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Abstract 

概要 

 
モンゴル政府は、急激な経済変化の混乱の中で天然資源の管理や農地の土地利用

政策に用いる正確で迅速な情報を必要としている。農業はモンゴル経済にとって

重要な分野の一つであり、土地・水資源を主に利用する人たちや雇用源としても

重要である。  

モンゴルは 1950 年末、1976 年、2009 年の各年に新開墾地での耕作を開始し、

1990 年代からは計画経済から市場経済への移行を始めた。市場経済への移行は、

天然資源とその管理に大きな影響を及ぼし、都市化によって土地の民有化や断片

化が進んだ。この 1991 年以降の市場経済への移行は、肯定的なものであったが

困難なものでもあった。改革の過程において、この民有化は次の 3 つの理由から

必要不可欠なものであった。一つ目は市場を良く機能させるため、二つ目は決定

機関の市場への反応を刺激する為、三つ目は改革そのものの進行の為である。 

  

農業における持続可能性は先進国、発展途上国を問わず全ての国で重要であり、

農業分野の開発論議は十分な食料安全保障をどうやって維持するかという問題と

農業生産者の収入をどうやって維持するかが中心になっている。農業分野の開発

は土地利用と強く関わっており、食料安全保障、経済開発、環境にとって土地利

用は大きな意味をもっている。戦略的な穀物（小麦、大麦、じゃがいも、野菜な

ど）の生産自給率を上げる事がモンゴルの政策決定者の目的の一つであり、モン

ゴルは現在これらの穀物の大部分を輸入している。経済及び社会的な理由から、

自給率と生産量を上げる事は急務であり、モンゴルにおける農地のモニタリング

及びマッピングの開発が必要となっている。 
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本研究の主の目的は以下の通りである。 

1- 1989年から2000年の間の農地変化の見積もり、及び様々な農地の空間的な

変化の研究におけるリモートセンシング及びGISの可能性の調査。 

2- 正確な農地テクノロジーの導入とモンゴルの農地情報システムの開発。 

3- リモートセンシング技術を用いた小麦生産地域の穀物ストレス指数の研究。 

 

1つ目の目的を達する為、1989年と2000年のLandsat TM およびETM画像（パス/

ロウ 132/25-27、133/25、131/26-27）に対して教師付き最尤法による分類と変化

検出法を用い、モンゴルの主要な農業地域であるTov、Selenge aimagの農地変化

マップを作成した。教師付き分類はグランドトルースデータを用いて六つのバン

ド（バンド1からバンド5、バンド7）で実施した。マッピングは1989年と2000年

別々に実施したが、10％の雲被覆などによる画像の不足を補う為前後1～4年の画

像も用いた。主な植生の成長期である理想的な“夏の”期間は6月から9月末であ

る。LANDSATの3つのパスに本研究地域が含まれ、15シーンが必要だった。補

助データ、この地域の専門知識と視覚判読によって分類結果が精錬され、クロス

集計による分類後の変化検出法によって変化画像を作成した。  

 

2つ目の目的を達する為、現地調査とデスクワークによってデータを収集し、関

連文献も調査した。8～3000haの大きさのポリゴンをサンプリングして3年にわた

る詳細なデータを収集した。多くのケースでは、各ポリゴンのフィールドデータ

の収集には数日かかった。2007年から2009年の間の小麦の成長期から収穫期まで

の数ステージの5時期のフィールドデータを収集した。作成したXYシェープファ

イルはフィールドデータに基づいており、WGS 1984 座標系を用いてArcMapで

表示した。 本研究の主な目的はモンゴルの穀物情報システムと地籍図の幾何精

度の改良法を開発する事である。経済的、技術的、法的、社会的、財政的な点か

ら、穀物情報システムと穀物地籍図の更新を行った。 
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3つ目の目的を達する為、モンゴルTsagaannuurの小麦畑での穀物ストレス指数を

調査した。乾燥・半乾燥地域では、大きな旱魃や水管理の問題によって天水・灌

漑農業が水不足の危機に瀕している。モンゴルの農業経済部門は、主に家畜資源

と一部の限定的な灌漑農業の農地の範囲に限定されている。この生物・非生物ス

トレスは植物生理学的に変化を引き起こし、穀物の成長に影響を与える。この方

法によって、より正確な水資源管理が行え、灌漑政策の判断を容易にする。
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Abstract 
In the turmoil of a rapidly changing economy the Mongolian government needs accurate 

and timely information for management of their natural resources and formulation of 

agricultural land-use policies. Agriculture is one of the most important sectors of the 

Mongolian economy, as it is the major source of employment and the main land and 

water user.  

Mongolia began to cultivate virgin lands at the end of the 1950, 1976 and 2009 years. 

From 1990s, Mongolia entered a period of transition from a central-based planned 

economy to a market economy. The change to a market-oriented economy had also an 

impact on the natural resources and their management, not only due to privatizations, but 

also because of the strong land fragmentation as a result of the land distribution and 

increased urbanization. 

Mongolia’s transition experience since 1991 has been positive, but difficult. Privatization 

is considered essential to the process of reform for three main reasons: in first, to 

establish well-functioning markets, secondly to create incentives for decision makers to 

act in response to market signals, and third one is to assure irreversibility of the reforms 

themselves.  

 

Agricultural sustainability has the highest priority in all countries, whether developed or 

developing. The discussion about development of the agricultural sector has often 

centered on the question of how to achieve adequate food security, while simultaneously 

providing sufficient income for food producers. Agricultural sector development is 

strongly related to land use. The way land is used has obvious implications for food 

security, economic development and the environment.  

Increasing the level of self-sufficiency in the production of strategic crops (e.g., wheat, 

barley, potato and vegetables) is one of the objectives of Mongolian policy makers. 

Currently, Mongolia is importing a significant part of its national requirements for these 

crops. For economic and social reasons, increasing national production and the level of 

self-sufficiency is urgently needed. Therefore there is need to develop mapping and 

monitoring cropland area in Mongolia. 
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The main objectives of this study are; 

4- to provide a recent perspective for cropland cover changes that have taken place 

between 1989 and 2000 and to examine the capabilities of integrating remote 

sensing and GIS in studying the spatial distribution of different cropland cover 

changes 

5- to introduce precision farmland technology and to develop cropland information 

system in Mongolia 

6- to investigate a crop stress index in wheat planting area using remote sensing 

techniques. 

 

To achieve the first objectives, maximum likelihood supervised classification and post-

classification change detection techniques were applied to Landsat TM and ETM 

images(with path/row 132/25-27, 133/25, and 131/26-27) acquired in 1989 and 2000, 

respectively, to map cropland cover changes in the principal cropland area (Tov and 

Selenge aimag) of  Mongolia. A supervised classification was carried out on the six 

reflective bands (bands 1-5 and band 7) for the images individually with the aid of 

ground truth data. The baseline date for the mapping was 1989 and 2000 separately but, 

to accommodate any image shortage, e.g., due to 10% cloud cover, plus and minus 1 to 4 

years allowed. The ideal “summer” period covered the main plant growing season, June 

to late September. Three LANDSAT paths cover study area and 15 scenes were required 

for this study. Using ancillary data, visual interpretation and expert knowledge of the area 

thought GIS further refined the classification results. Post classification change detection 

techniques were used to produce change image though cross-tabulation.  

  

To achieve the second objective, data was collected through a combination of the 

fieldwork and some desk study. Related papers was reviewed prior to, during and after 

fieldwork. We were chosen for detailed sampling each polygon, where data was obtained 

over the course of three years. The parcels varied in size from about 8 to 3000 hectares. 

In most cases, due to the size of the parcels, field data collection for a single parcel would 

take several days. Field data was collected at 5 different times during 2007 and 2009, 

spanning both the cropping seasons as well as several stages of wheat maturation, from 
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the early growth to pre-harvest. A Creating XY shape files, based on the field data a 

gathered is the first stage in creating continuous vector coverage’s using with in an 

ArcGIS with attribute data. Shape files were displayed in ArcMap and projected to the 

WGS 1984 coordinate system. The main objective of this research is to develop an 

approach (methodology) to improve the geometric quality of the cropland information 

system with cropland cadastral map in Mongolian case study in first time. Cropland 

information system and cropland cadastral map renovation has been conducted in terms 

of economical, technical, legal, social and financial aspects. 

 

To achieve the third and last objective of this study, an investigate crop stress index in the 

wheat field in Tsagaannuur of Mongolia. In arid and semi-arid regions, rain fed and 

irrigated agriculture is threatened by water shortages caused by pronounced droughts or 

water mismanagements. The agriculture economic sector of Mongolia is limited mainly 

to range resources-based livestock and pockets of arable farming based on rainfall and 

limited irrigated agriculture at several places. These abiotic and biotic stressors cause 

changes in plant physiology and thus affect crop growth.  This methodology can be used 

to generate more accurate water management practices and facilitate decisions about 

irrigation applications. 
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1. Introduction  
 

1.1 General Introduction 

Since the launch of Landsat-1 in 1972, remote sensing has become an important tool in 

many resource management areas such as land-cover classification, mapping, resource 

inventory, pollution detection, environmental impact assessment, and environmental 

modeling. Generally, a remote sensing system consists of five components. They are the 

energy source, the sensor, ground objects, the data-handling system, and the multiple 

data users. According to the source of energy used, two types of remote sensing systems 

active and passive are distinguished. "Active" refers to a sensor that supplies its own 

source of energy or illumination. Imaging radar sensors are active sensors, which emit a 

burst of microwave radiation and receive the backscattered radiation. Most commercial 

satellite sensors are passive solar imaging sensors. In this case, the sun is the source of 

electromagnetic radiation (ERDAS Field Guide 1997). 

Compared to more traditional mapping approaches such as basic aerial photo 

interpretation, land-use mapping using satellite imagery has very good advantages, 

respectively: 

• Any land-use types can be mapped from digital satellite imagery faster and 

often with lower costs; 

• Fast and inexpensive updating of land-use map products is possible. This is 

because satellite images are captured for the same geographic area at a high 

revisit rate; 

• Satellite imagery data are captured in digital forms. They can therefore easily 

be integrated with other types of ground object information through such 

techniques as GIS; 

• Satellite images cover large geographic areas. The great economies of scale 

provided by digital image processing make it relatively inexpensive to map 

large expanses of land, making it easier and more cost effective to generate 

large amounts of map products. 

The remote sensing and GIS technology and the information technology, make a 

revolution to traditional agricultural system. Remote Sensing (RS) and geographical 

information system (GIS) plays a significant role in compilation, analysis, presentation 

and monitoring of spatial data. Remote sensing and GIS technologies are of particular 
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relevance to developing countries, where areas of interest are often large, 

communications are difficult and existing databases are incomplete. Moreover, the 

requirement for management of the land resources in these areas is particularly of 

immense interest as many of the worlds most fragile and threatened ecosystems are 

found in these countries (Belward et al., 1991). 

As indicated in the Figure 1-1, in the context of land resource management RS data 

coupled with field observation are used for resource inventory and analysis of the 

existing situation. Such information, once integrated in a GIS environment can be used to 

quantify and analyze the verifiers or the decision factors associated with the decision 

problem; for example, identification and proper allocation of a set of land use systems, 

crop monitoring for an area can be analyzed by overlaying interacting biophysical (slope, 

soil type etc.) and socio-economic (% land holding, fuel/fodder deficiency etc.) factors. 

The functionalities of GIS are frequently supplemented through the application of 

various external models.  

 

 
Figure 1-1 Integration of Remote sensing and GIS and other database and models into 

planning and decision making process (Adopted from Anthony, 2000) 

Determination objective 
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Agricultural remote sensing is commonly done in the visible, near-infrared and thermal 

infrared portions of the spectrum; however, new applications in the microwave area are 

under development. The given wavelengths are employed in agricultural survey through 

Electromagnetic radiation by using remote sensor system. 

Table1.1 Use of wavelength region for agricultural survey 

Area of agricultural phenomena Wavelength employed 

Plant diseases and insect infestation  

Natural vegetation, types of crop and fresh inventories  

Soil moisture content (radar)  

Study of arable and non-arable land  

Assessment of plant growth and rigour for forecasting 

crop yield 

Soil type and characteristics  

Flood control and water management  

Surface water inventories and water quality  

Soil and rock type and conditions favorable for hidden 

mineral deposits. 

0.4-0.9 mm and 6-10 mm 

0.4-0.9 mm and 6-10 mm 

04-0.8 mm and 3-100 mm 

0.4-0.9 mm 

 

0.4-0.9 mm 

0.4-1.0 mm 

0.4-1.0 mm and 6-12mm 

0.4-1.0 mm and 6-12 mm 

 

0.4-1.0 mm and 7-12 mm 

 

Agricultural applications of remote sensing technology could be determined in the 

following trends: 

Estimation of cropland area: An accurate and timely forecasting system of crop 

production is an essential element in ensuring a country’s food security and proper 

distribution. In this, remote sensing is of best importance in identifying areas under 

cultivation.  

Pest detection: Brown and Steckler (1995) developed a method to use digitized color 

infrared photographs to classify weeds in a no-till corn field. The classified data were 



 4

placed in a GIS and a decision support system was then used to determine the 

appropriate herbicide and amount to apply. Penuelas et al. (1995) used reflectance 

measurements to assess mite effects on apple trees. Powdery mildew has also shown to 

be detectable with reflectance measurements in the visible portion of the spectrum 

(Lorenzen and Jensen, 1989). The ability to detect and map insect damage with remotely 

sensed imagery implies that methods can be developed to focus pesticide applications in 

the cropland areas of fields most infected, thus decreasing the damage to beneficial 

insects. 

Crop stress: Crop stress includes anything occurring in the field different than what was 

planned. Some of the common crop stresses that can be measured are drought, weed 

patches, soil erosion, nutrient deficiency and similar conditions. When trying to identify 

these types of stress using remote sensing, one can utilize some of the computer-aided 

methods or simply use visual methods to discriminate. The ratio of the red to blue to the 

near-IR scene reflectance can indicate plant stress before it becomes evident on the 

ground. Emissions in the thermal IR band also can indicate plant health conditions. Many 

methods have been developed to utilize color-infrared images to classify weeds in no-till 

cornfields (Brown and Steckler, 1995) and have been established to identify water stress 

in plants with the difference of remotely sensed surface temperatures and the 

measurement of ground based air temperatures (Jackson et al., 1981) 

Water stress: The difference between remotely sensed surface temperature and ground 

based measurement of air temperature has been established as a method to detect water 

stress in plants (Jackson et al., 1981). More recently, methods to integrate spectral 

vegetation indices with temperature have been used to improve remotely-sensed 

estimates of evapotranspiration (Carlson et al., 1995; Moran et al., 1994). Moran et al. 

(1994) defined a Water Deficit Index, which uses the response of a vegetation index to 

account for partial canopy conditions, so that false indications of water stress due to high 

soil background temperatures were minimized. Spectral indices have also been used to 

determine "real-time" crop coefficients to improve irrigation scheduling (Bausch, 1995). 

Soil properties or soil inventory: Soil investigations, surveys and mapping are three 

types of applications using remote sensing information. They include three different 

approaches: the effects of soil properties on reflectance or image response, the influence 

of soil surface conditions on the response, and the use of imagery in mapping soil 

patterns. Soil spectral image responses are related to soil organic matter content, i.e., 

dark soils (higher organic matter) contrast to lighter soil (lower organic matter). The 
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vegetation spectral response can also be used to infer various soil conditions. Yang and 

Anderson (1996) used these vegetation responses to define management zones within 

fields. The management zones are an aid to soil sampling as they define logical 

boundaries for obtaining samples. Remotely sensed images are also being used in 

“directed soil sampling” where one can map “soil management zones”, which would be 

sampled as separate units. The management zones would become the basis for adjusting 

nutrient application rates using variable rate technologies 

Predicting crop yield: Remote sensing data are used to estimate some of the crop 

biometrics parameters such as Leaf Area Index (LAI) and crop cover, which in turns are 

parameters required to predict crop yield. Crop yield is influenced by a large number of 

biotic factors. The data through remote sensing gives an integrated picture of the effects 

of all these factors on its growth. Several approaches adopted for predicting crop yield 

using remote sensing data or derived parameters (Spectral Vegetation Index: SVI) have 

proved to be of immense use to policy makers. 

Nutrient detection: Using remote sensing information to detect field nutrient situations 

requires a thorough knowledge of what effects nutrient variations can have on the plant 

and on soils. Soil characteristics, such as color, relate to organic matter content from 

which one can predict nitrogen (N) release to the plant. Other soil properties such as pH, 

texture and nutrients such as phosphorus (P) and potassium (K) are difficult to detect. 

Leaf greenness is related to chlorophyll content, which is directly related to plant N 

concentration. Most of the nutrient work in remote sensing has focused on N. There have 

been some encouraging results. For instance, leaf color measurements made at ground 

level have correlated well with corn plant N status (Blackmer et al., 1996). 

Vegetation change: Images from the green and near infrared bands highlight the amount 

of vegetation and give an indication of plant vigor. Some companies have been providing 

“crop vigor” maps to farmers to assist them in seeing where vegetative growth is 

occurring and to determine areas within the field were vegetation is not progressing, as it 

should. Change detection can be accomplished by overlaying images from two flight 

dates and showing the vegetation change occurring between the two dates. 

Detection of crop injury: Hail and wind damage is a common occurrence in many parts 

of the country. For wheat, the greatest yield effects from hail or wind are usually related 

to leaf loss, stand loss, or lodging. In each case, the amount or orientation of leaves and 

stalks is altered and can be measured by remote sensing. Direct damage to the ears, pods 

or seeds is another component that is difficult to detect and measure directly. Images 



 6

from non-damaged adjacent areas or before-storm condition would aid in the accuracy 

assessment. These images normally are color or color infrared. The use of color infrared 

film assists in the detection of damage areas. Color infrared gives a good indication of 

the amount or volume of vegetation or biomass present; therefore, lower values of red 

reflectance reveal vegetation damage or loss. 

 

1.2 The Mongolia and Mongolian agriculture 

Mongolia is the 18th-largest country in the world and located in the eastern central part of 

Asia and covers an area of 1,565,000 sq. km and between the latitudes of 41o35’N and 

52o09’N and the longitude of 87o44’E and 119o56’E. (Fig.1) Nearly 90% can be used for 

agricultural or pastoral pursuits, 9.6% is forest and 0.9% is covered by water. Only, a 1% 

of Mongolia’s land area is suitable for cultivation. Less than 1% has no effective use.  

Mongolia is a landlocked country, between two big neighbors, Russian and China, and 

no access to the sea. The time zone is 8 hours ahead of Greenwich meantime. Khalkha 

Mongolian is the official language. The population of Mongolia is 2,754,685 and 

although in average 1.5 persons occupies 1 sq. km area, half of the population or 1.3 

million people live in the Capital city –Ulaanbaatar. Administratively, Mongolia is 

divided into 21 aimags (prefectures or provinces) and the capital city (Ulaanbaatar). The 

aimags are subdivided into soums (district). Mongolia has 329 soums. Mongolia has 

Parliamentary type of governance, with President is second in authority to Parliament.  

 

Figure 1.2 Map of Mongolia (Source: Google earth) 

 

The Mongolian agriculture sector has four discrete sub sectors:  
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• Extensive livestock, which is the traditional semi-nomadic pastoral system, where 

camels, horses, cattle, sheep and goats are grazed together;  

• Mechanized large and small-area crop production of cereals and fodder crops;  

• Intensive farming, producing potatoes and other vegetables, with both 

mechanized and simple production methods;  

• Intensive livestock, with housed dairy cattle, pigs and poultry. The livestock 

sector dominates, contributing 84.9% of total agricultural production. 

