
Ⅰ．Introduction

 Accidental falls have caused serious outcomes for 
the aged［1-3］. Vestibular function, vision［4-7］and 

proprioception deteriorated with aging［8,9］, and muscle 
strength and nerve conduction velocity deteriorate with 
aging. Motor and sensory systems decay with aging, 
sensory-motor feed-back, feed-forward were important, 
and vestibulo-ocular and -spinal reflexes work to stabilize 
the postural balance［10］. Signals from the proprioceptors 
of the muscles and the joints are essential to all the 
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SUMMARY

Accidental falls may cause serious outcomes for the aged. Motor and sensory systems decay with 
aging, so reaction time as a placing reflex becomes delay to abrupt changes of the posture. Dynamic 
postural balance may provide more information than static postural balance. Dynamic postural 
balance was studied for proprioception of the neck and trunk, and for eyes control. Seven healthy 
volunteers participated in this study after informed consent. Repetitive alternative rotation of the 
head （M1） and of the head and thorax synchronized （M2）; gazing at a projected point from a laser 
pointer set on the head, gazing at a fixation point on a screen and closed eyes; comfortable pace （P1） 
for repetitive alternative rotation, a faster pace than P1, and a slower pace than P1 were asked to do 
for 20 sec in every combination. A force plate was used for the center of foot pressure, and a wireless 3 
axes accelero-meter were set on the top of the head for head motion. Powers were discussed at the same 
frequency as the head and/or thorax movements. Powers in M2 were significantly higher than those in 
M1. Neck proprioception should be important than that of thorax for dynamic postural balance.
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reflexes and volitional movements. 
 Reaction time as a placing reflex is critical to abrupt 
changes of the posture. Dynamic postural balance should 
prepare much information, which had been reported for 
arm movements［11,12］, for rotation on ankles, hips, and 
shoulders［13］. Coordination between a neck and trunk 
have been reported important between a neck and trunk

［14-17］, and between eyes and a neck［18］. Dynamic 
postural balance was studied with the volitional neck and 
trunk motion with eyes controlled for healthy volunteers. 

Ⅱ．Materials and Methods

 Seven healthy volunteers participated in this study 
after informed consent. They showed no neurological 
deficit, aged 43 years （mean） ±11.4 （standard 
deviation）.
 Figure 1 showed a block diagram to measure the 
head motion and the center of foot pressure （COP）. A 
subject was standing upright on a force plate-A （LUB-
100KBⓇ, KYOWA, Japan）, 1.2 m apart in front of a 
screen. Medio-lateral direction represented as COP-X, 
and antero-posterior direction did as COP-Y. Signals 
from the force plate were amplified by amplifiers-B 

（PCD300AⓇ, KYOWA, Japan）, and sampled at 100 Hz 

into a computer-C （Pentium IVⓇ）. The head movements 
were measured with a wireless 3 axes accelerometers-D 

（WAA-006Ⓡ , Wireless Technology, Japan） and the 
transmitted signals were received with the computer-C. 
The accelerometers-D was fixed on the top of a cap, 
and a laser pointer-E was fixed on the brim of the cap. 
Another laser pointer-F was set on the thoracic surface. G 
was a projected point on the screen from a laser pointer, 
and H was a fixation point. Subjects were asked to rotate 
repetitively their head only （M1）, and asked to do their 
head and thorax synchronized （M2）. Subjects were asked 
to rotate their head or thorax synchronized repetitively 
at their comfortable pace （P1）, they were asked to do 
at the faster pace than P1 by 1.2 times （P2）, and they 
were asked to do at the slower pace than P1 by 0.8 times 

（P3）. Subjects were asked to stand still upright gazing 
at the fixation point and to do with eyes closed for 20 
sec respectively （E0）. And they were asked to gaze the 
projected laser point （E1） during the repetitive rotation, 
and to gaze at the fixation point on the screen （E2）, and 
were asked to rotate their head and thorax with closed 
eyes （E3）, on doing M1 or M2, respectively. Subjects 
were asked to rotate ＋/－30 degrees repetitively for 
20 sec in every combination. Just before recording the 
head motion and COP, P1 was measured for respective 
subjects, and subjects were asked to rehearse to rotate the 
head or thorax at P1, P2, or P3 for a while.
 Recording condition was fixed for all subjects, and 
powers were obtained with the fast Fourier transform. 
Powers were discussed at the same frequency as the head 
motion. 

