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ABSTRACT (English) 

Microsymbiont inoculation can enhance plant growth and tolerance to excess trace elements 

(TE). This study investigated the effect of dual and single inoculation of rhizobia (R) and 

arbuscular mycorrhizal (AM) fungi on soybean (Glycine max) and tomato (Solanum 

lycopersicum) under various soil zinc (Zn) conditions. In experiment one, the effect of R 

(Bradyrhizobium diazoefficiens) and AM (Gigaspora rosea) on biomass production, element 

nutrition and polyphenols was investigated in soybean. In a randomized factorial design, Zn 

(at 0, 200 and 400 mg Zn kg-1 soil) and inoculation (uninoculated control, R, AM and RAM 

dual inoculation) treatments were set up in the greenhouse for nine weeks. Zinc treatment 

decreased root manganese (Mn), polyphenols and iron (Fe) translocation, but increased the 

frequency of mycorrhization and root phosphorus (P) concentrations. In 400 mg Zn kg-1 soils, 

R and AM increased shoot Mn concentrations and synergized to boost root-to-shoot Mn 

translocation in the dually inoculated plants – ameliorating the antagonistic effect of excess 

Zn on Mn accumulation in the shoots. Dual inoculation also reduced the cumulative number 

of fallen leaves, and increased root polyphenols, shoot P and leaf SPAD index to give higher 

shoot dry weights under all soil Zn treatments. In experiment two, a different AM fungus 

(Claroideoglomus etunicatum) was utilized with Bradyrhizobium diazoefficiens, under 

similar soil Zn treatments. Here, symbionts colonization and effectiveness were decreased in 

400 mg Zn kg-1 soils, but dual inoculation induced significantly higher biomass production 

under all soil Zn treatments. The biomass response indicated that AM modulated stem and 

root bioproduction in favor of leaf and pod, while rhizobium favored root production and 

potentiated AM effect in dual inoculation. Root colonization and H2O2 level within root 
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nodules was also higher in dual inoculation. Compared with control, AM and RAM 

treatments lowered leaf and pod Zn concentrations under excess Zn. While Zn treatment 

increased leaf and pod Mn in control plants, symbionts countered this by regulating root-to-

stem Mn translocation, especially in RAM. Type 1 metallothionein gene expression in roots 

was highest in RAM and lowest in control plants, but Zn effects were not dose-dependent. 

From both soybean experiments, synergic effects of R and AM on the number and SPAD 

index of leaves, nodule H2O2 content, shoot phosphorus, TE translocation from roots to tops, 

polyphenols biosynthesis and metallothionein gene expression are indicated as important 

mechanisms underlying improved biomass production in dual inoculation. In experiment 

three, the effect of excess Zn and AM fungus on bioproduction and TE nutrition was 

investigated in tomato. In a randomized factorial design, Zn (at 0 and 300 mg Zn kg-1 soil) 

and AM inoculation (non-AM and Rhizophagus irregularis) treatments were set up in a 

growth chamber for ten weeks. Generally, AM effects on the available Zn, Mn, Cu and Fe in 

the rhizosphere soil were in tandem with the effects in host tissues. In uncontaminated soil, 

AM enhanced Cu availability in the rhizosphere, optimized the Cu:Zn balance in shoots, and 

significantly increased the host biomass production. In Zn-treated soils, AM decreased the 

Zn concentrations in soil and plant tissues but mycorrhizal colonization and the total plant 

biomass in AM and non-AM plants were reduced. Although the Zn concentration in fruit was 

within the safety threshold, Mn deficient fruits were observed under excess Zn in both AM 

and non-AM plants. In conclusion, partnerships between AM and R inoculants optimize 

bioproduction and mitigate excess Zn-induced TE imbalance in soybean tissues. However, 

minimizing the toxicity of Zn to AM inoculant infectivity would benefit host responses in 

tomato, as well as soybean.  
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ABSTRACT (Japanese) 

共生微生物の接種によって植物の生育や過剰な微量元素に対する耐性を向上させ

ることができる。本研究では各種亜鉛（Zn）条件下におけるダイズ(Glycine max)

とトマト(Solanum lycopersicum)に対する根粒菌とアーバスキュラー菌根菌（AM

菌）の二重接種および単独接種の影響について調べた。 

 実験１では、ダイズの生育、栄養元素およびポリフェノールに対する根粒菌

(Bradyrhizobium diazoefficiens)と AM菌(Gigaspora rosea)の影響について調べ

た。Znの添加（0, 200 および 400mgZn kg-1乾土）と共生菌の接種（非接種、根粒

菌単独接種、AM 菌単独接種および二重接種）を組み合わせた試験区を設け、温室

内で 9 週間のポット栽培を行った。その結果、Zn の添加は根のマンガン（Mn）と

ポリフェノールの含有率および鉄（Fe）の根から地上部への移行割合を低下させ

たが、菌根形成頻度と根部のリン含量を増大させた。400mgZn kg-1 乾土の Zn 添加

において、根粒菌単独接種と AM菌単独接種は地上部の Mn含有率を増大させた。ま

た二重接種は根から地上部への Mn の移行割合を増大させ、共生菌接種によって地

上部の Mn 含有率に対して過剰な Zn が示す拮抗作用が緩和されることが示唆され

た。全ての Zn 添加処理において、二重接種によって落葉数の低下、根のポリフェ

ノール含量率、地上部のリン含量率および葉の SPAD 値の増大が認められ、ダイズ

の地上部乾物重は最も大となった。 

 実験 2 では、実験１と同様の実験を異なった種類の AM 菌（Claroideoglomus 

etunicatum）を用いて行った。その結果、共生菌の定着とその接種効果は 400mgZn 

kg-1乾土の Zn 添加によって低下するが、二重接種は全ての Zn 添加処理においてダ

イズの生育を顕著に向上させることが認められた。AM 菌単独接種は茎と根の生育

を調節し葉と莢の生育を向上させた。一方、根粒菌は根の生育を増大させ、二重

接種における AM 菌の接種効果を支援した。根粒の着生と H2O2含量は二重接種によ

って増大した。AM 菌単独接種と二重接種は非接種のダイズと比べ、Zn 過剰下にお

ける葉と莢の Zn 含有率を低下させた。一方、Zn 添加は非接種のダイズの葉と莢の

Mn 含有率を増大させた。共生菌の接種、とりわけ二重接種は根から地上部の Mn の

移行割合を調節し、葉と莢における Mn 含有率を低下させた。根における Type1 メ

タロチオネイン遺伝子の発現量は二重接種が最も大となり、非接種が最も小とな
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ったが、Zn 添加の影響はその添加量とは関係がなかった。ダイズに関する二つの

実験結果から、葉の SPAD 値、根粒の H2O2 含量、地上部リン含有率、根から地上部

への微量栄養元素の移行割合、ポリフェノール含有率およびメタロチオネイン遺

伝子発現量が二重接種によってダイズの生育が向上する重要な要因であることが

示唆された。                                                        

 実験 3では、トマトの生育と微量栄養元素に及ぼす過剰 Znと AM菌接種の影響に

ついて調べた。Zn添加（0または 300 mgZn kg-1乾土）と AM菌の接種（非接種また

は Rhizophagus irregularis接種）を組み合わせた試験区を設け、グロースチャン

バー内で 10 週間のポット栽培を行った。その結果、AM 菌の接種はトマトの植物体

に及ぼす影響と同様の効果を培土中の可給態 Zn、Mn、銅（Cu）および Fe に及ぼす

ことが認められた。Zn無添加の場合、AM菌の接種は培土の可給態 Cu含量を増大さ

せ、トマト地上部の Cu:Znの比率を最適化し、宿主の生育を顕著に増大させた。Zn

添加によって菌根形成とトマトの生育は減少したが、AM 菌の接種は培土と植物体

の Zn濃度を低下させた。AM菌の接種の有無に関わらず、Zn添加によってトマト果

実の Mn含有率は減少した。また Zn含有率は増大したが、それは規制値の範囲内で

あった。 

 以上の研究から、ダイズにおける根粒菌と AM 菌の二重接種は植物体の生育を向

上させ、過剰 Zn がもたらす微量栄養元素のアンバランスを是正することが明らか

となった。またトマトにおいても AM菌の接種は Znの有害性を是正する効果を示す

ことが認められた。 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 Background of study  

Agricultural production and environmental quality have a strong relationship. Both clearly 

have a huge impact on human well-being in terms of food security and overall ecosystem 

health. As a result, the chemical state of soils, sediments and water are an important 

consideration in plant production and bioenvironmental sciences. More specifically, trace 

elements (TE) condition of soils can be a serious problem affecting crop production 

(Nicholson et al. 2003). While deficient or excessive soil TE conditions are problematic for 

plant production in general, their persistence, potential toxicity and accumulation in food 

chain are major concerns when levels are elevated in agricultural soils (Gall et al. 2015). Due 

to their undesirable effects on living organisms when in excess, environmental regulations 

exist for Maximum Allowable Concentration (MAC) of TE in agricultural soils in different 

countries. In Japan, for instance, the zinc (Zn) regulatory level in the soil is 120 mg Zn kg-1, 

while 200 mg Zn kg-1 was reported in the European Union (EU) (Ogiyama et al. 2005, Tóth 

et al. 2016). However, elevated levels up to 400 mg Zn kg-1 has been reported in some farm 

soils (ATSDR 2005), although the MAC of Zn in agricultural soils varies from 100 - 300 mg 

Zn kg-1 in most countries (Kabata-Pendias 2011).  

Excess soil Zn conditions may be due to natural or anthropogenic factors. For instance, 

some agricultural soils are known to contain moderately elevated Zn levels due to their 

volcanic origins (Okamoto et al. 2002; Ogiyama et al. 2005). Zn is also of interest as a 

prevalent contaminant in phosphate fertilizers applied on farms, as reported by Lopez-
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Camelo et al. (1997) and Benson et al. (2014) in Argentina and Nigeria, respectively. As one 

of the most widespread TE in organic soil conditioners (Pinamonti et al. 1997), it may 

accumulate in farm soils due to long-term application of pig farm-yard manure (Ogiyama et 

al. 2010). High anthropogenic pollution of soils by Zn has also been reported, such as in 

highly polluted topsoils with up to 2900 mg Zn kg-1, according to Geochemical Atlas of 

Europe Part 1 (http://weppi.gtk.fi/publ/foregsatlas/maps/Topsoil/t_xrf_zn_edit.pdf). In 

Nigeria, an important source of TE pollution of soils is run-off from municipal waste 

dumpsites rich in heavy metals such as Zn, lead (Pb), cobalt (Co), nickel (Ni), and cadmium 

(Cd), with potential adverse effects on human and ecosystem health (Oketola and Akpotu 

2014). According to a recent study of several dumpsites, the order of soil and plant heavy 

metal contents was given as Zn>chromium(Cr)>Pb, and element concentrations were 

significantly higher than EU and Canadian permissible limits for agricultural soils and 

vegetation (Nwaogu et al. 2017). Although an essential TE, excess Zn levels in the soil could 

negatively affect plant growth and overall performance (Rout and Das 2003). Therefore, 

improving plant performance under excess Zn conditions in agricultural soils is valuable, and 

the utilization of eco-friendly biotechnologies such as microbe inoculation in this regard has 

received attention (Christie et al. 2004; Al-Garni 2006). Exploiting bioinoculants to mitigate 

the impact of excess Zn on the acquisition and distribution of TE is also beneficial for food 

safety and quality in edible plants.  

Plants have established mutually beneficial associations with specific 

microorganisms in the environment, such as arbuscular mycorrhizal (AM) fungi and rhizobia 

(R) which colonize the roots of host-plants and maintain symbiosis with them. The AM 

symbiosis improves especially phosphorus (P) nutrition, while rhizobial nodule symbiosis is 

http://weppi.gtk.fi/publ/foregsatlas/maps/Topsoil/t_xrf_zn_edit.pdf
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concerned with dinitrogen (N2) fixation, in hosts (Polacco and Todd 2011). Their utilization 

as biofertilizers and bioprotectants is an important biotechnological approach at enhancing 

plant production while minimizing the use of chemical fertilizers. Aside the economic and 

environmental benefits that would accrue due to a reduction in the volume and costs of 

fertilizer application due to this technology, the utility of sub-optimal soils - such as those 

with excess TE - could be enhanced by improving crop tolerance and soil characteristics 

(Faria et al. 2011). However, while improvement in plant bioproduction is an important 

desirable outcome expected of their utilization in plant production systems, one of the 

problems with the deployment of bioinoculants is that the biomass response of the host may 

be positive, negative, or nil (Nogueira and Cardoso 2003; Grace et al. 2009). Host-plant 

response is a complex issue involving the plant-microbe-environment interaction (Smith and 

Smith 2011) and is of huge significance as it defines the effectiveness of inoculated 

symbionts. Other factors that are important in bioinoculation technology includes; the 

production of sufficient amounts of disease-free inoculum, selection of inoculum type, 

amount, and method of application, inoculant fitness and infectivity under the prevailing soil 

conditions, amongst others (Miransari 2014; Berruti et al. 2015). In general, scientific 

research shedding more light on these issues are necessary to advance our understanding of 

host response in plant-microbe symbioses for the overall benefit of plant performance under 

various soil conditions (Kogel et al. 2006; Ahemad and Kibret 2014).  

1.2 Trace elements in soil and plant  

According to Kabata-Pendias (2011) there is yet to be a widely recognized definition of the 

term “trace elements” across the geochemical and biochemical sciences. But the 
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understanding has been that it refers to chemical elements (metals and metalloids) in the 

Earth crust in amounts less than 0.1% (1000 mg/kg), or at similar levels in biological systems. 

Across scientific literature, it can be observed that “trace elements” are sometimes referred 

to as “heavy metals”, “transition metals”, “trace metals”, or “metals”. “Heavy metals” have 

been very widely used in relation to chemical toxicity. But other commonly encountered 

terms such as “essential elements”, “micronutrients” and “trace nutrients” are largely 

descriptive of their physiological functions in biosystems, and may not readily be applied to 

geochemical systems such as soils or sediments (Kabata-Pendias 2011). While the term 

“trace elements” has been mostly adopted in this thesis, no special meaning is implied when 

other common terms (as stated above) are used.  

Plant roots take up nutrients from the soil for distribution to other parts of the plant. 

Elements in soil solution move into root by bulk flow and by diffusion, but active transport 

aided by metal chelators and transporters also play a part in element nutrition (Taiz and 

Zeiger 2010; Kabata-Pendias 2011). Upon uptake into the root, the loading of ions exiting 

the symplast into the conducting cells of the xylem (referred to as xylem loading) is a very 

highly regulated process. At the plasma membrane of xylem parenchyma cells, proton pumps 

(e.g. H+-ATPases) and a variety of ion channels and specialized carriers mediate the 

movement of ions into the xylem tracheary elements for onward distribution to the tops of 

plants (Taiz and Zeiger 2010). Within biological systems, essential TE such as Zn, iron (Fe), 

manganese (Mn), and copper (Cu) are important for enzyme function and proper growth 

(Lippard and Berg 1994). Non-essential TE such as Cd have no clearly known biological 

function but are renown for their toxicity (Garg and Bhandari 2014). Low concentrations of 

essential TE in plant tissues may result from inadequate root uptake due to deficient levels 
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in soil and diminish plant growth (Taiz and Zeiger 2010). When in excess, TE may disrupt 

plant homeostasis and enzyme functions due to antagonistic interactions with other TE that 

activate enzymes (Van Assche and Clijsters 1990; Kabata-Pendias 2011).  

As an essential metal nutrient in biological systems, Zn functions as a cofactor in over 

300 proteins (giving it a prominent role in enzyme activity) and is a structural component of 

many proteins (Palmgren et al. 2008). Zn contamination affects both farm and non-farm soils 

and may reach levels potentially toxic for some plants and animals (Lado et al. 2008). In 

farms soils, Zn contamination may be extensive even when not generally highly excessive 

(Holmgren et al. 1993; Tóth et al. 2016). While some soils may contain moderately elevated 

Zn levels due to their volcanic origins, emissions from mines and smelters may leave sites 

and affected topsoils highly polluted (Kabata-Pendias 2011). Excess Zn may affect plant 

growth by inducing ROS (reactive oxygen species) imbalance and inhibiting chlorophyll 

biosynthesis and Fe utilization in leaves (Chaney 1993; Petrov et al. 2015). It is capable of 

displacing divalent cations like iron (Fe2+) and manganese (Mn2+) at binding sites, when in 

excess (Van Assche and Clijsters 1990). Consequently, the situation of these elements in the 

plant tissues are an important consideration for crop quality and human nutrition, under 

excess soil Zn.  

1.3 Arbuscular mycorrhizal symbiosis  

Arbuscular mycorrhizal symbiosis refers to an ancient (about 450 million years) 

widespread symbiosis between the arbuscular mycorrhizal fungi (Phylum - Glomeromycota) 

and about 80% of plants. It is believed to have aided the colonization of land by the early 

plants and considerably modifies the host-plant nutrition, growth and tolerance to stresses 
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(Smith and Read 2008). The fungi colonize the roots of plants, developing structures inside 

(between and within the cells of the cortex), at the surface, and outside of the roots. The 

identifiable fungal structures include arbuscules (the main sites of nutrients exchange 

between AM and host-plant), vesicles, appressoria, hyphae/mycelia, coils, and spores (Smith 

and Read 2008). In response to the exudation of signalling compounds such as flavonoids 

and stringolactones (“branching factor”) by the root, hyphal germination and branching 

occurs from an AM spore or adjacent colonized root fragment, meets a plant root and forms 

an appresorium at the point of contact. The fungus releases “Myc factors” which are chemical 

signals perceived by the host roots which enables proper appressoria formation. Appressoria 

(also called hyphopodia) are the fungal structures that serve as precise entry points through 

which the external fungal hyphae (collectively called extraradical mycelium, ERM) penetrate 

the root of the host-plant (Harrison 1998). There is localized secretion of epidermal cell wall 

degrading hydrolytic enzymes which allows the pressurized channel hyphae to penetrate the 

root and begin formation of intraradical mycelia (IRM) (Bonfante and Perotto 1995). 

Immune to the induced host defense response during the infection process, the IRM extends 

through the root system forming other specialized fungal structures.  

The AM fungus improve mostly P supply to plants, and possibly other plant nutrients 

like Cu, Zn and ammonium (NH4
+) (Smith and Read 2008; Bijl et al. 2011). P is a major 

nutrient required by plants for healthy growth and the second most important one after 

nitrogen. Due to its low solubility and mobility in soil, only a small fraction of total soil P is 

available to plants, thus making the plant-AM symbiosis to be of immense value for plant 

growth especially during P deficiency (Smith et al. 2011; Rai et al. 2013). In nutrient deficient 

soil, AM fungi by its ERM spread out over a larger surface area than the host roots, mine 
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more nutrients for the plant (Miransari 2010). And in soils with excess nutrients, plant-AM 

symbiosis can enhance the plant tolerance and minimize negative effects of excess TE 

(González-Guerrero et al. 2016). Although not completely understood, the mycorrhizal 

mechanisms for this includes increased plant growth occasioned by a higher P supply 

(Nogueira et al. 2004; Shen et al. 2006; Zhang et al. 2015), reduced root uptake and changes 

in plant nutrition such as depressing root-to-shoot metal translocation via metal 

immobilization in roots (Christie et al. 2004), enhanced production of antioxidants to 

alleviate oxidative stress (Ruiz-Lozano 2003), and increased expression of metallothionein 

genes to improve metal homeostasis and tolerance (Rivera-Becerril et al. 2005).  

Reports of AM-induced depressions of host-plant growth (Johnson et al. 1997; Ryan 

et al. 2005) had cast the plant-AM symbioses as spanning the mutualism – parasitism 

continuum (Taiz and Zeiger 2010). While it may be conceived that sufficient nutrient 

availability in rhizosphere minimizes the host dependency on mycorrhizae, the inhibition of 

host growth by AM may not easily be attributed to extent of root colonization, P uptake or P 

transporter gene expression (Grace et al. 2009). And host response may vary due to plant 

species and stage of development, aside the levels of P fertilization (Li et al. 2005).  

1.4 Rhizobial symbiosis 

In plants, the major form of nitrogen nutrient taken up by the roots is nitrates (NO3
-), and to 

a lesser extent, NH4
+. Via the sequential action of nitrate reductase (NR) and nitrite reductase 

(NiR), nitrates are reduced in planta to NH4
+ which is the final form of inorganic nitrogen 

prior to the incorporation of nitrogen (assimilation) into organic compounds (Hodges 2002). 

However, except for dinitrogen-fixing bacteria such as rhizobia which can inhabit the root 
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nodules of leguminous plants, and other prokaryotes such as Clostridium, Anabeana, and 

Frankia, diatomic nitrogen (N2) which is the major form of atmospheric nitrogen can hardly 

be utilized by most living organisms (Raven et al. 2005). The rod-shaped Gram-negative 

rhizobia which inhabit the root nodules of legumes and carry out biological N2 fixation, are 

the most popular PGPR (plant growth promoting rhizobacteria). Immensely important in the 

cycling of nitrogen from the atmosphere to the biosphere, they include several genera such 

as; Rhizobium with at least 34 species, Bradyrhizobium with 9 species, Mesorhizobium with 

20 species, Phyllobacterium with 8 species, Azorhizobium with 2 species, and Sinorhizobium 

(currently named Ensifer) with 12 species (http://www.bacterio.cict.fr; Mateos et al. 2011). 

In biological N2 fixation during plant-rhizobium symbioses, the bacteria reduce N2 to 

ammonia (NH3) via the catalytic action of nitrogenase enzyme complex in the nodules, while 

the host provides a low oxygen abode and source of carbohydrates to the bacteroids.  

N2 + 8e- +16 MgATP +8H+ → 2NH3 +H2 + 16 MgADP + Pi ……………………... (1).  

Root nodule symbiosis is regarded to have evolved from an ancient AM symbiosis 

due to the similarities between them in infection process and genetic and hormonal regulation 

(Mukherjee and Ané 2011). In soybean, rhizobial infection is typically via the root hairs, as 

bacteria trapped in root hair curls penetrate the host-plant tissue by local hydrolysis of cell 

wall and invagination of the exposed cell membrane (Mateos et al. 2011). It is believed to be 

initiated when rhizobia in the soil sense phytochemicals like flavonoids released by the 

legume roots, which induces the expression of rhizobial nod genes and leads to the production 

of proteins required for the synthesis and export of rhizobial “Nod factors” (NF) to the plant 

root hairs. The NF is a lipooligosaccharide (β-1,4-linked N-acetyl-d-glucosamine backbone) 

believed to be responsible for initiation of the cascade of events that characterize the early 

http://www.bacterio.cict.fr/
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nodulation process, such as root hair invagination, membrane depolarization, intracellular 

calcium fluxes, and the root cortex cell division which establishes a nodule primordium 

(Abd-Alla et al. 2014). ROS signaling is in play and there is a plant oxidative burst response 

(like in a pathogen attack), but the microsymbiont is uninhibited and colonizes the roots 

anyway. The entire unit consisting of individual bacterium and surrounding endocytic 

membrane is called the symbiosome (Brewin 2004). In the symbiosis between 

Bradyrhizobium diazoefficiens (formerly B. japonicum) and soybean, spherical (referred to 

as determinate) nodules are formed which are mostly at the same developmental stage. Both 

infected and non-infected plant cells are found in the nodule. Infected cells occupy the central 

of nodule and each may contain up to 20,000 bacteroids in groups of 10-20 within each 

symbiosome; although bacteroids are not in direct contact with the host cell cytoplasm 

(Mateos et al. 2011). And leghemoglobin helps to maintain low O2 conditions favourable to 

bacteroids metabolism. Although more popular in terms of N2 fixation, rhizobia are also 

believed to play a role in plant TE homeostasis (González-Guerrero et al. 2016).  

1.5 Justification of study  

As the continued increase in the global human population necessitates improvements 

in crop production, minimizing the financial and environmental costs of chemical fertilizer 

application, as well as protecting plants in metal-contaminated soils, will become more 

valuable in the decades ahead. Since many factors may contribute to the biomass response of 

host-plants to inoculants, elucidating these factors underlying symbionts effectiveness is 

crucial under normal and excess soil TE. Several reports indicate that due to synergic effects, 

dual inoculation with AM fungi (AMF) and R improved host performance more than single 
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symbiont inoculations (Antunes et al. 2006; Chalk et al. 2006). But this is not always the case 

in a dual inoculation (Brown and Bethlenfalvay 1987; Ray and Valsalakumar 2010). The 

underlying synergistic responses during tripartite symbioses generally relate to microbe 

identity, physiology, and fitness under the prevailing soil conditions, cultivar, plant nutrition, 

gene expression, etc. (Miransari 2014). As these effects could be case-by-case (Gamalero et 

al. 2009), the elucidation of synergisms in AMF-rhizobial partnerships help clarify the 

mechanisms that underlie improved host bioproduction in an efficient dual inoculation.  

