Elsevier Editorial System(tm) for Food Chemistry Manuscript Draft

Manuscript Number: FOODCHEM-D-14-00938

Title: Profiling Contents of Water-Soluble Metabolites and Mineral Nutrients to Evaluate the Effects of Pesticides and Organic and Chemical Fertilizers on Tomato Fruit Quality

Article Type: Research Article (max 7,500 words)

Keywords: chemical fertilizers, 1H -13C HSQC, mineral nutrients, metabolites, NMR profiling, organic fertilizers, pesticides, tomato

Corresponding Author: Dr. Masami Watanabe, Ph.D.

Corresponding Author's Institution: Chiba University

First Author: Masami Watanabe, Dr.

Order of Authors: Masami Watanabe, Dr.; Yuko Ohta; Sun Licang, Dr.; Naoki Motoyama, Prof.; Jun Kikuchi, Prof.

Abstract: In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and 1H nuclear magnetic resonance spectrometry, respectively, and results were analyzed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. 1H -13C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality.

Dear Prof. Birch,

Please find enclosed a manuscript entitled "**Profiling Contents of Water-Soluble Metabolites and Mineral Nutrients to Evaluate the Effects of Pesticides and Organic and Chemical Fertilizers on Tomato Fruit Quality**" by Watanabe, et. al., which I am submitting for publication in *Food Chemistry*.

In this study, we demonstrated that the application of pesticides and chemical fertilizers affects the water-soluble metabolite and mineral nutrient content of tomato fruits. In particular, pesticide application had little effect on the concentrations of both inorganic elements and soluble metabolites, but did affect the correlation between the content of mineral nutrients and soluble metabolites. We used sufficient numbers of tomato fruits for the extraction of metabolites. The results of this study contribute to our understanding of the difference in quality between conventional and organically grown crops.

<sup>1</sup>H NMR spectrometry is a quick and simple tool for profiling metabolites in many samples. We demonstrated the possibility of combining <sup>1</sup>H NMR profiling and mineral nutrient content for the evaluation of metabolites.

This study will contribute to the progress of research in food chemistry.

I would appreciate it if you would consider our manuscript for publication.

- PCA found difference between minerals of organic tomatoes.
- PCA found difference between water-soluble metabolites of organic tomatoes.
- Pesticide application had little effect on mineral nutrients except Fe and P.
- Pesticide affected the correlation between minerals and water-soluble metabolites.
- Different fertilizer and pesticide applications probably affect tomato quality.

| 1  |                                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                |
| 3  | Profiling Contents of Water-Soluble Metabolites and Mineral Nutrients to                                                                       |
| 4  | Evaluate the Effects of Pesticides and Organic and Chemical Fertilizers on Tomato                                                              |
| 5  | Fruit Quality                                                                                                                                  |
| 6  |                                                                                                                                                |
| 7  | Masami Watanabe <sup>1</sup> , Yuko Ohta <sup>1</sup> , Sun Licang <sup>1</sup> , Naoki Motoyama <sup>2</sup> , Jun Kikuchi <sup>3, 4, 5</sup> |
| 8  |                                                                                                                                                |
| 9  |                                                                                                                                                |
| 10 | Corresponding author:                                                                                                                          |
| 11 | Masami Watanabe                                                                                                                                |
| 12 | Laboratory of Plant Nutrition, Faculty of Horticulture, Chiba University, 648 Matsudo,                                                         |
| 13 | Chiba 271-8510, Japan                                                                                                                          |
| 14 | Tel & Fax: +81-47-308-8820                                                                                                                     |
| 15 | E-mail: masamiwata@faculty.chiba-u.jp                                                                                                          |
| 16 |                                                                                                                                                |
| 17 | <sup>1</sup> Laboratory of Plant Nutrition, Faculty of Horticulture, Chiba University, 648 Matsudo,                                            |
| 18 | Chiba 271-8510, Japan                                                                                                                          |
| 19 |                                                                                                                                                |
| 20 | <sup>2</sup> Nodai Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragooka                                                      |
| 21 | Setagaya-ku, Tokyo, 156-8502, Japan                                                                                                            |
| 22 |                                                                                                                                                |
| 23 | <sup>3</sup> RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku,                                                     |
| 24 | Yokohama, Kanagawa 230-0045, Japan                                                                                                             |
| 25 |                                                                                                                                                |
| 26 | <sup>4</sup> Graduate School of Medical Life Science, Yokohama City University, 1-7-29                                                         |
| 27 | Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan                                                                                     |
| 28 |                                                                                                                                                |
| 29 | <sup>5</sup> Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho,                                                       |
| 30 | Chikusa-ku, Nagoya, Aichi 464-0810, Japan                                                                                                      |
| 31 |                                                                                                                                                |
|    |                                                                                                                                                |

| 33 | ABSTRACT: In this study, the contents of water-soluble metabolites and mineral                        |
|----|-------------------------------------------------------------------------------------------------------|
| 34 | nutrients were measured in tomatoes cultured using organic and chemical fertilizers,                  |
| 35 | with or without pesticides. Mineral nutrients and water-soluble metabolites were                      |
| 36 | determined by inductively coupled plasma-atomic emission spectrometry and ${}^{1}\text{H}$            |
| 37 | nuclear magnetic resonance spectrometry, respectively, and results were analyzed by                   |
| 38 | principal components analysis (PCA). The mineral nutrient and water-soluble                           |
| 39 | metabolite profiles differed between organic and chemical fertilizer applications, which              |
| 40 | accounted for 88.0% and 55.4%, respectively, of the variation. ${}^{1}H$ - ${}^{13}C$ -hetero-nuclear |
| 41 | single quantum coherence experiments identified aliphatic protons that contributed to                 |
| 42 | the discrimination of PCA. Pesticide application had little effect on mineral nutrient                |
| 43 | content (except Fe and P), but affected the correlation between mineral nutrients and                 |
| 44 | metabolites. Differences in the content of mineral nutrients and water-soluble                        |
| 45 | metabolites resulting from different fertilizer and pesticide applications probably affect            |
| 46 | tomato quality.                                                                                       |
| 47 |                                                                                                       |
| 48 | <b>KEYWORDS:</b> chemical fertilizers, ${}^{1}H - {}^{13}C$ HSQC, mineral nutrients, metabolites,     |
| 49 | NMR profiling, organic fertilizers, pesticides, tomato                                                |

## **INTRODUCTION**

| 53 | Many consumers assume that organically produced fruits are healthier, with higher   |
|----|-------------------------------------------------------------------------------------|
| 54 | nutritional value, and better in quality than conventionally grown fruits. Organic  |
| 55 | production systems are believed to enhance the overall soil health and sustain      |
| 56 | agricultural and environmental quality. Therefore, organic or reduced agrochemical  |
| 57 | application systems are recommended in many developed countries. However, previous  |
| 58 | studies on food quality have produced inconsistent results (Bourn & Prescott, 2002; |
| 59 | Zhao, Chambers, Matta, Loughin, & Carey, 2007).                                     |
| 60 | Several studies have compared the effects of organic and conventional production    |
| 61 | systems on the nutritional and sensory characteristics of tomatoes. One study that  |
| 62 | focused on the nutritional content of vegetables suggested that crops produced by   |
| 63 | organic production systems may be richer in phenolics and vitamin C, while also     |
| 64 | containing fewer pesticide residues and nitrates (Rembiałkowska E, 2007; Woese. K,  |
| 65 | Lange. D, C, & W, 1997).                                                            |
| 66 | Other studies have demonstrated that the mean plant shoot biomass is significantly  |
| 67 | higher in plants grown with mineral nutrients, but that the concentration of total  |

| 68 | phenolics and ascorbic acid in organically grown tomatoes is much higher (Toor,         |
|----|-----------------------------------------------------------------------------------------|
| 69 | Savage, & Heeb, 2006). In contrast to these findings, it has been shown that            |
| 70 | conventionally produced tomatoes have a significantly stronger flavor than organically  |
| 71 | produced tomatoes, but the overall consumer acceptance is the same for both organic     |
| 72 | and conventional tomatoes (Zhao, Chambers, Matta, Loughin, & Carey, 2007).              |
| 73 | Consumers may not notice a sensory difference between organically and                   |
| 74 | conventionally grown vegetables (Schutz & Lorenz, 1976). A similar inconsistency is     |
| 75 | apparent among trained panelists. It is difficult to study the effects of organic       |
| 76 | production on the quality of fruits because a large number of complex factors influence |
| 77 | their quality (Clausen, Pedersen, Bertram, & Kidmose, 2011). Therefore, further studies |
| 78 | comparing organically and conventionally grown fruit using instrumental analysis are    |
| 79 | required to reach a definitive conclusion.                                              |
| 80 | The application of pesticides is an important cultivation technique, but consumers in   |
| 81 | developed countries are sometimes unwilling to eat agricultural products cultured with  |
| 82 | pesticide applications. The overuse of pesticides is dangerous for both farmers and     |
| 83 | consumers and can encourage resistance in the targeted pests. Therefore, a reduction of |

| 84 | pesticide application is recommended worldwide. There have been no studies published       |
|----|--------------------------------------------------------------------------------------------|
| 85 | regarding the effects of pesticides on metabolites in tomato fruits. In the present study, |
| 86 | we evaluated the effects of pesticides on a large number of tomato fruits.                 |
| 87 | The term "metabolome" has been used to describe the observable chemical                    |
| 88 | fingerprint of the metabolites present in whole cells, tissues, or whole organisms (Ott,   |
| 89 | Aranibar, Singh, & Stockton, 2003). Metabolomic analyses are ideally rapid, unbiased,      |
| 90 | and comprehensive. While no analytical technique meets all of these criteria, mass         |
| 91 | spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR)        |
| 92 | spectroscopy are all well established metabolomic techniques (Kruger, Troncoso-Ponce,      |
| 93 | & Ratcliffe, 2008). NMR spectroscopy is a powerful tool for analyzing and quantifying      |
| 94 | metabolite levels in cell extracts; it requires minimum preparation and handling with no   |
| 95 | derivatization (Ratcliffe & Shachar-Hill, 2001). When high-resolution NMR                  |
| 96 | spectroscopy is coupled with multivariate statistical analysis, the resulting data provide |
| 97 | useful information regarding the nutritional and genetic backgrounds of the samples        |
| 98 | (Krishnan, Kruger, & Ratcliffe, 2005; Le Gall, Colquhoun, Davis, Collins, &                |
| 99 | Verhoeyen, 2003; Mannina, Dugo, Salvo, Cicero, Ansanelli, Calcagni, et al., 2003).         |

| 100 | Therefore, metabolic profiling provides a powerful approach for monitoring the                      |
|-----|-----------------------------------------------------------------------------------------------------|
| 101 | complexity of organically and conventionally grown fruits.                                          |
| 102 | We used metabolic profiling to analyze the water-soluble constituents of tomato                     |
| 103 | fruits. Some metabolites that contributed to the discrimination of principal components             |
| 104 | analysis (PCA) were identified by ${}^{1}H$ - ${}^{13}C$ -hetero-nuclear single quantum coherence   |
| 105 | (HSQC). The aromatic proton region ( $\delta$ 5.5–9.5 ppm) was excluded from this analysis          |
| 106 | due to low signals. Our results suggest that a combination of <sup>1</sup> HNMR profiling of water- |
| 107 | soluble metabolites with measurement of mineral nutrient contents is a useful method                |
| 108 | for evaluating the effects of different cultivation systems on metabolites from many                |
| 109 | samples.                                                                                            |
| 110 |                                                                                                     |
| 111 | ■ MATERIALS AND METHODS                                                                             |
| 112 | Tomato Culture. Seeds of tomato (Solanum lycopersicum L. cv. Momo) were sown                        |

- 113 in seed trays containing a peat and vermiculite mixture. At the third true-leaf stage,
- 114 seedlings were transplanted to 10-L pots containing a mixture of Kuroboku soil,
- vermiculite, and leaf mold (5:1:1). The pH and EC of the soil mixture were 5.6 and 22.3

| 116 | mS/mL, respectively. The pots were covered with bird nets and placed in an open space                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 117 | for cultivation.                                                                                                               |
| 118 | The fertilizer used in the conventional production system was a slow-release                                                   |
| 119 | fertilizer [Vegetable Eidoball (10-10-10); Sumitomo Chemical Garden Products Inc.,                                             |
| 120 | Tokyo, Japan] and was applied basally at a rate of 23.1 g per pot. At 4 and 8 weeks after                                      |
| 121 | transplanting, additional fertilizer was applied at a rate of 7.7 g of Vegetable Eidoball                                      |
| 122 | per pot.                                                                                                                       |
| 123 | The organic production system was fertilized basally with a commercial rapeseed                                                |
| 124 | meal $[N-P_2O_5-K_2O (7-2-4)]$ at a rate of 62.6 g per pot and a commercial fish meal $[N-P_2O_5-K_2O (7-2-4)]$                |
| 125 | P <sub>2</sub> O <sub>5</sub> –K <sub>2</sub> O (7-6-0); Asahi Industries Co., Ltd. Tokyo, Japan] at a rate of 62.6 g per pot. |
| 126 | To adjust N, $P_2O_5$ , and $K_2O$ content between the conventional and organic production                                     |
| 127 | systems, pure potassium chloride at a rate of 5.2 g per pot was added to ensure against                                        |
| 128 | potassium deficiency. The efficiency index was assumed to be N 50%, $P_2O_5$ 80%, and                                          |
| 129 | $K_2O$ 90% for rapeseed meal, and N 50% and $P_2O_5$ 80% for fish meal.                                                        |

| 130 | During culture, an insecticide (2000-fold dilution of 5.0% chlorfluazuron emulsion)      |
|-----|------------------------------------------------------------------------------------------|
| 131 | and a pesticide (1000-fold dilution of 40.0% tetrachloro-1,3-benzenedicarbonitrile)      |
| 132 | were applied twice and once, respectively.                                               |
| 133 | Four plants were used for each treatment. The tomato plants were topped after the        |
| 134 | development of the 4th truss. The fruits were harvested at the red stage as confirmed by |
| 135 | a standard color chart (R255). They were weighed, and a Brix determination (Pocket       |
| 136 | Refractometer APAL-1; ASONE, Tokyo, Japan) was made on selected fruits.                  |
| 137 | Remaining injury-free fruits were frozen in liquid nitrogen and freeze-dried. In total,  |
| 138 | 55-60 tomato fruits were used for extraction.                                            |
| 139 | Nitrate, Mineral Nutrient, and C/N Ratio Analysis. Freeze-dried samples (100             |
| 140 | mg) were extracted three times in 3 mL of 70°C distilled water. The suspensions were     |
| 141 | filtered through paper filters (No. 2; Whatman, Maidstone, Kent, UK) and fixed at 10     |
| 142 | mL. Nitrate content was determined using a previously described method (Chuley &         |
| 143 | West, 1975).                                                                             |
| 144 | Freeze-dried samples (400 mg) were placed in Teflon vessels, and 2.5 mL                  |

145 concentrated nitrate was added. The closed vessels were kept for 30 min at room

| 146 | temperature and incubated for 2 h at 170°C. After cooling, the digests were fixed at 50             |
|-----|-----------------------------------------------------------------------------------------------------|
| 147 | mL with Milli Q water (Millipore, Billerica, MA, USA) and analyzed by inductively                   |
| 148 | coupled plasma (ICP)-atomic emission spectrometry (ICPS-1000IV; Shimadzu, Kyoto,                    |
| 149 | Japan).                                                                                             |
| 150 | Freeze-dried samples (100 mg) were placed on an autosampler (CN-CODER MT                            |
| 151 | 200: Yanaco, Tokyo, Japan), and the C/N ratio was determined according to the                       |
| 152 | manufacturer's protocol.                                                                            |
| 153 | NMR Spectroscopy. Freeze-dried powder (100 mg) was homogenized in an Auto-                          |
| 154 | Mill TK AM4 (Tokken, Chiba, Japan). The supernatant was suspended with 10% (v/v)                    |
| 155 | deuterium oxide (D <sub>2</sub> O) and 1 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS)     |
| 156 | as an internal standard. All NMR spectra were recorded with a DRX-500 spectrometer                  |
| 157 | equipped with a <sup>1</sup> H inverse triple-resonance probe with triple-axis gradients, operating |
| 158 | at 500.13 MHz for protons (Bruker, Billerica, MA, USA). The temperature of NMR                      |
| 159 | samples was maintained at 25°C. For <sup>1</sup> H-NMR spectra, 32,768 data points with a           |
| 160 | spectral width of 10,000 Hz were collected into 128 transient and 1 dummy scans.                    |
| 161 | Residual water signals were suppressed by a WATERGATE pulse sequence with a 1.2 s                   |

| 162 | cycle time. Prior to Fourier transformation, the free induction decays were multiplied by                 |
|-----|-----------------------------------------------------------------------------------------------------------|
| 163 | an exponential window function corresponding to a 0.3 Hz line broadening factor. The                      |
| 164 | acquired spectra were manually phased and baseline-corrected. The methods used for                        |
| 165 | the NMR measurements of two-dimensional (2D) <sup>1</sup> H- <sup>13</sup> C heteronuclear single quantum |
| 166 | coherence (HSQC) and total correlation spectroscopy (TOCSY) have been described                           |
| 167 | previously(Chikayama, Suto, Nishihara, Shinozaki, & Kikuchi, 2008; Date, Iikura,                          |
| 168 | Yamazawa, Moriya, & Kikuchi, 2012; Kikuchi & Hirayama, 2007; Kikuchi, Shinozaki,                          |
| 169 | & Hirayama, 2004; Sekiyama, Chikayama, & Kikuchi, 2010). NMR spectra were                                 |
| 170 | processed using NMRPipe software (Delaglio, Grzesiek, Vuister, Zhu, Pfeifer, & Bax,                       |
| 171 | 1995) and were assigned using the Spin Assign program from the PRIMe Web site                             |
| 172 | (http://prime.psc.riken.jp) (Akiyama, Chikayama, Yuasa, Shimada, Tohge, Shinozaki, et                     |
| 173 | al., 2008; Chikayama, Sekiyama, Okamoto, Nakanishi, Tsuboi, Akiyama, et al., 2010).                       |
| 174 | Statistical Analysis. Each spectrum was binned for multivariate analysis using in-                        |
| 175 | house software with a bin width of 0.036 ppm as described previously (Mochida, Furuta,                    |
| 176 | Ebana, Shinozaki, & Kikuchi, 2009; Tian, Chikayama, Tsuboi, Kuromori, Shinozaki,                          |
| 177 | Kikuchi, et al., 2007). The spectral region of 4.89–4.62 ppm was excluded to avoid                        |

