
 

 

 

 

Identification and analysis of 

 pollen S candidate genes in apple and pear  
 

January 2009 

 

 

 

 

 

 

Hiroyuki KAKUI 

 

Graduate School of Science and Technology 

CHIBA UNIVERSITY 

 



 

 1

 
(千葉大学学位申請論文) 

 

 

Identification and analysis of 

 pollen S candidate genes in apple and pear  
 

2009 年 1 月 

 

 

 

 

 

 

千葉大学大学院自然科学研究科 

多様性科学専攻分子生命科学講座 

 

角井 宏行 



 

 2

 

Contents 

 

Abbreviations………………………………………………………………….5 

 

General introduction…………………………………………………………6 

0.1  Apple and Pear genomics…...…………………………………………………………..6 

0.2  S-RNase-based Self-incompatibility...…………………………...…………………….7 

0.3  Overview of this study…………………………………………..……………………….8 

 

Chapter 1………………………………………………………………………9 

Analysis of S locus and identification of pollen S candidates in Apple and 

Japanese pear. 

1.1  Introduction……………………………………………………………………………….9 

1.2  Materials and Methods…………………………………………………………………11 

1.2.1  Plant materials……………………………………………………………………11 

1.2.2  Construction of BAC and cosmid contigs……………………………………...11 

1.2.3  Shotgun sequencing………………………………………………………………12 

1.2.4  Construction of phylogenetic trees of F-box proteins………………………..12 

1.2.5  Isolation of nucleic acids…………………………………………………………12 

1.2.6  PCR and RACE……………………………………………………………………12 

1.2.7  DNA and RNA blot analysis…………………………………………………….13 

1.2.8  Cleaved amplified polymorphic sequence and RT–PCR/cleaved 

                                amplified polymorphic sequence…..13 

1.2.9  Identification of the most variable sites in the amino acid sequences…….14 

1.2.10 Calculation of Ka- and Ks-values………………………………………………..14 



 

 3

1.3  Results……………………………………………………………………………………14 

1.3.1  Construction of BAC contigs for the apple S locus…………………………...14 

1.3.2  Analysis of a 317-kb sequence of the S9 haplotype identified 

              multiple, related F-box genes from the apple S locus…..15 

1.3.3  S haplotype-specific sequence polymorphism of SFBB……………………...16 

1.3.4  SFBB genes are specifically expressed in the pollen………………………...17 

1.3.5  The S4sm haplotype, a style-specific self-compatible  

Japanese pear mutant, lacks the S4-RNase-containing region  

                                      and retains SFBB4 genes…..18 

1.3.6  Nucleotide substitution patterns of SFBB genes…………………………….19 

1.4  Discussion………………………………………………………………………………..20 

1.4.1  Organization of the S locus of Maloideae……………………………………...20 

1.4.2  Related, multiple, polymorphic, and pollen-specific F-box genes  

                                    in the S locus of Maloideae…...20 

Tables and Figures…………………………………………………………………………….23 

 

Chapter 2……………………………………………………………………..41 

Analysis of Japanese pear SFBB and its use for S-genotyping 

2.1   Introduction……………………………………………………….……………………41 

2.2 Materials and Methods………………………………………….……………………..43 

2.2.1  Plant materials………………………………………………………..…………..43 

2.2.2  Cloning and sequence analysis of PpSFBB−γ…………………………..……..44 

2.2.3  CAPS and dCAPS analysis……………………………………………………...44 

2.2.4  Accession numbers………………………………………………………………..45 

2.3 Results……………………………………………………………………………………45 

2.3.1  Cloning and sequence comparison of PpSFBB−γ genes ……………………..45 

2.3.2  Development of a new S genotyping system using PpSFBB−γ genes ……..45 



 

 4

2.3.3  Detection of PpSFBB−γ genes from the stylar part self-compatible 

                                     mutant and Sk haplotype…..46 

2.4 Discussion………………………………………………………………………………..47 

2.4.1  Sequence polymorphism of PpSFBB −γ………………………………………..47 

2.4.2  New S genotyping system using PpSFBB−γ…………………………………..48 

Tables and Figures…………………………………………………………………………….49 

 

General Discussion and Conclusion………………………………………55 
3.1 Analysis of Apple S locus………………………………………………………………55 
3.2 Characterization of pollen S candidate genes………………………………………55 
3.3 Establishment of new S genotyping system………………………………………...56 
3.4 Different models and probable mechanistic diversity of  

the S-RNase based GSI systems……………………57 

 

Acknowledgments…………………………………………………………60 

 

References……………………………………………………………………61 

 

List of achievements………………………………………………………..70 

 Publications…………………………………………………………………………………….70 

        Research fellowship…………………………………………………………………………...70 

 Oral presentations…………………………………………………………………………….70 

        Poster presentation……………………………………………………………………………71 



 

 5

Abbreviations 

 

BAC bacterial artificial chromosome 

CAPS cleaved amplified polymorphic sequence 

cDNA  complementary DNA 

dCAPS derived cleaved amplified polymorphic sequence 

DIG  digoxigenin 

GSI  gametophytic self-incompatibility 

HV  hypervariable 

Ka  nonsynonymous substitutions per nonsynonymous site  

Ks   synonymous substitutions per synonymous site 

ORF open reading frame 

PCD programmed cell death 

PCR  polymerase chain reaction 

RACE rapid amplification of cDNA ends 

RiceGAAS Rice genome automated annotation system 

RNase ribonuclease 

RT   reverse transcription 

SFB S haplotype specific F-box gene  

SFBB S locus F-box brothers 

SI   self-incompatibility 

SLF  S locus F-box gene 

SLFL S locus F-box like 

sm  stylar-part self-incompatibility mutant 
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General introduction 

 

0.1  Apple and Pear Genomics 

The plant family Rosaceae, comprised of over 100 genera and 3,000 species, is the third most 

economically important plant family in temperate regions (Dirlewanger et al. 2002).  

Rosaceae includes many important fruit, nut, ornamental, and wood crops. Most rosaceous 

crops have been bred by human intervention through sexual hybridization, asexual 

propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Rosaceae 

family has been traditionally classified into four subfamilies; Rosoideae (Rosa, Fragaria, 

Potentilla, and Rubus; x=7, 8, or 9), Amygdaloideae (Prunus; x=8), Spiraeoideae (Spirea; x=9), 

and Maloideae (Malus, Pyrus, and Cotoneaster; x=17; Potter et al. 2002). In recent years, 

representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry 

(Fragaria spp.) have been studied well (Smartt and Simmonds 1995; Shulaev et al. 2008). 

Apple (Malus x domestica) is one of the world’s leading fruit crops widely grown with 

production in 2001 of almost 60 million tones. Japanese apple cultivar ‘Fuji’ is produced most 

and estimated to increase production in the future (O’Rourke et al. 2003). Thus, apple is very 

important crops not only in Japan but around the world. Most apple cultivars are diploid 

(2n=2x=34), and genome, 750Mb per haploid genome complement, is approximately the same 

size as that of tomato (Solanum lycopersicum; Tatum et al. 2005). Apple is model species in 

Rosaceae for the following reasons; i) There are many molecular markers (Shulaev et al. 2008). 

ii) Agrobacterium-mediated transformation method has established and developed in several 

laboratories (Bondt et al. 1996; Kotoda and Wada 2005). iii) Bacterial artificial chromosome 

(BAC) libraries were constructed (Venatzer et al. 1998, Xu et al. 2001). IV) A complete genome 

sequence of the apple is under way, and it will be completed by mid-2008 (Shulaev et al. 2008). 

Genomic research for pear (Japanese pear; Pyrus pyrifolia, European pear; P. communis) is 

alsoin progress. Map comparisons suggest that genome organization is conserved between 

apple and pear (Yamamoto et al. 2004). 
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Apple and pear trees are artificially pollinated by farmers or planted with other compatible 

cultivars in orchards, in order to make sure the fruit sets because these exhibit 

self-incompatibility (SI). Self-incompatibility research would contribute for fruits production 

and breeding programs. Apple is very useful plant material for studying self-incompatibility 

as described above. As well as in Japanese pear, cultivar ‘Osa-Nijisseiki’ is valuable for SI 

research. ‘Osa-Nijisseiki’ is staylar-part self-compatibility mutant, which lacks of pistil 

recognition function while pollen recognition function works (Sato et al. 1988, 1992). To 

analyze pollen S gene, this mutant is used in this study (see below).   

 

0.2  S-RNase-based Self-incompatibility 

Self-incompatibility is a genetic system that prevents self-fertilization by enabling the pistil 

to reject pollen from genetically related individuals, thus promoting outcrossing (de 

Nettancourt 2001). The specificity of the SI response is determined by the haplotyes of the 

polymorphic S locus, which contains at least one gene for the pistil determinant (pistil S) and 

one for the pollen determinant (pollen S). The families Rosaceae, Solanaceae and 

Plantaginaceae include species exhibit S-RNase-based gametophytic self-incompatibility 

(GSI).  

Pistil S determinant, S-RNase, has been well characterized during the past two decades 

(Kao and Tsukamoto 2004). S-RNase protein and cDNA were firstly identified in Nicotiana 

alata by Bredemijer and Blass (1981) and Anderson et al. (1986), respectively. Then, it is 

confirmed that S-RNase has RNase activity in vitro (McClure et al. 1989). The role of  

S-RNase has been established via transgenic experiments in solanaceous plants (Lee et al. 

