土壌および農業用水中の放射性セシウムが農作物に与える影響

2016年1月

千葉大学大学院園芸学研究科 環境園芸学専攻 生物資源科学コース

鈴木 安和

(千葉大学審査学位論文)

土壌および農業用水中の放射性セシウムが農作物に与える影響

2016年1月

千葉大学大学院園芸学研究科 環境園芸学専攻 生物資源科学コース

鈴木 安和

目次

第1章	研究の背景および目的	•••1
1. 1	はじめに	•••1
1.2	福島県内の農作物への影響	•••1
1.3	土壌からの移行	• • • 2
1.4	本研究の目的	• • • 3
第2章	農業用水中の溶存態放射性 Cs の農作物への移行	• • • 5
2. 1	溶存態放射性 Cs の水稲への移行	• • • 5
2.2	溶存態放射性 Cs の畑作物への移行	• • • 20
2.3	溶存態放射性 Cs の土壌への移行	• • • 33
2.4	まとめ	• • • 38
第3章	農業用水中の形態の異なる放射性 Cs の水稲への移行	• • • 39
3. 1	水耕栽培における形態の異なる放射性 Cs の水稲への移行	• • • 39
3. 2	ポット土耕栽培における形態の異なる放射性 Cs の水稲への移行	• • • 48
3. 3	まとめ	• • • 61
第4章	溶存態放射性 Cs の水稲の生育期別吸収および放射性 Cs の吸収抑制	• • • 62
4. 1	溶存態放射性 Cs の水稲の生育期別吸収	• • • 62
4. 2	溶存態放射性 Cs の水稲への吸収抑制	• • • 74
4. 3	畑作物におけるゼオライト施用による土壌からの放射性 Cs 吸収抑制の持続性	• • 85
4. 4	まとめ	• • • 92
第5章	総合考察	• • • 93
5. 1	ポット栽培での農業用水中の放射性 Cs の移行	• • • 93
5. 2	水田での農業用水中の放射性 Cs の移行	• • • 94
5. 3	まとめと今後の課題	• • • 95
要旨		• • • 98
Summary	y .	• • • 99
謝辞		• • • 101
引用文字	款	• • • 102

第1章 研究の背景および目的

1.1 はじめに

2011 年 3 月の東日本大震災後に発生した東京電力福島第一原子力発電所事故(以下、東京電力原発事故)により、環境中に大量の放射性核種が放出され、東日本の一部の大気や土壌は放射性セシウム(以下 Cs)であるセシウム 134(以下 ¹³⁴Cs)、セシウム 137(以下 ¹³⁷Cs)によって汚染された(Kinoshita et al. 2011, 文部科学省 2011)。東京電力原発事故により放出された ¹³⁴Cs および ¹³⁷Cs は、それぞれ 1.8×10¹⁶Bq および 1.5×10¹⁶Bq と試算されている(経済産業省 2011)。放射性 Cs は半減期が ¹³⁴Cs で 2.07 年、¹³⁷Cs で 30.1 年であり、¹³¹I の 8 日と比較して長期的に影響を及ぼすことが知られている。なお、本論文では、Cs の一般的な性質を述べる場合は Cs、¹³⁴Cs および ¹³⁷Cs の双方について述べるときは放射性 Cs、¹³⁷Cs のみ述べる場合は ¹³⁷Cs と記載する。

放射性 Cs は人工放射性核種である。東京電力原発事故以前も、1950 年代より 1980 年代まで行われた大気圏内核実験により大量の放射性核種が成層圏内に放出され、放射性核種が放射性降下物として農作物に影響を及ぼしてきた(グローバルフォールアウト)が、水田・畑土壌の ¹³⁷Cs 濃度は 1963 年から 1966 年にかけて最大値となり、それ以降は減少してきていた(駒村ら 2006)。1986 年 4 月に発生したチェルノブイリ原子力発電所事故では日本国内でも、当時出穂期であった小麦において直接汚染による放射性 Cs 濃度の上昇がみられたが、水稲ではほとんど影響は見られなかった(駒村ら2006)。

1.2 福島県内の農作物への影響

厚生労働省は、東京電力原発事故直後より食品中の放射性物質の暫定規制値(たとえば穀類などは500Bq/kg)を設定し、原子力災害対策本部の決定に基づき、暫定規制値を超える食品が市場に流通しないよう出荷制限などの措置をとってきた(厚生労働省 2011)。その後、事故後の緊急的な対応としてではなく、長期的な観点から新たな基準値(たとえば一般食品は100Bq/kg)が制定され2012年4月1日より施行された(厚生労働省a,b 2012、高橋 2013)。

福島県は、平成 23 年 3 月 16 日に、国(原子力災害現地対策本部)に対して露地野菜と原乳の緊急時モニタリングの実施を要望し、同日から、採取した検体の放射性核種の測定を開始した(荒川ら2013)。緊急時モニタリングによる放射性 Cs の測定の結果、東京電力原発事故で放出された放射性 Cs の直接汚染により、ホウレンソウなどで暫定規制値の超過がみられた(小林ら2014)。また、2012年には東京電力原発事故時に使用していた農業用被覆資材に付着した放射性 Cs の影響が明らかになり、それに対する指導が行われた(福島県農林水産部2012)。このように東京電力原発事故直後は農作物

への放射性核種の汚染経路として直接汚染が問題になったが、適切な対応が講じられたため 2015 年現在では汚染の主要因とはなっていない。

また、東京電力原発事故時は水稲の作付けが開始される直前であったため、2011 年 4 月 8 日に福島県原子力災害対策本部より水稲の作付けに関する考え方が提示され(福島県原子力災害対策本部2011)、生産された玄米が暫定規制値を超える可能性が高い地域については稲の作付け制限が行われた。しかし、2011 年の一部の地域で暫定規制値を超える玄米が生産された。なお、福島県では2012年より米の全量全袋検査を実施しており、福島県内で生産された玄米でこの基準値を超過したものは、2012年は71点(0.0007%)、2013年は28点(0.0003%)、2014年は2点(0.00001%)、2015年は12月28日現在で0点である(ふくしまの恵み安全対策協議会放射性物質検査情報)。

1.3 土壌からの移行

Cs は一価の陽イオンであり負に帯電している土壌の表面に吸着される。土壌中の負電荷は、pH により電荷の発現量が異なる変異荷電と、pH によって荷電量が変化しない永久荷電に大別でき、永久荷電の負電荷への Cs+の選択性は Na+や K+に比較して際だって高く、Cs+はイオンサイズが大きく水和しにくい性質を持つため、負電荷の粘土との距離が近くなり吸着されやすくなる (山口ら 2012)。また、永久荷電をもつ 2:1 型粘土鉱物の層間に面したケイ素四面体シートには、Cs+、K+および NH+が入り込める空間的くぼみのような構造がある。その風化程度の低い雲母類ではそのくぼみを K+が占有しており、風化が進むと層間から K+が除去され膨潤する。その膨潤した領域と膨潤していない領域の境をフレイド・エッジ・サイトとよび、Cs+が到達すると層間が閉じ Cs+が固定される(Sawhney 1972、山口ら 2012)。そのため、東京電力原発事故後降り注いだ放射性 Cs は土壌に強く吸着され未耕耘土壌では表層にとどまった(Ohno、et al. 2012、Tanaka、et al. 2012、Shiozawa 2013)と考えられる。一方、土壌中の交換性カリ含量が十分である場合には土壌から農作物への移行は低くなる報告(Kato 2012、農研機構 2012、齋藤および佐藤 2014、Saito、et al. 2012、竹内ら 2014、Tsukada、et al. 2002)がある。

なお、1.2 で述べた東京電力原発事故後に生産された玄米の一部で放射性 Cs 濃度が超過した要因の一つは、土壌中の交換性カリ含量が低かったことであるとされている (Saito, at al. 2012、農林水産省他 2014、神山ら 2015, Kato, et al. 2015)。農作物への放射性 Cs の移行には土壌中の交換性カリ含量以外にも、栽培環境、周辺環境、農業用水などが考えられ、特に農業用水の関与が疑われるが、その影響は明らかになっていない。

1.4 本研究の目的

農作物、特に水稲は大量の農業用水を使用する。農業用水は放射性 Cs が含まれており、農作物は放射性 Cs を土壌および農業用水から吸収されていると考えられる。これまで、放射性 Cs の水稲への移行に関しては、土壌よりも水の寄与が大きいといわれており(Myttenaere, et al. 1969、Nemoto and Abe 2013)、農業用水からの移行程度を明らかにする必要がある。また、農業用水には、異なる形態の放射性 Cs が存在しており、水中にイオン等として溶けている溶存態や、浮遊する土壌粒子や有機物等の懸濁物質に吸着・固定されている懸濁態がある(Yasutaka, et al. 2012)が、これらの農業用水中に含まれる形態の異なる放射性 Cs が水稲を主とした農作物中の放射性 Cs 濃度に与える影響は明らかになっていない。

本研究では、これらを明らかにするために、第 2 章で農業用水中の溶存態 ¹³⁷Cs の農作物および土壌 への移行について、第 3 章で農業用水中の形態の異なる ¹³⁷Cs の移行、第 4 章で農業用水中の溶存態 ¹³⁷Cs の水稲の生育期における吸収および溶存態 ¹³⁷Cs の吸収抑制について明らかにするとともに、放射性 Cs の吸収抑制資材として使用されているゼオライトの効果の持続性を明らかにし、これらの結果を総合して、農作物に含まれる放射性 Cs の基準値超過をもたらす農業用水の ¹³⁷Cs 濃度を想定し、吸収抑制対策の必要となる基準を明らかにする(図 1-1)。

なお、本研究の放射性 Cs に関する解析は、今後も農作物に長期間影響を及ぼすと考えられる半減期のより長い ^{137}Cs について行った。

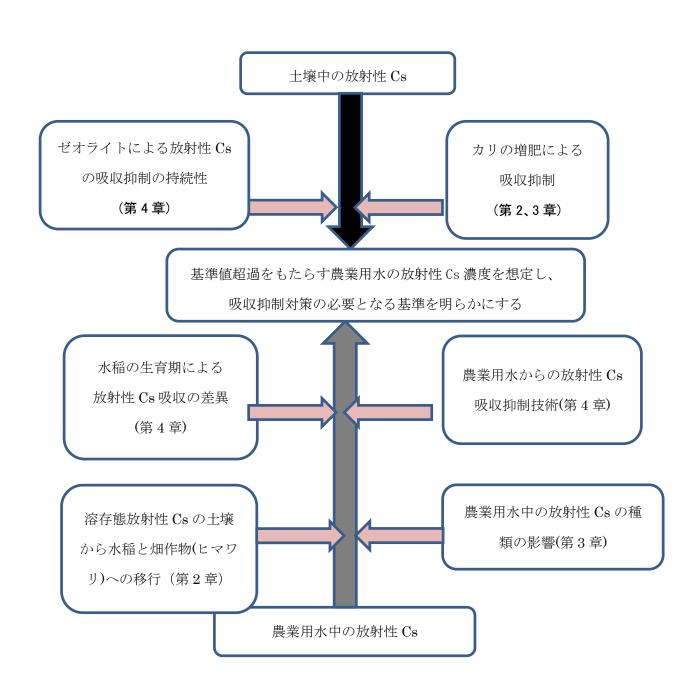


図1 本論文の構成

第2章 農業用水中の溶存態放射性 Cs の農作物への移行

東京電力原発事故以降、福島県の山林からの流れる灌漑水を使用して栽培した一部の玄米の放射性 Cs 濃度が暫定規制値 (500Bq/kg) を超えたが、その原因が山林からの流水や農業用水に含まれる放射性 Cs ではないかと疑われた。そのため、要因解析として緊急的に実施した研究の結果を中心に本章に取りまとめている。本章では、水稲および畑作物 4 種における土壌および溶存態放射性 Cs の移行程度 を明らかにするとともに水田等に流入した高濃度の溶存態放射性 Cs の残存期間を明らかにする。

2.1 土壌および溶存態放射性 Cs の水稲への移行

2.1.1 緒言

水稲は農業用水を大量に必要とするため、吸収される放射性 Cs は農業用水由来である可能性がある。しかし、その移行程度は明らかではない。そこで、これまでに行った報告(Suzuki, et al. 2015)をもとに放射性 Cs のもう一つの吸収源と考えられる土壌とともに、農業用水からの移行程度を明らかにする。なお、福島県内の河川や灌漑水中の溶存態放射性 Cs 濃度は通常時で 1 Bq/L 以下である(農林水産省 2014、Tsuji, et al. 2014、 Yasutaka, et al. 2012)ことを考慮し、実験に供する溶存態 137 Cs 濃度は 10 Bq/L 以下とした。

2.1.2 材料および方法

(1) 溶存態 ¹³⁷Cs を含む水の調製

東京電力福島第一原子力発電所の北西 45km の場所から、放射性 Cs に汚染された針葉樹の葉を 2012 年 5 月 24 日に採取し、抽出比 1:50 (w/v)で水道水に浸漬後、13 日間静置して放射性 Cs を抽出した。抽出液を 0.45μ m メンブレンフィルター(サーモフィッシャーサイエンティフィック社製)でろ過し、得られたろ液(137 Cs 濃度 970Bq/L)を溶存態 137 Cs 濃度が 0.1、1.0、10Bq/L となるよう 水道水で希釈した。

(2) 現地農業用水のサンプリング

現地農業用水は、2012 年 6 月 12 日に福島県中通り北部の水田近辺の用水路より 11.5mm (国土交通省気象庁データ、地点:福島)の降雨があった 2012 年 6 月 22 日に採取したもの (WS1) および 24 時間晴天後の 6 月 26 日に採取したもの (WS2) を用いた。

(3) 栽培土壌の調整

土壌は2012年6月12日に2011年の水稲玄米が暫定基準値500Bq/Lを超えた福島県中通り北部の水田(2011年は水稲作付け、2012年は作付けなし)および同月14日に2011年の水稲玄米が10Bq/L以下であった福島県農業総合センター内の未耕耘土壌(2006年より作付けなし、2011年以降未耕耘)

より採取し、それぞれ土壌 A および土壌 B とした。なお、土壌から植物体への放射性 Cs の移行を最小限にするため、放射性 Cs 濃度の低い下層より採取した(土壌 A は地表下 $15\sim45$ cm 層、土壌 B は地表下 $5\sim45$ cm 層)。いずれの土壌も風乾後に 1cm の篩を通し、混合機(Hi Back まぜ太くん B-180 ホクエツ社製)による均一化処理を各々の土壌について 5 分間行った。

(4) 水稲の栽培

調整した土壌をポット当たり乾土相当で 3.2kg となるよう 1/5000a ワグネルポット (直径 16 cm、高さ 20 cm; 株式会社藤原製作所製) に充填した。2012 年 6 月 6 日に水稲 (*Oryza sativa* L. 品種 ひとめぼれ、以降の実験で用いた水稲品種はすべて同一) を播種し、7 月 3 日に 3 葉期のイネを 1/5000a ワグネルポットに 4 株移植した。

ポット当たり N を 0.1g、 P_2O_5 を 0.2g (10a 当りそれぞれ 5kg、10kg) 基肥として施用した。追肥としてポット当たり 0.2~g N を適宜施用した。灌水は水深が 3 段階の濃度に調整した溶存態 ^{137}Cs 含有水、水道水および現地農業用水を用いて、 $3\sim5cm$ となるように適宜実施した。その際、植物体に直接かからないように留意した。栽培期間中(92~日間)の灌水量は 1~ポットあたり $21.3\sim23.5$ L であったが、現地農業用水は $19.0\sim21.8$ L であった。

栽培は福島県農業総合センター内のガラス温室内で行い、各処理 1 区 3 ポット 3 反復とした。ただし、WS1 のみ 1 区 1 ポット 3 反復とした。

(5) 水稲玄米の ¹³⁷Cs 濃度の測定

成熟期に達した 2012 年 10 月 3 日にワグネルポット上部から 2cm の位置で刈り取り、玄米を送風 定温乾燥機により 105℃48 時間以上乾燥させた。乾燥した玄米は未粉砕でポリスチレン製ねじ口 U 型容器 100mL (以下 U-8 容器 inner diameter, 5.0 cm; outer diameter, 5.6 cm; height, 6.8 cm 関谷理化株式会社) に充填してゲルマニウム(Ge)半導体検出器 (GC3020、GC3520、GC4020 キャンベラジャパン社製) で ¹³⁷Cs 濃度を測定した。なお、Ge 半導体検出器での測定時間は 4,000~ 50,000 秒とし、¹³⁷Cs 濃度は収穫日の 2012 年 10 月 3 日で減衰補正した。

(6) 現地農業用水および水道水の 137Cs 濃度の測定

2 種類の現地農業用水はそれぞれ 0.45 μ m メンブレンフィルター(サーモフィッシャーサイエンティフィック社製)でろ過し、ろ紙上に残った残渣から懸濁態 137 Cs 濃度を、ろ液から蒸発濃縮法により溶存態 137 Cs 濃度を算出した(文部科学省 1982)。水道水についてはプルシアンブルーを担持させた不織布に 137 Cs を吸着させて濃度を算出した(Yasutaka, et~al.~2013)。

(7) 土壌中の ¹³⁷Cs 濃度、交換性の ¹³⁷Cs 測定および交換性カリ含量の測定

ワグネルポット内の土壌を地表下 $0\sim5$ cm、地表下 $5\sim15$ cm、地表下 $0\sim15$ cm の 3 つに分け、10 日間以上風乾し、2.0mm メッシュの篩を通した。土壌中の 137 Cs 濃度は、風乾土を U-8 容器に充填し Ge

半導体検出器(GC2020 キャンベラジャパン社製)で ^{137}Cs 濃度を計測後、水分補正し、乾土当たりの ^{137}Cs 濃度を算出した。土壌中の交換性 ^{137}Cs 濃度は、風乾土 80.0g に 1M 酢酸アンモニウム (pH7.0) 800mL を加え、1 時間振とう抽出し(Tsukada, et al. 2002)、抽出液を $0.45\,\mu$ m メンブレンフィルターでろ過後 0.7L マリネリ容器(直径 13cm、高さ 17cm 株式会社スギヤマゲン製)に充填して、Ge 半導体検出器で測定した値から算出した。なお、Ge 半導体検出器での測定時間は土壌(^{137}Cs 濃度)については 1,200 秒、抽出液(交換性 ^{137}Cs 濃度は収穫日の 2012 年 10 月 3 日で減衰補正した。