Excess Zn may antagonize other essential TE and induce TE imbalance in plant 

tissues (Van Assche and Clijsters 1990). The exploitation of bioinoculants to minimize Zn 

accumulation in shoots in contaminated soils, as well as mitigate the impact of excess Zn on 

the acquisition and distribution of other essential TE, is valuable for food quality and safety. 

Compared to phosphorus and nitrogen, the understanding of the TE responses that underpin 

host bioproduction in response to AM and R, is less clear (Chalk et al. 2006; Rai et al. 2013). 

For although AM fungal effect on one TE may have specific consequences for the acquisition 

and internal cycling of others, this has received little attention (Watts-Williams and 

Cavagnaro 2014), as many study reports in contaminated soils have focused only on the 

pollutant element. Zn, Fe, Mn and Cu are regarded as priority TE in terms of human and 

animal dietary requirements (Lehman and Rillig 2015). Therefore, symbiont effects on the 

acquisition and distribution of these elements in food crops is of interest in the study of soil-

plant-microbe interaction (Gamalero et al. 2009; Rengel 2015).  

Legumes such as soybean (Glycine max (L.) Merr.) are an important source of protein 

in the diet of millions of people across the globe. Soybean is a high-value crop with many 

industrial applications in addition to its food and feed value (Raghuvanshi and Bisht 2010), 
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and is colonized by AM and R. On the other hand, tomato (Solanum lycopersicum L.) is a 

widely-consumed vegetable colonized by AM. Produced in open fields as well as in 

commercial greenhouses, its exposure to moderately elevated TE levels in soils and irrigation 

water could be prevalent in certain areas (Gharaibeh et al. 2016). Both crops are therefore 

attractive for elucidating dual and single inoculant effects that enhance plant performance 

under normal and excess Zn conditions (Fig. 1-1).  

1.6 Aim of study 

To evaluate the effect of dual and single inoculation of rhizobia and AM fungi on soybean 

and tomato under various soil zinc conditions. The scope of this study covers the following:  

a. Plant growth and biomass production.  

b. Symbionts colonization and effectiveness.  

c. TE nutrition in soil and host tissues.  

d. ROS (H2O2) levels and polyphenols production.  

e. Type 1 metallothionein gene expression.  

f. Synergisms between R and AM fungi in dual inoculation.  

 

 

 

 

 



12 
 

 

 

Fig. 1-1. Plant-AM fungal-rhizobial symbioses. Characterized majorly by exchanges in 

carbon (C), nitrogen (N) and phosphorus (P) between the partners, the host growth is 

promoted by symbionts effects on soil chemical characteristics and plant physiology.  
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CHAPTER TWO  

Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese, iron, 

phosphorus, and polyphenols in soybean (Glycine max (L.) Merr.) under excess 

zinc  

2.1 Introduction 

Environmental entities such as heavy metals could be increased in parts of the ecosystem, 

including agricultural soils utilized for farming activities (Nicholson et al. 2003). Metal 

contamination of soils can occur naturally, or as a result of agricultural and industrial 

activities (Christie et al. 2004; Gall et al. 2015). This situation has necessitated studies on 

plant growth in such contaminated soils, generally considering aspects of crop physiology, 

bioproduction, plant-microbe interactions, phytoremediation, etc. (Luo et al. 2016). Within 

biosystems, metals are important for enzyme activity. Improved plant metal nutrient uptake 

from the soil and distribution to seeds has therefore been considered a way of combating 

nutrient deficiency in the diet (Grotz and Guerinot 2006; Vasconcelos et al. 2014). Despite 

their biological significance, however, metals have been implicated in environmental toxicity 

and could bear implications for food safety (Gall et al. 2015; Tόth et al. 2016). They could 

also limit crop productivity due to their stressful effects on plants when at elevated levels in 

the soil (Rout and Das 2003). The above stated facts contribute to make the metal content of 

soils utilized in crop production generally an issue of interest.  

Zinc (Zn) is an essential metal nutrient. Functioning as a cofactor in over 300 proteins, 

it plays a prominent role in enzyme activity, and is a structural component of many proteins 
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(Palmgren et al. 2008). It is also important in the production of auxin in plants. Soil Zn is 

mostly mobile and available to plants in the form of soluble free and complex ions such as 

Zn2+, ZnHCO3
+, Zn(OH)3

-, etc. (Kabata-Pendias and Sadurski 2004). Hydrated Zn and Zn2+ 

have being pointed out to be the predominant forms of Zn taken up by the roots (Kabata-

Pendias 2011), while Zn fractions associated with Fe and Mn oxides are likely to be the most 

available to plants (Norrish 1975; cited by Kabata-Pendias 2011, p280). Zn contamination 

was reported as reaching levels potentially toxic for plants and animals in some soils (Lado 

et al. 2008). Being one of the most widespread metals in organic soil conditioners (Pinamonti 

et al. 1997), it could become elevated in agricultural soils. In farm soils, for instance, it 

accumulates due to long term application of pig farmyard manure (Ogiyama et al. 2005; 

Ogiyama et al. 2010). While Zn deficiency reduces plant growth due to lowered auxin 

production, excess Zn in the soil induces stress in plants; causing reduced root and shoot 

growth, curling of young leaves, death of leaf tips, leaf chlorosis, reduced photosynthesis, 

etc. (Rout and Das 2003; Shi et al. 2015).  

Soybean (Glycine max (L.) Merr.) is involved in tripartite symbioses with dinitrogen 

(N2) fixing bacteria and arbuscular mycorrhizal fungi. The symbioses which is under 

autoregulation, is thought possible to improve plant growth, pathogen defense, as well as 

heavy metal tolerance (Al-Garni et al. 2006; Sakamoto et al. 2013a). While rhizobial N2 

fixation improves nitrogen (N) nutrition, AM fungi improve the phosphorus supply to the 

plant, while obtaining plant photosynthates in exchange (Farzaneh et al. 2009; Smith and 

Read 2008). In legumes, dual inoculation with AMF and rhizobia could improve plant 

performance more than single AMF inoculation, due to AMF-rhizobia synergism (Antunes 

et al. 2006; Bhattacharjee and Sharma 2012; Chalk et al. 2006; de Varennes and Goss 2007; 
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Guo et al. 2010). While some symbiont strategies such as improvement of antioxidants (Kang 

et al. 2015), excess Zn metal immobilization (Christie et al. 2004), and improvement of P 

and N supply to the host plant have been widely reported (Gamalero et al. 2009; Zhang et al. 

2015), a more complete understanding of the mechanisms involved in the soil-plant-microbe 

interaction is yet needed (Chalk et al. 2006; Gamalero et al. 2009; Rengel 2015). In this 

regard, an outlook on symbiont ionome responses could be insightful (Ramos et al. 2011), in 

case by case, as well as general. In soils moderately polluted with Zn, AMF may improve the 

balance of mineral nutrition of trace elements in plants (Christie et al. 2004). However, 

clarifications between single and dual symbionts modulation of Zn, Fe, and Mn homeostasis, 

in response to excess Zn, is not widely reported within the context of AMF-rhizobia 

synergism. The mechanisms of Zn toxicity include ROS imbalance (Petrov et al. 2015; Shi 

et al. 2015), as well as disruptions in metal homeostasis in the plant ionome - such as the 

inhibition of Fe translocation in soybean due to excess Zn (Ambler et al. 1970; Silva et al. 

2014). While Fe homeostasis has been related to the varied Zn tolerance of Arabidopsis 

halleri (Zn hyperaccumulator) and Arabidopsis thaliana (non hyperaccumulator) 

(Shanmugam et al. 2011), Zn2+ was earlier reported capable of displacing other divalent 

cations such as iron (Fe2+) and manganese (Mn2+) within plants, when in excess (Van Assche 

and Clijsters 1990). This study focused on the effects of single and dual AM fungal and 

rhizobial symbiont(s) on Zn, Fe, Mn, P and polyphenols in soybean under normal and excess 

soil Zn.   
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2.2 Materials and methods  

2.2.1 Soil  

The soil utilized for the study was a mix of river sand and loam soil in the ratio of 2:1 

respectively. Bulk river sand was sieved using a lab mesh (2mm) prior to mixing. 

Characteristics of the soil mix were determined to be: pH (6.13 ± 0.87); Electrical 

conductivity (3.25 ± 0.57 mS m-1); Fe (8.87 ± 1.35 µg g-1); Cu (0.007 ± 0.04 µg g-1); Zn (not 

determined); Mn (3.75 ± 1.52 µg g-1). The above stated baseline plant-available element 

determinations were done on unpolluted, unfertilized, unplanted soil mix using 

diethylenetriamine pentaacetic acid (DTPA) extracts according to Lindsay and Norvell 

(1978). 10 g of soil was extracted using 20 mL of 0.005 mol L-1 DTPA solution (pH 7.3) in 

Erlenmeyer flasks placed upright in a shaker (TAITEC NR-3, Japan) at 180 rpm for 2 hrs.  

2.2.2 Zinc addition  

ZnSO4 ·7H2O was artificially applied to the soil at the rate of 0 mg Zn kg-1 of soil, 200 mg 

Zn kg-1 of soil (EU Zn threshold), and 400 mg Zn kg-1 of soil (excess) (Table 2-1). Zn salt 

was first dissolved in distilled water then applied with mixing to the soil. All soils after 

mixing were bulked and autoclaved to kill off indigent microbes. According to Yanai et al. 

(2011) aging effect on Zn in soil is almost negligible (<3%) from 4 weeks after contamination. 

Therefore, the Zn contaminated soils were stored in non-transparent bags for a month in the 

lab. Soils were amended with dolomite (Ca: 278.7, Mg: 96.5 mg pot-1) after which they were 

placed in labelled plastic buckets in green house for seed sowing.  
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Table 2-1. ZnSO4 ·7H2O addition to soils  

 Zn Treatment Mass (g) of Zn salt kg-1 soil 

1 0 mg Zn kg-1 of soil 0  

2 200 mg Zn kg-1 of soil 0.2 ×(287.58/65.38)  

3 400 mg Zn kg-1 of soil 0.4 ×(287.58/65.38) 

Molar mass (g) of ZnSO4 ·7H2O = 287.58; (mass of Zn = 65.38 g).  
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2.2.3 Seeds 

The soybean, Glycine max (L.) Merr. (cv. Enrei), was used in this study. Seeds were sterilized 

in 70% ethanol and 10% H2O2 solution and rinsed in distilled water. Any floating seeds were 

discarded. The seeds were germinated on wet filter paper in petri dishes for 72 hr. Seeds with 

protruding radicles were then randomly selected and sowed in the soil (four seeds pot-1, later 

thinned to one) and kept in the greenhouse, while non-germinated seeds were discarded.  

2.2.4 Symbiont inoculations 

The bioinoculants used were; arbuscular mycorrhizal (AM) fungi, Gigaspora rosea Nicolson 

and Schenck, MAFF520062 (Ministry of Agriculture, Forestry and Fisheries of Japan), and, 

rhizobium bacteria, Bradyrhizobium diazoefficiens USDA 110 (USDA Rhizobium culture 

collection). The bioinoculants were used singly - rhizobium alone (R); AM fungus alone 

(AM); and in combination – rhizobium + AM fungus (RAM). A group of uninoculated 

control (C) was maintained. AMF inoculum consisted of soil bearing spores of Gigaspora 

rosea applied manually in the middle of soil in bucket, just prior to seed sowing. 10.2 g of 

inoculum (with average spore number of 200) was applied per pot. For rhizobium, 

Bradyrhizobium diazoefficiens obtained from a pure stock was first preincubated (28 °C) for 

1 week using yeast maltose agar (YMA) (Table 2-2), then sub-cultured subsequently in yeast 

maltose broth (YMB) (Table 2-3) in a slanted position in a bioshaker (TAITEC BR-23FP, 

Japan) (160 rpm, 30°C) for 1 week. The volume of broth was adjusted with sterile distilled 

water as needed to obtain average rhizobial cell concentration of 2.5 × 107 cells mL-1. This 

was then used for rhizobial inoculation at the rate of 1 mL seed-1 at time of sowing. 
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Table 2-2. YMA used for rhizobium pre-incubation (first culture) 

Compound Amount 

K2HPO4 

MgSO4・7H2O 

NaCl 

Bacto-yeast extract 

D-mannitol (HOCH2(CHOH)4CH2OH) 

Agar powder 

0.5 g 

0.2 g 

0.1 g 

0.4 g 

10.0 g 

15.0 g 

H2O (final volume) *1000 mL 

Congo-red **10 mL 

*pH was adjusted to 6.8. **Autoclaved Congo-red solution (0.25 g in 100 mL of ultra pure 

water) was dispensed into medium aseptically.  

 

 

 

 

Table 2-3. YMB used for second rhizobium culture 

Compound Amount 

K2HPO4 

MgSO4・7H2O 

NaCl 

Bacto-yeast extract 

D-mannitol (HOCH2(CHOH)4CH2OH) 

0.5 g 

0.2 g 

0.1 g 

0.4 g 

10.0 g 

H2O (final volume) *1000 mL 

*pH was adjusted to 6.8.  
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2.2.5 Experimental setup and pot fertilizations 

The experiment was set up as a 3×4 factorial in a completely randomized design. Factor 1 

was the Zn application rate: 0 mg of Zn kg-1 of soil (Zn0), 200 mg of Zn kg-1 of soil (Zn200), 

and 400 mg of Zn kg-1 of soil (Zn400); while Factor 2 was the inoculations (C, R, AM, and 

RAM). Each treatment was replicated 7 times giving a total of 84 experimental pots (Table 

2-4). To mitigate Zn deficiency in Zn0 soils, as well as other micronutrient deficiencies 

across board, all soils were initially supplied with nutrients (ZnSO4.7H2O:  50, MnSO4.5H2O: 

286, CuSO4.5H2O: 50, CoCl2.6H2O: 6; mg pot-1, Fe-EDTA.3H2O: 8.78 g pot-1) via liquid 

fertilizer solution (Table 2-5). All pots were also supplied initially with basic NPK fertilizer 

(N: 29.9, P: 21.7; K: 49.7 mg pot-1), and additional N fertilizer (34.9 mg pot-1) at 4 and 7 

weeks after sowing. All plants were routinely supplied with borehole water and maintained 

in the greenhouse of Graduate School of Horticulture, Chiba University, Japan.   

2.2.6 Plant harvest 

At nine weeks after sowing, five plants (n=5) were randomly chosen for further analysis. 

Plants were wholly harvested by carefully emptying the soil from the pots, breaking apart 

loosely attached soil, and washing with water to rid the roots of all soil particles. The whole 

plant was then cut into roots and shoots, weighed fresh, and processed for further 

determinations. This processing included drying in the oven at 80 °C for 48 hr.  
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Table 2-4. Two-factor treatment combination  

Zn treatment      Inoculation 

Zn0   (0 mg Zn kg-1 soil)     C   (Control) 

Zn200 (200 mg Zn kg-1 soil)     R   (Rhizobium) 

Zn400 (400 mg Zn kg-1 soil)     AM (AM fungus) 

 
    RAM (Rhizobium + AM fungus) 

 

 

Table 2-5. Preparation of liquid fertilizer solution 

Solution Compound gL-1 

A: 

 

KH2PO4 

K2SO4 

95.5 

49.6 

B: CaCl2・2H2O 262.0 

C: MgSO4・7H2O 245.0 

D: Fe-EDTA・3H2O 43.9 

E: MnSO4・5H2O 

ZnSO4・7H2O 

Cu2SO4・5H2O 

H3BO3 

Na2MoO4・2H2O 

CoCl2・6H2O 

1.43 

0.25 

0.25 

0.25 

0.06 

0.03 

F: NH4NO3 57.0 

To make: Add 5 mL of solutions A-E, and 7.5 mL of solution F, make up to 1000 mL with 

distilled water (adjust final pH to 6.5), and applied at 200 mL pot-1.  
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2.2.7 Plant growth parameters 

Plant height and biomass, days to flowering, days to fruiting, cumulative number of fallen 

leaves, and leaf greenness (SPAD values) (SPAD 502 Plus Chlorophyll Meter, Konica 

Minolta, Japan) were determined.  

2.2.8 Zn, Fe and Mn in plant  

Zn, Fe, and Mn concentrations were determined in dry root and shoot tissues. Dried samples 

were ground in a laboratory electric miller. A hundred mg of milled samples were put in 

electric muffle furnace (ADVANTEC FUL220FA, Tokyo, Japan) at 550 °C for 6 hr, and 

digested in 0.6 mol L-1 HCl acid, after which Zn (Fig. 2-1), Mn (Fig. 2-2) and Fe (Fig. 2-3) 

concentrations in solutions were measured using Atomic absorption spectrophotometry 

(Shimadzu AA-6600F, Japan). The root-to-shoot translocation factor (TF) was calculated as 

element concentration of shoot divided by that of root, and expressed as percentage (Stoltz 

and Greger 2002). In roots and shoots, Fe:Zn and Mn:Zn ratios were calculated as 

concentration of Fe or Mn divided by Zn.  

2.2.9 Phosphorus concentration 

Phosphorus concentration was determined using the vanadomolybdate method (Tandon et al. 

1968). Dry finely ground plant samples were ignited in an electric furnace (ADVANTEC 

FUL220FA, Tokyo, Japan) at 550 °C for 3 hr, after which samples were digested in 0.6 mol 

L-1 HCl acid and reacted with vanadomolybdate acid solution (Table 2-6). Potassium 

dihydrogen phosphate (KH2PO4) was used as a standard, and samples were kept for 30 min 

after which the absorbance was measured (Fig. 2-4) in a spectrophotometer (U-1800 Hitachi 

High Tech Corp, Tokyo, Japan) at 420 nm. The P-TF was also calculated as P concentration 

of shoot divided by that of root, and expressed as percentage. 
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Fig. 2-1. Standard absorption curves for determination of Zn concentration. 

 

  

Fig. 2-2. Standard absorption curves for determination of Mn concentration. 
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Fig. 2-3. Standard absorption curve for determination of Fe concentration. 

 

 

Fig. 2-4. Standard absorbance curve for determination of phosphorus concentration.  
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2.2.10 Polyphenol content 

Total polyphenols in root samples was determined via the Folin-Ciocalteu method (Amerine 

and Ough 1980). Fresh root samples wrapped in foil were ground in liquid nitrogen using a 

mortar and pestle, and then extracted in 70 % acetone. Chlorogenic acid was used as the 

standard. 2.5mL of 10-fold diluted Folin-Ciocalteu solution was added to the solutions, and 

after 2 mins, 2.0mL of NaCO3 solution (75 gL-1) was added. Absorbance was measured (Fig. 

2-3) in a spectrophotometer at 760 nm.  

2.2.11 H2O2 estimation  

Root H2O2 was determined using the 3, 3’-diaminobenzidine (DAB) staining procedure 

described by Fester and Hause (2005). Sections of fresh roots were immersed in DAB 

solution (Table 2-7) for 1 hr at room temperature, and transferred to 10% lactic acid solution 

in petri dishes. Photos of five sections per sample were captured in a light microscope (Nikon 

ECLIPSE 50i, Nikon, Japan), and DAB staining intensity quantified using ImageJ software 

(Royo et al. 2015).  

2.2.12 Symbiont colonization  

Symbiont colonization parameters were assessed in all plants. However, roots of C plants 

had neither mycorrhization nor nodules. R and AM plants were devoid of AM fungal 

colonization, and nodules, respectively. Root nodules (R and RAM) were removed from 

roots, counted and weighed. Mycorrhizal colonization was determined in roots using the 

trypan blue staining technique previously described by Rajapakse and Miller (1994).  
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Fig. 2-5. Standard absorbance curves for determination of polyphenol concentration.  
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Table 2-6. Vanadomolybdate acid solution 

Compound Amount 

Conc. HNO3 : Water (1:2 v/v) 

5% Ammonium molybdate (NH4)6MO7O24.4H2O solution 

(25g in 500mL of water at 60°C) 

0.25% Ammonium metavanadate NH4VO3 solution* 

(2.5g in 500mL of water at 90 °C) 

200 mL  

200 mL 

 

200 mL 

 

Final volume (1:1:1 v/v/v) 600 mL 

*Dissolve in 100 mL hot water, add 10 ml of HNO3, then make up volume with water. 

 

 

 

Table 2-7. DAB solution  

Compound Amount 

DAB tablets (WAKO 049-22831) 

(10 mg per tablet) 

15  

H2O (final volume) *150 mL 

*Protect solution from sunlight and keep at 4 °C.  
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Root sections for estimation of mycorrhization were first put in FAA (formaldehyde/glacial 

acetic acid/alcohol) solution (Table 2-8) for 1 week, then rinsed in distilled water and 

transferred into a supersonic wave bath (AS ONE, China) for 15 mins at 25 °C. Roots were 

then heated (180 °C) in 10 % potassium hydroxide solution  for 60 mins, allowed to cool, 

and heated (180 °C) in 1 % trypan blue solution (Table 2-9) for 15 mins, then finally stored 

(immersed) in lactose-glycerol solution (Table 2-10) for 1 week. Roots sections of 

approximately 1 cm (n=30) were mounted on a microscope slide and observed under ×10 

lens. Scoring for degree of mycorrhization was according to Trouvelot et al. (1986), and 

mycorrhizal indices were determined using “Mycocalc.exe” software.  

2.2.13 Statistical analysis  

Data collected were processed statistically by two-way analysis of variance (ANOVA). 

Significance levels (P values) were taken at P<0.05, and differences between treatment group 

means judged on the basis of Tukey-Kramer Tests.  

 

 

 

 

 

 

 



29 
 

Table 2-8. FAA solution 

Compound Amount 

Formaldehyde solution* (HCHO) 

Acetic acid (CH3COOH) 

Ethanol (C2H5OH) 

10 mL  

10 mL 

180 mL 

Final volume (1:1:18 v/v/v) 200 mL 

*37% v/v 

 

 

Table 2-9. 1% trypan blue reagent solution 

Compound Amount 

Trypan blue (C34H24N6N6Na4O14S4) 

Lactose-glycerol solution 

5 g  

495 mL 

 

 

 

Table 2-10. Lactose-glycerol solution 

Compound Amount 

Lactic acid (CH3CH(OH)COOH) 

Glycerol (HOCH2CHOHCH2OH) 

Deionized water 

200 mL  

200 mL 

200 mL 

Final volume (1:1:1 v/v/v) 600 mL 
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2.3 Results 

2.3.1 Plant growth indices 

Shoot length  

Significant differences due to experimental treatments (Table 2-11) were observed in shoot 

length (Fig. 2-6 A). Generally, AM plants had the shortest shoots, while Zn200 plants had 

the tallest – except in AM series where Zn400 plants were taller than Zn0 and Zn200.  

Dry weights  

Shoot (Fig. 2-6B), pod (Fig. 2-6C), and root (Fig. 2-6D) dry weights showed significant 

differences due to experimental treatments. RAM plants had higher shoot and pod dry weight 

than others, especially in RAM-Zn200. Roots dry weight was highest in AM-Zn400 plants, 

and lowest in R-Zn0 plants. Overall, dry weights were generally higher in Zn200 plants.  

Cumulative number of fallen leaves  

Cumulative number of fallen leaves (Fig. 2-6E) showed significant differences due to the 

inoculation treatment (Table 2-11). RAM plants had the lowest cumulative number of fallen 

leaves, especially in RAM-Zn200, while C plants (especially C-Zn400), had the highest 

cumulative number of fallen leaves.  

Shoot-to-root biomass ratio  

Shoot-to-root biomass ratio (Fig. 2-6F) showed significant differences between the 

experimental treatments. RAM plants had higher shoot-to-root biomass ratio than other 

inoculation groups, while Zn treatment reduced shoot-to-root biomass ratio.  
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Table 2-11: Significance of experimental treatments on plant growth indices, H2O2, and 

polyphenols. 

s/n Parameter Zn In Zn×In 

1 Shoot length (cm) 7.24E-08*** 5.82E-08*** 0.263295ns 

2 Shoot dry weight (g) 1.71E-06*** 5.68E-07*** 0.891126ns 

3 Pod dry weight (g) 0.000206*** 1.7E-05*** 0.783469ns 

4 Root dry weight (g) 6.57E-11*** 0.005092** 0.030368* 

5 Days to flowering 0.071555ns 8.34E-05*** 0.551615ns 

6 Days to fruiting 0.067554ns 0.002482** 0.939242ns 

7 Cum. no. of fallen leaves 0.07374ns 1.07E-05*** 0.162824ns 

8 Leaf greenness 0.310535ns 1.07E-06*** 0.982637ns 

9 Shoot/Root biomass (%) 2.25E-07*** 1.17E-07*** 0.268102ns 

10 H2O2 (DAB intensity) 1.39E-05*** 0.34457ns 0.064292ns 

11 Polyphenols (µg g-1 fw) 1.55E-05*** 0.001321** 0.428244ns 

P values of Two-way ANOVA analysis; Zn (Zinc); In (Inoculation); Zn×In (Interaction); *P<0.05; **P<0.01; 

***P<0.001; ns (not significant) at P>0.05.  
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Fig. 2-6. Growth indices of soybean in Zn treated soil. Shoot length (A); Shoot dry weight 

(B); Pod dry weight (C); Root dry weight (D); Cumulative number of fallen leaf (E); Shoot-

to-root biomass ratio (F); Days to flowering (G); Days to fruiting (H); Leaf greenness (I). 