1994, Murfett et al. 1994). The S-RNase was also determined as pistil S gene in the study of 

Japanese pear (Sassa et al. 1992, 1997) and apple (Sassa et al. 1994, 1996; Broothaerts 1995, 

2004).   

S-RNase has been studied in detail, while the nature of pollen S gene had been unknown for 

a long time. Recently, SLF (S locus F-box gene) and SFB (S haplotype specific F-box gene) 
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were identified as (putative) pollen S genes in the three families (McClure 2004). The identity 

of SLF as the pollen S determinant of Petunia inflata, a solanaceous species, was 

demonstrated by transformation experiment (Sijacic et al. 2004). In several Prunus species of 

Amygdaloideae, analysis of pollen-part self-compatible mutants revealed insertion/deletion or 

complete loss of SFB gene, suggesting that SFB is the pollen S (Ushijima et al. 2004; 

Sonneveld et al. 2005; Vilanova et al. 2006). However, attempts to isolate pollen S in 

Maloideae through a homology-based approach with Prunus SFB sequence information have 

been unsuccessful (Suzuki Y and Sassa H, unpublished results), most likely because of 

sequence diversity of pollen S between these subfamilies. 

 

0.3  Overview of this study 

This study is divided into three major parts. First, apple S locus was analyzed to obtain 

pollen S candidate gene. Around the region of the S-RNase was sequenced and its structural 

features were discussed (Chapter 1). Second, characterizations of isolated pollen S candidate 

genes (SFBB; S locus F-box brothers) were analyzed in apple and pear (Chapter 1 and 2). 

Finally, using SFBB-γ, one of the SFBB group, established new S genotyping system in 

Japanese pear (Chapter 3).  
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Chapter 1 

 

Analysis of S locus and identification of pollen S candidates 

 in Apple and Japanese pear. 

 

1.1  Introduction 

 

The S-RNase-based gametophytic self-incompatibility (GSI) system has been found in the 

families Solanaceae, Rosaceae, and Plantaginaceae. Haplotypes of a single S locus determine 

the specificity of self and nonself discrimination; when an S haplotype in the haploid pollen 

matches one of two S haplotypes in the pistil, then the pollen is recognized as "self" and 

rejected by the pistil (De Nettancourt 2001). The S haplotype contains two closely linked 

S-specificity genes, pistil S and pollen S. While pistil S has been known to be the S-RNase 

gene, identity of the pollen S has long been unknown until recently (Kao and Tsukamoto 2004; 

McClure and Franklin-Tong 2006). Findings of SLF/SFB as the pollen S gene suggested that 

the F-box protein determines the pollen S specificity (Entani et al. 2003; Sijacic et al. 2004; 

Ushijima et al. 2003, 2004). Since the well-documented function of F-box protein is substrate 

recognition as a component of SCF complex, a kind of E3 ubiquitin ligase, it has been 

hypothesized that SLF/SFB recognizes nonself S-RNase in compatible pollen tubes and 

ubiquitinylates it for degradation by the 26S proteasome (Ushijima et al. 2003, 2004; Qiao et 

al. 2004; Hua and Kao 2006). However, recent immunolocalization and immunoblot analyses 

have shown that S-RNase is incorporated into vacuoles inside pollen tubes and that the 

amount of S-RNase is not significantly different between compatible and incompatible 

pollinations (Goldraj et al. 2006). Consequently, how SLF/SFB and S-RNase interact to trigger 

the self-incompatibility reaction is still largely unclear.  

Although Solanaceae and Prunus species use a similar molecule as the pistil S determinant 

(S-RNase), clear differences have been reported for pollen S. First, pollen S in Prunus (SFB) 
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shows much higher allelic diversity (66–82.5% amino acid identity; Ikeda et al. 2004) than 

pollen S (SLF) in Solanaceae (88.4–89.4% amino acid identity; Sijacic et al. 2004). Second, 

diploid pollen from the Prunus tetraploid is frequently capable of normal self-incompatibility 

function (Hauck et al. 2006), but heteroallelic pollen from Solanaceae always shows 

breakdown of self-incompatibility (SI) (competitive interaction) (De Nettancourt 2001). Finally, 

in Solanaceae, SLF is considered to be essential for pollen viability because all the pollen-part 

mutations were duplications of pollen S and no deletion type was recovered even after 

large-scale screening of X-ray-induced mutants (Golz et al. 2001). In contrast, deletion of SFB 

results in pollen-part self-compatibility in Prunus (Sonneveld et al. 2005). These differences in 

pollen S may reflect a mechanistic diversity of GSI systems among species.  

Rosaceae comprises four subfamilies: Spiraeoideae, Rosoideae, Maloideae, and 

Amygdaloideae. In species of Maloideae and Amygdaloideae, the GSI mechanism has been 

studied at a molecular level and S-RNase's have been characterized extensively; however, the 

pollen S gene (SFB) has been identified only in Prunus, a species of Amlygdaloideae. The 

recent finding that Prunus SFB barely causes competitive interaction in heteroallelic pollen 

prompted Hauck et al. (2006) to suggest that pollen S in Prunus may be different from pollen 

S in Solanaceae. However, competitive interaction of pollen S has been documented in pear 

(Pyrus communis), a species of Maloideae (Crane and Lewis 1941; Lewis and Modlibowska 

1942). Characterization of pollen S in Maloideae and comparison of it to its counterparts in 

Prunus and Solanaceae are likely to shed light on the mechanism and evolution of the 

S-RNase-based GSI system. However, attempts to isolate pollen S in Maloideae through a 

homology-based approach with Prunus SFB sequence information have been unsuccessful 

(Suzuki Y and Sassa H, unpublished results), most likely because of sequence diversity of 

pollen S between these subfamilies.  

Here, I analyzed the apple S locus, a species of Maloideae, to identify pollen S. A complete 

sequence of the 317-kb apple S9 haplotype identified two closely related F-box genes, which I 

have named SFBB (S locus F-box brothers). Two SFBB genes also were isolated from apple S3 
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haplotype BAC clones, and three SFBB genes were isolated in each of the Japanese pear S4 

and S5 haplotypes. SFBB genes in apple and Japanese pear show S haplotype-specific 

sequence polymorphism and pollen-specific gene expression. Analysis showed that S4sm, a 

mutant Japanese pear haplotype that lacks the S4-RNase gene and confers pistil-specific 

self-compatibility, lacks at least 110 kb that contains the S4-RNase gene but retains three 

SFBB4 genes. A sequence analysis also revealed that variable regions of SFBB genes are 

under positive selection. Apart from their multiplicity, the data support the idea that SFBB 

genes are the pollen S genes of apple and Japanese pear. The unique multiplicity of SFBB 

genes as the pollen S candidate is discussed in the context of functional variation in the 

S-RNase-based GSI system.  

 

1.2  Materials and Methods 

 

1.2.1  Plant materials 

An apple (Malus x domestica) cultivar, Sekai-ichi (S3S9), and 16 cultivars of Japanese pear 

[P. pyrifolia (syn. serotina)]—Hayatama (S1S2), Doitsu (S1S2), Suisei (S1S4), Imamuraaki 

(S1S6), Chojuro (S2S3), Kikusui (S2S4), Nijisseiki (S2S4), Osa-Nijisseiki (S2S4sm), Chikusui (S3S4), 

Akemizu (S3S5), Hosui (S3S5), Shinsui (S4S5), Kosui (S4S5), Hogetsu (S1S7), Okusankichi (S5S7), 

and Chukanbohon Nou No.1 (S4smS4sm)—were used. Forty progenies obtained by crossing 

Chikusui (S3S4) and Akemizu (S4S5) and 40 plants derived from a cross between Akemizu 

(S3S5) and Shinsui (S4S5) were also used. 

 

1.2.2  Construction of BAC and cosmid contigs 

A BAC library of the apple cultivar Florina (Vinatzer et al. 1998) was obtained from Texas 

A&M University and screened using the apple S9-RNase cDNA (Sc-RNase) (Sassa et al. 1996) 

as a probe. Overlapping clones were obtained by screening the library with probes from 

different positions in the initial BAC clones.  
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The cosmid library for the cultivar Nijisseiki (S2S4; Sassa et al. 2002) was screened using the 

S4-RNase cDNA (Sassa et al. 1997) as a probe. Overlapping clones were then obtained using 

the method described by Ushijima et al. (2001).  

 

1.2.3  Shotgun sequencing 

The S9 haplotype-derived BAC clones (34G16, 45M19, and 90A15) were subjected to 

shotgun sequencing at Hitachi High-Tech Science Systems (Ibaraki, Japan) (Iwashita et al. 

2003). For each BAC clone, a fivefold sequence coverage was assembled, and gaps were filled 

by polymerase chain reaction (PCR) and by direct sequencing of BACs. The assembled 

sequence was further verified by PCR.  

 

1.2.4  Construction of phylogenetic trees of F-box proteins 

Amino acid sequences of F-box proteins were aligned using ClustalX (Thompson et al. 1997) 

and manually optimized. A neighbor-joining tree was constructed using the alignment (Saitou 

and Nei 1987). Protein distances among pairs of sequences were produced using the PAM 

Dayhoff matrix (Dayhoff et al. 1979) implemented by the PROTDIST program in PHYLIP 

(Felsenstein 2005). For each distance matrix, a bootstrap analysis was performed by 

randomly selecting amino acid positions for replacement to produce 1000 replicate protein 

distance matrices upon which the neighbor joining was performed.  