Ⅲ．Results

 Mean frequency was 0.5 Hz ±0.05 （standard 
deviation） for P1, 0.6 Hz ±0.07 for P2, and 0.4 Hz ±
0.05 for P3.
 Figure 2 showed examples of the head position and 
COP at P1 for one subject （42 y/o）. The head and COP 
showed stable enough in standing upright （E0）. The 
head position oscillated rhythmically at 0.6 Hz for M1 

（HEAD） and M2 （THORAX）, and at E1, E2, and E3. 
COP in M2 fluctuated frequently than that in M1, and 
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Fig. 1 Block diagram for this study. A was a force plate 
to record the center of foot pressure, and B was 
amplifier for the force plate. C was a computer 
to acquire the head motion and the center of 
foot pressure. D was a wireless accelerometer to 
measure head motion. E and F were laser pointers, 
and G was a projected point from a laser pointer. 
H was a fixation point. X and Y were directions of 
the axes for the center of foot pressure.
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spectral powers showed increased at 0.6 Hz.
 Figure 3 showed examples of the spectral powers 
for the head motion and COP at P1 for a subject （42 y.） 
Peak frequency was 0.6 Hz in M1, and 0.55 Hz in M2 
for the head motion. Spectral powers at 0.6 Hz showed 
low at noise level in M1, but powers at 0.55 Hz were 
noted in M2.
 Table-1 showed means and standard deviations for 
the total powers of COP-X and -Y in m2. The analysis of 
variance showed significant between powers in standing 
still upright and those in the trunk motion （P＜0.005）, 
and no significance was noted between powers with eyes 
open and closed.
 Table-2 showed mean powers and standard deviations 
at the peak frequency of the head motion in m2. The 
analysis of variance showed significant between powers 

for M1 and those for M2 （P＜0.0001）, significant 
between those of COP-X and COP-Y （P＜0.001）. No 
significance was noted among powers for E1, E2 and E3, 
among those for P1, P2 and P3. 

Ⅳ．Discussion

 Compensation should keep postural balance stable 
for the volitional trunk movements, COP showed 
significant oscillation for the repetitive alternative rotation 
of the thorax synchronized with the head. Preparatory 

Fig. 2 Examples of the head position and the center of 
foot pressure at a comfortable pace for one subject, 
thick traces represented medio-lateral signals, 
and broken traces did antro-posterior signals of 
the center of foot pressure. Rhythmical oscillated 
traces represented the head motion. The abscissas 
represented time course in sec. A column M1 
was for the movements with only the head, M2 
for that with the head and thorax synchronized. 
A row E1 was for the movements in gazing at 
the laser projected point, E2 for that in gazing at 
the fixation point, E3 for that with eyes closed, 
respectively. 

Fig. 3 Examples of the power spectra for the head 
motion and the center of foot pressure at a 
comfortable pace for one subject. Upper 2 rows 
M1 were power spectra with only the head, the 
uppermost row were those for the movements 
with the head only, and the second upper row 
were those for the center of foot pressure. Lower 
2 rows M2 were power spectra with the head and 
thorax synchronized, the second lower row were 
those for the movements with the head only, and 
the lowermost row were those for the center of 
foot pressure. Thick traces for the center of foot 
pressure were represented for the medio-lateral 
oscillation, and thin traces did for the antro-
posterior oscillation. Column E1 represented for 
the movements in gazing at the laser projected 
point, E2 for that in gazing at the fixation point, 
E3 for that with eyes closed, respectively. The 
abscissas represented frequency in Hz.
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Table 1　Mean and standard deviation for total power

