1] we can generalize Welter’s
game with p-index k. Let P be a subset of N, Let I be the subgraph of N induced in P. For
each positive integer k, let

Ay ={(X,Y)eP?*:X-YeD" 0<dist(X,Y) <k}, (3.2.2)

where D" is defined by (3.1.4). The game (P, .Ay) is called I with p-index k and is denoted by
L'(p.x)- In other words, I'(, 1) is the subgraph of /\/'(’I'f7 X induced in P (). Figure shows a part

of /\/'(22 3)-
The game I'(, ;) is called a p-saturation of I if it has the same Sprague-Grundy function as

L'(p.m+1)- In the next section, we will consider p-saturations not only of Welter’s game, but also
of Nim.

(2,2) (2,2)
Y // W\
(2,1) _—1.2) 1)~/ _\—12)
/ \\ // \ © \

(2,0) (1,1

\0,2) (2,0/ | (1.1 ! (0,2)
N 7 \\/\ 1
N N\

(0,0) (0,0)
2 2
N Nizs)
Figure 3.4: Positions in A/? and ./\/'(22 3)-
Remark 3.2.3. We give two remarks on positions in Welter’s game.
First, we can represent a position in Welter’s game as a set. Let us consider two positions
(x!,x?) and (x?,x") in W2, If (y',y?) is an option of (x!,x?), then (y?,y') is an option of (x?,x!).

Therefore we can identify these two positions (x',x?) and (x?,x!) and represent them as the set
{x',x?}. In general, let

N
P - ( ) — [XEN: [X] = m)
m
and Ay, be the set of (X,Y) € P? such that there exists a bijection ® : X 3 x' — y’ € Y satisfying

(™), 0 y™) € AV 1)- (3.2.3)
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

The game (P, Ay) is called the set representation of W(”; ) and is denoted by WZ”

)" Note that
& satisfies (3.2.3) if and only if x > ®(x) for x € X and

ord (Zx— Zy) — min{ord(x —®(x)) :xe X }. (3.2.4)

xeX yey

We also see that

SN 1 n — m 1 n .
sgr (2 ")) = sgyp (61 2™)

We will use this set representation in the rest of paper. Note that for X € P, we can define
A(X),w(X), and so on.
Second, two positions X and

XM= {x+1:xex}u{0}

are essentially the same, since Y is an option of X if and only if Y (1] is that of X', In general,
let
xl — (X[nfl])[l] (3.2.5)

for n > 1. Note that A(X["]) = A(X) for n e N, where X/ = X.

o[1)2]3]  Jo[1]|2]3]~

K
oj®| | o |o|o]

Figure 3.5: {1,2} and { 1,2}[1].

3.2.3 p-core Towers

In this subsection, we define p-core towers and state their properties. Details can be found in,
for example, [[17,20,21]]. Using p-core towers, we will show Theorem [3.1.3]in latter sections.
Let X be a position in W/ )’ that is, X is a finite subset of N. Let L be a non-negative integer.

(p:k
For each R € QL let

XRZ{)C;LZXEX,X<L=R}. (326)

For example, if p = 10 and X = {12345,67890}, then Xp = {6789} ,X5 = {1234}, and X, = J
forre {0,1,...,9}\{0,5}. The position X is uniquely determined by (Xg)geqr. Indeed, let

[Xglgeqr = { (R,%) : Re Q" £ Xp }, (3.2.7)

where (R, %) = (Ro,R1,...,RL—1,%0,%1,...). Then X = [Xg]geqr. With this notation, we define
the p-core X(,,) of X by

Xy =0, 1,00, X = 1}],cq- (3.2.8)
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Let 79(X) denote |4 (X(p) |. As we will see in the next example, A (X(p)) is the partition obtained
by removing all (p)-hooks from A (X).

Example 3.2.4. Let p =3 and X = {2,4,6,7,10}. To calculate 75(X), it is convenient to use
the p-abacus introduced by James [|14]]. First, we place five beads on 2, 4, 6, 7, and 10 as the
left picture in Figure[3.6] Next, we move all beads upwards as high as possible. Then we obtain
the 3-core {0,1,2,4,7} of X. Therefore 75(X) = M(X@))’ = 4. Note that moving upward one
bead corresponds removing one (3)-hook. Hence A (X(3)) contains no (3)-hooks. We also find
that 70(X) =4 =19-3-5=|A(X)|— pwi1(X) = wo(X) — pw1(X).

Figure 3.6: X and X(3) on 3-abacuses.

The sequence ((Xr)(p))reqt is called the L-th row of the p-core tower of X. We define

w(X) = ) T0(Xg). (3.2.9)
ReQL

Let 7. (X) be the remainder of 7;,(X) divided by p. Let 7(X) and T(X) denote the sequences
whose L-th terms are 77(X) and 71 (X), respectively. For example, 7, ({x}) = x; forx € N.

Example 3.2.5. Let us consider Example again. We calculate 7;(X). Since
Xo={6=1}={2}, X1 ={4>1,7>1,101} = {1,2,3}, and X5 ={2:,} = {0},

we have (Xo)3) = {2},(X1)3) =1{0,1,2}, and (X2)(3) = {0}. Hence 71(X) = 2. In this way,
we obtain
7(X)=(4,2,1,0,...) and 7T(X)=(1,2,1,0,...).

We next give the basic properties of 77(X). As we have seen in Example [3.2.4] 79(X) =
wo(X) — pwi(X). In general,

TL(X) = wr(X) — pwri1(X). (3.2.10)
By (3.2.10), we have 77,(X) = wr(X) and T(X) = w(X). Moreover,

S (X)ph = (wo(X) — pwi (X)) + (w1 (X) — pwa(X))p+ - = wo(X) = [A(X)].  (32.11)
LeN
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

Therefore T(X) = |A(X)| if and only if 7(X) = 7(X), that is, the total size of the p-cores at each
level of the p-core tower of X is at most p — 1.

Furthermore,
(X)) = ) T(Xr), (3.2.12)
ReQL
weL(X) = D w(Xg), (3.2.13)
ReQL

where =7 (X) = (10.(X), T2+1(X),...) and w>r(X) = (wr(X),wr+1(X),...). In particular,

we(X) = > wo(Xg) = >’ (Zx— 0+1+- (|XRy—1))>

ReQlL ReQl \xeXg ™ (3.2.14)
R
xeX ReQL

Remark 3.2.6. Let X be a position {xl I } in JA. We close this section by proving

w0 -r o000 (@We-a) - @ m (A0,

i<J (i,/)eA(X)

We may assume that x! > - > x™. Since M, (x) = eri(()x) pL, it follows that

( @ ‘)T,,(}H,-J(X)D)LEWL(X) (modp).
(irj

Hence @ ; jjenx) Np(|Hi,j(X)]) = W(X) = T(X). We also have

3.3 p-saturations

In this section, we will study p-saturations of Nim and Welter’s game. The aim of this section
is to reduce Theorem [3.1.3]to two assertions in Subsection[3.3.2]
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3.3.1 p-saturations of Nim

In some cases, we can reduce the problem of Welter’s game to that of Nim. This is because, by

(3.2.12),
T21(X) =7T(X0)®- - ®T(Xp-1),

where X is a position in W and T=1(X) = (T1(X),T2(X),...). In this subsection, we will prove
sg(X)=x'®---@x", (3.3.1)

where X is a position (x',...,x™) in p-saturations of Nim. Let ¢(X) be the right-hand side of

(3.3.1) for X € N™. To prove (3.3.1])), it is sufficient to show (SG1) and (SG2).

The next lemma provides a necessary and sufficient condition for a descendant to be an option
in /\/(’;l7 0" In particular, (SGI) holds.

Lemma 3.3.1. Let X be a position (x',... ,x™) in /\/'(’;k). IfY is a proper descendant (y',...,y™)
of X such that dist(X,Y) < k, then

ord (6(X) —o(Y)) = min{ord(x' —y') : 1 <i<m}
with equality if and only if Y is an option of X.

proof. Since dist(X,Y) < k, the position Y is an option of X if and only if X —Y € D". Let
N =min{ord(x' —y') : 1 <i<m}. Thenx} =y, for0 <L <N. Hence

ord(c(X)—0o(Y)) =N
and
(o)~ (1)) = (Zx” —yf)N.
i=1

Therefore ord(o(X) —o(Y)) = N if and only if Y is an option of X.