 

1.2.5  Isolation of nucleic acids 

Genomic DNAs were isolated from leaves as described by Doyle and Doyle (1990) and Sassa 

and Hirano (1998). RNAs were isolated from leaves and floral organs as described by McClue 

et al. (1990).  

 

1.2.6  PCR and RACE 

SFBBs of the apple S3 haplotype were amplified from BAC clones 66L6 and 72N11 using 
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primer pairs FMdSL21 (ATGTCCCAGGTGCGTGAAAG) and RMdSL21 

(CAATTCACTTGACTGGAACAATAC) and FSMF1 (TACRTGWGAAKAWTTCHYGTG) and 

RSMF1 (CTCAAGCHTTGTATCATGCATAC), respectively. Flanking sequences of the 

66L6-derived gene, MdSFBB3-α, were further amplified using the DNA Walking SpeedUp kit 

(Seegene, Seoul, Korea) to determine the full-length sequence of the coding region.  

Amplification of SFBB genes from the Japanese pear cosmid clones and from the Nijisseiki 

genomic DNA was conducted using primers FjpFB1 (CCAAGTCTCTGATGMGRTTCAAATG) 

and RjpFB1 (SRGTTAGKWGTTTTGTCCATGAAC), which were designed to amplify all SFBB 

sequences.  

Total RNA from the pollen of Kosui was used for 3'RACE, using FMdSL21 as a specific 

primer. 5'RACE was conducted using specific primers PpSLFLr1 

(AGAAGGATACAAGTGGAGGATG) and PpSLFLr2 (AATTGCTGAGGTGTTTGGCC) 

essentially as described by Ushijima et al. (2003). Full-length cDNAs of PpSFBBs were 

amplified by 3'RACE, using specific primers listed in Table 1.1.  

 

1.2.7  DNA and RNA blot analysis 

Five micrograms of genomic DNAs digested with HindIII were separated and blotted onto a 

nylon membrane. The membrane was probed with the digoxygenin-labeled cDNAs for genes 

expressed in pollen, washed, and visualized as described by Ushijima et al. (2001). An RNA 

blot analysis also was conducted as described by Sassa et al. (1997).  

 

1.2.8 Cleaved amplified polymorphic sequence and RT–PCR/cleaved amplified 

polymorphic sequence 

Genomic DNAs of Japanese pear cultivars were used as templates for PCR amplification of 

SFBB genes. The PCR products were digested with restriction enzymes to detect specific 

cleaved amplified polymorphic sequence (CAPS) bands. The primers and enzymes are listed in 

Table 1.2. A CAPS analysis of the S-RNase genes also was conducted using the method 
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described by Takasaki et al. (2004).  

RNAs from the leaf and the floral organs of apple "Sekai-ichi" and Japanese pear "Kosui" were 

treated with DNaseI (Nippongene). Their cDNAs were synthesized by SuperScript II 

(CLONTECH, Palo Alto, CA) with an oligo(dT) primer. The resultant cDNAs were used as 

templates for PCR amplification with gene-specific primers, and PCR products were treated 

with restriction enzymes to detect target-specific CAPS. A PCR was performed with ExTaq 

(TaKaRa), using a program of 30 cycles at 94° for 30 sec, 53° for 30 sec, and 72° for 45 sec and 

an initial denaturing of 94° for 2 min 30 sec and final extension of 72° for 7 min. PCR products 

were separated on a 1.5% agarose gel and stained with ethidium bromide.  

 

1.2.9  Identification of the most variable sites in the amino acid sequences 

Amino acid sequences of 10 SFBB genes from apple and Japanese pear were aligned using 

the ClustalX program (Thompson et al. 1997) and manually adjusted. On the basis of the 

alignment, a normed variability index (NVI) was calculated for each site (Kheyr-Pour et al. 

1990). Sites with an NVI > –0.25 were identified as the most variable sites.  

 

1.2.10  Calculation of Ka- and Ks-values 

DNA sequences were aligned using GENETYX-MAC (version 13; Software Development, 

Tokyo). After gaps were removed, a codon-by-codon alignment was carried out manually. On 

the basis of the alignment, DNAsp (Rozas et al. 2003) was used for the calculation of Ka- and 

Ks-values. 

 

1.3   Results 

 

1.3.1  Construction of BAC contigs for the apple S locus 

A BAC library from the apple cultivar Florina (Vinatzer et al. 1998) was screened using 

S9-RNase cDNA as a probe. Of the five clones obtained, three contained an S9-RNase gene and 
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two included an S3-RNase gene. For the S9 haplotype-derived clones, overlapping BAC clones 

were further screened. End-sequence probes derived from the initial BAC clones produced 

smear patterns on apple genomic DNA blots, suggesting that they contained repetitive 

sequences and were not suitable for library screening. The BAC clones were then subjected to 

shotgun sequencing, and the draft data were used to select candidate probes to identify 

further BAC clones. The library was screened with probes that produced single bands on 

genomic DNA blots. Ultimately, a BAC contig consisting of seven overlapping clones 

corresponding to the S9 haplotype was constructed. A schematic representation of the BAC 

contig is shown in Fig. 1.1a. 

 

1.3.2  Analysis of a 317-kb sequence of the S9 haplotype identified multiple, related 

F-box genes from the apple S locus 

Of the seven BAC clones in the S9-haplotype contig, three clones (90A15, 34G16, and 

45M19) were completely sequenced. The entire 317-kb sequence contains a 169-kb region 

upstream of the S9-RNase gene and a 148-kb region downstream of the S9-RNase gene. The 

317-kb sequence was annotated by the Rice Genome Automated Annotation System 

(RiceGAAS) (Sakata et al. 2002; http://ricegaas.dna.affrc.go.jp/index.html), which 

automatically analyzes large sequences by using several programs for prediction and analysis 

of protein-coding sequence, for example, Blast (Altschul et al. 1990), AutoPredLTR (Sakata et 

al. 2002), and GENSCAN (Burge and Karlin 1997).  

GENSCAN identified 71 open reading frames (ORFs) (Table 1.3). Of the 71 ORFs, 27 are 

homologous to retrotransposons, 36 show no significant homology to sequences in the 

databases, and 3 are similar to hypothetical proteins of rice, Medicago and Arabidopsis. Five 

ORFs—ORF20, ORF29, ORF43, ORF61, and ORF63—show homology to known genes. ORF43 

was identified as the S9-RNase gene, and ORF63 was shown to be homologous to a putative 

aminotransferase of rice. ORF20, ORF29, and ORF61 are homologous to Prunus SLFL1, a 

monomorphic F-box gene found in the S locus (Entani et al. 2003; Ushijima et al. 2003). 
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ORF29 and ORF61 were named MdSFBB9-α and MdSFBB9-β (S locus F-box brothers of M. 

domestica), respectively. MdSFBB9-α and MdSFBB9-β are located 42 kb upstream and 93 kb 

downstream of the S9-RNase gene, respectively (Fig. 1.1a). Although ORF20 is homologous to 

SLFL1 and to the MdSFBB genes, the predicted amino acid sequence of 87 amino acid 

residues is much shorter than that of the SFBB genes (392 aa). Furthermore, while the 

downstream sequence of the stop codon for ORF20 is also homologous to MdSFBB genes, it 

contains several indels including a 1.4-kb insertion of unknown sequence; thus, ORF20 was 

considered to be a pseudogene and named ΨMdSFBB9-α. ΨMdSFBB9-α showed 84.0 and 

83.3% nucleotide identity to MdSFBB9-α and MdSFBB9-β, respectively. Similarly, at a position 

~3 kb downstream of MdSFBB9-β, another pseudogene was identified, ΨMdSFBB9-β. 

ΨMdSFBB9-β contained several indels including a 980-base insertion of unknown sequence. 

ΨMdSFBB9-β showed a 75.5 and a 78.1% nucleotide identity to MdSFBB9-α and MdSFBB9-β, 

respectively. In addition, an ~800-base sequence with similarity to SFBB was found ~8.3 kb 

upstream of ΨMdSFBB9-α. With the exception of the SFBB genes, no other F-box genes were 

found in the 317-kb sequence of the S9-haplotype. MdSFBB genes are more homologous to 

Prunus SLFL1 (34.4–37.0% amino acid identity) than they are to SFB (21.3–28.2% amino acid 

identity; Table 1.4).  

 

1.3.3  S-haplotype-specific sequence polymorphism of SFBB 

Apple SFBB homologs were obtained using a PCR from the S3-RNase gene containing two 

BAC clones, 66L6 and 72N11. The SFBB homolog sequences were related but not identical 

with each other, suggesting that they were derived from nonoverlapping regions of the two 

BAC clones. The two SFBB homologs were named MdSFBB3-α and MdSFBB3-β, respectively 

(Fig. 1.1b).  

An RT–PCR was used to clone pollen-expressed SFBB homologs from Japanese pear, using 

the primers derived from MdSFBB sequences. Six cDNAs were obtained from the Kosui (S4S5) 

pollen, a cultivar of Japanese pear: PpSFBB4-α, PpSFBB4-β, PpSFBB4-γ, PpSFBB5-α, PpSFBB5-β, 
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and PpSFBB5-γ.  

SFBB genes showed 58.4–99.0% deduced amino acid identity with each other (Table 1.5). 

While apple SFBB genes from the same haplotypes were more similar to other haplotypes, 

Japanese pear genes were more related to other haplotype genes of the same group (i.e., α-, β-, 

and γ-groups) (Table 1.5, Figures 1.2 and 1.3, see below).  