| 178                      | variability due to water suppression and cross-saturation effects. The data were                                                                                                                                                                                                                                                                                    |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 179                      | normalized to the total intensity of the spectral region to correct for possible differences                                                                                                                                                                                                                                                                        |
| 180                      | in the signal-to-noise ratio and extraction between spectra. The data were analyzed by                                                                                                                                                                                                                                                                              |
| 181                      | statistical multivariate techniques using R 2.10.1 software (www.R-project.org) and MS                                                                                                                                                                                                                                                                              |
| 182                      | Excel.                                                                                                                                                                                                                                                                                                                                                              |
| 183                      | The R function cancor was used to calculate the canonical correlation between                                                                                                                                                                                                                                                                                       |
| 184                      | metabolites and mineral nutrients.                                                                                                                                                                                                                                                                                                                                  |
| 185                      |                                                                                                                                                                                                                                                                                                                                                                     |
| 186                      | ■ RESULTS                                                                                                                                                                                                                                                                                                                                                           |
| 187                      | Effects of Organic and Chemical Fertilizers and Pesticides on Yield, Brix,                                                                                                                                                                                                                                                                                          |
| 188                      | Mineral Nutrient, Nitrate, Total C, and N Content of Tomato Fruits. The                                                                                                                                                                                                                                                                                             |
|                          |                                                                                                                                                                                                                                                                                                                                                                     |
| 189                      | application of chemical fertilizers increased the tomato yield 1.2-fold compared to                                                                                                                                                                                                                                                                                 |
| 189<br>190               | application of chemical fertilizers increased the tomato yield 1.2-fold compared to organic fertilizers (Supplemental Table 1). A 30% increase in tomato yield was obtained                                                                                                                                                                                         |
| 189<br>190<br>191        | application of chemical fertilizers increased the tomato yield 1.2-fold compared to<br>organic fertilizers (Supplemental Table 1). A 30% increase in tomato yield was obtained<br>with a combination of pesticides and organic fertilizers compared to organic fertilizers                                                                                          |
| 189<br>190<br>191<br>192 | application of chemical fertilizers increased the tomato yield 1.2-fold compared to<br>organic fertilizers (Supplemental Table 1). A 30% increase in tomato yield was obtained<br>with a combination of pesticides and organic fertilizers compared to organic fertilizers<br>alone. The yield obtained with the combination of pesticides and chemical fertilizers |

| 194 | alone or organic fertilizers with pesticide application. A combination of chemical         |
|-----|--------------------------------------------------------------------------------------------|
| 195 | fertilizers and pesticides achieved the highest yield of tomato, while organic fertilizers |
| 196 | alone achieved the lowest.                                                                 |
| 197 | Statistical analysis revealed that pesticide application increased fruit yield, but brix   |
| 198 | was not influenced by either fertilizers or pesticides (Supplemental Table 1). The nitrate |
| 199 | content and C/N ratio of tomato fruits was not significantly different between organic     |
| 200 | and chemical fertilizer applications (Supplemental Table 2), but there was a significant   |
| 201 | difference in the C ratios at the 5% level.                                                |
| 202 | Organic and chemical fertilizers had different effects on the absorption of K, Mg, Ca,     |
| 203 | Fe, and Mn, but not P and B (Table 1). Compared to chemical fertilizers, organic           |
| 204 | fertilizers stimulated the absorption of Fe, Mn, and Zn 1.4-, 2.4-, and 1.8-fold,          |
| 205 | respectively. In contrast, the absorption of K, Mg, and Ca decreased to 90%, 89%, and      |
| 206 | 73%, respectively. Pesticide application had little effect on the absorption of mineral    |
| 207 | nutrients, with the exception of the Fe content of tomato fruits cultured by organic       |
| 208 | fertilizers, which increased by about 20% and the P content of tomato fruits cultured by   |
| 209 | chemical fertilizers, which decreased by 10%.                                              |

| 210 | <sup>1</sup> H NMR spectra. Figure 1A shows typical <sup>1</sup> H NMR spectra of aqueous extracts of |
|-----|-------------------------------------------------------------------------------------------------------|
| 211 | tomato fruits. The signals in the aromatic region ( $\delta$ 6.0–8.0) were smaller than those in      |
| 212 | the aliphatic or sugar region. Little difference was observed between the spectra of                  |
| 213 | aqueous extracts of the fruits grown with organic and chemical fertilizer, with or                    |
| 214 | without pesticides. Figure 1B and C show expanded spectra in the $\delta$ ~3.0 and $\delta$ 5.5–9.0   |
| 215 | regions. Large signals were assigned using the Spin Assign program on the PRIMe                       |
| 216 | ( <u>http://prime.psc.riken.jp</u> ).                                                                 |
| 217 | Principal components analysis (PCA). PCA is a clustering method that reduces the                      |
| 218 | dimensionality of multivariate data while preserving most of its variance (Eriksson,                  |
| 219 | Johansson, Kettaneh-Wold, Trygg, Wikström, & Wold, 2006). The mineral nutrients in                    |
| 220 | tomato fruits cultured using organic and chemical fertilizers with and without pesticides             |
| 221 | were subjected to PCA to outline the differences between the culture systems. As shown                |
| 222 | in Figure 2A, the contents of mineral nutrients were generally separated between                      |
| 223 | organic and chemical fertilizer application by both principal component 1 (PC1) and                   |
| 224 | PC2. This separation occurred in the first two principal components, which                            |
| 225 | cumulatively accounted for 88.06% of the total variation. There was no indication of a                |

| 227 | organic or chemical fertilizers.                                                            |
|-----|---------------------------------------------------------------------------------------------|
| 228 | Figure 2B shows the loading scores of the mineral nutrients. The contents of K and          |
| 229 | Ca in tomato fruits were positively discriminating components of the PC1 scores and         |
| 230 | negatively discriminating components of the PC2 scores, respectively.                       |
| 231 | Figure 2C shows the PCA results for soluble metabolites between organic and                 |
| 232 | chemical fertilizer applications with and without pesticide applications. The graph         |
| 233 | (Figure 2C), which plots PC1 scores versus PC2 scores, clearly discriminates between        |
| 234 | the metabolic profiles of tomatoes grown with organic versus chemical fertilizer, but no    |
| 235 | difference was found between pesticide application and no-pesticide application.            |
| 236 | The loading plots of PC1, PC2, and PC3 (Figure 2D) show the contribution of the             |
| 237 | soluble metabolites to the scores. Aliphatic protons from organic acids, amino acids,       |
| 238 | and sugars contributed to the discrimination. Figures 2E and F show the variables with      |
| 239 | more than 0.1 negative and positive loading scores. PC1 scores of more than $\pm 0.2$       |
| 240 | corresponded to resonances in the $\delta$ 3.998, 3.89, 3.71, 3.674, and 3.566 ppm signals. |
| 241 | PC2 scores greater than $\pm 0.2$ ppm corresponded to $\delta$ 3.818 and 3.386 ppm. The PC3 |

separation between pesticide application and no-pesticide application using either



| 258 | difference in the canonical correlations among the production systems. The p values of       |
|-----|----------------------------------------------------------------------------------------------|
| 259 | the test are shown in Supplemental Table 4 A–C. The canonical variates of the organic        |
| 260 | and amino acid group were affected by pesticide application in combination with              |
| 261 | chemical fertilizers, but not by chemical fertilizers alone or organic fertilizers in        |
| 262 | combination with pesticides. The fertilizer type affected the canonical variates of sugar    |
| 263 | groups, but pesticide application had no significant effect on the variates. The canonical   |
| 264 | correlations between mineral nutrient contents and aromatic substances were                  |
| 265 | significantly influenced by the fertilizer type and the application of pesticides, except in |
| 266 | the combined application of chemical fertilizers and pesticides.                             |
| 267 | Figure 4 shows the correlation between the NMR signal intensity of soluble                   |
| 268 | metabolites and the content of mineral nutrients in tomato fruits. While the application     |
| 269 | of organic fertilizers resulted in positive correlations between the contents of Mg, P, K,   |
| 270 | and Fe and the signal intensity of organic and amino acids, the addition of pesticide        |
| 271 | application lowered the correlations. Conversely, the application of organic fertilizers     |
| 272 | resulted in negative correlations with the content of Ca, and the addition of pesticide      |
| 273 | application increased the negative correlations. While the application of chemical           |

| 274 | fertilizers resulted in positive correlations between the contents of Mg, P, K, Mn, and    |
|-----|--------------------------------------------------------------------------------------------|
| 275 | Zn and the signal intensity of organic and amino acids, the addition of pesticide          |
| 276 | application increased the positive correlations with the contents of P, Mn, and Fe, and    |
| 277 | increased the negative correlations with the content of Ca. The application of organic     |
| 278 | fertilizers resulted in positive and negative correlations between the Mg, P, and K        |
| 279 | contents and the signal intensity of sugars, but the addition of pesticide application had |
| 280 | almost no effect on these correlations. The correlations between Ca content and the        |
| 281 | signal intensity of sugars had adverse interactions with other minerals. The application   |
| 282 | of chemical fertilizers and pesticides increased the positive and negative correlations    |
| 283 | between P, Mn, and Fe contents and the signal intensity of sugars, but had almost no       |
| 284 | effect on the correlation between Ca and sugars. Large positive correlations between       |
| 285 | Mn and Fe contents and the signal intensity of each metabolite, except for some sugars     |
| 286 | ( $\delta$ 3.4–4.0 ppm), and negative correlations between Ca and the metabolites were     |
| 287 | observed in tomatoes cultured with the application of chemical fertilizers and pesticides. |
| 288 |                                                                                            |

## **DISCUSSION**

| 290 | Plant metabolites consist of a large variety of materials and contain a high degree of |
|-----|----------------------------------------------------------------------------------------|
| 291 | structural complexity. Because MS combines well with gas chromatography (GC), GC-      |
| 292 | MS or GC-MS/MS techniques have been successfully developed for the determination       |
| 293 | of trace amounts of materials. The extensive use of GC-MS promotes the availability of |
| 294 | compound libraries for many metabolites (Ratcliffe & Shachar-Hill, 2006). However,     |
| 295 | GC-MS has the disadvantage of requiring a derivatization to separate volatile          |
| 296 | compounds. NMR has the advantage that there is no need to separate the metabolites.    |
| 297 | Consequently, NMR can provide large-scale profiling in a simple manner. We used        |
| 298 | NMR to metabolically profile tomatoes cultured in different systems.                   |
| 299 | As shown in Figure 1, aromatic compounds were not fully extracted because we used      |
| 300 | a phosphate buffer for extraction. We previously used methanol for the extraction of   |
| 301 | tomato fruits and obtained higher signals for aromatic compounds (Supplemental Figure  |
| 302 | 1). Methanol extraction requires evaporation to suspend the phosphate buffer for NMR.  |
| 303 | This procedure takes a considerable amount of time and often loses extract by bumping  |
| 304 | during evaporation. Phosphate-buffered extraction is convenient when there are many    |
| 305 | samples to test because the extract can be directly used in NMR.                       |

| 306 | The tomatoes that we used were genetically homogeneous and we expected to find                                  |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 307 | minimal difference among the treatments, so the number of samples was critical for the                          |
| 308 | PCA of metabolites. Therefore, we abandoned methanol extraction. The combination of                             |
| 309 | phosphate-buffered extraction and NMR provides a simplified method for large-scale                              |
| 310 | metabolic profiling.                                                                                            |
| 311 | Large positive loading scores for PC1 were observed around $\delta$ 3.6 ppm (Figure 2D).                        |
| 312 | These chemical shifts were derived from the protons from sugars. Therefore, PC1                                 |
| 313 | represented the difference in the sugar content. Loading scores of PC2 were broadly                             |
| 314 | distributed from $\delta$ 2 ppm to $\delta$ 4 ppm. The positive scores ranged from $\delta$ 2 ppm to $\delta$ 3 |
| 315 | ppm, where protons were assigned to amino and organic acids. In cherry juice, malic                             |
| 316 | acid was the most important metabolite contributing to sweetness and sourness (Clausen,                         |
| 317 | Pedersen, Bertram, & Kidmose, 2011). However, malic acid in tomato fruits was not a                             |
| 318 | factor discriminating PC1 and PC2 scores. Differences in the sugar, amino acid, and                             |
| 319 | organic acid content may affect the quality of tomatoes cultured with different systems.                        |
| 320 | The application of pesticides increased the tomato yield by 29% and 14% with the                                |
| 321 | application of organic and chemical fertilizers, respectively. Pesticides effectively                           |

| 322 | contributed to the tomato yield by killing insects and microorganisms, especially when a   |
|-----|--------------------------------------------------------------------------------------------|
| 323 | combination of organic fertilizers was used. Tomatoes cultured by organic fertilizers      |
| 324 | were susceptible to insects and microorganisms. Therefore, pesticide application           |
| 325 | together with the application of organic fertilizers successfully raised the yield of      |
| 326 | tomato fruits.                                                                             |
| 327 | Nitrate is reduced to nitrite, which can cause adverse effects on human and animal         |
| 328 | health. Some epidemiological studies have indicated a positive correlation between the     |
| 329 | intake of nitrate and nitrite and gastric cancer in humans (Dutt, Lim, & Chew, 1987).      |
| 330 | Nitrate absorption and its accumulation in plants are influenced by a variety of factors,  |
| 331 | particularly by the excessive application of nitrogen fertilizers. Although farmers may    |
| 332 | be encouraged to reduce the amount of nitrogen fertilizer applied to crops, they are       |
| 333 | unlikely to reduce overall nitrogen applications due to the risk of lower yields.          |
| 334 | The application of chemical fertilizers had a minimal affect on the content of nitrate     |
| 335 | and total N in tomato fruits (Supplemental Table 2), whereas the total C content           |
| 336 | increased in tomatoes following the application of organic fertilizers. This suggests that |

| 338 | nitrogen and maintains nitrate at the appropriate level.                                   |
|-----|--------------------------------------------------------------------------------------------|
| 339 | The application of organic fertilizers better facilitates the conversion of carbon         |
| 340 | dioxide to organic carbon (carbon dioxide assimilation) than the application of chemical   |
| 341 | fertilizers. This is reflected by the high total C content of tomato fruits cultured with  |
| 342 | organic fertilizers. The application of organic fertilizers also stimulated the absorption |
| 343 | of essential trace elements such as Fe, Mn, and Zn (Table 1). Organic fertilizers nourish  |
| 344 | the microorganisms in the rhizosphere. Therefore, tomato fruits cultured using organic     |
| 345 | fertilizers will be rich in these minerals. Mineral-rich tomato fruits are important for   |
| 346 | human health. Accordingly, the application of organic fertilizers is recommended from      |
| 347 | a human health perspective. The application of organic fertilizers produced positive       |
| 348 | correlations between Mg, K, Mn, and Fe contents and NMR signal intensity of organic        |
| 349 | and amino acids (Figure 4). These mineral nutrients may promote the biosynthesis of        |
| 350 | organic and amino acids, because microelements often function in catalysis as essential    |
| 351 | cofactors of many metabolic enzymes.                                                       |

the correct application of chemical fertilizers suppresses the absorption of excess

| 352 | While tomatoes cultured using organic fertilizers had positive correlations between       |
|-----|-------------------------------------------------------------------------------------------|
| 353 | Mg and K contents and the signal intensity of sugars and organic and amino acids, the     |
| 354 | application of pesticides with chemical fertilizers reduced this positive correlation and |
| 355 | resulted in a decline in the brix value of tomato fruits. Generally, Mg and K play roles  |
| 356 | in sugar and carbohydrate production, transport, and storage. Mg and K probably           |
| 357 | stimulate the biosynthesis or transport of sugar and contribute to a higher brix value in |
| 358 | tomatoes cultured using organic fertilizers. Although slight increases in the content of  |
| 359 | Mg and K were observed with the application of chemical fertilizers and pesticides        |
| 360 | (Table 1), they did not affect brix values. The application of pesticides had an adverse  |
| 361 | effect on brix values. The correlation between mineral nutrient content and the signal    |
| 362 | intensity of water-soluble aromatic metabolites was significantly affected by the         |
| 363 | combination of organic fertilizers and chemical fertilizers with pesticides (Supplemental |
| 364 | Table 4C). The application of chemical fertilizers and pesticides increased the           |
| 365 | correlation between the aromatic metabolites and the B, Mn, and Fe contents, which        |
| 366 | would differ in the content of water-soluble secondary metabolites. The combination of    |

| 367 | <sup>1</sup> H NMR profiling and ICP analysis with canonical correlation analysis provides a new |
|-----|--------------------------------------------------------------------------------------------------|
| 368 | method for elucidating the role of mineral nutrients in metabolomics.                            |
| 369 | In conclusion, pesticide application only minimally affected the content of mineral              |
| 370 | nutrients, but influenced the correlation between mineral nutrients and soluble                  |
| 371 | metabolite levels in tomato fruits. The difference in the correlation is a reflection of         |
| 372 | changes in the biosynthesis of metabolites in response to pesticide application and              |
| 373 | probably makes tomato fruits taste different and influences other quality parameters.            |
| 374 |                                                                                                  |
| 375 |                                                                                                  |
| 376 |                                                                                                  |
| 377 |                                                                                                  |
| 378 |                                                                                                  |
| 379 |                                                                                                  |
| 380 |                                                                                                  |
| 381 |                                                                                                  |
| 382 |                                                                                                  |

- 384 The English in this document has been checked by at least two professional editors,
- 385 both native speakers of English. For a certificate, please see:
- 387 http://www.textcheck.com/certificate/jQ0w4E

## **390 ■ REFERENCES**

| 392 | Akivama. | K., | Chikavama. | Е | Yuasa. | Η., | Shimada. | Y | Tohge. | Т | Shinozaki | . K., | Hirai |
|-----|----------|-----|------------|---|--------|-----|----------|---|--------|---|-----------|-------|-------|
|     | ,,       | ,   | ,          |   |        | ,   |          | 7 |        |   |           | ,,    | ,     |

- 393 M. Y., Sakurai, T., Kikuchi, J., & Saito, K. (2008). PRIMe: a Web site that assembles
- tools for metabolomics and transcriptomics. In Silico Biol, 8(3-4), 339-345.
- Bourn, D., & Prescott, J. (2002). A comparison of the nutritional value, sensory
- 396 qualities, and food safety of organically and conventionally produced foods. Crit Rev
- **397** Food Sci Nutr, 42, 1–34.
- 398 Chikayama, E., Sekiyama, Y., Okamoto, M., Nakanishi, Y., Tsuboi, Y., Akiyama, K.,
- 399 Saito, K., Shinozaki, K., & Kikuchi, J. (2010). Statistical indices for simultaneous large-
- 400 scale metabolite detections for a single NMR spectrum. Anal Chem, 82(5), 1653-1658.
- 401 Chikayama, E., Suto, M., Nishihara, T., Shinozaki, K., & Kikuchi, J. (2008). Systematic
- 402 NMR analysis of stable isotope labeled metabolite mixtures in plant and animal
- 403 systems: coarse grained views of metabolic pathways. PLoS One, 3(11), e3805.
- 404 Chuley, J. L., & West, N. E. (1975). Plant-induced soil chemical patterns in some
- 405 shrub-dominated semidesert ecosystems in Utah. J. Ecol., 63, 945-963.
- 406 Clausen, M. R., Pedersen, B. H., Bertram, H. C., & Kidmose, U. (2011). Quality of
- 407 Sour Cherry Juice of Different Clones and Cultivars (Prunus cerasus L.) Determined by
- 408 a Combined Sensory and NMR Spectroscopic Approach. J. Agric. Food Chem., 59(22),
- 409 12124–12130.