It remains to show (SG2)).

Lemma 3.3.2. Let X be a position (x',... x™) in ./\/;Tk. Suppose that k = min(p,m+ 1). Then
X has an option Y with 6(Y) = hfor 0 < h < o(X). In particular, sg(X) = o(X).

proof. We first construct a descendant Y of X such that 6(Y) = h. Letn = o(X) and N =
max{L e N:ny # hy}. Since h < n, it follows that hy < ny = x}\, + - +x%. Thus there exist
rl ..., e Q such that

r1+---+r’”:hN and riéva for 1 <i<m.
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

By rearranging x' if necessary, we may assume that r! < lev- Since ny < p— 1, we may also
assume that

dist ((rl, ), (xh,. ) <k

Let

1 | 1 11
y' = (xo—no+ho,....Xxy_| —AN—1 +hN_1,7 XN 1 XN ) S

y = (xé,...,xf\,fl,ri,x}'wl,x}.v“...) for 2<i<m,
andY = (y',...,y"). Then Y is a proper descendant of X with 6(Y) = h.
It remains to verify that Y is an option of X. Since dist(X,Y) < k and

ord(6(X) —o(Y)) = ord(x! —y!) = min{ord(xi—yi) c1<i<m},

it follows from Lemma [3.3.1]that Y is an option of X.
[

Remark 3.3.3. Using Lemma [3.2.11] we can show that the p-saturation index of A" equals
min(p,m+ 1). Indeed, if m = 0, then there is nothing to prove. Suppose that m > 1. Then
min(p,m+ 1) > 2. Let k = min(p,m + 1) and

X=(p,...,p,0,...,0) e N".
W—J

k—1

This position X has no option (y!,...,y") withy! @---®y" = 0in /\/;’]?kil. Thus sat,(N™) =k
by Lemma|3.2.11

3.3.2 p-saturations of Welter’'s Game

In the rest of this paper, positions mean positions in W(’;’) mt1)

Theorem [3.1.3|follows immediately from the next result.

, unless otherwise specified.

Theorem 3.3.4. Let X be a position.

1. The following two assertions hold:
(A1) IfT(X) = |A(X)| > O, then X has a descendant Y withT(Y) =T(X) — 1. E|
(A2) IfT(X) <[A(X)

, then X has a proper descendant Y withT(Y) > T(X).

2. sg(X) =7(X).

3Note that Y satisfies (A1) if and only if 7(Y) = [A(Y)| = |A(X)| - 1.
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Let X be a position. We will prove the above theorem by induction on |A(X)|. If |A(X)| =0,
then there is nothing to prove. Suppose that |A(X)| > 0. By the induction hypothesis,

sg(Z) =7(Z) for Z with |A(Z)| < |A(X)]. (3.3.2)

The assertions and are proven in Sections[3.4]and[3.5] respectively. In this subsection,
we show how and imply that sg(X) = 7(X). It is sufficient to show (SGI) and (SG2).

The next lemma, which is an analog of Lemma [3.3.1] provides a necessary and sufficient
condition for a descendant to be an option in Wa’) ©°

Lemma 3.3.5. Let X be a position (x',...,x™) in WI’,’fk. IfY is a proper descendant (y',...,y")
of X such that dist(X,Y) <k, then

ord(T(X') —T(Y’)) = min{ord(x' —y") : 1 <i<m}
with equality if and only if Y is an option of X, where X' = {x',... . X"} and Y' = {y',... y"}.

proof. Since dist(X,Y) < k, the position Y is an option of X if and only if X —Y € D™. Let
N =min{ord(x' —y"): 1 <i<m}.

We first show that ord(T(X") —T(Y’)) = N, By the definition of N, we have x’_y =y’ for
1 <i<m. Hence |X}| = |Yg| for each R € QF with 0 < L < N. Thus Ty (X’) = 7n(Y"),
where Toy(X') = (10(X’), 71 (X'),...,Tv—1(X")). This shows that ord(7(X') —7(Y’)) > N. By
(3.2.14)), we have

m m m
wy(X') —wny(Y') = ZXEN - ZYQN = (2361 —yl>>N
i=1 i=1 >
It follows that
(X)) =Ty () =wy(X') —wy(Y') = (Zx - ) (mod p).

Therefore ord(7(X’) —7(Y’)) = N if and only if ¥ is an option of X.
0

We now prove (SGI) using Lemma [3.3.5] Let Y be an option of X. Then there exists a
bijection ® : X 3 x' — y' € Y such that (y',...,y") is an option of (x',...,x™) in Wi
Hence

pm+1)°
ord(T(X) —7(Y)) = min{ord(x' —y)): 1 <i<m} <
by Lemma This yields 7(Y) # T(X).
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Remark 3.3.6. Using Lemma and Theorem [3.1.3] we can show that
sat,(W™) = min(p,m+ 1).
Indeed, if m = 0, then the assertion is trivial. Suppose that m > 1. Let k = min(p,m+ 1) and
X = {p,p+1,...,p~|—k—2}[’"_k+1]

defined in (3.2.5). Then k =2 and 7(X) = p(k—1) > 0, but X has no option ¥ with 7(Y) =0 in
W&kfl) by Lemma Hence sat,(W™) > k by Theoremm

We next show (SG2)) assuming (A1) and (A2). Recall that we also assume that (3.3.2). Let
n="T(X). If n =0, then (SG2) is trivial. Suppose that n > 0. We divide into three cases.

Case 1 (7 = n— 1). It suffices to show that X has a descendant Y with T(Y) = n— 1 because if
7(Y) =n—1, then
ord(T(X)—7(Y)) = ord(1) = 0,

s0 Y is an option of X by Lemma[3.3.5] If n = |A(X)|, then there is nothing to prove by (AT).
Suppose that n < |A(X)|. By (A2), the position X has a proper descendant Z with 7(Z) > 7(X).

By (3.3.2)), we have
sg(Z)=7(Z) >n—1.

Hence Z has an option Y with sg(Y) = T(Y) = n— 1. This position Y is a descendant of X.
Case2(h<n—1landhs#n (mod p)). By Case 1, X has an option Y withsg(Y) =7(Y)=n—1.
This position Y has an option Z with sg(Z) = T(Z) = h <n— 1. Since ord(n— h) = 0, the position
Z is also an option of X by Lemma[3.3.5]

Case 3 (h=n (mod p)). We first construct a descendant Z of X with T(Z) = h using Lemma

3.2. Let N = ord(n—h). Since h =n (mod p) and h < n, it follows that N > 0 and h>| < n>;.
Let a" = T(X,) for each r € Q. Then

D @al ! = n=1 > hs.
By Lemma 3.3.2} there exists (b°,...,b67~1) e N? such that

L. @reQbr = h>1,

2. b" < a" foreachre Q,

3. N—1=ord(@,.qd" —P,c0b") =min{ord(a"—b") : re Q}.
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Since |A(X;)| < |A(X)], it follows from (3.3.2)) that
sg(X,) =7T(X,)=d" =D".

When b" < @, let Z, be an option of X, with sg(Z,) = T(Z,) =b". When b" =d’, let Z, = X,.
We set Z = [Z,],cq- Then T(Z) = h.
We next show that Z is an option of X. By Lemma [3.3.5] it suffices to find a bijection
@ : X — Z such that
min{ord(x —®(x)) :xeX} =N (3.3.3)

and ®(x) < x for x € X.
We first construct a bijection @ : X — Z. Since Z, is an option of X, when b” < a’, there exists
a bijection ®" : X, — Z, such that

ord(a" —b") = min{ord(X — P (%)) : £ € X, } (3.3.4)

and @' (%) < £ for £ € X, by Lemma Let ®": X, — Z, be the identity map when b = a’.
We now define a bijection ® : X — Z by

®(x) = (' (%)) = (1 (@ (@), (@ ()\,...) e 2,

where r = xp and £ = x> 1. Since ®"(£) < £, we have ®(x) < x forx € X.