S-haplotype specificity was analyzed by correlating Japanese pear S genotype with PpSFBB 

gene polymorphism. Since the SFBB genes are similar to each other, a CAPS procedure was 

used to detect polymorphism. Amplification by group-specific primers was followed by 

digestion with a restriction enzyme to reveal gene-specific patterns. This CAPS analysis 

showed that PpSFBB genes are specific to their respective S haplotypes (Fig. 1.4).  

A CAPS analysis also was used to examine the linkage between PpSFBB and S-RNase 

genes. A segregating population derived from a cross between Chikusui (S3S4) and Akemizu 

(S3S5) was analyzed for a linkage between S4-RNase and the PpSFBB4 genes. Fig. 1.5 shows 

the representative results of this CAPS analysis. Three of the PpSFBB4 genes were detected 

specifically in the S4-containing progenies (18 of 40 plants analyzed), suggesting a linkage 

between S4-RNase and PpSFBB4. A similar analysis of 40 progenies derived from a cross 

between Akemizu (S3S5) and Shinsui (S4S5) also showed a linkage between the PpSFBB5 

genes and S5-RNase.  

 

1.3.4  SFBB genes are specifically expressed in the pollen 

Organ-specific expression of the SFBB genes was analyzed using RNA blotting. 

Pollen-specific signals were detected for all SFBB genes (Fig. 1.6). Since the SFBB genes show 

relatively high homology with each other in some pairs as is the case with SLF (Sijacic et al. 

2004), these RNA blot results may suggest that each respective SFBB gene and/or its 

homologous gene(s) are specifically expressed in the pollen. To determine whether each SFBB 

gene is specifically expressed in the pollen, an RT–PCR was performed in combination with a 

CAPS analysis (RT–PCR/CAPS). cDNAs derived from different organs were subjected to 
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CAPS analysis to detect target, sequence-specific restriction fragments. Results showed that 

all the SFBB genes are actually and specifically expressed in pollen (Fig. 1.7).  

 

1.3.5  The S4sm haplotype, a style-specific self-compatible Japanese pear mutant, lacks 

the S4-RNase-containing region and retains SFBB4 genes 

I have previously analyzed a style-specific self-compatible Japanese pear mutant 

"Osa-Nijisseiki," which has a defective S4 haplotype named S4sm, and shown that the S4sm 

haplotype lacks the S4-RNase gene-containing region for at least 4 kb (Sassa et al. 1997). 

Since pollen that has the S4sm haplotype is normally rejected by an S4 pistil, it is expected that 

the S4sm haplotype retains the pollen S4 gene and that this gene is located outside the deletion 

region.  

To ascertain whether SFBB genes are retained in the S4sm haplotype, an ~130-kb cosmid 

contig for the normal S4 haplotype was constructed and used to analyze the deletion region. 

Using probes derived from different positions on the contig, a genomic DNA blot analysis was 

conducted to determine if the corresponding region is deleted in the S4sm haplotype. Many of 

the cosmid end probes displayed smear patterns on a genomic DNA blot, probably because of 

the repetitive sequences that are rich in the S loci (Coleman and Kao 1992; Matton et al. 1995; 

Ushijima et al. 2001). Among the probes that displayed a single band on a DNA blot, the most 

upstream probe, 11-17Sph-L (located 37 kb upstream of S4-RNase), showed nearly no signal in 

Osa-Nijisseiki, suggesting that the corresponding region is deleted in the S4sm haplotype (Fig. 

1.8A). Similarly, the most downstream probe, 11-1R, detected nearly no signal in 

Osa-Nijisseiki. Faint signals found in Osa-Nijisseiki are derived from wild-type cells retained 

in the mutant, which was somaclonally derived from the original variety Nijisseiki (S2S4) and 

is chimeric for the S4 haplotype (Sassa et al. 1997). Therefore, a >110-kb region, located 

between 11-17Sph-L and 11-1R, is deleted in the S4sm haplotype.  

Subsequently, I examined whether the SFBB4 genes are retained in the S4sm haplotype. 

SFBB genes could not be amplified by PCR from the cosmid clones of the S4 haplotype (Fig. 
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1.8B). A subsequent CAPS analysis using an S4smS4sm homozygous genotype "Chukanbohon 

Nou No.1" did successfully amplify the SFBB4 genes from the S4smS4sm plant, indicating that 

the SFBB4 genes are retained in the S4sm haplotype (Fig. 1.8C).  

 

1.3.6  Nucleotide substitution patterns of SFBB genes 

For SI genes, new specificity is considered to have a reproductive advantage and tends to be 

maintained in a population. A sequence comparison has shown that SI genes have excess 

nonsynonymous substitutions, which supports the hypothesis that they are positively selected 

(Newbigin and Uyenoyama 2005). Consequently, I analyzed SFBB sequences to determine 

whether they show nucleotide substitution patterns similar to those of known SI genes.  

I used a codon-by-codon alignment of SFBB sequences to calculate the ratio of the 

nonsynonymous substitutions per nonsynonymous site (Ka) to the synonymous substitutions 

per synonymous site (Ks), or Ka/Ks. A similar analysis also was conducted for Prunus SFB, 

Petunia SLF, and Antirrhinum SLF. Fig. 1.9 shows the results of the pairwise comparison of 

the Ka/Ks-values. The average Ka/Ks-value for SFBB (0.69) was higher than the Ka/Ks-values 

for Prunus SFB (0.45), Petunia SLF (0.34), and Antirrhinum SLF (0.27) (Table 1.6). These 

values indicate that SFB and SFBB are more diverged than SLF. As whole molecules, the 

Ka/Ks-values for all the genes were <1 and were lower than the Ka/Ks-values for S-RNase's: 

Maloideae, 0.83; Prunus, 0.54; and Solanaceae, 0.75 (Ma and Oliveira 2002). This may be due, 

partly, to the larger size of the F-box genes compared to the S-RNase genes and, partly, to the 

limited region(s) critical for recognition. For genes involved in recognition systems such as SI 

and disease resistance, it is known that the portions related to recognition are under positive 

selection (Ishimizu et al. 1998; Bergelson et al. 2001; Ikeda et al. 2004).  

To detect diverged amino acid sites that may be important for recognition, an NVI 

(Kheyr-Poir et al. 1990) was calculated for the SFBB genes. Forty-eight variable sites were 

detected (Fig. 1.11). Four regions with particularly rich variable sites were named V1–V4 (Fig. 

1.10 and Fig. 1.11). Ka/Ks-values were calculated for these four regions as well as for the F-box 



 

 20

region. The Ka/Ks-values of the F-box, V1, V2, V3, and V4 regions were 0.22, 1.18, 1.33, 0.64, 

and 0.58, respectively (Table 1.7). These values suggest that V1 and V2 are under positive 

selection and that the F-box region is under purifying selection.  

 

1.4  Discussion 

 

1.4.1  Organization of the S locus of Maloideae 

Aiming to identify the pollen S gene in Maloideae, a subfamily of Rosaceae, I completely 

sequenced the 317-kb apple S9 haplotype. This represents—along with the 328-kb Petunia S2 

haplotype (Wang et al. 2004)—one of the largest sequences for the S locus. In the 328-kb 

Petunia S2 haplotype sequence, 31 ORFs showed high similarity to retrotransposons (Wang et 

al. 2004). Comparable numbers were found in the 317-kb apple S9 haplotype: 27 of 71 

predicted ORFs were homologous to retrotransposons. Although it has been suggested that 

the retrotransposon-rich organization of the Petunia S locus may reflect its centromeric 

location (Wang et al. 2004), there are no data showing the subcentromeric localization of the 

Maloideae S locus.  

 

1.4.2  Related, multiple, polymorphic, and pollen-specific F-box genes in the S locus of 

Maloideae 

Sequence analyses have revealed that the S loci of Prunus, Petunia, and Antirrhinum 

contain several F-box genes in addition to the pollen determinant SFB/SLF (Lai et al. 2002; 

Entani et al. 2003; Ushijima et al. 2003; Wang et al. 2004). In these species, however, each 

F-box gene is a single copy in a haplotype. In contrast, the S haplotypes of apple and Japanese 

pear contain two or three copies of the SFBB genes. Initially, occurrence of multiple SFBB 

genes in a haplotype may appear inconsistent with the idea that they are the pollen 

determinant of GSI; the pollen-part factor F-box genes are single-copy genes in Prunus (SFB: 

Entani et al. 2003; Ushijima et al. 2003; Yamane et al. 2003) and in Petunia (SLF: Sijacic et al. 
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2004). However, apart from their multiplicity feature, SFBB genes are a good candidate for 

pollen S in Maloideae, as they show linkage to the S-RNase gene, S haplotype-specific 

sequence divergence, and pollen-specific expression. Unlike in Solanaceae, there is no report 

of subcentromeric localization of the S locus in Maloideae. Therefore, taking into consideration 

that Petunia SLF2 is located 161 kb from the S2-RNase gene (Wang et al. 2004), it seems 

unlikely that another genuine pollen S gene is located outside the 317-kb region of the apple 

S9 haplotype. Additionally, my analysis of the pistil-specific, self-compatible haplotype S4sm 

showed that PpSFBB4 genes are retained in the S4sm haplotype and are located outside the 

known deletion region. Taken together, these findings support the idea that the SFBB genes 

are the pollen S determinant in Maloideae.  