Values are Mean ± SE. abcdLetters on the bars denote differences on the basis of Tukey-

Kramer tests.  

25

30

35

40

45

50

55

C R AM RAM

S
h

o
o

t 
le

n
g

th
 (

cm
)

Zn0 Zn200 Zn400A

bc

a

ab

c

ab

bc
c

c

bc

bc

a

ab

0

0.5

1

1.5

2

2.5

C R AM RAM

S
h

o
o

t 
d

ry
 w

ei
g

h
t 

(g
)

Zn0 Zn200 Zn400B

abc

bc
c cc

bc

c

bc

c
bc

a

ab

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C R AM RAM

P
o

d
 d

ry
 w

ei
g

h
t 

(g
)

Zn0 Zn200 Zn400C

a

a

abc

ab
abc

bc bc

abc
abc

c

bcbc

0

0.2

0.4

0.6

0.8

1

1.2

C R AM RAM

R
o

o
t 

d
ry

 w
ei

g
h

t 
(g

)

Zn0 Zn200 Zn400D

d
d

d

d

abc

bc bc

cd

bc

a

bc
bc

5

6

7

8

9

10

C R AM RAM

C
u

m
. 

n
o

. 
o

f 
fa

ll
en

 l
ea

v
es

Zn0 Zn200 Zn400E

a

ab
bc

c

100

150

200

250

300

350

400

C R AM RAM

S
h

o
o
t/

R
o
o
t 

b
io

m
a
ss

 r
a
ti

o
 (

%
)

Zn0 Zn200 Zn400F

a

abab

bc
abc

bcd

cdcd
cd

cd
cd

d

28

30

32

34

36

38

C R AM RAM

D
a

y
s 

to
 f

lo
w

er
in

g

Zn0 Zn200 Zn400G

a
a

a

b

40

41

42

43

44

45

46

47

C R AM RAM

D
a

y
s 

to
 f

ru
it

in
g

Zn0 Zn200 Zn400H

a

b

b

ab

10

15

20

25

30

35

40

C R AM RAM

L
ea

f 
g

re
en

n
es

s 
(S

P
A

D
 v

a
lu

e)

Zn0 Zn200 Zn400I

a
ab

b

b



33 
 

 

Days to flowering and fruiting  

Days to flowering (Fig. 2-6G), and days to fruiting (Fig. 2-6H) showed significant differences 

due to inoculation treatment (Table 2-11). R plants had the shortest days to flowering, while 

C, AM and RAM were not different. AM and RAM plants had similar days to flowering. R 

and RAM plants had the shortest days to fruiting, while AM plants had longest days to 

fruiting.  

2.3.2 Leaf greenness (SPAD) 

Leaf greenness (Fig. 2-6I) showed significant differences between the inoculation treatments 

(Table 2-11).  RAM plants had higher SPAD values than R and C plants. AM plants had 

insignificantly lower values than RAM. 

2.3.3 H2O2 content (DAB staining intensity)  

Root DAB staining intensity showed significant differences due to Zn treatment (Table 2-

11), with values in Zn400 groups generally higher than others, while inoculation effect was 

not significant. R-Zn400 plants had the highest values while R-Zn0 plants had the lowest 

(Fig. 2-7A).   

2.3.4 Polyphenol content  

Total polyphenol content of roots (Fig. 2-7B) showed significant differences due to 

experimental treatments. Zn treatment decreased polyphenols content, but R and RAM plants 

had higher polyphenols than AM and C plants. C-Zn400 plants had the lowest total 

polyphenols.  
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Fig. 2-7. DAB staining intensity of root (A); Total polyphenols in root (B) of soybean. Values 

are Mean ± SE. C (uninoculated control); R (Rhizobium only); AM (AM fungus only); RAM 

(Rhizobium + AM fungus). abcLetters on the bars denote differences on the basis of Tukey-

Kramer tests. 
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2.3.5 Mycorrhizal and nodule indices 

Mycorrhization parameters 

Frequency of mycorrhization (F%) (Fig. 2-8A) was significantly affected by Zn treatment, 

while intensity of mycorrhization (M%) (Fig. 2-8B) and arbuscule abundance (A%) (Fig. 2-

8C) were not (Table 2-12). F% was significantly higher in roots of plants in Zn200 and Zn400 

soils, than plants in Zn0 soils.  In roots of AM plants, M% and A% were elevated due to Zn 

treatment, but this was not exactly the case in roots of dual inoculated (RAM) plants. C and 

R plants were devoid of mycorrhization.  

Nodule parameters  

Nodule number per plant (Fig. 2-8D) was significantly higher in Zn200 groups, in both R 

and RAM plants (Table 2-12). Nodule fresh weight per plant (Fig. 2-8E) differed 

significantly due to Zn treatment, being higher in plants in Zn200 and Zn400 soils. C and 

AM plants were devoid of nodules.  

2.3.6 Element concentration in plant 

Zn in plant  

Zn in root (Fig. 2-9A) showed significant differences due to experimental treatments (Table 

2-13). Zn in root was highest in Zn400 groups and lowest in Zn0 groups, in a concentration 

dependent manner. In both Zn200 and Zn400 treatments, AM plants had the highest root Zn.  

Zn in shoot (Fig. 2-9B) showed significant differences due to experimental treatments, 

increasing with higher levels of Zn treatment. AM and RAM (mycorrhizal plants) had higher 

Zn in shoot than R and C (non-mycorrhizal) plants, in Zn200 and Zn400 soils.   
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Fig. 2-8. Symbiont colonization indices of soybean. Frequency of mycorrhization (A); 

Intensity of mycorrhization (B); Arbuscule abundance (C), Nodule number plant-1 (D); and 

Nodule fresh weight plant-1 (E). Values are Mean ± SE. R (Rhizobium only); AM (AM 

fungus only); RAM (Rhizobium + AM fungus). abLetters on the bars denote differences on 

the basis of Tukey-Kramer tests. 
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Table 2-12. Significance of experimental treatments on root colonization  

s/n Parameter Zn In Zn×In 

1 Mycorrhizal frequency (F %) 0.003384** 0.514505ns 0.622027ns 

2 Mycorrhizal intensity (M%) 0.255098ns 0.834228ns 0.19433ns 

3 Arbuscule abundance (A%) 0.492715ns 0.824119ns 0.403221ns 

4 Nodule no. plant-1 0.035233* 0.164814ns 0.82783ns 

5 Nodule fresh wt plant-1 (g) 0.00024*** 0.443483ns 0.62485ns 

P values of Two-way ANOVA analysis; Zn (Zinc); In (Inoculation); Zn×In (Interaction); *P<0.05; 

**P<0.01; ***P<0.001; ns (not significant) at P>0.05. 

 

 
Table 2-13. Significance of experimental treatments on Zn, Fe, Mn and P.  

s/n Parameter Zn In Zn×In 

1 Zn in root (µg g-1) 2.5E-37*** 0.000707*** 0.01247* 

2 Zn in shoot (µg g-1) 2.37E-34*** 1.92E-08*** 0.000621*** 

3 Zn-TF (%) 9.04E-31*** 0.001706** 0.00104** 

4 Fe in root (µg g-1) 0.047507* 5.28E-06*** 0.305245ns 

5 Fe in shoot (µg g-1) 6.28E-10*** 0.867231ns 0.872677ns 

6 Fe-TF (%) 4.95E-10*** 0.001952** 0.207002ns 

7 Fe:Zn ratio (root)  1.6E-31*** 0.017081* 0.023778* 

8 Fe:Zn ratio (shoot)  3.57E-22*** 0.26197ns 0.678319ns 

9 Mn in root (µg g-1) 1.09E-35*** 0.767591ns 0.215476ns 

10 Mn in shoot (µg g-1) 1.54E-23*** 1.82E-13*** 8.44E-07*** 

11 Mn-TF (%) 3.24E-25*** 2.73E-08*** 2.88E-06*** 

12 Mn:Zn ratio (root)  4.06E-37*** 0.052013ns 0.024504* 

13 Mn:Zn ratio (shoot)  3.3E-42*** 1.97E-10*** 5.88E-12** 

14 P in root (mg g-1)  1.46E-14*** 1.86E-05*** 0.332835ns 

15 P in shoot (mg g-1) 1.24E-05*** 4E-09*** 2.38E-05*** 

16 P-TF (%) 2.51E-14*** 1.08E-05*** 2.36E-05*** 

P values of Two-way ANOVA analysis; Zn (Zinc); In (Inoculation); Zn×In (Interaction); *P<0.05; 

**P<0.01; ***P<0.001; ns (not significant) at P>0.05. 
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Fig. 2-9. Zn in Root (A); Shoot (B); and Zn translocation factor (C) of soybean. Values are 

Mean ± SE. C (uninoculated control); R (Rhizobium only); AM (AM fungus only); RAM 

(Rhizobium + AM fungus). abcdeLetters on the bars denote differences on the basis of Tukey-

Kramer tests. 
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The root-to-shoot translocation factor of Zn (Zn-TF) (Fig. 2-9C) showed significant 

differences due to experimental treatments. Zn-TF was highest in Zn0 and lowest in Zn400 

groups, in a concentration dependent manner. In Zn0 soils, R and AM plants had lower Zn-

TF than C and RAM plants. In Zn200 and Zn400 soils, mycorrhizal plants (AM, RAM) did 

not show differences in Zn-TF from non-mycorrhizal (C, R) ones.  

Fe in plant   

Fe in root (Fig. 2-10A) showed significant differences due to experimental treatments (Table 

2-13). Plants in Zn200 and Zn400 groups had higher Fe in roots than plants in Zn0 soils. AM 

plants had higher Fe in root than others. Fe in shoot (Fig. 2-10B) showed significant 

differences due to the Zn treatments. Plants in Zn200 and Zn400 groups had lower Fe in 

shoots than Zn0 plants. This contrasts with the effect of Zn treatment on Fe in the roots where 

there was an increase in root Fe concentration due to increasing Zn level. It was noted that 

although there is higher Fe in soybean roots in Zn200 and Zn400 than in Zn0 soils, there is a 

reduced Fe in shoots in Zn200 and Zn400 groups, implying an inhibitory impact of Zn on 

shoot Fe content. Although inoculation treatment was not significant, Fe in shoot of R, AM, 

and RAM plants, in Zn200 soils, were higher than shoot Fe in C-Zn200. This pointed to 

insignificant improvement of shoot Fe in Zn200 soils, due to the symbionts. Translocation 

factor of Fe (Fe-TF) (Fig. 2-10C) showed significant differences due to experimental 

treatments, with Zn treatment reducing Fe-TF. In general, AM plants had lower Fe-TF than 

others, indicating AMF root Fe retention tendency.  Fe:Zn ratio in root (Fig. 2-10D) showed  
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Fig. 2-10. Fe in Root (A); Shoot (B); Fe translocation factor (C); Fe:Zn ratio in root (D); and 

Fe:Zn ratio in shoot (E) of soybean. Values are Mean ± SE. C (uninoculated control); R 

(Rhizobium only); AM (AM fungus only); RAM (Rhizobium + AM fungus). abcLetters on 

the bars denote differences on the basis of Tukey-Kramer tests. 
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significant differences due to experimental treatments. Plants in soils without Zn treatment 

had the highest values, while plants in Zn400 groups had the lowest, and were comparable 

to Zn200. In Zn0 soils, AM plants had the highest values. Fe:Zn ratio in shoot (Fig. 2-10E) 

showed significant decrease due to Zn treatment. Plants in Zn0 soils had the highest values, 

but Zn200 and Zn400 values were not different. Values in plants in Zn200 and Zn400 groups 

were approximately 1. Inoculation had no effect on Fe:Zn ratio in shoot. In general, 

inoculation effect on Fe was more in roots than shoots, as seen in Fe concentrations and 

Fe:Zn ratios.   

Mn in plant  

Mn in root (Fig. 2-11A) was significantly (Table 2-13) lower in Zn200 and Zn400 groups 

than Zn0 groups, signifying that Zn treatment reduced Mn uptake. Effect of inoculation on 

root Mn was not significant, as there were no differences between C and the other groups. 

Significant differences in Mn concentration of shoots (Fig. 2-11B) were observed due to 

experimental treatments. Zn tended to inhibit shoot Mn with values in Zn200 and Zn400 

groups generally lower than in Zn0 groups, except for RAM-Zn400 plants which had the 

highest shoot Mn. All inoculated groups had higher shoot Mn than C, in both Zn0 and Zn 

treated soils. While there was no difference between R and AM groups in Mn concentration 

of shoots, RAM plants had significantly higher shoot Mn than both R and AM plants, in 

Zn400 soils. This suggested a much-improved shoot Mn in dually inoculated plants in Zn400 

soils than was observed in either single (R; AM) inoculations. A significant interaction 

between Zn (factor 1) and inoculation (factor 2) for shoot Mn reinforces this position (Table 

2-13). The translocation factor of Mn (Mn-TF) (Fig. 2-11C) showed significant differences  
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Fig. 2-11. Mn in Root (A); Shoot (B); Mn translocation factor (C); Mn:Zn ratio in root (D); 

and Mn:Zn ratio in shoot (E) of soybean. Values are Mean ± SE. C (uninoculated control); 

R (Rhizobium only); AM (AM fungus only); RAM (Rhizobium + AM fungus). abcdeletters 

on the bars denote differences on the basis of Tukey-Kramer tests. 
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due to experimental treatments. Zn treatment increased Mn-TF (contrasts with its effect on 

Fe-TF). All inoculated groups had higher Mn-TF than C, in Zn400 soils. While R and AM 

plants were not significantly different in Mn-TF, RAM plants had significantly higher Mn-

TF than both, in Zn400 groups. A significant interaction between Zn and inoculation was 

observed for Mn-TF (Table 2-13). Mn:Zn ratio in root (Fig. 2-11D) showed significant 

differences due to experimental treatments. Plants in Zn0 groups had the highest values. This 

confirms that a higher Zn in the plant root lowered Mn. In Zn0 soils, however, AM plants 

had lower values than C. Mn:Zn ratio in shoot (Fig 2-11E) showed significant differences 

due to experimental treatments. Plants in Zn0 groups had the highest values, while values in 

Zn200 and Zn400 plants were approximately 1. Value in RAM-Zn400 was higher than others 

in Zn treated soils. In Zn0 soils, inoculated plants had higher Mn:Zn values than C, 

suggesting the inoculants capacity to boost shoot Mn in uncontaminated soils, with respect 

to shoot Zn concentrations. In general, inoculation effect on Mn was more in shoots than 

roots, as seen in Mn concentrations and Mn:Zn ratios.  

P in plant  

P in the root (Fig. 2-12A) showed significant differences due to experimental treatments 

(Table 2-13). Plants in Zn200 and Zn400 groups had higher root P than Zn0 plants. AM and 

RAM plants generally had higher root P than C and R. P in the shoot (Fig. 2-12B) showed 

significant differences due to experimental treatments. Shoot P appeared similar between C 

and R plants. AM and RAM plants had higher shoot P due to Zn treatment, but RAM plants 

had the highest shoot P in Zn200 and Zn400 soils. The translocation factor of P (P-TF) (Fig. 

2-12C) showed significant differences due to the experimental treatments. Zn treatment  
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Fig. 2-12. Phosphorus in Root (A); Shoot (B); and phosphorus translocation factor (C) of 

soybean. Values are Mean ± SE. C (uninoculated control); R (Rhizobium only); AM (AM 

fungus only); RAM (Rhizobium + AM fungus). abcdletters on the bars denote differences on 

the basis of Tukey-Kramer tests. 

 

 

  

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

C R AM RAM

m
g

 P
 g

-1
d

ry
 w

t 
(r

o
o
t)

Zn0 Zn200 Zn400A

dd

cd

bc

a

ab

abab

abab
ab

ab

0

2

4

6

8

10

12

C R AM RAM

m
g

 P
 g

-1
d

ry
 w

t 
(s

h
o
o
t)

Zn0 Zn200 Zn400B

a aab

abb

d

bccd

bc
bc

d

bc

0

20

40

60

80

100

120

140

160

C R AM RAM

P
 -

T
F

 (
%

)

Zn0 Zn200 Zn400C

a

a

a

b
b

b
b

b
b

b

b

b



45 
 

reduced P-TF except in AM plants. This suggest that the AM plants maintained the same P-

TF, in all soil Zn levels.  

2.4 Discussion 

For their essential roles in enzyme activity and redox reactions required during 

photosynthesis and respiration, Fe, Zn, Mn, and Cu are key members of the micronutrient 

ionome in plants (Haydon and Cobbett 2007). Increased Zn concentration of roots and shoots 

of soybean with increasing levels of Zn treatment was observed. This is expected as the 

consequence of increased available Zn in Zn200 and Zn400 soils. However, root-to-shoot 

Zn-TF was reduced with increasing soil Zn level. According to Arrivault et al. (2006), plants 

could respond to elevated Zn exposure by an exclusion strategy which involves immobilizing 

some Zn in the roots, thereby limiting their translocation to aerial plant parts. This was the 

case in the soybean plants, as Zn-TF was highest in plants in Zn0 soils, and lowest in those 

in Zn400 soils. Regarding Zn toxicity symptoms, yellowing of young leaves were not 

observed, while mild leaf curling in Zn400 plants occurred briefly at two – three weeks after 

planting. Zinc toxicity symptoms in plants may become very visible at leaf concentrations of 

≥ 300 mg Zn kg-1 dry weight (Marschner 1995). In soybean, Borkert et al. (1998) reported 

that leaf Zn concentrations above 140 mg kg -1 dry weight may be toxic. Here, shoot Zn 

concentrations observed in plants in all soil treatments were below these toxicity threshold 

values. Pilon et al. (2009) argued that very excessive applications of Zn to soils may not 

always be useful in plant production studies, especially where phytoremediation is not the 

focus, as elevated metals in agricultural soils may not often be very excessive. Given that the 

MAC of Zn in agricultural soils may be up to 300 mg Zn kg-1 (Alloway 2008; Kabata-Pendias 
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2011), 400 mg Zn kg-1 of soil (maximum) was selected as excess treatment in this study for 

its relevance to elevated concentrations in some agricultural soils (ATSDR, 2005).  

Fungal hyphae have metal binding properties. Christie et al. (2004) stated that in soils 

moderately polluted with Zn, AM fungi may strategically depress the root-to-shoot 

translocation of Zn due to Zn binding by fungal hyphae in the roots and rhizosphere. On the 

other hand, they may improve the balance of mineral nutrition of trace elements. Compared 

to non-mycorrhizal ones, no observation of lowered shoot Zn or Zn-TF in mycorrhizal plants 

(AM and RAM) in Zn200 and Zn400 soils, was made. Rather, modulation of Mn and Fe, in 

crosstalk with Zn, appeared to be the strategy, as Zn in shoot was higher in mycorrhizal plants 

under excess Zn, than in non-mycorrhizal ones. This trace nutrient balancing may also 

account for some differences in Zn-TF between the groups, in Zn0 soils, as reflected in Fe:Zn 

and Mn:Zn ratios. For instance, compared with C-Zn0, reduced Zn-TF in AM-Zn0, coincided 

with reduced Fe-TF and Mn:Zn (root), plus increased Fe:Zn (root) and Mn:Zn (shoot), in this 

group. In similar vein, in R-Zn0, reduced Zn-TF also coincide with increased Mn:Zn (shoot), 

compared with C-Zn0. Taken together, these highlight symbiont nutrient balancing effect, 

even in Zn0 soils, within the whole-plant homeostatic regulation. Root nodules influence 

micronutrients status since they act as metal nutrient sinks and involve in metal partitioning 

with the leaves (Gonazáles-Guerrero et al. 2016). In Zn treated soils, AM plants had the 

highest Zn in roots, while shoot Zn was also higher in AM and RAM than in C and R plants. 

Arriagada et al. (2010) reported that compared with non-mycorrhizal plants, AMF (Glomus 

deserticola) increased Zn content of roots and shoots, in Zn polluted soils. Although the exact 

reasons why mycorrhiza may improve Zn content in Zn polluted soil are not fully known, it 

has been stated that enhanced P nutrition in mycorrhizal plants stimulates improved plant 
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growth which dilutes the potential toxicity associated with enhanced Zn metal uptake in 

polluted soil (Arriagada et al. 2010; Khan et al. 2000). Especially in AM and RAM plants, 

higher shoot P in Zn treated soils coincided with the higher Zn concentration of shoots.  

Shanmugam et al. (2011) observed that excess Zn slightly increased root Fe, but 

markedly reduced shoot Fe in A. thaliana. Here, Zn treatment also increased root Fe, but 

reduced shoot Fe and Fe-TF. Reductions in shoot Fe, and Fe-TF due to Zn treatment aligns 

with earlier reports in soybean (Ambler et al. 1970; Silva et al. 2014). Soybean uses strategy 

I for Fe uptake. This strategy includes enhancing the reduction of Fe3+ to Fe2+ by ferric 

reductase enzymes at the surface of the plasma membrane in root epidermis (Kim and 

Guerinot 2007; Krohling et al. 2016). Iron Regulated Transporter 1 (IRT1) (which is also 

able to transport Zn and Mn), subsequently takes up Fe2+ from epidermal plasmalemma into 

the plant (Hell and Stephan 2003; Kim and Guerinot 2007; Korshunova et al. 1999; Grotz 

and Guerinot 2006). Zn induced reduction in shoot Fe and Fe-TF is possible due to Zn 

interference in Fe translocation to shoots. Kabata-Pendias (2011) stated that this interference 

is partly due to competition in the chelation processes involved in the whole-plant Fe 

translocation from roots to tops. For instance, Fe in the symplast is chelated with 

nicotianamine (NA), and the transport of NA-Fe2+ complexes characterize Fe homeostasis 

(Hell and Stephan 2003; Kim and Guerinot 2007). NA plays a role in Zn homeostasis, and 

forms complexes with Mn (Clemens et al. 2013; Deinlein et al. 2012; Stephan et al. 1996). 

Consequently, competition between Zn and Fe for NA chelation should contribute to Zn 

induced reductions in shoot Fe and Fe-TF, in Zn200 and Zn400 plants. Results for Fe:Zn 

ratios in shoots of nine weeks old soybean indicate that in the absence of Zn treatment (Zn0 

groups), shoot Fe is about four times more than Zn. But with Zn treatment (Zn200 and Zn400 
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groups), shoot Fe content is reduced to approximately equal Zn. This confirms antagonism 

between Zn and Fe in the shoots, and much lower values for Fe:Zn in shoots would have 

been detrimental. In Zn treated soils, the symbionts, in both single and dual inoculation 

treatments, neither significantly improved shoot Fe concentration nor Fe-TF, albeit 

insignificant increase in shoot Fe in R-200 and AM-200 plants, compared to C plants. But 

effect of inoculation on root Fe was significant, and improved root Fe was observed in all 

AM as well as RAM-200 treatments. Improved root Fe content in mycorrhizal soybean was 

reported by Nogueira and Cardoso (2002). In mycorrhizal plants, mycorrhiza may bind 

metals in plants roots due to metal ion binding by metallothioneins and polyphosphate in the 

fungal hyphae (Alam et al. 2001; Leyval et al. 1997). Taken together, root Zn and root Fe 

were highest in AM plants in Zn treated soils. This relates to the Fe-Zn balance (Fe:Zn ratio) 

in root, seeing a higher root Fe concentration correspond with higher root Zn, in AM plants. 

This connotes the AM symbiont capacity to preferentially affect the plant ionome on a system 

(roots or shoots) specific basis (recall inoculation effect on Fe was more in roots than shoots, 

in terms of Fe concentration and Fe:Zn ratios).  

Hasani et al. (2012) concluded that when used as foliar spray on pomegranates, Zn 

and Mn antagonize in the leaves of the plants. The antagonism between Mn and Zn was also 

reported by Tariq et al. (2007) and Aref (2011). Cross homeostasis between Mn and Fe was 

reported by Sharon et al. (2014), while Kleiber (2014) reported Mn antagonism to Zn and Fe. 