It remains to show (3.3.3)). By (3.3.4) and (3),

min{ord(f —®"(£)): £€X,, re Q} =min{ord(a"—b") :re Q} =N—1.

Since ord(x — ®(x)) = ord(£ — ®"(%)) + 1 if x # ®(x), we obtain (3.3.3). Therefore Z is an
option of X by Lemma|[3.3.5] This completes the proof of (SG2)).
In the rest of the paper, we will show (A1) and (A2).

Remark 3.3.7. Suppose that p is a prime. Then follows from the branching rule and the
fact that T(X) = |A(X)] if and only if the degree of p¥ is prime to p. Indeed, let X be a position
such that T(X) = |A(X)| > 0, and let deg(p*X) be the degree of pX. By the branching rule,

deg(p¥) = ) deg(p"),

where the sum is over all descendants Y of X with |A(Y)| = |A(X)| — 1. Since T(X) = |A(X)|
and p is a prime,
deg(p¥)#0 (mod p).

This implies that deg(p?) # 0 (mod p) for some descendant ¥ of X with [A(Y)| = [A(X)] — 1.
Therefore T(Y) =7(X) — 1.
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Remark 3.3.8. For a position X, let

msg(X) =max{7T(Y):Y is a descendant of X with T(Y) = |A(Y)|}
(=max{sg(Y):Y is a descendant of X } by assuming Theorem 1.1).

The assertion (A2) yields msg(X) = T(X). As we have mentioned in the introduction, we can
improve this bound as follows. If T(X) = |A(X)|, then msg(X) = T(X) because when Y is a
descendant of X, we see that 7(Y) = sg(Y) < [A(Y)| < |A(X)| by Theorem[3.1.3] Suppose that
T(X) < |A(X)|. Then T(X) # 7(X), so there exists L such that 7,(X) > p. Let N be the largest
such L. In Section we will show that

msg(X) = (e(p—1),p—1,....p— 1, Tny11(X), Tns2(X),...), (3.3.5)
N

where € = 1 if y(X) > p+ 1 and € = 0 if 7§(X) = p. For example, if p =3 and X =
{3,4,5,9,10,11}, then 7(X) = (0,0,3,0,...) and msg(X) = (0,2,2,0,...).

3.4 Proof of (A1)

We introduce p*’-options for H € N. p-options play a key role in the proof of . In fact,
let X be a non-terminal position with T(X) = |A(X)|. We first show that if X has a p’-option
Y, then 7(Y) =7(X)—1in Lernma We then prove that X always has a p®-option. This
implies that holds.

3.4.1 pf-options

To define p'’-options, we first introduce a total order. Let (0 )zen and (Br)ren be two non-
negative integer sequences with finitely many nonzero terms. Suppose that (0 )ren # (BL)eN-
Let N =max{LeN: oz # B }. If ay < By, then we write

(or)ren < (BL)ren: (3.4.1)

For example, for two non-negative integers x and y, we see that T({x}) < 7({y}) if and only if
x < y. Furthermore, for two positions X and Y,

w(X) < w(Y) < 7(X) < 7(Y). (3.4.2)

Let us show (3.4.2). Note that w(X) # w(Y) < 7(X) # 1(Y) since 7.(X) = wr(X) —
pwr+1(X). Suppose that w(X) # w(Y), and let N = max{L e N :wr(X) # wr(Y)}. Then for
L>N+1,

TL(X) = wr(X) = pwr1(X) = wi(Y) — pwr1 (Y) = 7.(Y).
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Moreover,
w(X) = (¥) = (wn(X) — pwni1(X)) — (Wn(Y) = pwn1(Y)) = wy(X) —wa (),

which gives (3.4.2).
We next define the (p-adic) order of a position. For a non-terminal position X (that is, X has
an option), the order ord(X) of X is defined by

ord(X) =min{LeN:7,(X) #0}. (3.4.3)

If X is a terminal position, then we define ord(X) = co. For example, ord({x}) = ord(x) for
each xe N.

For a position X, let (x x — d)(X) denote the option obtained from X by replacing x € X with
x—d e N\X, that is,

(xx—d)(X)=Xu{x—d}\{x} for xeX and x—d e N\X withx—d < x.

Definition 3.4.1 (p/-options). Let H € N. Let X be a position with order M and Y an option
(x x — p)(X) of X. The position Y is called a p-option of X if it has the following two
properties:

(O 7(Y)=1(X)—1 (mod p) for H< L <M.
(02) Top+1(Y) = Topi1 (X).

Example 3.4.2. Let p =3. Let X = {2,3,5,10},Y = (2 1)(X),Z = (5 4)(X), and W =
(10 9)(X). The position Z is a 3%-option of X, but ¥ and W are not. Indeed,

T(X) = (2,1,1,0,...),
t(Y) = (1,4,0,0,...),
1(Z) = (1,1,1,0,...),
T(W) = (4,0,1,0,...).

Hence they satisfy (O1), but only Z satisfies (O2)), since ord(X) = 0. Note that T(Z) = 13 =
14—1=7(X)—1, so X satisfies (Al). In fact, this is always true by the next lemma.

Lemma 3.4.3. Let X be a position with T(X) = |A(X)|. If X has a p°-option Y, then T(Y) =
T(X)— L

proof. By the definition of p®-options, [A(Y)| = |A(X)|—1 = 7T(X) — 1. Hence it is sufficient
to show that 7(Y) = |A(Y)|. Let M = ord(X).
We first show that 7>y 1(Y) = |A(Y)|5)s4- Since [A(X)| = T(X) = 7(X), we have

|A(X)’M = TM(X) # 0.
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This implies that

A =AX) 1= (p—1,....,p= L ay(X) = I, o1 (X), tr42(X), - ).
M

By (02).
Tom1(Y) = Topm1(X) =AY )| o001

Hence T=p41(Y) = |A(Y)|s 4y for otherwise Y, 7 (Y) p* > |A(Y)
It remains to show that 7oy 1(Y) = [A(Y)|_4. - By (OI),

, contrary to (3.2.11).

7(Y)=1(X)—1=|A(Y)|, (mod p) for 0 <L <M.

Hence Top41(Y) = |A(Y)|p4 - Therefore 7(Y) = |A(Y)| = 7T(X) — 1.

3.4.2 (A1) for ord(X) =0

To show using Lemma 3.4.3] we will show that if X is a non-terminal position with T(X) =
|A(X)|, then X has a p®-option.

Some non-terminal positions have no p-options. However, we will prove that every non-
terminal position X has a p™-option, where M = ord(X). For this reason, we give the next
definition.

Definition 3.4.4 (p*-options). Let X be a position with order M. A pM-option of X is called a
p*-option of X.

The next lemma is an essential property of p*-options.

Lemma 3.4.5. Every non-terminal position has a p*-option.

By Lemmas 3.4.3|and [3.4.5] (A1) holds when ord(X) = 0. To prove Lemma [3.4.5 we study
p*-options.
We first give a recursive property of p*-options. From this property, we only need to show

Lemma when ord(X) = 0.

Lemma 3.4.6. Let X be a position whose order M is positive. Then the following assertions
hold:

(1) ord(Xs) =M — 1 for some s € Q.

(2) Let Y, =X, for each r € Q\{s}. If Yy is a p*-option of X, then |Y,],cq is a p*-option of
X.
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proof. We first show (1). By (3.2.12)),
D t(X) = 11 (X) = (0,...,0, 73 (X), ...
—~—

reQ M—1

Hence 7y7—1(X;) # 0 for some s € Q. In particular, ord(X;) = M — 1.
We next show (2). Let Y = [Y,],cq. By (1), the position Y is a p(M_l)—option of X;. Hence

)= > 1Y) =Y (X)) —1=1y(X)—1 (mod p)
reQ reQ)
and
Topm1(Y Z T=u(Y, Z T=m(Xr) = T=m1(X).
reQ reQ

]

To prove Lemma [3.4.5] we compare the difference between p*-options and non-p*-options.
Let us give an example.