(8) 土壌中の交換性カリ含量の測定

土壌中の交換性カリ含量は、風乾土 2.0g に 1M 酢酸アンモニウム (pH7.0) 20mL を加え、1 時間振とう抽出後ろ過し、原子吸光法により分析した(土壌環境分析法 1997)。

(9) 水稲玄米の農業用水及び土壌からの 137Cs 吸収率

水稲玄米の用水からの 137 Cs 吸収率は下記の計算式 I 、土壌からの 137 Cs 吸収率は下記の計算式 I により算出した。

用水からの吸収率(%) = (Wt ×Ct – Wc ×Cc) ×100 / Cw ・・・・・・・・・ I 土壌からの吸収率(%) = Wc × Cc × 100 / Vs × Cs ・・・・・・・・ II

Wt:溶存態 ¹³⁷Cs を含む水を灌水したときの水稲玄米乾物重 (kgDW/pot)

Ct:溶存態 ¹³⁷Cs を含む水を灌水したときの水稲玄米の ¹³⁷Cs 濃度 (Bg/kgDW)

We:水道水を灌水したときの水稲玄米乾物重(kgDW/pot)

Cc: 水道水を灌水したときの水稲玄米の ¹³⁷Cs 濃度 (Bq/kgDW)

Cw:栽培期間中に添加した農業用水中の溶存態 137Cs 量 (Bq/pot)

Vs:供試した土壌の重量 (kgDW/pot)

Cs:供試した土壌中の¹³⁷Cs 濃度 (Bq/kgDW)

2.1.3 結果および考察

(1) 栽培前の土壌の化学性

栽培前の供試土壌の化学性について表 2-1-1 に示した。土壌中の交換性カリ含量は土壌 A で 50mg/kg 乾土、土壌 B で 176mg/kg 乾土であった。

(2) 水道水 ¹³⁷Cs および現地農業用水の ¹³⁷Cs 濃度

栽培時の水道水の 137 Cs 濃度は 0.027Bq/L、現地農業用水の 137 Cs 濃度は WS1 が 1.4Bq/L(溶存態 137 Cs 濃度:0.18Bq/L、懸濁態 137 Cs 濃度:1.2Bq/L)、WS2 が 0.30Bq/L(溶存態 137 Cs 濃度:0.17Bq/L、懸濁態 137 Cs 濃度:0.13Bq/L)であった。

(3) 溶存態 ¹³⁷Cs を灌水時の栽培後の水稲玄米および土壌中の ¹³⁷Cs 濃度

農業用水由来の ¹³⁷Cs 濃度は、 ¹³⁷Cs 水を用いて栽培した水稲玄米中の ¹³⁷Cs 濃度から水道水を用いて栽培した水稲玄米中の ¹³⁷Cs 濃度を差し引くことによって算出した(図 2-1-1)。溶存態 ¹³⁷Cs 含有水(それぞれ 0.1、1 および 10Bq/L)を灌水したとき、農業用水由来の玄米中の ¹³⁷Cs 濃度は、土壌 A で 3.7、40.4 および 308.8 Bq/kgDW、土壌 B で 0.5、8.4 および 63.2 Bq/kgDW であった。また、土壌 A では 1 Bq/L または 10 Bq/L、土壌 B では 10 Bq/L の溶存態 ¹³⁷Cs を灌水したときに、玄米中の ¹³⁷Cs 濃度は水道水灌水区より高かった。0.1、1 および 10 Bq/L での農業用水由来の玄米の ¹³⁷Cs 濃度は土壌 A で土壌 B の 4.9 倍となった。また、用水から玄米への吸収率は土壌 A で土壌 B の 4.4 倍となった(表 2-1-2)。

栽培後の土壌中の 137 Cs 濃度は土壌 B の 10Bq/L の灌水区で有意に高かった(表 2-1-3)。また、栽培後の土壌中の交換性 K は土壌 B で土壌 A の 2.4 から 2.8 倍であった。しかし、交換性 K 含量は両土壌で水道水添加時と差はなかった(表 2-1-3)。

栽培後の土壌の鉛直方向の深度分布(表層および下層)について測定を行った結果、土壌中の 137 Cs 濃度は 10Bq/L の灌水区の表層で下層と比べて高かった(図 2-1-2)。上昇した土壌中の 137 Cs 濃度は土壌 A で 217.6Bq/L、土壌 B で 228.0Bq/L であった。なお、栽培前の土壌中の交換性 137 Cs 濃度は土壌 A で 12.5±0.78Bq/L、土壌 B で土壌 6.0±0.44Bq/L であった。栽培後は 10Bq/L の添加時の土壌 B の表層で下層と比べて 8.9Bq/L 上昇した。また、水道水、0.1Bq/L および 1Bq/L では両土壌の表層で交換性 137 Cs 濃度の減少傾向がみられるものの有意な差は無かった(図 2-1-2)。

(4) 現地農業用水灌水時の栽培後の玄米および土壌中の 137Cs 濃度

現地農業用水の WS1、WS2 および水道水を使用して栽培した場合、玄米の ¹³⁷Cs 濃度、栽培後の土壌中の ¹³⁷Cs 濃度および交換性カリ含量に有意な差はみられなかった(図 2-1-3 および表 2-1-4)。 栽培後の土壌の鉛直方向の深度分布(表層および下層)について測定を行った結果、下層と比べて表層の土壌中の ¹³⁷Cs 濃度は WS1 灌水区で 44.8Bq/L 上昇し、交換性 ¹³⁷Cs 濃度は WS2 の表層で 9.8Bq/L 減少した(図 2-1-4)。

(5) 十壌由来と農業用水由来 137Cs の吸収率

土壌由来の ¹³⁷Cs の吸収率は土壌 A で 0.18%、土壌 B で 0.013%であった。また、農業用水由来の ¹³⁷Cs の吸収率は土壌 A で 1.6%、土壌 B で 0.36%であった(表 2-1-2)。農業用水由来の ¹³⁷Cs の吸収率は土壌 A で 8.9 倍、土壌 B で 27.7 倍であった。

(6) 溶存態放射性 Cs と基準値

土壌 A では用水に含まれる溶存態 137 Cs 濃度が 1Bq/L 以上で玄米の 137 Cs 濃度が上昇し、土壌 B では $1\sim10$ Bq/L で玄米の 137 Cs 濃度は上昇し、農業用水の影響は土壌により異なった。しかし、玄米中

の ¹³⁷Cs 濃度は農業用水中の溶存態 ¹³⁷Cs 濃度に比例して増加した(図 2-1-5)ことから、農業用水中の溶存態 ¹³⁷Cs は玄米中の濃度に影響を及ぼすことが明らかになった。

放射性 Cs を含む水からの水稲への移行は、土壌からよりも多いといわれていたが(Myttenaere, et al. 1969、Nemoto and Abe 2013)、本研究結果でも同様であった。しかし、本条件下での農業用水中の溶存態 ¹³⁷Cs 濃度が 0.1Bq/L では玄米中の ¹³⁷Cs 濃度は増加しなかった。また、現地農業用水の ¹³⁷Cs 濃度 (全 ¹³⁷Cs 濃度 0.3~1.4Bq/kg、溶存態 ¹³⁷Cs 濃度 0.17~0.18Bq/L)でも水道水(溶存態 ¹³⁷Cs 濃度 0.027Bq/L)と差がなかった。本結果および福島県内の阿武隈川の溶存態放射性 Cs は 0.1Bq/L 以下である(Yasutaka, et al. 2012)ことを合わせ、2012 年時点での農業用水中の溶存態 Cs の影響は小さいと判断された。

(7) 土壌中の交換性カリ含量の影響

玄米への ¹³⁷Cs の吸収率は土壌 B で 0.23~0.48%と土壌 A の 1.6~2.0%と比べて、4.2~7.8 倍高かった(表 2-1-2)。土壌 B は栽培前の土壌中の交換性カリ含量が土壌 A より 3.5 倍高く、176mg/kgDWであったことから、土壌中の交換性カリ含量が水からの移行を抑制した一因であると考えられた(表 2-1-3)。つまり、農業用水中の溶存態放射性 Cs の玄米への移行は土壌中の交換性カリ含量の影響を受け、土壌中の交換性カリ含量が高いと放射性 Cs の移行程度は低くなると考えられた。ただし、本実験では由来の異なる 2 種類の土壌を供しており、土壌中の交換性カリ含量の増減で農業用水中の放射性 Cs の移行が増減するかは同一土壌での実験が必要と考えられる。

2.1.4 まとめ

農業用水を大量に必要とする水稲について、農業用水中および土壌の放射性 Cs の移行程度を明らかにした。水道水と用水中の溶存態 ¹³⁷Cs 濃度を 3 段階 (0.1、1.0 および 10 Bq/L) に調整した水および現地農業用水 2 種類 (WS1、WS2) を、放射性 Cs の土壌から水稲への移行程度が異なる 2 種類の土壌での水稲のポット栽培に灌水として与え、用水及び土壌に由来する ¹³⁷Cs の玄米への移行について解析した。土壌は 2011 年の水稲玄米が暫定基準値 500Bq/L を超えた水田と水稲玄米が 10Bq/L 以下であった福島県農業総合センター内の未耕耘土壌より採取し、それぞれ土壌 A および土壌 B とした。土壌 A では農業用水に含まれる溶存態 ¹³⁷Cs 濃度が 1Bq/L 以上で玄米の ¹³⁷Cs 濃度が上昇し、土壌 B では 1~10Bq/L で玄米の ¹³⁷Cs 濃度は上昇し、土壌により農業用水の影響が異なった。土壌 A および B では土壌中の交換性カリ含量が大きく異なっており、農業用水中の溶存態放射性 Cs の玄米への移行程度は、土壌中の交換性カリ含量の影響を受け、交換性カリ含量が高いと放射性 Cs の移行程度は低くなると考えられた。2012 年に採取した現地農業用水 (全 ¹³⁷Cs 濃度 0.3~1.4 Bq/kg、溶存態 ¹³⁷Cs 濃度 0.17~0.18 Bq/L) では玄米中の ¹³⁷Cs 濃度は水道水と差が生じず、福島県内の阿武隈川の溶存態放射性 Cs は

0.1Bq/L 以下であることを合わせ、2012 年時点での農業用水中の溶存態 Cs の影響は小さいと考えられた。本項で得られた結果より通常の農業用水では、溶存態放射性 Cs のみに起因して玄米中の放射性 Cs 濃度が 100Bq/kg を超過する可能性は低いと考えられる。また、放射性 Cs 濃度が約 0.1Bq/L の農業 用水から玄米へ移行は、玄米における放射性 Cs の基準値では影響が非常に小さいと判断した。

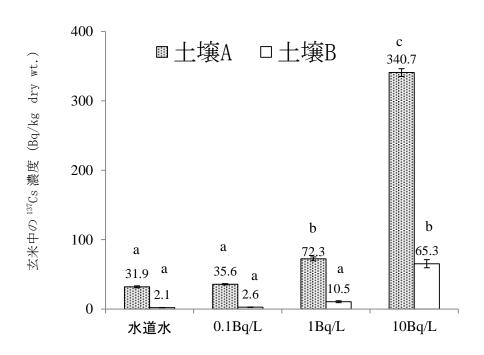
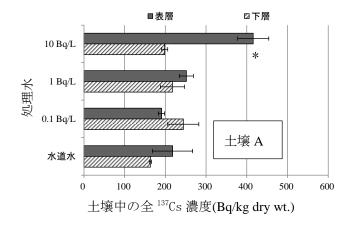
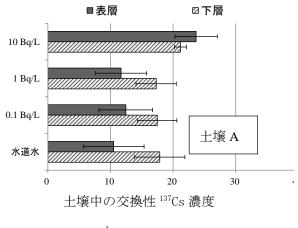




図2-1-1 溶存態 137 Cs 含有水を灌水して栽培した水稲における玄米の 137 Cs濃度 データは 3 反復の平均値 2 標準誤差

土壌AおよびBは表2-1-1に同じ

同一土壌の同一アルファベット間で有意差がないことを示す(P < 0.05 Tukey法)

 $(Bq kg^{-1} dry wt.)$

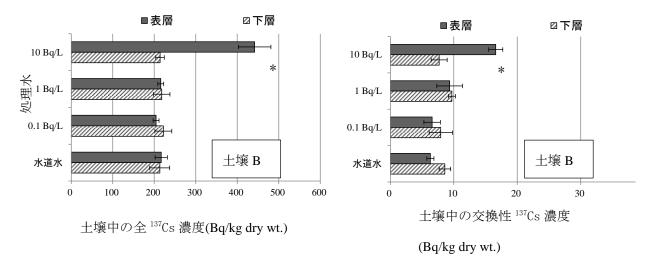


図2-1-2 溶存態 137 Cs 含有水を灌水して水稲栽培後の土壌中の全 137 Cs濃度と交換性 137 Cs濃度 データは 3反復の平均値 \pm 標準誤差

土壌AおよびBは表2-1-1に同じ

表層は ポット栽培持の0-5 cmの層、下層は5-15 cmの層

*は表層の平均値と下層の平均値の間に P < 0.05で有意差があることを示す

(Student's *t*-test)

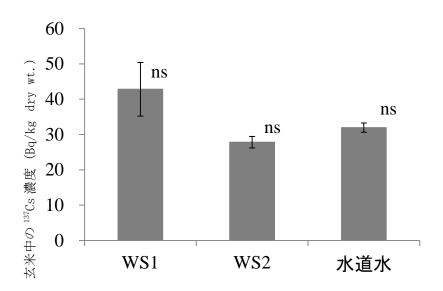


図2-1-3 2種類の現地農業用水を灌水して栽培した水稲における玄米の 137 Cs濃度 データは 3反復の平均値 \pm 標準誤差

'ns' は 各処理の平均値に有意差がないことを示す (P < 0.05 Tukey法)

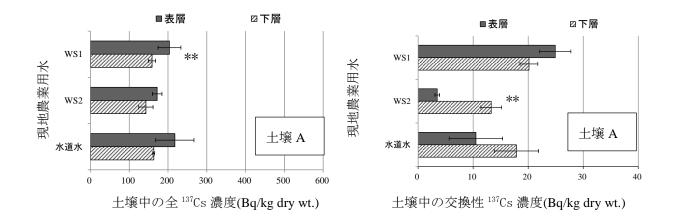


図2-1-4 2種類の現地用水を灌水した水稲栽培後の土壌中の全 137 Cs濃度と交換性 137 Cs濃度 データは 3反復の平均値 \pm 標準誤差

表層は ポット栽培持の0-5 cmの層、下層は5-15 cmの層

**は表層の平均値と下層の平均値の間に P < 0.01で有意差があることを示す(Student's t-test)

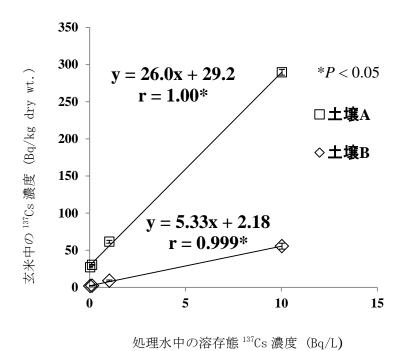


図2-1-5 処理水中の溶存態¹³⁷Cs濃度と玄米中の¹³⁷Cs濃度の関係

土壌AおよびBは表2-1-1に同じ

データは 3反復の平均値 ± 標準誤差

表2-1-1 栽培前の供試土壌の化学性

	土壌 A	土壌 B
pH (H ₂ O)	6.7 ± 0.12	5.9 ± 0.07
EC(dS/m)	0.03 ± 0.00	0.06 ± 0.00
交換性 K (mg/kg dry soil)	37 ± 1.6	140 ± 0.0
交換性 Ca (mg/kg dry soil)	3400 ± 0.0	1200 ± 0.0
交換性 Mg (mg/kg dry soil)	970 ± 0.0	220 ± 2.0
CEC (cmol _c /kg dry soil)	23 ± 0.33	$11 ~\pm~ 0.0$
腐植(g/kg)	36 ± 2.6	31 ± 3.3
全窒素(g/kg)	0.89 ± 0.03	0.96 ± 0.02

データは 3反復の平均値 ± 標準誤差

土壌Aは福島県中通り北部の水田の下層土、土壌Bは福島県農業総合センターの未耕耘土壌の下層土

表2-1-2 処理水から玄米への吸収率

次 <i>左</i> 於 137c 油 庄	吸収率	£ (%)
溶存態 ¹³⁷ Cs 濃度	土壌 A	土壌 B
10 Bq/L	1.6 ± 0.03	0.36 ± 0.05
1 Bq/L	2.0 ± 0.19	0.48 ± 0.09
0.1 Bq/L	1.8 ± 0.74	0.23 ± 0.06

データは 3反復の平均値 ± 標準誤差

土壌AおよびBは表2-1-1に同じ

表2-1-3 栽培後の¹³⁷Cs濃度と交換性K含量(処理水)

添去能 1370-	¹³⁷ Cs	濃度	交換性	± K
溶存態 ¹³⁷ Cs	(Bq/kg o	dry wt.)	(mg/kg dr	y wt.)
濃度	土壌 A	土壌 B	土壌 A	土壌 B
10 Bq L ⁻¹	236 ± 20.6 a	252 ± 8.9 b	21 ± 0.6 a	60 ± 1.1 a
$1 \text{ Bq } L^{-1}$	$204 \pm 15.5 a$	179 ± 9.1 a	22 ± 1.6 a	60 ± 0.9 a
$0.1 \; \text{Bq L}^{-1}$	193 ± 29.2 a	199 ± 6.7 a	24 ± 1.1 a	57 ± 1.6 a
水道水	184 ± 10.1 a	193 ± 13.2 a	22 ± 0.7 a	58 ± 1.2 a

減衰補正は2012年10月3日

データは 3反復の平均値 ± 標準誤差

土壌AおよびBは表2-1-1に同じ

同一土壌の同一アルファベット間で有意差がないことを示す(P < 0.05 Tukey法)