- 410 Date, Y., Iikura, T., Yamazawa, A., Moriya, S., & Kikuchi, J. (2012). Metabolic
- 411 sequences of anaerobic fermentation on glucose-based feeding substrates based on
- 412 correlation analyses of microbial and metabolite profiling. J Proteome Res, 11(12),
- **413** 5602-5610.
- 414 Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995).
- 415 NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J.
- 416 Biomol. NMR, 6(3), 277-293.
- 417 Dutt, M. C., Lim, H. Y., & Chew, R. K. H. (1987). Nitrate consumption and the
- 418 incidence of gastric cancer in Singapore. Food Chem. Toxicol., 25, 515–518.
- 419 Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., & Wold, S.
- 420 (2006). Part I: Basic Principles and Applications, . In Multi- and Megavariate Data
- 421 Analysis Second revised and enlarged edition ed.). Umea, Sweden: Umetrics Academy.
- 422 Kikuchi, J., & Hirayama, T. (2007). Practical aspects of uniform stable isotope labeling
- 423 of higher plants for heteronuclear NMR-based metabolomics. Methods Mol Biol, 358,
- **424** 273-286.
- 425 Kikuchi, J., Shinozaki, K., & Hirayama, T. (2004). Stable isotope labeling of
- 426 Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiol,
- **427 45(8)**, 1099-1104.
- 428 Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and
- 429 profiling in plants using NMR. J Exp Bot, 56(410), 255-265.

- 430 Kruger, N. J., Troncoso-Ponce, M. A., & Ratcliffe, R. G. (2008). 1H NMR metabolite
- 431 fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues
- 432 NATURE PROTOCOLS, 3(6), 1001-1012.
- 433 Le Gall, G., Colquhoun, I. J., Davis, A. L., Collins, G. J., & Verhoeyen, M. E. (2003).
- 434 Metabolite Profiling of Tomato (Lycopersicon esculentum) Using 1H NMR
- 435 Spectroscopy as a Tool To Detect Potential Unintended Effects Following a Genetic
- 436 Modification. J. Agric. Food Chem., 51(9), 2447 -2456.
- 437 Mannina, L., Dugo, G., Salvo, F., Cicero, L., Ansanelli, G., Calcagni, C., & Segre, A.
- 438 (2003). Study of the cultivar-composition relationship in Sicilian olive oils by GC,
- 439 NMR, and statistical methods. J Agric Food Chem, 51(1), 120-127.
- 440 Mochida, K., Furuta, T., Ebana, K., Shinozaki, K., & Kikuchi, J. (2009). Correlation
- 441 exploration of metabolic and genomic diversities in rice. BMC Genomics., 10, 568-577.
- 442 Ott, K. H., Aranibar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies
- 443 pathways affected by bioactive compounds. Artificial neural network classification of
- 444 NMR spectra of plant extracts. Phytochemistry, 62 971-985.
- 445 Ratcliffe, R. G., & Shachar-Hill, Y. (2001). Probing Plant Metabolism with Nmr. Annu
- 446 Rev Plant Physiol Plant Mol Biol, 52, 499-526.
- 447 Ratcliffe, R. G., & Shachar-Hill, Y. (2006). Measuring multiple fluxes through plant
- 448 metabolic networks. Plant J, 45(4), 490-511.
- 449 Rembiałkowska E. (2007). Quality of plant products from organic agriculture. J. Sci.
- 450 Food Agric., 87, 2757–2762.

- 451 Schutz, H. G., & Lorenz, O. A. (1976). Consumer preferences for vegetables grown
- 452 under 'commercial' and 'organic' conditions. J. Food Sci.
- **453** , 41, 70–73.
- 454 Sekiyama, Y., Chikayama, E., & Kikuchi, J. (2010). Profiling polar and semipolar plant
- 455 metabolites throughout extraction processes using a combined solution-state and high-
- 456 resolution magic angle spinning NMR approach. Anal Chem, 82(5), 1643-1652.
- 457 Tian, C. J., Chikayama, E., Tsuboi, Y., Kuromori, T., Shinozaki, K., Kikuchi, J., &
- 458 Hirayama, T. (2007). Top-down phenomics of Arabidopsis thaliana–One and two-
- 459 dimensional NMR metabolic profiling and transcriptome analysis of albino mutants. J.
- 460 Biol. Chem., 282, 18532-18541.
- 461 Toor, R. K., Savage, G. P., & Heeb, A. (2006). Influence of different types of fertilizers
- on the major antioxidant components of tomatoes. J. Food Sci. Composition Anal., 19,
- **463** 20-27.
- 464 Woese. K, Lange. D, C, B., & W, B. K. (1997). A comparison of organically and
- 465 conventionally grown foods: results of a review of the relevant literature. J Sci Food
- 466 Agric, 74, 281–293.
- 467 Zhao, X., Chambers, E., Matta, Z., Loughin, T. M., & Carey, E. E. (2007). Consumer
- 468 Sensory Analysis of Organically and Conventionally Grown Vegetables. J. Food Sci.,
- **469** 72, 87-91.
- 470

## 471 Figure captions

472

Figure 1. <sup>1</sup>H NMR spectra of soluble metabolites in tomato fruits cultured with organic 473

474 fertilizer. The whole <sup>1</sup>H NMR spectra (A) and the extended spectra of  $\delta$  0.7 to 3.1 ppm

475 (B) and  $\delta$  5.3 to 9.2 ppm (C). The signals were assigned using the Spin Assign program

on the PRIMe website (http://prime.psc.riken.jp). 476

| 478 | Figure 2. A) Sample scores for the first (PC1) and second (PC2) principal components    |
|-----|-----------------------------------------------------------------------------------------|
| 479 | provided by principal component analysis for mineral nutrients in tomato fruits. Each   |
| 480 | group consisted of 35 to 40 tomato samples. B) Loading scores for the first (PC1) and   |
| 481 | the second (PC2) principal components. C) Sample scores for the first (PC1) and second  |
| 482 | (PC2) principal components provided by principal component analysis for soluble         |
| 483 | metabolites in tomato fruits. Each group consisted of 50 to 60 tomato samples. D)       |
| 484 | Principal component analysis loadings of soluble metabolites with the first principal   |
| 485 | component (PC1), the second (PC2) and the third (PC3) in tomato fruits. PCA loadings    |
| 486 | of soluble metabolites with PC1 (E) and PC2 (F). The loading scores more than $\pm 0.1$ |

website (http://prime.psc.riken.jp). Figure 3. The <sup>1</sup>H-<sup>13</sup>C HSQC spectra ( $\delta$ -0.5 to 9.5 ppm) of soluble metabolites in tomato fruits cultured with organic fertilizers. A) The whole <sup>1</sup>H-<sup>13</sup>C HSQC spectra, B) the extended figure of  $\delta$  3.1 to 5.3 ppm and C) the extended figure of  $\delta$  0.9 to 3.1 ppm. The numbered signals were assigned using the Spin Assign program on the PRIMe website (http://prime.psc.riken.jp). The assigned metabolites were shown in supplemental table 3. Figure 4. Correlation between <sup>1</sup>H NMR intensity of soluble metabolites and contents of mineral nutrients in tomato fruits.

were shown. The signals were assigned using the Spin Assign program on the PRIMe

| Table(s) |  |
|----------|--|
|----------|--|

Application P (mg/DW) K (mg/DW) Mg (mg/DW) Ca (mg/DW) Fe (mg/DW) Mn (mg/DW) B (mg/DW) Zn (mg/DW) Organic fertilizers  $3.921a \pm 0.609$  $17.140a \pm 1.958$  $2.148a \pm 0.350$  $1.561a \pm 0.534$  $1.369a \pm 0.312$   $0.695a \pm 0.187$   $0.218a \pm 0.114$  $0.243a \pm 0.164$ Organic fertilizers and pesticides  $4.004a \pm 0.575$ 17.761a ± 1.449  $2.287a,b \pm 0.255$  $1.465a \pm 0.406$  $1.150b \pm 0.167$  $0.671a \pm 0.163 \quad 0.221a \pm 0.087$  $0.200a,b \pm 0.087$ Chemical  $0.985b,c \pm 0.337$  $0.285b \pm 0.063 \quad 0.277a \pm 0.168$  $0.133a,b \pm 0.051$ fertilizer  $4.212a \pm 0.829$  $19.011b \pm 1.251$   $2.407a,b \pm 0.353$   $2.137b \pm 0.507$ Chemical fertilizers and pesticides  $4.728b \pm 0.544$  19.233b  $\pm 1.406$  $2.343a \pm 0.212$  1.974b  $\pm 0.555$  $0.910c \pm 0.225$   $0.296b \pm 0.055$   $0.201a \pm 0.027$  $0.201a \pm 0.121$ 

Data are means  $\pm$  SD (n = 20 ~ 40). Values followed by the same letters are not significantly different at the 5% level using Tukey's HSD test.

Table 1 Content of mineral nutrients of tomato fruits

Table 2 Sumarry of metabolites contriibuting PC1 and PC2 scores

| <sup>1</sup> H ppm | 4.034 | 3.96 | 3.89     | 3.674 | 3.566 | 4.034 | 3.89 | 3.746 | 3.674 | 3.962       | 3.854    | 3.818 | 3.494  | 3.386 | 3.818 | 3.494      | 3.458 | 3.53  | 3.494 | 3.242        | 2.702 | 2.81   | 2.126  | 2.414 | 2.63    |
|--------------------|-------|------|----------|-------|-------|-------|------|-------|-------|-------------|----------|-------|--------|-------|-------|------------|-------|-------|-------|--------------|-------|--------|--------|-------|---------|
| Candidate          |       | Г    | )-Ernete | se    |       |       | Rafi | inose |       | D.Galactore | D-Ribose | Г     | -Gluco | e e   | G     | entiobic   | se    | Cello | biose | I - Arginine | I_Asn | artate | L-Ght  | amine | Citrate |
| materials          |       | L    | -i iucii | 550   |       |       | Ran  | mose  |       | D-Galaciose | D-Ribose | L     | -Oluco | sc    | 0.    | cittiooite | isc . | Cento | biose | L-Aiginnie   | L-Asp | artaic | L-Olui |       | Ciuate  |

The signals were identified by <sup>1</sup>H NMR and <sup>1</sup>H-<sup>13</sup>C HSQC and assigned using the Spin Assign program on the PRIMe website (http://prime.psc.riken.jp).



Fig. 1





Fig. 2



Fig. 3



Fig. 4

Supplemental Table 1 Effects of fertilizers and pesticides on yield and brix

of tomato fruits

| Application              | Yield (g) / plant     | Brix(%) / fruit    |
|--------------------------|-----------------------|--------------------|
| Organic fertilizers      | 421.3a ± 21.5         | 9.3a ± 1.3         |
| Organic fertilizer and   |                       |                    |
| pesticides               | $545.4b \ \pm \ 11.1$ | 9.2a ± 0.9         |
| Chemical fertilizer      | $494.2a,b \pm 48.7$   | 9.1a,b ± 1.1       |
| Chemical fertilizers and |                       |                    |
| pesticides               | $565.1b \pm 46.3$     | $8.7b$ $\pm$ $1.1$ |

Data are means  $\pm$  SD (n = 20 - 40). Values followed by the same letters are not significantly different at the 5% level using Tukey's HSD test.

Supplemental Table 2 Nitrate, total C and N content of tomato fruits

| Fortilizer Application | Nitrate (mmol/g                                 | $\mathbf{C}(0')$   | NI (0/)           |
|------------------------|-------------------------------------------------|--------------------|-------------------|
| Fertilizer Application | DW)                                             | C (%)              | IN (%)            |
| Organic                | $0.122 \hspace{0.2cm} \pm \hspace{0.2cm} 0.045$ | $40.233 \pm 0.266$ | $1.903 \pm 0.113$ |
| Inorganic              | $0.148 \pm 0.046$                               | $39.855 \pm 0.377$ | $1.890 \pm 0.078$ |
| p-value (t.test)       | 0.22                                            | 0.036              | 0.801             |

| Peak No. | QRY_PPM1H | QRY_PPM13C | DB_PPM1H | DB_PPM13C   | DB_INTENSITY | DB UNIQ      | METABOLITE      | KEGGID | DETECTION    | dPPM1H | dPPM13C | P_VALUE   |
|----------|-----------|------------|----------|-------------|--------------|--------------|-----------------|--------|--------------|--------|---------|-----------|
| 1        | 7.32      | 132.1      | 7.318    | 131.968     | 0            | 0.5          | L-Phenylalanine | C00079 | 0.3333333333 | 0.002  | 0.132   | 2.30E-07  |
| 2        | 7.42      | 132.1      | 7.414    | 131.919     | 0            | 0.166666667  | L-Phenylalanine | C00079 | 0.3333333333 | 0.006  | 0.181   | 3.60E-15  |
| 3        | 7.42      | 130.7      | 7.386    | 130.7460337 | 7002639      | 0.5          | (R)-Mandelate   | C01983 | 0.25         | 0.034  | -0.046  | 1.30E-81  |
| 4        | 7.38      | 120.4      | unknown  |             |              |              |                 |        |              |        |         |           |
| 5        | 6.89      | 118.8      | 6.888    | 118.496     | 0            | 0.25         | L-Tyrosine      | C00082 | 0.2          | 0.002  | 0.304   | 1.00E-34  |
| 6        | 7.12      | 119.3      | 7.13     | 119.557     | 0            | 0.5          | L-Histidine     | C00135 | 0.125        | -0.01  | -0.257  | 9.50E-32  |
| 7        | 7.18      | 118.8      | unknown  |             |              |              |                 |        |              |        |         |           |
| 8        | 7.2       | 117.9      | 7.177    | 117.6050337 | 22400000     | 1            | Chlorogenate    | C00852 | 0.076923077  | 0.023  | 0.395   | 2.70E-94  |
| 9        | 5.82      | 110.5      | unknown  |             |              |              |                 |        |              |        |         |           |
| 10       | 5.9       | 105.2      | 5.885    | 104.912     | 1070000      | 0.5          | Uridine         | C00299 | 0.125        | 0.015  | 0.288   | 1.40E-46  |
| 10       | 5.9       | 105.2      | 5.878    | 104.7440337 | 37300000     | 0.5          | Deoxyuridine    | C00526 | 0.125        | 0.022  | 0.456   | 4.20E-110 |
| 11       | 7.89      | 105.2      | unknown  |             |              |              |                 |        |              |        |         |           |
| 12       | 5.49      | 99.8       | unknown  |             |              |              |                 |        |              |        |         |           |
| 13       | 5.47      | 97.6       | unknown  |             |              |              |                 |        |              |        |         |           |
| 14       | 5.39      | 95         | 5.397    | 94.813      | 0            | 0.3333333333 | Sucrose         | C00089 | 0.090909091  | -0.007 | 0.187   | 7.10E-17  |
| 15       | 5.61      | 95         | unknown  |             |              |              |                 |        |              |        |         |           |
| 16       | 5.75      | 95         | unknown  |             |              |              |                 |        |              |        |         |           |
| 17       | 5.82      | 95         | unknown  |             |              |              |                 |        |              |        |         |           |

Supplemental Table 3 <sup>1</sup>H-<sup>13</sup>C HSQC NMR signal assignment of tomatoes cultured by organic fertilizers

|   | 18 5.53 | 91.9 | unknown |        |          |              |               |        |             |        |        |           |
|---|---------|------|---------|--------|----------|--------------|---------------|--------|-------------|--------|--------|-----------|
|   | 19 5.9  | 92.2 | 5.897   | 91.972 | 1810000  | 1            | Uridine       | C00299 | 0.125       | 0.003  | 0.228  | 2.60E-20  |
| 2 | 20 5.98 | 91.3 | 5.963   | 91.432 | 1700000  | 0.3333333333 | UDP           | C00015 | 0.142857143 | 0.017  | -0.132 | 4.10E-27  |
| 2 | 20 5.98 | 91.3 | 5.991   | 91.029 | 1400000  | 0.3333333333 | UMP           | C00105 | 0.125       | -0.011 | 0.271  | 6.70E-36  |
| 2 | 20 5.98 | 91.3 | 5.998   | 91.819 | 1460000  | 0.3333333333 | CTP           | C00063 | 0.142857143 | -0.018 | -0.519 | 2.00E-121 |
| 2 | 21 6.06 | 91.2 | unknown |        |          |              |               |        |             |        |        |           |
| 2 | 22 6.12 | 89.9 | 6.131   | 89.993 | 1730000  | 0.25         | IMP           | C00130 | 0.142857143 | -0.011 | -0.093 | 2.90E-12  |
| 2 | 22 6.12 | 89.9 | 6.116   | 89.667 | 0        | 0.142857143  | NADH          | C00004 | 0.058823529 | 0.004  | 0.233  | 1.20E-21  |
| 2 | 22 6.12 | 89.9 | 6.131   | 89.669 | 0        | 0.076923077  | ADP           | C00008 | 0.166666667 | -0.011 | 0.231  | 1.40E-28  |
| 2 | 6.12    | 89.9 | 6.125   | 89.381 | 10334840 | 0.111111111  | AMP           | C00020 | 0.142857143 | -0.005 | 0.519  | 1.10E-100 |
| 2 | 6.12    | 89.9 | 6.134   | 89.363 | 0        | 0.071428571  | ATP           | C00002 | 0.142857143 | -0.014 | 0.537  | 1.70E-119 |
| 2 | 23 3.24 | 98.8 | unknown |        |          |              |               |        |             |        |        |           |
| 2 | 24 3.48 | 98.9 | unknown |        |          |              |               |        |             |        |        |           |
| 2 | 25 4.65 | 98.4 | 4.639   | 98.62  | 0        | 0.142857143  | D-Glucose     | C00031 | 0.076923077 | 0.011  | -0.22  | 9.10E-27  |
| 2 | 25 4.65 | 98.4 | 4.632   | 98.601 | 1163787  | 0.166666667  | D-Glucuronate | C00191 | 0.1         | 0.018  | -0.201 | 6.40E-38  |
| 2 | 26 3.52 | 100  | unknown |        |          |              |               |        |             |        |        |           |
| 2 | 27 5.23 | 95   | 5.234   | 94.882 | 909261.8 | 0.111111111  | D-Glucuronate | C00191 | 0.1         | -0.004 | 0.118  | 6.50E-07  |
| 2 | 27 5.23 | 95   | 5.225   | 94.803 | 0        | 0.111111111  | D-Glucose     | C00031 | 0.076923077 | 0.005  | 0.197  | 1.30E-16  |
|   | 27 5.23 | 95   | 5.18    | 94.992 | 1613117  | 0.3333333333 | D-Xylose      | C00181 | 0.1         | 0.05   | 0.008  | 5.00E-174 |
| 2 | 28 3.66 | 83.6 | unknown |        |          |              |               |        |             |        |        |           |