Example 3.4.7. Let us consider Example [3.4.2) again. To clarify the difference between the
30-option Z and the other options ¥ and W, we investigate ‘X(r, R)‘ forre Q' and Re QLU Q.
Recall that Z = (54)(X),Y = (2 1)(X),and W = (10 9)(X).

R [Xom| [Xar| [Xen|
0 1 I 2
0 0 1 i

(1) 1 0 1
2 0 0 0
Let x€ {2,5,10}. Then the following inequality holds only when x = 5:
‘Xx 1 <L’ < |X ’ forevery L>1. (3.4.4)

Indeed,
X = X[ =1<2=[X)| = [X(5,)| and [Xa_,|=0<1=]|Xs5_,]
for every L > 2. We also have
X0 | = [X0)| = 1= |X(1)| = [X(109)|

and
Xaon| = 1Xa0l =1=Xeo| = X2

In fact, we will show that if xo # O (this assumption is only for simplicity) and (3.4.4) holds,
then the option (x x — 1)(X) is a p®-option in Lemma Furthermore, we will show that if

’Xr_1| < }Xr| for some re Q with r # 0,

then there exists x satisfying (3.4.4) in Lemma[3.4.9] Using these results, we will prove Lemma
3.4.5]
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As we have mentioned in the example above, we first give a sufficient condition for an option
to be a p*-option. Let 8, = 1 if x = 0, and 6, = 0 otherwise.

Lemma 3.4.8. Let X be a position and Y an option (x x— p™)(X) of X. Then the following two
assertions hold:

H—L if L<H,
’XX<L|_’X(x—pH)<L‘_6_1 if L>H+1,

8

XL—1°

1owi(Y) —wi(X) = {_p

where & = Oy, 6y, -
2. Let M =ord(X). If H =M and
|X(x_pM)<L| + 8y Oy, O, < | Xaoy|  forevery L=M+1, (3.4.5)
thenY is a p*-option of X.
proof. We first prove (1). Let Z = X\ {x}. By (3.2.13) and (3.2.14), we have

wr(X) —wi(Z) = ), wo(Xr) —wo(Zg) = wo(Xe_,) —wo(Ze_,)
ReQL

= x> — ([Xay [ 1)

Since Z =Y\ {x— p” }, we also have

wr(Y) = wi(Z) = (x = p")or = (Y piy, | 1).

Thus
wr(Y) =wr(X) = X, | = Yoo iy, |+ (6= p)zr =21
If L < H,thenx.; = (x— p) 7, and hence wy(Y) —wp (X) = —p" L. Suppose that L > H + 1.
Then |Y(,_,m_, | = [X(x—pmy_, |+ 1 and (x—pM)=1 = x> — 8, which gives (1).
We next prove (2). By (1) and (3.4.3), wi,(Y) —wr(X) = 0 for every L > M + 1. This shows

that w=pr41(Y) = wp41(X). Hence, by 3.4.2), t=p+1(Y) = T=m+1(X). Since ty(Y) =
T(X)—1 (mod p), the position Y is a p*-option of X.
0

Finally, we present a sufficient condition for a position to have a p*-option. In fact, every
non-terminal position satisfies this condition as we will show after the next result.

Lemma 3.4.9. Let X be a position with order M. Let H and N be non-negative integers with
H < M < N — 1. Suppose that there exists S € QN such that

X5 pn|+8 < |Xs], (3.4.6)

where & = 0s,,0s,,,, -+ Osy_,. Then X has an option Y such that T=n(Y) = T=n(X) and Y =
(x x — p")(X) for some x € X with xo.y = S. In particular, if H=M =N — 1, then Y is a
p*-option of X.
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proof. We first construct x such that
X pty |+ 8uy Oy -+ Ox, < |Xx,| forevery L=N. (3.4.7)

Since |Xs| = ZreQ|X(SJ)

and Zr€Q|X(S,r)—pH| = ZrteX(S—pH,r) ” we have

Z ‘X(S,r)pr‘ +6= ‘XSpr} +0 < |X5} = Z }X(S,r)’~
reQ reQ
This implies that
[ X(s.50)—ptt | +88sy < [X(s.50)]

for some Sy € Q. Continuing this process, we obtain Sy, Sy+1,... € Q. Let x = (S, S1,...).

Then x- = S and (3.4.7) holds.
Let ¥ = (x x— p)(X). If ¥ is an option of X, then T=n(Y) > T=n(X) by Lemma [3.4.8]
Hence it suffices to show that Y is an option of X, that is, x € X and x — pH e N\X. Let

L=min{LeN:x{; =0 forevery x'€X}.
Then for each R € QF,
Xp={xL;:XeX,x_; =R} {0},

and hence |Xg| € {0, 1}. Since [X(,_pu)_, [+ 84,00y, -0,y < |Xa_, |, we have [X,_pu)_ [+
6XH5X ° 6

iyt 0y, =0and |X,_, | = 1. This implies that x — p” € N\X and x € X.
]

Lemma3.4.5] Let X be a non-terminal position. By Lemma [3.4.6) we may assume that the
order of X is 0. By Lemma [3.4.9} it suffices to show that |X;_;| + &; < |X;| for some s € Q.
Hence we may assume that [Xp| > |X;| > --- > [X,—1|. If |Xp| € {|X,—1],|X,—1]| + 1}, then there

exists s € Q such that
0 ifr<s
X, = |Xo| — .
1 if r>s.

o --- s s+1 .- p—-1
O O O O
| Xol

Q QO O
o O

Hence 7p(X) = 0. This shows that |Xo| > [X,—{| + 1.
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3.4.3 (A1) for ord(X) >0

In this subsection, we give a sufficient condition for a position to have a p’-option and prove
that if |A(X)| = T(X) > 0, then X satisfies this condition. This implies that holds. To this
end, it is important to compare the difference between positions that have a p"-option and those
that do not. Let us give an example.

Example 3.4.10. Let p = 3,X = {3,4,5,9,10,11}, and X = {1,2,3,9,13,14}. Then

7(X) = t(X) = (0,0,3,0,...).

The position X has a 3%-option. Indeed, let ¥ = (1 0)(X). Then

~

t(Y) = (2,2,2,0,...),

soY isa 30-option of X. However, X does not have a 3%-option. Indeed, if Y is a 3°-option of
X, then Y must be (3 2)(X) or (9 8)(X). Let Y be one of them. Then

T(Y) = (5,1,2,0,...).

Therefore X does not have a 30-option.
To illustrate the difference between X and X, let us calculate }X(F’R)| and ]X(,’R)‘ for r e Q!

and R € Q0 U Q! U Q2. The results are in Table We see that
X000 =0#1= X100,

but
[ X(ryot| = |X(ry| for re Q! and Re QU Q'L O

In view of Example [3.4.10, we introduce an equivalence relation on positions. Let X and X’
be two positions, and let N be a non-negative integer. We write

X=X (mod p") (3.4.8)

to mean that [Xg| = |Xp| for each R € QY. We see that X = X’ (mod p") if and only if there
exists a bijection ® : X — X’ with x = ®(x) (mod p") for every x € X.

For example, {x} = {x'} (mod p") if and only if x =x’ (mod p") for x,x' € N. Let X and
X be as in Example Then

X() EX] EXQ (mod 3) and Xo EX] EXZ (mod 32),

but
X=X=X; (mod 3) and XX =X, (mod 32).

By definition, this relation has the following properties.
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Table 3.1: | X(,.z)| and |X, )| for re Q' and Re Q0L Q! L Q?
R |Xon| [Xun| |Xon R |Xon| Xom| |X

=

—~
~—

N = O
~— ~— —

O O OO~ OO O =IO = =N

2.R
2
1
1
0
0
1
0
1
0
0
0
0
0

O O OO O =IO RO =~
O O OO O =IO RO = =
NN N = = = OO O

S OO OO O~ OO =N
S O OO~ OO =IO ===

NSNS S s s
D= = =IO O O
O = O = O = O
N i g B g
AN SN Nl NN N NN N
N = O = O = O
S S e N S N S N

Lemma 3.4.11. Suppose that X and X' are two positions satisfying X = X' (mod p") for some
NeN. Then X =X' (mod pt) for 0 < L <N, and TN (X) = Ty (X').