表2-1-4 栽培後の¹³⁷Cs濃度と交換性K含量(現地農業用水)

現地用水	¹³⁷ Cs 濃度	交換性 K
远地用水	(Bq/kg dry wt.)	(mg/kg dry wt.)
WS1	169 ± 7.4 a	18 ± 1.6 a
WS2	160 ± 7.8 a	20 ± 2.5 a
水道水	184 ± 10.1 a	$22 \pm 0.7 a$

減衰補正は2012年10月3日

データは 3反復の平均値 ± 標準誤差

同一土壌の同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey法)

2.2 土壌および溶存態放射性 Cs の畑作物への移行

2.2.1 緒言

前項 2.1 では溶存態放射性 Cs および土壌から水稲の移行は、放射性 Cs 濃度が約 0.1Bq/L の農業用水からの玄米へ移行は水道水と差が無く、水稲玄米における放射性 Cs の基準値では影響が非常に小さいことを明らかにしたが、本項では土壌および農業用水中の溶存態放射性 Cs が水稲以外の畑作物の放射性 Cs の移行について解析を行った。まず、土壌から畑作物への土壌中における放射性 Cs の移行を明らかにするために、これまでに行った報告 (Suzuki, et al. 2012)をもとに東京電力原発事故直後の 2011年に畑作物 4種(ヒマワリ、アマランサス、ソルガムおよびソバ)による土壌からの 137Cs の吸収率を算出した(実験 1)。次いで、土壌からの放射性 Cs の吸収が比較的高く、垂直方向に生育するため土壌の付着による二次汚染が少ないと想定される本県で重要な園芸作物であるヒマワリを用いて、異なる溶存態 137Cs 濃度の水をヒマワリに灌水し、これまでに行った報告(鈴木ら 2015)をもとに農業用水中の溶存態放射性 Cs の吸収率を算出した(実験 2)。なお、前項 2.1 と同様に、水道水、溶存態 137Cs 濃度を 0.1、1.0 および 10 Bq/L に調製した用水を、交換性カリ含量が異なる 2 種類の土壌でのヒマワリポット栽培に灌水として与え、137Cs のヒマワリ地上部への移行について明らかにした。

2.2.2 材料および方法

2.2.2.1 実験1の材料および方法

(1) 供試作物

供試作物はヒマワリ (Helianthus annuus L.), アマランサス (Amaranthus L.)、ソルガム (Sorghum bicolor (L.) Moench) および ソバ (Fagopyrum esculentum) とした。

(2) 栽培のほ場

福島県農業総合センター内の露地ほ場(灰色低地土)および福島県二本松市内の露地ほ場(淡色 黒ボク土)で栽培した。

(3) 植物体の ¹³⁷Cs 濃度の測定

植物体は表 2-2-1 の収穫日に地上部を地際で刈り取り、水道水で洗浄後、送風定温乾燥機により 75℃で 72 時間以上乾燥させた。乾燥した試料をミルで粉砕し、U-8 容器に充填して Ge 半導体検出器 (GC3020、GC3520 および GC4020 キャンベラジャパン社製) で 137 Cs 濃度を測定した。なお、Ge 半導体検出器での測定時間は 4,000~54,000 秒とし、 137 Cs 濃度は表 2-2-1 に示す収穫日で減衰補正した。

(4) 土壌中の ¹³⁷Cs 濃度の測定

2.1.2 の土壌中の ¹³⁷Cs 濃度の測定と同様の方法でおこなった。

(5) 土壌中の交換性カリ含量の測定

2.1.2の土壌中の交換性カリ含量の測定と同様の方法でおこなった。

(6) 土壌からの ¹³⁷Cs の吸収率

土壌からの ¹³⁷Cs の吸収率は以下の計算式で算出した。この吸収率で土壌から放射性 Cs を吸収しやすいかを判断した。

土壌からの 137Cs の吸収率

=植物注の放射性 Cs 吸収量/土壌中の放射性 Cs 含量(深さ 15cm)×100

2.2.2.2 実験2の材料および方法

- (1) 溶存態 ¹³⁷Cs 含む用水の調製
 - 2.1.2 の溶存態 ¹³⁷Cs 含有用水の調製と同様の方法でおこなった。
- (2) 栽培十壌の調整
 - 2.1.2の栽培土壌の調整と同様の方法でおこなった。

(3) 耕種概要

調整した 2 ほ場の土壌をポット当たり乾土相当で 3.2kg となるよう 1/5000a ワグネルポットに充填した。2012 年 7 月 2 日にヒマワリ種子($Helianthus\ annuus\ L$. F1 サンリッチオレンジ タキイ種苗)を1ポットに 8 粒播種し、8 月 5 日に間引きしてポット当たり 4 株とした。

施肥については、基肥は施用せず、間引き時に 10a 当たり N 3kg および P_2O_5 2kg となるよう, 硫安 (細粒) 0.06g および粒状ようりん 0.04g を各ポットに表面施用した。なお、カリ肥料は施用しなかった。

灌水は土壌表面が乾燥した時点で、3段階の濃度に調整した溶存態 137 Cs 含有水および水道水を用いて、植物体に直接かからないよう株元に適宜実施した。栽培期間中(71日間)の灌水量は1ポットあたり6.5~7.5Lであった。

栽培は福島県農業総合センター内のガラス温室内で行い、規模は各処理 1 区 1 ポットで 6 反復とした。

(4) ヒマワリ植物体の ¹³⁷Cs 濃度の測定

ヒマワリは開花時の 2012 年 9 月 10 日に地際から 2cm の位置で茎を切除し子葉を除去後、水道水で洗浄し、送風定温乾燥機により 75℃で 72 時間以上乾燥させた。乾燥した試料をミルで粉砕し、U-8 容器に充填して、Ge 半導体検出器 (GC3020、GC3520、GC4020 キャンベラジャパン社製) で ¹³⁷Cs 濃度を測定した。なお、Ge 半導体検出器での測定時間は 4,000~50,000 秒とし、¹³⁷Cs 濃度は収穫日の 2012 年 9 月 10 日で減衰補正した。

(5) 土壌中の ¹³⁷Cs 濃度および交換性 ¹³⁷Cs 濃度の測定

ワグネルポット内の土壌の 137 Cs 濃度は、風乾土を U-8 容器に充填し Ge 半導体検出器 (GC2020 キャンベラジャパン社製) で 137 Cs 濃度を計測後、水分補正し、乾土当たりとして算出した。土壌中の交換性 137 Cs 濃度は、風乾土 80.0g に 1M 酢酸アンモニウム (pH7.0) 800mL を加え、1 時間振とう抽出し (Tsukada, et al.2002)、抽出液を $0.45\,\mu$ m メンブレンフィルターでろ過後 0.7L マリネリ容器 (直径 13cm、高さ 17cm 株式会社スギヤマゲン製)に充填して Ge 半導体検出器で測定した値から算出した。なお、Ge 半導体検出器での測定時間は、土壌 (137 Cs 濃度) については 1,200 秒、抽出液 (交換性 137 Cs 濃度) については 1,200 秒、抽出液 (交換性 137Cs 濃度) については 1,200 秒、抽で減衰補正した。

(6) 土壌中の交換性カリ含量の測定

2.1.2の土壌中の交換性カリ含量の測定と同様の方法でおこなった。

(7) 用水および土壌からのヒマワリの ¹³⁷Cs 吸収率

ヒマワリ地上部の用水からの 137 Cs 吸収率は下記の計算式 I 、土壌からの 137 Cs 吸収率は下記の計算式 I により算出した。

用水からの吸収率(%) = (Wt ×Ct – Wc ×Cc) ×100 / Cw ・・・・・・・・・ I 土壌からの吸収率(%) = Wc ×Cc × 100 / Vs ×Cs ・・・・・・・・ II

Wt:溶存態 ¹³⁷Cs を含む水を灌水したときのヒマワリ地上部乾物重(kgDW/pot)

Ct : 溶存態 ¹³⁷Cs を含む水を灌水したときのヒマワリの ¹³⁷Cs 濃度 (Bq/kgDW)

Wc:水道水を灌水したときのヒマワリ地上部乾物重(kgDW/pot)

Cc: 水道水を灌水したときのヒマワリの ¹³⁷Cs 濃度 (Bq/kgDW)

Cw:栽培期間中に添加した用水中の溶存態 ¹³⁷Cs 量 (Bg/pot)

Vs:供試した土壌の重量 (kgDW/pot)

Cs: 供試した土壌中の ¹³⁷Cs 濃度 (Bq/kgDW)

2.2.3 結果および考察

2.2.3.1 実験1の結果および考察

ヒマワリ、 アマランサス、ソルガムおよびソバによる土壌からの ¹³⁷Cs の植物体地上部で吸収率は 灰色低地土で 0.007-0.038%、淡色黒ボク土で 0.013-0.093%であった。また、灰色低地土ではヒマワリ、 次いでアマランサスの吸収率が高かったが、淡色黒ボク土ではアマランサス、次いでヒマワリであった (表 2-2-1)。このことから、2 種類のほ場からの吸収率からヒマワリおよびアマランサスが土壌からの放射性 Cs の吸収が比較的高いと考えられた。また、灰色低地土で吸収率が比較的高く、垂直方向

に生育するため土壌の付着による二次汚染が少ないと想定される本県で重要な園芸作物であるヒマワリを以降の畑作物の実験に供試することとした。

2.2.3.2 実験2の結果および考察

(1) 栽培前後の ¹³⁷Cs の収支

施用した溶存態 137 Cs を含む用水は全てポット内に留まり外部に流出しないようにしたため、栽培期間中におけるポット当たりの 137 Cs 量の収支は同等であった(表 2-2-1)。

(2) ヒマワリ地上部の ¹³⁷Cs 吸収

溶存態 137 Cs を含む用水を灌水した結果、A 及び B の両土壌ともに溶存態 137 Cs 濃度 108 q/L の用水を灌水した区において、ヒマワリ地上部の 137 Cs 濃度が水道水区と比較して増加した(表 $^{2-2-2}$)。 灌水に使用した水道水の溶存態 137 Cs 濃度は $^{0.027}$ Bq/L (第 2 章 $^{2.1.3}$) であり極めて低いことから、水道水で栽培した区のヒマワリ地上部中の 137 Cs は土壌に由来する 137 Cs とみなすことができる。

10Bq/L 区のヒマワリ地上部の 137 Cs 濃度は、水道水区と比較して、土壌 A で 106 Bq/kgDW、土壌 B で 8.6 Bq/kgDW 高かった。また、ヒマワリ地上部の 137 Cs 含量は、土壌 A で 0.8 Bq/pot、土壌 B で 0.07 Bq/pot 増加した(表 2-2-2)。

なお、本試験でのヒマワリの生育量は一般の栽培に比べやや少なかった。これは、土壌から植物 体への放射性 Cs の移行を最小限にするため、放射性 Cs 濃度の低い下層土壌を用いたことによるも のと考えられる。

(3) 用水および土壌からのヒマワリの 137Cs 吸収率

用水と土壌からのヒマワリの 137 Cs 吸収率は、10Bq/L 区と水道水区における結果を用いて、実験方法で示した I 及び II の計算式により算出した。

用水からの 137 Cs 吸収率は土壌 A で 0.88%、土壌 B で 0.075%であり、土壌 B は土壌 A の 1/10 程度であった。また、土壌からの吸収率は、土壌 A で 0.40%、土壌 B で 0.017%であり、土壌 B は土壌 A の 1/20 程度であった(表 2-2-3)。つまり、用水からの 137 Cs 吸収率は、土壌からの吸収率と比較して、土壌 A では 2 倍程度、土壌 B では 4 倍程度高く、植物体の 137 Cs 吸収に対する農業用水中の溶存態 137 Cs の影響は、土壌中の 137 Cs より大きいことが明らかとなった(表 2-2-3)。

(4) ヒマワリの ¹³⁷Cs 吸収に及ぼす土壌中の交換性カリ含量の影響

栽培前の土壌中の交換性カリ含量は土壌 A で 50 mg/kg 乾土、土壌 B で 176 mg/kg 乾土、栽培後は土壌 A で $29 \sim 32 \text{mg/kg}$ 乾土、土壌 B で $90 \sim 107 \text{mg/kg}$ 乾土であり、栽培期間を通じて土壌 B の交換性カリ含量が高かった(表 2-2-4)。

ヒマワリの ¹³⁷Cs 吸収率は、用水由来及び土壌由来のいずれにおいても、交換性カリ含量が少ない

土壌 A で高く(表 2-2-3)、交換性カリ含量を高めることで用水、土壌双方からの $^{137}\mathrm{Cs}$ の吸収が抑制された。

(5) 土壌中の交換性 ¹³⁷Cs 濃度に及ぼす溶存態 ¹³⁷Cs の影響

A および B の各土壌とも 10Bq/L 区において交換性 137 Cs 濃度が増加し、 137 Cs 濃度に対する交換性 137 Cs 濃度の割合(抽出割合)は土壌 A で 2.4 ポイント、土壌 B で 1.2 ポイント増加した(表 2-2-5)。土壌中の交換性 137 Cs 濃度とヒマワリ地上部の 137 Cs 濃度の間には、土壌 A では有意な相関関係 はみられなかったが、土壌 B では有意な正の相関関係がみられた(図 2-2-1)。これらのことから、用水中の溶存態 137 Cs は土壌中の交換性 137 Cs 濃度を上昇させ、土壌を介して植物体の 137 Cs 濃度を上昇させることが示唆されたが、土壌によって上昇の程度は異なった。

2.2.4 まとめ

畑作物であるヒマワリ(Helianthus annuus L.),アマランサス(Amaranthus L.)、ソルガム(Sorghum bicolor(L.)Moench)およびソバ(Fagopyrum esculentum)の4種類を供試して、土壌からの ¹³⁷Cs の吸収率を算出するすることで、ヒマワリが土壌から放射性 Cs を吸収しやすい作物であることを明らかにした。さらに、用水及び土壌に由来する ¹³⁷Cs のヒマワリ地上部への移行について解析するため、水道水および溶存態 ¹³⁷Cs 濃度を3段階(0.1、1.0 および10 Bq/L)に調製した用水を、交換性カリ含量が異なる2種類の土壌に灌水として与えたところ、溶存態 ¹³⁷Cs 濃度 1Bq/L 以下の用水では、水道水を灌水した場合と比較して、ヒマワリ地上部の ¹³⁷Cs 濃度に変化は認められず、土壌中の ¹³⁷Cs 濃度及び交換性 ¹³⁷Cs 濃度についても差は認められなかった。一方、溶存態 ¹³⁷Cs 濃度 10Bq/L の用水では、ヒマワリ地上部の ¹³⁷Cs 濃度が上昇した。また、用水中に含まれる溶存態 ¹³⁷Cs は、土壌中の ¹³⁷Cs よりヒマワリ地上部に移行しやすいこと、用水中及び土壌中の ¹³⁷Cs のヒマワリ地上部への移行は、土壌中の交換性カリ含量が多い場合に抑制されることを明らかにした。用水中の溶存態 ¹³⁷Cs は土壌中の交換性 ¹³⁷Cs 濃度を上昇させ、土壌を介して植物体の ¹³⁷Cs 濃度を上昇させることが示唆されたが、土壌によってその上昇程度は異なった。

表 2-2-1 播種定植および収穫日 (2011年)

土壌		ヒマワリ	アマランサス	ソルガム	ソバ
淡色黒ボク土	播種定植日	6月9日	6月9日	6月9日	8月4日
	収穫日	9月6日	9月7日	9月8日	9月13日
灰色低地土	播種定植日	6月9日	6月9日	6月9日	7月27日
	収穫日	9月6日	9月7日	9月8日	9月13日

表 2-2-2 土壌からの吸収除去率

土壌	植物体	土壌の ¹³⁷ Cs 量	¹³⁷ Cs の吸収率		
工場	但物件	(kBq/m^2)	(%)		
	ヒマワリ	216 ± 11	0.038 ± 0.005		
灰色低地土	アマランサス	209 ± 24	0.023 ± 0.002		
灰色似地工	ソルガム	201 ± 7	0.022 ± 0.004		
	ソバ	247 ± 10	0.007 ± 0.001		
	ヒマワリ	175 ± 37	0.036 ± 0.017		
淡色黒ボク土	アマランサス	154 ± 35	0.093 ± 0.022		
	ソルガム	208 ± 64	0.033 ± 0.017		
	ソバ	158 ± 12	0.013 ± 0.001		

データは 3反復の平均値 ± 標準誤差

表 2-2-3 栽培期間における ¹³⁷Cs の収支

(Bq/pot)

	_	栽培中				栽培後			
土壌	用水	土壌中の ¹³⁷ Cs 量 (栽培前)	灌水により 添加した ¹³⁷ Cs 量	合計		土壌中の ¹³⁷ Cs 量	ヒマワリ 地上部の ¹³⁷ Cs 含量	合計	
	0. 1Bq/L		1.2 ± 0.0	490		529±37	2.6 ± 0.1	531 ± 37	
土壌 A	1Bq/L	400 ± 10	9.5 ± 0.0	499		546 ± 26	2.3 ± 0.1	548 ± 26	
工·表 A	$10 \mathrm{Bq/L}$	489 ± 18	91.6 ± 1.6	581		599 ± 16	2.9 ± 0.2	602 ± 16	
	水道水		0.3 ± 0.0	489		531 ± 22	2.1 ± 0.1	534 ± 22	
	0.1Bq/L		1.2 ± 0.0	583		604 ± 27	0.09 ± 0.01	604 ± 27	
上标 D	1Bq/L	E00 ± 1E	9.7 \pm 0.0	592		598 ± 49	0.11 ± 0.01	598 ± 49	
土壌 B	10 Bq/L	582 ± 15	94.2 \pm 0.1	676		706 ± 26	0.18 ± 0.01	706 ± 26	
	水道水		0.3 ± 0.0	582		606±33	0.11 ± 0.01	606±33	