An analysis of nucleotide substitution patterns of the SFBB genes and other pollen S genes 

showed that the SFBB genes have a higher average Ka/Ks-value than SFB of Prunus, SLF of 

Petunia, and SLF of Antirrhinum. Among the S-RNase genes, the Ka/Ks-value was also higher 

in Maloideae than in Prunus, suggesting that the S-RNase genes of Maloideae diverged more 

recently than those of Prunus (Ma and Oliveira 2002). The higher Ka/Ks-value of SFBB than of 

SFB may reflect the coevolution of the F-box and the S-RNase genes in Rosaceae. An amino 

acid sequence analysis of the SFBB detected four variable regions with high NVI values, and 

two of them (V1 and V2) were found to be under positive selection. Positive selection has been 

suggested in variable regions of S-RNase genes and SFB genes of Rosaceae, which supports 

the idea that these regions are critical for S specificity (Ishimizu et al. 1998; Ikeda et al. 2004). 

Positive selection detected in the variable regions of the SFBB genes is also consistent with 

the possible "self" recognition function of the protein. Although the Ka/Ks-values of the V3 and 

the V4 regions were <1, this may be due, partly, to high Ks-values in these regions and/or to 

gaps in the V4 region and may not exclude their potential importance in recognition.  

The exceptional feature of SFBB as the pollen S candidate is its multiplicity. It is possible 

that only one SFBB gene in a haplotype is the pollen determinant. However, this seems 

unlikely, since pear shows competitive interaction (Crane and Lewis 1941; Lewis and 
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Modlibowska 1942) and multiple SFBB genes with S-specific polymorphisms are expressed in 

pollen with normal GSI function. Expressed non-S SFBB genes may competitively interact 

with the pollen S SFBB to breakdown GSI in pollen. Another possibility is that all the 

expressed SFBB genes act together as the pollen determinant. Analyses of pollen-part, 

self-compatible mutations of Prunus have found that all mutations, both natural and 

X-ray-induced ones, were loss-of-function type (Ushijima et al. 2004; Sonneveld et al. 2005). 

However, loss-of-function mutations have not been reported in Maloideae, and pollen-part 

breakdown of GSI has been interpreted as a result of competitive interaction in tetraploid 

plants (Crane and Lewis 1941; Lewis and Modlibwska 1942). The occurrence of multiple 

pollen S genes also may explain the absence of deletion type of the pollen self-compatible 

mutation in Maloideae. However, sequence divergence of SFBB copies in a single haplotype 

may be unusual if the copies are only for backup function. Although duplication of a pollen S 

gene was reported for the Sb-haplotype of self-incompatible Arabidopsis lyrata, which exhibits 

sporophytic SI, sequences of the two copies of the SCRb genes were identical to each other 

(Kusaba et al. 2001). Functional characterization of SFBB in pollen and a comparative 

analysis of the apple S locus structure with those of other species will shed light on the 

mechanism, variation, and evolution of the the S-RNase-based GSI system.  

 

 

 

 

 

 

 



 

 23

 

 

 

 

 

 

Table 1.1 Primers used for 3’RACE of PpSFBBs 
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Table 1.2  Primers and restriction enzymes for CAPS analysis. 
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Table 1.3  Predicted ORFs in the Apple S9 haplotype 
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Table 1.4 Amino acid sequence identities (%) among the S locus-encoded F-box proteins 

 

Abbreviations for the F-box proteins: Md, apple (Malus domestica); Pd, almond (Prunus 

dulcis); Pm, Japanese apricot (Prunus mume); Pi, Petunia inflata. Sequences of almond, 

Japanese apricot, and P. inflata F-box proteins are from Ushijima et al. (2003), Entani et al. 

(2003), and Sijacic et al. (2004), respectively. 
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Table 1.5  Amino acid sequence identities (%) among the SFBBs 

 

Pp, Japanese pear (Pyrus pyrifolia). See Table 1.4 legend for other abbreviations. 
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Table 1.6  Ka/Ks-values of the S locus F-box genes 
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Table 1.7  Ka/Ks-values of F-box and variable regions of SFBB genes 
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Fig.1.1  The S locus BAC contig of apple. 

(a) Apple S9 haplotype. Thin bars are in scale and show BAC clones. Solid arrows denote the 

transcriptional direction of genes. Open arrows show pseudogenes. (b) BAC clones for the 

apple S3 haplotype. Bars are not in scale. 
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Fig. 1.2  Amino acid sequence alignment of the S locus F-box genes. 

Amino acid sequences of SFBB genes and other S locus F-box genes were aligned using 

ClustalX. Abbreviations of species are listed in Tables 1.4 and 1.5. Conserved sites and 

relatively conservative sites are marked with asterisks and dots, respectively. Double-headed 

arrow shows the F-box region. 
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Fig. 1.3  Neighbor-joining tree of the S locus F-box genes with 1000 bootstraps. 
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Fig. 1.4  S-haplotype-specific sequence polymorphism of Japanese pear SFBB genes.  

Japanese pear cultivars with different S genotypes were subjected to CAPS analysis for SFBB 

genes. 
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Fig. 1.5  Linkage analysis of SFBB genes and the S-RNase genes in Japanese pear. 

(a) Linkage between S4-RNase and PpSFBB4 genes. (b) Linkage between S5-RNase and 

PpSFBB5 genes. Parents (left two lanes) and their progenies were analyzed using CAPS. 

  



 

 35

 

 

 

 

 

 d 

Fig. 1.6  RNA gel blot analysis of SFBB genes. 

(a) Apple SFBB genes. (b) Japanese pear SFBB genes. Lf, leaf; Pd, pedicel; Sp, sepal; Pt, petal; 

Pg, pollen grain; Ov, ovary; St, style. 
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Fig. 1.7  RT–PCR/CAPS analysis of SFBB expression in different organs. 

(a) Apple SFBB genes. (b) Japanese pear SFBB genes. –RT, pollen grain RNA negative control 

experiment performed without reverse transcriptase. 
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Fig. 1.8  Analysis of the style-specific, self-compatible haplotype S4sm. 

(A) A cosmid contig for the S4 haplotype and DNA gel blot analysis with cosmid-derived probes. 

Open boxes denote cosmid clones. N, Nijisseiki (S2S4); O, Osa-Nijisseiki (S2S4sm); K, Kosui 

(S4S5); C, Chojuro (S2S3); H, Hayatama (S1S2). (B) PCR amplification of SFBB genes from 

genomic DNA of Nijisseiki and cosmid clones for the S4 haplotype. (C) CAPS analysis of the 

S4smS4sm genotype, Chukanbohon Nou No.1, and other S genotype 
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Fig. 1.9  Pairwise comparisons of synonymous (Ks) and nonsynonymous (Ka) substitution 

frequencies in the SFBB and other S locus F-box genes. 

Circles, squares, triangles, and diamonds denote the data for SFBB of Maloideae, SFB of 

Prunus, SLF of Petunia, and SLF of Antirrhinum, respectively. 
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Fig. 1.10  Window-averaged plot of normed variability index at each site in the alignment of 

the SFBB genes. 

Variable regions are shaded. 
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Fig. 1.11  Amino acid sequence alignment of SFBBs for NVI analysis. 

Conserved sites and most variable sites with NVI values of >-0.25 were marked with asterisks 

and #, respectively. Double-headed arrows denote F-box and variable regions. 
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Chapter 2 

Analysis of Japanese pear SFBB and its use for S-genotyping 

 

2.1  Introduction 

 

Self-incompatibility (SI) in flowering plants is a genetic system that prevents 

self-fertilization by enabling the pistil to reject pollen from genetically related individuals, 

thus promoting outcrossing (de Nettancourt 2001). The specificity of the SI response is 

determined by the haplotyes of the polymorphic S locus, which contains at least one gene for 

the pistil determinant (pistil S) and one for the pollen determinant (pollen S).  

The families Rosaceae, Solanaceae and Plantaginaceae include species exhibiting 

S-RNase-based gametophytic self-incompatibility (GSI) in which the pistil S gene encodes a 

polymorphic S-RNase (Kao and Tsukamoto 2004). S-RNase has been characterized in detail, 

while the nature of pollen S gene had been unknown for a long time. Recently, SLF (S locus 

F-box gene) and SFB (S haplotype specific F-box gene) were identified as (putative) pollen S 

genes in the three families (McClure 2004). The identity of SLF as the pollen S determinant of 

Petunia inflata, a solanaceous species, was demonstrated by transformation experiment 

(Sijacic et al. 2004). In several Prunus species of the Rosaceae, analysis of pollen-part 

self-compatible mutants revealed insertion/deletion or complete loss of SFB gene, suggesting 

that SFB is the pollen S (Ushijima et al. 2004; Sonneveld et al. 2005; Vilanova et al. 2006).  