| 29 | 3.79 | 83.6 | 3.818   | 83.339 | 2970000 | 1            | D-Fructose    | C00095 | 0.0625      | -0.028 | 0.261  | 6.50E-80  |
|----|------|------|---------|--------|---------|--------------|---------------|--------|-------------|--------|--------|-----------|
| 30 | 4    | 84.1 | 4.038   | 83.961 | 1310000 | 1            | D-Fructose    | C00095 | 0.125       | -0.038 | 0.139  | 7.40E-108 |
| 31 | 4.11 | 84.9 | 4.103   | 84.745 | 1580000 | 0.25         | D-Fructose    | C00095 | 0.0625      | 0.007  | 0.155  | 6.90E-13  |
| 31 | 4.11 | 84.9 | 4.082   | 85.005 | 0       | 0.3333333333 | NADH          | C00004 | 0.058823529 | 0.028  | -0.105 | 4.30E-59  |
| 32 | 4.11 | 83.6 | unknown |        |         |              |               |        |             |        |        |           |
| 33 | 3.24 | 78.6 | unknown |        |         |              |               |        |             |        |        |           |
| 34 | 3.4  | 78.7 | 3.422   | 78.572 | 2038156 | 0.5          | D-Xylose      | C00181 | 0.1         | -0.022 | 0.128  | 3.00E-40  |
| 35 | 3.48 | 78.7 | 3.474   | 78.487 | 0       | 0.125        | D-Glucose     | C00031 | 0.153846154 | 0.006  | 0.213  | 9.10E-20  |
| 35 | 3.48 | 78.7 | 3.452   | 78.652 | 0       | 0.2          | D-Glucose     | C00031 | 0.153846154 | 0.028  | 0.048  | 6.60E-56  |
| 35 | 3.48 | 78.7 | 3.498   | 78.377 | 1019776 | 0.166666667  | D-Glucuronate | C00191 | 0.1         | -0.018 | 0.323  | 3.10E-61  |
| 36 | 3.72 | 78.7 | 3.716   | 78.925 | 1146209 | 1            | D-Glucuronate | C00191 | 0.1         | 0.004  | -0.225 | 2.70E-20  |
| 37 | 3.9  | 78.9 | unknown |        |         |              |               |        |             |        |        |           |
| 38 | 4    | 78.9 | unknown |        |         |              |               |        |             |        |        |           |
| 39 | 4.05 | 78.7 | unknown |        |         |              |               |        |             |        |        |           |
| 40 | 4.11 | 78   | 4.104   | 78.143 | 5330000 | 0.5          | D-Fructose    | C00095 | 0.0625      | 0.006  | -0.143 | 1.10E-10  |
| 41 | 4.66 | 78.6 | unknown |        |         |              |               |        |             |        |        |           |
| 42 | 3.24 | 77   | 3.235   | 76.826 | 0       | 0.166666667  | D-Glucose     | C00031 | 0.076923077 | 0.005  | 0.174  | 1.70E-13  |
| 42 | 3.24 | 77   | 3.217   | 76.843 | 2224533 | 0.25         | D-Xylose      | C00181 | 0.1         | 0.023  | 0.157  | 2.20E-46  |
| 42 | 3.24 | 77   | 3.264   | 76.851 | 6535513 | 0.111111111  | Maltose       | C00208 | 0.047619048 | -0.024 | 0.149  | 9.50E-49  |
| 43 | 3.39 | 77   | unknown |        |         |              |               |        |             |        |        |           |

| 44 | 4 3.48 | 77   | unknown |        |          |             |               |        |             |        |        |           |
|----|--------|------|---------|--------|----------|-------------|---------------|--------|-------------|--------|--------|-----------|
| 4  | 5 3.82 | 78.3 | unknown |        |          |             |               |        |             |        |        |           |
| 40 | 6 3.82 | 77.3 | unknown |        |          |             |               |        |             |        |        |           |
| 4  | 7 4.11 | 77.3 | 4.105   | 77.173 | 4910000  | 0.5         | D-Fructose    | C00095 | 0.0625      | 0.005  | 0.127  | 2.40E-08  |
| 48 | 8 4.64 | 77   | unknown |        |          |             |               |        |             |        |        |           |
| 49 | 9 3.41 | 75.7 | unknown |        |          |             |               |        |             |        |        |           |
| 50 | 0 3.54 | 75.5 | unknown |        |          |             |               |        |             |        |        |           |
| 5  | 1 3.7  | 75.6 | 3.706   | 75.498 | 0        | 0.1         | D-Glucose     | C00031 | 0.076923077 | -0.006 | 0.102  | 5.10E-07  |
| 5  | 1 3.7  | 75.6 | 3.701   | 75.418 | 8008382  | 0.090909091 | Maltose       | C00208 | 0.142857143 | -0.001 | 0.182  | 7.10E-13  |
| 5  | 1 3.7  | 75.6 | 3.713   | 75.358 | 604757.1 | 0.090909091 | D-Glucuronate | C00191 | 0.1         | -0.013 | 0.242  | 8.40E-34  |
| 5  | 1 3.7  | 75.6 | 3.675   | 75.676 | 6538242  | 0.090909091 | Maltose       | C00208 | 0.142857143 | 0.025  | -0.076 | 3.70E-46  |
| 5  | 1 3.7  | 75.6 | 3.67    | 75.62  | 2303649  | 0.111111111 | Maltose       | C00208 | 0.142857143 | 0.03   | -0.02  | 3.00E-63  |
| 52 | 2 3.84 | 75.7 | 3.84    | 75.774 | 1110000  | 0.5         | D-Sorbitol    | C00794 | 0.142857143 | 0      | -0.074 | 0.01      |
| 52 | 2 3.84 | 75.7 | 3.865   | 75.538 | 47600000 | 0.333333333 | Chlorogenate  | C00852 | 0.076923077 | -0.025 | 0.162  | 1.30E-53  |
| 53 | 3 3.4  | 74.2 | unknown |        |          |             |               |        |             |        |        |           |
| 54 | 4 3.54 | 74.2 | 3.548   | 74.139 | 2131060  | 0.04        | Maltose       | C00208 | 0.095238095 | -0.008 | 0.061  | 0.0000016 |
| 54 | 4 3.54 | 74.2 | 3.554   | 74.197 | 2162284  | 0.04        | Maltose       | C00208 | 0.095238095 | -0.014 | 0.003  | 2.60E-14  |
| 54 | 4 3.54 | 74.2 | 3.526   | 74.162 | 0        | 0.047619048 | D-Glucose     | C00031 | 0.076923077 | 0.014  | 0.038  | 7.70E-15  |
| 54 | 4 3.54 | 74.2 | 3.514   | 74.208 | 1308587  | 0.045454545 | D-Xylose      | C00181 | 0.1         | 0.026  | -0.008 | 1.30E-47  |
| 54 | 4 3.54 | 74.2 | 3.565   | 74.1   | 765632.9 | 0.071428571 | D-Glucuronate | C00191 | 0.1         | -0.025 | 0.1    | 1.10E-47  |

| 1.50E-65  | 0.418  | -0.004 | 0.090909091 | C00089 | Sucrose    | 0.076923077 | 0         | 73.782 | 3.544   | 74.2  | 3.54 | 54 |
|-----------|--------|--------|-------------|--------|------------|-------------|-----------|--------|---------|-------|------|----|
| 5.60E-107 | 0.464  | -0.02  | 0.25        | C01507 | L-Iditol   | 0.2         | 112000000 | 73.836 | 3.72    | 74.3  | 3.7  | 55 |
| 1.80E-54  | -0.094 | -0.02  | 0.25        | C01507 | L-Iditol   | 0.2         | 112000000 | 73.836 | 3.72    | 74.3  | 3.7  | 56 |
| 2.80E-19  | 0.137  | -0.013 | 0.076923077 | C00031 | D-Glucose  | 0.071428571 | 0         | 74.163 | 3.823   | 74.3  | 3.81 | 56 |
|           |        |        |             |        |            |             |           |        | unknown | 74.3  | 5.23 | 57 |
|           |        |        |             |        |            |             |           |        | unknown | 72.4  | 3.23 | 58 |
| 5.30E-30  | 0.108  | -0.019 | 0.076923077 | C00031 | D-Glucose  | 0.166666667 | 0         | 72.292 | 3.399   | 72.4  | 3.38 | 59 |
|           |        |        |             |        |            |             |           |        | unknown | 72.4  | 3.46 | 60 |
|           |        |        |             |        |            |             |           |        | unknown | 72.3  | 3.7  | 61 |
| 2.90E-93  | 0.502  | 0.003  | 0.25        | C00392 | Mannitol   | 1           | 25200000  | 71.898 | 3.777   | 72.4  | 3.78 | 62 |
| 2.40E-16  | -0.009 | -0.015 | 0.0625      | C00095 | D-Fructose | 0.166666667 | 8920000   | 72.439 | 3.885   | 72.43 | 3.87 | 63 |
| 4.70E-59  | -0.01  | 0.029  | 0.142857143 | C00794 | D-Sorbitol | 0.25        | 1320000   | 72.44  | 3.841   | 72.43 | 3.87 | 63 |
| 0.04      | 0.062  | 0      | 0.0625      | C00095 | D-Fructose | 0.2         | 17100000  | 71.938 | 3.99    | 72    | 3.99 | 64 |
| 6.30E-14  | 0.094  | -0.012 | 0.0625      | C00095 | D-Fructose | 1           | 7030000   | 70.306 | 3.792   | 70.4  | 3.78 | 65 |
|           |        |        |             |        |            |             |           |        | unknown | 70.4  | 3.87 | 66 |
|           |        |        |             |        |            |             |           |        | unknown | 70.4  | 4    | 67 |
| 0.00034   | 0.069  | 0.005  | 0.0625      | C00095 | D-Fructose | 0.5         | 6340000   | 66.631 | 3.555   | 66.7  | 3.56 | 68 |
| 0.011     | -0.025 | -0.005 | 0.0625      | C00095 | D-Fructose | 0.5         | 7510000   | 66.625 | 3.705   | 66.6  | 3.7  | 69 |
| 0.0032    | 0.078  | -0.002 | 0.0625      | C00095 | D-Fructose | 0.142857143 | 11000000  | 66.022 | 4.012   | 66.1  | 4.01 | 70 |
| 0.000015  | -0.101 | 0.004  | 0.142857143 | C00020 | AMP        | 0.166666667 | 22094120  | 66.201 | 4.006   | 66.1  | 4.01 | 70 |

| 70 | 4.01 | 66.1 | 3.993   | 66.054 | 1490000   | 0.166666667 | UMP        | C00105 | 0.125       | 0.017  | 0.046  | 1.60E-21  |
|----|------|------|---------|--------|-----------|-------------|------------|--------|-------------|--------|--------|-----------|
| 70 | 4.01 | 66.1 | 4.012   | 66.358 | 3420000   | 0.2         | GMP        | C00144 | 0.2         | -0.002 | -0.258 | 2.80E-25  |
| 70 | 4.01 | 66.1 | 3.991   | 65.708 | 1590000   | 0.166666667 | CMP        | C00055 | 0.142857143 | 0.019  | 0.392  | 8.60E-82  |
| 71 | 3.58 | 65.4 | 3.567   | 65.467 | 2810000   | 0.25        | D-Fructose | C00095 | 0.0625      | 0.013  | -0.067 | 4.50E-14  |
| 72 | 3.66 | 65.1 | 3.667   | 65.088 | 1460000   | 0.058823529 | D-Fructose | C00095 | 0.0625      | -0.007 | 0.012  | 0.00036   |
| 72 | 3.66 | 65.1 | 3.638   | 65.428 | 103000000 | 0.066666667 | L-Iditol   | C01507 | 0.5         | 0.022  | -0.328 | 1.60E-73  |
| 72 | 3.66 | 65.1 | 3.676   | 65.522 | 106000000 | 0.076923077 | Threonate  | C01620 | 0.25        | -0.016 | -0.422 | 2.00E-83  |
| 72 | 3.66 | 65.1 | 3.63    | 65.359 | 1170000   | 0.066666667 | D-Sorbitol | C00794 | 0.142857143 | 0.03   | -0.259 | 1.40E-87  |
| 72 | 3.66 | 65.1 | 3.705   | 65.437 | 98800000  | 0.25        | L-Iditol   | C01507 | 0.5         | -0.045 | -0.337 | 1.70E-182 |
| 73 | 3.8  | 65.1 | 3.792   | 65.099 | 3590000   | 0.111111111 | D-Fructose | C00095 | 0.0625      | 0.008  | 0.001  | 0.000037  |
| 73 | 3.8  | 65.1 | 3.808   | 65.024 | 0         | 0.090909091 | Sucrose    | C00089 | 0.090909091 | -0.008 | 0.076  | 2.90E-07  |
| 73 | 3.8  | 65.1 | 3.826   | 65.618 | 1130000   | 0.166666667 | D-Sorbitol | C00794 | 0.142857143 | -0.026 | -0.518 | 1.90E-145 |
| 74 | 3.39 | 63.5 | unknown |        |           |             |            |        |             |        |        |           |
| 75 | 3.45 | 63.7 | unknown |        |           |             |            |        |             |        |        |           |
| 76 | 3.7  | 63.5 | 3.715   | 63.447 | 0         | 0.1         | D-Glucose  | C00031 | 0.076923077 | -0.015 | 0.053  | 2.40E-17  |
| 76 | 3.7  | 63.5 | 3.677   | 63.721 | 3943848   | 0.25        | D-Xylose   | C00181 | 0.1         | 0.023  | -0.221 | 3.30E-55  |
| 76 | 3.7  | 63.5 | 3.666   | 63.977 | 0         | 0.25        | Sucrose    | C00089 | 0.090909091 | 0.034  | -0.477 | 7.70E-164 |
| 76 | 3.7  | 63.5 | 3.747   | 63.754 | 1390000   | 0.066666667 | D-Mannose  | C00159 | 0.083333333 | -0.047 | -0.254 | 2.30E-177 |
| 77 | 3.82 | 63.2 | 3.828   | 63.287 | 0         | 0.076923077 | D-Glucose  | C00031 | 0.076923077 | -0.008 | -0.087 | 6.40E-08  |
| 77 | 3.82 | 63.2 | 3.837   | 63.273 | 11018760  | 0.083333333 | Maltose    | C00208 | 0.047619048 | -0.017 | -0.073 | 1.10E-22  |
| 77 | 3.82 | 63.2 | 3.802   | 62.786 | 0         | 0.111111111 | Sucrose    | C00089 | 0.090909091 | 0.018  | 0.414  | 1.10E-85  |

| 78 | 3.81 | 63.2 | 3.828   | 63.287 | 0        | 0.076923077 | D-Glucose | C00031 | 0.076923077 | -0.018 | -0.087 | 6.10E-26 |
|----|------|------|---------|--------|----------|-------------|-----------|--------|-------------|--------|--------|----------|
| 78 | 3.81 | 63.2 | 3.837   | 63.273 | 11018760 | 0.083333333 | Maltose   | C00208 | 0.047619048 | -0.027 | -0.073 | 3.40E-53 |
| 78 | 3.81 | 63.2 | 3.802   | 62.786 | 0        | 0.111111111 | Sucrose   | C00089 | 0.090909091 | 0.008  | 0.414  | 1.10E-67 |
| 78 | 3.89 | 63.5 | 3.892   | 63.473 | 2200000  | 0.083333333 | Uridine   | C00299 | 0.125       | -0.002 | 0.027  | 0.29     |
| 78 | 3.89 | 63.5 | 3.887   | 63.446 | 0        | 0.1         | D-Glucose | C00031 | 0.076923077 | 0.003  | 0.054  | 0.021    |
| 78 | 3.89 | 63.5 | 3.898   | 63.513 | 7153288  | 0.1         | Maltose   | C00208 | 0.047619048 | -0.008 | -0.013 | 0.000032 |
| 78 | 3.89 | 63.5 | 3.868   | 63.76  | 1660000  | 0.111111111 | D-Mannose | C00159 | 0.083333333 | 0.022  | -0.26  | 6.30E-59 |
| 79 | 2.7  | 55   | unknown |        |          |             |           |        |             |        |        |          |
| 80 | 2.81 | 55   | unknown |        |          |             |           |        |             |        |        |          |
| 81 | 2.87 | 54.1 | unknown |        |          |             |           |        |             |        |        |          |
| 82 | 2.95 | 54.1 | unknown |        |          |             |           |        |             |        |        |          |
| 83 | 1.48 | 53.4 | unknown |        |          |             |           |        |             |        |        |          |
| 84 | 1.48 | 19.2 | 1.465   | 18.896 | 0        | 1           | L-Alanine | C00041 | 0.5         | 0.015  | 0.304  | 5.00E-50 |
| 85 | 2.34 | 51.2 | unknown |        |          |             |           |        |             |        |        |          |
| 86 | 2.66 | 48.7 | 2.64    | 48.5   | 0        | 1           | Citrate   | C00158 | 0.5         | 0.02   | 0.2    | 4.90E-43 |
| 87 | 2.83 | 48.9 | unknown |        |          |             |           |        |             |        |        |          |
| 88 | 2.01 | 49   | unknown |        |          |             |           |        |             |        |        |          |
| 89 | 2.64 | 47.6 | unknown |        |          |             |           |        |             |        |        |          |
| 90 | 2.76 | 47.6 | unknown |        |          |             |           |        |             |        |        |          |
| 91 | 2.83 | 46.2 | unknown |        |          |             |           |        |             |        |        |          |

|   | 92 2.46  | 6 44.8 | unknown |             |          |             |                  |        |             |        |         |           |
|---|----------|--------|---------|-------------|----------|-------------|------------------|--------|-------------|--------|---------|-----------|
|   | 93 2.7   | 44.8   | 2.677   | 45.314      | 0        | 0.5         | (S)-Malate       | C00149 | 0.333333333 | 0.023  | -0.514  | 9.40E-134 |
|   | 94 1.87  | 43.6   | 1.859   | 43.34996627 | 22900000 | 1           | Quinate          | C00296 | 0.142857143 | 0.011  | 0.25    | 6.50E-32  |
|   | 95 2.07  | 43.6   | 2.051   | 43.34496627 | 26800000 | 1           | Quinate          | C00296 | 0.142857143 | 0.019  | 0.255   | 1.80E-49  |
|   | 96 1.71  | 42     | 1.703   | 42.537      | 0        | 1           | L-Leucine        | C00123 | 0.2         | 0.007  | -0.537  | 2.70E-109 |
|   | 97 1.89  | 9 42.1 | unknown |             |          |             |                  |        |             |        |         |           |
|   | 98 2.32  | 42.1   | 2.3     | 41.955      | 1550000  | 1           | Deoxycytidine    | C00881 | 0.111111111 | 0.02   | 0.145   | 4.00E-36  |
|   | 99 3.01  | 42.1   | 2.999   | 41.998      | 0        | 0.2         | 4-Aminobutanoate | C00334 | 0.333333333 | 0.011  | 0.102   | 6.60E-13  |
|   | 99 3.01  | 42.1   | 3.015   | 41.711      | 0        | 0.111111111 | L-Lysine         | C00047 | 0.166666667 | -0.005 | 0.389   | 1.20E-57  |
| 1 | 100 1.97 | 40.2   | unknown |             |          |             |                  |        |             |        |         |           |
| 1 | 101 2.05 | 5 40.2 | 2.033   | 40.03096627 | 32900000 | 0.5         | Quinate          | C00296 | 0.142857143 | 0.017  | 0.169   | 3.50E-31  |
| 1 | 101 2.05 | 5 40.2 | 2.023   | 39.94196627 | 34900000 | 0.5         | Chlorogenate     | C00852 | 0.076923077 | 0.027  | -39.742 | 1.50E-75  |
| 1 | 102 2.7  | 39.4   | 2.672   | 39.268      | 0        | 1           | L-Aspartate      | C00049 | 0.333333333 | 0.028  | 0.132   | 2.00E-61  |
| 1 | 103 2.81 | 39.4   | 2.787   | 39.279      | 0        | 0.5         | L-Aspartate      | C00049 | 0.333333333 | 0.023  | 0.121   | 9.90E-43  |
| 1 | 104 1.89 | 36.9   | unknown |             |          |             |                  |        |             |        |         |           |
| 1 | 105 2.11 | 36.9   | unknown |             |          |             |                  |        |             |        |         |           |
| 1 | 106 2.32 | 36.6   | 2.324   | 36.991      | 2830000  | 1           | Folate           | C00504 | 0.125       | -0.004 | -0.391  | 1.30E-57  |
| 1 | 106 2.32 | 36.6   | 2.337   | 36.21       | 0        | 1           | L-Glutamate      | C00025 | 0.25        | -0.017 | 0.39    | 3.10E-76  |
| 1 | 107 2.48 | 3 36.9 | unknown | _           |          |             |                  |        |             |        | _       | _         |
| 1 | 108 2.87 | 37.5   | 2.86    | 37.21       | 0        | 1           | L-Asparagine     | C00152 | 0.333333333 | 0.01   | 0.29    | 2.50E-38  |
|   |          |        |         |             |          |             |                  |        |             |        |         |           |