減衰補正は 2012年9月10日

データは 6反復の平均値±標準誤差

土壌 A および B は表 2-1-1 に同じ

表 2-2-4 ヒマワリ地上部の生育量、¹³⁷Cs 濃度及び ¹³⁷Cs 含量

土壌	用水	乾物重(gDW/pot)			¹³⁷ Cs	¹³⁷ Cs 濃度(Bq/kgDW)			¹³⁷ Cs	¹³⁷ Cs 含量(Bq/pot)		
	0.1Bq/L	6.9	0.1	a	372	\pm	12	ab	2.6	\pm	0. 1	
土壌 A	1Bq/L	6.8 =	0.1	a	343	\pm	23	b	2.3	\pm	0.1	
上·表 A	10 Bq/L	7.0	0.3	a	417	\pm	16	a	2.9	\pm	0.2	
	水道水	6.8 =	0.2	а	311	±	13	b	2. 1	±	0. 1	
	0.1Bq/L	9.1	0.2	a	9.8	\pm	1.3	b	0.09	\pm	0.01	
土壌 B	1Bq/L	8.6	0.1	a	12.5	\pm	1.2	b	0.11	\pm	0.01	
工場D	10Bq/L	8.8 =	0.1	a	20.4	土	1.2	a	0.18	土	0.01	
	水道水	9.1 =	0.2	a	11.8	土	1. 1	b	0.11	土	0. 01	

137Cs 量(Bq/pot) = 乾物重(gDW/pot)×137Cs 濃度(Bq/kgDW)/1000

減衰補正は 2012年9月10日

データは 6反復の平均値±標準誤差

土壌AおよびBは表2-1-1に同じ

同一土壌の同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey法)

表 2-2-5 ヒマワリの用水及び土壌からの ¹³⁷Cs 吸収率

土壌	吸収≅	മ(%)	用水由来/土壤由来
	用水由来	土壌由来	•
土壌 A	0.88	0.40	2. 2
土壌 B	0.075	0.017	4. 4
土壌 B/土壌 A	1/12	1/24	

溶存態 ¹³⁷Cs 濃度 10Bq/L 用水の場合 土壌 A および B は表 2-1-1 に同じ

表 2-2-6 栽培時の土壌の交換性カリ含量

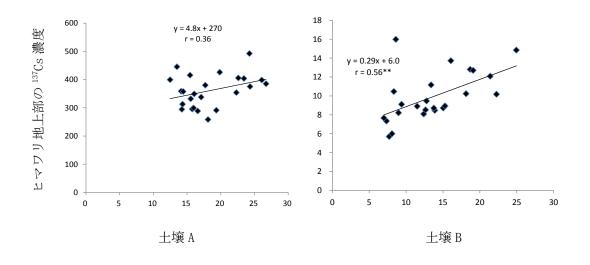
土壌	用水 -	土壌中の交換性カリ含量(mg/kg 乾土)							
工場	用水 -	栽培前				栽	培後		
	0. 1Bq/L					32	±	6	a
土壌 A	1Bq/L	ΕO	+	1		32	\pm	3	a
上坡 A	10 Bq/L	50		1		29	土	1	a
	水道水					32	±	3	a
	0.1Bq/L					96	±	5	bc
土壌 B	1Bq/L	176	+	4		90	\pm	3	c
上坡 D	$10 \mathrm{Bq/L}$	170		4		101	土	6	ab
	水道水					107	±	5	a

データは 6反復の平均値 ± 標準誤差

土壌AおよびBは表2-1-1に同じ

同一土壌の同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey法)

表 2-2-7 土壌中の交換性 ¹³⁷Cs 濃度


		栽培前土壌		栽培後土壤							
土壌	用水	¹³⁷ Cs 濃度		¹³⁷ Cs 濃度			交換性 ¹³⁷ Cs 濃度				
		(Bq/kgDW)		(Bq/	kgDW)		(Bq/kgDW)	(%)			
	0.1Bq/L		165	\pm	11.5	а	16.7 ± 1.4 b	10.3 ± 0.98			
土壌 A	1Bq/L	152 ± 6.1	171	\pm	8.2	a	17.3 \pm 1.0 ab	10.2 \pm 0.62			
上·拨 A	$10 \mathrm{Bq/L}$	152 ± 0. 1	187	土	4. 9	a	23.1 ± 1.8 a	12.4 ± 1.06			
	水道水		166	土	7.0	а	16.4 ± 0.7 b	10.0 ± 0.69			
	0.1Bq/L		189	\pm	8.5	а	9.2 ± 1.3 b	5.1 ± 1.02			
土壌 B	1Bq/L	182 ± 4.9	187	\pm	15.2	а	9.2 ± 0.5 b	5.2 ± 0.53			
工場 D -	$10 \mathrm{Bq/L}$	102 - 4. 9	221	土	8. 1	а	12.7 ± 0.6 a	5.8 ± 0.44			
	水道水		189	土	10.4	a	8.5 ± 0.5 b	4.6 ± 0.47			

減衰補正は 2012年9月10日

データは 6 反復の平均値 ± 標準誤差

土壌AおよびBは表2-1-1に同じ

同一土壌の同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey法)

土壌中の交換性 ¹³⁷Cs 濃度(Bq/kgDW)

図 2-2-1 土壌中の交換性 ¹³⁷Cs 濃度とヒマワリ地上部の ¹³⁷Cs 濃度の関係

土壌AおよびBは表2-1-1に同じ

2.3 溶存態放射性 Cs の土壌への移行

2.3.1 緒言

前項までに、農業用水中の溶存態 ¹³⁷Cs が水稲およびヒマワリなどの農作物中の ¹³⁷Cs 濃度に及ぼす影響を明らかにした。しかし、水田等に流入した高濃度の溶存態放射性 Cs がどの程度の期間、用水中に残存するかは明らかになっていない。このため、高濃度の溶存態放射性 Cs の土壌への添加実験を行い、一定期間培養することで、土壌への移行程度を解析した。

2.3.2 材料および方法

(1) 方法

土壌に 137 Cs を含む調整水を添加・安置し、一定時間後に添加した土壌および水を採取し、水中の溶存態 137 Cs 濃度および交換性 137 Cs 濃度を測定した。100mL の蓋付きポリ容器に 2mm 以下の大きさにふるった風乾土 20g を充填し、溶存態 137 Cs 濃度を 200Bq/L に調整した水 100mL を添加した。これを、人工気象器(LH-220S、日本医化器械製作所)に 24 時間暗条件、25 $^{\circ}$ C一定 で、1、24、48、72、168 時間静置した。得られた上澄み液を採取し、速やかに遠心分離した後、0.45 $^{\circ}$ m のメンブレンフィルターでろ過し、溶液中に残存する溶存態 137 Cs 量を求めた。

また、土壌の交換性 137 Cs は、遠心分離後に残った土壌を蒸留水で 3 回洗浄後、1M 酢酸アンモニウムで 24 時間振とうし、 $0.45\,\mu$ m メンブレンフィルターでろ過し、 137 Cs 量を測定後、以下に示す式で算出した。土壌の水溶性 137 Cs は洗浄時に使用した蒸留水を $0.45\,\mu$ m メンブレンフィルターで ろ過し、 137 Cs 量を測定後算出した。

(2) 栽培土壌の調整

2.1.2の栽培土壌の調整と同様の方法でおこなった。

(3) 算出方法

¹³⁷Cs 含有水中の残存率[※](%)=一定時間後の添加した水の ¹³⁷Cs 量 (Bq) ×100

調整水の ¹³⁷Cs 量 (Bq)

※土壌に吸着された後の調整水中の 137Cs の残存率

調整水から土壌中に吸着された ¹³⁷Cs に対する交換性 ¹³⁷Cs の割合 (%)

=添加後一定時間経過した後の土壌中の交換性 ¹³⁷Cs 量 (Bq) ×100

十壌に吸着された ¹³⁷Cs 量[※] (Bg)

※添加した調整水中に含まれる 137Cs 量-土壌に吸着された後の調整水中の 137Cs 量で算出

2.3.3. 結果および考察

(1) 水中の ¹³⁷Cs の残存率

調整水を添加して 1 時間後の調整水中の 137 Cs の残存率は土壌 B で 4.5%、土壌 A で 3.3%であった (表 2-3-1)。 48 時間後には調整水中の 137 Cs の残存率は 1%未満となりほとんど土壌中に移行している と考えられた。

(2) 土壌への吸着および固定

土壌中の交換性 137 Cs は土壌 B で土壌 A の 3~6 倍であった(図 2-3-1)。土壌を蒸留水で 3 回洗浄した液の 137 Cs 濃度は ND であったことから、水溶性 137 Cs はほとんど存在しないと考えられるため、調整水から土壌中に吸着された 137 Cs は、土壌に固定もしくは交換性 137 Cs の形で存在しているものと考えられた。また、調整水中に含まれる 137 Cs が土壌に吸着された後、交換性 137 Cs の形態で存在する割合は土壌によって異なった。

溶存態 137 Cs を含む水を添加した後、1 時間以内に 95%以上が土壌に移行し、吸着または固定されていることが明らかとなった。そのため、農業用水中の放射性 Cs は農作物への直接の移行は少ないものと考えられた。また、土壌への吸着とは、土壌固相-液相間において物質が不均質に分配される減少であり、農地土壌における Cs の吸着反応は 14 H および 14 H が 14 H で 14 H の 14 H $^{$

(3) 水稲およびヒマワリ栽培後土壌との比較

水稲およびヒマワリ栽培後土壌では土壌中の交換性 137 Cs 濃度が土壌 B より土壌 A で高く(図 2-1-2、表 2-2-7)、本項では土壌 B が高い(図 2-3-1)ことから結果が逆転している。土壌 A では雲母由来の粘土鉱物がほとんどみられず、土壌 B は雲母由来の粘土鉱物を多く含む土壌である(農林水産省他 2014)。そのため、水稲およびヒマワリを 70 日以上栽培しているため、短期間の培養では到達しなかったフレイド・エッジ・サイトのような固定サイトに 137 Cs が土壌 B でより多く移行したためと考えられた。

2.3.4 まとめ

本項では、水田等に流入した高濃度の溶存態放射性 Cs がどの程度の期間、用水中に残存するかを明らかにするため、溶存態 ¹³⁷Cs 濃度が 200Bq/L の水を土壌に添加する室内モデル実験を実施した。溶存態 ¹³⁷Cs は、添加後 1 時間以内に 95%以上が土壌に移行し、48 時間後には 99%が土壌に移行し吸着または固定されているため、水田に流入した農業用水中の放射性 Cs は比較的速やかに土壌に吸着・固定されると考えられ、農業用水から農作物への直接の移行は少ないものと考えられた。農業用水中の放射性 Cs は土壌への吸着は初期に土壌中の K+と放射性 Cs+が競合し、土壌の固定サイトを奪い合い、長期的には短期間では到達しなかったフレイド・エッジ・サイトのような固定サイトに ¹³⁷Cs が移行すると考えられる。

表 2-3-1 土壌に吸着された後の調整水中の ¹³⁷Cs の残存率 (%)

土壌 -	調整水添加後の時間						
	0 h	1 h	24 h	48 h	72 h	168 h	
土壌 A	100	3.3	1.2	<1.0	<1.0	<1.0	
土壌 B	100	4.5	3.8	<1.0	<1.0	<1.0	

減衰補正は調整水添加時

土壌AおよびBは表2-1-1に同じ

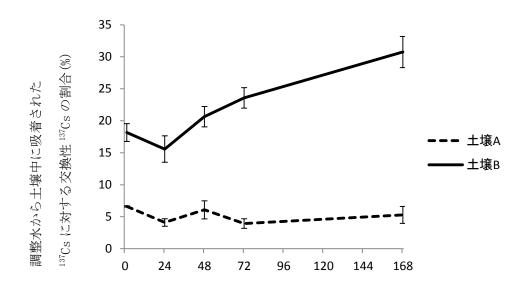


図 2-3-1 調整水を加えた土壌の交換態 ¹³⁷Cs の割合の推移

添加後 48 時間以上は調整水中の $^{137}\mathrm{Cs}$ 濃度は ND であったため、土壌に吸着された $^{137}\mathrm{Cs}$ 量は添加 した調整水の $^{137}\mathrm{Cs}$ 量と同等として算出している。

土壌AおよびBは表2-1-1に同じ

2.4 まとめ

東京電力原発事故後、福島県の山林からの流れる灌漑水を使用して栽培した一部の玄米の放射性 Cs 濃度が暫定規制値の 500Bq/kg を超えが、その原因が山林からの流水や農業用水に含まれる放射性 Cs ではないかと疑われた。本章では暫定規制値を超えた要因として農業用水中の放射性 Cs が水稲および畑作物 4 種について、溶存態放射性 Cs および土壌からの移行程度、および水田等に流入した高濃度の溶存態 ¹³⁷Cs がどの程度の期間、用水中に残存するかを明らかにした。

溶存態 137 Cs(137 Cs 濃度は 0.1、1.0、10Bq/L)を含む水を灌水してポットで育てた水稲玄米および畑 作物4種の中で土壌からの137Csの大きいヒマワリの137Cs濃度を測定することにより、農業用水から玄 米およびヒマワリへの溶存態 ¹³⁷Cs の移行について調査をおこなった。ポットに灌水した ¹³⁷Cs 水は汚染 地域から採取した針葉樹から抽出し、水道水で希釈して作成した。供試土壌は福島県内の2地点より 採取した灰色低地土(土壌 A および B)とした。本章は水稲 (*Oryza sativa* L. ひとめぼれ)および ヒマワリ(Helianthus annuus L. F1 サンリッチオレンジ)のポット栽培を行い、農業用水中に含まれ る溶存態放射性 Cs がどの程度移行するのか明らかにした。玄米中の ¹³⁷Cs 濃度は、農業用水の ¹³⁷Cs 濃 度が 0.1Bq/L または 1Bq/L (ただし土壌中の交換性 K2O が高い) では水道水灌水時と差が無く、1Bq/L (土壌中の交換性 K20 が 50mg/kg 程度のように低い) 場合に水道水灌水時より濃度が上昇した。畑作物 であるヒマワリ中の ¹³⁷Cs 濃度は、農業用水の ¹³⁷Cs 濃度が 1Bq/L 以下では水道水灌水時と差が無く、 10Bq/L では ¹³⁷Cs 濃度が上昇した。以上より、本実験条件では、放射性 Cs 濃度が約 0. 1Bq/L の農業用 水から農作物への放射性 Cs の移行は、放射性 Cs の基準値(一般食品では 100Bq/kg)では無視できる と考えられた。しかし、交換性 K20 が低い土壌では農業用水中の濃度が 1Bq/L 以上、交換性 K20 が高い 土壌でも 10Bq/L になると農作物中の放射性 Cs 濃度が増加する可能性があった。水田等に流入した高 濃度の溶存態放射性 Cs がどの程度の期間、用水中に残存するかを明らかにするため、溶存態 ¹³⁷Cs 濃 度が 200Bq/L の水を土壌に添加する室内モデル実験を実施した。溶存態 ¹³⁷Cs を含む水の添加 1 時間以 内に 95%以上が土壌に移行し、吸着または固定していることが明らかとなった。そのため、農業用水 中の放射性 Cs は比較的速やかに土壌に吸着・固定されており、農業用水から農作物への直接の移行は 少ない可能性が考えられた。

第3章 農業用水中の形態の異なる放射性 Cs の水稲への移行

農業用水には、異なる形態の放射性 Cs が存在しており、水中にイオン等として溶けている溶存態や、 浮遊する土壌粒子や有機物等の懸濁物質に吸着・固定されている懸濁態がある(Yasutaka, et al. 2012)。しかし、これらの形態の異なる放射性 Cs が水稲を主とした農作物中の放射性 Cs 濃度に与える影響は明らかになっていない。第 2 章では、放射性 Cs 濃度が約 0.1Bq/L の農業用水からの農作物(水稲、ヒマワリ)への放射性 Cs の移行は非常に少ないが、交換性 K₂0 が低い土壌(50mg/kg 乾土)では農業用水中の濃度が 1Bq/L 以上、交換性 K₂0 が高い土壌(176mg/kg 乾土)でも 10Bq/L になると農作物中の放射性 Cs 濃度が増加する可能性があった。本章では、農業用水に含まれる形態の異なる放射性 Cs の水稲への移行について、水耕栽培およびポット土耕栽培で明らかにする。

3.1 水耕栽培における形態の異なる放射性 Cs の水稲への移行

3.1.1 緒言

溶存態 ¹³⁷Cs 以外の土壌粒子や有機物に吸着された懸濁態放射性 Cs の動態は不明であり、玄米への移行程度は明らかとなっていない。このため、放射性 Cs を含む水耕液を用いて水稲の水耕栽培を行い、懸濁態 ¹³⁷Cs の玄米への移行程度を明らかにした。本項ではまず、¹³⁷Cs の移行を把握するために最適な水耕栽培期間を把握し(実験 1)、その後、異なる形態の ¹³⁷Cs を含む水耕液で水稲を栽培し移行について明らかにした(実験 2)。

3.1.2 材料および方法

(1) 方法

水耕液 60g をいれた U8 容器に 4 葉齢の水稲を 2 本移植し、人工気象器(LH-220S、日本医化器械製作所)内で 1、4、7 日間栽培した。地上部と根部に分けて採取したサンプルを水道水で洗浄し、測定に供した。人工気象器は 30° C一定の 12 時間日長、光合成有効光量子束密度(PPFD)は $300\,\mu$ mol m^{-2} s⁻¹ とした。

水耕液は、N、P、Mg および Ca は 40ppm、Fe は 8ppm、Mn は 2ppm とし、蒸発散および吸水による水耕液の減少に合わせて蒸留水を適宜補充した。水耕液に添加した 137 Cs 量はポット当たり 30Bq とした。実験 1 は添加した 137 Cs は溶存態 137 Cs とし、3 水準の栽培期間それぞれに対し水耕液中のカリ濃度を 0、25 および 100ppm 添加した区を設けた。実験 2 では添加する 137 Cs の形態は溶存態、有機物結合態および土壌粒子結合態の 3 種類とした。また、溶存態放射性 Cs を選択的に吸着させるプルシアンブルーを担持させた不織布(Yasutaka,et~al.~2013)を 1cm² に切り、それぞれの形態の 137 Cs を含む水耕液中に入れて水稲を栽培した区を PB+区とし、その不織布を入れない区を PB-区、水稲を栽培しな