Reduction in root Mn due to Zn treatment was observed here. This is clearly demonstrated 

in Mn:Zn ratio in the roots. This suggests a negative impact of Zn on root epidermal Mn 

uptake, due perhaps to a preferential uptake (Zn bias) by their shared transporter(s), in Zn 

treated soils. In C plants, shoot Mn was lowered due to Zn treatment. This was observed in 
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R, AM, and RAM-Zn200 plants. However, in RAM-Zn400, shoot Mn was higher than in 

Zn200 and Zn0 groups. Especially in Zn400 group, the inoculants individually (R and AM) 

boosted shoot Mn. And in dual inoculation (RAM), shoot Mn concentration was even higher. 

Mn-TF in uninoculated control plants in Zn treated soils did not exceed 27%, but dual 

inoculated plants showed Mn-TF up to 51%, while singly inoculated plants had Mn-TF of 

about 37%, in Zn400 soils. This, in addition to significant interaction between the main 

treatment effects (Zn×In) observed in shoot Mn and Mn-TF (Table 2-13), suggests that co-

inoculated Bradyrhizobia and AMF synergized to boost Mn-TF in nine weeks old soybean 

under Zn excess treatment of 400 mg Zn kg -1 soil. Elevation of Mn-TF in uninoculated 

control plants in Zn treated soils, could mean a basal physiological counter (response) to Zn 

induced reduction in Mn uptake in the roots; a response (increased translocation of Mn 

antagonist) which was accentuated by the inoculants. This puts modulation of long-distance 

Mn-TF as a symbiont micronutrient balancing strategy in response to Zn excess. The shoot 

Mn:Zn ratio also supports this position: in the absence of Zn treatment, Mn is about 3 times 

more than Zn in the shoots of C plants; but with Zn treatment, only about 0.8 times 

(antagonism). The ability for adjustments of shoot Mn by the symbionts was noticed in both 

Zn0 and Zn treated soils. In inoculated plants, there was a general enhancement of shoot Mn 

and Mn:Zn ratio (Zn0 series), compared with C equivalents. In Zn200 and Zn400 soils, Fe:Zn 

as well as Mn:Zn ratios in shoots were approximately 1. Against the backdrop of significantly 

higher shoot Zn in mycorrhizal plants in Zn treated soils, improved shoot Mn was in 

balance/crosstalk with Zn, to maintain shoot Mn:Zn ratio at approx. unity. As Zn2+ may 

displace Fe2+ and Mn2+ within plants when in excess (Van Assche and Clijsters 1990), shoot 

Fe:Zn and Mn:Zn ratios much lower than 1, might be detrimental. In Zn400 soils, the Mn:Zn 
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ratio in shoot was significantly higher in RAM plants than others. While the mycorrhizal 

effect on Fe was restricted more to the roots, the symbionts manipulation of the Mn ionome 

was preferentially in the shoot system. This is suggestive of a systemic micronutrient 

balancing strategy, synergized during dual inoculation in Zn excess, within the framework 

of the long-distance crosstalk in the Zn, Mn, and Fe root-to-shoot translocations.  

Especially in Zn200 and Zn400 soils it was observed that shoot P and root P were 

higher in mycorrhizal plants. In Zn polluted soils, enhanced phosphorus nutrition in 

mycorrhizal plants may help improve plant biomass, despite increased plant Zn levels 

(Arrigada et al. 2010; Khan et al. 2000). Higher shoot P in RAM plants coincided with higher 

shoot biomass, which reduced by a “dilution effect” (Nogueira et al. 2004; Zhang et al. 2015), 

some tendency for Zn toxicity in RAM-Zn400 shoots. Smith and Read (2008) stated that 

fungal symbionts sometimes engage in luxury accumulation of nutrients for later use. This 

appears to be the case for the AM plants, as P-TF was about same in all Zn soil types even 

though root P was increased due to Zn treatment. This suggests that the intraradical 

mycorrhizal structures in the AM plants retained some P within the roots (obviously as a 

store of its major bargaining currency in the symbiosis). As RAM plants had higher shoot P, 

the propensity for luxury accumulation of P in the endorhizosphere was reduced in dual 

inoculation, freeing up more P nutrient for the shoot system. Higher shoot/root biomass ratio 

in RAM than AM plants fits into this explanation. Top growth of Lucerne (legume) was 

significantly increased in dual inoculation with rhizobia and AMF, as against single or no 

inoculation (Guo et al. 2010). In dual inoculation, AMF may improve rhizobial N2 fixation 

(and plant growth) by supplying more nutrients such as P, to the nodule bacteria (Siviero et 

al. 2008); thus, providing impetus for higher shoots growth. Increased shoot weight is also 
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related to the photosynthetic activity in plants, with dual inoculation boosting the leaf 

greenness of the plants, and having the lowest cumulative number of fallen leaves in all soils. 

Mn is indispensable in photosynthesis (Sharon et al. 2014). It is important in the oxygen-

evolving step, and helps maintain chloroplast integrity in leaves (Kabata-Pendias 2011). 

During photosynthesis, Mn limitation reduces the rate of water splitting and lowers the 

occupancy of electron carriers, which may slow growth (Salomon and Keren 2011; Sharon 

et al. 2014). Enhanced Mn-TF in RAM-Zn400 plants, therefore, fits the observed higher leaf 

greenness and shoot weights in RAM plants. Micronutrients support emergence of fruits or 

pods in plants, hence nutrient deficiency is usually linked to poor yield. Shortest days to 

fruiting in RAM and R plants then, is not unrelated to the symbiont effects on ionome 

dynamics of host plant (Ramos et al. 2011).  

The root is a primary organ for soil stress perception in plants, as well as synthesis of 

phytochemicals that counteract rhizospheric signals of biotic and abiotic nature (Porcel and 

Ruiz-Lozano 2004). ROS are involved in signaling, plant-microbe interaction, and stress 

response (Nath et al. 2016). Excess Zn metal could increase ROS levels in plants (Petrov et 

al. 2015; Shi et al. 2015), while DAB staining estimates the H2O2 (ROS) levels on root 

surface. Higher H2O2 levels (DAB stain intensity) on roots surface of Zn400 plants is due to 

Zn treatment. Microbial invasion of roots also induces ROS response in plants, as was 

reported in mycorrhizal roots, with similarity to root nodule senescence (Fester and Hause, 

2005). Here, inoculation effect was not significant, although DAB staining intensity was 

highest in rhizobial groups (R and RAM) in Zn400 soils. Symbionts are known to modulate 

antioxidant production (Kang et al. 2015), and this could temper H2O2 levels, thereby 

balancing out ROS. I observed higher total polyphenols (antioxidants) in R and RAM plants, 
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in general, while in Zn400 soils, AM plants had higher polyphenols than C. Increased 

polyphenols give some protection against potentially harmful entities such as ROS, but Zn 

treatment may decrease it, as reported in uninoculated soybean by Kang et al. (2015). I also 

observed a decrease in polyphenols due to Zn treatment, which signifies an impact on the 

phenols metabolism of the plants. These results indicate that R and RAM plants maintained 

higher levels than C plants, showing the beneficial role of the rhizobium bacteria in plant 

root polyphenol production, in single and dual inoculation. Plant growth promoting 

rhizobacteria support the modulation of antioxidants under environmental stress conditions, 

to improve growth (Nautiyal et al. 2008). In dually inoculated plants in Zn400 soils, there 

was a synergized polyphenol production that matched the levels of uninoculated plants in 

Zn0 soils (Fig. 2-7B).  

Mycorrhizal colonization of roots may tend to increase with increasing metal content 

of soil (Audet and Charest 2006; Hildebrandt et al. 1999). This is in line with my observation 

of a higher frequency of intraradical mycorrhization (F%) due to Zn treatment, in both AM 

and RAM plants. However, higher intensity of mycorrhization (M%) and arbuscule 

abundance (A%) due to Zn treatment observed in AM plants, was not exactly the case in 

RAM plants. AMF alone may intensify mycorrhization in plants in metal contaminated soil, 

in line with their involvement in metal tolerance. In dual inoculation, however, depending on 

autoregulation, a lesser or minimal mycorrhizal intensity might be beneficial, since both 

inoculants acquire plant photosynthates (Sakamoto et al. 2013a; Smith and Read 2008). 

Lower arbuscules abundance was recorded in RAM-Zn200 plant roots, than in RAM-Zn0 

and RAM-Zn400. Although the arbuscules are the sites of nutrient delivery from AMF to 

plant cells, some arbuscules do collapse periodically (Vierhelig, 2004), without subtracting 
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from the overall stability of the plant-AM symbiosis (Smith and Read 2008). However, it 

appeared that lower arbuscules abundance and intensity of mycorrhization in RAM-Zn200 

plants corresponded with a higher nodule number per plant in this treatment group. Both 

rhizobia and AMF in the same plant regulate each other, as nodulation could suppress AM 

colonization, and vice versa (Catford et al. 2003; Sakamoto et al. 2013a). In dual inoculation, 

AMF enhance the performance of nodule bacteria (Clark and Zeto 2000; Tavasolee et al. 

2011), a support unavailable in single rhizobial inoculation (Bhattacharjee and Sharma 2012). 

Zn treatment also increased nodule weight plant-1 in rhizobial and dual inoculated plants, 

indicating nodules responsiveness to the Zn condition. Single AM inoculation lacked the 

possible support of rhizobia in boosting traits such as root polyphenols, and leaf greenness, 

as was the case in RAM plants.  

Overall, physiological disparities in single and dual inoculation are consistent with 

the higher shoot bio-production in dual inoculation. This is in line with reports that peculiar 

synergistic effects occur in the plant-AM-rhizobia tripartite symbioses which could make 

plant performance in dual inoculation better than single inoculation (Chalk et al. 2006; 

Miransari 2014; Xie et al. 1995). As regards symbionts nutrient balancing strategy and host-

plant ionome dynamics, synergized root-to-shoot translocation of Mn, in response to excess 

Zn, could be one of these. In general, inoculant effect on Fe was more in roots than shoots, 

while inoculant effect on Mn was more in shoots than roots. And these were linked to the 

plant Zn status. Such systemic ionome adjustments underlies symbionts effect on plant 

performance under excess Zn metal.  
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2.5 Conclusion 

A greater number of studies on plant element homeostasis have considered metals separately 

or individually, even where several metals were measured (Briat et al. 2015). By jointly 

considering their concentration, long-distance translocation, and ratios with excess metal in 

root and shoot systems, a systemic micronutrient balancing strategy of symbionts was 

demonstrated. Compared with non-mycorrhizal ones, no observation of lowered shoot Zn or 

Zn-TF in mycorrhizal plants (AM and RAM) in Zn excess soil, was made. Rather, Gigaspora 

rosea and Bradyrhizobium diazoefficiens improved shoot Zn and systemically modulated Mn 

and Fe in the host plant ionome. In dual inoculation, synergy between co-inoculated AM and 

rhizobia for much enhanced Mn-TF was indicated in 400 mg Zn kg-1 treatment. This strategy, 

which is supported with improvements in shoot P, root polyphenols, leaf greenness, and 

reduction in cumulative number of shed leaves, resulted in higher shoot production, in dual 

inoculation.  
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CHAPTER THREE  

Synergic effect of arbuscular mycorrhizal fungi and bradyrhizobia on biomass 

response, element partitioning and metallothionein gene expression of soybean-

host under excess soil zinc  

3.1 Introduction 

In chapter two, it was observed that plants dually inoculated with Bradyrhizobium 

diazoefficiens and Gigaspora rosea had higher shoot bioproduction, compared with singly 

inoculated and/or uninoculated plants. A systemic micronutrient balancing strategy of the 

rhizobial and AM fungal symbionts was also demonstrated in soybean-host under excess Zn. 

It was earlier observed that while excess Zn antagonized Mn in roots and shoots, symbionts 

mitigated this by improving shoot Mn concentrations, with synergy between AM and R on 

root-to-shoot Mn translocation, alongside improvements in leaf greenness, shoot P, and root 

polyphenols, in the dually inoculated plants. However, the possibility of achieving different 

results with a different AM fungal inoculum needed to be considered due to the case-by-case 

nature of effects (Gamalero et al. 2009). In this chapter, I considered the synergic responses 

underlying symbionts effectiveness in the dual inoculation partnership between 

Bradyrhizobium diazoefficiens and Claroideoglomus etunicatum.  

As a possible consideration in the utilization of microbial resources, synergic effects 

of inoculants in AM-rhizobial partnerships for optimized host response is valuable under 

various soil TE conditions. While obtaining a positive biomass response of the host-plant 

remains a central objective for inoculum deployment in plant production, it has been argued 
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that aside insufficient time for the “maturity” of plant-AM symbiosis during short-term 

studies (Smith and Smith 2011), evaluating inoculant effectiveness using only total biomass 

(as is commonly observed in literature) may mask biomass allocations between plant parts, 

and obscure a precise microsymbiont effect on host bioproduction (Jayne and Quigley 2014). 

Consequently, to evaluate the biomass partitioning effects of symbionts, the biomass 

response calculation for distinct parts of host-plant had been suggested (Poorter and Nagel 

2000; Veresoglou et al. 2012). Zn and manganese (Mn) nutrition in soybean has been 

implicated in the biomass response to symbionts (Nogueira and Cardoso 2003; Ibiang et al. 

2017). Both elements have similar ionic potential (charge/size ratio), may bioaccumulate 

together or antagonize one another, and share some metal transporters (Korshunova et al. 

1999; Bravo et al. 2017). Therefore, symbiont effects on the partitioning of Zn and Mn may 

underlie host biomass response under elevated soil Zn conditions, despite a change in AM 

fungal species.  

Metallothioneins (MTs) are a group (types 1 - 4) of cysteine-rich metal-binding 

proteins that are involved in metal homeostasis and ROS response, but their roles are not 

fully known in plants (Hassinen et al. 2011). While MT1 is strongly expressed in roots (Guo 

et al. 2003), its role in host response to symbionts requires further elucidation within the 

context of AMF-rhizobia synergism. Here, the effect of B. diazoefficiens and C. etunicatum 

on bioproduction, organ-level partitioning of Zn and Mn, and type 1 metallothionein gene 

(GmMT1) expression in soybean-host, under normal and moderately elevated soil Zn 

conditions, was examined. The soil pH and available soil TE in pots after plant harvest was 

also examined.  
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3.2 Materials and methods  

3.2.1 Soil  

The soil utilized for this study was a mix of river sand and loam soil (sieved using a 2mm 

mesh prior to mixing) in the ratio of 3:2 respectively. Characteristics of the unpolluted, 

unfertilized, unplanted soil-mix was determined to be: pH (6.27 ± 0.09), EC (3.99 ± 0.42 mS 

m-1), available Zn (0.12 ± 0.04 µg g-1), Fe (9.42 ± 0.44 µg g-1), Mn (8.59 ± 0.23 µg g-1) and 

Cu (0.18 ± 0.02 µg g-1). Bulk soils in plastic bags were autoclaved (121°C for 60 min) twice 

(at 24 h intervals), after which ZnSO4.7H2O was dissolved in sterile distilled water and 

applied with mixing to the soils at 0 mg Zn kg-1 soil (Zn0), 200 mg Zn kg-1 soil (Zn200) and 

400 mg Zn kg-1 (Zn400), and stored (25°C) for one week before use. Zn treatments at Zn200 

and Zn400 were chosen for their relevance to elevated Zn conditions in agricultural soils 

rather than to assuredly elicit metal toxicity (Pilon et al. 2009). On seeding day, soils were 

initially amended with dolomite (Ca: 278.7, Mg: 96.5 mg pot-1), NPK fertilizer (N:30, P:44; 

K:83 mg pot-1) and nutrient solution (ZnSO4.7H2O:  50, MnSO4.5H2O: 286, CuSO4.5H2O: 

50, CoCl2.6H2O: 6; mg pot-1, Fe-EDTA.3H2O: 8.78 g pot-1). Additional N fertilizer (35 mg 

pot-1) was later applied at 4 and at 7 weeks after seeding.  

3.2.2 Seeds 

The soybean, Glycine max (L.) Merr. (cv. Enrei) was used in this study. Seeds were sterilized 

in 70% ethanol for 12 min, immersed in 10% H2O2 for 3 min, then rinsed in distilled water 

before sowing in pots containing soils (three seeds pot-1, later thinned to one).  

3.2.3 Experimental setup 

The experiment was set up as a 3×4 factorial in a completely randomized design. Factor 1 

was the Zn application (Zn0, Zn200, and Zn400), while factor 2 was the inoculation - 
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rhizobium alone (R), AM fungus alone (AM), rhizobium + AM fungus (RAM), and 

uninoculated control (C). Each treatment was replicated 7 times giving a total of 84 

experimental pots. All plants were routinely supplied with borehole water and pots were 

rotated weekly in the glasshouse for nine weeks.  

3.2.4 Symbiont inoculations 

The AMF used was Claroideoglomus etunicatum (supplied by Kyowa Hakko Kogyo Co. Ltd, 

now Kyowa Hakko Kirin Co. Ltd, Japan), while R was Bradyrhizobium diazoefficiens USDA 

110 (USDA Rhizobium culture collection). AM fungal inoculum (soil bearing approx. 400 

AM spores) was applied in the middle of soil in the pot, just prior to seeding. Bradyrhizobium 

diazoefficiens obtained from pure stock was maintained in YMB, and volume of broth was 

adjusted with sterile water as needed to obtain an average rhizobial cell concentration of 5.0 

× 107 cells mL-1. This diluted broth was used for rhizobial inoculation at the rate of 1 mL 

seed-1 at time of seeding.  

3.2.5 Plant harvest 

At nine weeks after seeding, leaf greenness (SPAD 502 Plus Chlorophyll Meter, Konica 

Minolta, Japan, INC.) were determined and five plants (n=5) were randomly chosen for 

further analysis. Plants were wholly harvested by carefully emptying the soil from the plastic 

pots into labeled polythene bags, breaking apart soil mass loosely attached to roots in a bucket 

of water, washing in running tap water and rinsing in distilled water. The whole plant was 

then cut into the roots, stem, leaves, and pods. A portion of roots was subtracted for total 

RNA extraction (frozen in liquid nitrogen then stored at -80°C) and determination of 

mycorrhizal colonization before drying all fresh biomass in the oven at 80°C for 48 hr.  
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3.2.6 Plant bioproduction and response to inoculants 

Total dry weight, as well as root, stem, leaf, and pod dry weights, were determined. Symbiont 

effectiveness was determined as total biomass response (Nogueira and Cardoso 2003), while 

root biomass response (RBR), stem biomass response (SBR), leaf biomass response (LBR) 

and pod biomass response (PBR) were calculated separately (Watts-Williams and Cavagnaro 

2012) for each soil condition using the dry weights of inoculated plants (DWsym.) and 

uninoculated control (DWcontrol) as shown below: 

Biomass response (%) = (DW(sym.) – mean DW(control))/mean DW(control) (×100) ……. (2).  

3.2.7 Rhizobial nodule and mycorrhizal colonization 

Symbiont colonization parameters were assessed in all the plants. Root nodules (R and RAM) 

were removed from roots, counted and weighed. Mycorrhizal colonization (AM and RAM) 

was determined in roots using the trypan blue staining technique previously described by 

Rajapakse and Miller (1994). Observation and scoring in a light microscope for 

mycorrhization indices was according to Trouvelot et al. (1986).  

3.2.8 RNA extraction, cDNA synthesis and Real-Time RT-PCR 

Total RNA extraction of root sample was carried out using FavorPrep™ kits (FAVORGEN 

BIOTECH CORP) according to manufacturer recommendations, including DNA elimination 

step using DNase I. The concentration of extracted RNA was confirmed using NanoDrop 

Lite Spectrophotometer (Thermo Scientific, USA) and samples with less than 20 ng µL-1 

RNA concentration were repeated using a fresh tissue sub-sample. cDNA synthesis 

(BIORAD T100™ Thermal Cycler) was then performed using total RNA volume equivalent 

to 200 ng in 20 µL total volume mix containing 10 mM dNTPs (Takara, Japan), 5X RT buffer 
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(Toyobo, Japan), oligo (dT)15 primer (Promega, USA) and ReverTraAce® (Toyobo, Japan) 

as follows; 30°C (10 min) → 42°C (60 min) → 99°C (5 min) → 12°C (∞). Real-time RT-

PCR (40 cycles, 25 µL final volume) was performed (StepOnePlus™ Real-time PCR System, 

Applied Biosystems, Singapore) on the cDNA fractions and primers using 

THUNDERBIRD® SYBR qPCR Mix (Toyobo, Japan). The primer sequences are as follows: 

elongation factor 1 (GmEF1α); 5`-AGTTTGAAGTCTCCACCATC-3` (forward) and 5`-

AAAGCAAACCAACAACGCAA-3` (reverse), and GmMT1; 5`-

TAACCTTCAAGCAGAGATAGC-3` (forward) and 5`-CAGCTTAAAACACCCGTAAC-

3` (reverse). The sequences for the soybean cDNA were obtained from the rsoy 

(http://spectra.psc.riken.jp/menta.cgi/rsoy/index) database (see Appendix), and the primer 

sequences used for amplifications were designed using GENETYX ver. 12 (GENETYX Co., 

Tokyo, Japan). Real-time RT-PCR conditions were as follows; 95°C (3 min) → 94°C (30 

sec) → 53°C (30 sec) → 72°C (30 sec), and 95°C (3 min) → 94°C (30 sec) → 55°C (30 sec) 

→ 72°C (30 sec), for GmMT1 and GmEF1α, respectively. The relative expression of GmMT1 

was calculated after normalization of GmMT1 gene expression using GmEF1α as the 

reference gene (Livak and Schmittgen 2001) (Figs. 3-1 and 3-2).  

3.2.9 Polyphenol content 

The total polyphenols in root samples were determined via the Folin-Ciocalteu method 

(Amerine and Ough 1980). Fresh root samples were ground in liquid nitrogen using a mortar 

and pestle and then extracted in 70% acetone. 2.5 mL of 10-fold diluted Folin-Ciocalteu 

solution was added to the solutions, and after 2 min, 2.0 mL of NaCO3 was added. 

Chlorogenic acid was used as standard, and the absorbance was measured in a 

spectrophotometer at 760 nm (Fig. 3-3).  

http://spectra.psc.riken.jp/menta.cgi/rsoy/index
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Fig. 3-1. Relative amount of GmEF1 cDNA (Zn0, Zn200 and Zn400) 
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Fig. 3-2. Relative amount of GmMT1 cDNA (Zn0, Zn200 and Zn400). 
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Fig. 3-3. Standard absorbance curves for determination of polyphenol concentration.  

 

 

 

y = 13.918x + 0.2074
R² = 0.9933

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.02 0.04 0.06 0.08 0.1

A
b

so
rb

an
ce

Total Polyphenols (mg/mL)

y = 11.856x + 0.2068
R² = 0.9951

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.02 0.04 0.06 0.08 0.1

A
b

so
rb

an
ce

Total Polyphenols (mg/mL)

y = 11.256x + 0.2441
R² = 0.9965

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.02 0.04 0.06 0.08 0.1

A
b

so
rb

an
ce

Total Polyphenols (mg/mL)

y = 11.872x + 0.2229
R² = 0.998

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.02 0.04 0.06 0.08 0.1

A
b

so
rb

an
ce

Total polyphenols (mg/mL)



64 
 

3.2.10 H2O2 estimation  

As an indicator of ROS production, H2O2 levels were determined on root and nodule using 

the 3, 3’-diaminobenzidine (DAB) staining procedure described by Fester and Hause (2005). 

Sections of fresh roots and razor-split nodules were immersed in DAB solution for 1 h at 

room temperature, and transferred to 10% lactic acid solution in Petri dishes. Photos of 

randomly chosen tissue sections were captured in a light microscope (Nikon ECLIPSE 50i, 

Nikon, Japan) and DAB staining intensity was quantified using ImageJ software 

(http://imagej.nih.gov/ij/)(Royo et al. 2015). 

3.2.11 Element analysis in plant tissues 

Element concentrations were determined using milled dry tissue samples. 100 mg of tissue 

was ignited in an electric muffle furnace (ADVANTEC FUL220FA, Tokyo, Japan) at 550°C 

for 6 h, and digested in 0.6 mol L-1 HCl, after which element concentrations (Fig. 3-4) in 

solutions were measured using Atomic absorption spectrophotometry (Shimadzu AA-6600F, 

Japan). Element translocation factor (TF) from root to stem and from stem to leaf was 

calculated as metal concentrations (µg g-1) in stem divided by that in root, and concentration 

in leaf divided by that in stem, respectively (Gharaibeh et al. 2016). To examine the balance 

in element concentrations in leaves, Mn:Zn, and Fe:Zn ratios were calculated using leaf Zn, 

Mn, and Fe concentrations.  