| 109 | 2.95 | 37.5 | 2.94    | 37.257      | 0        | 1            | L-Asparagine          | C00152 | 0.333333333 | 0.01   | 0.243 | 3.40E-29  |
|-----|------|------|---------|-------------|----------|--------------|-----------------------|--------|-------------|--------|-------|-----------|
| 110 | 3.01 | 36.9 | unknown |             |          |              |                       |        |             |        |       |           |
| 111 | 2.09 | 36   | unknown |             |          |              |                       |        |             |        |       |           |
| 112 | 2.13 | 36   | unknown |             |          |              |                       |        |             |        |       |           |
| 113 | 2.38 | 36   | 2.337   | 36.21       | 0        | 1            | L-Glutamate           | C00025 | 0.25        | 0.043  | -0.21 | 5.70E-145 |
| 114 | 2.93 | 36   | unknown |             |          |              |                       |        |             |        |       |           |
| 115 | 3.01 | 36   | unknown |             |          |              |                       |        |             |        |       |           |
| 116 | 2.15 | 33.7 | unknown |             |          |              |                       |        |             |        |       |           |
| 117 | 2.44 | 33.7 | 2.444   | 33.579      | 0        | 0.5          | L-Glutamine           | C00064 | 0.333333333 | -0.004 | 0.121 | 3.60E-07  |
| 117 | 2.44 | 33.7 | 2.434   | 33.208      | 0        | 0.5          | 2-Oxoglutarate        | C00026 | 0.5         | 0.006  | 0.492 | 1.60E-91  |
| 118 | 2.52 | 34.1 | 2.526   | 34.01296627 | 67100000 | 0.5          | Glutathione disulfide | C00127 | 0.142857143 | -0.006 | 0.087 | 0.0000055 |
| 118 | 2.52 | 34.1 | 2.538   | 34.01696627 | 47000000 | 0.5          | Glutathione           | C00051 | 0.166666667 | -0.018 | 0.083 | 1.10E-25  |
| 119 | 1.95 | 32.5 | unknown |             |          |              |                       |        |             |        |       |           |
| 120 | 2.03 | 32.5 | unknown |             |          |              |                       |        |             |        |       |           |
| 121 | 2.42 | 32.8 | unknown |             |          |              |                       |        |             |        |       |           |
| 122 | 2.52 | 32.6 | unknown |             |          |              |                       |        |             |        |       |           |
| 123 | 2.07 | 29.7 | 2.048   | 29.662      | 0        | 0.25         | L-Glutamate           | C00025 | 0.25        | 0.022  | 0.038 | 8.40E-35  |
| 124 | 2.13 | 29.7 | 2.108   | 29.692      | 0        | 1            | L-Glutamate           | C00025 | 0.25        | 0.022  | 0.008 | 2.70E-34  |
| 125 | 2.38 | 29.7 | unknown |             |          |              |                       |        |             |        |       |           |
| 126 | 2.15 | 29.3 | 2.13    | 28.952      | 0        | 0.3333333333 | L-Glutamine           | C00064 | 0.333333333 | 0.02   | 0.348 | 1.30E-72  |

| 126 | 2.15 | 29.3 | 2.154   | 28.85396627 | 11000000 | 0.3333333333 | Glutathione disulfide | C00127 | 0.142857143  | -0.004 | 0.446  | 2.10E-74  |
|-----|------|------|---------|-------------|----------|--------------|-----------------------|--------|--------------|--------|--------|-----------|
| 126 | 2.15 | 29.3 | 2.152   | 28.83196627 | 62400000 | 0.3333333333 | Glutathione           | C00051 | 0.166666667  | -0.002 | 0.468  | 6.70E-81  |
| 127 | 2.46 | 28.8 | unknown |             |          |              |                       |        |              |        |        |           |
| 128 | 2.01 | 28.2 | unknown |             |          |              |                       |        |              |        |        |           |
| 129 | 2.4  | 28.2 | unknown |             |          |              |                       |        |              |        |        |           |
| 131 | 2.52 | 27.8 | unknown |             |          |              |                       |        |              |        |        |           |
| 132 | 2.17 | 27.8 | unknown |             |          |              |                       |        |              |        |        |           |
| 132 | 2.97 | 27.7 | unknown |             |          |              |                       |        |              |        |        |           |
| 133 | 1.9  | 26.3 | 1.891   | 26.356      | 0        | 0.5          | 4-Aminobutanoate      | C00334 | 0.3333333333 | 0.009  | -0.056 | 1.70E-07  |
| 134 | 2.32 | 26.3 | unknown |             |          |              |                       |        |              |        |        |           |
| 135 | 2.48 | 26.2 | unknown |             |          |              |                       |        |              |        |        |           |
| 136 | 3.01 | 26.3 | unknown |             |          |              |                       |        |              |        |        |           |
| 137 | 1.95 | 26.2 | 1.992   | 26.461      | 0        | 1            | L-Proline             | C00148 | 0.166666667  | -0.042 | -0.261 | 7.70E-148 |
| 138 | 0.97 | 24.9 | 0.953   | 24.791      | 0        | 1            | L-Leucine             | C00123 | 0.2          | 0.017  | 0.109  | 4.30E-25  |
| 139 | 1.95 | 24.6 | unknown |             |          |              |                       |        |              |        |        |           |
| 140 | 2.34 | 24.6 | unknown |             |          |              |                       |        |              |        |        |           |
| 141 | 0.95 | 23.8 | 0.942   | 23.598      | 0        | 0.5          | L-Leucine             | C00123 | 0.2          | 0.008  | 0.202  | 4.80E-20  |
| 142 | 1.34 | 22.2 | 1.314   | 22.174      | 0        | 1            | L-Threonine           | C00188 | 0.333333333  | 0.026  | 0.026  | 7.90E-48  |
| 143 | 1.48 | 19.2 | 1.465   | 18.896      | 0        | 1            | L-Alanine             | C00041 | 0.5          | 0.015  | 0.304  | 5.00E-50  |

The signals were assigned using the Spin Assign program on the PRIMe website (http://prime.psc.riken.jp) and Human Metabolome Database (http://www.hmdb.ca). QUERY PEAK=Query peak No., QUERY 1H PPM=1H chemical shift of query, QUERY 13C PPM=13C chemical shift of query, DATABASE 1H PPM=1H chemical shift of peak, DATABASE 13C PPM=13C chemical shift of peak, DATABASE INTENSITY=Intensity of peak, DATABASE UNIQ=Uniqueness, ANNOTATION METABOLITE=Metabolite annotated from peak, ANNOTATION  $\Delta$ 1H=Difference of query 1H ppm from DB, ANNOTATION  $\Delta$ 13C=Difference of query 13C ppm from DB, ANNOTATION p-value=p-value for the annotation Supplemental Table 4 <sup>1</sup>H-<sup>13</sup>C HSQC NMR signal assignment of organic tomatoes

The absolute differences of <sup>1</sup>H and <sup>13</sup>C chemical shifts show the differences between HMDB and HSQC data.

Detection "0" means the absolute differences are greater than 0.05 of 1H and 0.5 of 13C, while "1" means the other case.

|                        | HMDB (ł    | http://www.h | mdb.ca)  |        | HSC                 | QC Data |                     | Derit     |
|------------------------|------------|--------------|----------|--------|---------------------|---------|---------------------|-----------|
| Metabolites            | Carbon NO. | 1H PPM       | 13C PPM  | 1H PPM | Absolute Difference | 13C PPM | Absolute Difference | Detection |
| Deoxycytidine          | 1          | 7.8205       | 144.584  | ND     |                     | ND      |                     | 0         |
| Deoxycytidine          | 2          | 6.2544       | 88.8954  | ND     |                     | ND      |                     | 0         |
| Deoxycytidine          | 3          | 6.0349       | 99.2081  | 6.079  | 0.044               | 98.924  | 0.28                | 1         |
| Deoxycytidine          | 4          | 4.4286       | 73.3247  | 4.427  | 0.002               | 73.46   | 0.14                | 1         |
| Deoxycytidine          | 5          | 4.043        | 89.3582  | 4.014  | 0.029               | 89.265  | 0.09                | 1         |
| Deoxycytidine          | 6          | 3.8354       | 64.0935  | 3.857  | 0.022               | 64.093  | 0.00                | 1         |
| Deoxycytidine          | 7          | 3.754        | 64.0508  |        |                     |         |                     | 0         |
| Deoxycytidine          | 8          | 2.4266       | 41.8356  | 2.402  | 0.025               | 42.434  | 0.60                | 0         |
| Deoxycytidine          | 9          | 2.2938       | 41.8755  | 2.304  | 0.010               | 42.141  | 0.27                | 1         |
| Cytidine               | 1          | 7.827        | 144.4946 | 7.868  | 0.041               | 144.73  | 0.24                | 1         |
| Cytidine               | 2          | 6.0428       | 99.0669  | 6.079  | 0.036               | 98.924  | 0.14                | 1         |
| Cytidine               | 3          | 5.8912       | 93.0211  | 5.902  | 0.011               | 93.216  | 0.19                | 1         |
| Cytidine               | 4          | 4.2986       | 76.7476  | ND     |                     | ND      |                     | 0         |
| Cytidine               | 5          | 4.196        | 72.0022  | 4.152  | 0.044               | 71.264  | 0.74                | 0         |
| Cytidine               | 6          | 4.1173       | 86.5578  | ND     |                     | ND      |                     | 0         |
| Cytidine               | 7          | 3.9235       | 63.6065  | 3.896  | 0.028               | 63.508  | 0.10                | 1         |
| Cytidine               | 8          | 3.8106       | 63.5609  | 3.837  | 0.026               | 63.362  | 0.20                | 1         |
| Cytidine monophosphate | 1          | 8.0771       | 144.4489 | 8.006  | 0.071               | 144.877 | 0.43                | 1         |
| Cytidine monophosphate | 2          | 6.1259       | 99.2974  | 6.079  | 0.047               | 99.07   | 0.23                | 1         |
| Cytidine monophosphate | 3          | 5.9911       | 91.7815  | 5.981  | 0.010               | 91.314  | 0.47                | 1         |
| Cytidine monophosphate | 4          | 4.3346       | 77.1407  | 4.309  | 0.026               | 77.265  | 0.12                | 1         |
| Cytidine monophosphate | 5          | 4.3324       | 72.3881  | 4.309  | 0.023               | 72.581  | 0.19                | 1         |
| Cytidine monophosphate | 6          | 4.2332       | 86.0567  | ND     |                     | ND      |                     | 0         |
| Cytidine monophosphate | 7          | 4.0543       | 65.6324  | 3.955  | 0.099               | 65.411  | 0.22                | 1         |
| Cytidine monophosphate | 8          | 3.9769       | 65.5932  | 3.955  | 0.022               | 65.411  | 0.18                | 1         |
| Uridine                | 1          | 7.8641       | 144.5578 | 7.868  | 0.004               | 144.73  | 0.17                | 1         |

| Uridine                  | 2 | 5.9032 | 92.0857  | 5.922 | 0.019 | 92.192  | 0.11 | 1 |
|--------------------------|---|--------|----------|-------|-------|---------|------|---|
| Uridine                  | 3 | 5.8916 | 105.0767 | 5.902 | 0.010 | 105.217 | 0.14 | 1 |
| Uridine                  | 4 | 4.3468 | 76.4773  | 4.349 | 0.002 | 76.533  | 0.06 | 1 |
| Uridine                  | 5 | 4.229  | 72.077   | 4.211 | 0.018 | 72.435  | 0.36 | 1 |
| Uridine                  | 6 | 4.1205 | 87.126   | 4.113 | 0.007 | 86.923  | 0.20 | 1 |
| Uridine                  | 7 | 3.9084 | 63.6284  | 3.896 | 0.012 | 63.508  | 0.12 | 1 |
| Uridine                  | 8 | 3.8    | 63.6284  | 3.896 | 0.096 | 63.508  | 0.12 | 0 |
| Uridine 5'-monophosphate | 1 | 8.0837 | 144.7537 | 8.006 | 0.078 | 144.877 | 0.12 | 1 |
| Uridine 5'-monophosphate | 2 | 5.9853 | 90.951   | 5.981 | 0.004 | 91.168  | 0.22 | 1 |
| Uridine 5'-monophosphate | 3 | 5.9792 | 105.2944 | 5.961 | 0.018 | 105.51  | 0.22 | 1 |
| Uridine 5'-monophosphate | 4 | 4.411  | 76.6485  | 4.408 | 0.003 | 76.387  | 0.26 | 1 |
| Uridine 5'-monophosphate | 5 | 4.3423 | 72.7462  | 4.309 | 0.033 | 72.581  | 0.17 | 1 |
| Uridine 5'-monophosphate | 6 | 4.2529 | 86.6691  | 4.211 | 0.042 | 86.777  | 0.11 | 1 |
| Uridine 5'-monophosphate | 7 | 4.0177 | 65.857   | ND    |       | ND      |      | 0 |
| Uridine 5'-monophosphate | 8 | 3.9711 | 65.857   | ND    |       | ND      |      | 0 |
| Uridine 5'-diphosphate   | 1 | 7.9871 | 144.3974 | 7.964 | 0.023 | 144.438 | 0.04 | 1 |
| Uridine 5'-diphosphate   | 2 | 5.9652 | 105.2318 | 5.961 | 0.004 | 105.51  | 0.28 | 1 |
| Uridine 5'-diphosphate   | 3 | 5.9594 | 91.2927  | 5.981 | 0.022 | 91.314  | 0.02 | 1 |
| Uridine 5'-diphosphate   | 4 | 4.4226 | 71.8226  | ND    |       | ND      |      | 0 |
| Uridine 5'-diphosphate   | 5 | 4.3827 | 76.4968  | 4.349 | 0.034 | 76.533  | 0.04 | 1 |
| Uridine 5'-diphosphate   | 6 | 4.263  | 85.808   | 4.27  | 0.007 | 86.192  | 0.38 | 1 |
| Uridine 5'-diphosphate   | 7 | 4.2173 | 66.7243  | ND    |       | ND      |      | 0 |
| Guanosine monophosphate  | 1 | 8.1966 | 140.2158 | ND    |       | ND      |      | 0 |
| Guanosine monophosphate  | 2 | 5.926  | 89.3628  | 5.941 | 0.015 | 89.558  | 0.20 | 1 |
| Guanosine monophosphate  | 3 | 4.7423 | 76.7923  | 4.742 | 0.000 | 76.24   | 0.55 | 0 |
| Guanosine monophosphate  | 4 | 4.4768 | 73.4174  | 4.486 | 0.009 | 73.313  | 0.10 | 1 |
| Guanosine monophosphate  | 5 | 4.3154 | 87.2596  | ND    |       | ND      |      | 0 |
| Guanosine monophosphate  | 6 | 3.9818 | 66.1295  | ND    |       | ND      |      | 0 |
| Adenosine monophosphate  | 1 | 8.5422 | 142.61   | ND    |       | ND      |      | 0 |
| Adenosine monophosphate  | 2 | 8.1599 | 155.2645 | ND    |       | ND      |      | 0 |
| Adenosine monophosphate  | 3 | 6.0952 | 89.5866  | 6.138 | 0.043 | 89.997  | 0.41 | 1 |
| Adenosine monophosphate  | 4 | 4.7749 | 77.2747  | ND    |       | ND      |      | 0 |

| Adenosine monophosphate | 5  | 4.513  | 73.2829  | 4.486 | 0.027 | 73.313  | 0.03 | 1 |
|-------------------------|----|--------|----------|-------|-------|---------|------|---|
| Adenosine monophosphate | 6  | 4.3718 | 87.1412  | 4.388 | 0.016 | 86.923  | 0.22 | 1 |
| Adenosine monophosphate | 7  | 4.0377 | 66.2032  | 4.034 | 0.004 | 66.289  | 0.09 | 1 |
| Adenosine diphosphate   | 1  | 8.5408 | 140.4289 | ND    |       | ND      |      | 0 |
| Adenosine diphosphate   | 2  | 8.2974 | 148.3898 | 8.222 | 0.075 | 148.243 | 0.15 | 1 |
| Adenosine diphosphate   | 3  | 5.9425 | 87.115   | ND    |       | ND      |      |   |
| Adenosine diphosphate   | 4  | 4.5752 | 73.7066  | 4.585 | 0.010 | 73.46   | 0.25 | 1 |
| Adenosine diphosphate   | 5  | 4.2228 | 70.0585  | 4.191 | 0.032 | 70.24   | 0.18 | 1 |
| Adenosine diphosphate   | 6  | 4.1437 | 65.406   | 4.113 | 0.031 | 65.264  | 0.14 | 1 |
| Adenosine diphosphate   | 7  | 4.1173 | 83.3287  | 4.113 | 0.004 | 83.411  | 0.08 | 1 |
| Adenosine diphosphate   | 8  | 4.0793 | 65.4112  | 4.093 | 0.014 | 65.118  | 0.29 | 1 |
| Adenosine triphosphate  | 1  | 8.5457 | 142.4994 | ND    |       | ND      |      | 0 |
| Adenosine triphosphate  | 2  | 8.2414 | 155.3692 | 8.242 | 0.001 | 155.121 | 0.25 | 1 |
| Adenosine triphosphate  | 3  | 6.1476 | 89.2792  | ND    |       | ND      |      | 0 |
| Adenosine triphosphate  | 4  | 4.8198 | 76.9573  | ND    |       | ND      |      | 0 |
| Adenosine triphosphate  | 5  | 4.6445 | 72.9634  | 4.644 | 0.000 | 72.435  | 0.53 | 0 |
| Adenosine triphosphate  | 6  | 4.423  | 86.6093  | ND    |       | ND      |      | 0 |
| Adenosine triphosphate  | 7  | 4.3107 | 67.786   | ND    |       | ND      |      | 0 |
| Adenosine triphosphate  | 8  | 4.252  | 67.7121  | 4.25  | 0.002 | 67.898  | 0.19 | 1 |
| NAD                     | 1  | 9.3323 | 142.5136 | ND    |       | ND      |      | 0 |
| NAD                     | 2  | 9.1566 | 145.0726 | ND    |       | ND      |      | 0 |
| NAD                     | 3  | 8.8693 | 148.3929 | 8.832 | 0.037 | 148.828 | 0.44 | 1 |
| NAD                     | 4  | 8.7989 | 148.3929 | 8.832 | 0.033 | 148.828 | 0.44 | 1 |
| NAD                     | 5  | 8.4053 | 142.4201 | ND    |       | ND      |      | 0 |
| NAD                     | 6  | 8.1945 | 131.1386 | ND    |       | ND      |      | 0 |
| NAD                     | 7  | 8.1183 | 155.3617 | ND    |       | ND      |      | 0 |
| NAD                     | 8  | 6.0826 | 102.5917 | ND    |       | ND      |      | 0 |
| NAD                     | 9  | 6.0183 | 89.3063  | ND    |       | ND      |      | 0 |
| NAD                     | 10 | 4.7572 | 76.6879  | 4.742 | 0.015 | 76.24   | 0.45 | 1 |
| NAD                     | 11 | 4.5461 | 89.6301  | ND    |       | ND      |      | 0 |
| NAD                     | 12 | 4.5107 | 73.0308  | 4.486 | 0.025 | 73.313  | 0.28 | 1 |
| NAD                     | 13 | 4.4876 | 80.345   | 4.427 | 0.061 | 80.777  | 0.43 | 1 |