 

1.2.1 Peculiarities of Mongolian geography 

Although famous for its seemingly endless expanses of steppe, Mongolia is a 

mountainous country with almost 80% of its territory located at an elevation of 1000 m 

or more above sea level. The average elevation is 1580 m above sea level with the 

highest peak being Tavan Bogd (4374m) and the lowest depression being Khuk lake 

Hollow (560m). Mongolia is surrounded by the Eastern and Western Alpine Ranges; 

Great Sayan, Buteel and Khentii Mountains in the north; Great Khingan Mountains in 

the east; Mongolian Altai and Gobi-Altai Ranges in the south-east and south; Khan 

Khuhii and Khangai Mountains in the west and the Gobi Desert in the south.  

 

1.2.2 Climate 

Nomadic Mongols migrate across mountains, steppe and desert of their expansive 

mainland throughout four seasons of the year.  

Mongolia has an extreme continental climate with hot summers, a cold winters, windy 

and dry springs and pleasantly warm autumns. 

January is the coldest month of the year with a mean temperature of 35oC in the northern 

parts (with the lowest temperature of -50oC at the Depression of Great lakes and mouth 

of the Tes River) and -10oC in the Southern Gobi. Summers are short. Mean July 

temperatures range from 18-26oC with a maximum of 40oC. Frost is possible at any time 

of the year, and frequent unseasoned frost in late spring and early autumn can adversely 

affect both quality and yield of crop output. Mean annual precipitation is 200-300 mm in 

the northern portion of Mongolia, 400-500 mm in the southern portion of the country. 

More than 80% of the precipitation falls between the May and September. The dry 

weather conditions prevalent in the planting season in may make successful crop 

establishment difficult. Strong spring winds precede the onset of the summer rains, 
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causing high evaporation and soil erosion in cultivated areas. Climatic stress, particularly 

unseasoned frosts and drought can cause harvest losses of between 10 and 40%. 

 

1.2.3 Open and underground water 

Small and big lakes, streams and rivers are abundant in the northern portion of Mongolia. 

Major rivers originating from the Altai, Khangai, Khentii and Khuvsgul Mountains drain 

into the Pacific Ocean basin, while small rivers and streams flow into small likes. Of the 

3811 streams and rivers in Mongolia, the Selenge river is the largest with a total length 

of 600 km ranging in depth from 70 to 200 m in width and averaging 6-7 m in depth.  

The Selenge River is fed by converging tributary rivers such as the Tamir, Khangai, Tuul, 

Orkhon, Delger and Egii Rivers with a water collection area of about 400 000 square 

kilometres. The Kharaa and Eroo Rivers coverage with the Tuul River that originates on 

the soutern slopes of the Khentii Mountains. The longest river draining into the Pacific 

Ocean is the Kherlen River. Its length is 1264 km, of wich 1090 km flows through the 

territory of Mongolia.   Its depth average 135 cm in spring and 193 cm in summer and 

autumn. The deepest river draining into the Pacific Ocean is the Onon River (222 cm 

depth), wich flows 300 km thought Mongolia. The second deepest river emptying into 

the Pacific is the Ulz river, wich is 428 km long. There are several large rivers with no 

access to the sea, such as the Tes, Khovdo, Zavkhan, Baidrag, Tuin, Ongi and Bulgan 

rivers. 

There are more than 3000 lakes and ponds in Mongolia. Of them, 80% are saline. The 

largest is Khuvsgul Lake which is 134 km long and 35 km wide. Additionally, there are 

more than 190 cold rivers, 250 cold and hot springs. Almost 65% of the territory of 

Mongolia has no open water sources and 45-50% of its nearly unused because of the lack 

of water.  About 35% of exploitable underground water sources are found in the Dornod 

plain, 25% in the Khangai-Khentii Mountains, 32% in the Gobi and 8% in The Altai 

Mountains. In the other words, 70% of underground water resources can be found in the 

Gobi and steppe zones, which have limited water sources.  

Stretches of fertile grassland along rivers and lake are dominated by meadow vegetation, 

which can be irrigated using simple flooding methods.  During the 1980-1990 years 

more than 90 000 hectares of hay-land were irrigated.  There are considerable 

opportunities to utilize open water sources for irrigated crop production by means of 

flow challenging and the building of water reservoirs 
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1.2.4 Soil and vegetation 

Mongolian location between the Siberian taiga and Central Asian deserts has resulted in 

great variations in Mongolia soil and vegetation structure.  Mongolian terrain is divided 

into the Central Asian and Dzungariin Gobi Regions or the Khangai and Gobi Regions, 

as well as latitudinal, altitudinal, and mixed zones with 58 districts.  

 

1.2.5 Agro ecological regions of Mongolia 

The territory of Mongolia is divided into six natural (vegetation) zones (alpine, taiga, 

wooded steppe, steppe, desert steppe and desert) with markedly different terrain, climate, 

flora and fauna and divided into five main agro-ecological regions with a certain bio-

climatic potential (Enkh-Amgalan 1997), see figure 1-3 and table 1-2. 

The agro-ecological region is based on topography, climate, soil and natural vegetation 

types. The agro-ecological zones differ greatly with respect to soil fertility and plant 

cover. The productivity and yield of pasture varies over time and depends on (agro) 

ecological region, e.g. with respect to thawing rate of soil, vegetation composition and 

growth rate and its sensitivity to amount of rainfall.  

The semi-forest steppe and steppe zones is commonly rich with a dark chestnut and 

brown soil with high fertility. This soil type covers over 60 % of Mongolia territory. The 

semi-desert and desert zones consist of gray brown soil with poor organic elements and 

heavy salinity. The mountainous ranges and areas of Western and northwestern 

Mongolia contain a fertile dark brown soil cover. Vegetation in mountainous and steppe 

zones consists of a rich variety of species, whereas the Gobi desert has a scarce flora. 

Land suitability for crop agriculture is determined by combinations of climate and 

physical factors including precipitation, elevation, temperature, frost free days, soils and 

topography. Only valley bottomland and the lower slopes of hills with sufficiently deep 

soils are cultivated. A smaller cultivated area is widely distributed in the Khangai-

Khovsgol Region in the northwest and central and Eastern Steppe region. Cultivated land 

is primarily devoted to rain fed cereal grains, mostly wheat. Only, about 3% of the 

cultivated area is irrigated. The irrigation systems comprise numerous small schemes 

totaling 57, 000 ha located primarily in the north-central and western parts of the country. 

However, many schemes are no longer operational due to inadequate maintenance, and 

only about 35, 000 ha are currently being irrigated. Crops grown under irrigation include 

cereals, potatoes, vegetables and fruit. The principal crop growing areas are in the central 
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part of the country and included Selenge, Tov and Bulgan aimags, which account for 

about 70% of total cultivated land.  

 

Figure 1-3 the major 5 (I-V) agro-ecological regions in Mongolia 

 

 1. Hangai-Hovsgul Region  

The Hangai-Hovsgul Region is situated in the northwest portion of Mongolia. This is a 

mountainous region of high elevation (2,000 to 3,000m) and deep valleys with some 

forest and arid steppe (Tsegmid.S et al., 1990, Gunin PD et al., 1999); mean annual 

temperature is -2.5°C to 7.5°C with the lowest temperature in January (-24°C) and 

warmest temperature in July (19°C); 60 to 100 frost-free days; and an annual 

precipitation of 200 to > 400mm (Batjargal Z.1996). Wind speed averages between 2-4 

m/sec, and snow cover is often > 15 mm in depth (Tsegmid S et al., 1990). 

 

2. Selenge-Onon Region 

The Selenge-Onon Region consists of broad valleys and plains with elevations between 

1,500 to 2,000m (Tsegmid S et al., 1990), mean annual temperature of 0.0°C to 2.5°C 

with the coldest temperature in January (-20°C) and warmest temperature in July (19°C); 

70 to 120 frost-free days; and an annual precipitation of 250 to 400mm. Snow cover 

averages 5 to 10mm in depth, and wind speed averages 4-6 m/sec (Tsegmid.S et al., 

1990). 
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3. Mongolian Altai Region 

The Altai Region is located in western Mongolia and has two distinct districts. The first 

district is the Mongolian Altai, which stretches from the northwest to the southeast for 

more than 1,500 km. The second district is the Turgen Mountains and Lake Ureg-Nur. 

These districts have elevations ranging from 1,500 to 4,000m (Tsegmid S et al., 1990); 

mean annual temperatures of -2.5°C to 5.0°C with the coldest temperature (-24°C) in 

January and warmest temperature (22°C) in July; 60 to 120 frost-free days; and an 

annual precipitation of 400 to 500mm (Batjargal Z.1996). Snow depth ranges between 5 

to > 15mm, and wind speed averages 2-6 m/sec (Tsegmid.S et al., 1990). 

 

4. Central and Eastern Steppe Region 

The Central and Eastern Steppe Region is the broad, essentially treeless region in central 

and eastern Mongolia (Lavrenko E.M.1983), which is characterized by low knolls, hills, 

and high plains. This region has elevations ranging from 900 to 2,000m (Tsegmid.S et al., 

1990); mean annual temperature of 0.0°C to 2.5°C with the coldest temperature in 

January (-20°C) and warmest temperature (22°C) in July; 110 to 140 frost-free days; and 

an annual precipitation of 150-250mm (Batjargal Z.1996). Snow depth ranges between 5 

to 10 mm, and wind speed averages 4-8 m/sec (Tsegmid.S et al., 1990). 

 

5. Gobi Desert Region 

The Gobi Desert Region includes the semiarid and arid southern portion of Mongolia. 

This region has elevations ranging between 700 and 1,400m (Tsegmid.S et al., 1990); 

mean annual temperature of 0.0°C to >2.5°C with the coldest temperature in January (-

20°C) and warmest temperature (23°C) in July; 90 to >130 frost-free days; and an annual 

precipitation of 100mm (Batjargal Z.1996). Lack of snow as a water source is a major 

factor limiting livestock production in the Gobi Desert Region.Wind speed averages 2-8 

m/sec (Tsegmid.S et al., 1990). 
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Table 1-2 Climatic information AEZ 

Zone Av.Elev 
(000 m) 

Mean 
annual 

(Co) 

Temp 
Jan 
(Co) 

Temp 
Jul 
(Co) 

Heat 
sum 

>10Co 

Grow/  
days 

Frost 
free 
days 

Precipi- 
itation 
(mm) 

Snow 
cover 
(mm) 

Wind 
speed 
(m/s) 

1 2.2-3.0 -2.5-7.5 -16-30 6-19 400-

2000 

70-100 60-110 200-

400 

>15 2-4 

2 1.5-2.2 0-5.0 -16-24 15-19 1000-

2000 

70-100 80-120 250-

400 

5-10 4-6 

3 1.5-4.0 -2.5-5.0 -16-24 8-22 400-

2600 

70-120 60-140 400-

500 

5-15 2-6 

4 0.5-2.0 0.0-2.5 -20-24 15-22 1400-

2600 

90-130 110-

140 

150-

250 

5-10 4-8 

5 0.7-1.4 0.0-2.5 -16-24 19-23 2000-

3000 

90-130 120-

140 

  2-8 

 
 

1.2.6 Mongolian agriculture and land fragmentation 

Agriculture is one of the most important sectors of the Mongolian economy, as it is the 

major source of employment and the main land and water user. Increasing the level of 

self-sufficiency in the production of strategic crops (e.g., wheat, barley, potato and 

vegetables) is one of the objectives of Mongolian policy makers. Currently, Mongolia is 

importing a significant part of its national requirements for these crops. For economic 

and social reasons, increasing national production and the level of self-sufficiency is 

urgently needed.  

Mongolia began to cultivate virgin lands at the end of the 1950, 1976 and 2009 years. 

Virgin Lands programs increased the area under crops from 265,000 hectares in 1960 to 

a peak of 838,000 ha in 1989. The 1980s saw a major growth spurt as Mongolia was 

more tightly integrated into the Council for Mutual Economic Assistance (CMEA) 

international planning system. With large inflows of capital, inputs and technology from 

Eastern Europe and the Soviet Union, net imports amounted to a massive 30% of GDP. 
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Figure 1-4 Whole Mongolian cultivated areas with Selenge and Tov aimags 

 

Since 1989, all formerly centrally planned economies of Mongolia like that Central and 

Eastern Europe have been making radical changes in both their political and economic 

systems. From 1990s, Mongolia entered a period of transition from a central-based 

planned economy to a market economy and all cooperatives (farming) are in deep crisis 

and crop production has dropped. The negative output performance of the first half of the 

1990s was centered on agriculture, industry and some mining activities. The sown area 

declined from its 1989 peak of 837,900 to 372, 600 hectares in 1995, as supplies of 

mechanical and chemical inputs were cut off. 

Mongolia’s transition experience since 1991 has been positive, but difficult. Each has 

followed its own way and time path, although there are clearly common characteristics. 

One of those characteristics is the policy of transferring public and collective property to 

private ownership. Privatization is considered essential to the process of reform for three 

main reasons: in first, to establish well-functioning markets, secondly to create incentives 

for decision makers to act in response to market signals, and third one is to assure 

irreversibility of the reforms themselves (World Bank, 1995). During the 70 years of 

communist rule, agriculture was led, as was the whole Mongolian economy, by 

centralized laws and bureaucratic methods of command and control which gradually 

brought about economic and social stagnation. This stagnation was attributed to some 

factors that were considered to be deeply rooted in the Mongolian socialist system such 
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as: the mismanagement, financial imbalances, the collectivization campaign, bad 

structural policy, and misallocation of investments and resources. 

The so called “shock therapy” underlying the political and economic reform applied in 

Mongolia at the beginning of 1990s, brought about a new structural framework in the 

agricultural sectors. The state-controlled cooperatives and state farms were broken up 

and new production structures composed of a great number of small-scale farms emerged. 

In the command system, agricultural production was centrally planned and directed, as 

was the research and extension system. Therefore, the existing institutions of agricultural 

research and extension could not continue functioning in the same way as with the 

previous production structures. Under these circumstances, there was a pressing need to 

reconfigure technology institutions including research and extension in support of 

evolving production structures. 

The present private farm units in Mongolian agriculture suffer from a lack of balance 

between production factors available to each farm and institutional structures needed to 

support efficient agricultural operations. Many elements of the old agricultural institution 

system have either stopped functioning due to shortage of public funds, or do not 

respond to the deep political, social and economic changes that have occurred in 

Mongolia during the past 15 years. Mongolian farmers are operating production and 

market activities in the absence of an integrated system of technology institutions such as 

agricultural research, extension service, and agricultural education. Actually, institutional 

change in Mongolian agriculture is happening very slowly. 

The change to a market-oriented economy had also an impact on the natural resources 

and their management, not only due to privatization, but also because of the strong land 

fragmentation as a result of the land distribution and increased urbanization. For the first 

time in 30 years people were free to move around. The rural population sharply 

decreased because of urban drift or migration abroad. The increasing pastoral economy 

and husbandry caused landscape degradation and natural resources depletion in many 

regions of the country. Uncontrolled timber harvesting, gold-mining area, overgrazing 

and overexploitation of wood and other forest products have changed environmental 

assets. The depletion of forest and water resources, particularly in accessible areas, has 

become alarming. Scarce possibilities of control and a lenient policy caused severe, 

sometimes even irremediable, damages to the natural resources of Mongolia (B.Erdenee., 

et all, 2010). In a subsequent phase many cropland areas were abandoned and changed 

followed by people left the rural areas to become resident in urban centers. These urban 
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centers, however, were not prepared to receive the massive influx of people. In the 

turmoil of such a changing economy and the spatial and temporal dynamics of land 

cover/use that are continuously evolving, it is important for the Mongolian government 

to have accurate and timely information for natural resources management, land-use 

planning and policy development, as a prerequisite for monitoring and modeling land-

use and environmental change and as a basis for land-use statistics.   

     From the 1990, Mongolian agriculture has been greatly accelerating, the natural and 

labor resources being replaced with the economic collapse and mining industrial inputs. 

At the same time, some trends appear to have reduced the environmental impact by 

reducing the amount of artificial chemicals released into the environment, so as to ensure 

its sustainability.  

Like other European countries, Mongolia is now in the midst of transition toward 

developing a functioning market economy. It has already privatized agriculture, housing, 

small and medium industries and is working on privatizing large state enterprises.  

Mongolia is an agricultural country and as such the role of agriculture within the 

Mongolian economy has historically been and will continue to be the predominant factor 

in its growth and development for many years. Actually, half of country’s GDP comes 

from the agricultural sector and it employs over 50 per cent of the total work force. Some 

50 per cent of the population lives in rural areas. Therefore, it is necessary to have an 

agricultural LCLU analyze and crop monitoring framework to support it. 

 

1.3 Problem Formulation 

The discussion about development of the agricultural sector has often centered on the 

question of how to achieve adequate food security, while simultaneously providing 

sufficient income for food producers.  Agricultural sector development is strongly related 

to land use. The way land is used has obvious implications for food security, economic 

development and the environment. Land in developing countries is increasingly subject 

to population pressure, soil degradation and pollution (Lal, 2009). The issues and 

dimensions involved in land use policy analysis are very complex. Moreover, land use 

problems deal with multi-purpose use of land, trade-offs between different functions of 

the land, and conflicting interests among different categories of stakeholders and 

between individual and collective goals and needs. Under these conditions, designing 

policy interventions supporting successful land resource management for agricultural 

development, to satisfy changing human needs, while maintaining or improving the 
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quality of the environment and conserving natural resources in developing countries, 

presents an enormous challenge to all those concerned (Fresco et al., 1992). 

 

Plant biotechnologies have been developed; around the world researchers are examining 

a wide range of possibilities for improving the productivity of crops, ranging from 

developing crops with resistance to herbicides and insect pests, to crops with an 

increased ability to withstand drought or frost. In addition, new techniques remote 

sensing and precision agriculture are leading to better methods of producing and 

managing agricultural products, but primarily within the developed world. 

Remote sensing has been used to monitor vegetation for a few decades. It provides 

timely information over large areas of economic importance for example wheat and other 

crops (Penuelas and Inoue, 1999; Osborne et al., 2002a). Crop health and productivity 

can be estimated by almost instantaneous non-destructive data acquisition over vast areas 

(Clevers, 1997). Also, the innovative technique of airborne remote sensing can provide 

valuable information in crop stress management (Steven 1993, Reyniers et al., 2004).  

Such timely information concerning crop productivity is of vital importance for decision 

makers, from small-scale farmers to the national government, providing a potential way 

forward for increasing crop productivity whilst using water resources more efficiently. 

Monitoring water status has traditionally been based on destructive sampling. 

Furthermore, monitoring plant status using sample-point technique is tedious, laborious 

and a costly process. A promising alternative is the use of remotely sensed measurements 

as a quick, reliable and non-destructive tool that integrates the plant response to water 

stresses. 

Therefore, the relative change in the reflected light energy from the plant canopy could 

be used as a key link between various combinations of stress. 