3.2.12 pH and available element in soil  

Soils from each pot were recovered in a bag at harvest and bulked. 10 g of soil was mixed 

with 50 mL of ultrapure water, then vortexed at maximum speed (R.K.I Test tube mixer 60-

042, IKEMOTO, Japan) twice for 30 secs, allowed to stand for 1 h, and vortexed again before 

measuring the pH (Horiba pH Meter D-51). Available soil element was determined using 

http://imagej.nih.gov/ij/
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diethylenetriamine pentaacetic acid (DTPA) solution. 10 g of soil was extracted using 20 mL 

of 0.005 mol L-1 DTPA (pH 7.3) according to Lindsay and Norvell (1978) (Table 3-1). The 

concentration of available Zn and Mn in the soil extracts were measured using Atomic 

absorption spectrophotometry (Fig. 3-5). The moisture content of a portion of soils was also 

determined after drying in the oven at 105ºC for >24 h to enable subsequent calculation of 

dry soil weights.  

3.2.13 Statistical analysis  

Data collected were processed statistically by two-way analysis of variance (ANOVA), with 

significance level set at P<0.05. Differences between treatment group means were based on 

Tukey-Kramer Tests.  
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Table 3-1. DTPA solution used for soil extraction to determine available soil TE 

 Compound Molar wt. (g) quantity used 

1 DTPA  

C14H23N3O10 

393.35 1.967 g 

2 Calcium chloride dihydrate 

CaCl2.2H2O 

147.01 1.47 g 

3 2,2,2-Nitrilotriethanol* 

N(CH2CH2OH)3 

149.19 **13.592 mL  

 

 H2O (final volume)   ***1000 mL 

*Also known as TEA (triethanolamine) 

**Was measured from a 98% TEA solution with mass concentration of 1.12 g mL-1. 0.1 mol 

L-1 TEA contains 14.919 g of TEA. 14.919 ÷1.12 = 13.32. For a 98% TEA solution, 13.32 

mL ×(100/98) = 13.592 mL.  

***Final pH was adjusted to 7.3 ±0.05 with hydrochloric acid.  
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Fig. 3-4. Standard absorption curves for determination of plant element concentrations.  
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Fig. 3-5. Standard absorption curves for determination of available soil Zn and Mn.  
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3.3 Results  

3.3.1 Plant bioproduction and biomass response  

While RAM plants were generally taller (Plate 3-1), the excess Zn treatments induced smaller 

mildly curled leaves but no chlorosis was observed. Total dry weight (Fig. 3-6A) showed 

significant differences (Table 3-2) between the groups, with RAM plants having the highest 

values in all soil Zn treatments. In Zn0 and Zn200 soils, AM and RAM groups had 

significantly higher values than C and R, while in Zn400 soil, C, R, and AM groups were not 

different. Excess Zn was generally tolerated, but it significantly lowered total dry weight in 

AM and RAM, compared to their values in Zn0. Compared to C, R generally favored root 

bioproduction, and root dry weight (Fig. 3-6B) was generally highest in RAM groups. In Zn0 

and Zn200 soils, respectively, AM had significantly and insignificantly higher root 

production than C, but in Zn400 soil, AM had insignificantly reduced root biomass compared 

to C. Stem dry weight (Fig. 3-6C) was increased in AM and RAM groups in Zn0 and Zn200 

soils. In Zn400 soils, stem dry weights were not significantly different between control and 

symbiont groups. Leaf dry weight (Fig. 3-6D) was significantly higher in RAM groups in all 

soils but was decreased by excess Zn in AM and RAM. AM plants in Zn0 and Zn200 soils 

had higher values than C and R. Pod dry weights (Fig. 3-6E) were not significantly affected 

by excess Zn treatment but values were significantly higher in AM and RAM groups, while 

C and R were not different. Days to flowering (Fig. 3-6F) was significantly affected by 

inoculation treatment, while Zn had no effect, as RAM plants generally had shorter days to 

flowering than C and R. Overall, while no differences in total dry weight were observed 

between R and C, R appeared to potentiate AM effect in dually inoculated groups.  
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Plate 3-1. Soybean in labelled pots representing the different treatments.  

C            R          AM         RAM 

(Zn0) 

C             R          AM         RAM 

(Zn200) 

C           R         AM           RAM 

(Zn400) 

Soybean plants in the greenhouse 
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Fig. 3-6. Plant growth indices. Total dry weight (A); Root dry weight (B); Stem dry weight 

(C); Leaf dry weight (D); Pod dry weight (E); Days to flowering (F). Values are Mean ±SE. 

C (uninoculated control); R (Rhizobium); AM (AM fungus); RAM (Rhizobium + AM 

fungus). abcLetters on the bars denote differences based on Tukey-Kramer tests. 
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Table 3-2. Significance of experimental treatments on soybean growth indices. 

P values of Two-way ANOVA analysis. Zn (Zinc); In (symbiont inoculation); Zn×In (Interaction); 

*P<0.05; **P<0.01; ***P<0.001; ns (not significant) at P>0.05. 

 

 

 

 

 

 

 

 

s/n Parameter Zn In Zn×In 

1 Total dry weight (g) 1.5E-06*** 1.9E-24*** 4.6E-09*** 

2 Root dry weight (g) 7.4E-08*** 3.3E-15*** 4.9E-05*** 

3 Stem dry weight (g) 3.7E-05*** 6.9E-18*** 4E-10*** 

4 Leaf dry weight (g) 0.0145* 2.1E-21*** 5.9E-07*** 

5 Pod dry weight (g) 0.239ns 1E-14*** 0.754ns 

6 Symbionts effectiveness (%) 1.6E-13*** 9.1E-19*** 7.7E-07*** 

7 Root biomass response (%) 1.4E-08*** 2E-10*** 0.0039** 

8 Stem biomass response (%) 3.8E-14*** 3.6E-15*** 2.4E-07*** 

9 Leaf biomass response (%) 3.8E-06*** 4.2E-10*** 0.0023** 

10 Pod biomass response (%) 0.064ns 2.7E-10*** 0.562ns 

11 Leaf greenness (SPAD)  0.4722ns 6.7E-07*** 0.183ns 

12 Days to flowering  0.1045ns 0.0025** 0.1187ns 

13 Number of leaves plant-1 0.893ns 2.6E-08*** 0.3177ns 
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Symbiont effectiveness (total biomass response) (Fig. 3-7A) showed significant 

differences (Table 3-2) with the highest values in RAM, and the lowest in R. In Zn0 and 

Zn200 soils, approx. a hundred percent increase in total bioproduction was achieved by RAM 

treatment, indicating a highly effective partnership between both symbionts. However, 

symbiont effectiveness was significantly lower in Zn400 soil, with approx. twenty eight 

percent increase in total bioproduction in RAM, while values in R and AM were approx. nil. 

RBR (Fig. 3-7B) was highest in RAM and in Zn0 and Zn200 groups. In Zn400 soils, rhizobial 

groups were not different, and both had significantly higher root response values than AM. 

SBR (Fig. 3-7C) was highest in RAM groups in Zn0 and Zn200 soils, but was generally 

negative or close to zero, in R. In Zn400 soils, all values were negative and not significantly 

different between the inoculations. LBR (Fig. 3-7D) was highest in RAM plants, with values 

in R generally negative or close to zero. Leaf response in mycorrhizal groups was 

significantly reduced in Zn400 soils, compared with values in Zn0 and Zn200. PBR (Fig. 3-

7E) was highest in RAM plants and lowest in R. Excess Zn had an insignificant effect on pod 

response, but AM benefitted pod production by approx. thirty one percent in Zn400 soils 

despite an approx. nil total biomass response.  

3.3.2 Nodulation and AM fungal colonization  

The frequency of mycorrhizal colonization (Fig. 3-8A) showed significant differences (Table 

3-3), being generally higher in RAM than in AM plants, and lower in Zn400 soils. The 

intensity of mycorrhizal colonization (Fig. 3-8B) was generally higher in RAM than in AM 

plants with the lowest values seen in AM groups in Zn400 soil. The arbuscule abundance 

(Fig. 3-8C) was also significantly reduced in Zn400 soils, with the highest values observed 

in RAM groups in Zn0 soils. C and R plants were devoid of mycorrhizal colonization. Nodule 
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Fig. 3-7. Host biomass response to inoculants. Symbionts effectiveness (A); Root biomass 

response (B); Stem biomass response (C); Leaf biomass response (D); Pod biomass response 

(E) of soybean. Values are Mean ±SE. R (Rhizobium); AM (AM fungus); RAM (Rhizobium 

+ AM fungus). abcdeLetters on the bars denote differences based on Tukey-Kramer tests. 
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Fig 3-8. Frequency of mycorrhization (A); Intensity of mycorrhization (B); Arbuscule 

abundance (C); Nodule number plant-1 (D); Nodule fresh weight plant-1 (E); DAB intensity 

of nodule exterior (F); DAB intensity of nodule interior (G); GmMT1 relative expression (H); 

Root polyphenols (I) of soybean. Values are Mean ± SE. C (uninoculated control); R 

(Rhizobium); AM (AM fungus); RAM (Rhizobium + AM fungus). abcdLetters on the bars 

denote differences on the basis of Tukey-Kramer tests. 
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Table 3-3. Significance of experimental treatments on soybean root colonization. 

s/n Parameter Zn In Zn×In 

1 Frequency of mycorrhization (F %) 0.00022*** 0.0078** 0.986ns 

2 Intensity of mycorrhization (M%) 0.0093** 0.158ns 0.818ns 

3 Arbuscule abundance (A%) 0.0095** 0.2140ns 0.5038ns 

4 Nodule number plant-1 0.056ns 1.7E-06*** 0.968ns 

5 Nodule fresh weight plant-1 (g) 0.0011** 2E-14*** 0.00049*** 

P values of Two-way ANOVA analysis. Zn (Zinc); In (symbiont inoculation); Zn×In (Interaction); *P<0.05; 

**P<0.01; ***P<0.001; ns (not significant) at P>0.05.  

 

 

Table 3-4. Significance of experimental treatments on DAB intensity of nodules, GmMT1 

relative expression and root polyphenols. 

s/n Parameter Zn In Zn×In 

1 DAB intensity  

(nodule exterior) 

9.77E-05*** 0.0325* 0.83241ns 

2 DAB intensity 

(nodule interior) 

0.48192ns 3.78E-09*** 0.83926ns 

3 GmMT1 relative expression 1.1E-07*** 3E-13*** 3.2E-05*** 

4 Root polyphenols 0.0008*** 3.1E-07*** 0.01457* 

P values of Two-way ANOVA analysis. Zn (Zinc); In (symbiont inoculation); Zn×In (Interaction); *P<0.05; 

**P<0.01; ***P<0.001; ns (not significant) at P>0.05.  
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number plant-1 (Fig. 3-8D) was significantly higher in RAM than in R and was insignificantly 

reduced by excess Zn. Nodule fresh weight plant-1 (Fig. 3-8E) was significantly higher in 

RAM than in R, but values were reduced in RAM plants in Zn400 soils. C and AM plants 

were devoid of nodules.  

3.3.3 DAB intensity, root polyphenols, and GmMT1 relative expression  

DAB staining intensity of nodule exterior (Fig. 3-8F) was significantly (Table 3-4) lower in 

Zn treated groups, and generally higher in RAM than in R. DAB staining intensity of nodule 

interior (Fig. 3-8G) was significantly higher in RAM groups than in R, while the effect of Zn 

was not significant. GmMT1 relative expression (Fig. 3-8H) showed significant differences 

between the experimental groups.  Generally, GmMT1 expression in response to mycorrhizal 

and dual symbioses is strongly indicated, with RAM plants having the highest values in all 

soil Zn treatments, and C having the lowest. The response of GmMT1 to Zn treatment was 

also indicated in Zn200 groups, but a lower relative expression in Zn400 soils implied the 

absence of a dose-dependent effect. Total polyphenols in the root (Fig. 3-8I) showed 

significant differences due to treatments, with the lowest values in C plants in Zn0 soils, and 

the highest values in mycorrhizal plants in Zn400 soils. Generally, C, AM, and RAM had 

higher values in Zn400 soils than in Zn0. There were no significant effects of experimental 

treatments on the DAB staining intensity of roots (not shown).  
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3.3.4 Trace element in plant 

Zn in plant  

Root Zn concentrations (Fig. 3-9A) showed significant differences (Table 3-5) due to 

experimental treatments. In Zn0 soils, there were no significant differences in root Zn 

concentrations between control and inoculated groups. In Zn treated soils, AM generally had 

lower root Zn concentrations than other groups, while in Zn400 soils, RAM plants had 

significantly higher values than AM. Stem Zn concentrations (Fig. 3-9B) showed significant 

differences between the groups. In Zn0 soils, values were not different between control and 

inoculated groups, but in Zn treated soils, stem Zn concentrations were lower in RAM plants. 

Leaf Zn concentrations (Fig. 3-9C) in Zn0 soils were not significantly different between 

control and inoculated groups. Under excess Zn, mycorrhizal groups had significantly lower 

leaf Zn concentrations, with RAM having the lowest values. Pod Zn concentrations (Fig. 3-

9D) in Zn0 soils were not significantly different between control and inoculated groups. In 

Zn treated soils, values were significantly lower in RAM. Root-to-stem Zn-TF (Fig. 3-9E) 

was significantly decreased due to excess Zn. In Zn200 and Zn400 soils, AM plants had the 

highest values while RAM plants had the lowest. In Zn0 soils, RAM plants also had the 

lowest root-to-stem Zn translocation. R groups generally had lower values than C and AM, 

in all soils. Stem-to-leaf Zn-TF (Fig. 3-9F) showed significant differences between the 

groups. In Zn0 soils, RAM had the lowest values while C had the highest. In Zn200 and 

Zn400 soils, AM had the lowest values and differed significantly from R and RAM. In AM 

groups, the stem-to-leaf Zn translocation was identical in all soil Zn treatments, suggesting 

that AM restricted Zn distribution from stem to leaf, under excess Zn. Compared to AM, 

higher values in RAM (and R) suggests an earlier point of control (root-to-stem translocation) 
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Fig 3-9. Zn concentration of Root (A); Stem (B); Leaf (C); Pod (D); Root-to-stem Zn 

translocation factor (E); Stem-to-leaf Zn translocation factor (F) of soybean. Values are Mean 

± SE. C (uninoculated control); R (Rhizobium); AM (AM fungus); RAM (Rhizobium + AM 

fungus). abcdefLetters on the bars denote differences based on Tukey-Kramer tests.  
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Table 3-5. Significance of experimental treatments on TE and soil pH. 

P values of Two-way ANOVA analysis. Zn (Zinc); In (symbiont inoculation); Zn×In (Interaction); 

*P<0.05; **P<0.01; ***P<0.001; ns (not significant) at P>0.05. To minimize error variance within RAM- 

Zn200 group, n=4 was used in stem-to-leaf Mn-TF.  

 

 

 

 

s/n Parameter Zn In Zn×In 

1 Root Zn (µg g-1 dw) 1.1E-26*** 5.7E-05*** 0.01178* 

2 Stem Zn (µg g-1 dw) 3.9E-39*** 6.2E-15*** 2.9E-07*** 

3 Leaf Zn (µg g-1 dw) 8E-40*** 7.1E-14*** 0.00159** 

4 Pod Zn (µg g-1 dw) 4.99E-32*** 4.6E-07*** 0.0253* 

5 Root-to-stem Zn-TF 7.4E-15*** 1.1E-05*** 0.11039ns 

6 Stem-to-leaf Zn-TF 1.2E-06*** 5.9E-08*** 5.6E-06*** 

7 Root Mn (µg g-1 dw) 9.7E-17*** 0.00781** 0.02667* 

8 Stem Mn (µg g-1 dw) 6.1E-10*** 4.9E-14*** 0.00019*** 

9 Leaf Mn (µg g-1 dw) 3.9E-16*** 1.6E-21*** 0.02104* 

10 Pod Mn (µg g-1 dw) 0.00013*** 1.1E-10*** 9E-05*** 

11 Root-to-stem Mn-TF  0.00014*** 9.8E-09*** 2.4E-05*** 

12 Stem-to-leaf Mn-TF  3E-05*** 0.01314* 0.07048ns 

13 Leaf Fe (µg g-1 dw )  5.6E-05*** 1.6E-10*** 0.34806ns 

14 Root Fe (µg g-1 dw) 0.35979ns 0.76293ns 0.00818** 

15 Root-to-leaf Fe-TF 0.02641* 5.5E-06*** 0.4526ns 

16 Fe:Zn (leaf) 1.6E-19*** 1.85E-19*** 0.00095*** 

17 Mn:Zn (leaf) 4.9E-36*** 9.6E-08*** 0.15391ns 

18 Available soil Zn (mg kg-1) 1.4E-44*** 0.774ns 0.557ns 

19 Available soil Mn (mg kg-1) 1.9E-05*** 0.0206* 0.0605ns 

20 Soil pH (H2O) 0.00099*** 0.167ns 0.0151* 
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for Zn partitioning due to rhizobial symbiosis. Overall, strategic differences between AM 

and RAM are indicated in the organ-level partitioning of Zn, due to R.  

Mn in plant  

Root Mn concentrations (Fig. 3-10A) were significantly (Table 3-5) reduced due to excess 

Zn. In Zn0 soils, mycorrhizal groups had lower values than C and R. In Zn200 and Zn400, 

root Mn concentrations were not significantly different between control and inoculated 

groups. Stem Mn concentrations (Fig. 3-10B) showed significant differences due to 

experimental treatments. In Zn0 soils, AM and RAM plants had insignificantly lower values 

than C and R. In Zn200 and Zn400 soils, stem Mn in C plants were at similar concentrations 

as in Zn0, but in inoculated groups, significant reduction was observed with the lowest values 

in RAM treatment. Leaf Mn concentrations (Fig. 3-10C) in Zn0 soils were significantly lower 

in mycorrhizal groups, but values in C and R were not different. Under excess Zn, leaf Mn 

concentrations were highest in C and lowest in mycorrhizal groups.  Pod Mn concentrations 

(Fig. 3-10D) in Zn0 soils were not different. Under excess Zn, pod Mn concentrations were 

reduced in mycorrhizal groups, with the lowest values in RAM. Root-to-stem Mn-TF (Fig. 

3-10E) was significantly affected by the treatments. In Zn0 soils, root-to-stem Mn 

translocation showed no differences between the control and symbiont groups. In Zn treated 

soils, C had the highest values while RAM had the lowest. Synergic action between R and 

AM in the dual inoculation is indicated. Stem-to-leaf Mn-TF (Fig. 3-10F) was generally 

increased in Zn treated soils, with higher values in symbiont groups. No differences were 

seen in Zn0 soils. Overall, symbionts modulated Mn partitioning to tops – mainly restricting 

root-to-stem Mn translocation to counter excess Zn effect. The lack of significant differences  
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Fig 3-10. Mn concentration of Root (A); Stem (B); Leaf (C); Pod (D); Root-to-stem Mn 

translocation factor (E); Stem-to-leaf Mn translocation factor (F) of soybean. Values are 

Mean ± SE. C (uninoculated control); R (Rhizobium); AM (AM fungus); RAM (Rhizobium 

+ AM fungus). abcdefLetters on the bars denote differences based on Tukey-Kramer tests. In 

(F), n=4 in RAM in Zn200 soil.  
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in root Mn in Zn treated soils appears to be the outcome of higher shoot accumulation in C, 

rather than similar root uptake between the control and inoculated groups.  

Fe concentration in root and leaf  

Root Fe concentration (Fig. 3-11A) showed no significant effects of Zn or inoculation, but 

significant interaction (Table 3-5), with the highest values in AM plants in Zn200 soils. Leaf 

Fe concentration (Fig. 3-11B) generally decreased due to Zn treatment, with C and RAM 

having higher values than R and AM. Root-to-leaf Fe-TF (Fig. 3-11C) showed significant 

differences with AM plants having the lowest values under all soil Zn treatments.  

3.3.5 Leaf indices (number, greenness and element ratios)  

The number of leaves plant-1 (Fig. 3-12A) was significantly (Table 3-2) affected by 

inoculation, with RAM plants having the highest values in all soils. Leaf greenness (Fig. 3-

12B) was significantly affected by inoculation, but the effect of Zn was not significant. RAM 

plants had the greenest leaves in all soils, while the lowest values were noticed in C plants in 

Zn400 soils. Fe:Zn ratio in leaf (Fig. 3-12C) showed significant differences (Table 3-5) with 

a general decrease due to excess Zn. In all soils, Fe:Zn balance in the leaves was highest in 

RAM plants and lowest in AM. Mn:Zn ratio in leaf (Fig. 3-12D) was significantly reduced 

due to excess Zn, but the trend between control and inoculated groups was maintained, as 

AM generally had the lowest values.  

3.3.6 pH and available soil element  

Available soil Zn (Table 3-6) was significantly (Table 3-5) higher in Zn treated soils, but no 

significant differences were seen between the control and symbiont groups. Available soil 

Mn (Table 3-6) was significantly affected by experimental treatments with the highest and 

lowest values in RAM plants in Zn200 and Zn0 soils, respectively. No clear differences were  
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Fig 3-11. Fe concentration of root (A); Leaf (B); and Root-to-leaf Fe-TF (C) of soybean. 

Values are Mean ± SE. C (uninoculated control); R (Rhizobium); AM (AM fungus); RAM 

(Rhizobium + AM fungus). abcdefLetters on the bars denote differences on the basis of Tukey-

Kramer tests. 
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Fig 3-12. Leaf indices. Leaf number plant-1 (A); Leaf greenness (B); Fe:Zn ratio in leaf (C) 

Mn:Zn ratio in leaf (D) of soybean. Values are Mean ± SE. C (uninoculated control); R 

(Rhizobium); AM (AM fungus); RAM (Rhizobium + AM fungus). abcdefLetters on the bars 

denote differences on the basis of Tukey-Kramer tests.  
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Table 3-6. Available element and pH in potted soils after nine weeks of soybean growth.  

 

 

 

C R AM RAM 

Zn0        Zn200      Zn400            Zn0        Zn200    Zn400           Zn0      Zn200     Zn400           Zn0        Zn200    Zn400 

Zn  

(mg kg-1) 

0.69c 

±0.06 

24.63b 

±0.80 

38.51a 

±0.43 

0.49c 

±0.04 

25.35b 

±0.37 

39.75a 

±0.20 

0.44c 

±0.03 

24.15b 

±0.39 

39.19a 

±0.28 

0.49c 

±0.04 

25.72b 

±3.14 

37.03a 

±0.34 

Mn  

(mg kg-1) 

8.33b 

±0.52 

8.63b 

±0.74 

8.16b 

±0.19 

8.38b 

±0.52 

10.03ab 

±0.26 

8.77b 

±0.14 

8.84b 

±0.19 

10.30ab 

±0.26 

8.69b 

±0.42 

7.94b 

±0.26 

11.85a 

±1.24 

9.41ab 

±0.31 

Soil pH 7.00a 

±0.04 

6.92ab 

±0.07 

6.90ab 

±0.04 

7.06a 

±0.03 

6.69b 

±0.11 

6.92a 

±0.02 

6.95ab 

±0.03 

6.97ab 

±0.05 

7.08a 

±0.03 

7.06a 

±0.09 

6.83ab 

±0.02 

6.91ab 

±0.04 

Values are Mean ± SE. abcLetters on the bars denote differences on the basis of Tukey-Kramer tests.  
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observed between the inoculation groups. Soil pH (Table 3-6) was significantly affected by 

the treatments. In C groups, the highest values where observed in Zn0 soils and the lowest in 

Zn400. An opposite trend was observed in AM groups where the lowest pH was observed in 

Zn0 soils and the highest in Zn400, while rhizobial groups (R and RAM) show a similar trend 

in soil pH with the highest values in Zn0 soils and the lowest in Zn200. 

3.4 Discussion  

Bioproduction and symbionts colonization  

As reflected in symbionts effectiveness, the clear differences in total dry weights between 

RAM and other groups indicate that interaction between the rhizobial and AM fungal 

inoculants stimulated improved host bioproduction. Compared with control, R consistently 

favored root production in line with the position of Brown and Bethlenfalvay (1987), but 

contributed little benefit to total plant bioproduction on its own, since no significant 

differences in total dry biomass between C and R were observed. This is in line with my 

general experience (personal observations) with the additional N fertilizations at 4 and 7 

weeks minimizing rhizobial-nitrogen supply effects and permitting comparable performance 

between C and R (Ibiang et al. 2017). By minimizing the major benefit of one inoculant (R) 

against the control plants, and thus ensuring AM treatments also had this benefit, a scrutiny 

of the dual symbioses itself could be had when comparing RAM performance versus AM, 

and C-R. In the dual inoculation, synergic effects of both symbionts on bioproduction were 

indicated as R appeared to potentiate AM effect across the board. Fe in the leaves of plant is 

important in chlorophyll biosynthesis and function but is often antagonized by excess Zn. 