The family Rosaceae is divided into four subfamilies; Spiraeoideae, Rosoideae, 

Amygdaloideae and Maloideae (Morgan et al. 1994). In Maloideae, that includes apple 

(Malus × domestica) and Japanese pear (Pyrus pyrifolia), S-RNase has been studied 

extensively (Sassa et al. 1992, 1996; Ishimizu et al. 1996, 1999; Ushijima et al. 1998; Castillo 

et al. 2002; Takasaki et al. 2004), and pollen S gene candidates, SFBB (S locus F-box brothers) 

genes, were identified most recently (Sassa et al. 2007). MdSFBB9−α and MdSFBB9−β were 

identified from a sequenced apple S9 haplotype region of 317 kb. MdSFBB3−α and MdSFBB3−β 
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were isolated from apple S3 haplotype BAC clones, and each three PpSFBB genes were 

isolated from Japanese pear S4 and S5 haplotypes. Sequence comparisons of SFBB genes 

revealed that apple MdSFBB genes were more homologous to that from same haplotype than 

that from different haplotype (i.e., amino acid sequence homology between MdSFBB3−α and 

MdSFBB3−β is 82.2%, while MdSFBB3−α and MdSFBB9−α is 70.5%), while Japanese pear 

PpSFBB genes showed high homologies within the same groups from different haplotypes (i.e., 

amino acid sequence homology between PpSFBB4−α and PpSFBB5−α is 96.4%, while 

PpSFBB4−α and PpSFBB4−β is 66.9%). These SFBB genes exhibited pollen-specific expression, 

S haplotype sequence specificity and linkage to the S locus, supporting the idea that they are 

the pollen S genes. Pollen-expressed F-box genes, named MdSLF1 and MdSLF2, were also 

isolated from apple S1 and S2 haplotypes as pollen S candidates (Cheng et al. 2006). MdSLF 

share high homology with MdSFBB (67.5–75.4%), however, it is not clear at present whether 

S1 and S2 haplotypes contain other related F-box genes. Although the features of the SFBB 

genes suggest that they are good pollen S candidates, whether all of the multiple SFBBs in a 

haplotype are involved in pollen S specificity is not clear, and the possibility that none of them 

are pollen determinant can not be excluded at present. Among the PpSFBB groups of 

Japanese pear, PpSFBB−γ would be the most problematic group for the pollen determinant 

because it has the highest amino acid identity between S4 and S5 haplotypes (99.0%, Sassa et 

al. 2007).  

Because of their SI, most Japanese pear cultivars need cross-pollination for stable fruit set. 

Determination of the S genotypes of cultivars is thus important for selection of appropriate 

pollen donors in the fruit production. To date, several S-RNase-based S genotyping systems 

have been reported (Ishimizu et al. 1999; Castillo et al. 2002; Takasaki et al. 2004; Kim et al. 

2007). These systems identify S genotypes by CAPS analysis; amplification of the all 

S-RNases by degenerate primer pairs followed by digestion with allele-specific restriction 

enzymes. However, because of the high level of sequence diversity of the S-RNase genes, the 

discovery of new S haplotype required re-design of new degenerate primers to amplify the 
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new S-RNase gene for S genotyping (Takasaki et al. 2004; Kim et al. 2007). S locus gene that 

is less diverged than the S-RNase gene can be more feasible for the use in CAPS-based S 

genotyping system.  

I have previously analyzed a style-specific self-compatible Japanese pear mutant 

‘Osa-Nijisseiki’ which has a defective S4 haplotype named S4sm, and shown that the S4sm 

haplotype lacks more than 110 kb region containing the S4-RNase gene (Sassa et al. 1997, 

2007). To date, the S4sm haplotype is known as the only mutation that confers 

self-compatibility in Japanese pear, and thus is an important resource for the breeding of 

self-compatible cultivars. DNA marker-assisted selection should facilitate the breeding of 

self-compatible cultivars, however, by using the S-RNase-based S genotyping system, it is 

difficult to identify self-compatible lines in a segregating population because the S4sm 

haplotype is the deletion mutant of the S-RNase gene.  

In this article, I analyzed PpSFBB −γ genes which exhibit lowest sequence diversity between 

S4 and S5 haplotypes. I isolated nine PpSFBB−γ genes from different S haplotypes and 

analyzed their sequence polymorphisms. Based on the polymorphisms, I developed a new S 

genotyping system using PpSFBB−γ genes. The system was found to be useful not only for 

typing the known S 1–S 9, but also for identifying the non functional haplotype S4sm and the 

new S haplotypes such as S k.  

 

2.2  Materials and methods 

 

2.2.1  Plant materials 

Thirteen Japanese pear (P. pyrifolia) cultivars were used; Hayatama (S 1 S 2), Suisei (S 1 S 4), 

Imamura-aki (S 1 S 6), Ichiharawase (S 1 S 8), Chojuro (S 2 S 3), Nijisseiki (S 2 S 4), Hosui (S 3 

S5), Niitaka (S 3 S 9), Kosui (S 4 S 5), Shinkou (S 4 S 9), Okusankichi (S 5 S 7), Chukanbohon 

Nou No.1 (S 4sm S 4sm) and Kinchaku (S 4 S k).  
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2.2.2  Cloning and sequence analysis of PpSFBB−γ  

DNA was extracted from young leaves as previously described (Sassa 2007) and used for 

PCR. PpSFBB−γ genes were amplified by using PpFBXgf7 (5′-gtgtgtaattcatgtgcatgg-3′) and 

PpFBXgr3 (5′-tggaacgtttccctcaactc-3′) primers, which were designed to amplify full length of 

PpSFBB−γ coding region. Standard PCR conditions (in 20 µl total volume) included 40 ng of 

genomic DNA, 0.4 µM of each primer, 200 µM dNTP, 1× PCR Buffer, 1 U of ExTaq (TaKaRa). 

PCR amplification was carried out for 30 cycles of denaturation at 94°C for 15 s, annealing at 

55°C for 15 s, extension at 72°C for 1.5 min, and final extension at 72°C for 3 min. The PCR 

products were cloned into a plasmid vector and sequenced. Sequence data was analyzed with 

BioEdit ver.7.0 software (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and ClustalW 

(Thompson et al. 1994).  

 

2.2.3  CAPS and dCAPS analysis 

PpSFBB−γ fragments were amplified by using PpFBXf7 and PpFBXr3 were subjected to 

CAPS (cleaved amplified polymorphic sequence) analysis. PCR products were digested with 

TaqI, BbvCI, NspI, AflII, DdeI, PsiI, SmaI, HaeIII or ApoI. TaqI and SmaI were reacted for 

3 h at 65 and 30°C, respectively, and the other endonucleases were incubated for 3 h at 37°C. 

Expected fragment sizes are shown in Table 2.1. These products were separated on 1% (target 

fragment >1 kbp) or 2% agarose gels (<1 kbp) and were visualized by staining with ethidium 

bromide.  

For the detection of PpSFBB2−γ, derived cleaved amplified polymorphic sequence (dCAPS) 

analysis was performed (Neff et al. 1998). PpSFBB−γ fragments were amplified with 1 bp 

mutated primer GdCAPSS2g1-Rsa (5′-taaaatattatcatcatatagcgaacGta-3′) and reverse primer 

PpFBXr11 (5′-ggaaggctcttcgtaactac-3′). PCR amplification was carried out for 30 cycles of 

denaturation at 98°C for 15 s, annealing at 55°C for 30 s, extension at 72°C for 30 s, and final 

extension at 72°C 3 min. PCR products were digested with RsaI for 3 h at 37°C and separated 

by 3% agarose gel. CAPS analysis of the S-RNase genes was performed according to pervious 
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report (Takasaki et al. 2004).  

 

2.2.4  Accession numbers 

The DDBJ/EMBL/GenBank accession numbers for the sequences shown in Fig. 2.1 are 

AB297933 (PpSFBB1−γ), AB297934 (PpSFBB2−γ), AB297935 (PpSFBB3−γ), AB297936 

(PpSFBB6−γ), AB297937 (PpSFBB7−γ), AB297938 (PpSFBB8−γ), AB297939 (PpSFBB9−γ) and 

AB297940 (PpSFBBk−γ).  

 

2.3  Results 

 

2.3.1  Cloning and sequence comparison of PpSFBB−γ genes  

PpSFBB−γ genes from different cultivars were amplified by PCR; ‘Suisei’ (S 1 S 4), ‘Nijisseiki’ 

(S 2 S 4), ‘Hosui’ (S 3 S 5), ‘Imamura-aki’ (S 1 S 6), ‘Okusankichi’ (S 5 S 7), ‘Ichiharawase’ (S 1 S 8) 

and ‘Niitaka’ (S 3 S 9). Together with PpSFBB4−γ, a new sequence was isolated from ‘Suisei’ (S 1 

S 4), and was named PpSFBB1−γ. Similarly, new sequences obtained from ‘Nijisseiki’ (S 2 S 4) 

and ‘Hosui’ (S 3 S 5) were designated as PpSFBB2−γ and PpSFBB3−γ, respectively. In addition to 

the S1–S5 sequences of the PpSFBB−γ gene, PpSFBB6−γ, PpSFBB7−γ, PpSFBB8−γ and 

PpSFBB9−γ were amplified from ‘Imamura-aki’ (S1 S6), ‘Okusankichi’ (S5 S7), ‘Ichiharawase’ (S1 

S8) and ‘Niitaka’ (S 3 S 9), respectively. In all cases the 1,245 bp cloned fragment contained the 

full length (1,191 bp) of PpSFBB−γ coding regions. Amino acid sequences encoded by these 

genes showed very high sequence homology with those of PpSFBB4−γ and PpSFBB5−γ (Fig. 2.1, 

Table 2.2).  

 

2.3.2  Development of a new S genotyping system using PpSFBB−γ genes  

Based on the sequence polymorphisms of PpSFBB−γ, a new CAPS/dCAPS system was 

established for S genotype assignments in Japanese pear harboring S1–S9 haplotypes. 