The following lemma gives a sufficient condition for a position to have a p°-option.
Lemma 3.4.12. Let X be a non-terminal position with order M. If

POy (X[, £ (X)) (mod pM) for some s € Q and some n e N with |X!"1| =0 (mod pM),

then X has a p°-option.

proof. 1If M = 0, then the assertion follows from Lemma Suppose that M > 0. By
replacing X with X["], we may assume that [X| =0 (mod pM)

We first show that [Xg| = |X|/p" when 0 < L < M and R € QF by induction on L. This is
trivial for L = 0. Suppose that 0 < L < M. Note that if Y is a position with |[Y| =0 (mod p),
then 7y(Y) = 0 if and only if |Y,| = |Y|/p for every re Q'. Let R' € QL~!. Then |X}| = |X|/p*~!
by the induction hypothesis. In particular, |[Xz| =0 (mod p). We also have 7(X/) = 0, since
Yveqr—1 0(Xv) = 7-1(X) = 0. Hence |X(p )| = [Xg|/p = |X|/p" for re Q1.

Assuming the next claim for the moment, we complete the proof.

Claim. There exists T € QY1 such that Ty # 0 and [X7o1| < |X7|.

Since Ty # 0, we have |Xrgi| = [Xr—1| = |Xr—1| + Oz, - - 01, By Lemma [3.4.9, X has an
option Y such that 7711 (Y) > Top41(X) and Y = (xx—1)(X) forsome xe X withx_p 1 =T.
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We show that Y is a p°-option of X. By Lemma [3.4.8} 7(Y) — 7(X) = —1 (mod p) and

TL(Y) - TL(X) = |XX<L| - |X(x—1)<L| - 6)6() T 5)61‘,1 —1
= |X|/pt = |X|/p' —1=—-1 (mod p) for 0 <L <M.

Thus Y is a p’-option of X.

It remains to prove the claim. Since X satisfies (P0), we find that [Xgo;| # [Xs| for some
S e QM1 Hence there exists s € Q such that [Xsoso1| < |Xsos|» since otherwise |Xsor| >
Xs| = [Xset| = -+ = [Xsp(p-1)| = [Xser]. Let

A~

U=SSs and U= (Uy,...,Uy_).

If Uy # 0, then U satisfies the desired condition. Suppose that Uy = 0. We show that there exist
Ty, Tyr € Q such that Ty # 0 and

X : (3.4.9)

Xn.0mnetl < X010
where (To,ﬁ,TM) = (To,Ul, ce ,UM,I,TM). Since M > 0, we have (U(),U\), (Uo@ I,U\) € QM.
Hence

‘X(erl,f])‘ = |X‘/PM = ‘X(UO,IA])|‘

This implies that

2 X e o0 = Xwero = 1X1/P" = X0 = 21X woo 0|
reQ) reQ

Since \X( = Xve1| < | Xu| = ]X( )|, we find that

erl,f/,UM)| Uo,U,Uy

X

(Uo@l,f/,TM)l = ‘X(

Uo.U.Tu) ’
for some Tjy € Q. As we have seen above, there exists Ty € Q satisfying Ty # Up = 0 and (3.4.9).
]

We now prove (Al)) for ord(X) > 0. Let M be the order of X. We may assume that |[X| =0
(mod p™). By Lemmas [3.4.3/and [3.4.12} it is sufficient to show that X satisfies (P0). Assume
that X does not satisfy (P0). By Lemma[3.4.11] 7y (X,—1) = Ty—1(X;) for each r € Q. Hence

0+# (X)) = Z -1(Xr) = ptu—1(Xo) = p,

which contradicts 7(X) = T(X). Thus X satisfies (P0). This completes the proof of (AT).

72



3.5 Proof of (A2)

Remark 3.4.13. Let X be a non-terminal position with order M. The condition is indepen-
dent of the choice of n, that is, if X satisfies and |X!"| =0 (mod pM), then

(x[M),_; £ (X", (mod pM) for some 1€ Q. (3.4.10)

Indeed, if M = 0, then X "] always satisfies (3.4.10)) since otherwise 7o (X [h]) = 0. Suppose that
M > 0. By replacing X with X", we may assume that & = 0. It suffices to show that

X De| = |(XP ret] = [Xegpu| — [Xrgpen | for Re QM.
Recall that
x!7"] ={x+pM:xex}u{o,1,...p"—1}.

Hence

X g ={x+pMixex},u{0,1,..pM -1}, (3.4.11)

for Re QM1 Let us calculate the right hand-side of (3.4.11)). We have

{x+p" xeX fp ={ (x+p")omi1:x€X, (x+p") i1 =R}
= { (X+PM)>M+1 txeX, Xam+1 ZRGPM}

and

0} if R<pM
(o1, pM -1}, = {100 T R<p,
R\ g if R>pM.

Hence ”
7] = Xy + B

Note that Ry = (R© 1)y since M > 0. It follows that
|| = | (X Dren| = [Xpgpu| + 8y — [Xecrep| — Sirony
= [Xrep| = [Xrorep]-

Therefore is independent of the choice of n.

3.5 Proof of (A2)

In this section, we prove (A2)) using p“-descendants and peak digits. We first introduce them and
present their properties. The key result is Lemma in Subsection [3.5.2] In this subsection,
we prove (A2)) assuming this lemma. To prove this lemma, we study the condition (PO) of

Lemma [3.4.12]in Subsection [3.5.4] Finally, in Subsection [3.5.5] we prove Lemma[3.5.7]
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3.5.1 p*-descendants and Peak Digits

Definition 3.5.1 (p“-descendants). Let n e N. Let (X, X',...,X") be a position sequence. If
X*1is a p*-option of X’ for 0 < i < n— 1, then this sequence is called a p*-path from X° to
X", and X" is called a p*-descendant of X°.

Using p*-descendants, we might find a descendant satisfying (A2). Let us give an example.
Example 3.5.2. Let p = 3. Let X = {2,4,5}. Let X' = (2 1)(X°) and X? = (1 0)(X!). Then
(X% = (5,1,0,...),

(XY = (4,1,0,...),
7(X?) = (0,2,0,...),
so (X9, X! X?) is a 3*-path. We also have
T(X?) = (0,2,0,...) > (2,1,0,...) = T(X").
Hence X? satisfies .
The above example leads us the following definition.

Definition 3.5.3 (peak digits). Let X be a position. The peak digit pk(X) of X is defined by
pk(X) =max{LeN:1>(Y) > 7>1(X) for some p*-descendantY of X },

where max ¢ = —1.

For example, if X is as in Example then pk(X) = 1.

In the next subsection, we will deduce from a lemma on peak-digits. To this end,
we give the basic properties of peak-digits. It follows from that if pk(X) > —1, then
pk(X) > ord(X) = 0. In particular, pk(X) # 0. Peak digits also have the following properties.

Lemma 3.5.4. IfY is a p*-option of a position X, then the following assertions hold:
(1) 7=n(Y) = 1=n(X), where N = max { pk(X),ord(X) } + 1.
(2) pk(Y) < pk(X).

proof. (1) By definition,

T (ok(x)+1) () = T (pk(x)+1) (X)-
On the other hand,

T (ord(x)+1) (¥) = T (ora () + 1) (X)),

>

since Y is a p*-option of X. Thus 7=x(Y) = T=n/(
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(2) Let K = pk(Y). The assertion is trivial if K = —1. Suppose that K > —1. Then Y has a
p*-descendant Z with 7>g(Z) > 7=k(Y). Since Z is also a p*-descendant of X, it suffices to
show that 7>k (Z) > 7>k (X). We have
K =pk(Y) > ord(Y) = ord(X).
Since Y is a p*-option of X, it follows that
T;K(X) < T;[((Y) < T;[((Z).

]

Corollary 3.5.5. If (X°,...,X") is a p*-path with n > 0, then T=n(X') = T=n(X°) for 0 <i <n,
where N = max { pk(X?),ord (X"~ 1)} + 1.

proof. For 0 <i<n—1,let N' = max { pk(X’),ord(X") } + 1. It follows from Lemma [3.5.4]
that T i (X)) = 7o 5i(X?) and

pk(X?) = pk(X") = - = pk(X"1).