| -              |    |        |          |       |       |         |      |   |
|----------------|----|--------|----------|-------|-------|---------|------|---|
| NAD            | 14 | 4.4346 | 73.3674  | 4.427 | 0.008 | 73.021  | 0.35 | 1 |
| NAD            | 15 | 4.3764 | 86.4608  | 4.349 | 0.027 | 86.338  | 0.12 | 1 |
| NAD            | 16 | 4.3642 | 67.5533  | 4.408 | 0.044 | 67.459  | 0.09 | 1 |
| NAD            | 17 | 4.2357 | 67.5533  | 4.408 | 0.172 | 67.459  | 0.09 | 0 |
| NAD            | 18 | 4.247  | 68.0556  | 4.25  | 0.003 | 68.045  | 0.01 | 1 |
| NAD            | 19 | 4.2175 | 68.0556  | 4.25  | 0.032 | 68.045  | 0.01 | 1 |
| NADP           | 1  | 8.18   | 131.3383 | ND    |       | ND      |      | 0 |
| NADP           | 2  | 6.0997 | 89.1607  | 5.941 | 0.159 | 89.558  | 0.40 | 0 |
| NADP           | 3  | 6.0309 | 102.7257 | 6.02  | 0.011 | 103.168 | 0.44 | 1 |
| NADP           | 4  | 4.9861 | 78.8941  | 4.958 | 0.028 | 78.728  | 0.17 | 1 |
| NADP           | 5  | 4.6174 | 72.7144  | ND    |       | ND      |      | 0 |
| NADP           | 6  | 4.4965 | 89.7429  | 4.486 | 0.011 | 88.241  | 1.50 | 0 |
| NADP           | 7  | 4.4542 | 80.4734  | 4.427 | 0.027 | 80.777  | 0.30 | 1 |
| NADP           | 8  | 4.4059 | 73.4697  | 4.427 | 0.021 | 73.46   | 0.01 | 1 |
| NADP           | 9  | 4.3726 | 85.7604  | 4.349 | 0.024 | 86.192  | 0.43 | 1 |
| NADP           | 10 | 4.2552 | 67.7051  | 4.408 | 0.153 | 67.606  | 0.10 | 1 |
| NADP           | 11 | 4.2467 | 68.1346  | 4.25  | 0.003 | 68.045  | 0.09 | 1 |
| Quinic acid    | 1  | 4.1292 | 73.0325  | 4.132 | 0.003 | 73.313  | 0.28 | 1 |
| Quinic acid    | 2  | 4.0061 | 69.718   | ND    |       | ND      |      | 0 |
| Quinic acid    | 3  | 3.5372 | 77.8703  | 3.542 | 0.005 | 77.704  | 0.17 | 1 |
| Quinic acid    | 4  | 2.0529 | 43.3275  | 2.068 | 0.015 | 43.605  | 0.28 | 1 |
| Quinic acid    | 5  | 2.0353 | 40.1645  | 2.048 | 0.013 | 40.239  | 0.07 | 1 |
| Quinic acid    | 6  | 1.948  | 40.1651  | 1.969 | 0.021 | 40.093  | 0.07 | 1 |
| Quinic acid    | 7  | 1.8595 | 43.3272  | 1.871 | 0.012 | 43.605  | 0.28 | 1 |
| t-Ferulic acid | 1  | 7.3185 | 143.7394 | 7.2   | 0.119 | 142.535 | 1.20 | 0 |
| t-Ferulic acid | 2  | 7.247  | 113.7738 | ND    |       | ND      |      | 0 |
| t-Ferulic acid | 3  | 7.1179 | 124.8569 | 7.141 | 0.023 | 123.656 | 1.20 | 0 |
| t-Ferulic acid | 4  | 6.92   | 118.426  | 6.905 | 0.015 | 118.681 | 0.25 | 1 |
| t-Ferulic acid | 5  | 6.3813 | 124.5149 | ND    |       | ND      |      | 0 |
| t-Ferulic acid | 6  | 3.8921 | 58.7183  | 3.896 | 0.004 | 58.679  | 0.04 | 1 |
| Mandelic acid  | 1  | 7.4202 | 129.7461 | 7.357 | 0.063 | 129.657 | 0.09 | 0 |
| Mandelic acid  | 2  | 7.4202 | 131.4467 | 7.416 | 0.004 | 130.681 | 0.77 | 0 |

| Mandelic acid      | 3  | 7.379  | 130.8475 | 7.357 | 0.022 | 129.657 | 1.19 | 0 |
|--------------------|----|--------|----------|-------|-------|---------|------|---|
| Mandelic acid      | 4  | 4.977  | 77.7019  | 4.939 | 0.038 | 77.265  | 0.44 | 1 |
| DL-Malic acid      | 1  | 4.289  | 73.2436  | 4.27  | 0.019 | 73.606  | 0.36 | 1 |
| DL-Malic acid      | 2  | 2.6553 | 45.4634  | 2.638 | 0.017 | 45.8    | 0.34 | 1 |
| DL-Malic acid      | 3  | 2.3431 | 45.4634  | 2.441 | 0.098 | 44.776  | 0.69 | 0 |
| Citric acid        | 1  | 2.659  | 48.7114  | 2.599 | 0.060 | 48.581  | 0.13 | 0 |
| Citric acid        | 2  | 2.5208 | 48.7114  | 2.599 | 0.078 | 48.727  | 0.02 | 0 |
| Folic acid         | 1  | 8.4413 | 151.2733 | ND    |       | ND      |      | 0 |
| Folic acid         | 2  | 7.4112 | 131.6746 | 7.416 | 0.005 | 132.145 | 0.47 | 1 |
| Folic acid         | 3  | 6.2397 | 114.1605 | ND    |       | ND      |      | 0 |
| Folic acid         | 4  | 4.2791 | 58.9113  | ND    |       | ND      |      | 0 |
| Folic acid         | 5  | 4.0351 | 47.7659  | ND    |       | ND      |      | 0 |
| Folic acid         | 6  | 2.3348 | 36.939   | 2.304 | 0.031 | 36.873  | 0.07 | 1 |
| Folic acid         | 7  | 2.164  | 31.0478  | 2.127 | 0.037 | 31.458  | 0.41 | 1 |
| Folic acid         | 8  | 2.0257 | 31.0478  | 1.989 | 0.037 | 31.751  | 0.70 | 0 |
| 2-Oxoglutaric acid | 1  | 2.9974 | 38.6303  | ND    |       | ND      |      | 0 |
| 3-Oxoglutaric acid | 2  | 2.423  | 33.4233  | 2.441 | 0.018 | 33.507  | 0.08 | 1 |
| GABA               | 1  | 3.01   | 42.2135  | 3.012 | 0.002 | 41.995  | 0.22 | 1 |
| GABA               | 2  | 2.2803 | 37.0498  | 2.304 | 0.024 | 36.873  | 0.18 | 1 |
| GABA               | 3  | 1.8911 | 26.3781  | 1.891 | 0.000 | 26.629  | 0.25 | 1 |
| Chlorogenic acid   | 1  | 7.64   | 148.7617 | 7.593 | 0.047 | 148.535 | 0.23 | 1 |
| Chlorogenic acid   | 2  | 7.5531 | 148.7389 | 7.593 | 0.040 | 148.535 | 0.20 | 1 |
| Chlorogenic acid   | 4  | 7.089  | 125.3337 | 6.944 | 0.145 | 125.559 | 0.23 | 0 |
| Chlorogenic acid   | 5  | 6.9179 | 119.0127 | 6.925 | 0.007 | 118.973 | 0.04 | 1 |
| Chlorogenic acid   | 3  | 7.1536 | 117.8173 | 7.2   | 0.046 | 117.803 | 0.01 | 1 |
| Chlorogenic acid   | 6  | 6.3504 | 117.274  | 6.256 | 0.094 | 117.071 | 0.20 | 0 |
| Chlorogenic acid   | 9  | 3.8664 | 75.6838  | 3.837 | 0.029 | 75.655  | 0.03 | 1 |
| Chlorogenic acid   | 7  | 5.3145 | 73.7767  | ND    |       | ND      |      | 0 |
| Chlorogenic acid   | 8  | 4.246  | 73.5159  | 4.27  | 0.024 | 73.752  | 0.24 | 1 |
| Chlorogenic acid   | 13 | 2.0149 | 41.15    | 2.166 | 0.151 | 41.263  | 0.11 | 0 |
| Chlorogenic acid   | 10 | 2.1859 | 41.141   | 2.166 | 0.020 | 41.263  | 0.12 | 1 |
| Chlorogenic acid   | 11 | 2.1329 | 40.0724  | 2.127 | 0.006 | 40.093  | 0.02 | 1 |

| Chlorogenic acid | 12 | 2.0279 | 40.0724  | 2.028 | 0.000 | 40.093  | 0.02 | 1 |
|------------------|----|--------|----------|-------|-------|---------|------|---|
| Threonic acid    | 1  | 4.056  | 75.1363  | 4.054 | 0.002 | 74.923  | 0.21 | 1 |
| Threonic acid    | 2  | 3.9829 | 75.5457  | 3.975 | 0.008 | 75.655  | 0.11 | 1 |
| Threonic acid    | 3  | 3.6917 | 65.6394  | 3.66  | 0.032 | 65.441  | 0.20 | 1 |
| Threonic acid    | 3  | 3.6294 | 65.6394  | 3.66  | 0.031 | 65.441  | 0.20 | 1 |
| L-Arginine       | 1  | 3.7614 | 57.2627  | 3.778 | 0.017 | 57.215  | 0.05 | 1 |
| L-Arginine       | 2  | 3.2354 | 43.3232  | 3.228 | 0.007 | 43.312  | 0.01 | 1 |
| L-Arginine       | 3  | 1.9062 | 30.4926  | 1.91  | 0.004 | 30.434  | 0.06 | 1 |
| L-Arginine       | 4  | 1.6799 | 26.4533  | 1.733 | 0.053 | 26.775  | 0.32 | 1 |
| L-Asparagine     | 1  | 3.9929 | 54.1301  | 4.014 | 0.021 | 54.142  | 0.01 | 1 |
| L-Asparagine     | 2  | 2.9439 | 37.4319  | 2.953 | 0.009 | 37.312  | 0.12 | 1 |
| L-Asparagine     | 3  | 2.8433 | 37.3557  | 2.874 | 0.031 | 37.312  | 0.04 | 1 |
| L-Aspartic acid  | 1  | 3.9079 | 55.0859  | 3.896 | 0.012 | 55.02   | 0.07 | 1 |
| L-Aspartic acid  | 2  | 2.8426 | 39.3943  | 2.815 | 0.028 | 39.361  | 0.03 | 1 |
| L-Aspartic acid  | 3  | 2.8031 | 39.4769  | 2.815 | 0.012 | 39.361  | 0.12 | 1 |
| L-Aspartic acid  | 4  | 2.7119 | 39.3327  | 2.815 | 0.103 | 39.361  | 0.03 | 0 |
| L-Aspartic acid  | 5  | 2.6896 | 39.3327  | 2.697 | 0.007 | 39.361  | 0.03 | 1 |
| L-Aspartic acid  | 6  | 2.6675 | 39.341   | 2.697 | 0.030 | 39.361  | 0.02 | 1 |
| L-Aspartic acid  | 7  | 2.6455 | 39.3493  | 2.697 | 0.051 | 39.361  | 0.01 | 1 |
| L-Cysteine       | 1  | 3.9488 | 58.8817  | 3.955 | 0.006 | 59.264  | 0.38 | 1 |
| L-Cysteine       | 2  | 3.0517 | 27.7941  | 3.13  | 0.078 | 27.653  | 0.14 | 0 |
| L-Glutamic acid  | 1  | 3.7425 | 57.6427  | 3.739 | 0.004 | 57.508  | 0.13 | 1 |
| L-Glutamic acid  | 2  | 2.34   | 36.356   | 2.304 | 0.036 | 36.873  | 0.52 | 1 |
| L-Glutamic acid  | 3  | 2.085  | 29.8225  | 2.087 | 0.002 | 29.702  | 0.12 | 1 |
| L-Glutamine      | 1  | 3.7577 | 57.232   | 3.739 | 0.019 | 57.508  | 0.28 | 1 |
| L-Glutamine      | 2  | 2.4393 | 33.9285  | 2.461 | 0.022 | 33.653  | 0.28 | 1 |
| L-Glutamine      | 3  | 2.1223 | 29.2856  | 2.127 | 0.005 | 29.117  | 0.17 | 1 |
| L-Histidine      | 1  | 8.0254 | 138.3663 | ND    |       | ND      |      | 0 |
| L-Histidine      | 2  | 7.1359 | 119.9937 | 7.102 | 0.034 | 119.998 | 0.00 | 1 |
| L-Histidine      | 3  | 4.0037 | 57.2847  | ND    |       | ND      |      | 0 |
| L-Histidine      | 4  | 3.2941 | 30.2042  | 3.248 | 0.046 | 30.434  | 0.23 | 1 |
| L-Histidine      | 5  | 3.2668 | 30.2042  | 3.248 | 0.019 | 30.434  | 0.23 | 1 |

| 1               | 1 |        |          | 1     |       |         |      | 1 |
|-----------------|---|--------|----------|-------|-------|---------|------|---|
| L-Histidine     | 6 | 3.2076 | 30.0802  | 3.248 | 0.040 | 30.434  | 0.35 | 1 |
| L-Leucine       | 1 | 3.7414 | 56.2106  | 3.719 | 0.022 | 56.337  | 0.13 | 1 |
| L-Leucine       | 2 | 1.7026 | 42.5958  | 1.694 | 0.009 | 42.58   | 0.02 | 1 |
| L-Leucine       | 3 | 0.95   | 24.3632  | 0.947 | 0.003 | 24.872  | 0.51 | 1 |
| L-Lysine        | 1 | 3.7466 | 57.4527  | 3.739 | 0.008 | 57.508  | 0.06 | 1 |
| L-Lysine        | 2 | 3.0175 | 42.1193  | 3.012 | 0.006 | 42.141  | 0.02 | 1 |
| L-Lysine        | 3 | 1.8841 | 32.6543  | 1.812 | 0.072 | 32.214  | 0.44 | 1 |
| L-Lysine        | 4 | 1.7181 | 29.1523  | 1.714 | 0.004 | 29.263  | 0.11 | 1 |
| L-Lysine        | 5 | 1.4925 | 24.0412  | 1.478 | 0.015 | 24.287  | 0.25 | 1 |
| L-Lysine        | 6 | 1.43   | 24.0412  | 1.439 | 0.009 | 24.287  | 0.25 | 1 |
| L-Phenylalanine | 1 | 7.419  | 131.8113 | 7.416 | 0.003 | 132.145 | 0.33 | 1 |
| L-Phenylalanine | 2 | 7.3658 | 130.428  | ND    |       | ND      |      | 0 |
| L-Phenylalanine | 3 | 7.3155 | 132.1171 | 7.318 | 0.002 | 132.145 | 0.03 | 1 |
| L-Phenylalanine | 4 | 3.9758 | 58.933   | 3.995 | 0.019 | 59.118  | 0.19 | 1 |
| L-Phenylalanine | 5 | 3.2738 | 39.1507  | 3.287 | 0.013 | 39.214  | 0.06 | 1 |
| L-Phenylalanine | 6 | 3.1095 | 39.1507  | 3.13  | 0.020 | 39.214  | 0.06 | 1 |
| Proline         | 1 | 4.1272 | 64.0393  | 4.132 | 0.005 | 63.654  | 0.39 | 1 |
| Proline         | 2 | 3.4072 | 48.9572  | 3.425 | 0.018 | 49.02   | 0.06 | 1 |
| Proline         | 3 | 3.3235 | 48.9572  | 3.326 | 0.002 | 49.02   | 0.06 | 1 |
| Proline         | 4 | 2.344  | 31.7204  | 2.343 | 0.001 | 31.751  | 0.03 | 1 |
| Proline         | 5 | 2.0678 | 31.8401  | 2.028 | 0.040 | 32.483  | 0.64 | 0 |
| Proline         | 6 | 1.9924 | 26.4536  | 1.969 | 0.023 | 26.19   | 0.26 | 1 |
| L-Serine        | 1 | 3.9545 | 63.0808  | 3.995 | 0.041 | 62.776  | 0.30 | 1 |
| L-Serine        | 2 | 3.8325 | 59.1777  | 3.837 | 0.005 | 59.264  | 0.09 | 1 |
| Thiamin         | 1 | 9.423  | 156.5705 | ND    |       | ND      |      | 0 |
| Thiamin         | 2 | 8.0471 | 159.717  | ND    |       | ND      |      | 0 |
| Thiamin         | 3 | 5.4486 | 53.8722  | ND    |       | ND      |      | 0 |
| Thiamin         | 4 | 3.8854 | 63.2112  | 3.896 | 0.011 | 63.362  | 0.15 | 1 |
| Thiamin         | 5 | 3.1842 | 31.8779  | ND    |       | ND      |      | 0 |
| Thiamin         | 6 | 2.5658 | 13.7795  | 2.559 | 0.007 | 13.457  | 0.32 | 1 |
| Thiamin         | 7 | 2.4896 | 26.7363  | 2.461 | 0.029 | 26.336  | 0.40 | 1 |
| L-Tyrosine      | 1 | 7.194  | 133.4862 | 7.192 | 0.002 | 133.756 | 0.27 | 1 |