い区をブランクとした。各処理1区1ポットで3反復とした。

(2) 添加した ¹³⁷Cs

a 溶存態 ¹³⁷Cs を含む用水

 137 Cs に汚染された針葉樹の葉を水道水に 13 日間浸せきして放射性 Cs を抽出した後、抽出液を $0.45\,\mu\,\mathrm{m}$ メンブレンフィルターでろ過した。

b 土壌粒子結合態 ¹³⁷Cs を含む用水

溶存態 ¹³⁷Cs を含む水 (¹³⁷Cs 濃度 970Bq/L) に土壌粒子を加えて、24 時間振とうし、振とう後の 懸濁液を No. 131 のろ紙でろ過し、ろ紙上に残った土壌を供試した。

c 有機物結合態 ¹³⁷Cs を含む用水

針葉樹の落葉を 2 週間以上浸漬した水を No. 131 のろ紙でろ過し、ろ紙上の有機物残渣を供試した。

(3) 水稲の ¹³⁷Cs の吸収率および水耕液中の残存率の算出

水稲は所定の栽培期間終了後、根と地上部に分けて水道水で洗浄後、各部位の ¹³⁷Cs 濃度を測定し、吸収率を算出した。栽培終了時の水耕液は 0.45 μm のメンブレンフィルターでろ過し、添加した有機物および土壌粒子は除去して水溶液中に溶存態として存在している ¹³⁷Cs 濃度を測定し、水耕液中の溶存態 ¹³⁷Cs の残存率を算出した。

吸収率 (%)

=栽培終了時の地上部または根の 137 Cs 量(Bq)/水耕液中に添加した 137 Cs 量(Bq)×100 残存率(%)

=栽培終了時の水耕液中の ¹³⁷Cs 量 (Bq) /水耕液中に添加した ¹³⁷Cs 量 (Bq) ×100

3.1.3 結果および考察

(1) 水耕栽培の栽培期間

実験 1 では、水耕液中の添加したカリ濃度が 0 から 100ppm の範囲内で高くなると溶存態 137 Cs の吸収率は低下し、溶存態 137 Cs の吸収率の増加速度も小さくなった(図 3-1-1)。また、カリを添加しない場合、水耕液中の溶存態 137 Cs が 4~7 日栽培すると検出限界以下となり、栽培期間 1 日では72.0~94.5%と高かった。したがって、添加したカリ濃度および溶存態 137 Cs 濃度の影響を本条件下での水耕栽培で把握するためには栽培期間は 1 日では短く 4 日が適当と考えられた(図 3-1-2)。

(2) 水耕液中の形態の異なる ¹³⁷Cs の水稲への移行

実験2では水耕液中の形態の異なる¹³⁷Csの水稲への移行をみるために栽培期間を4日に設定し、 栽培後の水耕液からの溶存態、土壌粒子結合態および有機物結合態の吸収率を算出したところ、それぞれ81%、ND(<0.3%) および9%であった(図 3-1-3)。また、栽培後の水耕液内の溶存態 137 Cs としての残存量は、溶存態として添加した場合は 4.2%、土壌粒子結合態で ND(<0.2%)、有機物結合態で 2.6%であった。また、水稲を栽培でいないブランク区の残存率より土壌粒子結合態および有機物結合態から溶出し水耕液中に存在する溶存態 137 Cs はそれぞれ ND(<0.3%)および 4.4%であり、有機物結合態から溶出した溶存態 137 Cs として 1.8%が水稲に吸収されていた。しかし、有機物結合態を添加した水稲内の 137 Cs の吸収率は 8.7%であり、溶出した溶存態 137 Cs 以上に水稲内に吸収されていた(表 3-1-1)。そのため、水稲の根による分解促進もしくは直接吸収が行われている可能性がある。

溶存態 ¹³⁷Cs の吸収は 4 日と 11 日では大きな差はみられないことから、水稲はほぼ 4 日で溶存態 ¹³⁷Cs を吸収したと考えられた。土壌粒子結合態および有機物結合態 ¹³⁷Cs は 4 日より 11 日目では吸収率が高まっていたことから、土壌粒子結合態および有機物結合態 ¹³⁷Cs は水稲による吸収速度が遅いと考えられた(図 3-1-3、4)。なお、栽培期間 4 日の溶存態 ¹³⁷Cs の吸収率が地上部で 29.8%、根部で 51.4%であったのに対し、栽培期間 11 日では地上部で 43.5%、根部で 43.4%であったことから、¹³⁷Cs が水稲内で根から地上部へ移行したと考えられる(図 3-1-3、4)。

水稲の生育初期における水耕液中に存在する形態の異なる ¹³⁷Cs の同一期間の吸収のしやすさは、 溶存態>有機物結合態>土壌粒子結合態であった。

(3) 水耕栽培の条件

なお、本研究の条件は人工気象器内で行っており、PPFD は $300\,\mu\,\text{mol}\,\text{m}^{-2}\,\text{s}^{-1}$ であった。水稲の水耕栽培において PPFD が大きい環境下で生育および収量が優ること(小野田ら 1998)、収穫直前の水稲を水耕液中に入れた場合、水耕液中の ^{137}Cs の濃度はあまり変化せず、水とともに吸収される(内田ら 1987)ことから、PPFD が本条件以上である場合、水稲の生育が優り吸水量が増えるとともに放射性 Cs の吸収が増える可能性がある。このため、水耕栽培期間の調節が必要となる可能性が考えられる。

本項での有機物結合態 ¹³⁷Cs を含む水から水稲への移行については 25℃条件下での結果である。有機物分解の至適温度は 35℃以上であることから(土壌生化学 1994)、夏などの気温の高い条件下では分解が早く移行が促進される可能性がある。また、実際の水田や畑地などでは有機物を分解する微生物等多数存在するため本項の実験結果より移行しやすい可能性がある。

3.1.4 まとめ

添加したカリ濃度および溶存態 ¹³⁷Cs 濃度の影響を水耕栽培で把握するために必要な栽培期間は 4 日であり、形態の異なる ¹³⁷Cs の水稲への移行のしやすさは溶存態>有機物結合態>土壌粒子結合体の順であった。また、水耕液中のカリ濃度を高めることにより溶存態 ¹³⁷Cs の吸収速度が低減し、一定期間

内の吸収率が低下した。

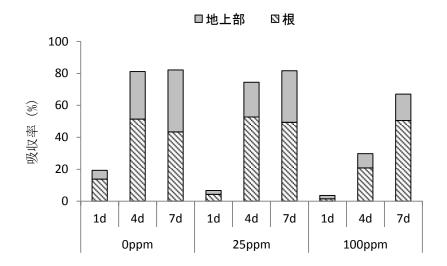


図3-1-1 水耕栽培でのカリ濃度の違いによる地上部および根における溶存態¹³⁷Csの時間毎の 吸収率

吸収率 (%)=栽培終了時の地上部または根の 137 Cs $\frac{1}{2}$ Cs $\frac{1}$

表 3-1-1 水耕液に添加した 137 Cs 形態と 4 日間栽培後の水耕液中の溶存態 137 Cs の残存率

添加形態	残存率 (%)				
你幼儿儿夕愿	PB−⊠	PB+区	ブランク		
溶存態	4. 2	< 0.4	100		
土壤粒子結合態	< 0.2	< 0.2	< 0.3		
有機物結合態	2.6	1.5	4.4		

 $^{^{137}\}mathrm{Cs}$ は栽培終了時に $0.45\,\mu\,\mathrm{m}$ のメンブレンフィルターで濾過し、添加した有機物および土壌粒子は除去して測定した。

PB+区:プルシアンブルーを担持させた不織布を 1cm² に切り水耕液中に入れて水稲を栽培した区ブランク:水稲の移植無し

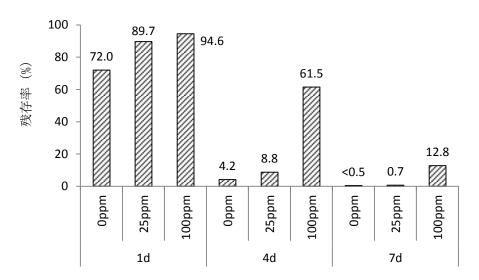


図3-1-2 栽培終了時の水耕液中の溶存態¹³⁷Csの残存率

残存率(%)=栽培終了時の水耕液中の 137 Cs 量(Bq)/水耕液中に添加した 137 Cs 量(Bq)×100 横軸の上段は水耕液中と添加したカリ濃度、下段は 137 Cs を水耕液での栽培日数

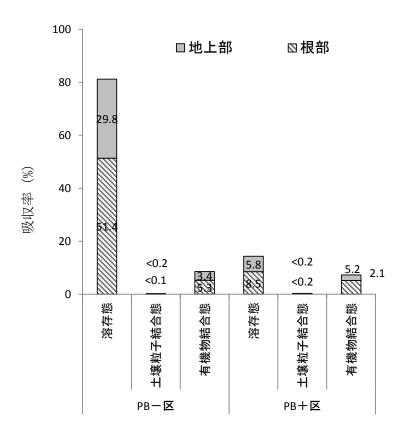


図 3-1-3 形態別 $^{137}\mathrm{Cs}$ の水稲の $^{137}\mathrm{Cs}$ の吸収率(栽培期間 4 日)

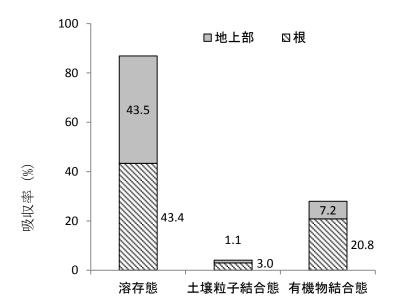


図 3-1-4 形態別 $^{137}\mathrm{Cs}$ の水稲の $^{137}\mathrm{Cs}$ の吸収率(栽培期間 11 日)

3.2. ポット土耕栽培による形態の異なる放射性 Cs の水稲への移行

3.2.1 緒言

農業用水中の放射性 Cs 濃度が約 0.1Bq/L の場合、農業用水からの玄米へ移行は水道水と差が無いことを第 2 章で明らかにした。また、前項では水稲においては溶存態放射性 Cs が移行しやすいことを明らかにした。本項では、形態を異にする ¹³⁷Cs を含む農業用水をポットで栽培した水稲に与えた時の玄米への移行程度(実験 1) および、農業用水中の懸濁態放射性 Cs において吸着する土壌粒子の種類の違いが移行に及ぼす影響を明らかにする(実験 2)。また、本項では土壌を介することで農業用水中の放射性 Cs の移行が水耕栽培とどのように異なるかを解析する。

3.2.2 材料および方法

(1) ¹³⁷Cs を含む用水の調製

農業用水中の放射性 Cs 濃度が約 0.1Bq/L の場合、農業用水からの玄米へ移行は水道水と差が無い (第 2 章) ことから、 137 Cs を含む用水の 137 Cs 濃度は実験 1 では 1Bq/L および 10Bq/L の 2 水準とした。

a 溶存態 ¹³⁷Cs を含む用水

 137 Cs に汚染された針葉樹の葉を水道水に 13 日間浸せきして放射性 Cs を抽出した後、抽出液を 0.45 μ m メンブレンフィルターでろ過し、溶存態 137 Cs 濃度が 18q L および 10Bq L となるように脱塩 水で希釈した。なお、第 2 章では水道水で希釈していたが微量の 137 Cs を含んでいたため本項より脱塩水を供した。

b 懸濁態 ¹³⁷Cs を含む灌漑水

(a)土壌粒子を含む用水

実験 1 では、溶存態 137 Cs を含む水に土壌粒子(2mm 以下)を加えて、 24 時間振とうし、振とう後の溶液を No. 131 のろ紙でろ過し、ろ紙上に残った土壌を脱塩水に 137 Cs 濃度が 18q /L および 108q /L となるように添加した。なお、振とう時に加えた土壌粒子はワグネルポット土壌と同一の土壌由来でカリ含量未調整のものとした。

実験 2 では、福島県農業総合センター内ライシメータの汚染された表土(褐色低地土、灰色低地土および黒ボク土)を 2mm 以下に調製し、脱塩水に添加した(10Bq/L)。なお、褐色低地土は塩化カリを加えて交換性カリ含量を 2 水準(6.1 および 22.6mg/100g 乾土)にした(表 3-2-1)。

(b) 有機物を含む用水

針葉樹の落葉を 2 週間以上浸漬した水を No. 131 のろ紙でろ過し、ろ紙上の有機物残渣を脱塩水に 137Cs 濃度が 1Bq/L および 10Bq/L となるように添加した。

(2) 栽培土壌の調製

実験 1 では、3 種の土壌を用いた。土壌 A₁ は福島県中通り北部の水田下層より採取した交換性カリ含量未調整の土壌(50mg/kg 乾土)で、土壌 A₂ は土壌 A₁ に塩化カリを用いて交換性カリ含量を調整した土壌(目標 250mg/kg 乾土)である。土壌 B は福島県農業総合センター下層土(交換性カリ含量 167mg/kg)に塩化カリで交換性カリ含量を調整した土壌(目標 25mg/100g 乾土)である。実験 2 では福島県農業総合センター内ライシメータ非汚染土壌(褐色低地土 ¹³⁷Cs 濃度 6.7Bq/kgDW)を使用した。

(3) 水稲の栽培

水稲は 1/5000a ワグネルポットに 4 株ずつ移植した。移植日は実験 1 では、2013 年 7 月 11 日及 び 16 日、実験 2 では 2014 年 6 月 6 日である。基肥は、実験 1 ではポット当り N、 P_2O_5 、 K_2O を 0.1g、0.2g および 0g (10a 当たり 5kg、10kg および 0kg)、実験 2 では同じく 0.18g、0.22g および 0.12g(10a 当たり 9kg、11kg および 6kg) 基肥とし、追肥は N 0.04g を施用した。移植までの灌水量は実験 1 および 2 とも 2L/ポット、移植後の灌水量は実験 1 で $14\sim16$. 7L/ポット、実験 2 で $22L/ポットであった。灌水は毎日行い、水位は <math>3\sim10$ cm とした。栽培は福島県農業総合センター内のガラス温室内で行い、実験規模は実験 1 で 3 ポット、実験 2 で 1 ポットの 3 反復とした。収穫は実験 1 で 2013 年 10 月 8 日、実験 2 で 2014 年 9 月 15 日である。

(4) 水稲(玄米、籾殻、稲わら)の¹³⁷Cs 濃度の測定

水稲は成熟期に達した 2013 年 10 月 8 日(実験 1)、2014 年 9 月 15 日(実験 2)にワグネルポット上部から 2cm の位置で収穫し、玄米、籾殻および稲わらに分けた後、送風定温乾燥機により玄米は 105 $^{\circ}$ $^{\circ}$ 48 時間以上、籾殻および稲わらは 80 $^{\circ}$ $^{\circ}$ 72 時間以上乾燥させた。乾燥した試料は玄米および籾殻は未粉砕、稲わらはミルで粉砕し、U-8 容器に充填してゲルマニウム (Ge) 半導体検出器(GC3020、GC3520 および GC4020 キャンベラジャパン社製)で 137 Cs 濃度を測定した。なお、Ge 半導体検出器での測定時間は 4,000~50,000 秒とし、 137 Cs 濃度はそれぞれ収穫日で減衰補正した。

(5) 土壌中の ¹³⁷Cs 濃度および交換性 ¹³⁷Cs 濃度の測定

土壌は 1 つのポットの土壌を地表下 $0\sim5$ cm、地表下 $5\sim10$ cm、地表下 $0\sim10$ cm の 3 つに分け、10 日間以上風乾し、2.0mm メッシュの篩を通した。風乾土を U-8 容器に充填し Ge 半導体検出器 (GC2020 キャンベラジャパン社製) で ^{137}Cs 濃度を計測後、水分補正し乾土当たりとして算出した。風乾土 80g に 1M 酢酸アンモニウム (pH7.0) 800mL を加え、1 時間振とう抽出し $^{16)}$ 、抽出液を $0.45\,\mu$ m メンブレンフィルターでろ過後 0.7L マリネリ容器に充填して Ge 半導体検出器で測定した値 から土壌中の交換性 ^{137}Cs 濃度を算出した。なお、Ge 半導体検出器での測定時間は、土壌 (^{137}Cs 濃度) については 1,200 秒、抽出液(交換性 ^{137}Cs 濃度)については 1,200 秒とし、 ^{137}Cs 濃度

は収穫日で減衰補正した。

- (6) 土壌中の交換性カリ含量の測定
 - 2.1.2の土壌中の交換性カリ含量の測定と同様の方法でおこなった。
- (7) 用水から玄米への ¹³⁷Cs の吸収率の算出

用水から玄米への ¹³⁷Cs 吸収率は下記の計算式より算出した。

農業用水からの吸収率 (%) = $(W_t \times C_t - W_c \times C_c) \times 100/C_w$

W_t: ¹³⁷Cs を含む水を潅水したときの玄米乾物重 (kgDW/pot)

C_t: ¹³⁷Cs を含む水を潅水したときの玄米の ¹³⁷Cs 濃度 (Bg/kgDW)

W_c: 脱塩水を潅水したときの玄米の乾物重 (kgDW/pot)

C_c: 脱塩水を潅水したときの玄米の ¹³⁷Cs 濃度 (Bq/kgDW)

C_w: 栽培期間中に添加した用水中の ¹³⁷Cs 量 (Bq/pot)

3.2.3 結果および考察

(1) 農業用水中の異なる形態の ¹³⁷Cs 濃度が水稲地上部中の ¹³⁷Cs 濃度に及ぼす影響

各形態(溶存態、土壌粒子結合態および有機物結合態)とも 137 Cs 濃度の増加により玄米、稲わらおよび籾殻中の 137 Cs 濃度が増加した(図 3-2-1、3-2-2 および 3-2-3)。農業用水からの玄米の 137 Cs 吸収率は、 $^{10Bq/L}$ 区において、土壌 137 Cs 吸収率は、 $^{10Bq/L}$ 区において、土壌 137 Cs 吸収率は、 $^{10Bq/L}$ 区において、土壌 137 Cs ので溶存態、土壌粒子結合態および有機物結合態でそれぞれ 137 Cs のの収率は、 137 Cs の吸収率は、 137 Cs のの収率は、 137 Cs のの収率は、 137 Cs ののの収率は、 137 Cs ののののででででででででででででででででででででででででででで