The higher leaf number, SPAD values (an indicator of chlorophyll and nitrogen status of 
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intact leaf) and Fe:Zn ratio in RAM groups indicate that the photosynthetic organs were better 

maintained by dual symbiosis, and supported higher total biomass production, in line with 

previous results (Ray and Valsalakumar 2010; Bhattacharjee and Sharma 2012; Ibiang et al. 

2017).  

Overall, Zn effect on plant biomass indicated a greater impact on plant-symbiont 

interaction outcome, than a direct toxicity to soybean. Aside transient curling of leaves which 

was observed after two weeks of growth, the excess Zn treatments were generally tolerated 

by the plants but decreased the symbionts effectiveness. Zn phytotoxicity leading to a 

reduction in plant bioproduction may be observed when leaf Zn concentration reaches 300-

1000 mg Zn kg-1 dry weight, with a typical phytotoxicity value at 500 mg Zn kg-1 dry weight 

(Chaney 1993; Marschner 1995). But in this study, the highest leaf Zn concentration (463.92 

µg Zn g-1 d.w.) which was observed in C plants in Zn400 soil was lower than this typical leaf 

Zn phytotoxicity value. Further, the absence of chlorosis indicates general Fe sufficiency, 

although Fe concentration in leaves reduced due to excess Zn. Therefore, even when metal 

phytotoxicity appear minimal, host biomass response to symbionts could be significantly 

tempered due to elevated Zn in agricultural soils. As both symbiont effectiveness and 

colonization indices were reduced due to excess Zn, one may attribute this to the detrimental 

effects of excess Zn on individual symbiont fitness, in line with the position of other reports 

(Miransari 2014; Millar and Bennett 2016). Generally, symbiont colonization was higher in 

RAM than in single symbiont groups. During AM-rhizobial symbioses, individual symbionts 

could benefit from the complementary metabolic activities of the other partner (Bijl et al. 

2011, Meena et al. 2017), contributing to greater colonization in dual inoculation than in 

single. However, this was not generally the case in experiment one where a different AM 
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fungus (G. rosea) was used in combination with same Bradyrhizobium strain (Ibiang et al. 

2017). The significance of the identities of individual partners in the dual symbioses, as well 

as abiotic condition variables, is to be inferred (Miransari 2014).  

With elevated soil Zn condition, symbionts demonstrated the ability to preferentially 

affect organ (stem, root, and pod) bioproduction even when total biomass response appears 

to be nil. In Zn400 soils, stem (in R, AM, and RAM) and root (AM) bioproduction were 

generally not benefitted by the symbionts. Compared with C, AM in Zn400 soil minimized 

root (-17.28%) and stem (-15.67%) bioproduction while enhancing pod (31.26%) and leaf 

(7.22%). This suggests that root and stem bioproduction was modulated to favor pod and leaf, 

by the AM symbiont, in line with Veresoglou et al. (2012) that overall AM effect was a 

significant modification of biomass towards shoots growth. Although total biomass response 

was tempered in AM plants in Zn400 soil, improvement in pod bioproduction may still be 

regarded as beneficial in terms of yield (Smith et al. 2010).  

Effect of symbionts on element partitioning in host.  

Under excess Zn, the root Zn concentrations were lower in AM than in other groups, 

indicating a lower Zn uptake into the root due to AM symbiosis. Although no differences 

were seen in the available soil Zn at harvest between control and mycorrhizal groups, AM 

hyphal binding to Zn in rhizosphere reduces uptake under excess conditions (Christie et al. 

2004). As small changes in soil pH affect element uptake (Kabata-Pendias 2011), the higher 

soil pH in AM-Zn400 groups than in C-Zn400 also contributed to lower root Zn in the AM 

plants. In Zn200 and Zn400 soils, reduced root Zn combined with higher root-to-stem and 

lower stem-to-leaf Zn translocations resulted to significantly lower leaf Zn concentrations in 
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AM plants than in C. Therefore, the control of Zn homeostasis effected by the AM fungus 

involved limiting uptake and modulating the translocation of Zn between host organs. Such 

non-uniform trace element distribution within plants may contribute to metal tolerance 

(Reichman 2002). The higher root Zn and lower stem Zn in RAM and R plants in Zn200 and 

Zn400 soils compared to AM, highlighted a rhizobial influence on host Zn nutrition (Nyoki 

and Ndakidemi 2017) that also involved soil pH effects. Compared to AM, the strategy for 

Zn partitioning in RAM plants (a higher concentration of Zn in the roots and a lowered root-

to-stem Zn translocation) therefore indicate rhizobia-induced preferences in the dual 

inoculation. In Zn400 soils where similar stem dry weights were recorded in all plants, the 

differences in stem Zn concentrations between RAM and the single symbiont groups are not 

ascribed to dilution effects. Between C and rhizobial groups in Zn200 and Zn400 soils, 

significantly lower stem Zn concentrations stemming from a generally lower root-to-stem Zn 

translocation in R and RAM, contribute to the lower leaf and pod Zn concentrations observed 

especially in RAM. Rhizobial nodules which act as metal nutrient sinks and are involved in 

metal partitioning with the leaves (Gonazáles-Guerrero et al. 2016), appear to synergize with 

the AM fungus, in the Zn partitioning in RAM hosts.  

My results suggest that excess Zn antagonized Mn uptake and triggered a higher Mn 

translocation from roots to tops, leading to generally higher leaf and pod Mn, especially in 

C. Unfettered Mn conduction through the stem is indicated in C plants, but some restraint 

was observed in R, AM, and RAM (Fig. 3-10B). By modulating Mn translocation from roots 

to stem (balanced out in translocation from stem to leaf), the inoculants regulated the organ-

level partitioning of Mn in opposition to the excess Zn effect, with RAM plants being the 

most efficient. Although differences in available Mn in soils were not clear-cut, arbuscular 
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mycorrhiza affect plant Mn by several factors including metal complexation by hyphal and 

host-derived metal-binding proteins such as metallothioneins or phytochelatins (Arines et al. 

1992; Smith and Read 2008). The generally higher GmMT1 relative expression in AM and 

RAM plants compared to C, indicate a phytostimulatory effect of symbionts on MT1 

biosynthesis and suggests their exploitation in the symbiont modulation of element 

distribution from roots to tops. Phytotoxicity of Mn concentrations depends strongly on leaf 

Fe concentration (Kabata-Pendias 2011). Higher leaf Fe in C plants than in AM and R 

indicates that Fe aided the plant tolerance to elevated leaf Mn and Zn levels, in the absence 

of symbionts. And higher root-to-leaf Fe-TF in RAM than in the single symbiont groups, 

also indicate that Fe translocation from roots to tops was increased during dual inoculation 

to fine-tune the Fe:Zn balance in leaves. The stem is the transit organ with a priority in 

regulating element transport in plants, and is increasingly being recognized as a target for 

AM effects on element nutrition (Christie et al. 2004; Lingua et al. 2008; Huang et al. 2017a). 

For both Zn and Mn, my results also indicate AM fungal and rhizobial effects on this host 

organ in the regulation of element homeostasis by symbionts. 

Root polyphenols, metallothionein gene expression and DAB staining intensity in nodules  

Induced by biotic as well as abiotic conditions, ROS production are indicative of the 

metabolic state of cells and tissues and are involved in stress response, signaling and plant-

microbe interaction (Nath et al. 2016). They are usually regulated by plant defense responses, 

of which polyphenolic antioxidants are an important component. Therefore, the increase in 

polyphenols in Zn400 soils is considered a defense response, while the values in AM groups 

generally indicate mycorrhizal phytostimulation in line with the report by Gąstol and 

Domagala-Świątkiewicz (2015). Increased expression of metallothionein genes may be 
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involved in ROS defense during exposure to excess metals and/or microsymbiont infection 

(Guo et al. 2003; Rivera-Becerril et al. 2005; Hassinen 2011). In this study, GmMT1 relative 

expression was highest in RAM plants in all soil Zn conditions, indicating a greater host 

response during dual symbioses. Higher GmMT1 expression in Zn200 than in Zn400 soils 

indicated the absence of a dose-dependent effect due to Zn treatment and suggests the 

existence of regulation by other responses - such as enhanced polyphenols production in 

Zn400 soils. Between AM and RAM, as well as in C and R, the pattern of GmMT1 expression 

and polyphenols production is suggestive of a feedback between both, as higher polyphenols 

production in AM compared to RAM, appear to contrast with the higher GmMT1 expression 

in RAM than in AM. In C and R, the trend in polyphenols production also appears to contrast 

with GmMT1 expression. Previous reports also suggest that metallothioneins may respond to 

excess Zn in a manner suggesting peak and fall periods rather than in a concentration-

dependent one (Cobbett and Goldsbrough 2002; Castiglione et al. 2007). The lowered DAB 

staining intensity on nodule surface under excess Zn suggests some modulation by host 

defense, to protect the symbiotic organ. Further, a higher DAB staining intensity within 

nodules in RAM treatment compared to R, indicates a higher metabolic state within nodule 

during the dual endosymbiosis. It has been suggested that GmMT1 expression in roots might 

be supportive to the maintenance of plant-AM-rhizobial symbioses (Sakamoto et al. 2013b). 

This is in line with the observation of higher root colonization indices and symbiont 

effectiveness in RAM treatment where GmMT1 expression was highest. Overall, my findings 

suggest a role for MT1 biosynthesis in modulating root colonization, host response and 

element partitioning, including attenuating a higher metabolic state within nodules during 

dual symbioses, where rhizobial synergy with AM fungus in hosts, occur.  
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3.5 Conclusion  

This study demonstrated the effect of plant-microbe symbioses on the bioproduction, organ-

level control of element homeostasis and type 1 metallothionein gene expression in soybean-

host, within the context of AMF-rhizobial synergism. Under all soil Zn conditions, dual 

inoculation with Bradyrhizobium diazoefficiens and Claroideoglomus etunicatum 

consistently benefitted soybean bioproduction more than single symbiont or no-inoculation. 

While generally tolerated by soybean, excess Zn at 400 mg Zn kg-1 soil reduced the symbiont 

colonization and effectiveness, especially in single inoculation. Depending on soil Zn 

condition, symbionts demonstrated the ability to preferentially stimulate organ (stem, root, 

and pod) bioproduction even when total biomass response appears to be nil. Compared with 

control, while AM modulated stem and root bioproduction in favor of leaf and pods, 

rhizobium favored root production and potentiated AM effect in dual inoculation. A higher 

GmMT1 expression coincided with improved host colonization, bioproduction, and a more 

efficient homeostatic control in dually inoculated plants where partitioning of Zn and Mn in 

the host organs, and Fe translocation to leaves, indicated synergic effects between R and AM. 

Synergisms in symbionts root colonization, number and greenness of leaves, element 

partitioning and metallothionein gene expression are indicated as important mechanisms 

underlying the effective partnership between both symbionts. These findings provide further 

insights on the synergistic interactions between rhizobial and arbuscular mycorrhizal 

symbionts in legume-hosts, and the effect of moderately elevated soil Zn conditions on 

inoculant effectiveness.  
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CHAPTER FOUR  

Effect of excess zinc and arbuscular mycorrhizal fungus on bioproduction and 

trace element nutrition of tomato (Solanum lycopersicum L.)  

4.1 Introduction 

This chapter is a report on the effects of AM fungal inoculant on tomato under normal and 

excess soil Zn conditions. Tomato (Solanum lycopersicum L.) is a widely-consumed 

vegetable cultivated in field and plant factories (Dorais et al. 2008). Its exposure to 

moderately elevated TE levels in soils and irrigation water could be prevalent in certain areas 

(Gharaibeh et al. 2016), and may pose a problem for the crop production and quality 

(Nicholson et al. 2003). Zn plays a prominent role in the activity of over 300 proteins 

(Palmgren et al. 2008) but could antagonize other TE such as Fe and Mn (Van Assche and 

Clijsters 1990), as well as reduce plant growth, when in excess (Rout and Das 2003). 

Essential TE such as Zn, Fe, Mn and Cu are of immense biological significance as the major 

cofactors of various proteins within biosystems (Pilon et al. 2009). Antagonistic effects of 

excess Zn on other essential TE are therefore undesirable in tomato shoots. And as was 

observed in soybean, the role of bioinoculants in mitigating such antagonisms needs to be 

evaluated alongside growth-promoting effects, in tomato.  

Arbuscular mycorrhizal fungi may increase nutrients supply to host-plant, especially 

phosphorus (Smith and Read 2008). They may also minimize negative effects of excess Zn 

on plants in contaminated soil and effect systemic balancing of TE concentrations in the host 

(Christie et al. 2004; Cavagnaro et al. 2010; Ibiang et al., 2017). However, the varied host 
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biomass response to AM inoculant – spanning increase, decrease or none – is still a concern 

for their deployment in plant production systems (Ryan et al. 2005; Smith and Smith 2011). 

While their impact on essential TE uptake and distribution to edible tissues may potentially 

optimize human dietary circumstance (East 2013; Hart et al. 2015), AM fungal effect on one 

TE may have specific consequences for the acquisition and internal cycling of others. But 

this has received little attention (Watts-Williams and Cavagnaro 2014), as many study reports 

in contaminated soils have focused more on the pollutant element. Zn, Fe, Mn and Cu are 

priority TE in terms of human and animal dietary requirements (Lehman and Rillig 2015). 

Therefore, AM interaction with these elements in relation to the biomass response of host-

plant is of interest. This study examined the effect of excess Zn and AM inoculant on biomass 

production and TE nutrition in tomato. Patterns in the acquisition and tissue distribution of 

Zn, Fe, Mn and Cu in non-AM versus AM host-plant, were assessed under normal and excess 

Zn conditions.  

4.2 Materials and methods  

4.2.1 Soil  

The soil utilized for the study was river sand with pH (H2O) (7.72 ±0.31), electrical 

conductivity (5.39 ±0.57 mS m-1), and plant-available Zn (0.96 ±0.2 mg kg-1), Fe (9.52 ±0.10 

mg kg-1), Mn (12.42 ±0.12 mg kg-1) and Cu (0.36 ±0.03 mg kg-1). After autoclaving the soil, 

Zn (in the form of ZnSO4·7H2O) was applied at 0 mg Zn kg-1 soil (Zn-) and 300 mg Zn kg-1 

soil (Zn+), for “normal” and “excess” soil Zn conditions, respectively. A pre-study showed 

that this level of excess condition would permit growth and fruit collection and be relevant 

to conditions in some agricultural soils (ATSDR 2005; Kabata-Pendias 2011). Equivalent Zn 
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salt was first dissolved in sterile water then applied to the autoclaved soil. All soils were 

bulked after mixing and stored (25°C) in non-transparent bags for seven days before use in 

plastic pots. The available TE in soils were determined using diethylenetriamine pentaacetic 

acid (DTPA) extracts (Lindsay and Norvell 1978).  

4.2.2 Plant 

The dwarf tomato, Solanum lycopersicum (L.) (cv. Micro-Tom) was used in this study. It is 

convenient to raise in growth chambers and can yield fruits as early as 70 days (Meissner et 

al. 1997). Seeds were sterilized in 70% ethanol for 5 min and 3.33% sodium hypochlorite 

solution for 15 min then rinsed in sterile distilled water. The seedlings were raised for 10 

days on vermiculite moistened with half strength Hoagland solution from the bottom, then 

transplanted to potted soils and maintained in the growth chamber (light; 25 °C, 14 h, and 

dark; 18 °C, 10 h) for a maximum of 10 weeks.  

4.2.3 AM fungal inoculation  

AM fungal inoculation was performed at seedling transplant from vermiculite to soils. The 

AM fungal inoculant used in this study was Rhizophagus irregularis DAOM197198 

(Mycorise, Premier Tech, Rivière-du-Loup, Canada). A control group with no inoculation 

(non-AM) was maintained. AM fungal inoculum consisted of soil bearing AM fungal 

propagules (mix of spores, hyphae, and mycorrhizal root fragments) applied (10 g pot-1) 

manually in the middle of soil in 180 mL pots, just prior to seedling transplant (Merlos et al. 

2016).  

4.2.4 Experimental setup and pot fertilizations  

The experiment was set up for two factors in a completely randomized design with 40 pots. 

Factor 1 was the soil Zn conditions (Zn- and Zn+) while Factor 2 was AM inoculation (non-
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AM and AM). There were ten pots for each treatment combination and five pots each (n=5) 

were harvested at flowering (5 weeks) and fruiting (10 weeks). All pots were equally 

fertilized with 1/4 phosphate strength Hoagland solution (Zn:0.012, Fe:0.559, Mn:0.123, 

Cu:0.005; mg L-1) given every three days until the week of harvest (Table 4-1). Cumulative 

TE fertilization from start to final harvest were; 0.014 mg Zn pot-1, 0.615 mg Fe pot-1, 0.135 

mg Mn pot-1 and 0.006 mg Cu pot-1.  

4.2.5 Plant harvest  

Plants were wholly harvested by carefully emptying the soil from the pots, breaking apart 

loosely attached soil and washing with distilled water to rid the roots of all soil particles. 

Total fresh weights (TFW) were measured then the whole plant was cut into roots, shoots 

(stem+leaves) and fruits. To ensure rhizosphere soil collection, soils in closer contact with 

roots (from 2 cm round about) were separately removed and extracted immediately using 

DTPA to determine available TE. At sampling, a portion of root was first subtracted for 

evaluation of AM fungal colonization before plant tissues were dried in the oven at 80°C 

until constant weight.  

4.2.6 Plant biomass and response to AM fungus  

Total dry weight (TDW), root dry weight (RDW), shoot dry weight (SDW) and fruit dry 

weight (FDW) were determined at 10 weeks. For mycorrhizal responses, total biomass 

response (TBR) and fruit biomass response (FBR) estimated using TDW and FDW 

respectively, were calculated (Watts-Williams and Cavagnaro 2012) for each soil condition 

as shown below: 

Biomass response (%) = (DW(AM) – mean DW(non-AM))/mean DW(non-AM) (×100)…….(3). 
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Table 4-1. Modified Hoagland nutrient solution used for tomato cultivation 

Compound mM mg L-1 

KH2PO4  0.25 34.02 

MnCl2・4H2O 0.00225 0.445 

Ca(NO3)2 ・4H2O 1.25 295.19 

KNO3 1.25 126.38 

MgSO4・7H2O 0.5 123.24 

H3BO3 0.0125 0.773 

ZnSO4・7H2O 0.00019 0.0546 

Cu2SO4・5H2O 0.000075 0.0187 

Fe (in Fe-EDTA) 

(Fe(III) ・EDTA・3H2O) 

 

0.01 

3.6705 

(4.211) 

(NH4)6Mo7O24・4H2O 0.000025 0.0309 

Final pH (5.6). 
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4.2.7 Zn, Fe, Mn and Cu in plant  

The levels of Zn, Fe, Mn and Cu were determined in the dry root, shoot and fruit tissues. 

Milled dried samples were combusted in an electric muffle furnace (ADVANTEC 

FUL220FA, Tokyo, Japan) at 550°C for 6 h and the ash was digested in 0.6 mol L-1 HCl. 

Element concentrations in solutions were measured (Figs. 4-1) using Atomic absorption 

spectrophotometry (Shimadzu AA-6600F, Japan). TE root-to-fruit translocation ratio (TR) 

was calculated as element concentration (µg g-1) of fruit divided by that of the root 

(Gharaibeh et al. 2016). To examine the balance (or imbalance) in TE concentrations in 

shoots, Fe:Zn, Mn:Zn and Cu:Zn ratios were calculated as Fe, Mn or Cu concentration 

divided by Zn concentration for individual plants.  

4.2.8 Available trace element in soil  

At planting, flowering and fruiting, TE in moist soils were extracted using 0.005 mol L-1 

DTPA (pH 7.3) according to Lindsay and Norvell (1978) and element concentrations in 

solutions were measured (Figs. 4-2) using Atomic absorption spectrophotometry. The 

moisture content of a portion of soils was also determined after drying in the oven at 105ºC 

for >24 h to enable subsequent calculation of dry soil weights.  

4.2.9 Phosphorus in plant  

P concentration in shoots was determined using the vanadomolybdate method (Tandon et al. 

1968). Dry finely ground shoot samples were ignited in an electric furnace at 550°C for 3 h, 

then the ash was digested in HCl solution (5 mol L-1) and reacted with vanadomolybdate acid 

solution. The samples were kept for 30 min before measuring the absorbance in a 

spectrophotometer at 420 nm (Fig. 4-3). 
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Fig. 4-1. Standard absorption curves for determination of plant element concentrations. 
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Fig. 4-2. Standard absorption curves for determination of available soil elements 
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Fig. 4-3. Standard absorbance curve for determination of phosphorus concentration. 

 

 

 

Fig. 4-4. Standard absorbance curve for determination of polyphenols concentration. 
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4.2.10 Mycorrhizal element response in tissues  

Root tissues were excluded in the determination of mycorrhizal element response. Using the 

total element contents (µg plant-1) in shoots and fruits separately calculated by multiplying 

the respective tissue element concentration (µg g-1) by tissue dry weight (g) (Cavagnaro et al. 

2003), mycorrhizal element response for Zn, Fe, Mn, Cu and P (MZnR, MFeR, MMnR, 

MCuR and MPR respectively) were calculated for each soil condition as shown below (for 

Zn): 

MZnR (%) = (Zn content(AM) – mean Zn content(non-AM))/mean Zn content(non-AM) (×100)…(4). 

4.2.11 Polyphenols in fruits 

Total polyphenols in dry fruit samples were determined via the Folin-Ciocalteu method 

(Amerine and Ough 1980). The milled fruit samples were extracted in 70% acetone, 2.5 mL 

of ten-fold diluted Folin-Ciocalteu solution was added and after 2 min, 2.0 mL of NaCO3 

solution (75 g L-1) was added. Chlorogenic acid was used as a standard and the absorbance 

(760 nm) was measured (Fig. 4-4) in a spectrophotometer.  

4.2.12 AM fungal colonization  

AM fungal colonization was assessed in the roots of all plants at 5 and 10 weeks. The 

frequency and intensity of colonization were determined using the trypan blue staining 

technique previously described by Rajapakse and Miller (1994). Observation in a light 

microscope (Nikon ECLIPSE 50i, Nikon, Japan) and scoring was according to Trouvelot et 

al. (1986).  
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4.2.13 Statistical analysis  

Data were processed statistically by two-way analysis of variance (ANOVA) with 

significance levels (P values) taken at P<0.05. Differences among means were based on 

Tukey-Kramer Post Hoc Tests. To quantify effect of main treatments and interaction on fruit 

Mn, values below detection were assumed to be zero. Pearson correlation between biomass 

indices and shoot TE ratios were determined. Students t-tests were employed (comparing Zn- 

and Zn+ groups) for mycorrhizal colonization at 5 and 10 weeks, mycorrhizal responses and 

available TE at planting.  

 

 

 

 

 

 

 

 

 

 

 



105 
 

4.3 Results 

4.3.1 Plant biomass, phosphorus, and polyphenols  

While days to flowering and number of fruits per plant were not significantly different, 

tomato fruits were mostly red or partially ripe in Zn- soil, but mostly green or partially ripe 

in the Zn+ soil (Plate 4-1). Zn treatment and AM inoculation had significant effects (Table 

4-2) on biomass production at 10 weeks. TDW (Fig. 4-5A) was highest in AM plants in Zn- 

soil and lowest in non-AM plants in Zn+. Both non-AM and AM plants had lower TDW in 

Zn+ soil than in Zn-, while TDW of non-AM and AM plants in Zn+ soil was not significantly 

different (implying an absence of significant AM protective effect against excess Zn). In non-

AM plants, RDW (Fig. 4-5B) was significantly lower in Zn+ soil compared with Zn-. AM 

fungus insignificantly improved the SDW in both soils (Fig. 4-5C). FDW (Fig. 4-5D) was 

significantly higher in AM plants in Zn- soil, but there was no difference between non-AM 

and AM values in the Zn+ soil. Total polyphenols in fruits (Fig. 4-5E) and shoot P (Fig. 4-

5F) were significantly increased due to excess Zn but AM effects were not significant.  