PpSFBB−γ fragments were amplified from 11 cultivars, ‘Hayatama’ (S 1 S 2), ‘Suisei’ (S 1 S 4), 
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‘Imamura-aki’ (S 1 S 6), ‘Ichiharawase’ (S 1 S 8), ‘Chojuro’ (S 2 S 3), ‘Nijisseiki’ (S 2 S 4), ‘Hosui’ 

(S3 S 5), ‘Niitaka’ (S 3 S 9), ‘Kosui’ (S 4 S 5), ‘Shinkou’ (S 4 S 9) and ‘Okusankichi’ (S 5 S 7) using 

the specific primers, PpFBXf7 and PpFBXr3. Based on the nine PpSFBB−γ sequences, I 

selected restriction endonucleases which digest specific PpSFBB−γ fragments; S 1−TaqI, S3 

and S5-BbvCI, S 4-NspI, S 5-AflII, S 6-DdeI, S 7-PsiI, S 8-SmaI and S 9-HaeIII. Although BbvCI 

digestion detects both S 3 and S 5 haplotypes, these two haplotypes can be distinguished by 

AflII that specifically digests the S 5 haplotype. Estimated restriction fragment sizes are 

shown in Table 2.1. The result of the CAPS analysis showed that the observed band sizes 

were consistent with the expected ones (Fig. 2.2). PpSFBB2−γ specific fragment was detected 

by dCAPS system (Neff et al. 1998). First, PpSFBB−γ genes were amplified with 1 bp mutated 

primer GdCAPSS2f1-Rsa and PpFBXr11 (Fig. 2.3). The amplified fragments (232 bp) were 

digested with RsaI and analyzed on a 3% agarose gel. PpSFBB2−γ specific fragment was 

detected at 156 bp by primer-induced RsaI site (Figs. 2.2b, 2.3). Taken together, the CAPS and 

dCAPS analyses of PpSFBB represent a new S genotyping system.  

 

2.3.3  Detection of PpSFBB−γ genes from the stylar part self-compatible mutant and Sk 

haplotype  

The S 4sm haplotype has been discovered in a self-compatible cultivar ‘Osa-Nijisseiki’. Sassa 

et al. (1997, 2007) have shown that the S4sm haplotype lacks more than 110 kb region 

containing the S4-RNase. Ishimizu et al. (1999) showed that the S 4sm haplotype was not 

detectable in ‘Akibae’ (S 4sm S 5) using the S-RNase-based S genotyping system. Aiming to 

identify the S 4sm haplotype, I performed the S-RNase and PpSFBB−γ-based S genotyping of 

‘Chukanbohon Nou No.1’ (S 4sm S 4sm). Fig. 2.4 shows detection of PpSFBB4−γ and S 4 -RNase 

using the CAPS systems. A PpSFBB4−γ specific fragment was detected in ‘Chukanbohon Nou 

No.1’ (lane 3, Fig. 2.4a), while S4-RNase was not (lane 3, Fig. 2.4b). This result suggests that 

the S 4sm haplotype can be detected by combining of the S-RNase- and PpSFBB −γ-based S 

genotyping systems; the presence of PpSFBB 4−γ but S 4-RNase indicates the S 4sm haplotype.  
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In a previous study (Kim et al. 2007), the S genotype of Japanese pear cultivar ‘Kinchaku’ 

was found to be S 4 S k, and a new S k -RNase was cloned (Kim et al. 2007). However, this new 

S-RNase gene was not amplified by the previously reported primers for S genotyping, 

FTQQYQ and anti-(I/T) IWPNV (Takasaki et al. 2004; Kim et al. 2007), and a new primer was 

designed to detect the Sk haplotype in addition to S1–S9 (Kim et al. 2007). To test whether 

PpSFBB−γ can be amplified from the newly identified S k haplotype, PCR was performed using 

PpFBXgf7 and PpFBXgr3 as a primer pair, and digested with NspI that cleaves PpSFBB4−γ 

specifically. Undigested PCR product from ‘Kinchaku’ was detected, indicating that the PCR 

product is PpSFBBk−γ (Fig. 2.4a). I cloned and sequenced PpSFBBk−γ, and found that the S k 

haplotype can be detected by ApoI digestion of PpSFBB−γ (Fig. 2.4c). It was also confirmed 

that PpSFBBk−γ sequence does not generate a fragment that is similar in size to those 

obtained when S 1–S 9 are digested with their respective S-specific enzymes (data not shown), 

suggesting that the CAPS system is capable of detecting S k in addition to S 1–S 9 haplotypes. 

  

2.4  Discussion 

 

2.4.1  Sequence polymorphism of PpSFBB−γ  

Previously, I isolated six F-box genes (PpSFBB4−α, PpSFBB4−β, PpSFBB4−γ, PpSFBB5−α, 

PpSFBB5−β and PpSFBB5−γ) from Japanese pear cultivar ‘Kosui’ (S4 S5). These genes exhibited 

pollen-specific expression, linkage to the S-RNase and S haplotype-specific sequence 

polymorphisms (Sassa et al. 2007). Although the features of SFBB genes suggest that all 

PpSFBB genes are good pollen S candidates, whether all of the multiple SFBBs in a haplotype 

are involved in pollen S specificity is not clear, and the possibility that none of them are pollen 

determinant can not be excluded at present. In this article, I isolated PpSFBB−γ sequences 

from different S haplotypes and investigated their S haplotype sequence specificity in 

Japanese pear. In addition to the reported PpSFBB4−γ and PpSFBB5−γ, new seven PpSFBB−γ 

sequences were isolated from S1 to S9 haplotypes, and were named PpSFBB1−γ to PpSFBB9−γ. 
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Comparison of amino acid sequences of the nine PpSFBB−γs revealed that they showed S 

haplotype-specific polymorphisms, however, they are highly homologous with each other 

(97.5–99.7%). Some polymorphic sites were found outside the variable regions that were 

defined in a previous study (Sassa et al. 2007). Considering that for solanaceous species it was 

reported that hypervariable regions alone are not sufficient for S recognition (Kao and 

McCubbin 1996; Zurek et al. 1997; Verica et al. 1998), the polymorphisms found outside the 

variable regions of PpSFBB−γ may also have some effect on the S specificity. Therefore, the 

possibility that PpSFBB−γ genes are involved in pollen S specificity cannot be excluded, and 

should be examined by functional analysis.  

 

2.4.2  New S genotyping system using PpSFBB−γ  

In this study, it was demonstrated that PpSFBB−γ-based S genotyping system is useful for 

detection of S 1–S 9 haplotypes in Japanese pear. Although the S-RNase-based S genotyping 

systems have been reported (Ishimizu et al. 1999; Castillo et al. 2002; Takasaki et al. 2004; 

Kim et al. 2007), the use of CAPS/dCAPS systems for both PpSFBB−γ and S-RNase genes 

would lead to a more reliable determination of S genotypes. The use of both systems is also 

effective for determination of the S4sm haplotype which is a deletion mutant of the S-RNase 

gene conferring stylar-part self-compatibility (Sassa et al. 1997).  

Because of the high level of sequence diversity of the S-RNase genes, identification of new 

alleles has accompanied revision of the S-RNase-based S genotyping systems. For example, 

Takasaki et al. (2004) designed a new primer (anti-(I/T) IWPNV) to detect a newly identified 

S-RNase which was undetectable with the primers proposed by Ishimizu et al. (1999). Kim et 

al. (2007) replaced anti-(I/T) IWPNV with PSprI to amplify the new Sk-RNase from ‘Kinchaku’. 

It is likely that further identification of new haplotypes will require revision of the primers. In 

contrast, the S genotyping system using the PpSFBB−γ genes would be effective for 

identification of new S haplotypes because of their high sequence homologies.  
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Table 2.1 E
stim

ated restriction fragm
ent sizes (bp) of the PpSFBB

 −γ genes 

R
epresentative S haplotype-specific fragm

ents are indicated in bold and italics. 
 The PpSFBB

2- γ specific fragm
ents w

ere detected by the dC
A

PS system
 (see text) 
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Table 2.2 Number of amino acid differences among the PpSFBB−γs 
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Fig. 2.1  Structure of the PpSFBB −γ genes. 

 (a) Amino acid sequences of PpSFBB−γ were aligned by using ClustalW. Dots indicate 

identical amino acids. (b) Schematic representation of the PpSFBB −γ genes. Adenine of the 

start codon was positioned to be +1. F-box region and variable regions were defined in a 

previous study (Sassa et al. 2007). Arrows indicate positions and directions of primers used in 

this study. 
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Fig. 2.2  S haplotype-specific sequence polymorphisms of PpSFBB −γ genes. 

The S haplotype-specific fragments were detected by CAPS and dCAPS analysis. Amplified 

PpSFBB−γ genes were digested with nine restriction endonucleases; TaqI (a), RsaI (b), BbvCI 

(c), NspI (d), AflII (e), DdeI (f), PsiI (g), SmaI (h) and HaeIII (i). Arrows and numbers show the 

representative S haplotype specific fragments and their sizes (bp), respectively (see Table 2.1). 
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Fig. 2.3  dCAPS analysis of the PpSFBB2−γ. 

Partial sequences of the nine PpSFBB −γ genes (699–765 bp) and 1 bp mutated dCAPS primer 

GdCAPSS2f1-Rsa are shown. Dots indicate identical nucleotides. The dCAPS primer 

introduces an RsaI site at 728 bp of PpSFBB 2 −γ  
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Fig. 2.4 Identification of the S4sm haplotype and detection of PpSFBB k−γ. 

(a) CAPS analysis of the PpSFBB4−γ. PpSFBB−γ fragments were amplified by PCR with 

PpFBXgf7 and PpFBXgr3 primers and digested with NspI. (b) CAPS analysis of the S 

4-RNase. S-RNase fragments were amplified by PCR with FTQQYQ and anti-(I/T) IWPNV 

primers and digested with NdeI. S haplotype-specific fragments are indicated by arrows and 

numbers show fragment sizes (bp). (c) CAPS analysis for detection of the Sk haplotype. 