 

1.4 Research objectives are: 

 

• To monitor and mapping principal crop land area of Mongolia   

• To characterize the farming sector in Mongolia and to develop parcel 

based crop land information system in the intensive agricultural land 

area 
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• To investigate a drought index in wheat planting area using remote 

sensing data 

 

 

Selenge and Tov aimag are producing most of Mongolian agricultural output including 

the main crops like wheat, fodder crops and vegetables.  In the last two decades, different 

positive and negative land cover changes have been occurred in this area. For this reason, 

remotely sensed satellite data was used to estimate and analyze these changes, which will 

help the agricultural strategist to launch better agricultural policies or modify the exiting 

ones. 

 

Beside the analysis of the development of farming movement in Mongolia, we aim, in 

particular, to understand the reasons for converting to precision.  

 

Drought are major inhibitors to Mongolian agronomic production and increasing efforts 

to remotely detect the effects of moisture induced stress for irrigation management are 

needed since few studies have quantitatively assessed the ability of remote sensing 

technology to characterize simultaneous water stress on crop yields (Poss et al., 2006). 

 

 

1.5 Outline of the thesis 

 

This thesis comprises different chapters.  

 

Chapter 1 includes general introduction, statement of the problem, the objectives of the 

study and the background for understanding the previous work related to the main points 

and general outline of the thesis. 

 

Chapter 2 it describes the resource bases and Mongolian agriculture and location, 

climatic conditions the study area 

 

Chapter 3 studied the cropland use/ cover changes of the study area through integration 

of visual interpretation through GIS.  
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Chapter 4 introduced about a precision agriculture technology and presents a study about 

to design cropland information system. Case study: Tsagaannuur district, Selenge, 

Mongolia and importance of this information system. 

 

Chapter 5 investigate specific methodology for remote sensing based crop stress index in 

the wheat area of Mongolia  

 

Chapter 6 summarized the results and gave general conclusions and recommendations  

Appendix and reference  

Figure 1-5 is presented general methodology of this thesis.  

 

 

Figure 1-5 General methodology of the thesis 
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2. Description of the study area 
 

2.1 Location 

The selected study area Selenge and Tov aimag is prime cropland regions and located in 

the Northeastern part of the Mongolia, measuring approximately 41,152.63 sq and 

75,000sq, respectively. The geographic boundaries of the area are 

47° 30′ 0″-47° 50′ 0″ N, 106° 15′ 0″-106° 25′ 0″ E (Figure2.1).  

 

Figure 2.1 Location of the study area 

 

Selenge aimag is produces 60 percent of grain and Tov aimag is produces 22 percent of 

grain and about 70% of vegetables of the country. The climate of the region is semi-arid 

and arid; the growing season is 100 to 120 days in duration and annual precipitation 

ranges from 200-350 mm. 

The main crops being grown in this region are wheat, fodder crops, potato, and some 

vegetables. Except for wheat, fodder crops are rain fed and potato, vegetables semi 

irrigated. The planting dates of wheat and fodder crops are mostly planted in from the 

mid of May to October period. For vegetables planting starts in the end of May and 

continues until the end of August and mid-September. Almost all the crops present an 

important vegetative development in the June–August period. The wheat is harvested 

between September and early October. Vegetables are harvested gradually from late July 

to September. 

Study area 
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2.2 Resource base 

2.2.1 Climate 

The extreme continental climate, with long cold winters and low precipitation, is a 

serious constraint to agricultural production.  

Mongolia also has a relatively dry climate with prolonged sunshine days and plentiful 

precipitation in summer and little snowfall in winter (Dashdondov and Bakey 2000). 

About two thirds of all precipitation and almost all growth of vegetation take place 

during May to September. In September the winds turn to the north-east and convey cold 

temperatures, dust and little or no moisture from the dry and extremely cold regions of 

Siberia (Sheehy, 1993). Large fluctuations in temperature occur, with a maximum 

difference in temperature between day and night of 20°C-30°C and annually up to 90°C.  

 

2.2.2 Rainfall 

Rainfall is concentrated in the summer period with 65-75% of rainfall occurring between 

June and August. The dry weather conditions prevalent in the planting season in May 

make successful crop establishment difficult. Strong spring winds precede the onset of 

the summer rains, causing high evaporation and soil erosion.  

 

2.2.3 Air temperature  

The ranges of variation in air temperature between different years are quite small. 

Highest temperature degrees are recorded during July and August and then decrease 

gradually to their minimum in December and January; 70 to 120 frost-free days; and an 

annual precipitation of 250 to 400mm. The lowest temperatures are observed in January 

and February. Spring begins in the firstly weeks of May and there is a marked increase of 

the maximum day temperature above 15-20oC but the nights in general remain cool. 

March, April are characterized by frequent “sand storm” bringing the maximum 

temperature over 10oC or even 20oC for 2-3 days at a time.  The summer lasts over 3 

months, from June till the end of August. The temperature is warm and is fluctuating 

between 18-21oC, the night temperatures are rather high particularly in August and 

September (more than 15oC).  

 

2.2.4 Air Humidity 

Relative air humidity ranges between 60-70 percent. Maximum relative humidity is 
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occurs at July and August.  

 

2.2.5 Wind     

Different investigations indicate that the wind speed, at an altitude 1.5-2 meters, range 

between 2.5-3.0m/s. The prevailing wind is mostly from the north. 

 

2.2.6 Soil  

The arable soils of Mongolia comprise dark chestnut and chestnut soils, which are 

classified as Mollisols (see more, http://en.wikipedia.org/wiki/Mollisols) and are typical 

of soils that evolved with steppe vegetation. Similar soils are found in the Great Plains of 

North America, parts of South America and a large part of Central Asia.  Covering 

about 40% of the country, these are inherently fertile but shallow soils, with an average 

depth of 30 cm. These soils have organic matter content 3-4% and are slightly acid to 

neutral with a pH of 6.0-7.0. Because of their light texture, moisture retention is low and 

the soils are susceptible to erosion.  
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3. Mapping and monitoring principal crop land cover/ use changes in 

Mongolia 
 

3.1 Introduction 

Crop area mapping and estimation is an essential procedure in supporting policy 

decisions on land use allocation, food security and environmental issues. Nevertheless, 

producing agricultural statistics in regions with limited financial resources and restricted 

access is a challenging task. Agriculture is one of the major economic sectors of 

Mongolia, representing around 40% of their gross domestic product.  

Land use affects to land cover and changes in land cover affect to land use. The driving 

forces to this activity could be economic, technological, demographic, scenic and or 

other factors. Hence, Land Use and Land Cover dynamics is a result of complex 

interactions between several biophysical and socio-economic conditions which may 

occur at various temporal and spatial scales (Reid et al., 2000). 

A remote sensing device records response which is based on many characteristics of the 

land surface, including natural and artificial cover. An interpreter uses the element of 

tone, texture, pattern, shape, size, shadow, site and association to derive information 

about land cover. 

However, crop areas are currently estimated using a subjective approach, which is mostly 

based on interviews carried out with local producers. Although such an approach can 

sometimes retrieve relatively accurate figures, it is highly subject to biases and 

uncertainties. Moreover, it is costly and slow, given that it requires a large number of 

agents and vehicles to carry out the interviews. 

During the last years, remote sensing techniques and Geographical Information Systems 

(GIS) have proven to be efficient tools to monitor agricultural activities. However, 

although remote sensing has proven to be useful in different agricultural applications, 

many limitations are still faced in the operational usage of this tool to estimate crop areas. 

Consequently, the integration of remote sensing techniques with ground surveys has 

been the focus of much research in past years (Pradhan, 2001; Epiphanio et al., 2002; 

Gallego, 2004). 

In Mongolia, inappropriate agricultural practices, deforestation and overgrazing are 

affecting crop and livestock productivity of the rural poor and hence their livelihoods. 

From 1990s, Mongolia entered a period of transition from a central-based planned 
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economy to a market economy. In the turmoil of such a changing economy and the 

spatial and temporal dynamics of land cover/use that are continuously evolving, it is 

important for the Mongolian government to have accurate and timely information for 

natural resources management, land-use planning and policy development, as a 

prerequisite for monitoring and modeling land-use and environmental change and as a 

basis for land-use statistics.  

The objective of this research was to investigate principal cropland areas changes in 

Mongolia, by integrating a GIS and remote sensing techniques. 

 

3.2 Study area 

The selected study areas Selenge and Tov aimags are prime cropland region and located 

between 47o30`00``North and 106o30`00``East in the Northeastern part of the Mongolia 

and it covers about 115195 km2. In this area covers mostly forest-steppe, steppe and is 

rich in chernozem soil. The climate of the study area is arid and semi arid type. Detailed 

description of the study area is shown in Chapter 2.   

 

3.3 Materials 

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) images (with 

parth/row 132/25-27, 133/25, and 131/26-27) acquired on 1989 and 2000, respectively, 

field data were used to map agricultural land cover changes in the study area.  

The baseline date for the mapping was 1989 and 2000 separately but, to accommodate 

any image shortage, e.g., due to 10% cloud cover, plus and minus 1 to 4 years allowed. 

Mostly images were cloud free and of good quality. The ideal “summer” period covered 

the main plant growing season, June to late September. Three LANDSAT paths cover 

study area and 15 scenes were required for this study. The satellites orbit at an altitude of 

705 km and provide a 16-day. These satellites also were designed and operated to collect 

data over a 185-km swath.  
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Table 3.1 Used data 

Acquisition date LANDSAT 

Path-Row Landsat-5 TM Landsat-7 ETM 

133-25 29 September, 1989 11 September, 2000 

132-25 21 August, 1989 24 July, 2002 

132-26 21 August, 1989 20 September, 2000 

131-26 01 October, 1989 13 September, 2000 

131-27 30 August, 1989 31 August, 2001 

132-27 12 September, 1994 20 September, 2000 

130-27 24 September, 1989 26 July, 2002 

 

 

3.4 Methodology 

3.4.1 Data preprocessing 

3.4.1.1 Geometric and radiometric correction and image registration 

Since your ETM+ image already has a projection (UTM) and datum (WGS84), so we 

can directly convert it from one projection to another without any problem. Before 

calculating NDVI’s, atmospheric correction, geometric correction and image registration 

are conducted. Dark-object method for atmospheric correction proved to be an effective 

way and is used to correct the images. Although the Digital Number (DN) of red and 

near infrared bands can be used to derive NDVI directly, it has been proved that 

reflectance could perform much better than DN value in terms of computation of NDVI’s. 

All the images are processed by radiometric correction individually. Radiometric 

correction is done for the red and near infrared image obtained from different sensors. 

Radiometric and atmospheric normalization: 

The radiometric and atmospheric normalization of the Landsat TM image to the Landsat 

ETM (reference) image involved the following phases: 

1. Selection of normalization targets; 

2. Registration of the DN values of the selected targets in both images; 

3. Regression of the DN values of the image against the DN values of the reference 

image; 

4. Calculation of the Landsat normalized image. 

Image registration is the process of overlaying two or more images of the same scene 
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taken at different times, from different viewpoints, and/or by different sensors. It 

geometrically aligns two images-the reference and sensed images. The present 

differences between images are introduced due to different imaging conditions. Image 

registration is a crucial step in all image analysis tasks in which the final information is 

gained from the combination of various data sources like in image fusion, change 

detection, and multi-channel image restoration.  

Two methods are used for geometric correction and registration: one is map to image 

method, and the other is image to image method. Global Positioning System (GPS) was 

used for ground truth survey at the representative land cover areas, and more than 100 

Ground Control Points (GCPs) were selected.  

Landsat 7 ETM+ imagery has been used to produce the baseline interpretation of 2000 

using on-screen digitizing and visual interpretation. For the 1989 visual interpretation 

use has been made of Landsat 5 TM images (Table 3.1). For interpretation purposes the 

multiple view approach was selected combining multi-stage sensing (i.e. high-resolution 

satellite data is analyzed in combination with low altitude data such as topographic maps, 

and field survey data), multi-spectral sensing (i.e. data are acquired simultaneously in 

several spectral bands) and multi-temporal sensing (i.e. data about the terrain is collected 

at different dates). The 2000 images have been geo-referenced using the topographic 

maps of the Mongolian Military Geographic Institute at scale 1:100,000 (image-to-map 

approach) and the 1989 images have been geo-referenced according to the 

geo-referenced 2000 set (image-to image approach) and the RMS error between the two 

images was less than 8.55 m which is acceptable. Nearest-neighbor re-sampling was 

performed. 

 

3.4.1.2 Image enhancement and visual interpretation 

In the interpretation process various levels of complexity exist, from simple direct 

recognition of objects in the scene to inference of site conditions. The interpreters use the 

process of convergence of evidence to successfully increase the accuracy and detail of 

the interpretations. During the interpretation process special attention was paid to: (1) the 

spatial coherence of polygons, i.e. are the boundaries in the appropriate place and have 

the same logical and functional thinking been applied in a consistent manner in the area 

of interpretation; and (2) the thematic coherence, i.e. is the label given to the polygons 

correctly describing their contents and are other areas with similar features described in 

the same manner. A continuous crosschecking of the 1989 and 2000 interpretations was 
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necessary in order to guarantee spatial and thematic coherence within the interpretations 

and between them. The 1989 interpretation has been validated using 231 field 

observations and 108 additional observations.  

Data processing and analysis operations were carried out using ENVI 4.3 and PCI 

GEOMATICA Image Analysis software. Color composite of bands 5, 4, 3 was generated 

for the images and visual interpretation was performed. Figure 3.1 and Figure 3.2 show 

the (5, 4, 3) color composite of the data.  

 

 

Figure 3.1 (5 4 3) color composite of Landsat TM data acquired in 1989 
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Figure 3.2 (5 4 3) color composite of Landsat ETM data acquired in 2000. 

 

3.4.1.3 Supervised classification 

Supervised classification was used to produce agricultural land cover map for the study 

area. Supervised classification is one procedure most often used for quantitative analysis 

of multidimensional remote sensing image data. It rests upon using suitable algorithms to 

label the pixels in an image as representing particular ground cover types, or classes. A 

variety of algorithms is available for this, including those based upon probability 

distribution, fuzzy logic and neural network models for the classes of interest. 

Irrespective of the particular method chosen, the essential practical steps are: 
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1. Decide the set of ground cover types into which the image is to be segmented. 

These are the information classes and cloud, for example, be water, cropland, 

urban regions, mountain ranges, etc. 

2. Choose representative or prototype pixels from each of the desired classes. These 

pixels are said to form training data for the classifier. Training sets for each class 

can be established using proto interpretation of a color composite image formed 

from the image data. 

3. Use the training data to estimate parameters of the particular classifier algorithm 

to be used; these parameters will be the properties of the model used, sometimes 

called the spectral signature of that class. 

4. Using the trained classifier, label or classify every pixel in the image into one of 

the desired ground cover types. Whereas the training in Step 2 may have required 

the user to identify perhaps 1% of the image pixels manually, the algorithm will 

label the rest by classification. 

5. Produce tabular summaries or thematic (class) maps which quantify the results of 

the classification. 

Maximum likelihood (ML): 

ML classification seems to be the most common supervised classification method used 

with remote sensing image data. The approach followed in this thesis uses Baye’s 

theorem for the maximum likelihood decision rule, and multivariate normal class models. 

The algorithm derivation is presented below:  

Let the spectral classes for an image scene be represented by 

Mii ,...1, =ω               (1) 

where M is the total number of classes. In trying to determine the class or category to 

which a pixel at location x belongs to is strictly the conditional probabilities 

Mixp i ,...1),|( =ω          (2) 

that are of interest. The position vector x is a column vector of intensity values for the 

pixel, which describes the coordinates in multi-spectral space of the pixel. The 

probability )|( xip ω  gives the likelihood that the correct class is iω for a pixel at 

position x. Classification is the performed according to [ ]7  

ix ω∈  if ( ) ( )xpxp ji ωω >  for all ij ≠  (3) 

or, the pixel at x belongs to the class iω  if ( )xp iω  is the largest. Despite the simplicity 
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of this decision rule, these posterior probabilities are unknown. Training can be used to 

instead estimate the class-conditional probability density ( )ixp ω , which describes the 

chance of finding e feature vector from class iω at the spectral position x. The desired 

( )xp iω  and the available ( )ixp ω  are related by the Baye’s theorem [7]: 

 

( ) ( ) ( )
)( xp
pxp

xp ii
i

ωω
ω =     (4) 

Where ( )ip ω  is the prior (a priori) probability of class iω , and p(x) is the probability 

of finding any class at position x. Introducing (4) into the decision rule of (3) modifies 

the class decision to [7]: 

ix ω∈  if ( ) ( ) ( ) ( )jjii pxpxpxp ωωωω >  for all ij ≠   (5) 

where p(x) has been conveniently dropped as a common factor. This new decision rule is 

more acceptable since the class conditional probabilities are know from training data, 

and the analyst can conceivably estimate ( )ip ω  visually from the scene (or assume 

equal class probabilities without much penalty). Defining discriminate functions ( )xgi  

[7] such that 

( ) ( ) ( )iii pxpxg ωω=           (6) 

  permits the final decision rule used in maximum likelihood classification to be defined 

as:  

ix ω∈  if ( ) ( )xgxg ji >  for all ij ≠     (7) 

This classifier requires some model for the class conditional probability distributions to 

function. This could be estimated from analysis of the data; however, a commonly held 

assumption is that each class can be modeled by multivariate normal density functions.  

In (6) it is therefore assumed for N spectral bands that [7]  

( )
( )

( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−− ∑

=
−

∑

1

2
1

2/12/2

1 i i
T

i mxmx

i
Ni exp

π
ω

       (8) 

 

Where im  and ∑i
are the mean vector and the NxN covariance matrix for each 

class iω . An unbiased estimate for the covariance matrix is given by [7] 
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Where iq the number of training is samples in class iω , and jx  is the jth training sample. 

A modification to the discriminant function using the monotonicity property of 

logarithmic functions permits the following simplification [7] 

( ) ( ){ } ( ){ }iii pxpxg ωω lnln +=     (10) 

without violating the decision rule in (7). 

Finally, incorporating the model in (8) into the discriminant defined in (10) permits the 

decision rule to use [7] 

( ) ( ){ } ( ){ }iii pxpxg ωω lnln +=   (11) 

as a discriminant function, where the term - ( ) ( )π2ln2/N  is dropped as a term common 

to all ( )xgi . 

The effectiveness of maximum likelihood classification depends upon reasonably 

accurate estimation of the mean vector m , and the covariance ∑ for each spectral class. 

This in turn is dependent upon having a sufficient number of training pixels for each of 

those classes; if this not possible, it may be necessary to resort to an algorithm which 

depends upon mean positions and not be covariance of the spectral classes since  these 

are easier to estimate. Determining a necessary number of training samples is more or 

less dependent upon the type and dimension of the data, but minimum N-1 samples are 

required to prevent a singular covariance matrix. While it is fairly easy to obtain enough 

for 7 band multispectral data, this task is challenging for hyper spectral sources, which 

can have over much more spectral bands.  

Maximum likelihood classifier quantitatively evaluates both the variance and covariance 

of the category spectral response patterns when classifying an unknown pixel so that it is 

considered to be one of the most accurate classifier since it is based on statistical 

parameters. Supervised classification (ML) was done using ground checkpoints of the 

study area. 

In first;The area was classified into four main classes: cropland, bare land, water body 

and forest. After completing the classification procedure, the classified outputs were 

combined to make a single classified image and then carried out on the final classified 

output by computing the percentages of classified images within only cropland areas 
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class as using (active) area and unused area in that year.  