4.3.2 Mycorrhizal colonization and biomass response 

Both inoculated and un-inoculated plants were evaluated for root mycorrhization but the un-

inoculated plants were devoid of AM fungal colonization. Root colonization indices at 5 

weeks were generally lower than at 10, in both soils. The frequency (Fig. 4-5G) and intensity 

(Fig. 4-5H) of AM fungal colonization were significantly lower in the Zn+ soil. TBR at 10 

weeks was positive in both Zn- (17%) and Zn+ (12%) soils, while FBR was significantly 

different in Zn- and Zn+ soils, reaching approximately 40% and 6% respectively (Fig. 4-5I).  
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Plate 4-1. Tomato plants cultivated in pots in the growth chamber at different stages.  

Micro-Tom at seedling stage Micro-Tom at flowering stage 

Micro-Tom at fruiting stage 
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Table 4-2. Significance of experimental sources of variation on biomass, phosphorus and 

polyphenols of tomato at ten weeks. 

s/n Parameter Zn AM Zn×AM 

1 Total dry weight (g) 3.16E-05*** 0.005486** 0.406722ns 

2 Root dry weight (g) 0.005699** 0.931517ns 0.098183ns 

3 Shoot dry weight (g) 0.077189ns 0.074885ns 0.828713ns 

4 Fruit dry weight (g) 9.37E-06*** 0.006832** 0.013663* 

5 P in shoot (mg g-1) 0.001167** 0.977432ns 0.284615ns 

6 Fruit polyphenols (µg g-1)  0.003633** 0.316578ns 0.85935ns 

P values of Two-way ANOVA analysis. Zn (Zinc); AM (AM fungus inoculation); Zn×AM (Interaction); 

*P<0.05; **P<0.01; ***P<0.001; ns (not significant) at P>0.05. Loss of one non-AM plant occurred in Zn+ 

soil before 10 weeks sampling.  

 

Table 4-3. Significance of experimental sources of variation on available Zn, Fe, Mn and 

Cu in soil.  

s/n Parameter   Zn  AM Zn×AM 

1 Available Zn (mg kg-1) 5W 2.13E-29*** 0.887352 ns 0.586502 ns 

10W 1.34E-26*** 0.000537*** 0.000714*** 

2 Available Fe (mg kg-1) 5W 0.234629 ns 0.349866 ns 0.000153*** 

10W 0.079216 ns 0.392104 ns 0.0003*** 

3 Available Mn (mg kg-1) 5W 0.913419 ns 2.03E-05*** 0.006321** 

10W 4.55E-07*** 8.67E-08*** 0.018134* 

4 Available Cu (mg kg-1) 5W 1.36E-18*** 3.7E-09*** 0.00055*** 

10W 5.94E-13*** 0.141489 ns 0.321526 ns 

P values of Two-way ANOVA analysis. Zn (Zinc); AM (AM fungus inoculation); Zn×AM (Interaction); 

*P<0.05; **P<0.01; ***P<0.001; ns (not significant) at P>0.05. 5W (5 weeks); 10W (10 weeks). 
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Fig. 4-5. Total dry weight (A); Root dry weight (B); Shoot dry weight (C); Fruit dry weight 

(D); Fruit polyphenols (E); Shoot phosphorus (F); Mycorrhizal frequency (G); Mycorrhizal 

intensity (H) and Mycorrhizal biomass response (I) of tomato. Values are Mean ± SE. Zn- 

(normal soil Zn condition); Zn+ (excess soil Zn condition); non-AM (control); AM (AM 

fungus). Different letters on the bars denote significant differences based on Tukey-Kramer 

tests (A-F) or t-test (G-I). 
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4.3.3 Zn in soil and plant 

The Zn+ soil had significantly higher available Zn and lower pH than Zn- (Fig. 4-6A and B). 

AM had no effect on the available soil Zn at 5 weeks (Fig. 4-6C). But at 10 weeks, the 

available Zn in Zn+ soil was lower in AM pots than in non-AM (Fig. 4-6D) (Table 4-3). 

Zn in the root (Fig. 4-6E) was higher in Zn+ than in Zn- soils. AM significantly (Table 

4-4) lowered root Zn in the Zn+ soil. A similar trend was observed for shoot Zn (Fig. 4-6F), 

with a lower value in AM plants compared with non-AM, in the Zn+ soil. Zn concentration 

in fruit (Fig. 4-6G) was significantly higher in Zn+ soil but AM effect was not significant. 

Root-to-fruit translocation of Zn (Zn-TR) was significantly higher in Zn- than in Zn+ soils 

(Fig. 4-6H). In Zn- soil, Zn-TR was significantly higher in AM plants compared with non-

AM.  

4.3.4 Fe in soil and plant 

Available soil Fe at 0 week was significantly higher in Zn+ than in Zn- soils (Fig. 4-7A). 

Available Fe showed significant interaction between experimental treatments. At 5 weeks, 

available Fe in Zn+ soil was lower in AM pots than in non-AM, but there was no difference 

in Zn- soil (Fig. 4-7B). At 10 weeks, available Fe in the Zn- soil was lower in AM than in 

non-AM pots, but there was no difference in Zn+ soil (Fig. 4-7C). Taken together, it appeared 

that AM effect (mainly reduction of available Fe) fluctuated over time (from Zn+ soil at 5 

weeks to Zn- soil at 10 weeks).  

Fe in the root (Fig. 4-7D) was highest in non-AM plants in Zn- soil and lowest in AM 

plants in Zn+. Fe in the shoot (Fig. 4-7E) was significantly reduced by AM fungus in both 

Zn- and Zn+ soils. Fe in fruit (Fig. 4-7F) was also lower in AM plants, being highest in  
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Fig. 4-6. Available soil Zn (A) and soil pH (B) at 0 week; Available soil Zn at 5 (C) and 10 

(D) weeks; Root Zn (E); Shoot Zn (F); Fruit Zn (G) and Root-to-Fruit Zn-TR (H) of tomato. 

Values are Mean ± SE. Zn- (normal soil Zn condition); Zn+ (excess soil Zn condition); non-

AM (control); AM (AM fungus). Different letters on the bars denote significant differences 

based on Tukey-Kramer tests (C-H), or t-test (A-B). 
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Fig. 4-7. Available soil Fe at 0 (A), 5 (B) and 10 (C) weeks; Root Fe (D); Shoot Fe (E); Fruit 

Fe (F); Root-to-Fruit Fe-TR (G) and Fe:Zn ratio (H) of tomato. Values are Mean ± SE. Zn- 

(normal soil Zn condition); Zn+ (excess soil Zn condition); non-AM (control); AM (AM 

fungus). Different letters on the bars denote significant differences based on Tukey-Kramer 

tests (B-H), or t-test (A). 
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Table 4-4. Significance of experimental sources of variation on Zn, Fe, Mn and Cu in 

tomato at ten weeks.  

s/n Parameter Zn AM Zn×AM 

1 Zn in root (µg g-1) 5.95E-18*** 0.003024** 0.006352** 

2 Zn in shoot (µg g-1) 1.18E-14*** 0.000541*** 0.000834*** 

3 Zn in fruit (µg g-1) 0.000233*** 0.516974ns 0.203725ns 

4 Root-to-fruit Zn-TR (%) 4.47E-13*** 0.013087* 0.016764* 

5 Fe in root (µg g-1) 0.014881* 0.053118ns 0.436752ns 

6 Fe in shoot (µg g-1) 0.237505ns 0.004727** 0.702562ns 

7 Fe in fruit (µg g-1) 3.57E-07*** 2.01E-06*** 0.313902ns 

8 Root-to-fruit Fe-TR (%) 0.000362*** 0.943828ns 0.786139ns 

9 Mn in root (µg g-1) 0.074168ns 0.001754** 0.67891ns 

10 Mn in shoot (µg g-1) 0.003307** 0.001029** 0.815323ns 

11 Mn in fruit (µg g-1) 9.04E-10*** 1.06E-07*** 2.26E-07*** 

12 Root-to-fruit Mn-TR (%) 5.99E-08*** 3.69E-05*** 6.81E-05*** 

13 Cu in root (µg g-1) 0.000101*** 0.98416ns 0.266065ns 

14 Cu in shoot (µg g-1) 3.35E-13*** 0.002947** 0.00198** 

15 Cu in fruit (µg g-1) 1.4E-12*** 0.001655** 0.963032ns 

16 Root-to-fruit Cu-TR (%) 1.9E-05*** 0.073866ns 0.677918ns 

17 Fe:Zn (shoot) 1.56E-10*** 0.310424ns 0.387017ns 

18 Mn:Zn (shoot) 2.76E-10*** 0.14266ns 0.215026ns 

19 Cu:Zn (shoot) 3.89E-14*** 4.18E-07*** 4.22E-06*** 

P values of Two-way ANOVA analysis. Zn (Zinc); AM (AM fungus inoculation); Zn×AM (Interaction); 

*P<0.05; **P<0.01; ***P<0.001; ns (not significant) at P>0.05. 
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non-AM plants in Zn+ soil and lowest in AM plant in Zn-. Fe-TR (Fig. 4-7G) was 

significantly increased in the Zn+ soil. The Fe:Zn ratio in shoots (Fig. 4-7H) was significantly 

reduced due to excess Zn. In Zn- soil, Fe concentration was about 3.5 times more than Zn. 

But in the Zn+ soil, Fe:Zn ratio was less than 0.5. AM fungus had no effect on the Fe:Zn 

ratio.  

4.3.5 Mn in soil and plant 

Available soil Mn at 0 week was significantly higher in Zn+ than in Zn- soils (Fig. 4-8A). At 

5 weeks, available Mn (Fig. 4-8B) was lowest in AM plants in the Zn+ soil. At 10 weeks, 

available Mn was also lowest in AM plants in the Zn+ soil. In Zn- soil, AM plants had lower 

values than non-AM (Fig. 4-8C). Generally, AM effect on available Mn was consistent over 

time. 

Mn in the root (Fig. 4-8D) was lowest in AM tomato in Zn+ soil, in line with the 

observation for available Mn. Mn in the shoot (Fig. 4-8E) was also lowest in AM plants in 

Zn+ soil. In Zn- soil, AM plants had lower shoot Mn than non-AM plants. Mn in fruit (Fig. 

4-8F) was lower in AM plants in Zn- soil. In Zn+ soil, Mn was not detected in the fruits of 

both non-AM and AM plants. Mn-TR (Fig. 4-8G) was higher in non-AM plants than AM in 

Zn- soil. In Zn+ soil, root-to-fruit translocation of Mn was disrupted in all plants. The Mn:Zn 

ratio in shoots (Fig. 4-8H) was significantly reduced due to excess Zn. In Zn- soil the Mn 

concentration was 11 - 13 times more than Zn. But in the Zn+ soil, Mn:Zn ratio was between 

0.60 (AM) – 0.66 (non-AM). AM fungus had no effect on the Mn:Zn ratio.  

4.3.6 Cu in soil and plant 

Available soil Cu at 0 week was significantly higher in Zn+ soil than Zn- (Fig. 4-9A). At 5 

weeks, available Cu was higher in Zn+ than Zn- soils and AM groups had higher values than  
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Fig. 4-8. Available soil Mn at 0 (A), 5 (B) and 10 (C) weeks; Root Mn (D); Shoot Mn (E); 

Fruit Mn (F); Root-to-Fruit Mn-TR (G) and Mn:Zn ratio (H) of tomato. Values are Mean ± 

SE; n.d. (not detected). Zn- (normal soil Zn condition); Zn+ (excess soil Zn condition); non-

AM (control); AM (AM fungus). Different letters on the bars denote significant differences 

based on Tukey-Kramer tests (B-H), or t-test (A). 
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Fig. 4-9. Available soil Cu at 0 (A), 5 (B) and 10 (C) weeks; Root Cu (D); Shoot Cu (E); 

Fruit Cu (F); Root-to-Fruit Cu-TR (G) and Cu:Zn ratio (H) of tomato. Values are Mean ± SE. 

Zn- (normal soil Zn condition); Zn+ (excess soil Zn condition); non-AM (control); AM (AM 

fungus). Different letters on the bars denote significant differences based on Tukey-Kramer 

tests (B-H), or t-test (A).  
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non-AM (Fig. 4-9B). At 10 weeks, available Cu in both Zn- and Zn+ soils were not different 

between non-AM and AM but levels in Zn+ soil were now lower than in Zn- (Fig. 4-9C). 

AM effect on available Cu was detected at 5 weeks.  

Cu in the root (Fig. 4-9D) was significantly higher in Zn+ soil than in Zn-. AM fungus 

had insignificant effect on root Cu. Cu in the shoot (Fig. 4-9E) was significantly higher in 

Zn+ than in Zn- groups. AM plants had significantly higher shoot Cu concentrations than 

non-AM plants in Zn- soil. In Zn+ soil, AM effect on shoot Cu was superseded by Zn effect. 

Cu in fruit (Fig. 4-9F) was significantly higher in Zn+ than in Zn- soils. Cu-TR (Fig. 4-9G) 

was significantly higher in Zn+ than in Zn- soils, while AM fungus had no significant effect. 

In Zn- soil, Cu:Zn ratio (Fig. 4-9H) was significantly higher in AM than in non-AM plants; 

suggesting that AM fungus modulated the balance of Cu and Zn concentrations in shoot 

system. In the Zn+ soil, Cu:Zn ratio was reduced but there was no difference between non-

AM and AM plants.  

4.3.7 Mycorrhizal element response in tissues 

At 10 weeks, MZnR was negative in the shoots in both soil Zn conditions (Table 4-5). In the 

fruits, however, MZnR was positive (showing AM-derived benefits to whole-fruit Zn) in Zn- 

soil, but negative in Zn+. MFeR was negative in shoot and fruit tissues under both soil Zn 

conditions (no benefits to tissue Fe due to AM). MMnR was also negative in shoot and fruit 

tissues under both soil Zn conditions. MCuR was positive in the shoots in both soil Zn 

conditions. In the fruits, MCuR was positive in Zn- soil but negative in Zn+. MPR (in the 

shoot) was positive in both soil Zn conditions, showing that although P concentrations were 

not different between non-AM and AM plants, there was active AM fungal contribution 

(benefits) to host-plant P.  
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Table 4-5. Mycorrhizal element response in tomato tissues at ten weeks. 

Parameter   Shoot  Fruit 

MZnR (%) Zn- -7.91 ±9.91 51.05±15.91 

Zn+ -7.18 ±5.79 -7.50±20.67 

MFeR (%) Zn- -20.79 ±5.73 -30.66±4.88 

Zn+ -17.40 ±5.25 -22.75±9.41 

MMnR (%) Zn- -24.32 ±8.78 -70.21±12.31 

Zn+ -28.93 ±9.36 n.d. 

MCuR (%) Zn- 51.44 ±15.14 4.75±5.68 

Zn+ 22.30 ±2.78 -8.40±9.43 

MPR (%) Zn- 11.15 ±8.37 n.d. 

 Zn+ 27.36 ±4.17 n.d. 

Values are Mean±SE. + or - sign preceding mean values indicate increase or decrease with respect to 

non-inoculated control. Zn- (normal soil Zn condition), Zn+ (excess soil Zn condition); n.d. (not 

determined). t-tests between Zn- and Zn+ revealed no significant difference within each group. 

 

Table 4-6. Pearson correlation coefficients (r)* between biomass and element concentration 

ratios in tomato shoot at ten weeks. 
 

Fe:Zn Mn:Zn Cu:Zn TDW RDW SDW FDW TFW FFW 

Fe:Zn 1 0.916 0.851 0.723 0.640 0.414 0.681 0.723 0.667 

Mn:Zn  1 0.825 0.700 0.584 0.365 0.700 0.747 0.728 

Cu:Zn   1 0.836 0.467 0.483 0.864 0.850 0.795 

TDW    1 0.669 0.828 0.784 0.948 0.658 

RDW     1 0.765 0.183 0.475 0.075 

SDW      1 0.319 0.644 0.146 

FDW       1 0.913 0.966 

TFW        1 0.842 

FFW        
 

1 

Cu:Zn correlated more with total and fruit biomass indices than Fe:Zn and Mn:Zn. *(P<0.05) 

significant correlation between Cu:Zn and all biomass indices. 
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4.3.8 Biomass correlation with TE ratios  

Cu:Zn ratio was significantly affected by AM inoculation while Fe:Zn and Mn:Zn ratios were 

not. Pearson correlation coefficients show Cu:Zn ratio correlated more with the total and 

above-ground biomass indices; TFW (0.85), TDW (0.83), SDW (0.48), FFW (0.79), FDW 

(0.86), than  Fe:Zn and Mn:Zn (Table 4-6). 

4.4 Discussion  

Effects on bioproduction, phosphorus and polyphenols  

AM increased TDW and FDW of host-plant in Zn- soil, with a higher FBR and mycorrhizal 

colonization. I therefore considered the lack of significant differences in SDW (stem + 

leaves) to be due to ripening stage, as the above-ground biomass production at this time is 

more in fruit tissue than in leaves. In Zn+ soil, on the other hand, plant dry weights in both 

non-AM and AM plants were reduced, showing a diminished host bioproduction under 

excess Zn, in line with previous reports (Rout and Das 2003). The lack of significant 

difference in dry biomass between mycorrhizal and non-mycorrhizal plants under excess Zn 

is in line with Cavagnaro et al. (2010) and Watts-Williams and Cavagnaro (2012), but at 

variance with the position of Christie et al. (2004). Excess Zn-induced reductions in the root 

colonization by AM (and possibly extraradical hyphal development) may account for this 

(Watts-Williams and Cavagnaro 2012), for although mycorrhizal colonization tends to 

increase with increasing metal content of soil (Hildebrandt et al. 1999), a reduction in 

colonization indices will be seen if the fitness of the AM is negatively affected (Millar and 

Bennett 2016). This is in line with the differences observed in FBR between Zn- and Zn+ 

soils. I observed mild leaf curling in the plants at two – three weeks after planting, increased 
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total polyphenols in fruit and delay in fruit ripening in Zn excess soil. Increased polyphenols 

and delayed fruit ripening points to increased levels of antioxidants and homeostatic impacts 

on ethylene and abscisic acid, in the exposed plants (Ozga and Reinecke 2003). Although no 

differences in shoot P concentrations were observed between non-AM and AM plants, the 

positive shoot MPR in both soil Zn conditions show that AM-derived P accrued to host 

(Smith and Read 2008). Some unknown quantity of elements (e.g. P and Zn) are usually 

bound in the intraradical mycelia of AM within a colonized root. To exclude these elements 

(which are “undelivered” to the host ionome) in the estimation of element benefit delivered 

to the host by AM, root tissues were avoided (Cavagnaro et al. 2003). As AM plants in Zn- 

soil had higher TDW, it was considered that a larger plant size “diluted” tissue P 

concentration (dilution effect) thereby masking the mycorrhizal P contribution in those plants 

(Smith and Smith 2011; Watts-Williams and Cavagnaro 2012). The increased shoot P 

concentration observed in Zn+ soils may be due to decreased dilution effect and Zn-P 

interaction effects, and is in line with previous reports (Arriagada et al. 2010; Watts-Williams 

and Cavagnaro 2012). 

Effects on TE in soil and plant 

In Zn- soil, Zn-TR was higher in AM than in non-AM plants, in line with the positive 

MZnR in fruit tissue and a negative one in shoot. However, the positive MZnR and MCuR 

in fruit was accompanied by negative MFeR and MMnR. AM benefit to fruit tissue in terms 

of total Zn content appeared to be at the expense of Fe and Mn. The reduced Fe and Mn 

concentrations in tomato fruit I observed due to AM fungus align with the position of Lehman 

and Rillig (2015) who concluded that AM symbiosis generally has a positive effect on plant 

Cu and mostly negative impact on Mn concentrations. Cavagnaro et al. (2012) also reported 
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that AM colonization increased Cu and decreased Mn in tomato tissues. In their study, while 

fruit Zn was insignificantly increased due to AM colonization, the fruit Mn concentrations in 

AM (19 μg g-1) compared with non-AM (29 μg g-1) showed a significant decrease. However, 

conclusions by Nzanza et al. (2011) (using Glomus mosseae) and Maboko et al. (2013) (using 

a mix of Glomus mosseae, Glomus etunicatum, Glomus clarum and Paraglomus occultum) 

did not report decreases in Mn concentration in tomato due to AM. Overall, benefits in one 

or more TE at the expense of others, as well as differences coinciding with varied AM species 

and growth medium are noteworthy in plant biofortification efforts using AM inoculant(s). 

The available fractions of TE are more critical in terms of environmental transport 

and effects on biota, including plant acquisition (Rieuwerts et al. 1998). Excess Zn treatment 

increased the available Zn, as well as Fe, Mn and Cu (derived from their hitherto unavailable 

fractions). The pH is regarded as the most influential factor on TE availability in soils 

(Rieuwerts et al. 1998). A lowered soil pH (Zn2+ is a weak acid) supported these increases in 

the Zn+ soil. Further, excess metal (Zn) addition increase cation competition for adsorption 

sites and leads to a saturation of the metal fixation capacity of the soil, causing more elements 

to become bioavailable (Banin et al. 1987; Chlopecka 1996; Rieuwerts et al. 1998). 

Expectedly, the Zn concentration in tissues was higher in plants in Zn+ soil. But lowered Zn-

TR minimized Zn accumulation in aerial parts (Arrivault et al. 2006), keeping fruit Zn within 

the safe European Commission guideline (50 mg kg-1) for Zn in foods (European 

Commission Regulation 2006) at 300 mg Zn kg-1 soil. AM lowered available Zn in Zn+ soil 

at 10 weeks but not at 5, implying that duration of soil-plant contact (Austruy et al. 2014) 

and stage of plant-AM symbiosis (Miransari 2010) vis-a-vis root colonization, were of 

importance. This is in line with the significantly reduced root and shoot Zn in AM plants in 
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Zn+ soil, and the general improvement in mycorrhizal frequency and intensity from 

flowering to fruiting. Under excess conditions, AM hyphal binding of Zn in the rhizosphere 

can promote phytostabilization and reduce the availability and acquisition of the metal (Khan 

et al. 2000; Christie et al. 2004). Generally, from planting to flowering to fruiting, changes 

in available TE reflects the biotic effects of the tomato root or root+AM fungus, such as 

uptake and translocation, sequestration, chelation, stabilization, etc., in the rhizosphere 

(Leyval et al. 2002; Miransari 2010). These processes are also influenced by phytochemicals 

in plant root exudation (Hage-Ahmed et al. 2013; Rengel 2015). In non-AM groups in the 

Zn+ soil for instance, it was observed at 5 weeks that available Mn appeared lower than at 0 

and 10 weeks. Spatial and temporal variations in volume and composition of root exudation 

over time affect Mn, Fe and Zn availability in the rhizosphere (Rengel 2015). Fluctuating 

AM effects on available Fe may reflect modulation in ferrireductase activity in R. irregularis 

extraradical mycelia to sustain Fe homeostasis at required levels for the symbiosis (Tamayo 

et al. 2014), and finally resulted in reduced Fe levels in host tissues. 

Excess Zn distorted Mn:Zn balance and led to Mn deficiency in tomato fruit. 

Antagonism between Zn and Mn is known to exist (Van Assche and Clijsters 1990; Hasani 

et al. 2012), and I noticed that shoot Mn concentration was roughly double that of root (in 

both soils). Observations of Mn preference for shoots or leaves has been reported before 

(Page et al. 2006) and could be related to their essential role in photosynthesis (Kabata-

Pendias 2011). I suppose that the fruit “suffered” Mn deprivation for this preference to be 

maintained in the face of Mn:Zn imbalance in Zn+ groups. Mn deficiency in fruit may have 

contributed to delayed ripening (or vice versa) in the Zn+ soil, but no fruit malformations 

were seen. AM neither ameliorated Mn deficiency nor the delay in the ripening of fruits. In 
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terms of probable microsymbiont-assisted amelioration of fruit Mn deficiency, a lower 

MMnR than MZnR imply that although AM significantly lowered shoot Zn, it could neither 

improve Mn:Zn balance nor ameliorate Mn deficiency, especially as the fungus generally 

reduced Mn concentrations in rhizosphere and root tissue. Lower Mn in AM plants might be 

due to several factors including metal complexation by hyphal phytochelatins (or similar 

metal binding proteins), or by mycorrhizal oxidation of soluble Mn2+ into unavailable Mn3+ 

or Mn4+ (Arines et al. 1992; Kabata-Pendias, 2011). While Mn-TR was inefficient, Fe-TR 

and Cu-TR were increased in Zn+ soil, and fruit Cu exceeded the FAO recommended (40 

mg kg-1) safe threshold for Cu in edible vegetables (Codex Alimentarius Commission 2001; 

cited by Shaheen et al. 2016). Especially since the Zn level in fruit was safe, I presume that 

optimal Mn homeostasis would minimize increases in Cu and Fe translocations to fruits. The 

potential optimization of Mn acquisition and in planta cycling by inoculation of additional 

microbe(s) may be suggested. According to Ibiang et al. (2017), dual inoculation with AM 

fungus and Bradyrhizobium improved Mn translocation and modulated the Mn:Zn ratio in 

soybean under excess Zn.  