(2) 農業用水中の異なる形態の ¹³⁷Cs 濃度が土壌中の ¹³⁷Cs 濃度に及ぼす影響

農業用水中の溶存態などの ¹³⁷Cs は土壌表面 5 c m以内に多く吸着されており、下層(表層から 5-10cm) への浸透は少なかった(表 3-2-1)。

(3) 懸濁熊を構成する土壌粒子の種類が玄米中 ¹³⁷Cs 濃度に及ぼす影響

玄米中の 137 Cs 濃度の上昇はいずれの土壌粒子でも 12Bq/kgDW 以下であり、溶存態添加時の 7%以下となった。そのため、今回用いた農業用水中の土壌粒子であれば吸着した 137 Cs は濃度が 10Bq/Lでも影響は少なく、限定的であると考えられた(図 3-2-5)。

3.2.4 まとめ

カリの増肥を行った土壌 A₂や土壌 B では 1Bq/L の場合の玄米中の ¹³⁷Cs 濃度の増加は、溶存態と比較して土壌粒子結合態で 50%、有機物結合態で約 35%となった。しかし、今回の実験に供した土壌粒子結合態は溶存態 ¹³⁷Cs を吸着させて作成したため、通常の土壌粒子結合態に比べて ¹³⁷Cs が離れやすく、農業用水から玄米への吸収率が高い可能性があった。そのため、新たに汚染土壌表層の土壌粒子を含む農業用水を供して行ったところ、溶存態の約 7%と低かった。したがって、農業用水中の土壌粒子中の玄米の放射性セシウムの移行は限定的であると考えられた。以上から、農業用水中の放射性 Cs の玄米への移行のしやすさは、溶存態>有機物結合態>土壌粒子結合態であると考えられた。また、各形態とも農業用水中の ¹³⁷Cs 濃度が高くなると玄米中の ¹³⁷Cs 濃度が増加することが明らかとなった。しかし、カリの増肥を行うことで土壌および農業用水由来の形態の異なる ¹³⁷Cs の玄米への移行を低減できる。

表 3-2-1 土壌粒子の交換性カリ含量

試験区	農業用水中の 土壌粒子の種類	土壌粒子中の 交換性カリ含量 (mg/kg 乾土)
褐色K低	褐色低地土	61
褐色K高	褐色低地土	226
黒ボク	黒ボク土	237
灰色低地土	灰色低地土	272

褐色低地土は塩化カリを加えて交換性カリ含量を2水準にし、褐色K低および褐色K高を設けた。

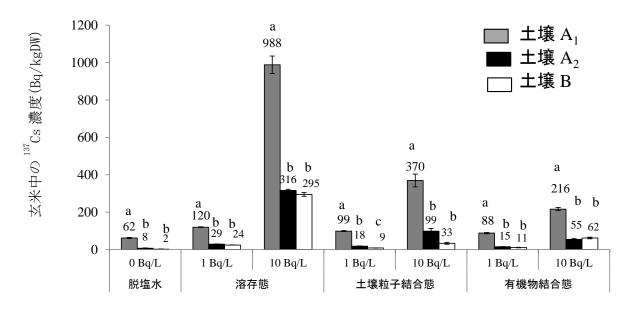


図 3-2-1 異なる形態の 137 Cs を含む農業用水 (1 または 10Bq/L) 添加した時の玄米中の 137 Cs 濃度 土壌 A_1 の交換性カリ含量は 50mg/kgDW

土壌 A2の交換性カリ含量は目標 250mg/kgDW に調整

土壌 B の交換性カリ含量は目標 250mg/kgDW に調整

エラーバーは標準偏差 (n=3)

同一土壌の同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey 法)

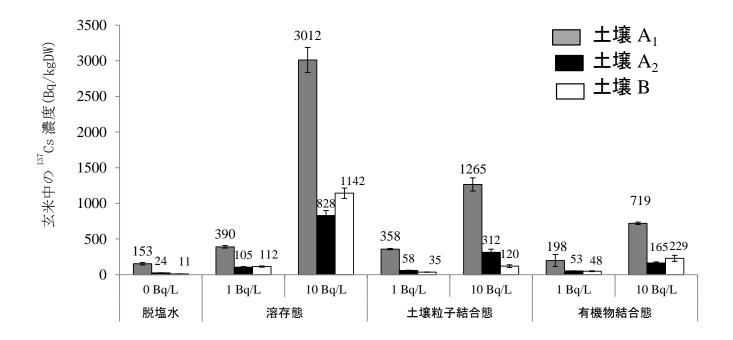


図 3-2-2 異なる形態の 137 Cs を含む灌漑水 (1 または 10Bq/L) 添加した時の籾殻中の 137 Cs 濃度 土壌 A_1 の交換性カリ含量は 50mg/kgDW

土壌 A2の交換性カリ含量は目標 250mg/kgDW に調整

土壌 B の交換性カリ含量は目標 250mg/kgDW に調整

エラーバーは標準偏差 (n=3)

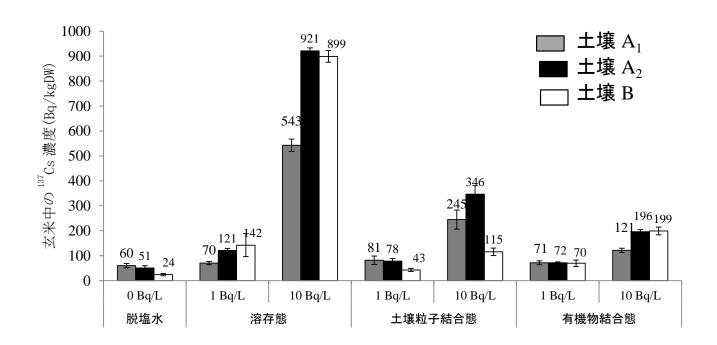


図 3-2-3 異なる形態の ¹³⁷Cs を含む灌漑水(1 または 10Bq/L)添加した時の稲わら中の ¹³⁷Cs 濃度 土壌 A₁ の交換性カリ含量は 50mg/kgDW 土壌 A₂ の交換性カリ含量は目標 250mg/kgDW に調整 土壌 B の交換性カリ含量は目標 250mg/kgDW に調整

表 3-2-1 異なる形態の ¹³⁷Cs を含む農業用水(1 または 10Bq/L)を添加したときの土壌の層別 ¹³⁷Cs 濃度

土壌	農業用水中の ¹³⁷ Cs の形態	農業用水中の ¹³⁷ Cs 濃度		¹³⁷ Cs 濃度 dry wt.)	土壤中交換性 13	土壌中交換性 ¹³⁷ Cs(Bq/kg dry wt.)	
		(Bq/L)	表層	下層	表層	下層	
L - 公	脱塩水	0	114 ± 10	102 ± 10	15 ± 1.5	17 ± 0.6	
	土壌粒子結合態	1	122 ± 7	117 ± 10	19 ± 1.8	16 ± 1.0	
	上坡位丁和口思	10	220 ± 9	111 ± 3	49 ± 1.3	19 ± 1.4	
土壌 A ₁	有機物結合態	1	105 ± 5	117 ± 12	18 ± 0.9	19 ± 1.5	
Λ_1	· 月 /	10	270 ± 31	109 ± 4	36 ± 2.2	14 ± 1.1	
	溶存態	1	118 ± 9	120 ± 12	19 ± 2.1	16 ± 0.9	
	1471年	10	172 ± 35	107 ± 5	39 ± 3.5	14 ± 1.9	
	脱塩水	0	112 ± 9	118 ± 7	19 ± 1.5	20 ± 2.9	
	土壌粒子結合態	1	133 ± 17	112 ± 8	21 ± 0.4	19 ± 1.2	
土壌・	工	10	244 ± 15	130 ± 3	51 ± 0.3	17 ± 4.1	
A_2	有機物結合態	1	129 ± 11	104 ± 8	21 ± 0.5	18 ± 0.8	
112	1月1成10/10 日 1忠	10	246 ± 22	116 ± 17	31 ± 3.4	18 ± 1.2	
	溶存態	1	136 ± 11	119 ± 6	21 ± 2.1	18 ± 1.6	
	俗行忠	10	239 ± 16	120 ± 4	46 ± 0.7	19 ± 2.0	
	脱塩水	0	136 ± 12	164 ± 14	12 ± 4.6	10 ± 1.1	
土壌 · B ·	土壤粒子結合態	1	156 ± 8	145 ± 5	9 ± 1.1	10 ± 0.4	
		10	276 ± 8	163 ± 4	25 ± 4.4	7 ± 0.7	
	有機物結合態	1	186 ± 20	160 ± 20	9 ± 1.4	9 ± 0.3	
		10	231 ± 11	154 ± 14	12 ± 1.3	10 ± 1.4	
	溶存態	1	151 ± 4	201 ± 8	7 ± 1.8	7 ± 0.5	
		10	220 ± 4	138 ± 9	18 ± 4.7	9 ± 0.7	

データは 3 反復の平均値 ± 標準誤差

表 3-2-2 異なる形態の 137 Cs を含む農業用水(1 または 10Bq/L)を添加したときの土壌中の K 濃度

土壌	農業用水中の ¹³⁷ Cs の形態	農業用水中の ¹³⁷ Cs 濃度		中の交換性 K 濃度 mg/kg dry wt.)			
		(Bq/L)	栽培前			栽培後	
	脱塩水	0	51	土	2	40 ± 5	
	土壤粒子結合態	1	49	\pm	1	41 ± 4	
土壌		10	48	土	2	42 ± 2	
上坡 A ₁	有機物結合態	1	48	\pm	1	38 ± 3	
Λ_1	作饯物和古忠	10	47	土	2	38 ± 4	
	溶存態	1	47	土	1	46 ± 6	
	俗仔悲	10	49	\pm	1	42 ± 3	
	脱塩水	0	159	土	10	50 ± 4	
	土壤粒子結合態	1	160	\pm	12	51 ± 2	
土壌		10	170	土	5	51 ± 1	
上·接 A ₂	有機物結合態	1	161	\pm	13	55 ± 1	
\mathbf{n}_2		10	160	\pm	18	50 ± 2	
	溶存態	1	144	\pm	10	52 ± 6	
		10	157	\pm	21	56 ± 2	
	脱塩水	0	183	土	5	59 ± 1	
土壤 B	土壤粒子結合態	1	183	±	2	60 ± 2	
		10	197	土	9	43 ± 6	
	大松 州 公十 八 台口	1	188	土	9	55 ± 3	
	有機物結合態	10	175	土	5	51 ± 1	
	· 沙方能	1	177	土	6	51 ± 3	
	溶存態	10	181	\pm	6	44 ± 8	

データは 3 反復の平均値 ± 標準誤差

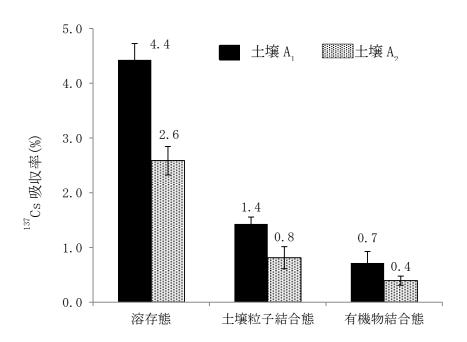


図 3-2-4 異なる形態の ¹³⁷Cs の吸収率に対するカリ増肥の効果 土壌 A₁ の交換性カリ含量は 50mg/kgDW 土壌 A₂ の交換性カリ含量は目標 250mg/kgDW に調整 エラーバーは標準偏差 (n=3)

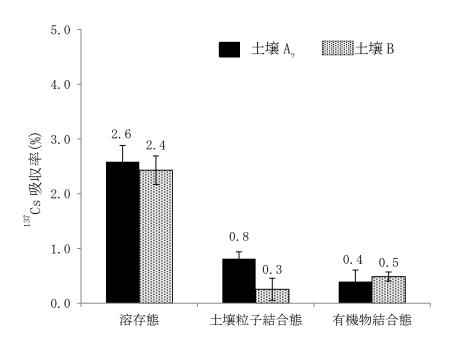


図 3-2-5 異なる形態の ¹³⁷Cs の玄米へ移行率に対する同一カリ水準 土壌 A₂ の交換性カリ含量は目標 250mg/kgDW に調整 土壌 B の交換性カリ含量は目標 250mg/kgDW に調整 エラーバーは標準偏差 (n=3)

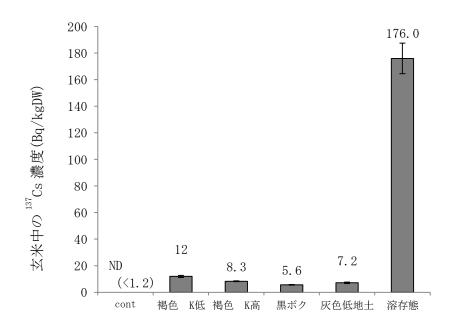


図 3-2-6 農業用水中の土壌粒子の種類と玄米中の ¹³⁷Cs 濃度 エラーバーは標準誤差 (n=3)

3.3 まとめ

溶存態 ¹³⁷Cs を含む水耕液を用いて水稲の水耕栽培試験を行ったところ、形態の異なる ¹³⁷Cs の水稲 への移行のしやすさは溶存態>有機物結合態>土壌粒子結合態の順であった。有機物結合態は、水耕 液中に分解または溶出により溶存態を放出し、その溶存態が水稲に吸収されたがそれ以上に水稲内に 吸収されているため、水稲の根による分解促進もしくは直接吸収が行われている可能性がある。

ポット土耕栽培では、カリの増肥を行った土壌 A2 や土壌 B では 1Bq/L の場合の玄米中の ¹³⁷Cs 濃度の増加は、溶存態と比較して土壌粒子で 50%、有機物で約 35%となった。しかし、本研究に供試した土壌粒子は溶存態 ¹³⁷Cs を吸着させて作成したため、通常の土壌粒子に比べて ¹³⁷Cs が離れやすく、農業用水から玄米への吸収率が高い可能性があった。そのため、新たに畑地の汚染土壌表層の土壌粒子を含む農業用水を供試して行ったところ、溶存態の約 7%以下であった。よって、農業用水中の土壌粒子中の玄米の放射性 Cs の移行は低いと考えられた。以上より、農業用水中の放射性 Cs の玄米への移行のしやすさは、溶存態>有機物結合態>土壌粒子結合態であると考えられた。また、各形態とも農業用水中の ¹³⁷Cs 濃度が高くなると玄米中の ¹³⁷Cs 濃度が増加することが明らかとなった。しかし、カリの増肥を行うことで土壌由来および農業用水由来の玄米への ¹³⁷Cs の移行も低減できる。

第4章 溶存態放射性 Cs の水稲の生育期別吸収および放射性 Cs の農作物の吸収抑制

水稲は放射性 Cs を土壌および農業用水から吸収しており(第2および3章)、農業用水中に含まれる土壌粒子に付着した放射性 Cs や有機物に付着した放射性 Cs と比較して、溶存態放射性 Cs が最も水稲に吸収されやすいこと(第3章)を明らかにした。そこで本章では、水稲の生育ステージの違いが農業用水中に含まれる放射性 Cs の移行に及ぼす影響について、最も移行しやすい溶存態 ¹³⁷Cs を使用して明らかにする。また、水稲が溶存態 ¹³⁷Cs を吸収抑制に対するカリ資材を増肥の効果について、土壌中の交換性カリ含量と玄米中の ¹³⁷Cs 濃度との関係を明らかにする。さらに、畑作物について、土壌改良資材であるゼオライトを添加した場合の土壌からの吸収抑制の持続性について明らかにする。

4.1 溶存態放射性 Cs の水稲の生育期別吸収

4.1.1 緒言

本項では、水稲の生育ステージの違いが農業用水中に含まれる放射性 Cs の移行に及ぼす影響について、第3章で明らかにした最も移行しやすい溶存態 137 Cs を使用して明らかにする。

4.1.2 材料および方法

- (1) 溶存態 ¹³⁷Cs を含む用水の調製
 - 3.2.2 の ¹³⁷Cs を含む用水の調製の溶存態 ¹³⁷Cs を含む用水と同様の方法でおこなった。

(2) 栽培土壌

福島県農業総合センター内パイプハウス内のライシメータ非汚染土壌 (褐色低地土 ¹³⁷Cs 濃度 6.7Bq/kg)を使用した。

(3) 水稲の栽培

調整した土壌をポット当たり乾土相当で 2.3kg となるよう 1/5000a ワグネルポットに充填した。 2014 年 5 月 15 日に水稲を播種し、6 月 6 日に 3 葉期のイネを 1/5000a ワグネルポットに 4 株移植した。

ポット当りNを 0.18g、 P_2O_5 を 0.22g および K_2O を 0.12g (10a 当りそれぞれ 9kg、11kg および 6kg) 基肥として施用した。追肥としてポット当り 0.04g N を適宜施用した。水稲の生育期間を移植時から移植後 28 日 (生育期 1)、移植後 29 日~43 日 (幼穂形成期頃) (生育期 2)、移植後 44 日 (幼穂形成期頃)~68 日 (出穂期) (生育期 3) および移植後 69 日 (出穂期)~101 日 (成熟期) (生育期 4) に分け、一つの時期にのみ溶存態 ^{137}Cs 水 (10Bq/L) を灌水し、その他の時期には脱塩水を灌水し、灌漑水から玄米への溶存態 ^{137}Cs の移行について調査した。また、その他にコントロールとして脱塩水のみ (無添加) およびすべて時期に溶存態 ^{137}Cs を加えた区 (全生育期)の合計 6 区設けた。灌水は水深が $3\sim10cm$ となるように溶存態 ^{137}Cs 含有水および脱塩水を植物体に直接かからないように適

宜実施した。栽培期間中 (92 日間)の灌水量は、移植前に農業用水を 2L/ポット施用し、移植後は栽培終了時までに <math>22L/ポット施用した。溶存態 ^{137}Cs 水の灌水量は Period 1、2、3、4 および Whole Period の灌水量は、6.0、3.5、8.9、5.6 および 24L とした。栽培は福島県農業総合センター内のガラス温室内で行い、実験規模は各処理 1 区 1 ポット 3 反復とした。ただし、脱塩水のみを処理した区は 1 区 3 ポット 3 反復とした。