To assess the accuracy of the classification, field, to each of the classified images, 

compared the reference data. For each classified data, those fields set aside to be used as 

independent check fields were compared with the reference data to establish whether or 

not it had been classified correctly. There were not many vegetables and fodder crop 

fields. Therefore, for these classes, all reference fields were used to compute the accuracy. 

For each classified output, the error matrix was generated and the producer’s and user’s 

accuracy were calculated. 

 

3.4.1.4 Field work  

We completed the vector coverage of the study site, the vector field boundaries were 

built and digitized from the ground truth data using with ARCMAP software. To do that 

the each polygon points was then registered to Geographic lat/Long (Zone-48 WGS84 

using) projection and the evenly distributed. The registration was based on first-degree 

polynomial and nearest neighbor re-sampling techniques. The accuracy of the 

registration was measured using independent check grids, which were not included in the 

transformation.  

Each polygon was assigned a numeric code and the crop types of the ground-visited 

fields were recorded as attribute information. The polygon topology was then created and 

the attribute database was linked to the polygons to make polygon selection possible 

through a database query. This map was used to validation of classification result. 

Prior to describing the steps of the supervised classification procedure and evaluation of 

its results, a reference will be made to how the samples, both for training and reference, 

were prepared. 

 

3.4.1.5 Accuracy assessment 

Accuracy assessment is very important for understanding the developed results 

employing these results for decision making. The most common accuracy assessment 

elements include overall accuracy, producer’s accuracy, user’s accuracy, and Kappa 

coefficient.   

A most common and typical method used by researchers to assess classification accuracy 

is with the use of an error matrix (sometimes called a confusion matrix or contingency 

table) (Card, 1982 and Congalton, 1991). An error matrix is a square assortment of 
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numbers defined in rows and columns that represent the number of sample units (i.e., 

pixels, clusters of pixels, or polygons) assigned to a particular category relative to the 

actual category as confirmed on the ground. The rows in the matrix represent the remote 

sensing derived land use map (i.e., Landsat data), while the columns represent the 

reference data (i.e., ground truth, in-situ samples) (Jensen, 1986). These tables produce 

many statistical measures of thematic accuracy including overall classification accuracy 

(the sum of the diagonal elements divided by the total number in the sample), percentage 

of omission and commission error by category, and the KHAT coefficient (an estimate of 

the Kappa coefficient, an index that relays the classification accuracy after adjustment 

for chance agreement) (Cohen, 1960; Congalton et al., 1983).  

Error of omission is the percentage of pixels that should have been put into a given class 

but were not. Error of commission indicates pixels that were placed in a given class 

when they actually belong to another. These values are based on a sample of error 

checking pixels of known land cover that are compared to classifications on the map. 

Errors of commission and omission can also be expressed in terms of user's accuracy and 

producer's accuracy. User's accuracy represents the probability that a given pixel will 

appear on the ground as it is classed (the percentage correct for a given row divided by 

the total for that row), while producer's accuracy represents the percentage of a given 

class that is correctly identified on the map (the percentage correct for a given column 

divided by the total for that column).  

To assess classification accuracy one needs to compare two different maps: 1) the 

classified map derived from remotely sensed data and 2) existing sources of reference 

information such as in-situ data or interpretations from aerial photos which allow a 

means of time and cost-efficient error checking. In order to assess classification accuracy, 

there must be perfect or near perfect registration between the reference information and 

classified maps.  

Usually, the "assumed-true" reference data are derived from ground truth data. However, 

it is typically not practical to ground truth or otherwise test every pixel of a classified 

image. Therefore, a set of reference pixels is usually used. Reference pixels are points on 

the classified image for which actual data are (or will be) known. Normally, reference 

pixels are randomly selected based on available sources of land cover reference 

information, such as field plots, existing maps or aerial photos. If these sources are 
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accurate and chosen independently of those used to classify the land cover map, an 

accurate assessment of error can be made.  

An important factor in determining the accuracy of a classification is the number of 

reference pixels used. Congalton (1991) states that it has been shown that more than 250 

reference pixels are needed to estimate the mean accuracy of a class to within plus or 

minus five percent. 

The cropland cover information collected during the field visit allowed sample land 

parcels with known cropland cover to be labeled. The labeled land parcels were divided 

between “training” and “validation” sets by alternatively assigning them when selected. 

The training set of 380 cropland parcels was used as the input into the classifier. The 

validation set of 113 land parcels, was used later to assess the accuracy of the results.  

 

3.4.2 Cropland cover/use change detection  

Change detection methods have been broadly divided into either spectral change 

identification methods or post classification methods (Singh, 1989). Macleod and 

Congation (1998) list four aspects of change detection which are important when 

monitoring natural resources: 

1. Detecting the changes that have occurred 

2. Identifying the nature of the change 

3. Measuring the area extent of the change 

4. Assessing the spatial pattern of the change 

The success of change detection from imagery will depend on both the nature of the 

change involved and the success of the image pre processing and classification 

procedures. Post classification is the most obvious method of change detection, which 

requires the comparison proved to be the most effective techniques, because data from 

two dates are separately classified, thereby minimizing the problem of normalizing for 

atmospheric and sensor differences between two dates. In this study post classification 

change detection technique was used. Outline of the general mapping/monitoring 

methodology and the image classification methodology were presented figure 3.3 and 

3.4. 
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Figure 3.3 General methodologies (mapping and monitoring) of flow chart 

 

Figure 3-4 Image classification methodology flowcharts 
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3.4.3. Results and conclusion 

The color composite was generated using bands 5,4 and band 3 of the image acquired in 

cropping season 1989 and 2000 showed (Figure 3.3 and 3.4) a comparative view for 

visual interpretation through on screen digitizing.   

This can be easily noticed inside cropland area were many small polygon abandoned and 

some area not in the one of 2000. Supervised classification using all reflective bands of 

the two images acquired on 1989 and 2000 respectively was carried out using maximum 

likelihood classifier in order to produce cropland cover/use maps of the study area. The 

results of the supervised classification of the two images are presented; Figures 3.5 and 

3.6 active croplands represented 507111.1 ha to 259262.9 ha of the total area in 1989 and 

2000 respectively.  

 

 

 

Figure 3.5 Maximum likelihood classification 1989 data (Landsat TM) 

 

 

           
Legend:           Used area               Unused area in that year 
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Figure 3.6 Maximum likelihood classification 2000 data (Landsat +ETM) 

 

In this study the overall classification accuracy was found to be 89.5%for 1989 and 

90.0% for 2000. Details of single class accuracy for both images of 1989 and 2000 can 

also be found in table 3.2 and 3.3.  

 

Table 3.2 Accuracy statistics for the classification result of 1989 Landsat TM image 

Class name Producer’s accuracy User’s accuracy 

Active Cropland area 93.9% 91.5% 

Unused cropland area in 

that year 

91.8% 87.6% 

 

 

 

           
Legend:           Used area               Unused area in that year 
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Table3.3 Accuracy statistics for the classification result of 2000 Landsat +ETM image 

Class name Producer’s accuracy User’s accuracy 

Active Cropland area 88.5% 92.0% 

Unused cropland area in 

that year 

93.1% 88.0% 

 

Also, detailed information amount of the changes between the two dates was extracted 

from the statistical data through post-classification change detection technique as 

represented in table 3-4.  

 

Table3.4 Area change and percentage of change of the classified two images dated in 

1989 and 2000.  

 Active Cropland area 
(by hectare) 

Unused cropland area in 
that year (by hectare) 

1989 507111.1 107983.1 

2000 259262.9 281445.5 

change 247848.2 -173462.4 

% of change 48.9 160.6 

 
Cropland use change detection has shown that the active used cropland area decreased 

between 1989 and 2000 years by 48.9 percent from 507111.1 hectares to 259262.9 

hectares.    

Land Use and Land Cover dynamics is a result of complex interactions between several 

biophysical and socio-economic conditions. The effects of human activities are 

immediate and often radical, while the natural effects take a relatively longer period of 

time. 

The spatial-temporal aspects of principal cropland-cover/use dynamics in the period 

1989–2000 have been analyzed for the first time for the whole of Mongolia through an 
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analysis of spatially explicit data collected through remotely sensed data interpretation 

and field validation.  

Privatization of agricultural land has changed agricultural production considerably. In the 

present study only two years are available: 1989 describing the land-cover/use situation 

under the centralized government and 2000 in a market-oriented economy. 

The mid 1990s are not represented but stand for the moment in which the land was 

distributed to rural households and registration as private property took place. 

Considering the above-described limitations of remote sensing for analysis of 

land-cover/use dynamics, one could state that the present results are more likely an 

underestimation of change than an overestimation. If more land-use aspects and 

information would be integrated into the study, the area subject to change would be 

likely to be more extensive. 

The results show that it is not only important to monitor the extent of natural resources 

areas but also the quality of these resources. The monitoring system should have a 

national and a district component as the first is the level at which policies are formulated 

and the latter is the level at which management takes place and laws should be enforced. 

The monitoring and information flow, however, should be focused on the production of 

elements for decision making in natural resources management. People’s participation in 

this democratic dialogue should be promoted by increasing the influence of civil society 

in the decision-making processes. 
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4. Precision agriculture and cropland information system 
 

Introduction 

4.1 Motivation 

A principal concern of any country in the world today is to define and better understand 

the interrelationships between population, environment, natural resources and economic 

development for the purpose of realizing what is collectively known as “sustainable 

development” (WCED, 1987). 

Mongolia is at the beginning of 1990s brought about a new structural framework in the 

agricultural sectors. The state-controlled cooperatives and state farms were broken up 

and new production structures composed of a great number of small-scale farms emerged. 

In the command system, agricultural production was centrally planned and directed, as 

was the research and extension system. Therefore, the existing institutions of agricultural 

research and extension could not continue functioning in the same way as with the 

previous production structures.  

The present private farm units in Mongolian agriculture suffer from a lack of balance 

between production factors available to each farm and institutional structures needed to 

support efficient agricultural operations. Many elements of the old agricultural institution 

system have either stopped functioning due to shortage of public funds, or do not 

respond to the deep political, social and economic changes that have occurred in 

Mongolia during the past 15 years. Mongolian farmers are operating production and 

market activities in the absence of an integrated system of technology institutions such as 

agricultural remote sensing research, extension service, and agricultural newly education. 

Actually, institutional change in Mongolian agriculture is happening very slowly.  

Over the last decade, technical methods have been developed to utilize modern 

electronics to respond to field variability. Such methods are known as spatially variable 

crop production, geographic positioning system (GPS)-based agriculture, site specific 

and precision farming (PF).  Digital agriculture, also called Precision agriculture, the 

same name as information of agriculture, framing by inch, or Cyber-farm, is an advanced 

technological system related to middle or small scale farmland, combined directly with 

activity of agriculture production and administration. The adoption of precision 

agriculture practice is just starting in Mongolia. Digital agriculture started from 1955 in 

America. It is different from “agricultural gardening” in 1950-1960`s in Japan, “ecology 
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agriculture” and “green agriculture” coined by developed country in 60-70`s, and 

“agriculture factory” in Israel. It is an agriculture technology system with the 

characteristics of integration and information. It means that whole procedure of the 

farmland management cultivation, semination, irrigation, fertilizer, and protection of 

forestry, estimate of product, store and administration will be characterized by digital, 

network, and intelligence, using technology of remote sensing, telemetry, telecontrol and 

computer aided system. It will constitutes an information based agriculture technology 

system included monitor and estimation of crop conditions, land soil and current or 

dynamic analyzes of crop growth and  factors of environment, diagnose forecast, 

cultivation step, management planning and decision support.  

Now, in advanced country, digital agriculture includes the automatic agriculture 

operation and the technology of agricultural production and management using remote 

sensing, GPS, GIS, DSS, network and biology engineering.  

In this study to developing a parcel based cropland information system in Mongolia in 

first time. 

A parcel based agricultural information system can offer farmers the convenience of 

rapid access to their test results as soon as the tests have been completed.  

In the first instance, it indicates the growing need for secured land ownership, with its 

associated spatial information, and then the need for a system to support agricultural land 

administration and management from the environmental and economic perspectives. One 

such system is the parcel-based land information system, which maximizes security of 

land tenure, reduces agricultural investment risks, and facilitates, and lowers the cost of, 

land transactions. 

The agricultural or cadastral parcel is a well-defined land unit based on a homogeneous 

interest with a unique identifier. All information is collected, stored, referenced and 

retrieved at the land parcel level. It is also linked to crop management, land use; land 

allocation, valuation and taxation systems. 

Although the use of GIS is still very low in public sector in Mongolia, but most private 

organizations are now computerized. Few public GI organizations are embracing 

computerization to support their functions. The few public GI organizations are now 

adopting GIS tools for data handling and process management. The growth of many of 

these GI organizations depend on this new development, so critical analysis on effects of 

IS on their organization, most especially their structure is necessary.  
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Figure 4.1 Motivation for parcel based cropland information system 

 

4.2 Research Problem 

Sustainable agricultural development is not possible without the development of 

Information Technology, which has high influence on human development. 

The current policy of the Mongolian Government, outlined in the Human Development 

Report (Government of Mongolia, UNDP, 2000) emphasized the fact that the Mongolian 

rural population (nomads) is very vulnerable to mismanagement and to the high risk of 

natural disasters. Poor land related information, resulting in inadequate analysis, leads to 

misguided policies on natural resources management and environmental policies on 

national and regional levels. 

The Mongolian Government has set basic objectives and activities directed to improve 

regional development policy. As a result, policy makers will have new possibilities to 

influence correct allocation of fiscal and another resources for the state as a whole and 

for separate regions, to implement long and short time regional development plans, and, 

most importantly, to make good use of new knowledge, information and new advanced 

ideas (Tsedendamba, 2000). The other prominent existing problems in Mongolia, which 
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have negative influence into regional and state environmental planning in terms of 

information management related to agricultural land and land use/cover, are: 

• Poor Geoinformation quality and luck of information exchange within organizations; 

• Inappropriate institutional arrangement and any type (cropland, urban, forest.,etc) of 

land management at national and regional level; 

• Weak linkage between governmental policies, community initiatives, activities and 

their implementation. 

Therefore, demonstration of application of land Information Technology as a supportive 

tool for agricultural land use management and planning will be a necessary step 

contributing to Mongolian sustainable agricultural development. 

 

4.3 Objective 

The general objective of this chapter is  

• To the design of a parcel based cropland information system. 

Because Mongolia has a weak linkage within governmental policies and community 

initiatives and their implementations on agricultural land use planning, this information 

system can be useful for agricultural land assessment, and may provide a clear overview 

about environmental situation related to crop production, crop management, land 

taxation, leasing and decision support system (DSS) for land use planning for small land 

owner’s (small farmer’s) in rural areas. 

 

4.4 Study area 

The present research focused on Tsagaannuur district of Selenge province, in 

northeastern Mongolia.  

The current region was selected for the following reasons: 

• It is one of the biggest wheat regions of Mongolia; 

• It is an ideal area for any research related to the environmental problems; 

• We pointed out some already existing environmental problems within the region, such 

as agricultural land privatization, land fragmentation, agricultural mismanagement, 

which need to be studied and solved. 

The reason of choosing this particular topic was due to currently existing problems of 

agricultural land information system, which has had serious influences on the Mongolian 

agricultural management. 
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One of the main causes of this problem can be found in the effects from agricultural land 

privatization in Mongolian agricultural zones and which a major cause of agricultural 

management is change. Climate constraints, with unpredictable year-to-year irregularity 

in rainfall result in reduction of crop productivity. This makes agricultural crop planning 

difficult, especially in rural areas. 

Therefore, information system on agricultural land problems needs to be analyzed.  

The selected study area Tsagaannuur is located in the Northeastern part of the Selenge 

province in Mongolia, covers mostly forest-steppe, steppe and is rich in chernozem soil. 

The geographic boundaries of the area are 49° 45′ 0″-49° 75′ 0″ N, 106° 30′ 0″-

106° 50′ 0″ E. The climate of the region is semi-arid and arid; and the mean annual 

precipitation is 250-301 mm. Except for wheat and all other crops are rain fed.  

Figure 3-2 shown us selected study area.  

 

 

Figure 4.2 Study area Tsagaannuur district, Selenge province, Mongolia 
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4.5 Data collection and methodology 

4.5.1 Data collection 

Data was collected through a combination of the fieldwork and some desk study. Related 

papers was reviewed prior to, during and after fieldwork. Data collected from fieldwork 

was considered as the primary source of information, while the review of organizational 

records, related published material in both hardcopy and electronic format from official 

organizational and other professional bodies’ websites was considered as a secondary 

source of information. Both Primary and secondary data were collected during the 

Fieldwork. Primary data was collected in three different ways namely; direct (person to 

person) semi structured interviews (involving individuals and in one case a group), 

telephone interviews and by email administered semi structured questionnaires. On the 

other hand, secondary data was obtained through organizations’ official websites, 

professional bodies’ conference or workshop publications, organizational reports and 

minutes of meetings. Figure 4.3 demonstrated data collection methodology.  

 

Figure 4.3 Methodology ground truth data collection 

 

4.5.2 Methodology 

4.5.2.1 Mapping tools in constructing GIS systems 

There are two key components to a GIS system. One is the database that contains the 

geographically referenced information. The other is the set of maps on which the 

geographical referenced data are presented. An important part of the implementation of a 
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GIS system is constructing the base maps. The base maps in the GIS systems can be 

constructed using desktop mapping programs or web mapping applications. 

Maps are an important component in GIS systems. Many GIS systems use maps as their 

user interfaces. Through maps GIS system users obtain a way to work with the 

geographic data in the GIS system. Maps in GIS systems link the GIS data to geographic 

locations. Also the product of a GIS system most often takes the form of a map (a 

graphical presentation of the geographically referenced data). 

Implementation of a GIS system often involves mapping programs for constructing the 

set of maps in the system. Available web mapping services offer a straightforward way 

to build maps for web based GIS systems. External data sources can be integrated into 

the web mapping services to build complete GIS systems. 

With the launching of Google Maps, GIS developers are provided with a powerful web 

mapping service for constructing GIS base maps. Google Maps offers three types of 

maps (the standard street map, the satellite map, and the hybrid map) of the world at 

various resolutions. Also, the Google Maps provides a very interactive user interface- 

navigation on the map can simply be done by performing “drag and drop” on the map 

using the mouse. 

 

4.5.2.2 Parcel based land Information Systems 

Figure 3-4 shows the structure of information system growth leading to the origin and 

development of parcel based land information systems. 

Figure 4.4 Structure of information system (adopted from Dale and McLaughlin, 1988) 
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It is also considered as an abstract thing that is manifest as a set of rights with 

responsibilities and restrictions to its use, with a value that can be traded (Dale and 

McLaughlin, 1988). 

A land parcel can be defined as being for all of type of land use, cropland management, 

DSS, ecological or cadastral purposes, and as a continuous area of land within which 

unique and homogenous interests are recognized (Henssen, 1995). Thus a parcel based 

GIS can be defined as a kind of land information system whose basic spatial unit is the 

land parcel and in which land-related information is collected, stored, referenced, 

processed and retrieved basically at the parcel level. 