Since
ord(X%) < ord(X') < --- <ord(X"1),

we have N > N/ for 0 <i < n— 1. Hence 7>y (X') = T=n(X") for 0 <i < n.

The next result provides a lower bound for pk(X).

Lemma 3.5.6. Let X be a position with order M, and let N be an integer with N > M + 1. If
| Xg_ | + 85y, 05y, -+ Osy_y + 1 < |Xs| for some S € QN, then pk(X) = N.

proof. 1t suffices to show that X has a p*-option Y with T=y(Y) > Ty (X). By Lemma[3.4.9
X has an option Y such that 7=y (Y) > T=n(X) and ¥ = (x x — pM)(X) for some x € X with
x<n = S. We have wop(Y) > w=n(X) and

wn(Y) —wn(X) = ‘XX<N‘ - |X(xpr)<N| - 5XM6xM+1 8y —1>0
by Lemma It follows that w=n(Y) > wx>n(X), and hence T>n(Y) > 7=n(X). Therefore

Y is a desired p*-option of X.
O
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3.5.2 Proof of (A2)

In this subsection, we will deduce (A2) from the next result.

Lemma 3.5.7. Let X be a position with peak digit K. If K is positive, then X has a descendant
Y with the following four properties:

1. ({PO) is satisfied.

2. ord(Y) =K.

3. Either tx(X) < 1x(Y) < p or 1(Y) = p.
4 k1Y) = Tog1(X).

We will prove Lemma[3.5.7]in Subsection [3.5.5] To prove (A2) using this lemma, we need a
variation of Lemma [3.4.3

Lemma 3.5.8. Let X be a position with the following two properties:
1. ©y(X) = p, where M = ord(X).

2. Top1(X) = Tomn1 (X) (= (Tu+1(X), Tu+2(X), . .)-
If X has a p®-option Y, then T(Y) = |A(X)| — L.

proof. Since

A=Y wX)p =p-pM+ D wx)p
LeN L>M+1

and T>p11(X) = Topm+1(X), we have

M) = A —1=(p—1,..0,p—1, Tyre1 (X), Taasa(X),..).
M+1

Thus Top41(Y) = |A(Y)|sm+1 for otherwise

Y u)pt = A,

LeN

which contradicts (3.2.11). Since 7.(Y)=1,(X)—1=p—1 (mod p) for 0 < L <M, we find
that 7(Y) = [A(Y)| = |A(X)] — 1.
]
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3.5 Proof of (A2)

We now prove (A2). Recall that the proof is by induction on |2 (X))].

We first show when T(X;) < |A(X;)| for some s € Q. By the induction hypothesis, X;
has a proper descendant Y; with T(Y;) > T(X,). We may assume that T(Y;) = T(X,). Indeed,
suppose that 7(¥;) > T(X;). Since T(¥;) = sg(¥;) by (3.3.2), it follows that ¥; has an option Y;
with T(Y]) = T(X;). Hence we may assume that 7(¥;) = 7(X;) by replacing ¥; by ¥/. Let ¥, = X,
forre Q\{s} and Y = [Y;],cq. Then Y is a proper descendant of X with 7(Y) = 7(X).

We next show when T(X,) = |A(X,)| for each r € Q. Since T(X) < |A(X)|, it follows
that 7, (X) > p for some L € N. Let

N=max{LeN:7 (X)=>p}.
Then 7>y 1(X) = Ton+1(X). We divide into two cases.

Case 1 (N > 0). Since
Tn(X) <p<w(X) =) tv-1(X,),
reQ)

there exist s°,...s7~! € Q such that Dieas =Tn(X) and 5" < tv_1(X,) = Tv—1(X,) for each
r € Q. Since sg(X,) = T(X;), the position X, has a descendant Y, such that

S if L=N—1,
P x,) i L#N— 1L

LetY = [Y,];eq- ThenT(Y) =T(X) and Y # X.

Case 2 (N = 0). Since 79(X) > p, we have ord(X) = 0. Let K be the peak digit of X.
Suppose that K = —1. By Lemma(3.5.4] if Y is a p*-option of X, then pk(Y) = —1 and

t(Y) = (1(X) - 1,71(X), (X)), ..).

Hence we obtain a descendant with the desired properties by repeatedly applying Lemma[3.4.5]

Suppose that K > —1. Then X has a descendant Y with the four properties in Lemma
If 7x(X) < 1 (Y) < p, then T(Y) > T(X), so Y satisfies the desired condition. Suppose that
1k (Y) = p. Since Y satisfies , this position has a p®-option Z by Lemma Since
Tok+1(Y) = ok +1(X) = Tog+1(X), we have 7>k 1(Y) = T>g+1(Y). It follows from Lemma

[3.3.8 that

HZ) = A) ~ 1= (p— 1,0 p— 1,71 (V), T2 (Y) )
| —
K+1
—(p— Lo p— LTkt (X), T2 (X), )
—_—
K+1

Y
Al
e
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

3.5.3 Easy Cases

In this subsection, we will prove Lemma for some easy cases using the next result, which
is a variant of Lemma[3.3.7

Lemma 3.5.9. Ler X be a position with order M. If pk(X) = —1 and ty(X) = p+ 1, then X
has a descendant Y with the following four properties:

1. (PO) is satisfied.

2. ord(Y) =M.

3. (YY) =rp.

4 oy (Y) = top1(X).

proof. Suppose that M = 0. By repeatedly applying Lemma3.4.5] we obtain a p*-descendant Y
of X such that 79(Y) = p and 7> (Y) = 7> (X) since pk(X) = —1. The position Y also satisfies
(PO), since otherwise 7(Y) = 0.

Suppose that M > 0. For each r € Q, let @ = 1yy_1 (X,).

We first show that there exists (b°,...,b"~!) € N such that

ZreQ b" = P,

3.5.1
b" <a" foreach reQ, b*+#b' forsome s,t € Q. ( )

It suffices to show the claim when ), _oa” = p+ 1. By rearranging a' if necessary, we may
assume that a® > ... > a?~!. Let

®°,.... 6P~ 1 = (“O—llja ,azy---,a” 1) ?f al -0,
(@°,a' —1,a*,...,aP™") if a #0.

Then b° # b'. Hence (b°,... b7~ 1) satisfies (3.5.1).
To construct a p*-descendant Y with the desired properties, we next show that X, has a p*-
descendant Y, such that

TM—I(Yr) =b" and T}M(Yr) = T>M(X,~) (352)

=

for each r e Q. If b” = d’, then X, itself satisfies (3.5.2)). Suppose that b < a”". Then ord(X,) =
M — 1 since 1y (X,) =a” # 0. Let Z, be a p*-option of X,. It is sufficient to show

©(Z,) = (0,...,0,a" — 1, (X)), Tare1(Xr), - ). (3.5.3)
—
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3.5 Proof of (A2)

Let Z; = X, for s € Q\{r} and Z = [Z|scq. Then Z is a p*-option of X by Lemma Since
pk(X) = —1, it follows that

T(Z) = (0,...,O,TM(X) — 1,’L'M+1(X),...),

which gives (3.5.3). Therefore we can obtain a p*-descendant Y, of X, satisfying (3.5.2) by

repeatedly applying Lemma[3.4.5]
LetY = [Y;];eq- ThenY is a p*-descendant of X with

wm(Y)=p and  Top1(Y) = Topm(X).

Since Ty—1(Yy) = b* # b = Ty 1(Y;) for some s,7 € Q, the position ¥ also satisfies by
Lemma[3.4.111
]

Remark 3.5.10. We can now prove Remark [3.3.8] assuming Theorem [3.1.3]and Lemma
Let g be the right-hand side of (3.3.5). It suffices to show that X has a descendant ¥ with
msg(Y) > g. Let K be the peak digit of X. We split into two cases.

Case 1 (K > N). The position X has a descendant Y satisfying the conditions in Lemma[3.5.7]
If 7x(X) < ¢ (Y) < p, then msg(Y) > T(Y) > g. If 7x(Y) = p, then msg(Y) > g by Lemma
Bi8

Case 2 (K < N). Let X° = X. By repeatedly applying Lemma [3.4.5, we obtain a p*-path
(X°,...,X™) such that

(R1) ord(X") = N,
(R2) ord(X") <N for 0 < h < n.