STANDING UPRIGHT TRUNK MOTION 
OPEN EYES 3.3±4.24 15.0±13.17

CLOSED EYES 3.2±3.58 17.0±13.90
　Table-1. Table showed means and standard deviations of the total powers of the 
rolling and pich in m2. Total powers of the center of foot pressure were significantly 
higher with trunk movements than those on standing still upright （P＜0.005）. 
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movements and reflex might compensate for the 
volitional movements. The synchronized movements 
involved the center of gravity to elicit synchronized 
oscillation of COP to keep the stance at the same position. 
The mass and weight of the lower trunk need more 
energy for the movements than those with only the head. 
So COP was easily perturbed for the movements with the 
lower trunk. The signals from the vestibular organ were 
almost the same for the movements with only the head as 
the synchronized movements. The posture was controlled 
in standing upright during this study, and the stances 
were kept stable. The signals from the vestibular organs 
were thought to be consistent. But the signals from the 
proprioception were different between those from the 
neck or the lower trunk. Visual signals were controlled for 
all subjects. The movements with only the head perturbed 
COP poor, dynamic energy was less for those with only 
the head than that for the synchronized movements. 
Range of movements for joints was wider for the cervical 
vertebrae than that for the thoracic vertebrae, an odontoid 
process is just good to rotate. Repetitive alternative 
rotation for the thorax and head synchronized was 
equivalent to the motion with the neck immobilized; i. e., 
the proprioceptive signals were inhibited from the neck 
in keeping the postural balance stable. Neck motion was 
thought to be important to stabilize the postural balance. 
A neck had been reported to present much information

［19］, and the signals from the neck were of special 
importance to positioning the head to the rest of the body

［18,20］. Neck proprioception might be important than 

that of thorax for dynamic postural balance. The neck 
motion has been reported restricted with aging［21,22］, 
so the aged were used to turn around in rotating the head 
with help of the lower trunk motion［3］, therefore, COP 
was perturbed easily. 
 There were no differences among the peak powers 
at P1, P2 and P3, but compensatory preparatory motion 
would thoughtfully be more at P1 and less at P2, and 
the sum of the powers at P1 showed minimum for that 
of M1 and M2, and of COP-X and -Y, and the sum of 
those at P2 showed maximum for that of M1 and M2, 
and of COP-X and -Y. The motion at P2 was thought 
to be sensitive to keep the balance, so the motion at P2 
might be good to evaluate postural balance, because the 
variance showed increased.
 There were no differences among the peak powers 
with E1, E2 and E3, but visual compensation would 
thoughtfully work the least with E3 and more with 
E1 or E2, and the sum of the powers with E3 showed 
maximum for that of M1 and M2, and of COP-X and -Y, 
and the sum of the powers at P2 showed maximum for 
that of M1 and M2, and of COP-X and -Y. The motion 
with E3 was thought to be sensitive to keep the balance, 
so the motion with E3 might be good to evaluate postural 
balance, but the motion with E3 was dangerous for 
the aged, so the motions with E1 and E2 were safer to 
evaluate the dynamic postural balance.
 Dynamic postural balance at own pace had been 
reported for arm movements［12,23］, for the rotation on 
ankles, hips, and shoulders［24］, and for knees［25,26］. 

Table 2　Peak Powers for Center of Foot Pressure in m2（mean±standard deviation）

M1 M2
COP EYES P1 P2 P3 P1 P2 P3

-X
E1 3.2±2.33 1.7±2.56 1.7±1.57 56.6±75.20 116.5±131.70 42.8±46.68
E2 2.1±2.63 1.4±1.06 3.3±2.53 33.3±29.45 150.1±232.03 61.5±61.78
E3 5.3±7.19 2.6±2.70 4.7±7.49 62.2±86.46 74.0±65.00 96.0±149.24

-Y
E1 0.9±0.63 0.7±0.49 1.4±0.82 14.8±21.26 20.5±13.52 15.5±13.43
E2 1.1±0.84 1.4±1.78 1.6±0.88 28.5±32.29 36.2±44.75 29.5±30.44
E3 1.5±2.02 1.1±1.34 6.1±5.09 23.8±18.63 18.5±24.43 15.7±15.19

　Table-2. Table showed mean powers and their standard deviations at the peak frequency of the head motion in m2. M1 was 
for the movements with only the head, and M2 was for that with the head and thorax synchronized. P1 was at a comfortable 
pace, P2 was at a faster pace than P1 （P1×1.2）, and P3 was at a slower pace than P1 （P1×0.8）. E1 was for the movements 
in gazing at the projected laser point, E2 was for that in gazing at the fixation point, and E3 was for that with eyes closed, 
respectively. COP-X was medio-lateral oscillation of the center of foot pressure and COP-Y was antero-posterior oscillation of 
the center of foot pressure. 
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The method to perturb the postural balance could be 
classified into 2 types in studying dynamic postural 
balance; one was voluntary movements at own pace

［22,27-29］and the other was unexpected perturbation, i. 
e., sudden displacement of any part of a body with outer 
force［30-36］. The reports were poor about the repetitive 
alternative trunk rotation and COP.  
 In conclusion, repetitive alternative rotation for the 
trunk might present more information than standing 
upright still. 
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