 

4.5.2.3 Parcel based cropland information system (LIS) Components 

A LIS consists of the following components that enable it to function well within land 

administration: 

♦ data sets (related to both spatial and non-spatial data) 

♦ process or functions related to data acquisition, data processing and storage, data 

maintenance, data analysis and data dissemination 

♦ hardware and software including communication networks 

♦ well trained people 

Two categories of data set are generally stored in a LIS. The first category is basic parcel 

(see more, from Appendix 3) based polygons (cadastral) data, which is directly 

connected with land ownership. The second category is supporting (additional) (see 

more, from Appendix 3) data, such as geodetic reference points, administrative 

boundaries and topography, which assure basic cadastral data (legal cadastral objects) of 

accurate referencing in relation to physical objects (especially topographical objects) and 

to the earth, as well as allowing integration with other types of spatial data. 

 

4.5.2.4 Field sampling methodology 

We were chosen for detailed sampling each polygon, where data was obtained over the 

course of three years. The parcels varied in size from about 8 to 3000 hectares. In most 

cases, due to the size of the parcels, field data collection for a single parcel would take 

several days. Field data was collected at 5 different times during 2007 and 2009, 

spanning both the cropping seasons as well as several stages of wheat maturation, from 

the early growth to pre-harvest. 
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4.5.2.5 Digital map creation 

Creating the link between the shape file containing the parcel boundaries and the 

production information was undertaken in two ways: First, using Arc Catalogue a spatial 

database connection was created with the geographic data stored in the relational 

database system of the Microsoft Excel. The link created a real-time spatially referenced 

information system where the digital maps created in ArcINFO had access to the some 

historical production records. This was created for the purposes of future onsite GIS 

analysis. Second, the parcel based database information was also extracted as .dbf files 

and was than linked directly to the vector map of each polygon. Each polygon points 

were then registered to Geographic lat/Long (Zone-48 WGS84 using) projection and the 

evenly distributed. The registration was based on first-degree polynomial and nearest 

neighbor re-sampling techniques. The accuracy of the registration was measured using 

independent check grids, which were not included in the transformation. Each crop 

polygon was assigned a numeric code, owner’s name, location and the crop types, soil 

moisture, air temperature, soil temperature of the ground-visited fields were recorded as 

attribute information.  

Also it is possible to do the normal operations related zoom-in and zoom out and other 

such operations related to layer/image in normal image handling programs. The 

mathematical operations on attributes aids in building the query and output the display to 

the monitor either statistically or graphically. 

 

4.5.2.6 Creating XY shape files 

A Creating XY shape files, based on the field data a gathered is the first stage in creating 

continuous vector coverage’s using with in an ArcGIS. Once the raw field data was 

transcribed into spreadsheets and saved as database files (.dbf) (which is the format 

accessible to ArcCatalogue) the data was thoroughly reviewed visually and via sort 

functions for obvious value outliers and outliers due to transcription errors. This was an 

extremely labor intensive process considering the size and number of datasets to be 

reviewed. Once the datasets were reviewed, they were mapped in ArcCatalogue and XY 

shape files were created using the ‘Create Feature Class from XY Table’ command in 

ArcCatalogue. 

Shape files were displayed in ArcMap and projected to the WGS 1984 coordinate system. 

These shape files were then re-examined for both spatial and value outliers, as once this 
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step was completed it became possible to view the spatial distribution of the data. In 

order to process spatial outliers, coordinates were examined for expected position in the 

sequence of points and when the transcription error was not obvious, simple interpolation 

was used to place point samples in the expected position.  
 

4.6 Result and conclusion 

Figure 3-5 demonstrated a parcel based land information system in Tsagaannuur 

province of Mongolia,  

Figure 4.5   Parcel based-cropland information system of Tsagaannuur sum,  

Selenge aimag, 

 

Also it is possible to do the normal operations related zoom-in and zoom out and other 

such operations related to layer/image in normal image handling programs.  

Nowadays, the world rapidly grows to be an informative community with the support of 

the internet. It is recently expected that there are more than thousands of gigabytes of 

information and more than hundreds of thousands online communities spreading all over 

the internet. Since the language is the foremost obstacle for people to access the content 

of such information, it is consider as the barrier for information access. Knowledge and 

information are important factors for accelerating agricultural development by increasing 

agricultural production and improving marketing and distribution. Information 
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technology can enhance the integration and efficiency of agricultural systems by opening 

new communication pathways and reducing transaction costs, given greater accessibility 

of information on prices, transportation and production technologies. 

The main objective of this research is to develop an approach (methodology) to improve 

the geometric quality of the cropland information system with cropland cadastral map in 

Mongolian case study in first time.  

The cropland information system and cropland cadastral map renovation has been 

conducted in terms of economical, technical, legal and social aspects, and financial 

aspects. 

• Economic impact: the cropland cadastral map is among the important maps that 

comprises the base maps. The result of the map renovation is a more reliable 

standard map to satisfy the users. This does not only include improvement on the 

cadastral map but the national spatial reference systems, the national topographic 

templates and many others. Furthermore, cropland cadastral map with 

information renovation will lead to good land administration and good 

governance. And this affect the GIS markets as well, various products and 

services can be created as a result. 

• Financial impact; it is obvious that the cadastral map renovation will cost less 

money than a cadastral resurvey. Cropland cadastral map renovation is expected 

to decrease the transaction costs and reduce lots of activities by supporting 

various products and services. This will make a great contribution towards the GI 

market and e-Government of Mongolia.  

• Technical impact; the current cropland information system with cropland 

cadastral map needs a topological structure and a seamless map. From all those 

things together with standards, incredible technical improvement would be 

reaped by the Mongolian society such as least square adjustment, spatial mapping 

techniques, and datum transformation and so on. Furthermore, this may be used 

for overseas markets. 

• Legal and social impact; the map renovation can support in the reduction of the 

number of land disputes in Mongolia. One conclusion that may be gleaned from 

the legal aspect is that Mongolia needs a special law which approves the conduct 

of the map renovation project. The base maps draw together a partnership within 

the GI governmental and non governmental organizations. This map renovation 
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could serve to manage all these aspects. This is Tateishi laboratory product for 

Mongolian agricultural markets.  
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5. Monitoring water stress index in wheat field of Mongolia 
 

5.1 Introduction 

5.1.1 Global developments in agriculture 

Of the world’s poor, 70% live in rural areas and are often at the mercy of rainfall-based 

resources of income. Frequent occurrence of crop growth extremely droughts of 1 to 3-

weeks consecutive duration during the main cropping season happens to be the dominant 

reason for crop (and investment) failures and low yields. 

Globally, 69% of all cereal area is non-irrigated, including 40% of rice, 66% of wheat, 

82% of maize and 86% of other coarse grains (Rosegrant et al. 2002). Worldwide, non-

irrigated cereal yield is about 2.2 metric tons per hectare, which is about 65 % of the 

irrigated yield (3.5 metric tons per hectare) (Rosegrant et al. 2002). Non-irrigated areas 

currently account for 58 % of world cereal production (Rosegrant et al. 2002). The 

importance of non-irrigated cereal production is partly due to the dominance of dry land 

agriculture in developed countries. More than 80 % of cereal area in developed countries 

is non-irrigated, much of which is highly productive maize and wheat land such as that in 

the Midwestern United States of America and parts of Europe (Rosegrant et al. 2002). 

The area of irrigated lands used for cereal production has more than doubled between 

1950 and 1980. Most of this increase can be attributed to a legacy of the large scale 

diversion of river water to supply (low efficiency), canal irrigation projects developed 

during the 1950–1970 period (Lambert et al. 2002). Irrigation enables production of two 

or more crops per year on the same piece of land, thus increasing the intensity of land 

use (Cassman, 1999). However, the rate of increase of irrigated land has slowed 

considerably since 1980 because of rising costs and the threat of long-term salinization 

(McCalla, 1994). This form of irrigation-induced salinization, also known as secondary 

salinization, has been extensively described and researched (Ghasemi et al. 1995). This 

salinization is, however, generally restricted to irrigation in the (semi) arid zone. Out of 

the 270 million ha of irrigated land in the world, about 110 million ha (roughly 40%) is 

located in this zone. The yield per unit land has increased markedly in the last 40 years 

as a result of intensified crop management involving improved germplasm 

(biotechnology), greater inputs of fertilizer (Cassman, 1999) and the recent advent of 

precision agriculture management practices (Stafford, 2000). 
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Molecular genetic biotechnology holds the promise of significant genetic improvements, 

but that promise is becoming reality much more slowly than earlier forecasts suggested 

(McCalla, 1994). Sinclair et al. (2004) noted that in spite of the optimistic predictions 

often made for transformations leading to plant genetic trait improvement resulting in 

increased yield potential, a historical perspective indicates that a much more moderate 

expectation is warranted. Forty years of research on the biochemistry and physiology of 

plant traits considered crucial for yield increases have resulted in few examples where 

such research led directly to a yield increase. Although past research has greatly 

increased the understanding of the factors associated with crop yields and contributed 

significantly to the development of molecular genetics, overall there are virtually no 

examples of such research leading directly to crop yield increase (Sinclair et al. 2004).  

 Precision agriculture, as a crop management concept, can help address much of the 

increasing environmental, economic, market and public pressures on arable agriculture 

(Stafford, 2000). Precision agriculture has generated a high profile in the agricultural 

industry over the last decade of the second millennium, although the fact of “within-field 

spatial variability” has been known for centuries. Nonetheless, further technology 

development is required, particularly in the area of sensing and mapping systems to 

provide spatially related data on crop, soil and environmental factors (Stafford, 2000). 

Precision agriculture is information-intense and could not be realized without the 

enormous advances in networking and computer processing power, and access there of to 

farmers and farm mangers. Stafford (2000) estimated that by the end of the decade, most 

arable enterprises in the developed nations will have taken on the concept on a whole-

farm basis. 

This chapter investigates the use of remote sensing data for essential factors for crop 

growth in cropland area of Mongolia. Mongolian grain productivity needs to occur in an 

environmentally sustainable manner. The concept of a crop monitoring system developed 

in this study will contribute towards these goals.  

 

5.1.2 Agricultural production systems and agronomic practices in Mongolia 

The development of large scale wheat growing in Mongolia was modeled on the Soviet 

virgin and idle lands program in western Siberia. These production systems were highly 

mechanized to cope with time-critical operations, especially planting and harvesting in a 

harsh and risky physical environment with a short season of typically around 100 days. 

Virtually all farm machinery, fuel, fertilizers and agrochemicals were imported from the 
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Soviet Union and provided to farms at highly subsidized prices. In an effort to become 

self-sufficient, the area under wheat increased from 200,000 ha in 1960 to 533,000ha in 

1990 and the process, significant areas of marginal land were brought under cultivation.  

A wheat/fallow rotation was practiced with either wheat for two years followed by bare 

fallow in the third year, or wheat and fallow in alternative years: the choice depending 

primarily on annual precipitation and secondary on the moisture retention capacity of the 

soil. In general, this meant a three-year rotation in much of the wheat-growing areas in 

the north-central region, and two-year rotation in drier eastern areas of the country. 

However, following the withdrawal of Soviet support and the subsequent scarcity and 

higher cost of inputs, the two-year rotation, with 50% of cultivable land in fallow every 

year, is becoming standard practice in all wheat-growing areas.  

 

Figure 5.1 Farm activities in the study area 

 

Due to severe winters and minimal snow cover, it is impossible to grow winter wheat 

varieties, leaving early-maturing spring wheat varieties as the only option. Sowing 

occurs in May and the crop is harvested in September. The sowing date is major factor 

influencing grain yield and quality, with May 1 to 10 as the optimal period. Both yield 

and quality are likely to be seriously affected in crops sown later than May 20. National 

yield levels, which averaged 1.2 t/ha in the 1980s, have fallen to less than 1t/ha, largely 

because of the greatly reduced availability (fuel) and use (fertilizer and agrochemicals) of 

inputs and the resultant negative effect on timely field operations.  
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5.1.3 Tillage and seeding 

Prior to planting land is plowed and or cultivated one or more times to a depth of 15-20 

cm, followed by further one or more cultivations to firm the seedbed before sowing at a 

depth of 7-10 cm. seeding rates are between 180 and 200kg/ha on contrast with rates of 

50-70 kg/ha used in a similar agro climatic regions in North America. Relatively deep 

cultivation of the seed bed has been advocated to allow rainfall and plant roots to easily 

penetrate the soil. Unfortunately, such deep cultivation depletes soil moisture reserves 

and leads to soil erosion by strong spring winds. The loss of soil moisture requires 

deeper planting to ensure seeds are placed in contact with moist soil; but deep planting 

results in poor emergence and less vigorous seedlings.  

Minimum tillage systems involving fewer and shallower cultivations to conserve soil 

moisture and reduce the risk of wind erosion offer the greatest potential for raising yields 

and improving cost-effectiveness.  

 

5.1.4 Fertilizer and agrochemicals 

The rate of application was quite high and fertilizer use more than doubled between on 

1978-1988. Recommended application rates for wheat are 60 kg/ha nitrogen (N), 

60kg/ha phosphorus (P) and 40 kg/ha potassium (K), (in practice, rates applied were 

often lower depending on availability).  These recommendations are based on field trials 

conducted in the 1970s and are designed to give maximum rather than optimal output. 

Since 1990 fertilizer prices have been more closely related to world prices. With limited 

access to credit and foreign exchange, fertilizer imports and use have been reduced to a 

few tons obtained through concessionary lending or by barter for use on vegetables or 

potatoes; virtually no fertilizer has been applied to the wheat crop since 1991.  

Determination of optimal application rates is made difficult by the variability of summer 

rainfall since yield response to fertilizer is largely dependent on the availability soil 

moisture.  

 

5.1.5 Harvest 

Harvesting needs to be completed as quickly as possible (ideally with in 2 weeks) to 

minimize the risk of damage by frost or wet weather which adversely affects grain 

quality. Serous delays can lead to abandonment of the crop. Harvesting is carried out 

using combines that usually make two passes. The first cut and swathed and left to wilt 

in the field for about 5 days, after which it is threshed and transported by truck or tractor 
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and trailer to grain-dressing centers at the farm main complex. After the initial wilting, 

the grain has a moisture content of 20-25 percent. Further drying of the grain takes place 

while the grain is heaped on the floor of the dressing center. The grain is then processed 

up to three times using mobile grain cleaners that both clean and aerate the grain, further 

reducing the moisture content to about 16-20 percent, prior to sale. (The flour mills 

reduce the moisture content to 14% for long-term storage).  

 

5.2 Wheat 

Wheat is one of the leading cereal grain crops produced, consumed and traded in the 

world today. Wheat is used mainly as a human food. The cultivated wheat belongs to two 

main classes, common or bread wheat (Triticum aestivum L.), which accounts for about 

95% and durum wheat (Triticum durum), which accounts for 5 % of world wheat 

production. Common wheat is used to make bread and biscuits, whereas durum wheat is 

used to make pasta. Unlike any other plant-derived food, common wheat contains gluten 

protein, which enables leavened dough to rise by forming minute gas cells that hold 

carbon dioxide during fermentation and enables production of light textured bread. 

 

 

Figure 5.2 spring wheat growth stage (Adopted from Zadoks.J.C., 1974) 
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Common wheat is classified into hard or soft wheat based on its suitability for making 

bread. Hard wheat has a physically hard kernel that yields flour with high gluten and 

hence high protein content. This type of flour is more suitable for producing bread. 

Soft wheat on the other hand have lower protein contents and are more suitable for 

producing biscuits and cakes, which do not require strong flour (i.e. flour with high 

gluten content). Wheat is also classified as either red or white wheat depending on the 

color of the aleuronic layer. Another classification is that based on the growth habit, 

which group’s wheat into spring and winter types.  Wheat is a widely adapted crop.  

Although it is most successful between the latitudes of 30o-60o N (Mongolia 41o-52oN 

latitude) and 27o -40o S, respectively, wheat can be grown beyond these limits from 

within the Arctic Circle to higher elevations near the Equator (Nuttonson, 1955, as 

quoted by Curtis, 2002). In altitude the crop is grown from sea level to more than 3000 m. 

It can be grown in areas ranging in annual precipitation from 250-1750 mm, although 

most of the world crop is produced in areas with 375-875 mm annually (Leonard and 

Martin, 1963).  

 

5.3 Wheat in Mongolia 

Although wheat production is concentrated mainly in the temperate regions of the world, 

it has also become an important crop in highland areas of some countries such as 

Mongolia. Wheat was introduced in Mongolia towards of 1950 of the between the 20th 

century and has since been grown on an increasing scale in the northwest areas. The 

wheat growing areas between the 800 and 1200 m., and receive more than 350 mm of 

rainfall per annum. The wheat is grown under rain fed conditions, in small and large 

farms where nearly all production activities are mechanized. All the wheat is spring 

wheat and several varieties of both hard and soft wheat are grown. 

Wheat is currently the most important cereal crop. The varieties released are suited to the 

various agro-ecological zones in the wheat-growing region of Selenge, Tov, Bulgan, 

Zavhan and Dornod aimags. Due to increasing population and changing lifestyles the 

demand for wheat has steadily been increasing. Wheat is produced in the high potential 

areas of Mongolia, which cover only 0.07 % of the total land area 
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5.4 Climate change and crop production 

Agricultural production and climate are closely linked, which means any change in 

climate will affect agricultural production. Climate change will affect the production 

directly and indirectly, for example, increasing temperature in a specific region will 

increase evapotranspiration, and therefore, the water requirements of crops especially 

summer crops. The length of the growing seasons and tolerance to pests and diseases will 

also be affected. Mongolia is located in an arid region and climate change reduces crop 

production due to increased demand for water. Although agricultural production per unit 

area has increased substantially over the last few years, further increases are limited by 

the availability of water and energy resources, land degradation and desertification, 

which affect the fertile lands for agricultural production. 

 

5.5 Limiting factors for crop production 

Stress factors on crops are multifarious. These abiotic (drought, salinity, flooding, UV 

high light, frost, heat, pollutant and mineral deficiency toxic) and biotic (disease and 

insects) stressors cause changes in plant physiology and thus affect crop growth. 

Globally, water is regarded as the major limiting factor that reduces crop productivity 

especially in arid and semi-arid regions (Jones, 1999). Barnabas et al. (2008) reported 

that drought is one of the major limitations to food production worldwide. High 

temperature causes high evapotranspiration making it difficult to meet water 

requirements of crops (Penuelas et al., 1992). Drought at any growth stage reduces crop 

yield but maximum reductions occurs at the flowering stage but early growth stage and 

mid to late grain filling stage are also sensitive (Claasen and Shaw, 1970). Edmeades et 

al. (1992) estimated that in the developing world, annual yield losses due to drought may 

approach 24 million tonnes, equivalent to 17% of a normal year’s production. 

 

5.5.1 Influence of Droughts on Crop Production 

Water stress during crop growth, even during short periods of a couple of weeks, is a 

major cause of yield reduction. The complexity in defining the magnitude of such water 

stress is due to diversity of crops grown in a given location, variability in soil type and 

conditions, spatial variability of rainfall, delay in timely of agriculture, and diversity in 

crop management practices. The drought may range from a few days to two weeks or 

even more.  
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Drought stress is one of the most widespread environmental stresses when the available 

water in the soil is reduced and atmospheric conditions cause continuous loss of water by 

transpiration and evaporation (Kramer, 1980). Many regions of the Earth are often or 

permanently exposed to drought (Bray, 1997). Up to 26 % from the usable areas of the 

Earth is subjected to drought (Blum, 1986). Drought is the most severe stress and the 

main cause of significant losses in growth, productivity of crop plants, and finally their 

yields (Ludlow and Muchow, 1990).  