Bioproduction and mycorrhizal TE balance 

My results show significant positive correlation between plant biomass and Cu:Zn 

ratio, in line with AM modulation of Cu:Zn balance and the enhanced biomass production in 

Zn- soil. The reverse situation in Zn+ soil contributed to the observed lower biomass 

production; as AM modulation of host Cu:Zn was ineffective - with negative consequences 

for the FBR. DTPA available Cu < 0.8 mg kg-1 is low (Juráni et al. 1990, cited by Zbíral 

2016), but this was significantly enhanced by AM fungus as detected at 5 weeks. Higher 

available Cu at flowering and greater shoot Cu concentrations at fruiting highlight the co-
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ordination of mycorrhiza-induced soil and tissue effects that underlie such modulation in host 

ionome. Cavagnaro et al. (2012) reported an increase in biomass and Cu concentrations in 

tomato shoots due to AM colonization. Hart et al. (2015) also reported that R. irregularis 

improved Cu levels in tomato. For optimal development, plants do not only require 

appropriate amounts of Cu but also a good balance of other elements (Kabata-Pendias 2011). 

While several case-by-case studies are needed to infer any range of optimal values in a 

cultivar, AM optimization of Cu:Zn in host harps on the physiological benefits of both 

elements at the appropriate balance. Zn is important in the function of many proteins and 

supports auxin production, while Cu plays a huge role in enabling key biochemical processes 

including respiration, photosynthesis, protein and carbohydrate metabolism, and plant 

disease resistance (Kabata-Pendias 2011). Although AM contribution to host supply of Zn 

and Cu is known (Smith and Read 2008), the precise mechanisms involved including 

individual genes and gene networks are not fully understood (Ramos et al. 2011). R. 

irregularis is thought to contain zinc-iron permease (ZIP) transporter proteins and cation 

diffusion facilitator (CDF) family transporters which have Zn, Fe and Mn as major substrates 

(Grotz and Guerinot 2006; Tamayo et al. 2014). Very little is known about individual Cu 

transporters in R. irregularis, but the fungus is thought to contain three genes putatively 

encoding copper transporter (CTR) family proteins, as well as copper-transporting P-type 

ATPases (Tamayo et al. 2014). While the understanding of the gene regulation that underpin 

co-ordinated soil and host-tissue AM effects remains unclear, the upregulation of putative 

genes involved in mobilization of vacuolar Cu/Zn stores (RiCTR2 and RiZRT3) in AM 

intraradical mycelia had been pointed out recently (Tamayo et al. 2014).   
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4.5 Conclusion  

Patterns in the acquisition and tissue distribution of Zn, Fe, Mn and Cu in non-AM versus 

AM host-plant under normal and excess Zn conditions have been discussed in relation to the 

host biomass response. Generally, AM effects on the available Zn, Mn, Cu and Fe in 

rhizosphere soil were in tandem with the effects in host tissues. Under normal Zn condition, 

R. irregularis enhanced Cu availability in the rhizosphere, optimized the Cu:Zn balance in 

shoots and increased host biomass production. However, the AM derived increases to whole-

fruit contents of Zn (+51%) and Cu (+4%) were counterbalanced by decreases in Fe (-30%) 

and Mn (-70%). Under excess Zn, the total plant biomass decreased in both AM and non-

AM plants, as did mycorrhizal colonization and fruit biomass response. Although AM 

decreased the Zn concentrations in soil and host tissues under excess Zn, the distortions in 

Cu:Zn, Fe:Zn and Mn:Zn balance in host tissue were not significantly ameliorated by R. 

irregularis. While Zn in fruit was within the safety threshold, excess Zn resulted in Mn 

deficiency and elevated Cu and Fe concentrations in fruit. Mycorrhizal reductions in soil and 

tissue Mn concentrations was considered a minus in terms of probable symbiont amelioration 

of Mn:Zn imbalance in host, under excess Zn. Dual inoculations involving additional 

microbe(s) that can optimize Mn and Cu homeostasis might be helpful in tomato under 

elevated soil Zn.  
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CHAPTER FIVE 

GENERAL DISCUSSION AND CONCLUSION 

5.1 General discussion 

Rhizobia and AM fungi are arguably the most popular plant-growth promoting 

microorganisms, hence, constituted a core focus of this study. While in the soybean 

experiments both single and dual inoculations of Bradyrhizobia and AM fungi were tested, 

tomato experiments utilized only AM fungal inoculation because, being a non-legume, 

rhizobial nodules are not a natural feature of tomato roots. In general, synergic growth-

promoting effects of AM fungi and rhizobia in the rhizosphere of legumes captures a lot of 

interest in microbial resource utilization for improving plant production (Meena et al. 2017). 

And several recent studies document the beneficial effects of dual inoculations in legumes to 

include; improved biomass and grain protein content in chickpea (Oliveira et al. 2017), 

improved degradation of polycyclic aromatic hydrocarbons (PAHs) in sesbania pea (Ren et 

al. 2017), improved nutrient use efficiency (NUE) in soybean (Ding 2016), increased 

nodulation ability and tolerance to Al3+ in alfalfa (Huang et al. 2017b), amongst others. In 

tomato, on the other hand, AM fungal inoculation in rhizosphere has been documented to 

minimize the incidence and severity of diseases caused by nematodes and root infecting 

pathogens such as Phytophthora parasitica (Cordier et al. 1998), due to competition between 

AM and pathogen for root colonization, improved plant nutrition, induction of localized and 

systemic resistance, etc. (Smith and Read 2008). These benefits add to the overall value of 

microsymbiont exploitation in plant production.  
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In experiments one and two on soybean, it was observed that dually inoculated plants 

had higher biomass production than singly inoculated or uninoculated control. This is 

consistent with the higher leaf SPAD indices, higher number of leaves and lower cumulative 

number of fallen leaves in RAM plants, which all indicate that the photosynthetic organs of 

the host were better maintained during dual symbiosis. While higher nitrogen and chlorophyll 

levels are indicated in greener leaves during dual inoculation, the higher shoot P 

concentrations and adjustments in TE balance (Fe:Zn and Mn:Zn ratios) in leaf or shoots also 

supported the maintenance of the leaves with their photosynthetic function. In tomato, 

positive mycorrhizal phosphorus response as well as mycorrhizal TE balancing are also 

indicated as supportive to host bioproduction. A higher number of expressed genes 

(Sakamoto et al. 2013b) and relative gene expression levels in dual symbioses than in single, 

would be necessary to optimize host metabolism for a higher biomass production. This would 

include genes for the biosynthesis and/or activity of enzymes including metal chelators that 

influence element homeostasis in hosts, such as metallothioneins. Higher GmMT1 expression 

in roots during dual symbioses is therefore in line with the greater homeostatic control and 

biomass responses in RAM treatment. Plants may adjust their biomass allocation in response 

to the environment, such as favoring root production during nutrient deficiency and shoot 

production during excess nutrients (McConnaughay and Coleman 1999). In soybean and 

tomato, symbiont modulation of biomass allocation in favor of leaf or fruits is in line with 

the plant stage at the time of harvest, as both plants were sampled during their reproductive 

stage.  

This study demonstrated that rhizobia and AM fungi (G. rosea and C. etunicatum) 

synergize to mitigate the antagonistic effect of excess Zn on Mn nutrition in soybean shoots 
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by modulating Mn translocation from roots to tops. Reduction in soybean root Mn 

concentrations due to excess Zn triggered a higher translocation of Mn to the shoots in 

response. This response was jointly modulated (accentuated or repressed) by both 

microsymbionts to optimize the Mn concentrations and Mn:Zn balance in the leaves or shoots. 

Mn2+ activates the decarboxylases and dehydrogenases involved in the citric acid (Krebs) 

cycle, as well as other enzymes like kinases, oxidases and peroxidases in plant cells. It plays 

a role in the electron transport system in mitochondria as a cofactor of Mn2+-dependent 

superoxide dismutase (MnSOD) which mops up ROS (Marschner 1995). It also functions in 

the oxygen-evolving complex in photosystem II during photosynthesis (Taiz and Zeiger 

2010). Higher photosynthesis rates during dual symbioses with AM and R than in single 

symbiosis has been reported by Kaschuk et al. (2009), in tandem with the consistently higher 

leaf SPAD indices and bioproduction in RAM plants in this study. And AM fungal and 

rhizobial effects on photosystem II function have been reported (Tsimilli-Michael et al. 2000). 

A higher photosynthetic carbon requirement of host-plant during dual symbioses than in 

single symbiosis, may necessitate synergistic effects in the regulation of Mn homeostasis in 

shoots or leaves during dual inoculation, to safeguard photosystem II functions from the 

impact of Zn-Mn antagonism. Fe is also important in chlorophyll formation (Taiz and Zeiger 

2010). Therefore, higher root-to-leaf Fe translocation during dual inoculation than in single 

also points to synergic effects of both symbionts geared towards Fe utilization in the leaves. 

RAM plants had shorter days to flowering or fruiting, indicating that phenological 

responses to physiological effects of RAM treatment, occurred. Phytostimulatory effects of 

single and dual symbionts was observed in polyphenols production in colonized soybean 

roots, indicating an impact on phenylpropanoid metabolism, that could have affected 
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flowering via an impact on host flavonoids and anthocyanins (Taiz and Zeiger 2010; Lingua 

et al. 2013). Most plant phenols are synthesized via the shikimic acid pathway where simple 

carbohydrates derived from glycolysis and the pentose phosphate pathway are converted into 

phenylalanine, tyrosine and tryptophan (Taiz and Zeiger 2010). The plant phenolics are then 

derived from phenylalanine, after it is converted to cinnamic acid via the action of 

phenylalanine ammonia lyase (PAL) (Herrmann and Weaver 1999). The phytostimulation of 

root polyphenols by AM and R might benefit host growth by enhancing overall plant 

antioxidants levels and attenuating H2O2 levels, and/or modulating rhizosphere 

characteristics (such as pH) to aid root functions.  

Total TE in soils are often viewed as being in two connected phases; the unavailable 

fractions which are tightly bound to soil lattices and the available fractions which are mobile 

and readily exchangeable. And as the available fractions are more critical in terms of 

environmental transport and effects on biota (Riewerts et al. 1998), they were the preferred 

measurements made for soil TE in this study. For the determination of excess Zn treatments 

in this study, soil Zn regulatory levels for Japan (120 mg Zn kg-1) and EU (200 mg Zn kg-1), 

were considered (Ogiyama et al. 2010; Tóth et al. 2016). Hence, excess Zn treatments at 200 

mg Zn kg-1 and 400 mg Zn kg-1 used for soybean experiments were not below the EU 

threshold. In tomato experiment, after a pre-study showed that Zn treatment at 400 mg Zn 

kg-1 would be too toxic to the cultivar under study to permit growth and fruit production, 300 

mg Zn kg-1 soil was adopted for excess Zn treatment as it was higher than the EU standard 

and induced moderate symptoms of Zn toxicity. This is in line with Pilon et al. (2009) that 

inducing high metal toxicity in artificially polluted soils may not always be useful in plant 

studies. Rhizobial and mycorrhizal colonization did not show consistent trend under excess 
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Zn in both experiments on soybean. Generally, root colonization indices increased due to 

excess Zn in experiment one (using G. rosea and B. diazoefficiens) but were decreased in 

experiment two (using C. etunicatum and B. diazoefficiens). In experiments one, the 

frequency of mycorrhizal colonization (F%) in AM and RAM plants was less than 15% in 

Zn0 soils but was increased to between 26 – 36 % under excess Zn. In experiment two, 

however, F% in AM and RAM plants was between 54 – 78% in Zn0 soil but was decreased 

to between 24- 34% in Zn400 soils. Using Zn0 soils for comparison, AM colonization of 

soybean root was lower in experiment one than in two and is likely due to differences in AM 

fungal species and the amount of AM fungal propagules in the inoculum that was applied. 

Under excess Zn, root colonization by G. rosea was enhanced, but a decrease was observed 

in the case of C. etunicatum. In addition to differences in AMF species and spore number in 

inoculum, differences in storage time of Zn-treated soils prior to seed sowing and inoculum 

application appear to have contributed to these differences. While the storage of Zn-treated 

soils for four weeks prior to seeding and inoculation - during which aging effect of Zn had 

run much of its course (Yanai et al. 2011) – led to increased AM colonization by G. rosea in 

Zn-treated soils, the storage of Zn-treated soils for one week prior to seeding and inoculation 

led to reduced colonization by C. etunicatum in Zn400 soils. Excess Zn-induced reduction of 

root colonization by R. irregularis was also observed in tomato where Zn-treated soil was 

preserved for one week prior to seedling transplant and inoculum deployment. As reduced 

AM colonization in Zn-treated soils tempered the biomass response of the hosts, minimizing 

the direct toxicity of Zn or Zn salts in contaminated soils to AM fungal colonization need to 

be considered during in-situ deployment of AM inoculants in contaminated soils - especially 

as it is generally considered that native microbial strains are more adapted to the soil 
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conditions than exotic ones applied during bioaugmentation (Raven et al. 2005). By abating 

the “environmental shocks” to microbe infectivity at the early stages of the establishment of 

symbioses, techniques of inoculum deployment that minimize the symbionts exposure to 

excess Zn should sustain their effectiveness on hosts. This may involve prior soil amendment 

to reduce the metal availability, and/or mixing the inoculum/propagules with adsorbent 

material (e.g. biochar) before deployment.  

In the utilization of metal-contaminated soils for crop production, having TE 

accumulation in shoots and fruits below the safety guidelines is an important food safety 

issue. In the second soybean experiments in Zn200 and Zn400 soils, while single AM 

inoculation reduced leaf Zn concentrations, partnership between C. etunicatum and B. 

diazoefficiens significantly reduced the Zn concentrations in leaf and pod in RAM plants. 

The inoculants ability to decrease Zn concentrations in soybean fruits in contaminated soils 

is thus indicated especially during dual inoculation. In tomato, single inoculation of R. 

irregularis reduced the availability and uptake of excess Zn into host-plant, leading to 

reduced shoot Zn concentrations. Although fruit Zn concentrations were within the EU safety 

threshold, the excess Zn treatment depressed plant biomass production and induced Mn 

deficiency in the tomato fruit. Unlike in soybean, excess Zn-induced disruptions in 

manganese homeostasis observed in tomato, was not ameliorated by the inoculant, as R. 

irregularis induced a negative Mn response in tomato shoots due to a reduction in available 

soil Mn. In both soybean experiments, dual inoculation with R and AMF was better at 

mitigating effect of Zn-Mn antagonism in soybean shoots, than single inoculations. As the 

synergic action of both microbes is indicated in regulating Mn nutrition, the presence of 
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additional microbe(s) might modify the effect of R. irregularis on Mn nutrition in tomato, 

but this remains to be evaluated.  

It is important to highlight that while this study used sterilized soil, field conditions 

are non-sterile, and differences in AM inoculant performance between sterile greenhouse and 

non-sterile field conditions, have been reported (Smith and Read, 2008). However, 

interaction between native and exotic AM fungi could be variable with some studies reporting 

positive effects such as enhanced spore germination, root colonization and plant growth 

(Azcon-Aguilar and Barea 1985; Azcon-Aguilar et al. 1986; Meyer and Linderman 1986); 

and others, negative effects such as reduced AM spore germination, root colonization, and 

plant growth (Wilson et al. 1988; Smith and Read 2008). Since they are devoid of potential 

pathogens, autoclaved soil may permit improved mycorrhizal growth responses (Al-Khaliel 

2010) and benefit the elucidation of synergistic responses between identified partners in dual 

inoculation. In Brazil, field-scale inoculation of rhizobia and arbuscular mycorrhiza was 

successfully used to improve the conditions of waste sites of bauxite, gold and nickel mines 

(Faria et al. 2011). In the successful revegetation of a site of iron mining waste, seed 

inoculation with rhizobia and AM fungi, and the mixing of nitrogen-fixing with fauna-

attracting (e.g. bats and birds) plants, enabled a canopy of plants to take over the site after 

two years (Faria et al. 2011). These examples highlight successes even in non-sterile metal 

contaminated soil conditions.  

5.2 General conclusion  

Inoculation of rhizobial and arbuscular mycorrhizal symbionts improved the performance of 

soybean and tomato under normal and excess soil Zn conditions (Fig. 5-1) via effects on host-  
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Fig. 5-1. Effect of rhizobia and AM fungi on host-plants under various soil Zn conditions  
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plants and soil chemical characteristics. However, the hastening of days to flowering and/or 

fruiting and amelioration of Zn-Mn antagonism were exclusive to soybean; and host 

responses in both plants were tempered under excess Zn when symbiont colonization was 

decreased. The mechanisms underlying symbiont growth-promoting effects include 

improvements in the number and greenness of leaves, higher shoot P concentrations, 

modulation of TE concentrations in shoots via improvements in element availability in 

rhizosphere or adjustments in element translocation from roots to tops, reduced availability 

and uptake of excess Zn due to mycorrhization, phytostimulation of polyphenols biosynthesis 

and increased metallothionein gene expression (Ibiang et al. 2017; Ibiang et al. 2018; Ibiang 

and Sakamoto 2018). While rhizobia potentiated AM effect on host bioproduction, the impact 

of excess Zn on host Mn nutrition was countered by synergic effects of both microbes on Mn 

translocation. In the dual inoculation partnership between B. diazoefficiens and C. etunicatum, 

higher mycorrhization and nodules indices coincided with a higher ROS level within nodules 

and improved host bioproduction. While the potential for their exploitation to mitigate 

imbalances in element nutrition was indicated in soybean, strategies to minimize Zn toxicity 

to symbiont infectivity are recommended to sustain host biomass response under excess Zn, 

in both soybean and tomato. As Zn is often a common and/or leading pollutant of dumpsite 

leachates, the lowering of available soil Zn, and reduction in plant Zn uptake by the AM 

inoculants in this study also suggest their possible exploitation in the remediation of 

agricultural soils polluted by dumpsite leachate run-off with high Zn concentrations, as 

highlighted by recent studies in Nigeria (Oketola and Akpotu 2014; Nwaogu et al. 2017).  
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APPENDIX 

 cDNA sequence of GmMT1 and primer binding position 

 

cDNA （5’→3’） 
 

 

 

Target gene: 

GmMT1. 
   1 GATTCCGTTG AGTGTAGTAA CCAAACGTCT TTTCTTTCTT ATACATTTTA CTTTAGTTTG 

Resource ID: 

GMFL01-42-A12 
  61 TGAAATTCTA TCCAAAGATT TTGAGAATGT CTAGCTGTGG GTGTGGAAGC AGCTGCAACT 

Accession No.: 

AK245813 
121 GTGGCAGCAA CTGCAGTTGC AACAAGTACT CTTTTGACTA CGTTGAGAAG ATCACAAATG 

Chromosome No.: 

Chromosome 3 
181 AGACTCTAGT TTTGGGTGTT GGGCCGGTGA AGGCCCAATT CGAGGGTGCT GAAATGGGTG 

  241 TTGCAGCTGA GAACGGTGGC TGCAACTGTG GATCAAACTG CACTTGCGAC CCATGCAGCT 

  301 GCAAGTGAGA TCAACATGTA TAACCTTCAA GCAGAGATAG CTGTAATACA TGTATCAATA 

  361 AATAATAAGT ATGTGTTGTG TTTGAAGTTT TAGAATAAAG TGGTCATGGC CCGCCTTTGC 

  421 AAATTCAAAT GTTCTAGGAT TTGTTACGGG TGTTTTAAGC TGTGGTTGCT TTGTGTTTGG 

  481 TTGGTCTCTT ATAAATATGT AATTTGAATC GTCAATCTCT GCTTATAAAT GGAATACTAT 

  541 TGGTGTTATG TGAAAAAAAA AAAAAAAA     

 

       Forward Primer   

       Reverse Primer 
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  cDNA sequence of GmEF1α and primer binding position 

 

cDNA （5’→3’）  

 
 

Target gene: 

GmEF1α 

  1  GCTCTTCACT CCTTCGTTCA CTCTTCTTCT CTTGCGGCTA GGGTTTTAGC GCAGCTTCTT 

  61  CTAGATTTAA GGAAGATGGG TAAGGAAAAG GTTCACATCA GTATTGTGGT TATTGGCCAT 

 121  GTTGACTCTG GGAAGTCCAC TACCACTGGC CACCTGATCT ACAAGCTTGG AGGCATTGAC 

 181  AAGCGTGTTA TTGAGAGATT TGAGAAGGAA GCTGCTGAGA TGAACAAGAG GTCTTTCAAG 

 241  TATGCCTGGG TGCTTGATAA GCTTAAGGCT GAGCGTGAAA GAGGAATCAC AATTGATATT 

 301  GCCTTGTGGA AGTTTGAAAC CACCAAGTAC TATTGCACAG TCATTGATGC CCCTGGACAC 

 361  AGGGATTTCA TCAAGAACAT GATCACTGGG ACATCCCAAG CTGACTGTGC TGTTCTTATC 

 421  ATTGATTCCA CTACTGGTGG TTTTGAAGCT GGAATTTCAA AGGATGGACA GACTCGTGAA 

 481  CATGCTCTGC TTTCATTCAC CCTTGGTGTG AAACAGATGA TTTGTTGCTG TAACAAGATG 

 541  GATGCTACTA CACCAAAGTA CTCCAAGGCC AGGTATGATG AAATTGTGAA GGAAGTTTCT 

 601  TCCTATTTGA AGAAAGTAGG ATACAACCCT GACAAGATTC CTTTTGTTCC TATATCTGGT 

 661  TTTGAGGGAG ACAACATGAT TGAGAGGTCC ACAAACCTTG ACTGGTACAA GGGTCCTACT 

 721  CTGCTAGATG CACTTGACCA GATCTCTGAG CCCAAGAGGC CTTCTGACAA GCCCCTCAGG 

 781  CTACCCCTTC AGGATGTGTA CAAGATTGGA GGAATTGGAA CTGTGCCTGT GGGACGGGTT 

 841  GAGACTGGTG TCTTGAAGCC TGGAATGGTG GTGACTTTTG CACCAACTGG ACTGACAACC 

 901  GAAGTTAAGT CTGTGGAAAT GCACCATGAA GCTCTCACAG AGGCTCTTCC CGGTGATAAT 

 961  GTTGGATTCA ATGTTAAGAA TGTTGCTGTT AAGGATCTCA AGCGTGGTTA TGTTGCCTCG 

1021  AACTCAAAGG ATGATCCTGC CAAGGAGGCT GCTAACTTCA CTGCCCAGGT TATCATCATG 

1081  AACCATCCTG GTCAGATTGG AAATGGCTAT GCCCCTGTTC TTGACTGCCA CACTTCCCAC 

1141  ATTGCTGTCA AGTTTGCTGA ACTCATGACC AAGATTGACA GGCGATCTGG CAAAGAGCTT 

1201  GAGAAGGAAC CCAAGTTTTT GAAGAATGGT GATGCTGGTT TTGTTAAGAT GATTCCGACC 

1261  AAACCCATGG TGGTTGAAAC TTTCTCTGAG TACCCCCCAC TTGGTCGCTT TGCTGTCAGG 

1321  GATATGCGTC AAACTGTTGC TGTGGGAGTC ATCAAGAACG TGGAGAAGAA GGATCCTACT 

1381  GGAGCCAAGG TCACCAAGGC TGCCCAGAAG AAGAAGTGAA TCGTGCGGTT TGGTTCATCA 

1441  GGGGATGTCG TTTCTTATGG TTACAATAAA TGTTGGTTTC TTGCCCTTGT GTCTTCGTTT 

1501  CTAGGTAGCT TGTTTTTCGG ACATAGTTTG AAGTCTCCAC CATCATCTCG CAACTTTTGT 

1561  TCCCAGAATT GGGTTCTTGA TCGACGGTGG CAAGACTCCT TTTATCATTC TGTTTTAATG 

1621  TGTTGTGTTT GTGAGAACCC CTGATTACAT TTTTGTTAAG CGCAGCGAGT TTTAGGGCTT 

1681  TGCCGTTGCG TTGTTGGTTT GCTTTTTAAA TGTCAACTTT ATATTTGTGT TCAATTTTTG 

1741  CTTGGTTTGC TTTTAAAAAA TCAAATTTAT GTGCCAAAAA AAAAAAAAAA A 

Resource ID: 

GMFL01-15-P18 

Accession No.: 

AK285768 

Chromosome No.: 

Chromosome 5 
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