(4) 農業用水中の溶存態 ¹³⁷Cs 濃度の測定

(3) の水稲の栽培で設けた区以外に移植後ポット内の減水を再現する区を設けた。2014 年 7 月 15 日から 9 月 10 日まで 5 日おきに 1/5000a ワグネルポットの下穴よりポット内の水を 250mL 採取した。溶存態 ^{137}Cs 水の灌水量は 27L とした。採取した水は $0.45 \mu m$ メンブレンフィルター(サーモフィッシャーサイエンティフィック社製)でろ過し、U-8 容器に充填して Ge 半導体検出器(GC3020、GC3520、<math>GC4020 キャンベラジャパン社製)で溶存態 ^{137}Cs 濃度を測定した。なお、Ge 半導体検出器での測定時間は $43,200\sim54,000$ 秒とした。

(5) 水稲の ¹³⁷Cs 濃度の測定

水稲は成熟期に達した 2014 年 9 月 15 日にワグネルポット上部から 2cm の位置で収穫し、玄米、 籾殻および稲わらに分けた後、送風定温乾燥機により玄米は 105 $^{\circ}$ $^{\circ}$ 48 時間以上、籾殻および稲わらは 80 $^{\circ}$ $^{\circ}$ 72 時間以上乾燥させた。乾燥した試料は玄米および籾殻は未粉砕、稲わらはミルで粉砕し、 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 72 時間以上乾燥させた。乾燥した試料は玄米および籾殻は未粉砕、稲わらはミルで粉砕し、 $^{\circ}$ $^$

- (6) 土壌中の ¹³⁷Cs 濃度および交換性 ¹³⁷Cs 濃度の測定3.2.2 の土壌中の ¹³⁷Cs 濃度および交換性 ¹³⁷Cs 濃度の測定と同様の方法でおこなった。
- (7) 土壌中の交換性カリ含量の測定
 - 2.1.2の土壌中の交換性カリ含量の測定と同様の方法でおこなった。
- (8) 水稲地上部または玄米の用水からの 137Cs 吸収率
 - 3.2.2 の水稲地上部または玄米の用水からの 137Cs 吸収率と同様の方法でおこなった。

4.1.3 結果および考察

(1) 水稲地上部の乾物重

水稲地上部の乾物重は玄米、籾殻および稲わらでそれぞれ、 5.7 ± 0.4 、 3.5 ± 0.1 および 21.9 ± 0.3 g/pot (n=18、平均 ± 7 標準誤差) で、処理方法による差はなかった。

(2) 水稲地上部および玄米の ¹³⁷Cs 濃度

脱塩水を灌水した時の ¹³⁷Cs 濃度は玄米、籾殻、稲わら上部および下部では ND (1.2Bq/kg dry weight 以下)、3±0、4±1 および 3±0 Bq/kgDW であることから、土壌(土壌中の ¹³⁷Cs 濃度 6.7Bq/kgDW)由来の ¹³⁷Cs について無視できると判断された。生育期 3 (移植後 44 日 (幼穂形成期頃)~ 出穂期(移植後+68 日後)に溶存態 ¹³⁷Cs 添加)において、他生育期に比べて玄米、稲わら、籾殻の ¹³⁷Cs 濃度が高く、玄米への ¹³⁷Cs の移行が最も高まった(図 4-1-1、4-1-2、4-1-3 および表 4-1-1)。また、生育期 3 および全生育期で稲わら上部 (上部 4 葉まで)と稲わら下部では上部で ¹³⁷Cs 濃度が高 かった(図 4-1-3)。

(3) 土壌中の ¹³⁷Cs 濃度および交換性カリ含量

栽培終了後の土壌中の交換性カリ含量は溶存態 137 Cs を含む水の添加時期によって差は無かった。また、土壌中の 137 Cs の分布は栽培後で変化し、表層 (0-5cm) で 137 Cs 濃度が上昇したが、下層 (5-10cm) では差がみられなかった。また、同様に交換態 137 Cs 濃度も表層 0-5cm で上昇した。土壌中の 137 Cs から交換態 137 Cs の抽出率は 137 Cs の表層 0-5cm でそれぞれ 13、12、11 および 11% であり、添加時期による差はほとんど見られなかった (表 4-1-1)。

(4) 水稲地上部および玄米の ¹³⁷Cs の吸収

玄米および水稲地上部の用水からの ¹³⁷Cs の吸収率は、生育期 3 が最も高く、玄米の吸収率は他時期の 2.8~8.7 倍、稲地上部の吸収率は 2.0~5.8 倍であった(表 4-1-2)。

生育期 $1\sim4$ の総計に対する生育期 1、2、3 および 4 それぞれの水稲地上部内の ^{137}Cs 存在量は 9、 14、 $69 および 8%であった。また、地上部の <math>^{137}Cs$ 量に対する玄米の ^{137}Cs 割合は生育期 1、2、3 および 4 それぞれ 8.4、6.0、9.0 および 5.7%であり、生育期 <math>3 の割合が高かった(図 4-1-4)。

各生育期の ¹³⁷Cs の積算値を図 4-1-5 および図 4-1-6 に示した。これによると、幼穂形成期頃から出穂期に吸収した ¹³⁷Cs が収穫時の ¹³⁷Cs 濃度に寄与していることが明らかとなった。長谷川ら(1987)によると、水稲のカリの吸収割合は、最高分けつ期までに最大吸収量の約 40%、最高分けつ期から出穂期までに約 60%の吸収であり、最高分けつ期から出穂までの間の吸収が著しく多いが、これは最高分けつ期までのカリ要求強度は極めて強いものの乾物生産量が少ないため吸収量は相対的に少なく、一方、最高分けつ期から出穂期までは要求強度は急激に低下するが乾物生産の増加が著しいため吸収量も多くなることである。本実験条件では、カリの吸収とほぼ同様のパターンで農業用水由来の ¹³⁷Cs が吸収されたことが示唆された。また、土壌中の ¹³⁷Cs 濃度が 2,355Bq/kg、交換性カリ含量が 30mg/kg のグライ土水田では水稲の ¹³⁷Cs の吸収は生育前半に多く、出穂期以降は稲全体の Cs 量がほぼ横ばいで Cs 吸収が少ない(農林水産省ほか 2014)ことが知られているが、同様に農業用水中の ¹³⁷Cs の吸収も出穂期以降は少ないことが明らかになった。

これまで Cs 吸収は K の吸収機構と類似していることが多くの実験で明らかになっており (White and Broadley 2000),農業用水由来の溶存態 ¹³⁷Cs の吸収も同様であった。また、これまで、カリの増加により Cs の吸収抑制すること (Zhu and Smolders 2000) や第 2 および 3 章から溶存態 ¹³⁷Cs の吸収も土壌と同様に土壌中の交換性カリ含量を増やすことで抑えることが可能であることから、吸収抑制対策としてのカリの施用は出穂期前までに行うことが重要であると考えられた。

(5) 農業用水中の溶存態 ¹³⁷Cs 濃度の測定

5 日おきに採取した農業用水中の溶存態 137 Cs 濃度は ND(<2.2Bq/L)であり、農業用水の溶存態 137 Cs の上昇はみらず、蒸発や地下浸透による農業用水中の溶存態 137 Cs の濃縮は無いと判断した。また、玄米中の 137 Cs 濃度は水の採取ありで $^{174\pm8}$ Bq/kgDW、採取無しで $^{176\pm11}$ Bq/kgDW(平均値生標準誤差)となり有意な差($^{t-test}$ t

4.1.4 まとめ

本項では溶存態 ¹³⁷Cs (濃度は 10Bq/L)を含む水を水稲の生育期別に灌水することで、どの生育期に 放射性 Cs を含む水が流入すると水稲玄米への移行に及ぼす影響が大きいか明らかにした。幼穂形成期 から出穂期までに流入した溶存態 ¹³⁷Cs の影響が大きく、玄米中の ¹³⁷Cs 濃度の上昇に寄与した。また、 土壌からのカリの吸収とほぼ同様のパターンで農業用水由来の溶存態 ¹³⁷Cs を吸収する。また、出穂期 以降は土壌由来と同様に農業用水からの ¹³⁷Cs の吸収は少ないことが明らかになった。

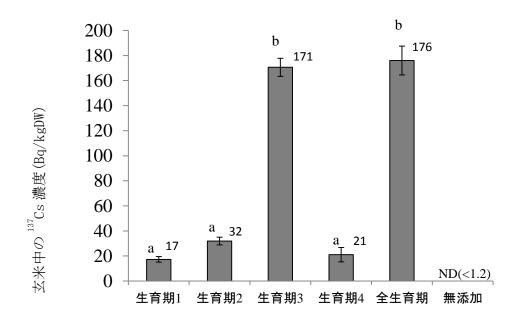


図 4-1-1 溶存態 ¹³⁷Cs の添加した生育期別の玄米中の ¹³⁷Cs 濃度 エラーバーは標準誤差 (n=3) 同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey 法)

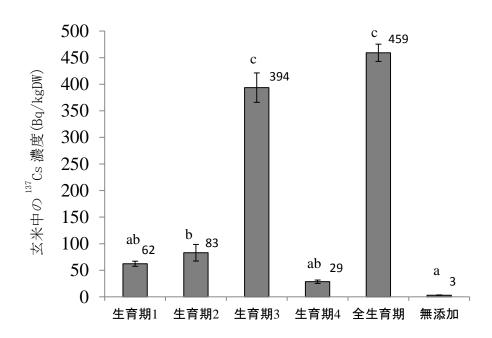


図 4-1-2 溶存態 ¹³⁷Cs の添加した生育期別の籾殻中の ¹³⁷Cs 濃度 エラーバーは標準誤差 (n=3) 同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey 法)

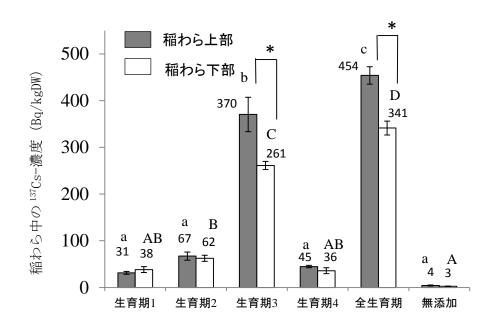


図 4-1-3 溶存態 ¹³⁷Cs を添加した生育期別の稲わら中の ¹³⁷Cs 濃度 エラーバーは標準誤差 (n=3)

同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey 法) *は稲わら部位の平均値の間に P < 0.05 で有意差があることを示す(Student's t-test)

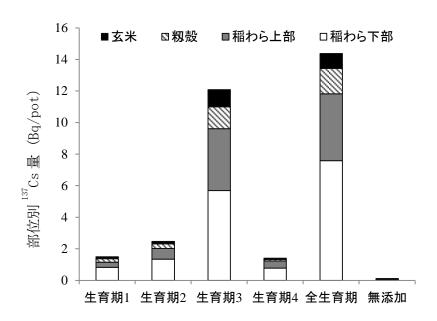


図 4-1-4 溶存態 ¹³⁷Cs の添加した生育期別の水稲の部位別 ¹³⁷Cs 量

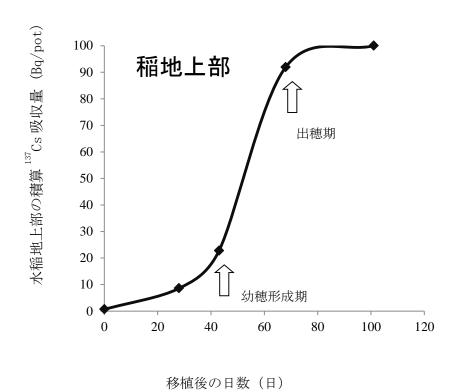


図 4-1-5 各生育期の ¹³⁷Cs 量から積算した水稲地上部の ¹³⁷Cs 吸収曲線

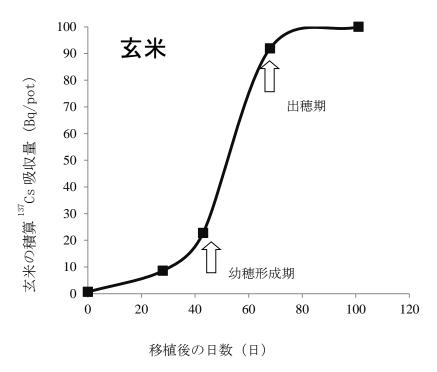


図 4-1-6 各生育ステージの ¹³⁷Cs 量から積算した水稲玄米の ¹³⁷Cs 吸収曲線

表 4-1-1 溶存態 ¹³⁷Cs を添加した生育時期別の土壌の ¹³⁷Cs 濃度

	栽培後の交換性 K	全 ¹³⁷ Cs(Bq.	/kg dry wt.)	交換性 ¹³⁷ Cs(B	交換性 ¹³⁷ Cs(Bq/kg dry wt.)					
	(mg/kg dry soil)	全層	表層	下層	全層	表層	下層				
生育期1	39.7±1.2 a	27±2 d	43±4 c	6 ± 2 a	$3.5 \pm 0.5 \text{ ab}$	$4.0 \pm 0.5 \text{ b}$	ND (< 0.8)				
生育期 2	40.7 ± 1.1 a	14±1 b	16±3 ab	$8 \pm 2 a$	1.7 ± 0.2 a	$1.8 \pm 0.1 a$	ND (< 0.8)				
生育期3	40.1 ± 1.0 a	25 ± 1 cd	36 ± 4 c	7±3 a	2.7 ± 0.3 ab	$3.1 \pm 0.2 \text{ b}$	ND (< 0.8)				
生育期 4	37.5 ± 1.5 a	18 ± 3 bc	27 ± 2 bc	7±4 a	$1.9 \pm 0.1 a$	2.9 ± 0.2 ab	ND (< 0.8)				
全生育期	38.2±2.1 a	54±1 e	101 ± 3 d	13±1 a	$3.9 \pm 0.6 \text{ b}$	$7.1 \pm 0.1 c$	0.9 ± 0.3				
無添加	39.8±0.3 a	5±2 a	3±0 a	4±1 a	ND (< 0.8)	ND (< 0.8)	ND (< 0.8)				

同一アルファベット間で有意差がないことを示す (P < 0.05 Tukey 法)

表 4-1-2 溶存態 ¹³⁷Cs を添加した生育時期別の ¹³⁷Cs 吸収率

	吸填	又率(%)
	玄米	稲地上部
生育期1	0.21 ± 0.04	2.31 ± 0.20
生育期 2	0.43 ± 0.08	6.73 ± 0.25
生育期3	1.22 ± 0.28	13.46 ± 0.84
生育期 4	0.14 ± 0.02	2.32 ± 0.06
全生育期	0.39 ± 0.04	5.94 ± 0.17

4.2 溶存態放射性 Cs の水稲への吸収抑制

4.2.1 緒言

前項では、溶存態 ¹³⁷Cs が水稲では出穂期前に最も吸収され、玄米に移行することを明らかにした。 本項では、水稲による溶存態 ¹³⁷Cs の吸収抑制に対するカリ資材増肥の効果を解明するために、土壌中の交換性カリ含量と玄米中の ¹³⁷Cs 濃度との関係を明らかにする。

4.2.2 材料および方法

- (1) 溶存態 ¹³⁷Cs を含む用水の調製
 - 3.2.2の ¹³⁷Cs を含む用水の調製の溶存態 ¹³⁷Cs を含む用水と同様の方法でおこなった。
- (2) 栽培土壌の調整
 - 3.2.2の栽培土壌の調整と同様の方法でおこなった。
- (3) 水稲の栽培

調整した各土壌をポット当たり乾土相当で 2.3kg となるよう 1/5000a ワグネルポットに充填した。 2014 年 5 月 15 日に水稲を播種し、6 月 6 日に 3 葉期のイネを 1/5000a ワグネルポットに 4 株移植した。

ポット当りNを 0.18g、 P_2O_5 を 0.22g、(10a 当りそれぞれ 9kg、11kg)基肥として施用した。 K_2O については土壌中の交換性 K_2O が添加なし、100、250、500 および 1000 mg/kgDW になるように塩化カリを施用し、それぞれ、K-O、K-100、K-250、K-500 および K-1000 区とした。追肥としてポット当り 0.04g N を適宜施用した。灌水は水深が $3\sim10$ cm となるように ^{137}Cs 濃度が 10Bq/L に調整した溶存態 ^{137}Cs 含有水および脱塩水を植物体に直接かからないように適宜実施した。栽培期間中(92 日間)の灌水量は、移植前に 2L/ポット、移植後は栽培終了時までに 22L/ポット施用した。栽培は福島県農業総合センター内のガラス温室内で行い、試験規模は各処理 1 区 1 ポット 3 反復とした。ただし、脱塩水のみを処理した区は 1 区 3 ポット 3 反復とした。

- (4) 水稲の ¹³⁷Cs 濃度の測定
 - 3.2.2 の水稲の ¹³⁷Cs 濃度の測定と同様の方法でおこなった。
- (5) 土壌中の ¹³⁷Cs 濃度および交換性 ¹³⁷Cs 濃度の測定
 - 3.2.2 の土壌中の ¹³⁷Cs 濃度および交換性 ¹³⁷Cs 濃度の測定と同様の方法でおこなった。
- (6) 土壌中の交換性カリ含量の測定および EC
- 2.1.2 の土壌中の交換性カリ含量の測定と同様の方法でおこなった。また、栽培後の EC は風乾土 20.0g に蒸留水 100mL を加え、1 時間振とう後、電気伝導率計 (Five Easy FE30 メトラー・トレド株式会社) により測定した (土壌環境分析法 1997)。

(7) 玄米の用水からの ¹³⁷Cs 吸収率

3.2.2 の玄米の用水からの ¹³⁷Cs 吸収率と同様の方法でおこなった。

4.2.3 結果および考察

(1) 水稲地上部の乾物重

水稲地上部(玄米、籾殻、稲わら)のポット当たりの乾物重は稲わらが K-500、K-1000 で減少した表 4-2-1)。塩化カリの施用量が多いと栽培後の EC は高まったため(表 4-2-2)、稲わらの乾物重が減少したと判断した。