 

5.5.2 Drought Definition and drought index 

Although deviation from the normal amount of precipitation over an extended period of 

time is broadly accepted as the cause for drought, there is no one, universally accepted 

definition for drought. This is because different disciplines use water in various ways and 

thus use different indicators for defining and measuring drought. 

Wilhite and Glantz (1985) analyzed more than 150 such definitions of drought and then 

broadly grouped those definitions under five categories: meteorological, agricultural, 

hydrological, ecological and socio-economic drought. 

 

Figure 5.3 Type of droughts (Modified from Wilhite and Glantz, 1985) 
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Many indicators and indices of drought exist and these may disagree as to the severity of 

drought conditions. Each of these indices has recognized strengths and weaknesses. 

Commonly used drought indices in the include the Palmer Drought Severity Index 

(PDSI), Crop Moisture Index (CMI), and Standardized Precipitation Index (SPI). Each of 

these indices has recognized strengths and weaknesses. Indices are often used to trigger 

both response and mitigation programs by local, state, and federal government. The 

PDSI, a meteorological drought index, was the first comprehensive drought index 

developed in the United States (Palmer, 1965). The PDSI provides a measure of the 

departure from normal of the moisture supply. The CMI is an indicator of soil moisture 

in the topsoil. The SPI is a simple calculation solely based on rainfall with a temporal 

flexibility that is theoretically much better suited to the quicker responses in vegetation 

detected by satellite imagery. It is a statistical measure on the surplus or lack of 

precipitation during a given period as a function of the long-term average precipitation 

(McKee, 1994). 

Here agricultural drought is given a prime focus in this study of other types of drought. 

Agricultural drought refers to a situation in which the moisture in the soil is no longer 

sufficient to meet the needs of the crops growing in the area. Focus is placed on 

precipitation shortages, reduced ground water/reservoir levels, differences between 

actual and potential evapotranspiration, and so on.  

Drought is a protracted period of deficient precipitation resulting in extensive damage to 

crops and loss of yield. A good definition of agricultural drought should be able to 

account for the variable susceptibility of crops during different stages of crop 

development, from emergence to maturity. 

Deficient topsoil moisture at planting may hinder germination, leading to low plant 

populations per hectare and a reduction of final yield. The water demand of a crop 

depends on weather conditions (such as temperature, relative humidity), its biological 

make-up, what stage of growth the crop is in, and the physical/chemical make-up of the 

soil. However, if topsoil moisture is sufficient for early growth requirements, 

deficiencies in subsoil moisture at this early stage may not affect final yield if subsoil 

moisture is replenished as the growing season progresses or if rainfall meets plant water 

needs. 
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5.5.3 Remote sensing and drought stress 

Remote sensing technology is an economical and promising tool for obtaining land 

surface parameters. A drought index based on land surface temperature should be more 

efficient than those based on NDVI.  

The drought index that based on normalized difference vegetation index (NDVI) falls 

short in monitoring drought because NDVI is a rather conservative indicator of water 

stress, which means that vegetation remains green after initial water stress (Sandholt, 

2002). In contrast, land surface temperature (Ts) is more sensitive to water stress (Goetz, 

1997).In fact canopy and surface radiation temperature have been suggested as water 

stress indicators since the early 1960s (Tanner, 1963) and have been popularized since 

the early 1980s (Jackson, 1981). Temperature as a water stress indicator is based on a 

relationship between leaf temperature and transpiration. Generally, as transpiration rate is 

reduced owing to plant water deficit, leaf temperature rises relative to air temperature 

(Wang, 2004). The combination of NDVI and Ts provides information on the vegetation 

and moisture status. The scatter plot of remotely sensed temperature and spectral 

vegetation index often exhibits a triangular (Carlson, 1994) or trapezoidal (Moran, 1994) 

shape and is called the NDVI-Ts space if a full range of fractional vegetation cover and 

soil moisture content is represented. The NDVI-Ts slope was related to land surface 

evapotranspiration rate (Boegh, 1998) and can be used to estimate air temperature 

(Prihodko and Goward, 1997) in (Wang, 2004). (Boegh, 1998) decomposed the remotely 

sensed temperature into canopy temperature and soil surface temperature based on the 

NDVI-Ts relation for certain vegetation types when the canopy is sparse.  

A drought can have substantial economic, environmental, and social impacts and it 

produces a large number of impacts that affects the social, environmental, and 

economical standard of living. The success of sustained agriculture in arid and semi-arid 

regions of the world depends entirely on water availability. Wheat is an important cereal 

crop and is adapted to a wide range of climatic conditions (Ehrler et al., 1978). However, 

in arid and semi-arid areas, its yield is severely limited by water-deficit stress.  

 

5.6 Motivation  

The problem associated with drought is a recurrent feature in Mongolia. In fact drought 

is a significant environmental problem too as it is caused by less than average rainfall 

over a long period of time. In Mongolia about 95 percent of total wheat sown area of the 

country is rain fed. Thus it has serious impacts on macro and micro regional food 
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production, destruction of ecological resources, huge economic losses and food shortages. 

Therefore it is serious issue to any state authority to know the complexity nature of 

drought. 

Systematic meteorological observations began in the early 1940s, in Mongolia. There is 

not much recorded or published information on historical climate of Mongolia. Only a 

few spot points on short period extremes have been recorded in history books (Dorjsuren, 

1961, Tsevel, 1966, Tsedevsuren, 1983). Clearly, the number and duration of hot days is 

increasing. 

Evidence for climate change taking place in Mongolia has been an increase in frequency 

in dust and snow storms with 2 to 3 times since 1960. High levels of climate variability 

in precipitation occur and it is likely that climate variability in terms of drought 

frequency and intensity will be increased as a result of climate change. The Mongolian 

average precipitation decreased by 6% in 1940-2000 years and annual air temperature 

increased by 1.660oC on average, with clear warming from the beginning of the 1970s. 

(Figure 5-4 and Figure 5-5)  

 

 

Figure 5.4 Precipitation change 1940-2000, Mongolia  

(Source: Institute of Meteorology and Hydrology of Mongolia) 
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Figure 5.5 Air temperature change 1940-2000, Mongolia  

(Source: Institute of Meteorology and Hydrology of Mongolia) 

Apart from economic loss due to low agricultural production, loss of animal wealth, 

inadequate nutrition and primary health care, the impact of the drought is likely to retard 

the development process. The most severely affected Mongolian principal cropland area.  

The objective of this study is to demonstrate the use of Water Deficit Index (WDI) 

derived from LANDSAT satellite data for analyzing wheat area. 

 

5.7 Study area 

The selected study area Tsagaannuur district is located in the Selenge aimag. (See more 

from page 42, chapter-4) The climate of the region is semi-arid and the mean annual 

precipitation is 250-301 mm. The main crops being grown in this region are wheat, 

fodder crops, potato, and some vegetables. Except for wheat, all other crops are rain fed. 

The planting dates of wheat and fodder crops are mostly planted in from the mid of May 

to end of September. Almost all the crops present an important vegetative development 

in the June–August period. The wheat is harvested between September and early 

October.  Some times rains very late and light in this region, while farmers using 

artificial cloud insemination methodology. 

 

5.8 Used data  

Landsat Enhanced Thematic Mapper (ETM+) image (with path/row 131/26) used and  

acquired 2000 years and image is cloud free and of good quality.  
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Figure 5.6  TIR Band Landsat +ETM 2002.07.24 

 

The study period for this analysis spans the July 2000, being part of the wheat production 

cycle. One image generated by the enhanced thematic mapper (ETM) sensor on board of 

the LANDSAT 7 satellite were used, covering spectral band 3 (red, with 28.5m pixel 

resolution), band 4 (near infrared, with 28.5mpixel resolution) and band 6 (thermal 

infrared, with 60m pixel resolution). In the case of the thermal band (band 6), it was 

necessary to resample the image to the same resolution of bands 3 and 4. The images 

were acquired on July 24, 2002 Image processing was carried out with ENVI 4.3 and 

ERDAS imagine programming tool. The image was used to estimate the parameters 

required to compute water stress on wheat. The normalized difference vegetation index 

(NDVI) was computed with the red and near infrared bands. This module uses the 

following algorithm to determine NDVI: 

RNIR
RNIRNDVI

+
−

=      (1) 

Where: 

 NIR and R are the reflectance’s in the near infrared and red bands, respectively. Surface 

temperature (Ts) was computed with the thermal infrared band. ERDAS relies on a 

conversion algorithm based on tables published by Bartoliucci and Chang (1988). 
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Because the trapezoid model is specific for a certain crop, we separated the area in the 

Tsagaannuur district planted with wheat. Also, one weather station located in the 

Tsagaannuur and data was used for this study.  

 

5.9 Methodology 

Vegetation lamina tissues strongly absorb incident radiances in blue, purple and red 

wavelengths and intensively reflect the near infrared (NIR) spectrum. The thicker the 

vegetation density, the smaller the reflectance in Red and the higher the reflectance in 

NIR bands become. Because the absorption of the Red range is saturated quickly, only 

the increase of reflectance in the NIR region could reflect the increase of vegetation. 

Then, from Red to NIR spectral region, the reflectance of bare soil is high but increases 

slowly. However, due to the strongest absorption by water, bare soil reflectance 

decreases distinctly with the increasing of soil moisture especially in the near infrared 

domain. Therefore, any mathematical operation which could strengthen the difference 

between NIR and Red could be used to describe the vegetation, surface drought status 

and discriminate the soil information from the vegetated pixel. All of vegetation indices 

(see more from ap.7) were based on this theory. Figure 5-8 is showing methodology. 

 

Figure 5.8 Flow chart of methodology 
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We determined 2 main values from remote sensing data.  

1. Soil line and intercept 

2. Surface temperature 

 

Soil line: 

Considering the spectral characteristics of surface targets and ETM+ spectral features, 

ETM+ band 3 (Red, 630–690 nm) and band 4 (NIR, 780–900 nm) were selected to 

construct the NIR–Red spectral space. The scatter plot of the atmospheric corrected NIR, 

Red reflectance spectrum demonstrated a typical triangle shape (Figure 5.7a). Different 

land cover types manifested certain regular distribution in the NIR–Red spectral space. 

Soil line is a linear relationship between the NIR and RED reflectance of bare soil 

originally discovered Richardson and Wiegand (1977). 

baRNIR soilsoil +=   (2) 

Where a-soil line slope, b-intercept 

The soil line is made up of plots characterizing the spectral behavior of non-vegetated 

pixels and whose moisture varies obviously. It is not difficult to see from the Fig. 5.7a. 

  

Figure 5.7 a. Construction of NIR-Red spectral space using ETM data 

 

The remote sensing method utilized here to determine water crop stress is based on 

Moran et al, (1994). As explained before, the relationship between (Ts-Ta) and 
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vegetation cover is defined in a trapezoidal (from R and NIR scatter plotter) shape. The 

vertices of the trapezoid indicate extreme canopy cover and (Ts-Ta) conditions for a 

specific crop. Vertex 1 represents full vegetation cover and well watered conditions. 

When crops are not experiencing water stress, the canopy resistance is at minimum.  

Hence, when plants are fully transpiring, there is no opposition to water flow and the 

value is zero. Aerodynamic resistance is also an opposition to flow, and is defined as the 

resistance from the vegetation toward the atmosphere and involves friction from air 

flowing over vegetative surfaces (Allen et al., 1998). All these processes produce a larger 

negative difference between Ts-Ta. Vertex 2 is captures full vegetation cover under 

drought. Vertex 3 is saturated bare soil and vertex 4 is dry bare soil. Vertices 2 and 4 

implies that crop experiences nearly completely stomatal closure, and, since canopy 

resistance is directly proportional to stomatal resistance, therefore, rC=1 and would 

produce a more positive Ts-Ta value. For this theoretical shape, the term vegetation 

index/temperature trapezoid is utilized. The lines that connect the four vertices have a 

particular meaning. The line connecting vertices 1 and 2 is the range of all possible  

values from well watered, transpiring full cover canopy (vertex 1), to a highly stressed, 

non-transpiring full cover canopy (vertex 2). The line connecting vertices 1 and 4 

describes potential evapotranspiration. Finally, the line connecting vertices 2 and 3 

defines the zero ET condition because the surface is completely dry. 

 

Figure 5.7.b Moran`s trapezoid derived from Figure 5-7.b. (Moran et al., 1994) 
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However, there is one important assumption to consider for the construction of the 

trapezoid. This assumption relies in considering that (Ts-Ta) is a linear function of 

vegetation cover, whereby, the lines connecting the vertices 1-4 and 2-3 are straight 

(Moran et al., 1994). This statement is supported by Kustas and Daughtry (1990) who 

found that Ts could be calculated from air, soil and canopy temperature and vegetation 

cover measurements taken in Arizona. The calculated value was -+1.5 8oC of the value 

measured by a sensor. For a particular set of (Ts-Ta) and vegetation index (for example, 

point ‘‘C’’ in Fig 5-7), the ratio of the AC/AB distances is defined as the water deficit 

index. As a result, WDI = 0 refers to conditions under irrigation and WDI = 1 to 

conditions of maximal stress. In addition, the ratio of the distances CB/AB is defined as 

the relationship between the actual and potential evapotranspiration (Moran et al., 1994). 

To determine the corners of the empirical trapezoid, measured extreme values of wheat 

NDVI (full cover under wet and dry soil) and the difference between surface and air 

temperature (full, partial foliage and bare soil) were used. 

In the case of drought conditions, the average value of (Ts-Ta) was 0 (with the maximum 

1oC), with an NDVI value of 0.9 for full cover. Once the vertices were defined and the 

empirical trapezoid was built, the equations of the straight lines formed by the vertices 2-

3 and 1-4 were obtained (see Fig. 5-7a.b). The equation of the straight line formed by 

vertices 1-4 provides the point of the minimal value of (Ts-Ta) for a given value of 

NDVI (point ‘‘A’’ in Fig. 5-7a, b) as 

NDVIbaTT as 11min)( −=−   (3) 

Where: a1 and b1 are the intercept and slope of the straight line with vertices 1-4. On the 

other hand, the equation of the straight line formed by vertices 2-3 supplies point ‘‘B’’ or 

the maximum value that (Ts-Ta) can have for a given NDVI value as 

NDVIbaTT as 22max)( −=−   (4) 

From formula (2) and (3) given us for ours general methodology how to define water 

stress index (see Figure 5-8 shown general methodology).  

Final formula is: 

 

)()(
)()(

2211

11

NDVIbaNDVIba
TTNDVIba

WSI as

−

−

−−
−−

=       (4) 

 



 68

The images are used to estimate the parameters required to compute water stress on 

wheat. Surface temperature (Ts) was computed with the thermal infrared band. The soil 

line and intercept are made up of plots characterizing the spectral behavior of non-

vegetated pixels and whose moisture varies obviously.  

 

Land surface temperature (LST) defines: 

Land surface temperature (LST), controlled by the surface energy balance, atmospheric 

state, thermal properties of the surface and subsurface, is an important parameter in many 

environmental models (Becker and Li, 1990), such as, energy and material exchange 

between atmosphere and land, weather forecasting and climate change. Thermal infrared 

(TIR) remote sensing is the only possible approach to retrieve LST (Coll et al., 2005) 

over large portions of the Earth surface at different spatial resolutions and periodicities. 

In estimation of LST from TIR data, the digital number of the image pixel needs to be 

converted into spectral radiance using the sensor calibration data (Markham and Barker, 

1986) and emissivity correction. However, radiance converted from digital number does 

not represent true surface temperature but a mixed signal or a sum of different fractions 

of energy. These fractions include the energy emitted from the ground, upwelling 

radiance from the atmosphere, as well as the down welling radiance from the sky, 

integrated over the hemisphere above the surface and type of land use/land cover surface 

present. These factors are dependent on atmospheric conditions and emissivity of the 

land surface.  

The methodology of LST define algorithm is very easy. All algorithms are available in 

the Landsat data guide.  

 

Converting  ETM+ thermal bands to temperature: 

The Landsat Enhanced Thematic Mapper Plus (ETM+) sensors acquire temperature data 

and store this information as a digital number (DN) with a range between 0 and 255. It is 

possible to convert these DNs to degrees Kelvin using a two step process. The first step 

is to convert the DNs to radiance values. There is no need to rectify the spectral radiance 

value in ETM+ because the two subands in ETM+ band 6, named Low gain 6 (1) and 

High gain 6 (2) are separated always.  

The second step converts the radiance data to degrees Kelvin. In this case we calculated 

LST from Landsat ETM data used by with ENVI 4.8 programming tool.  

To create radiance data layer, from the ENVI main menu bar, select  
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Basic Tools>Preprocessing>Calibration Utilities>Landsat Calibration. Select the thermal 

file and the ENVI Landsat Calibration dialog should open with all of the calibration 

parameters filled in. Click on the Radiance radio button and direct the output result to 

Memory. After creating this file you can proceed to the optional Section 2 Apply 

Atmospheric Correction or directly to Section 3 Convert Radiance to Kelvin to generate 

a new data layer of brightness-temperature in degrees Kelvin.  

Land surface radiances derived from Landsat ETM+ TIR data were subsequently 

converted to radiance values, it is simply a matter of applying the inverse of the Planck 

function to derive temperature values.  

For atmospherically corrected data the formula to convert radiance to temperature is:  

( )1ln
2

1

2

+
=

RCV
K
K

T  

Where:  T is degrees Kelvin  

    CVR2 is the atmospherically corrected cell value as radiance (from step 2)  

K1=666.09 

K2=1282.71 

 

LCT Validation 

One of the major problems in the validation of remote sensing data with ground truth 

observation is the dissimilarity between the spatial scales of field thermometers or local 

observation office data and that of satellite sensors. The comparison of local observation 

centers data with that of satellite (area averaged) data is meaningful only when the test 

site is homogeneous in temperature and emissivity at various spatial scales involved.  

 

5.10 Result and conclusion 

In this case were used on cloud-free Landsat-7 ETM+ image of Tsagaannuur district of 

Selenge province, Mongolia for LST retrieval. 

Figure 5.9 shows final calibrated image of the study area and Figure 5.10 shows the 

empirical trapezoid compared with field and remote sensing data.  
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Figure 5.9 Calibrated image 20020724 ETM+,   

Study area Tsagaannuur, Selenge 

 

The blue points represent randomly chosen remotely sensed measurements from the area 

planted with wheat. Both sampling methods were done to verify that all the samples fall 

within the limits of the empirical trapezoid. 

 

 

Figure 5.10 WSI in wheat field 
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This study shows a good agreement of LST derived from Landsat-7 ETM+ TIR data 

with ground temperatures over thermally homogeneous wheat area and present study has 

found a significant result for crop drought monitoring by integration of satellite data and 

meteorological data.  

The trapezoidal shape obtained in this work was very similar to that from Moran et al. 

(1994) and Yang et al. (1996); however, it differs in the range of NDVI and (Ts-Ta) 

values. The trapezoid method should be applied for each specific crop in order to 

optimize water stress determination and irrigation management. 

LANDSAT data allows estimation of the amount of water stress on small lots and 

parcels and in large crop fields, in part due to its broad swath width and high spatial 

resolution. As a result, remote sensing allows estimation of crop water dynamics at both 

regional and local scales. Furthermore, rapid developments in remote sensing, with the 

incorporation of improved satellites or sensors, may lead improved accuracy and new 

applications in the near future. 

LST retrieval is quite useful for frequent monitoring of any study area with greater 

reliability with selective ground temperature measurements. The accuracy of LST 

retrieved for satellite data can be further improved with accurate measurements of 

surface emissivity and estimates of atmospheric parameters at each pixel.  