PpSFBB−γ fragments were amplified by PCR with PpFBXgf7 and PpFBXgr3 primers and 

digested with ApoI. 1, Hayatama (S 1 S 2); 2, Suisei (S 1 S 4); 3, Imamura-aki (S 1 S 6); 4, 

Ichiharawase (S 1 S8); 5, Chojuro (S 2 S 3); 6, Nijisseiki (S 2 S 4); 7, Hosui (S 3 S 5); 8, Niitaka (S 

3 S 9); 9, Kosui (S 4 S5); 10, Shinkou (S 4 S 9); 11, Okusankichi (S 5 S 7); 12, Kinchaku (S 4 S k). 

The S k haplotype specific fragment is indicated by an arrow and the number shows the 

fragment size (bp).  
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General Discussion and Conclusion  

 

3.1  Analysis of Apple S locus 

To identify the pollen S gene in Maloideae, a subfamily of Rosaceae, 317-kb region of apple 

S9 haplotype was completely sequenced. Several findings showed that the Maloideae S locus 

is larger than the Prunus S locus. Analysis of the Japanese pear S4sm haplotype showed that 

the pollen S gene must be located outside the deletion region by at least 110 kb. In addition, 

the distances of MdSFBB9-α and MdSFBB9-β from the S9-RNase gene are 42 and 93 kb, 

respectively. In contrast, the distances between Prunus S-RNases and SFBs are 380 bases to 

36 kb (Yamane et al. 2003; Ushijima et al. 2004). Differences in size of the S locus between 

species have also been reported in Brassica, a species with sporophytic SI. The S locus region 

of Brassica oleracea is much larger than that of B. rapa (Fujimoto et al. 2006). Expansion of 

the S locus region in B. oleracea has been partly attributed to the insertion of 

retrotransposons, which suggests higher retrotransposon activity in B. oleracea than in B. 

rapa (Fujimoto et al. 2006). It should be noted that Maloideae is considered to be of polyploid 

origin (Evans and Campbell 2002) and polyploidization can activate retrotransposons 

(Madlung et al. 2005). The abundant retrotransposons found in the apple S locus may help to 

prevent recombination at the chromosomal region and to maintain the tight linkage between 

S-RNase and the pollen S allele. 

 

3.2  Characterization of pollen S candidate genes 

As a result of apple S locus GENSCAN annotation, 2 ORFs showed homology to Prunus 

SLFL1 from S9 haplotype. These genes contain F-box motif and named SFBB (S locus F-box 

brothers). SFBB genes were also isolated from Japanese pear (PpSFBB). During preparation 

of first article (Sassa et al. 2007), Cheng et al. (2006) isolated S locus-linked and 

pollen-expressed F-box genes from apple by PCR and named them as SLF of apple. The apple 

SLF was highly homologous to the SFBBs of apple and Japanese pear, however, Cheng et al. 
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(2006) described a single SLF gene from each haplotype. SFBB genes, therefore, represent the 

first case of related and multiple F-box genes in the S locus. The SFBB genes are specifically 

expressed in pollen, and variable regions of the SFBB genes are under positive selection. In a 

style-specific mutant S haplotype of Japanese pear, the SFBB genes are retained. Thus, SFBB 

genes meet the expected characteristics of pollen S. Furthermore, this study showed the 

possibility that SFBB genes have unique feature, multiplicity. An interesting possibility is 

that SFBB proteins form a multimer in pollen as suggested by Luu et al. (2001). However, 

whether all of the multiple SFBBs in a haplotype are involved in pollen S specificity is not 

clear, and the possibility that none of them are pollen determinant can not be excluded at 

present.  Recently, many pollen-expressed F-box proteins  around the S locus were found in 

Nicotina alata (authors designed DD1-10; Wheeler and Newbigin 2007). Further analysis of 

SFBB and DD genes are required to identify pollen S gene.  

Sequence polymorphism of PpSFBB−γ genes were analyzed in Japanese pear. Among the 

PpSFBB groups, PpSFBB−γ genes are most suspicious group for the pollen S because of 

PpSFBB−γ genes have high sequence similarity between S4 and S5 haplotype (99%, Table 1.5). 

I isolated new seven SFBB−γ genes from different S genotypes of Japanese pear. These genes 

showed S haplotype-specific polymorphisms although sequence similarities among them were 

extremely high. Thus, the possibility that PpSFBB−γ genes are involved in pollen S specificity 

cannot be excluded. 

 

3.3  Establishment of new S genotyping system 

Based on the sequence polymorphisms of the SFBB−γ genes, I developed a CAPS/dCAPS 

system for S genotyping of the Japanese pear cultivars. This new S genotyping system was 

found to not only be able to discriminate the S1-S9 haplotype, but also be suitable for 

identification of the mutant S4sm haplotype for the breeding of self-compatible cultivars, and 

detection of new S haplotypes such as Sk. 
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3.4  Different models and probable mechanistic diversity of the S-RNase based GSI 

systems 

 

The multiplicity of SFBB may suggest that Maloideae has unique self-incompatibility 

mechanism.  Moreover, several reports suggest that SI mechanisms are different among 

plant species. Competitive interaction of pollen S has been documented in Maloideae (Crane 

and Lewis 1941; Lewis and Modlibowska 1942) and Solanaceae (de Nettancourt 2001). 

Meanwhile, in Prunus, the recent finding that SFB barely causes competitive interaction in 

heteroallelic pollen prompted Hauck et al. (2006) to suggest that pollen S in Prunus may be 

different from pollen S in Maloideae. However, recent report suggests heteroallelic pollen 

grains of Prunus pseudocerasus lose pollen S-specificity, making it difficult to conclude if 

competitive interaction confers self-compatibility in Prunus (Huang et al. 2008).  Moreover, 

even in Solanaceae, different models have been proposed based on different findings, 

indicating that it is now still far from full understanding of the GSI mechanism and thus 

difficult to conclude that some observed ‘difference’ actually represents mechanistic diversity 

of GSI.     

 

Recent immunolocalization study revealed that S-RNase is sequestered in pollen tube 

vacuoles and the membrane surrounding the compartment contains HT-B and 120K, known 

as non-S specific factors in Nicotiana (Gordraij et al. 2006). It was also revealed that HT-B 

protein is degraded after compatible pollinations. Based on these findings, the authors 

proposed the compartmentalization model (Goldraij et al. 2006; McClure 2006). In this model, 

S-RNases, 120K and HT-B are taken up from the extracellular matrix by endocytosis. In 

compatible pollinations, pollen overcomes rejection by degrading HT-B and 

compartmentalizing S-RNase. In incompatible pollinations, the self S-RNase/SLF interaction 

leads to stabilization of HT-B, compartment breakdown and release of S-RNase. On the other 

hand, biochemical analysis revealed that S-RNase physically interacts with SLF, and the 
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intensity of the interaction between nonself S-RNase/SLF was much stronger than that of the 

self S-RNase/SLF in Petunia (Hua and Kao 2006). Moreover, the authors revealed that 

S-RNases are degraded via the 26S proteasome pathway. The authors proposed the new 

protein-degradation model based on these results. This model postulates that, in incompatible 

pollination, SLF interacts weakly with self S-RNase, and thus most of the S-RNase molecules 

taken up by the pollen tube and located in the cytoplasm are free to degrade RNA. In 

compatible pollination, SLF interacts strongly with its nonself S-RNase and the interaction 

results in the degradation of S-RNase via ubiquitin 26S proteasome pathway.  

 

Compartmentalization model is derived from cell biological study and explains the roles of 

non-S specific factors, however, it is not clear how the S-RNase/SLF interaction controls HT-B 

degradation and membrane breakdown. Role of the HT-B in membrane destabilization is also 

hypothetical.  On the other hand, the protein-degradation model proposed by Hua et al. 

(2006) explains biochemical basis of the S-RNase based self-incompatibility. However, no in 

vivo evidence for the proposed model has been presented yet. In addition, the roles of the 

non-S-specific factors are not taken into consideration in this model.  The apparent 

discrepancy on the model of the S-RNase based GSI of Solanaceae suggests that some 

important pieces are still missing to complete the puzzle.  Therefore, at present, it seems 

difficult to conclude whether S-RNase based self-incompatibility mechanisms are different 

among species.  

 

Rosaceae belongs to subclass Rosidae and is distantly related to Solanaceae and 

Plantaginaceae that belong to subclass Asteridae. Elucidation of the self-incompatibility 

mechanism in Maloideae, especially for the identification of the pollen S gene, will provide 

valuable insights into the origin and diversity of S-RNase based self-incompatibility. Wang et 

al. (2008) recently reported that pollen tube after incompatible pollination showed the 

features of programmed cell death (PCD) in Japanese pear. It has not been reported that GSI 
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of Solanaceae or Plantaginaceae plants are related to PCD.  It may be important to examine 

whether PCD is occur in other families. However, it is not clear whether PCD plays a pivotal 

role in GSI or just a result of the incompatible reaction in pear. It is expected that functional 

analysis of SFBBs, and cell biological and biochemical studies will shed light on the 

self-incompatibility mechanism in Maloideae.  Full understanding of the GSI of Maloideae 

will not only be valuable for breeding of the self-compatible cultivar but also important for 

elucidation of the origin and diversity of the S-RNase based GSI mechanism.  
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