Corollary yields 7>y (X") = 7=n(X). Suppose that Ty(X") = Ty(X) = p+ 1. Since
pk(X") < pk(X") = K < N = ord(X"), we have pk(X") = —1. Hence X" has a descendant ¥ with
the four properties in Lemma[3.5.9] Since Ton41(Y) = Ton+1(X) = Ton1(X) = Ton1(Y), it
follows from Lemmas [3.4.12| and [3.5.8| that msg(X") > g. Suppose that Ty (X") = 5 (X) = p.
If X" satisfies , then this position has a p®-option by Lemma so msg(X") = g. Sup-
pose that X" does not satisfy (PO). Then .o tv—1(X)") = tv(X") = p and Ty (X)) = --- =
Tv-1(X,_;). Hence

(X)) = (0,...,0, 1,75y (X)"),---) for reQ.
N-1
By Theorem [3.1.3| sg(X}") = T(X}!) = 7(X]"). Therefore X has an option ¥; such that
TYo)=(p—1,....,p—1,0,7n(Xp), - ) (< T(XQ))-
A —
N—-1

LetY, = X" forre Q\{0} and Y = [Y,],cq. Then msg(Y) >7(Y) = g. O
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

Let X" be a position and N € N. As we have seen above, there exists a p*-path (X°,..., X")
satisfying and . We call X" an (N — 1)-rounded p*-descendant of X°.

We now turn to Lemma Let X be a position whose peak digit K is positive. We may
assume that |X| =0 (mod pX). Let Z be a p*-descendant of X such that

%(Z) = 1% (Y) (3.54)

for every p*-descendant Y of X. Then Z # X. We also see that T~k 1(Z) = T>x+1(X) by
Corollary LetY be a (K — 1)-rounded p*-descendant of Z. The choices of Z and Y imply
that

ord(Y) = K > pk(Z) = pk(Y).
Thus pk(Y) = —1 and 1=k (Y) = t=k(Z). If 7x(Y) < p, then Y satisfies the four properties in
Lemma[3.5.7] If 7x(Y) > p, then Lemma ensures that ¥ has a descendant with these four
properties. We will show Lemma for 7x(Y) = p in the remaining two subsections.

3.5.4 The Condition (P0)

Let X,Y,Z, and K be as in the previous subsection, that is, X is a position whose peak digit K is
positive, Z is a p*-descendant of X satisfying , and Y is a (K — 1)-rounded p*-descendant
of Z with tx (Y) = p. If Y satisfies , then this position satisfies the four properties in Lemma
Suppose that Y does not satisfy . Then 7o (Y{.z)) = T0(Y(o,r)) forre Qland Re QK- 1,
Therefore

1 if R=S,reQl,

there exists S € QX! such that 7o(Y),.z) = 3.5.5
0em) {) if R%S,reQ!. (3:5.5)
R TO(Y(O.,R)) TO(Y(l,R)) e TO(Y(p—l,R))

0,...,0) 0 0 0

S—1 0 0 0

S 1 1 1

S+1 0 0 0

(p—1,....p—1) 0 0 0

Our goal is to construct another (K — 1)-rounded p*-descendant ¥ of X such that 7x(Y) = p
and Y does not satisfy li If Y is such a position, then Y satisfies and the other three

properties in Lemma

Let X = X and X" =Y. Let (X°,...,X") be a p*-path from X° to X" through Z, that is,
X" = 7 for some h with 0 < h < n. Replacing X" by X"~ if necessary, we may also assume
that 7 (X" 1) < 1% (X") = p. Let

xitl — (xixi—pMi)(Xi), S'=x' g, and TizSi—pMi for 0 <i<n.
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3.5 Proof of (A2)

Then _
1 if R=S,
X = [Xk|+31 if R=TY, (3.5.6)
0 if ReQX\{Ss T'}.
The next lemma shows that if T()(X;j) + ’L'O(X%j) is at least two for some je€ {h,---,n—1},
then X has a (K — 1)-rounded p*-descendant with the desired properties.

Lemma 3.5.11. Let X be a position and Y a p*-option (x x — pM)(X) of X. Let N be a non-
negative integer with N > max{M + 1,pk(X) }. If t0(Ys) + t0(Yr) = 2, where S = x<n and
T =S—pM, then X has a p*-option Y such that

1. Y=Y (mod pM),
2. To(?s) =2 or TO(?T> = 2.

Before proving Lemma 3.5.11} let us give an easy example.

Let p=3. Let X = {1,4,6} and Y = (1 0)(X). Then 7(X) =
(1,2,0,...). Hence Y is a 3*-option of X. Note that 7(Y(g)) = 70(¥(1)) = 1. Lemma (3.5.11

asserts that X has another 3"-option. Indeed, let ¥ = (4 3)(X). Then 7(¥) = (1,2,0,...), so ¥

~

is a 3*-option of X. Moreover, 7(Y(q)) = 2.

(2,2,0,...) and 7(Y)

R |X(

0

© 0 1 0

1 0 1 0

2 1 0 0
R |Yor| [Yun| [Yer R |¥on| [un| [Fon|
@ 1 0 0 © 0 1 0
(D) 0 1 0 (1) 1 0 0
2) 1 0 0 (2) 1 0 0

Lemma[3.5. 111 We may assume that 79(Ys) = 79(Y7) = 1. Then

(Ys)py = {13 and  (v7) () = {13177, (3.5.7)
where (YS)(p) is the p-core of Ys. Replacing X by X ] if necessary, we may assume that
xy #0. LetA = TN(Y) — TN(X).

We divide the proof into two parts. First, we prove A € {0,1,2} and the following three
relations:
Y| = |Yr|+A—1. (3.5.8)
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

Y| <Yz +1 for reQ. (3.5.9)
Yisan| = Yz | =1 (3:5.10)

Next, we split into three cases depending on A.
Part1 We first show that A€ {0,1,2}. Since N > max {M + 1,pk(X) }, it follows from Lemma

that T>n41(Y) = T=n+1(X). This implies that A > 0 since Y is a p*-option of X. We also
have

A= Z ‘L'()(YR) — ‘L'()(XR) = T()(Ys) + TQ(YT) — TQ(XS) — ‘L'()(XT).
ReQN
Since 19 (¥s) + 0(Yr) = 2 and A > 0, it follows that Ae {0,1,2 }.
We next show (3.5.8). Since T>y+1(Y) = T=n+1(X), it follows that
wen1(Y) = wen1(X),

s0 A =wy(Y) —wn(X). Hence, by Lemma[3.4.8] |Xs| = |X7|+ A+ 1. Since |Ys| = [Xs| — I and
|Yr| = |X7| + 1, we have (3.5.8).
Finally, we show (3.5.9) and (3.5.10). Since N + 1 > pk(X), we see that
|X ’ |XSr M|+55M SSN+1 = |X(T,r)|+1
by Lemma Hence (3.5.9 - 9) holds. Since wy1(Y) = wy1(X), it follows from Lemm 3.4.8]
that [X(g )| = [X(7.xy)| + 1. Thus we obtain (3.5.10).

Part2 Lets = |Y7|o. We split into three cases depending on A.
Case 1 (A = 0). We have |Ys| = |Y7| — 1. Suppose that p = 2. By (3.5.7),
Yisol =Yanl =2 and  |Yi5, 0| = Yz, ]+ 1.

See Table [3.2] This contradicts (3.5.10)). Suppose that p > 2. By (3.5.7),

1 if re{nr—2},
Yisn| = Yan|+41  if r=1-1,

0 if reQ\{r,r—1,1—-2}.

See Tablen Thus xy € {t t—2} and [X(s;1)| = [X(s;—1)—pm| + 1. It follows from Lemma

3.4.9|that X has an option ¥ such that Ty (Y) > Tsy4+1(X) and ¥ = (£ §— pM)(X) for some
feX with X oy41 = (S,¢—1). Since ¥y =t — 1, we find that

(2,0) if xy =t,

(t0(¥s),70(Y7)) = {(0,2) if xy=1—2.