In conclusion, remotely-sensed water stress index provided a useful tool for the 

evaluation of crop water status especially that of wheat in Tsgaannuur, Mongolia and 

could be useful for rain fed cropland area and irrigation scheduling. 
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6. Conclusion and recommendations 
 

6.1.1 Conclusion 

The remote sensing technology is increasingly being used to study land use and land 

cover changes and identify changes that has occur through different land use activities 

which may have negative impact on the sustainability of the environment and 

biodiversity protection and conservation.  

The first objective of this study was to map and monitoring cropland cover changes that 

have taken place between the 1989 and 2000, to integrate visual interpretation with 

supervised classification using GIS and to examine the capabilities of integrating remote 

sensing and GIS in studying the spatial distribution of different cropland cover changes.  

Supervised classification using six reflective bands of the two images acquired on 1989 

and 2000 respectively was carried out using maximum likelihood classifier in order to 

produce cropland cover/use maps of the study area. Cropland use change detection has 

shown that the active used cropland area decreased between 1989 and 2000 years by 48.9 

percent from 507111.1 hectares to 259262.9 hectares.    

The spatial-temporal aspects of principal cropland-cover/use dynamics in the period 

1989–2000 have been analyzed for the first time for the whole of Mongolia through an 

analysis of spatially explicit data collected through remotely sensed data interpretation 

and field validation.  

In the present study only two years are available: 1989 describing the land-cover/use 

situation under the centralized government and 2000 in a market-oriented economy. The 

mid 1990s are not represented but stand for the moment in which the land was 

distributed to rural households and registration as private property took place. 

The main causes of cropland decreasing in the study area are related with land 

privatization, agronomic mismanagement (seed quality, fertilize, pesticide, tillage, etc), 

technical or some area moved to mining area and irrigation problem.  

This problem needs to be seriously studied, through multi-dimensional fields including 

socio-economic and legal aspects in order to preserve the newly reclaimed land and 

increase food production.   

 

The second objective of this research was to develop an approach (methodology) to 

improve the geometric quality of the cropland information system with cropland 
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cadastral map in Mongolian case study in first time. In this study distributed one part of 

the parcel based cropland information system on Tsagaannuur of Mongolia.  

The cropland information system and cropland cadastral map renovation has been 

conducted in terms of economical, technical, legal and social aspects, and financial 

aspects. 

The agricultural information sector in Mongolia has a relatively weak technological base 

and insufficient scientific, technical and educational capacity and thus needs substantial 

capacity building. There is also a dire need for radical change in the Mongolian 

agricultural information system, if widespread management and dissemination of 

information and knowledge in digital format is to take root.  

Modern information systems are expected to play an increasingly important role in future 

in assisting agricultural producers to become more competitive on local and international 

markets. Producers may expect high returns to information that is pertinent to their 

businesses.  

 

The third objective of this study was to investigate crop stress index in wheat field. In 

fact drought is a significant environmental problem too as it is caused by less than 

average rainfall over a long period of time.  

In arid and semi-arid regions, rain fed and irrigated agriculture is threatened by water 

shortages caused by pronounced droughts or water mismanagements. In this study, was 

monitored water stress in wheat field using NIR and SWIR wavelengths and surface 

temperature are determined through analysis of satellite-based remote sensing images in 

the Tsagaannuur, of Mongolia.  

This methodology can be used to generate more accurate water management practices 

and facilitate decisions about irrigation applications. 

In Mongolia about 95 percent of total wheat sown area of the country is rain fed. Thus it 

has serious impacts on macro and micro regional food production, destruction of 

ecological resources, huge economic losses and food shortages. This study has found a 

significant result for crop drought monitoring by integration of satellite data and 

meteorological data.  The trapezoidal shape obtained in this work was very similar to that 

from Moran et al. (1994) and Yang et al. (1996); however, it differs in the range of 

NDVI and (Ts-Ta) values.   
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6.1.2 Recommendations for further research 

Some recommendations are outlined below for further research on the use of remote 

sensing technology in agricultural land use and cover changes monitoring in Mongolia 

1. There is a need for further research work on the use of the remote sensing and GIS 

technology with the research study work covering the whole land cover for Mongolia. 

This will provide the opportunity in carrying out a comprehensive appraisal of the 

agricultural land use changes scenario in the whole country. With the northern region of 

the country undergoing a rapid change in vegetation cover and land use with desert 

encroachment a major problem, land use planners and environmental managers in the 

country will be able to make an assessment of the change scenario with a decision on 

which region of the country will be recommended for specific land use type based on 

consideration for the environment and its long term sustainability. 

 

2. Agricultural producers in Mongolia are increasingly being exposed to the potential of 

modern information technologies as a management tool. However, despite the real and 

potential benefits of using information technologies (including improved flows of 

relevant and up-to-date information for decision making); their capabilities have not been 

fully exploited. Reasons include the relatively poor infrastructure in rural areas (e.g. 

unreliable telephone services), the time taken to obtain information from the Internet, the 

perceived high cost of some modern information technologies (such as GPS and GIS) in 

relation to their benefits, and the lack of education in the effective use of information 

technologies. There is thus a need to improve the quality of electricity and 

telecommunication services in the rural areas, for software developers to create more 

efficient algorithms, and for effective educational programmes (involving courses, 

workshops and phone-in support) to be developed for producers who wish to adopt 

modern information systems. Farm advisors, including extension officers and private 

consultants, could make valuable contributions to educating farmers in the effective use 

of information technologies. With the maturation and development of Internet/Intranet 

technology, Web mode has becoming the kernel network calculation mode. Web 

information system is also endowed more plenty content, and integrate the most 

advanced information technique, it plays an important and actively role in the 

agricultural field, and has becoming the window for agriculture communicating with the 

outside. Therefore we have in future needed to develop web based cropland information 

system. 
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3. There is also a need for further research work on resource use assessment to identify 

changes to the environmental resources in the country, more especially the water 

resources which is a major production resource for agriculture and other types or 

production activities in the country. With the country an arid region with water a limiting 

factor and drought a major occurrence in the country, there is need to identify regions 

already undergoing resource use stress for long term sustainability planning. 
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6.2 Limitations and significance of this research 
6.2.1 Limitations of this study are: 

 

The study had some limitations:  

• It was not possible to find aerial photographs and much more high resolution 

images of earlier dates and recently dates covering the whole study area.  
 

• The other limitation was that the socio-economic and agronomic survey could not 

include as many farmers as should have been mainly due to shortage of time. On 

the other hand, the socio-economic data analyzed is mainly based on primary data 

collected on a single visit through interviews of these sample farmers and hence it 

may somehow suffer from inaccuracies in some aspects of the measurements 

used. 
 

• Because of the time and financial limitation, the physical design level was not 

able to be focused on. The organizational design and the hardware and network 

design were not able to be performed either. A real-life cadastral information 

system design must consider these issues. Therefore, a further study can focus on 

the internal and external organizational designs. An external organizational 

design should also include principles of the data sharing between several 

institutions. 
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6.2.2 Significance of this research is: 

 

. 

• The spatial-temporal and semantic aspects of cropland-cover/use dynamics in the 

period 1989–2000 have been analyzed for the first time for the principal cropland 

area of Mongolia through an analysis of spatially explicit data collected through 

remotely sensed data interpretation and field validation. This is important for 

agricultural land use planning and sustainability monitoring to reduce the 

negative impact of agricultural land use for crop production and increase long 

term resource use and environmental sustainability 

 

• Modern cadastres tend towards a Land Information System (LIS) approach. 

However, the cadastral system in Mongolia is not in a LIS approach. In this study, 

the system requirements were analyzed in accordance to the data collected for the 

existing cadastral system. The restrictions on land rights, such as mortgage, 

leasing, usage rights, etc., were not considered during the system requirements 

analysis phase. The cadastral data should form a base for other applications, such 

as municipality works, engineering projects, etc.  

 

• The proposed dissertation research will provide a new foundation for GIS-based 

approaches for assessing, monitoring and managing drought through the 

development of a spatially distributed drought.  The increased spatial and 

temporal resolution will give the farming community, water managers and policy 

makers a better tool for assessing, forecasting and managing agricultural drought 

on a much more precise scale. 
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Appendix 1 
 
Mongolian facts 

1.1 Geography of Mongolia 

Location:  Northern Asia, between China and Russia 
Coordinates:  46 00 N, 105 00 E 
Area:  total: 1.565 million sq km 

water: 9,600 sq km 
land: 1,555,400 sq km 

Area 
comparative:  slightly smaller than Alaska 
Land boundaries: total: 8,162 km 

border countries: China 4,677 km, Russia 3,485 km 
Coastline:  0 km (landlocked) 
Maritime claims: none (landlocked) 
Climate:  desert; continental (large daily and seasonal temperature ranges) 
Terrain:  vast semidesert and desert plains, grassy steppe, mountains in west and 

southwest; Gobi Desert in south-central 
Elevation 
extremes:  

lowest point: Hoh Nuur 518 m 
highest point: Nayramadlin Orgil (Huyten Orgil) 4,374 m 

Natural 
resources:  

oil, coal, copper, molybdenum, tungsten, phosphates, tin, nickel, zinc, 
wolfram, fluorspar, gold, silver, iron, phosphate 

Natural hazards:  dust storms, grassland and forest fires, drought, and "zud", which is 
harsh winter conditions 

Environment 
current issues:  

limited natural fresh water resources in some areas; the policies of 
former Communist regimes promoted rapid urbanization and industrial 
growth that had negative effects on the environment; the burning of 
soft coal in power plants and the lack of enforcement of environmental 
laws severely polluted the air in Ulaanbaatar; deforestation, 
overgrazing, and the converting of virgin land to agricultural 
production increased soil erosion from wind and rain; desertification 
and mining activities had a deleterious effect on the environment 

Geography - 
note:  landlocked; strategic location between China and Russia  
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1.2 Government 

Country name:  Conventional short form: Mongolia 
Local short form: Mongol Uls 
Former: Outer Mongolia 

Government 
type:  Parliamentary 
Capital:  Ulaanbaatar 
Administrative 
divisions:  

21 provinces (aimag) and 1 municipality* (singular - hot); Arhangay, 
Bayanhongor, Bayan-Olgiy, Bulgan, Darhan Uul, Dornod, Dornogovi, 
Dundgovi, Dzavhan, Govi-Altay, Govi-Sumber, Hentiy, Hovd, 
Hovsgol, Omnogovi, Orhon, Ovorhangay, Selenge, Suhbaatar, Tov, 
Ulaanbaatar*, Uvs 

Independence:  11 July 1921 (from China) 
National holiday: Independence Day/Revolution Day, 11 July (1921) 
Constitution:  12 February 1992 
Legal system:  blend of Soviet, German, and US systems of law that combines aspects 

of a parliamentary system with some aspects of a presidential system; 
constitution ambiguous on judicial review of legislative acts; has not 
accepted compulsory ICJ jurisdiction 

Suffrage:  18 years of age; universal 
Legislative 
branch:  

unicameral State Great Hural (Parliament of Mongolia) 76 seats; 
members elected by popular vote to serve four-year terms 

Judicial branch:  Supreme Court (serves as appeals court for people's and provincial 
courts but rarely overturns verdicts of lower courts; judges are 
nominated by the General Council of Courts and approved by the 
president) 
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Appendix 2 
 

Sustainable development 

1990s, an awareness regarding the dimensions of sustainable development has been 

paramount in the minds and actions of many.  

A principal concern of any country in the world today is to define and better understand 

the interrelationships between environment, economic development, natural resources 

and population for the purpose of realizing what is collectively known as “sustainable 

development” (WCED, 1987). 

 
 
 

 
 
 

Figure 1.Sustainable development 
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 Appendix 3 
 

History and Scope of the precision agriculture (PA) 

The concept of precision agriculture (PA), although present in some form for centuries, 

was formulated formally in 1986 in a seminal paper written by Fairchild (Fairchild 1994). 

Since its theoretical inception PA has been explored widely, although it has been applied 

mainly in Europe and the United States, where farm sizes are large and landowners are 

willing to make larger capital investments in PA technology (Pederson et al., 2001). 

Accordingly, many significant PA developments took place in the US, Canada, Australia 

and Western Europe in the mid-to-late 1980s (Zhang et al., 2002) with principle areas of 

PA development taking place in regards to high yield crops such as wheat, barley, corn 

and soybean (Autrey, 1998). Regardless, PA management has experienced considerable 

attention from researchers worldwide and has become a prominent issue in modern 

agriculture, with PA related experiments reported in recent literature from China, Korea, 

Japan, Indonesia, Bangladesh, Sri Lanka, Turkey, Saudi Arabia, Australia, Brazil, 

Argentina, Chile, Uruguay, Russia, Italy, The Netherlands, Germany, France, UK, 

United States and Canada (Zhang et al., 2002). All of these experiments with various 

aspects of PA practice have occurred in parallel with the development of spatial database 

management and environmental monitoring tools, and the literature explores a range of 

issues from general PA implementation guidelines to specific indices for the analysis of 

crop spectral information (Barnes et al., 1996; Atherton et al., 1999). Excellent reviews 

are available of its development and myriad aspects from leaders in the PA field (Moran, 

Inoue et al. 1997; Plant 2001). 

In spite of these myriad developments and widespread interest, some studies suggest that 

adoption of PA related technologies, such as yield monitoring, is not as widespread as 

initially forecasted (Zhang et al., 1997; Lowenberg-DeBoer 2003). 

Although there are many complex sociological and economic reasons for this, most 

studies reveal that the greatest barrier to PA adoption is the substantial initial capital 

investment required, and the fact that the most significant benefits of PA usually come 

after the accumulation of many years of detailed soil and plant variability data. 

(Blackmore et al., 1994; Pederson et al., 2001; Sevier and Lee 2003; McBratney et al., 

2004; Adrian et al., 2005). Unfortunately, this barrier may seem even greater in a 

developing country context, where profitability in agriculture is often even lower (Cook 

et al. 2003). Despite this uncertainty, PA has been shown to be profitable in both a 
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developed and developing country context (Stombaugh et al. 2001; Godwin et al., 2002; 

Bongiovanni and Lowenberg-Deboer 2004) and a survey of economic studies related to 

PA concludes that the majority of PA management schemes show positive net returns 

(Lambert and Lowenberg-DeBoer 2000). In general, there is also strong correlation 

between PA profitability and farm size and even farms of just over 200 ha, can expect 

profits and an amelioration of product quality by implementing PA (Stombaugh, et al., 

2001; Godwin et al., 2002). Although smaller farm sizes and land tenure may be an issue 

in the global south, the existence of landowners with large landholdings such as 

Azucarera Nacional in Panama provides strong cause for PA implementation in the 

developing country context, where optimization of production is most pressing. 

It is important to note that as sustainable development becomes economically valued, the 

benefits of PA implementation will accordingly become increasingly apparent. That is, 

when reduced environmental burdens are recognized and evaluated and become part of 

the ultimate reward, PA will gain increased importance in the agricultural sphere 

(Auernhammer 2001).  

These results imply that appropriate environmental policy reforms by local governments 

worldwide will be pivotal in encouraging the use of precision farming and that such 

management schemes encourage economic and environmental optimization. 
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Appendix 4 
 

(a) Basic Cadastral Data 

There are three main cadastral data types (Dale and McLaughlin, 1988): 

♦ cadastral land parcel 

♦ cadastral records identifying land rights and persons who hold rights 

♦ parcel identifier 

Cadastral land parcel: A cadastral land parcel serves as a basic unit for a parcel based 

land information systems. It is sometimes termed a lot or a plot. It is an area or, more 

strictly speaking, a volume of space recognized for land administration purposes.  

Cadastral records: These generally describe three kinds of information concerning basic 

objects (land parcels, land rights and persons). However, to cope with the particular 

country requirements, formal or informal tenure and extended land objects of different 

types of land rights (e.g. group rights, individual ownership) must also be registered, 

including the rightful claimants, in the PBLIS. Copies of survey records, land ownership 

certificates and deeds should also be stored for future reference. The latest technique for 

archiving these documents is to scan them and store them in a database. 

Parcel identifier: The objects with unique identifiers serve to link the cadastral records 

with many other records or information systems. In other words, they facilitate data 

sharing among different users of the information system. Even with a traditional system, 

it is necessary to have a parcel indicator or a unique parcel reference that identifies the 

parcel and allows cross-referencing within the register and other filing systems. Three 

important forms of identifier can be distinguished: name-related identifiers, abstract or 

alphanumeric identifiers, and location identifiers.  

Building: In the traditional cadastral systems, the building objects are incorporated as 

physical objects, not as legal objects. In reality, however, building objects such as 

apartments are legal entities associated with rights, land parcels and owners. Data about 

building is also increasingly used for a variety of purposes. Therefore, the building 

objects are as important as land parcels in PBLIS. 

 

 

(b) Additional Data 

In the context of the broader objective of the PBLIS, it is important to relate the 

following data in the system in addition to the basic cadastral data, as the users 
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(municipalities, utilities, etc.) always expect topographical objects together with 

cadastral parcels for their multipurpose uses. These additional data as references provide 

quick and easy access to the area.  

National geodetic control points: These control points are essentially used for geo-

referencing all kinds of spatial data in a uniform reference system. The global 

positioning system (GPS) is now seen as the most cost-effective means of establishing a 

national geodetic reference system, compared with the traditional approaches of 

triangulation and traversing methods. 

Topographical information: Administrative boundaries, transportation networks 

including roads and railways, cultural features, hydrographical features, utility lines, and 

digital elevation models are topographical objects. 

These physical objects provide extremely valuable supports for many applications in 

natural resource management and earth science applications, and form the basis for all 

kinds of boundaries, including land parcels and administrative boundaries. 

Ortho-photos or images: Rectified and relief-displacement-corrected aerial photographs 

or high-resolution images (such as IKONOS or Quickbird) can be extremely effective as 

backdrops for the cadastral data, enhancing reliability for the users. 

Socio-economic information: This includes population censuses, agricultural censuses 

and other environmental information. 

Thematic (natural resource) information: This includes land use, vegetation, weather 

data and soil, geological and geophysical information. 

Many of above datasets are usually produced by the various departments or agencies 

depending upon their tasks and responsibilities. With advancement of Geo-ICT 

technology, the data can be made accessible via Geo-spatial data infrastructure. Then a 

Mongolian parcel based agricultural land information system as a multipurpose system 

provides various services and products to clients using these datasets. 

Geographic Information Systems (GIS) are a cutting-edge technology that allows the 

unprecedented manipulation and analysis of geographic information. In practical terms, a 

GIS simply consists of computer software, hardware and data, and personnel to help 

manipulate, analyze and present information that is tied to spatial location. A GIS can 

provide farm managers an effective method to visualize, manipulate, analyze and display 

spatial data, providing the backbone of a PA system. 

There are two principal ways to input and visualize data in a GIS: 
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1) Raster data: consists of information in a grid, composed of pixels, where each pixel 

represents a location and has a certain value. Data obtained from remote sensing, such as 

satellite imagery and aerial photography are in this format. Discrete point data obtained 

from field sampling can also be interpolated to create continuous raster coverages of the 

sampled properties (Crosier et al., 1999). 

2) Vector data: consists of linear, rather than grid, information and is composed of 

points, lines and polygons. Geographic features such as buildings, bodies of water and 

boundaries of fields and agricultural management units etc. are in vector format. One can 

attach attributes such a size, type and length, among other properties to vector data 

(Crosier et al., 1999). 