| L-Tyrosine   | 2  | 6.8916 | 118.8917 | 6.895 | 0.003 | 118.681 | 0.21 | 1 |
|--------------|----|--------|----------|-------|-------|---------|------|---|
| L-Tyrosine   | 3  | 3.9329 | 58.9873  | 3.955 | 0.022 | 59.118  | 0.13 | 1 |
| L-Tyrosine   | 4  | 3.1749 | 38.2714  | 3.13  | 0.045 | 38.487  | 0.22 | 1 |
| L-Tyrosine   | 5  | 3.0695 | 38.2714  | 3.051 | 0.019 | 38.19   | 0.08 | 1 |
| DL-Arabinose | 1  | 4.502  | 99.5999  | 4.565 | 0.063 | 99.502  | 0.10 | 0 |
| DL-Arabinose | 2  | 5.2295 | 95.3407  | 5.293 | 0.064 | 95.558  | 0.22 | 0 |
| DL-Arabinose | 3  | 3.4964 | 74.7927  | 3.523 | 0.027 | 74.338  | 0.45 | 1 |
| DL-Arabinose | 4  | 3.9294 | 71.2621  | 3.916 | 0.013 | 71.411  | 0.15 | 1 |
| DL-Arabinose | 5  | 3.8082 | 71.3042  | 3.837 | 0.029 | 71.411  | 0.11 | 1 |
| DL-Arabinose | 6  | 3.651  | 75.234   | 3.621 | 0.030 | 75.216  | 0.02 | 1 |
| DL-Arabinose | 7  | 3.8874 | 69.0766  | ND    |       | ND      |      | 0 |
| DL-Arabinose | 8  | 3.8676 | 71.4092  | 3.837 | 0.031 | 71.411  | 0.00 | 1 |
| DL-Arabinose | 9  | 3.6671 | 69.2026  | ND    |       | ND      |      | 0 |
| DL-Arabinose | 10 | 4.0135 | 65.2098  | ND    |       | ND      |      | 0 |
| DL-Arabinose | 11 | 3.635  | 65.2308  | 3.66  | 0.025 | 65.264  | 0.03 | 1 |
| DL-Arabinose | 12 | 3.995  | 71.5353  | 3.837 | 0.158 | 71.411  | 0.12 | 1 |
| D-Galactose  | 1  | 5.255  | 95.0068  | 5.234 | 0.021 | 95.119  | 0.11 | 1 |
| D-Galactose  | 2  | 4.5733 | 99.2612  | 4.565 | 0.008 | 99.509  | 0.25 | 1 |
| D-Galactose  | 3  | 4.0732 | 73.1943  | 4.034 | 0.039 | 73.46   | 0.27 | 1 |
| D-Galactose  | 4  | 3.9795 | 72.1345  | 3.995 | 0.016 | 72.289  | 0.15 | 1 |
| D-Galactose  | 5  | 3.9221 | 71.5533  | 3.837 | 0.085 | 71.411  | 0.14 | 0 |
| D-Galactose  | 6  | 3.8476 | 72.0661  | 3.837 | 0.011 | 72.581  | 0.51 | 0 |
| D-Galactose  | 7  | 3.7965 | 71.2114  | 3.837 | 0.041 | 71.411  | 0.20 | 1 |
| D-Galactose  | 8  | 3.7369 | 63.827   | 3.7   | 0.037 | 63.654  | 0.17 | 1 |
| D-Galactose  | 9  | 3.6965 | 77.8437  | 3.66  | 0.036 | 77.411  | 0.43 | 1 |
| D-Galactose  | 10 | 3.6412 | 75.5873  | ND    |       | ND      |      | 0 |
| D-Galactose  | 11 | 3.4773 | 74.7327  | ND    |       | ND      |      | 0 |
| D-Glucose    | 1  | 5.2213 | 94.8809  | 5.234 | 0.013 | 95.119  | 0.24 | 1 |
| D-Glucose    | 2  | 3.8891 | 63.3933  | 3.896 | 0.007 | 63.654  | 0.26 | 1 |
| D-Glucose    | 3  | 3.8219 | 63.3242  | 3.837 | 0.015 | 63.508  | 0.18 | 1 |
| D-Glucose    | 4  | 3.8126 | 74.1491  | 3.818 | 0.005 | 74.338  | 0.19 | 1 |
| D-Glucose    | 5  | 3.7014 | 75.6017  | 3.7   | 0.001 | 75.655  | 0.05 | 1 |

| D-Glucose  | 6  | 3.72   | 63.5317 | 3.719 | 0.001 | 63.508 | 0.02 | 1 |
|------------|----|--------|---------|-------|-------|--------|------|---|
| D-Glucose  | 7  | 3.5208 | 74.322  | 3.523 | 0.002 | 74.338 | 0.02 | 1 |
| D-Glucose  | 8  | 3.4582 | 78.6451 | 3.464 | 0.006 | 78.728 | 0.08 | 1 |
| D-Glucose  | 9  | 3.398  | 72.4545 | 3.385 | 0.013 | 72.435 | 0.02 | 1 |
| D-Glucose  | 10 | 3.2266 | 77.0196 | 3.228 | 0.001 | 77.118 | 0.10 | 1 |
| D-Mannose  | 1  | 3.9245 | 73.6845 | 3.964 | 0.039 | 73.313 | 0.37 | 1 |
| D-Mannose  | 2  | 3.8379 | 73.1236 | 3.857 | 0.019 | 73.469 | 0.35 | 1 |
| D-Mannose  | 3  | 3.8757 | 63.8181 | 3.896 | 0.020 | 63.654 | 0.16 | 1 |
| D-Mannose  | 4  | 3.7492 | 63.7851 | 3.759 | 0.010 | 63.362 | 0.42 | 1 |
| D-Mannose  | 5  | 3.8002 | 75.2684 | 3.818 | 0.018 | 75.655 | 0.39 | 1 |
| D-Mannose  | 6  | 3.6516 | 69.7248 | 3.641 | 0.011 | 69.801 | 0.08 | 1 |
| D-Mannose  | 7  | 3.5673 | 69.4938 | 3.562 | 0.005 | 69.655 | 0.16 | 1 |
| D-Mannose  | 8  | 3.3721 | 78.9312 | ND    |       | ND     |      | 0 |
| D-Rhamnose | 1  | 5.1056 | 96.7613 | 4.899 | 0.207 | 96.582 | 0.18 | 0 |
| D-Rhamnose | 2  | 4.8585 | 96.2135 | 5.175 | 0.317 | 96.875 | 0.66 | 0 |
| D-Rhamnose | 3  | 3.5966 | 75.4967 | ND    |       | ND     |      | 0 |
| D-Rhamnose | 4  | 3.4367 | 74.8493 | 3.464 | 0.027 | 74.923 | 0.07 | 1 |
| D-Rhamnose | 5  | 3.3756 | 74.6003 | 3.346 | 0.030 | 74.923 | 0.32 | 1 |
| D-Rhamnose | 6  | 3.9193 | 73.7537 | 3.964 | 0.045 | 73.752 | 0.00 | 1 |
| D-Rhamnose | 7  | 3.7943 | 72.7079 | 3.837 | 0.043 | 72.581 | 0.13 | 1 |
| D-Rhamnose | 8  | 3.8496 | 70.9151 | 3.837 | 0.013 | 71.118 | 0.20 | 1 |
| D-Rhamnose | 9  | 1.2715 | 19.4134 | 1.281 | 0.009 | 19.604 | 0.19 | 1 |
| D-Xylose   | 1  | 5.1831 | 94.978  | ND    |       | ND     |      | 0 |
| D-Xylose   | 2  | 4.5752 | 99.4278 | 4.565 | 0.010 | 99.509 | 0.08 | 1 |
| D-Xylose   | 3  | 4.555  | 99.4355 | 4.565 | 0.010 | 99.509 | 0.07 | 1 |
| D-Xylose   | 4  | 3.9372 | 67.9133 | 3.936 | 0.001 | 68.338 | 0.42 | 1 |
| D-Xylose   | 5  | 3.8939 | 67.8796 | 3.936 | 0.042 | 68.338 | 0.46 | 1 |
| D-Xylose   | 6  | 3.6871 | 63.6465 | 3.7   | 0.013 | 63.654 | 0.01 | 1 |
| D-Xylose   | 7  | 3.6655 | 63.6355 | 3.7   | 0.035 | 63.654 | 0.02 | 1 |
| D-Xylose   | 8  | 3.6782 | 72.121  | 3.621 | 0.057 | 72.435 | 0.31 | 0 |
| D-Xylose   | 9  | 3.6534 | 75.5472 | ND    |       | ND     |      | 0 |
| D-Xylose   | 10 | 3.6286 | 75.6704 | ND    |       | ND     |      | 0 |

| D-Xylose   | 11 | 3.6229 | 72.1457  | 3.523 | 0.100 | 72.435 | 0.29 | 0 |
|------------|----|--------|----------|-------|-------|--------|------|---|
| D-Xylose   | 12 | 3.6047 | 72.0717  | 3.621 | 0.016 | 72.435 | 0.36 | 1 |
| D-Xylose   | 13 | 3.5837 | 72.1457  | 3.523 | 0.061 | 72.435 | 0.29 | 0 |
| D-Xylose   | 14 | 3.5239 | 74.2797  | 3.523 | 0.001 | 74.338 | 0.06 | 1 |
| D-Xylose   | 15 | 3.4976 | 74.2447  | 3.523 | 0.025 | 74.338 | 0.09 | 1 |
| D-Xylose   | 16 | 3.4207 | 78.6697  | 3.385 | 0.036 | 78.728 | 0.06 | 1 |
| D-Xylose   | 17 | 3.3061 | 67.8678  | 3.307 | 0.001 | 68.045 | 0.18 | 1 |
| D-Xylose   | 18 | 3.2144 | 76.9117  | 3.228 | 0.014 | 77.118 | 0.21 | 1 |
| D-Ribose   | 1  | 5.388  | 99.0368  | ND    |       | ND     |      | 0 |
| D-Ribose   | 2  | 5.2549 | 103.8029 | ND    |       | ND     |      | 0 |
| D-Ribose   | 3  | 4.9273 | 96.5326  | 4.978 | 0.051 | 96.729 | 0.20 | 1 |
| D-Ribose   | 4  | 4.2111 | 73.1063  | ND    |       | ND     |      | 0 |
| D-Ribose   | 5  | 4.1355 | 85.8696  | ND    |       | ND     |      | 0 |
| D-Ribose   | 6  | 4.1139 | 73.4294  | 4.132 | 0.018 | 73.313 | 0.12 | 1 |
| D-Ribose   | 7  | 4.1103 | 71.733   | ND    |       | ND     |      | 0 |
| D-Ribose   | 8  | 4.0059 | 77.9531  | ND    |       | ND     |      | 0 |
| D-Ribose   | 9  | 3.9735 | 85.0618  | ND    |       | ND     |      | 0 |
| D-Ribose   | 10 | 3.9268 | 71.8138  | 3.936 | 0.009 | 71.411 | 0.40 | 1 |
| D-Ribose   | 11 | 3.8836 | 69.8751  | 3.837 | 0.047 | 69.655 | 0.22 | 1 |
| D-Ribose   | 12 | 3.8332 | 65.6745  | 3.798 | 0.035 | 65.264 | 0.41 | 1 |
| D-Ribose   | 13 | 3.8332 | 72.6216  | 3.798 | 0.035 | 72.435 | 0.19 | 1 |
| D-Ribose   | 14 | 3.6892 | 65.6745  | 3.66  | 0.029 | 65.264 | 0.41 | 1 |
| D-Ribose   | 15 | 3.5308 | 73.6718  | 3.464 | 0.067 | 73.46  | 0.21 | 0 |
| D-Ribose   | 16 | 4.0975 | 72.6136  | 4.073 | 0.024 | 72.728 | 0.11 | 1 |
| D-Ribose   | 17 | 3.8635 | 69.8978  | 3.837 | 0.027 | 69.655 | 0.24 | 1 |
| D-Ribose   | 18 | 3.932  | 65.9066  | 3.916 | 0.016 | 65.557 | 0.35 | 1 |
| D-Ribose   | 19 | 3.8032 | 65.2472  | 3.798 | 0.005 | 65.264 | 0.02 | 1 |
| D-Ribose   | 20 | 3.7336 | 64.0672  | 3.641 | 0.093 | 64.24  | 0.17 | 0 |
| D-Ribose   | 21 | 3.6582 | 65.2472  | 3.66  | 0.002 | 65.264 | 0.02 | 1 |
| D-Ribose   | 22 | 3.6536 | 64.0672  | 3.641 | 0.013 | 64.24  | 0.17 | 1 |
| D-Ribose   | 23 | 3.6026 | 65.9066  | ND    |       | ND     |      | 0 |
| D-Fructose | 1  | 4.1055 | 78.0741  | 4.113 | 0.008 | 78.289 | 0.21 | 1 |

| D Emictore | 2  | 4 1057 | דדנג דד  | 4 1 1 3 | 0.007 | 77 265 | 0.16 | 1 |
|------------|----|--------|----------|---------|-------|--------|------|---|
| D-Fructose | 2  | 4.0141 | 66.12    | 4.014   | 0.000 | 66 280 | 0.17 | 1 |
| D-Fluciose | 5  | 4.0141 | 00.12    | 4.014   | 0.000 | 00.289 | 0.17 |   |
| D-Fructose | 4  | 3.9871 | 72.1456  | 3.995   | 0.008 | 72.142 | 0.00 | 1 |
| D-Fructose | 5  | 3.8856 | 72.5344  | 3.877   | 0.009 | 72.435 | 0.10 | 1 |
| D-Fructose | 6  | 3.8189 | 83.5814  | 3.818   | 0.001 | 83.411 | 0.17 | 1 |
| D-Fructose | 7  | 3.8009 | 65.3592  | 3.798   | 0.003 | 65.264 | 0.10 | 1 |
| D-Fructose | 8  | 3.7858 | 70.4286  | 3.778   | 0.008 | 70.386 | 0.04 | 1 |
| D-Fructose | 9  | 3.6995 | 66.4439  | 3.7     | 0.001 | 66.289 | 0.15 | 1 |
| D-Fructose | 10 | 3.6659 | 65.5982  | 3.542   | 0.124 | 66.728 | 1.13 | 1 |
| D-Fructose | 11 | 3.5895 | 65.5982  | 3.562   | 0.028 | 65.411 | 0.19 | 1 |
| D-Fructose | 12 | 3.5423 | 65.419   | 3.562   | 0.020 | 65.411 | 0.01 | 1 |
| D-Fructose | 13 | 3.5523 | 66.8327  | 3.542   | 0.010 | 66.728 | 0.10 | 1 |
| D-Xylulose | 1  | 4.3701 | 77.5022  | 4.309   | 0.061 | 77.265 | 0.24 | 0 |
| D-Xylulose | 2  | 4.1821 | 72.3718  | 4.211   | 0.029 | 72.581 | 0.21 | 1 |
| D-Xylulose | 3  | 4.038  | 78.8612  | 3.995   | 0.043 | 78.874 | 0.01 | 1 |
| D-Xylulose | 4  | 3.6298 | 72.3718  | 3.621   | 0.009 | 72.581 | 0.21 | 1 |
| D-Xylulose | 5  | 3.6015 | 65.7333  | 3.66    | 0.059 | 65.264 | 0.47 | 0 |
| D-Xylulose | 6  | 3.5719 | 65.7333  | 3.66    | 0.088 | 65.264 | 0.47 | 1 |
| Maltose    | 1  | 5.3982 | 102.2808 | ND      |       | ND     |      | 0 |
| Maltose    | 2  | 5.2223 | 94.6453  | 5.234   | 0.012 | 94.826 | 0.18 | 1 |
| Maltose    | 3  | 4.6441 | 98.5034  | 4.644   | 0.000 | 98.631 | 0.13 | 1 |
| Maltose    | 4  | 3.963  | 75.9677  | ND      |       | ND     |      | 0 |
| Maltose    | 5  | 3.9273 | 72.6928  | 3.896   | 0.031 | 72.581 | 0.11 | 1 |
| Maltose    | 6  | 3.9031 | 63.2344  | 3.896   | 0.007 | 63.508 | 0.27 | 1 |
| Maltose    | 7  | 3.8098 | 63.2961  | 3.818   | 0.008 | 63.508 | 0.21 | 1 |
| Maltose    | 8  | 3.763  | 63.2852  | 3.759   | 0.004 | 63.508 | 0.22 | 1 |
| Maltose    | 9  | 3.7686 | 63.2892  | 3.759   | 0.010 | 63.508 | 0.22 | 1 |
| Maltose    | 10 | 3.7599 | 79.0088  | 3.719   | 0.041 | 78.874 | 0.13 | 1 |
| Maltose    | 11 | 3.7105 | 75.4414  | 3.7     | 0.011 | 74.338 | 1.10 | 1 |
| Maltose    | 12 | 3.6735 | 75.6753  | ND      |       | ND     |      | 0 |
| Maltose    | 13 | 3.6296 | 79.4181  | 3.621   | 0.009 | 79.606 | 0.19 | 1 |
| Maltose    | 14 | 3.5829 | 77.2543  | ND      |       | ND     |      | 0 |