It remains to show that ¥ is a p*-option of X such that Y=Y (mod P N). Since T>N+1(I7) >
Tong1(X) and wy(Y) —wy(X) = [ Xs| — [Xr| —1 =0, we have =y () = Ton(X () = t=n(Y).
Moreover, since ¥y = x<; it follows thatY =Y (mod p"), and hence that T<N( ) =1n(Y).
Therefore T=pry1(Y) > Topre1 (Y) > Topr1 (X).
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3.5 Proof of (A2)

Case 2 (A = 1). We have |Ys| = [Y7|. Hence |Y(s )| = [Y(7 )| for each r € Q, which is a contra-

diction.

Case 3 (A = 2). We have |Ys| = |Yr|+ 1. If p = 2, then by (3.5.7),

|Y(S,t—l)| = |Y(T,t—l)| +2,

which contradicts (3.5.9). Suppose that p > 2. By (3.5.7),

-1 if r=t¢,

Y(s.)

= Y|+ 1 if re{r—1,1+1},

0 if reQ\{r,r—

l,t+1}.

Thus xy = ¢. By Lemma3.4.9] the position X has an option Y such that):’ = (&% — pM)(X) for
some £ € X with ¥y = (S,t —1). It follows that Ty (Y) = tv(X) +2,Y =Y (mo pN) and
7o(Ys) = 2. Therefore Y is a desired p*-option of X.
Table 3.2: p=2. Table 3.3: p > 2.
Yr| 2a—1 2a 2a+1 |Yr| pa—1 pa pa+1---pa+s—1pa+s
Yool a—1a+1 a Yool a a+1 a a+1 a+1
Yol a a-1la+1 Yrpnl a a a+1 a+l a+1
Yirs—3)| a a a at+1l a+1
Yirs—2)| a a a a a+1
‘Y(T,s nloa a a a+1 a
Y75 a a a a a+1
Yrsipl a a a a a
Yirp-2l a=1 a a a a
Yirp-nl a a-1 a a a
O

It remains to prove Lemma when 7(X;,) + T0(X7,) <

1forh <i<n-—1. We first show

that X"~! has another p*-option X" such that X" = X" (mod pX) in Lemma [3.5.12] We next
show that there exists a p*-path (X", . Xh ... X ilch that X' = X' forevery i€ { h,...,n} in Lemma
PO)

3| Finally, we prove that X" satlsﬁes (

Lemma 3.5.12. Let X,Y,M,N,S, and T be as in Lemma|3.5.11| Let A = t5(Y) — Tn(X). Sup-

pose that T9(Ys) + 1(Yr) = 1. Then the following assertions hold:
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

(1) IfA =1, then X has a p*-option Y such thatY =Y (mod p) and
(t0(¥s), 70 (Yr)) = (0(Yr), 70(¥s)).

(2) If A=0, then (To(Xs), T0(X7)) = (T0(Y7),0(¥s))-

proof. Suppose that A = 1. Then 75(Xs) = 7o(X7r) = 0. Replacing X by X [P"] if necessary, we
may assume that xp; # 0. Lemma yields |Xs| = [Xr|+2. Lett = [Xr|o. Since (Xs)(p) =

oslXsll and (XT)(p) = gliXrll we have

B 1 if re{r,t+1},
Mool = ol +{y i remirey

If xy = ¢, then 79(Ys) = 1. If xy =7+ 1, then 7(Y7r) = 1. It follows from Lemma that X
has a p*-option with the desired properties.
The proof for A = 0 is similar.
]

We next show the existence of another p*-path.

Lemma 3.5.13. Let (X°,...,X") be a p*-path and X° a position such that X° = X° (mod pM)
for some N € N. Suppose that T=n(X") = t=n(X°) for 0 < i < n. Then there exists a p*-path
(X°,..., X" such that for 0 <i<n—1,

1. ord(X') = ord(X),
2. #=x" (mod pV),

where X1 = (xf xi — pM)(X7) and X! = (& & — pM')(X'). In particular, X' = X' (mod pV)
forO<i<n.

proof. The proof is by induction on n. If n = 0, then the assertion is trivial. Suppose that n > 0.
By the induction hypothesis, there exists a p*-path (X°,....X"!) satisfying (1) and (2). Let
X=Xx"1 X=X"1 andY = X" = (xx— p")(X).

We first show that ord(X) = ord(X) = M. Since X =X (mod p"), it follows from Lemma
that Ton(X) = Ton(X). Since T=y(X) = T=n(Y), we also have M < N. Hence ord(X) =
ord(X) =M.

We next construct a p*-option Y of X such that Y = (& £— pM)(X) for some e X with £ =x
(mod p). Since X =X (mod p") and wy(X) = wy(Y), it ollows from Lemmathat

|§(X*pM)<N| 8y Gy 1= |X(X*PM)<N} + 0y Oy, + 1
= |Xx = ‘)}lx

<N| <N}'
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3.5 Proof of (A2)

Lemma3.4.9|implies that X has an optlon Y such that 7> N(Y) > T> N()? ) and Y
for some % € X with ¥ = x (mod p"). Since X =X (mod p"), we have ¥ =
remains to verify Tsp.1(Y) > T=p+1(X). Recall that

~

Ton(Y) = oy (X), Ton(Y) = Ton(X),

Tomi1(Y) = top1(X), and 1oy(X) = 7on(X).

In addition, since Y =Y (mod p"), it follows that Ty (Y) = T_y(Y). This shows that

T (V) = Topr1(X).

Therefore ¥ is a p*-option of X.

3.5.5 Proof of Lemma 3.5.7

proof. Let X,Y,Z K, and (XO, ... 7X}’,...,X”) be as in the previous subsection. Let W = xh-1
and Z = (ww— pM)(W), and let S = w_g and T = S — pM. Since %% (W) < 1%%(Z) = p
and ord(W) < pk(W) = K, it follows from Lemma that we may assume that 7(Zs) +
T0(Zr) = 1. Hence tx (W) = p—1 and

(TO(ZS)v TO<ZT)) € { (07 1)7 (170> } :

Lemma|3.5.12fimplies that W has another p*-option Z such that

~

Z=7 (mod pX),

(t0(Zs), 10(Zr)) = (10(2r), 70(Zs)), (3.5.11)
7(Zg) = 1(Zr) foreach Re QK\{S,T}.

Note that Tx(Z) = p, and that T>K+1(Z) = T>k+1(X) by Corollary Let X" = Z. Since

Tk (X' ") = 7ok (X") for h < i < n, it follows from Lemma [3.5.13| that there exists a p*-path
(X",...,X") such thatforh<z<n—1,

ord(X") =ord(X") and #=x (mod pX),

where o -
XH = (6 = pMY (X)) and X = (& & — pM)(X).

LetY =X". ThenY =Y (mod pX). We show that Y satisfies the desired four properties.
Since K > max { pk(X h) ord(X"~)} +1, it follows from Corollary-that ok (Y) = Tk (Z).
Hence 15 (Y) = p, ord(Y) = K, and T=x41(Y) = Tog11(X).
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3 p-saturations of Welter’s Game and the Irreducible Representations of Symmetric Groups

It remains to show that ¥ satisfies . It suffices to show that ¥ does not satisfy 1i Let
St =xi_g and T' = ' — pM' for h < i <n— 1. Recall that, for each R € QK\ { S/ T'}, we have
X5 = X} and X! = X}, . By Lemma(3.5.11] we may assume that

(TO(X;‘I'%TO(X;‘Z'))’ (To(iéi)a TO(y;i)) € { (070)5 (Oa 1)7 (170) }
for h <i<n—1. It follows from Lemma that

(X5, (X)) = (70(XE), T0(XE)),
((Xe ™), (X)) = (0(X), 0(X§)).
By (3.5.11) and 3:5.12),
(0(Y0), ©(Wv)) = (0(¥v), 0(Yy)) = (0,1)  for some U,V e QF,
7(Yg) = T0(Yg)  foreach Re QK\{U V}.

(3.5.12)

Since Y satisfies 1} the position Y does not satisfy this. Therefore Y satisfies the condition

(PO).
]
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