The information that can be integrated into a GIS is many and varied, contributing to the 

flexibility and adaptability of GIS to many applications. In general these in information 

sources consist of digitized and scanned maps; tables of attribute data, spatial data 

gathered using a GPS device, as well as data gathered using remote sensing devices such 

as satellites. What makes GIS a crucial part of PA systems is that they ultimately involve 

a high level of data integration between positioning and sensing technologies and control 

systems (Earl et al., 2000). GIS is therefore able to provide the necessary platform for 

complex information flows, which include spatial and temporal components, and to 

facilitate the use of expert knowledge already held by farmers, to synthesize information 

into a scheme for optimal crop management (ESRI, 2007). Once digital maps are created 

of agricultural holdings and linked to relevant attribute information, query and analysis 

are the key functions of a GIS system used for decision support. Strengthening the 

system with continued input of field data, a GIS can be used for site-specific 

management involving the mapping of yield variability and the identification of limiting 

factors by combined analysis of soil, nutrients, slope and weather information along with 

field data and remotely sensed data. Visual displays of how properties are changing over 

a field are extremely useful for farm managers to manage inputs using management 

zones (Plant, 2001). 

Creating a GIS is the first step in PA implementation (Jhoty and Autrey, 1998) and it is a 

becoming a commonplace information technology tool for agricultural production 

applications (ESRI, 2007).  

GIS is not only an important tool to input and analyze crop management information, it 

can also be used in conjunction with GPS and variable rate technology to directly control 

agricultural inputs once information is gathered. Small-scale variations in site-quality can 
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be detected using GIS and related PA technology and this information can then be 

translated into valid crop management guidelines (Jarfe and Werner. 2000). German 

researchers initiated a field-based project where management guidelines were designed 

and then transformed into software modules to allow farmers to adjust cropping 

measures to respective management zones in a field (Jarfe and Werner, 2000). They were 

able to successfully apply a decision support system based on ArcView using if-then 

rules, for calculating site specific and agronomic optimal sowing rates. Many similar 

projects have been realized using GIS in conjunction with variable rate controllers for 

site specific application of fertilizer (Seidl et al., 2001; Miller et al., 2005), herbicides 

(Al-Gaadi and Ayers 1999) and irrigation water (Perry et al., 2002)  
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Appendix 5 
 

5.1 Seed quality 

Until 1990, the seed sector was centrally organized and subsidized, and was directly 

under the responsibility of the Ministry of Agriculture of Mongolia.  

Seed supply to farmers is mainly from the informal seed sector, from on-farm seed 

production and exchange. FAO assisted the country through implementation of an 

emergency wheat seed production and new variety testing project.  

Exiting problems of poor seed quality are mostly due to frost damage and the high 

moisture content of stored seed, resulting in poor germination, lack of vigor and 

susceptibility to root rot infections. Quality is further lowered by contamination with 

weed seed. Modest investments in repair and or replacement of screens for grain cleaners 

and closer attention to correct setting and operation of the equipment would improve 

seed cleaning operations and eliminate most weed seed. Avoidance of frost-damaged 

grain earmarked for seed and aeration and drying of stored seed to reduce moisture 

content to 14% would significantly improve germination and vigor and allow a 

significant reduction in seed rates.  

 

5.2 Wheat alternatives 

Alternatives to large-scale wheat cultivation are severely limited by the harsh climate and 

lack of markets. Fodder crops which were previously gown in rotation with wheat are in 

very limited demand following the abolition of subsidized livestock feed. Vegetables, 

which are consumed mostly by the urban population, are grown almost exclusively under 

irrigation and relatively small areas are needed to satisfy the demand.  

The growing season is too short and rainfall inadequate, and there is a high risk of frost 

damage, which can seriously reduce root yield and sugar content. Climatic variability 

between seasons is such that there is considerable risk of crop failure. 

 

Barley, the second most important cereal in Mongolia, is quite well adapted to cool 

weather and a short growing season, has similar agronomic and equipment needs to those 

of wheat and is potentially more productive. However, the shortage of inputs and the 

collapse of the feed grain market have had a dramatic effect on cropped area and yield. 

The planted area has declined from about 120,000ha in 1990 to 19,000 ha in 1994 and 

average grain yield, which reached about 1.2-1.3t/ha in the mid of 1980s, has fallen to 
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about 0.6t/ha. Improvements in crop husbandry and post-harvest grain handling and 

storage, similar to those described for wheat in pare. 3.4-3.14 is required in order to raise 

productivity and grain quality. In addition, new varieties are needed to replace the 

current variety “winner” which was originally released in the Soviet Union in the 1920s. 

 

Rapeseed (Canola) may have potential as an alternative to wheat although little 

agronomic work has been done on this crop in Mongolia to date. Early maturing (85 

days) varieties are available and could be imported and multiplied quite rapidly with 

sowing rates of only 2-15kg/ha. Most of the improved technology recommendations for 

wheat are equally applicable to rapeseed. However, successful seedbed preparation and 

crop establishment is more demanding than for wheat. Because of its small seed size, 

rapeseed requires a shallow planting depth (not more than 5 cm) and given the dry 

weather prevalent in spring minimum tillage is highly desirable to conserve moisture in 

the seedbed. Equipment requirements are similar to wheat with some (inexpensive) 

adaptation necessary for combine harvesters and seed processing equipment. Under good 

management average yields of 1t/ha should be achievable. 

 

5.3 Crop Genetic Resources 

Since the 1940s, Mongolian researchers are estimated to have utilized more than 150 

crops in Mongolia, and, from these, 18 crops are used for various purposes, including a 

few minor crops. Just 5 crops are grown widely in Mongolia. During the last 40 years, 

the development of communication systems has greatly boosted the phenomenon of 

cultural integration, including the imposition of the eating habits of the dominant culture. 

Most important crops were very rapidly replaced by the new varieties from the Soviet 

Union. Many local varieties of cereals, vegetables were ignored for many years, because 

of their low yields, but it has only recently been discovered that local varieties carried 

genes for resistance to drought and diseases, with high protein contents and early 

maturity. Now, more efforts are being given to the collection and preservation of plant 

genetic resources, including local varieties. 
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Appendix 6 
 
6.1 Water stress 

When plants are subjected to water stress, it affects the availability of water to plants, 

and therefore, water content of plant cells is lower than the optimum level and causes 

some degree of metabolic disturbance, hence, a plant is said to be suffering water stress 

(Fitter and Hay, 1981). Leaf curling, wilt or drastic decrease of leaf area expansion is 

generally symptoms of water stress (Alscher et al., 1990). Plants subjected to water stress 

reduce stomatal conductance, causing a decrease in transpiration rate, this affects the leaf 

energy balance and ends with increasing leaf temperature (Jones, 1999). Water stress 

affects leaf area and leaf angle distribution (LAD) in many plant species. Ehleringer and 

Forseth (1989) reported that several plant species have shown the ability to adjust leaf 

angle in response to limited soil moisture. The extent of moisture stress impact on plant 

leaves depends on the occurrence of the water stress relative to the phenological stage of 

the plant and severity of water deficit (Chaney, 2000). 

The availability of soil water is a major factor limiting wheat production in most regions 

of the world especially under semi arid and arid environments (Ozturk and Aydin, 2004). 

They also reported substantial losses in grain yield are caused by water deficiency 

depending on the developmental stage at which water stress occurs. 

 

6.2 Salinity stress 

Plant growth is hindered by salinity especially in sensitive plant species; salinity affects 

plant growth in three major ways (Greenway and Munns, 1980): (a) water deficit arising 

from the more negative water potential (elevated osmotic pressure) of the soil solution, 

(b) specific ion toxicity usually associated with either excessive chloride or sodium 

uptake and (c) nutrient ion imbalance when the excess of Na+ or Cl-leads to a 

diminished uptake of K+ , Ca+ , NO3 - or PO4 -, or to impaired internal distribution of 

one or another of these ions. 

Excess salinity within the plant root zone has a general deleterious effect on plant growth 

since water with high salinity is toxic to plants and poses a salinity hazard (University of 

Texas, 2007). High concentrations of salt in the soil can result in a physiological drought 

condition-that is, even though the field appears to have plenty of moisture, the plants wilt 

because the roots are unable to absorb water. They also reported that this effect is 

primarily related to total electrolyte concentration and is largely independent of specific 
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solute composition. The hypothesis that best seems to fit observations is that excessive 

salinity reduces plant growth primarily because it increases the energy that must be 

expended to acquire water from the soil of the root zone and to make the biochemical 

adjustments necessary to survive under stress. This energy is diverted from the process 

which leads to growth and yield. Larcher (1995) reported that plants are under salinity 

stress when salt content in the root zone exceeds the capacity of plants to cope. Plants try 

to adapt with high salinity in the root zone by reducing leaf size, scorching of leaf tips or 

margins, and premature discoloration and abscission of the leaves. 

 

6.3 Heat and chilling stress 

Heat and cold stress depending on their intensity and duration can impair the metabolic 

activity, growth and variability of plants and thus limit the distribution of a species. 

When the critical temperature threshold of a species is exceeded, cell structures and 

cellular functions may be damaged (Larcher, 1995). Plants under heat stress are darker 

when compared with non-stressed plants and plants that suffer from this type of stress 

have dry or yellow – dry spots on their leaves (Staub, 1990). 

Physical and/or physiological changes that are induced by exposure to very low 

temperature include loss of chlorophyll, apparent as leaf yellowing, and purpling as a 

result of photo-oxidation (Saltveit and Morris, 1990). 

It is predicted that increases in greenhouse gas concentration will result in increasing 

mean temperatures of about 2°C by the middle of the 21st century (Kattenberg et al., 

1996). The growth stage of wheat most likely to be affected is the grain filling stage as 

the duration of grain filling in cereals is determined principally by temperature (Wheeler 

et al., 1996). They also reported that high temperature episodes occurring near to 

anthesis can reduce the number of grains per ear and the subsequent rate of increase in 

harvest index, resulting in smaller grain yields. 

 

6.4 Nutrients stress 

Nitrogen deficiency is the most common and widespread nutrient deficiency (Larcher, 

1995). When plants are subjected to nitrogen stress the first symptom tends to be 

yellowing of leaves. Also, due to increasing chemical fertilization prices, farmers can not 

afford enough fertilizer to compensate for the loss of nitrogen in intensive cropping 

systems. In addition to grain yield reduction due to the lack of nitrogen, nitrogen 
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deficiency may result in reducing ear biomass at flowering and under drought conditions. 

(Edmeades et al., 1992). 

 

6.5 Plant morphological responses to stress 

Every part of a plant may be affected by any type of stress although in most cases one or 

some parts of a plant are affected first. Leaf responses to different stresses are very 

important when taking into account remote sensing techniques in detecting plant stress 

particularly the decrease in the rate of leaf expansion and consequent decrease in the total 

leaf area. The decrease in leaf expansion is generally thought to be due to a drop in cell 

turgor pressure. However, Ball (1988) suggested that it was more likely a result of a 

change in hormonal signaling from roots to leaves. 
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Appendix 7  
 
Previously published vegetation indices (VI) collected from literature. 

 

Ratio Vegetation Index (RVI) (Jordan, 1969; Pearson and Miller, 1972). A common 

practice in remote sensing is the use of band ratios to eliminate various albedo effects. In 

this case the vegetation isolines converge at origin. Soil line has slope of 1 and passes 

through origin, it range from 0 to infinity. And it is calculated as follow: 

     
RED
NIRRVI =  (1) 

 

Normalized Difference Vegetation Index (NDVI) (Kriegler, 1969; Rouse et al., 1973) 

and it is the common vegetation index referring to. This index can vary between -1 and 1. 

In this case vegetation isolines are considered to be convergent at origin and soil line 

slope is 1 and passed through origin. It is calculated as: 

REDNIR
REDNIRNDVI

+
−

= (2) 

 

VI`s assumes that external noise (soil background, atmosphere, sun and view angle 

effect) is normalized, but this assumptions is not always true. The relative percentage of 

sunlit, shaded soil and plants components is highly dependent upon the view angle. Qi et 

al. (1995) studied the effect of multidirectional spectral measurements on the biophysical 

parameter estimation using a modeling approach. When the bidirectional effect is 

transformed from reflectance domain into vegetation index domain, it could be reduced 

(Jackson et al., 1990; Huete et al., 1992) or increased (Kimes et al., 1985; Qi et al., 

1994b), depending on the vegetation types and solar zenith angles. Qi (1995) suggested 

that when bidirectional effect is a major concern (NDVI/NDVIo > 1) it is better to use 

NIR rather than NDVI, and that bidirectional effect on vegetation indices must be 

quantified before a quantitative VI-LAI relationship can be used. 

 

The Green Normalized Vegetative Index (GNDVI) is a modification of the NDVI 

where the Red portion is substituted by the reflectance in the Green band (Gitelson et al., 

1996). 
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DVI is the Difference Vegetation Index, (Richardson and Everitt (1992), but appears as 

VI in Lillesand and Kiefer (1994). Vegetation isolines are parallel to soil line. Soil line 

has arbitrary slope, passes through origin, and index range is infinite. 

 

DVI = NIR-RED (3) 

 

Perpendicular Vegetation Index (PVI) (Crippen, 1990), and it is sensitive to 

atmospheric variation. In this case vegetation isolines are parallel to soil line. Soil line 

has arbitrary slope, passes through origin and the index range from -1 to 1. 

)(1
1

2 baREDNIRa
PVI

−−+
=    (4) 

 

Where a and b is the coefficient derived from the soil line (In this thesis defined from 

NIR and RED scatter plot from Landsat+ETM): 

baREDNIR soilsoil +=  (5) 

 

Weighted Different Vegetation Index (WDVI) (Clevers, 1988) and like PVI is 

sensitive to atmospheric variation (Qi et al., 1994). Vegetation isolines are parallel to soil 

line. Soil line has an arbitrary slope and passes through origin, vegetation index range is 

inifinite. 

 

aREDNIRWDVI −=   (6) 

Where a is the slope of the soil line. 

 

Huete (1988) proposed a Soil Adjusted Vegetation Index (SAVI) to account for the 

optical soil properties on the plant canopy reflectance. SAVI involves a constant L to the 

NDVI equation. The index range is from -1 to +1. 

 

)1)(( LLREDNIR
REDNIRSAVI

+++
−

=   (7) 

The constant L is introduced in order to minimize soil-brightness influences and to 

produce vegetation isolines independent of the soil background (Baret and Guyot, 1991). 

This factor can vary from 0 to infinity and the range depends on the canopy density. For 
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L=0 SAVI is equal to NDVI, for L tends to infinity, SAVI is equal to PVI. However for 

intermediate density L was found equal to 0.5. Huete (1988) suggested that there maybe 

two or three optimal adjustment factor (L) depending on the vegetation density (L=1 for 

low vegetation; L=0.5 for intermediate vegetation densities; L=0.25 for higher density). 

 

Transformed Adjusted Vegetation Index (TSAVI) (Baret et al., 1989), and it is a 

measure of the angle between the soil line and the vegetation isoline. The soil line has 

arbitrary slope and intercept. The interception between soil line and vegetation isoline 

occur somewhere in the third quadrant. Baret and Guyot (1991) have proposed an 

improving of the initial equation as follow: 

)1(
)(

2axabREDaNIR
baREDNIRaTSAVI
++−+

−−
=   (8) 

 

Where a and b are soil line parameters (slope and intercept of the soil line) and χ has 

been adjusted so as minimize background effect, and its value is 0.08. TSAVI values 

ranging from 0 for bare soil and is close to 0.70 for very dense canopies as reported from 

Baret and Guyot (1991). 

At 40% green cover, the noise level of the NDVI is 4 times the WDVI and almost 10 

times the SAVI, corresponding to a vegetation estimation error of +/- 23% for the NDVI, 

+/- 7% cover for the WDVI, and +/-2.5% for the SAVI. Therefore the SAVI is a more 

representative vegetation indicator than the other Vis, but an optimization of the L factor 

will further increase his value (Qi et al., 1994). 

 

Qi et al. (1994) developed a Modified Soil Vegetation Index (MSAVI). This index 

provide a variable correction factor L. Geometrically vegetation isolines don’t converge 

to a fixed point as SAVI, and soil line has not fixed slope and passes through origin. 

Correction factor is based on calculation of NDVI and WDVI as shown by equations (9) 

and (10): 

)1)(( LLREDNIR
REDNIRMSAVI

+++
−

=   (9) 

Where L is calculated as follow: 

WDVINDVIaL **21−=   (10) 

 



 103

This term is computed to explain the variation of L among different types of soils, 

moreover L varies with canopy cover, and its range varies from 0 for very sparse canopy 

to 1 for very dense canopy. To further minimize the soil effect Qi et al. (1994), use an L 

function with boundary condition of 0 and 1 ( 11 −−= nn MSAVIL ) and an MSAVI equal 

to: 

] )2(*
1 1

1
−

−

−⎢
⎣

⎡
−++

−
= n

n
n MSAVI

MSAVIREDNIR
REDNIRMSAVI   (11) 

The final solution for MSAVI is: 

[ ]
2

)(8)12(12 5.02 REDNIRNIRNIRMSAVI −−+−+
=   (12) 

 

OSAVI is the Optimized Soil Adjusted Vegetation Index. This index has the same 

formulation of the SAVI family indices, but the value L or X as refered by Rondeaux et 

al. (1996) is the optimum value that minimizing the standard deviations over the full 

range of cover. 

)16,01)(16.0( +++
−

=
REDNIR

REDNIROSAVI   (13) 

 

Generalized Soil Adjusted Vegetation Index (GESAVI). This index is based on an 

angular distance between the soil line and the vegetation isolines. GESAVI is not 

normalized and vary from 0 to 1 (from bare soil to dense canopies).Vegetation isolines 

are neither parallel nor convergent at the origin. Vegetation isolines intercept the soil line 

at any point depending on the vegetation amount. 

 

ZRED
abREDNIRGESAVI

+
−−

=
))((   (14) 

Z is the soil adjustment coefficient, and its based on the assumption that vegetation 

isolines intercept soil line at any point in the third quadrant. Z decrease when vegetation 

cover increase. However, practically, Z consider vegetation isolines convergent in a point. 

At least this hypotesis may be limited for dense canopies (Gilabert et al., 2002). To 

normalize soil effects Z value is found at 0.35. 

 

Indices that include the Mid-InfraRed Band (MIR) is: 
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Stress related Vegetation Index (STVI) (Gardener, 1983): 

 

NIR
REDMIRSTVI *

=   (15) 

 

Cubed ratio index (CRVI) (Thenkabail et al.,1994): 
3

⎟
⎠
⎞
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MIR
NIRCRVI   (16) 

 

The VIs that account for soil effect, do not consider atmospheric conditions, sensor 

viewing angle, solar illumination conditions. Kaufman and Tanre (1992) developed the 

Atmospherically Resistant Vegetation Index (ARVI) and the Soil and Atmospherically 

Resistant Vegetation Index (SARVI and SARVI2) where the reflectances are corrected 

for molecular scattering and ozone absorption. Liu and Huete (1995) incorporated a soil 

adjustment and atmospheric resistance concepts into a Modified Normalized Vegetation 

Index (MNDVI). 

SARVI2 as well as ARVI, SARVI are able to remove smoke effect and cirrus clouds 

from images (Huete et al., 1996). 
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