| Maltose                                                                                                                                                                            | 15                                                                              | 3.5706                                                                                                                                            | 74.3887                                                                                                                                                       | 3.523                                                                                                                                           | 0.048                                                                                                                      | 74.484                                                                                                                                     | 0.10                                                                                                 | 1                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Maltose                                                                                                                                                                            | 16                                                                              | 3.4114                                                                                                                                            | 72.1372                                                                                                                                                       | 3.385                                                                                                                                           | 0.026                                                                                                                      | 72.435                                                                                                                                     | 0.30                                                                                                 | 1                                                                                           |
| Maltose                                                                                                                                                                            | 17                                                                              | 3.2659                                                                                                                                            | 76.7572                                                                                                                                                       | 3.228                                                                                                                                           | 0.038                                                                                                                      | 76.972                                                                                                                                     | 0.21                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 1                                                                               | 5.3993                                                                                                                                            | 94.7981                                                                                                                                                       | 5.411                                                                                                                                           | 0.012                                                                                                                      | 94.826                                                                                                                                     | 0.03                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 2                                                                               | 3.8758                                                                                                                                            | 84.1442                                                                                                                                                       | 3.818                                                                                                                                           | 0.058                                                                                                                      | 84.289                                                                                                                                     | 0.14                                                                                                 | 0                                                                                           |
| Sucrose                                                                                                                                                                            | 3                                                                               | 4.2052                                                                                                                                            | 79.2158                                                                                                                                                       | 4.211                                                                                                                                           | 0.006                                                                                                                      | 78.874                                                                                                                                     | 0.34                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 4                                                                               | 4.0353                                                                                                                                            | 76.7517                                                                                                                                                       | 4.034                                                                                                                                           | 0.001                                                                                                                      | 76.826                                                                                                                                     | 0.07                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 5                                                                               | 3.8295                                                                                                                                            | 75.1572                                                                                                                                                       | 3.877                                                                                                                                           | 0.047                                                                                                                      | 75.069                                                                                                                                     | 0.09                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 6                                                                               | 3.742                                                                                                                                             | 75.3022                                                                                                                                                       | 3.7                                                                                                                                             | 0.042                                                                                                                      | 75.655                                                                                                                                     | 0.35                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 7                                                                               | 3.5464                                                                                                                                            | 73.7802                                                                                                                                                       | 3.523                                                                                                                                           | 0.023                                                                                                                      | 74.191                                                                                                                                     | 0.41                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 8                                                                               | 3.4743                                                                                                                                            | 71.9683                                                                                                                                                       | 3.385                                                                                                                                           | 0.089                                                                                                                      | 72.435                                                                                                                                     | 0.47                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 9                                                                               | 3.6647                                                                                                                                            | 64.0684                                                                                                                                                       | 3.66                                                                                                                                            | 0.005                                                                                                                      | 64.093                                                                                                                                     | 0.02                                                                                                 | 1                                                                                           |
| Sucrose                                                                                                                                                                            | 10                                                                              | 3.8089                                                                                                                                            | 62.7639                                                                                                                                                       | ND                                                                                                                                              |                                                                                                                            | ND                                                                                                                                         |                                                                                                      | 0                                                                                           |
| Sucrose                                                                                                                                                                            | 11                                                                              | 3.8091                                                                                                                                            | 65.0452                                                                                                                                                       | 3.798                                                                                                                                           | 0.011                                                                                                                      | 65.118                                                                                                                                     | 0.07                                                                                                 | 1                                                                                           |
| Cellobiose                                                                                                                                                                         | 1                                                                               | 5.2191                                                                                                                                            | 94.5353                                                                                                                                                       | 5.175                                                                                                                                           | 0.044                                                                                                                      | 93.655                                                                                                                                     | 0.88                                                                                                 | 1                                                                                           |
| Cellobiose                                                                                                                                                                         | 2                                                                               | 4.6535                                                                                                                                            | 98.4467                                                                                                                                                       | 4.644                                                                                                                                           | 0.010                                                                                                                      | 98.631                                                                                                                                     | 0.18                                                                                                 | 1                                                                                           |
|                                                                                                                                                                                    |                                                                                 |                                                                                                                                                   |                                                                                                                                                               |                                                                                                                                                 |                                                                                                                            |                                                                                                                                            |                                                                                                      |                                                                                             |
| Cellobiose                                                                                                                                                                         | 3                                                                               | 4.4981                                                                                                                                            | 105.1863                                                                                                                                                      | ND                                                                                                                                              |                                                                                                                            | ND                                                                                                                                         |                                                                                                      | 0                                                                                           |
| Cellobiose<br>Cellobiose                                                                                                                                                           | 3                                                                               | 4.4981<br>3.9498                                                                                                                                  | 105.1863<br>62.6313                                                                                                                                           | ND<br>3.896                                                                                                                                     | 0.054                                                                                                                      | ND<br>63.508                                                                                                                               | 0.88                                                                                                 | 0<br>0                                                                                      |
| Cellobiose<br>Cellobiose<br>Cellobiose                                                                                                                                             | 3<br>4<br>5                                                                     | 4.4981<br>3.9498<br>3.9349                                                                                                                        | 105.1863<br>62.6313<br>72.7171                                                                                                                                | ND<br>3.896<br>3.896                                                                                                                            | 0.054<br>0.039                                                                                                             | ND<br>63.508<br>72.435                                                                                                                     | 0.88<br>0.28                                                                                         | 0<br>0<br>1                                                                                 |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose                                                                                                                               | 3<br>4<br>5<br>6                                                                | 4.4981<br>3.9498<br>3.9349<br>3.9213                                                                                                              | 105.1863<br>62.6313<br>72.7171<br>63.285                                                                                                                      | ND<br>3.896<br>3.896<br>3.896                                                                                                                   | 0.054<br>0.039<br>0.025                                                                                                    | ND<br>63.508<br>72.435<br>63.508                                                                                                           | 0.88<br>0.28<br>0.22                                                                                 | 0<br>0<br>1<br>1                                                                            |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose                                                                                                                 | 3<br>4<br>5<br>6<br>7                                                           | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904                                                                                                     | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285                                                                                                            | ND<br>3.896<br>3.896<br>3.896<br>3.896                                                                                                          | 0.054<br>0.039<br>0.025<br>0.008                                                                                           | ND<br>63.508<br>72.435<br>63.508<br>63.508                                                                                                 | 0.88<br>0.28<br>0.22<br>0.22                                                                         | 0<br>0<br>1<br>1<br>1                                                                       |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose                                                                                                   | 3<br>4<br>5<br>6<br>7<br>8                                                      | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668                                                                                           | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379                                                                                                 | ND<br>3.896<br>3.896<br>3.896<br>3.896<br>3.877                                                                                                 | 0.054<br>0.039<br>0.025<br>0.008<br>0.010                                                                                  | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484                                                                                       | 0.88<br>0.28<br>0.22<br>0.22<br>0.05                                                                 | 0<br>0<br>1<br>1<br>1<br>0                                                                  |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose                                                                                     | 3<br>4<br>5<br>6<br>7<br>8<br>9                                                 | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136                                                                                 | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245                                                                                      | ND<br>3.896<br>3.896<br>3.896<br>3.896<br>3.877<br>3.837                                                                                        | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023                                                                         | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338                                                                             | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31                                                         | 0<br>0<br>1<br>1<br>1<br>0<br>1                                                             |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose                                                                       | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                           | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136<br>3.8049                                                                       | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245<br>62.787                                                                            | ND<br>3.896<br>3.896<br>3.896<br>3.896<br>3.877<br>3.837<br>3.837                                                                               | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023<br>0.032                                                                | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338<br>63.362                                                                   | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31<br>0.58                                                 | 0<br>0<br>1<br>1<br>1<br>0<br>1<br>0                                                        |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose                                                         | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                     | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136<br>3.8049<br>3.7331                                                             | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245<br>62.787<br>63.3162                                                                 | ND<br>3.896<br>3.896<br>3.896<br>3.896<br>3.877<br>3.837<br>3.837<br>3.837<br>3.719                                                             | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023<br>0.032<br>0.014                                                       | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338<br>63.362<br>63.508                                                         | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31<br>0.58<br>0.19                                         | 0<br>0<br>1<br>1<br>1<br>0<br>1<br>0<br>1<br>0                                              |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose                                           | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                               | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136<br>3.8049<br>3.7331<br>3.6365                                                   | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245<br>62.787<br>63.3162<br>81.2775                                                      | ND<br>3.896<br>3.896<br>3.896<br>3.896<br>3.877<br>3.837<br>3.837<br>3.719<br>ND                                                                | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023<br>0.032<br>0.014                                                       | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338<br>63.362<br>63.508<br>ND                                                   | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31<br>0.58<br>0.19                                         | 0<br>0<br>1<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0                                    |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose                             | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                         | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136<br>3.8049<br>3.7331<br>3.6365<br>3.6217                                         | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245<br>62.787<br>63.3162<br>81.2775<br>77.044                                            | ND<br>3.896<br>3.896<br>3.896<br>3.896<br>3.877<br>3.837<br>3.837<br>3.719<br>ND<br>3.601                                                       | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023<br>0.032<br>0.014                                                       | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338<br>63.362<br>63.508<br>ND<br>77.704                                         | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31<br>0.58<br>0.19<br>0.66                                 | 0<br>0<br>1<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>0                          |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose               | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                   | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136<br>3.8049<br>3.7331<br>3.6365<br>3.6217<br>3.5895                               | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245<br>62.787<br>63.3162<br>81.2775<br>77.044<br>77.3864                                 | ND<br>3.896<br>3.896<br>3.896<br>3.896<br>3.877<br>3.837<br>3.837<br>3.719<br>ND<br>3.601<br>3.601                                              | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023<br>0.032<br>0.014<br>0.021<br>0.021                                     | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338<br>63.362<br>63.508<br>ND<br>77.704<br>77.704                               | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31<br>0.58<br>0.19<br>0.66<br>0.32                         | 0<br>0<br>1<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1                     |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose               | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15             | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136<br>3.8049<br>3.7331<br>3.6365<br>3.6217<br>3.5895<br>3.5697                     | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245<br>62.787<br>63.3162<br>81.2775<br>77.044<br>77.3864<br>73.9311                      | ND<br>3.896<br>3.896<br>3.896<br>3.897<br>3.837<br>3.837<br>3.719<br>ND<br>3.601<br>3.601<br>3.601                                              | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023<br>0.032<br>0.014<br>0.021<br>0.021<br>0.011<br>0.031                   | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338<br>63.362<br>63.508<br>ND<br>77.704<br>77.704<br>73.899                     | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31<br>0.58<br>0.19<br>0.66<br>0.32<br>0.03                 | 0<br>0<br>1<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1<br>1<br>1           |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16       | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136<br>3.8049<br>3.7331<br>3.6365<br>3.6217<br>3.5895<br>3.5697<br>3.5041           | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245<br>62.787<br>63.3162<br>81.2775<br>77.044<br>77.3864<br>73.9311<br>78.258            | ND<br>3.896<br>3.896<br>3.896<br>3.877<br>3.837<br>3.837<br>3.837<br>3.719<br>ND<br>3.601<br>3.601<br>3.601<br>3.601<br>3.464                   | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023<br>0.032<br>0.014<br>0.021<br>0.011<br>0.031<br>0.031                   | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338<br>63.362<br>63.508<br>ND<br>77.704<br>77.704<br>73.899<br>78.728           | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31<br>0.58<br>0.19<br>0.66<br>0.32<br>0.03<br>0.47         | 0<br>0<br>1<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1<br>1<br>1<br>1<br>1 |
| Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose<br>Cellobiose | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 4.4981<br>3.9498<br>3.9349<br>3.9213<br>3.904<br>3.8668<br>3.8136<br>3.8049<br>3.7331<br>3.6365<br>3.6217<br>3.5895<br>3.5697<br>3.5041<br>3.4768 | 105.1863<br>62.6313<br>72.7171<br>63.285<br>63.285<br>62.5379<br>74.0245<br>62.787<br>63.3162<br>81.2775<br>77.044<br>77.3864<br>73.9311<br>78.258<br>78.6005 | ND<br>3.896<br>3.896<br>3.896<br>3.896<br>3.877<br>3.837<br>3.837<br>3.837<br>3.719<br>ND<br>3.601<br>3.601<br>3.601<br>3.601<br>3.464<br>3.464 | 0.054<br>0.039<br>0.025<br>0.008<br>0.010<br>0.023<br>0.032<br>0.014<br>0.021<br>0.011<br>0.031<br>0.031<br>0.040<br>0.013 | ND<br>63.508<br>72.435<br>63.508<br>63.508<br>62.484<br>74.338<br>63.362<br>63.508<br>ND<br>77.704<br>77.704<br>73.899<br>78.728<br>78.728 | 0.88<br>0.28<br>0.22<br>0.22<br>0.05<br>0.31<br>0.58<br>0.19<br>0.66<br>0.32<br>0.03<br>0.47<br>0.13 | 0<br>0<br>1<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1 |

| Cellobiose      | 19 | 3.3134 | 75.8611  | 3.267 | 0.046 | 75.069 | 0.79 | 0 |
|-----------------|----|--------|----------|-------|-------|--------|------|---|
| Cellobiose      | 20 | 3.275  | 76.6082  | ND    |       | ND     |      | 0 |
| Raffinose       | 1  | 3.8181 | 71.043   | ND    |       | ND     |      | 0 |
| Raffinose       | 2  | 5.4136 | 94.6172  | 5.411 | 0.003 | 94.973 | 0.36 | 1 |
| Raffinose       | 3  | 3.6658 | 64.0701  | 3.7   | 0.034 | 63.654 | 0.42 | 1 |
| Raffinose       | 4  | 3.6778 | 68.3888  | 3.68  | 0.002 | 68.191 | 0.20 | 1 |
| Raffinose       | 5  | 4.9823 | 101.0836 | ND    |       | ND     |      | 0 |
| Raffinose       | 6  | 3.9445 | 73.6971  | 4.034 | 0.089 | 73.46  | 0.24 | 0 |
| Raffinose       | 7  | 4.0295 | 68.388   | 4.014 | 0.015 | 68.045 | 0.34 | 1 |
| Raffinose       | 8  | 3.5359 | 72.0362  | 3.523 | 0.013 | 72.435 | 0.40 | 1 |
| Raffinose       | 9  | 3.8299 | 65.0651  | 3.798 | 0.032 | 65.264 | 0.20 | 1 |
| Raffinose       | 10 | 3.8866 | 72.0361  | 3.877 | 0.010 | 72.435 | 0.40 | 1 |
| Raffinose       | 11 | 4.0409 | 74.0258  | ND    |       | ND     |      | 0 |
| Raffinose       | 12 | 3.5601 | 73.6961  | 3.464 | 0.096 | 73.46  | 0.24 | 0 |
| Raffinose       | 13 | 3.7537 | 75.358   | 3.719 | 0.035 | 75.655 | 0.30 | 1 |
| Raffinose       | 14 | 3.7387 | 63.7411  | 3.7   | 0.039 | 63.654 | 0.09 | 1 |
| Raffinose       | 15 | 3.7773 | 65.0645  | 3.66  | 0.117 | 65.264 | 0.20 | 0 |
| Raffinose       | 16 | 3.9943 | 71.7113  | ND    |       | ND     |      | 0 |
| Raffinose       | 17 | 4.217  | 79.0091  | 4.211 | 0.006 | 78.874 | 0.14 | 1 |
| Raffinose       | 18 | 3.8888 | 83.9885  | ND    |       | ND     |      | 0 |
| Raffinose       | 19 | 4.0528 | 76.6836  | 4.054 | 0.001 | 76.679 | 0.00 | 1 |
| Glucuronic acid | 1  | 5.2338 | 94.9997  | 5.234 | 0.000 | 94.826 | 0.17 | 1 |
| Glucuronic acid | 2  | 4.6311 | 98.7386  | 4.644 | 0.013 | 98.631 | 0.11 | 1 |
| Glucuronic acid | 3  | 4.0673 | 74.6321  | 4.073 | 0.006 | 74.338 | 0.29 | 1 |
| Glucuronic acid | 4  | 3.7134 | 79.0106  | 3.719 | 0.006 | 78.874 | 0.14 | 1 |
| Glucuronic acid | 5  | 3.7159 | 75.4552  | 3.719 | 0.003 | 75.655 | 0.20 | 1 |
| Glucuronic acid | 6  | 3.5654 | 74.185   | 3.542 | 0.023 | 74.338 | 0.15 | 1 |
| Glucuronic acid | 7  | 3.4996 | 74.8075  | 3.542 | 0.042 | 74.338 | 0.47 | 1 |
| Glucuronic acid | 8  | 3.4989 | 78.4636  | 3.483 | 0.016 | 78.874 | 0.41 | 1 |
| Glucuronic acid | 9  | 3.2748 | 76.9355  | 3.228 | 0.047 | 77.118 | 0.18 | 1 |
|                 |    |        |          |       |       |        |      |   |
| D-Sorbitol      | 1  | 3.8381 | 75.772   | 3.837 | 0.001 | 75.665 | 0.11 | 1 |

| D-Sorbitol   | 3 | 3.8255 | 65.5621  | 3.798 | 0.027 | 65.264  | 0.30 | 1 |
|--------------|---|--------|----------|-------|-------|---------|------|---|
| D-Sorbitol   | 4 | 3.7664 | 73.788   | 3.778 | 0.012 | 73.46   | 0.33 | 1 |
| D-Sorbitol   | 5 | 3.7312 | 65.2277  | ND    |       | ND      |      | 0 |
| D-Sorbitol   | 6 | 3.6508 | 65.5398  | 3.66  | 0.009 | 65.264  | 0.28 | 1 |
| D-Sorbitol   | 7 | 3.6458 | 73.8326  | ND    |       | ND      |      | 0 |
| D-Sorbitol   | 8 | 3.6231 | 65.1831  | 3.66  | 0.037 | 65.264  | 0.08 | 1 |
| D-Mannitol   | 1 | 3.863  | 65.9908  | 3.798 | 0.065 | 65.264  | 0.73 | 0 |
| D-Mannitol   | 2 | 3.7976 | 71.9574  | 3.778 | 0.020 | 72.435  | 0.48 | 1 |
| D-Mannitol   | 3 | 3.7597 | 73.4898  | 3.778 | 0.018 | 73.46   | 0.03 | 1 |
| D-Mannitol   | 4 | 3.6861 | 65.9908  | 3.66  | 0.026 | 65.264  | 0.73 | 0 |
| L-Iditol     | 1 | 3.8454 | 74.3645  | 3.837 | 0.008 | 74.338  | 0.03 | 1 |
| L-Iditol     | 2 | 3.7305 | 73.7063  | 3.778 | 0.047 | 73.46   | 0.25 | 1 |
| L-Iditol     | 3 | 3.7069 | 65.4042  | 3.66  | 0.047 | 65.118  | 0.29 | 1 |
| L-Iditol     | 4 | 3.6547 | 65.4042  | 3.66  | 0.005 | 65.118  | 0.29 | 1 |
| Trigonelline | 1 | 9.166  | 148.397  | 9.127 | 0.039 | 148.682 | 0.28 | 1 |
| Trigonelline | 2 | 9.0736 | 148.397  | 8.97  | 0.104 | 148.974 | 0.58 | 0 |
| Trigonelline | 3 | 8.8799 | 148.7102 | 8.832 | 0.048 | 148.974 | 0.26 | 1 |
| Trigonelline | 4 | 8.7804 | 148.7102 | 8.832 | 0.052 | 148.974 | 0.26 | 1 |
| Trigonelline | 5 | 8.0772 | 130.3871 | 8.085 | 0.008 | 130.681 | 0.29 | 1 |
| Trigonelline | 6 | 4.437  | 51.0584  | 4.427 | 0.010 | 51.969  | 0.91 | 0 |
| Trigonelline | 7 | 8.8768 | 147.5165 | 8.832 | 0.045 | 147.657 | 0.14 | 1 |
| Trigonelline | 8 | 8.8    | 147.5843 | 8.832 | 0.032 | 147.657 | 0.07 | 1 |

Supplemental Table 5 Effect of the production systems on the canonical correlations between mineral nutrient (B, Mg, P, K, Ca, Mn, Fe, Zn) contents and the intensity of <sup>1</sup>H NMR signals. The values represent p values determined by Tukey's HSD test.

| A) Organic and Amino acids        | Organic fertilizers | Organic fertilizers +<br>Pesticides | Chemical fertilizers | Chemical fertilizers +<br>Pesticides |
|-----------------------------------|---------------------|-------------------------------------|----------------------|--------------------------------------|
| Organic fertilizers               | 1.000               | 0.563                               | 0.333                | 0.089                                |
| Organic fertilizers + Pesticides  | 0.563               | 1.000                               | 0.981                | 0.002                                |
| Chemical fertilizers              | 0.333               | 0.981                               | 1.000                | 0.000                                |
| Chemical fertilizers + Pesticides | 0.089               | 0.002                               | 0.000                | 1.000                                |

Organic and amino acid region is  $\delta$  ~3.1 ppm.

| B) Sugars                         | Organic fertilizers | Organic fertilizers +<br>Pesticides | Chemical fertilizers | Chemical fertilizers +<br>Pesticides |
|-----------------------------------|---------------------|-------------------------------------|----------------------|--------------------------------------|
| Organic fertilizers               | 1.000               | 0.083                               | 0.016                | 0.819                                |
| Organic fertilizers + Pesticides  | 0.083               | 1.000                               | 0.932                | 0.439                                |
| Chemical fertilizers              | 0.016               | 0.932                               | 1.000                | 0.153                                |
| Chemical fertilizers + Pesticides | 0.819               | 0.439                               | 0.153                | 1.000                                |

Sugar region is  $\delta$  3.1~5.2 ppm.

| C) Aromatic substrates            | Organic fertilizers | Organic fertilizers +<br>Pesticides | Chemical fertilizers | Chemical fertilizers +<br>Pesticides |
|-----------------------------------|---------------------|-------------------------------------|----------------------|--------------------------------------|
| Organic fertilizers               | 1.000               | 0.000                               | 0.000                | 0.000                                |
| Organic fertilizers + Pesticides  | 0.000               | 1.000                               | 0.000                | 0.000                                |
| Chemical fertilizers              | 0.000               | 0.000                               | 1.000                | 0.998                                |
| Chemical fertilizers + Pesticides | 0.000               | 0.000                               | 0.998                | 1.000                                |

Aromatic substrate region is  $\delta$  5.2~9.0 ppm.



Supplemental Figure 1 <sup>1</sup>H NMR spectrum of 70% methanol soluble metabolites in tomato fruits cultured with organic fertilizers.



Supplemental Figure 2 Principal component analysis loadings of soluble metabolites with the first principal component (PC1) and the second (PC2) in tomato fruits.