(2) 水稲地上部の ¹³⁷Cs 濃度

脱塩水を灌水した時の 137 Cs 濃度は玄米、籾殻、稲わら上部および下部では ND (1. 2Bq/kg DW 以下)、 3 ± 0 、 4 ± 1 、 3 ± 0 Bq/kg DW であることから、土壌由来の 137 Cs については無視できると判断された。土壌中の交換性カリ含量が増加するにつれて、稲地上部(玄米、籾殻および稲わら)の 137 Cs 濃度が減少し、農業用水由来の 137 Cs 濃度の増加が抑えられた。K-1000 区では K-0 区の 137 Cs 濃度に対して、玄米、籾殻および稲わらでそれぞれ 27%、19%および 27%に低減した (図 4-2-3)。

(3) 水稲玄米の ¹³⁷Cs 吸収率

土壌中の交換性カリ含量が増加するにつれて、玄米の ¹³⁷Cs 吸収率が減少し、農業用水由来の ¹³⁷Cs 吸収の増加が抑えられた。

(4) 玄米濃度と土壌中の交換性カリ含量

農業用水由来の ¹³⁷Cs 吸収は土壌中の交換性カリ含量の影響をうけ、玄米の ¹³⁷Cs 濃度は交換性カリ含量が高いほど低かった(図 4-1-1、表 4-2-5)。農業用水に含まれる ¹³⁷Cs は土壌の表層に吸着し表層から 5 cm以上の下層にはほとんど移動が見られなかった。同様に土壌中の交換性 ¹³⁷Cs は表層で上昇し、土壌中の交換性カリ含量が高いほど土壌中の交換性 ¹³⁷Cs 濃度が低下した。また、玄米中の ¹³⁷Cs 濃度と交換性 ¹³⁷Cs/交換性 K の関係(Kondo *at al.* 2015)には正の相関関係がみられた(図 4-2-2)。以上より、農業用水由来の ¹³⁷Cs 吸収は土壌中の交換性 ¹³⁷Cs 濃度および交換性 K 含量の影響を受けることが明らかになった。

4.2.4 まとめ

水稲の土壌中の交換性カリ含量と溶存態 ¹³⁷Cs 吸収量との関係を明らかにした。土壌中の交換性カリ含量を 5 水準に設定し、溶存態 ¹³⁷Cs を含む水を灌水し、農業用水から玄米への溶存態 ¹³⁷Cs の吸収抑制について明らかにした。農業用水中の溶存態 ¹³⁷Cs は土壌中の交換性カリ含量を増加させることで吸収

を抑制できる。

表 4-2-1 乾物重

		乾物重 (g/pot dry weight)													
		玄	米		籾殼				稲わら						
K-無添加	6. 3	±	1.3	а	3. 5	土	0.2	а	31.6	土	0.8	b			
K-100	6. 1	\pm	0.4	а	3.6	\pm	0.2	а	33. 1	\pm	0.1	b			
K-250	5. 5	\pm	0.7	а	3. 2	\pm	0.4	а	32. 9	\pm	0.8	b			
K-500	2.7	\pm	0.9	а	2.3	\pm	0.5	а	24. 5	\pm	0.2	а			
K-1000	2.5	\pm	0.7	а	2. 1	\pm	0.6	а	24. 2	\pm	1.4	а			
control	6.3	\pm	0.8	а	3. 7	\pm	0.1	a	33. 4	\pm	0.6	b			

データは 3 反復の平均値 ± 標準誤差

表 4-2-2 栽培後の EC

	EC	m)	
K-無添加	2. 21	±	0. 13
K-100	2. 56	\pm	0.04
K-250	2. 33	\pm	0.20
K-500	3. 69	\pm	0.01
K-1000	5. 74	\pm	0.45

表 4-2-3 水稲の部位別 ¹³⁷Cs 濃度

			¹³⁷ Cs	濃度	(Bq/kg dry weight)							
	玄米				籾殻				稲わら			
K-無添加	211	±	14	С	532	土	30	е	433	±	19	d
K-100	167	\pm	16	c	396	\pm	14	d	370	\pm	13	d
K-250	117	\pm	2	b	278	\pm	16	c	252	\pm	27	c
K-500	101	\pm	3	ab	172	\pm	25	b	159	\pm	11	b
K-1000	56	\pm	2	a	102	\pm	27	b	119	\pm	19	b

表 4-2-4 水稲玄米の農業用水由来の ¹³⁷Cs 吸収率

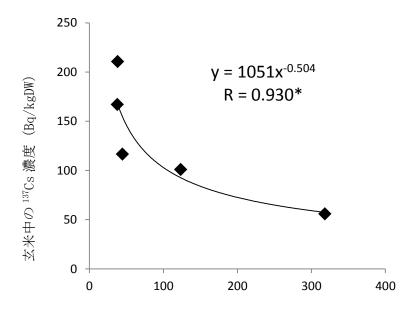

	吸収率(%)										
K-無添加	0. 55	±	0. 13								
K-100	0.42	\pm	0.02								
K-250	0. 29	\pm	0.03								
K-500	0. 15	\pm	0.05								
K-1000	0.08	\pm	0.02								

表 4-2-5 栽培前後の交換性 K 含量

		交換性 K (mg/kg dry soil)										
		栽培前 栽培後										
K-無添加	57	±	4	a	38	±	1	а				
K-100	89	\pm	16	a	38	\pm	1	а				
K-250	206	\pm	16	b	45	\pm	0	а				
K-500	398	\pm	24	c	123	\pm	8	b				
K-1000	759	\pm	15	d	318	\pm	14	С				

表 4-2-6 土壌の ¹³⁷Cs 濃度と交換性 ¹³⁷Cs 濃度

		全 ¹³⁷ Cs(Bq/kg dry wt.)	交換性 ¹³⁷ Cs (Bq/kg dry wt.)								
	 全層	表層	下層	 全層	表層	下層						
K-無添加	65 ± 8	104 ± 20	16 ± 2	6.5 ± 1.1	8.2 ± 1.8	1.1 ± 0.1						
K-100	62 ± 8	74 ± 5	18 ± 10	6.1 \pm 0.8	4.9 ± 0.2	1.2 ± 0.1						
K-250	58 ± 11	88 ± 6	7 ± 1	3.8 ± 0.9	5.5 ± 1.9	0.9 ± 0.2						
K-500	51 ± 3	98 ± 13	14 ± 2	2.8 ± 0.5	4.7 ± 0.8	ND(<0.8)						
K-1000	88 ± 8	111 ± 28	7 ± 4	2.5 ± 0.2	4.4 ± 0.4	ND(<0.8)						

栽培後の土壌中の交換性 K 含量(mg/kg 乾土)

図 4-2-1 栽培終了時の土壌中の交換性 K 含量と玄米中の 137Cs 濃度

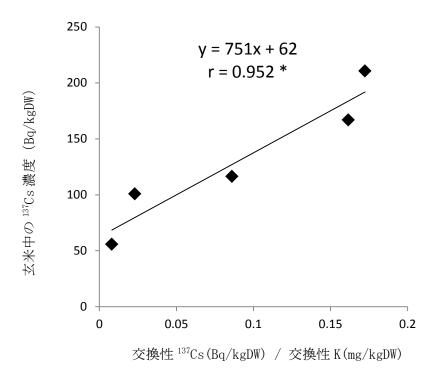


図 4-2-2 玄米中の $^{137}\mathrm{Cs}$ 濃度と交換性 $^{137}\mathrm{Cs}$ /交換性 K の関係

4.3 畑作物におけるゼオライト施用による土壌からの放射性 Cs 吸収抑制の持続性

4.3.1 緒言

畑作物ではカリの増肥以外に土壌改良資材であるゼオライトが放射性セシウムの吸収抑制資材として使用されている。しかし、その効果が何によってもたらされているのか、またどの程度持続するのかは明らかになっていない。ここでは、これまでに行った報告(Parajuli, et al. 2016)をもとにヒマワリを用いて、吸収抑制資材であるゼオライトの効果とその持続性を明らかにする。

4.3.2 材料および方法

(1) 栽培土壌の調整

調整した各土壌をポット当たり乾土相当で 2.0kg となるよう 1/5000a ワグネルポットに充填した。ゼオライトと対照区を設け、ゼオライト区では斜プチロル沸石を主とし少量のモルデン沸石を含むゼオライト (粒径 1~3mm イセヤゼオライト ジークライト株式会社)をポットあたり 200g (100t/ha) および水道水 500mL を 2011 年 7 月 8 日に土壌に添加し混和した。対照区ではポットあたり同一日に水道水 500mL を土壌に添加し混和し供した。なお、本実験では吸着資材の持続性をみるためゼオライト添加は 1 作目のみとした。

(2) ヒマワリの栽培方法

2011 年は 1 作、2012 年から 2014 年はヒマワリを年 2 回栽培し、播種日および収穫日(開花時) は表 4-3-1 に示した。なお、ヒマワリ(*Helianthus annuus* L.)は F1 サンリッチオレンジ(タキイ種苗)を 1 ポットに 8 粒播種し、間引きしてポット当たり 4 株とした。

基肥をポット当たり苦土石灰 200g 土壌に混合し、各作付けの発芽確認後に追肥として硫安 1g および CDU たまご化成 2g を各ポットに表面施用した。

栽培は福島県農業総合センター内のガラス温室内で行い、規模は $1 \boxtimes 1$ ポットで 3 作目までは 4 反復、4 から 7 作目までは 3 反復とした。

(3) ヒマワリ地上部の ¹³⁷Cs 濃度の測定

ヒマワリは開花時に地際から 2 cm の位置で茎を切除し子葉を除去後、水道水で洗浄し、送風定温 乾燥機により $75 ^{\circ}$ Cで 72 時間以上乾燥させた。乾燥した試料をミルで粉砕し、U-8 容器に充填して Ge半導体検出器 (GC3020、GC3520、GC4020 キャンベラジャパン社製) で 137 Cs 濃度を測定した。なお、Ge 半導体検出器での測定時間は $4,000 \sim 50,000$ 秒とし、 137 Cs 濃度は収穫日でそれぞれ減衰補正した。

(4) 土壌中の ¹³⁷Cs 濃度および交換性 ¹³⁷Cs 濃度の測定

ワグネルポット内の土壌の ¹³⁷Cs 濃度は、風乾土を U-8 容器に充填し Ge 半導体検出器 (GC2020 キャンベラジャパン社製) で ¹³⁷Cs 濃度を計測後、水分補正し乾土当たりとして算出した。土壌中の

交換性 137 Cs 濃度は、風乾土 29 に 1M 酢酸アンモニウム(137 Cs 濃度は、風乾土 29 については 137 Cs 濃度)については 137 Cs 濃度は収穫日で減衰補正した。

(5) 土壌中の交換性カリ含量の測定

2.1.2の土壌中の交換性カリ含量の測定と同様の方法でおこなった。

4.3.3 結果および考察

(1) ヒマワリ地上部の ¹³⁷Cs 濃度の推移

ゼオライトの添加によりヒマワリ地上部の 137 Cs 濃度が減少した(図 4-3-1)。また 2 作目でさらに 137 Cs 濃度は減少し、3 作目から 7 作目まではほぼ同程度で推移していたことから 7 作目(2011~2014 年作)まで吸収抑制効果が持続したと考えられた。

(2) 土壌中の交換性カリ含量と交換性 137Cs の割合の推移

土壌中の交換性カリ濃度はゼオライト区で高く維持された(表 4-3-2)。また、土壌中の交換性 ¹³⁷Cs の割合は 1 作目で対照区の 68%に減少した。土壌中の交換性 5 作目のゼオライト区の土壌中の交換性 ¹³⁷Cs の割合が対照区と同程度以上になった(図 4-3-2)。

日本で資源として利用されているゼオライトは斜プチロル沸石とモルデン沸石であり(日本学術振興会鉱物活用第 111 委員会・天然ゼオライト利用研究分科会 2006)、本実験で供したゼオライトは斜プチロル沸石を主としている。ゼオライトのイオン吸着選択性は、ゼオライトの Si/Al モル比、ゼオライトのもつ空隙サイズと空隙形状、吸着されるイオンの電荷/イオン半径比に大きく依存しているため、Si/Al モル比の大きな斜プチロル沸石は Ca²+より K+に対する選択性が高く、Si/Al モル比の小さなゼオライトでは 2 価の陽イオンに対する選択性がより高くなる(山口ら 2012)。そのため、1 価の陽イオンである ¹³⁷Cs が吸着されて土壌中の交換性 ¹³⁷Cs の割合が 1 作目で対照区より低下したと考えられた。ゼオライト区では、土壌中の交換性 ¹³⁷Cs の割合が 5 作目 (2013 年作) 以降、対照区より相対的に多くなっているが、吸収抑制効果が持続していることから、ゼオライトの ¹³⁷Cs 吸着効果以上に土壌中の交換性カリ含量の増加を通じて吸収抑制に寄与していると考えられた。また、ゼオライト添加による土壌中の交換性カリ含量が高く維持されたが、土壌中の交換性 ¹³⁷Cs は 6 作目以降で対照区より上昇した。そのため、ゼオライトの吸収抑制の持続効果は主に土壌中の交換性カリ含量の増加による影響と判断した。

4.3.4 まとめ

黒ボク土に吸収抑制資材であるゼオライトを添加してからヒマワリのポット栽培を7作(2011年~2014年)まで栽培を行ったが、放射性 Cs の吸収抑制効果は持続し、ヒマワリ地上部の放射性 Cs 濃度はコントロールと比べて低い濃度であった。ゼオライトの吸収抑制の持続効果は主に土壌中の交換性カリ含量の増加による影響と考えられた。

表 4-3-1 播種および収穫日

	1作目	2作目 3作目		4作目	5作目	6作目	7作目
播種日	7月9日	4月27日	7月26日	5月19日	8月25日	6月27日	9月5日
収穫日	9月16日	7月11日	10月12日	8月2日	10月31日	9月5日	11月6日

¹作目(2011年)、2~3作目(2012年)、4~5作目(2013年)、6~7作目(2014年)

表 4-3-2 交換性カリ含量の推移

試験区		交換性カリ含量 (mg/kgDW)																			
	1 作目		2 作目		3 作目		4作目		5 作目		6 作目		7作目								
コントロール	40.0	\pm	8.0	39. 0	±	4.0	30.0	±	3. 0	42.0	±	2.0	52.0	\pm	8.0	24. 0	\pm	2.0	49.0	\pm	2.0
ゼオライト	2190	\pm	17	2180	\pm	24	2200	\pm	46	1630	\pm	13	2980	\pm	17	1560	\pm	17	1340	\pm	16

1作目(2011年)、2~3作目(2012年)、4~5作目(2013年)、6~7作目(2014年)

データは3反復(または4反復)の平均値 ± 標準誤差、なお、1~3作目までは4反復、4作目以降は3反復

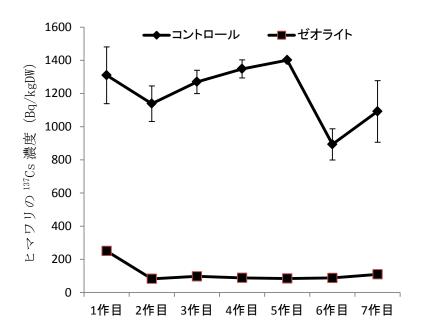


図 4-3-1 ゼオライトを添加した黒ボク土の連作時のヒマワリの ¹³⁷Cs 濃度変化 1 作目 (2011 年)、2~3 作目 (2012 年)、4~5 作目 (2013 年)、6~7 作目 (2014 年)

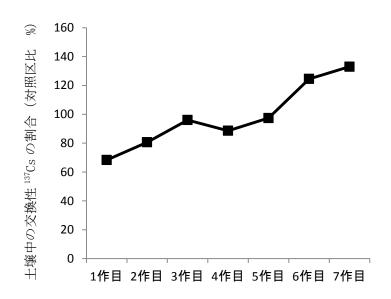


図 4-3-2 ゼオライトを添加した黒ボク土の連作時の土壌中の交換性 ¹³⁷Cs の割合の変化 (対照区比) 1 作目 (2011 年)、2~3 作目 (2012 年)、4~5 作目 (2013 年)、6~7 作目 (2014 年)

4.4 まとめ

水稲は、放射性セシウム(¹³⁷Cs)を土壌および農業用水から吸収しており、第 3 章では農業用水中の放射性 Cs の中、溶存態 Cs が最も水稲に吸収されやすいことを明らかにした。本章では、水稲が溶存態 ¹³⁷Cs を吸収しやすい時期を明らかにするため、溶存態 ¹³⁷Cs(10Bq/L)を含む水をポットで育てた水稲に灌水し、灌漑水から玄米への溶存態 ¹³⁷Cs の移行を調査した。また、農業用水由来の放射性 Cs の吸収を抑制するために、カリ増肥の効果を調査した。さらに、畑作物で土壌からの移行を抑制するために施用されたゼオライトの持続効果を調査した。稲の生育ステージ別に溶存態 ¹³⁷Cs を与えたところ、出穂前 24 日(移植後 44 日)~出穂期(移植後 68 日)で他の時期に比べて玄米の ¹³⁷Cs 濃度が最も高くなった。本実験では溶存態 ¹³⁷Cs が出穂期前に吸収されると玄米に最も移行することが明らかとなった。

栽培前の目標とする土壌の交換性カリ含量を無添加、50,250、500 および 1000mg/kg 乾土とし、栽培期間中、溶存態 ¹³⁷Cs を含む水を灌水したところ、農業用水中の溶存態 ¹³⁷Cs は土壌中の交換性カリ含量を増加させることで吸収を抑制できることが明らかとなった。畑作物では、吸収抑制資材であるゼオライトを添加し、ヒマワリのポット栽培を 7 作(2011 年~2014 年)まで行ったところ、放射性Cs の吸収抑制効果は持続した。ゼオライトの施用により、土壌中の交換性カリ含量が高く維持されたが、土壌中の交換性 ¹³⁷Cs は 6 作目以降は無施用より上昇した。そのため、ゼオライトの吸収抑制の持続効果は主に土壌中の交換性カリ含量の増加による影響と考えられた。

第5章 総合考察

本論文では、土壌および農業用水中の放射性セシウムが農作物に与える影響について以下の結果を得た。第2章では、農業用水中の溶存態 ¹³⁷Cs の増加により水稲およびヒマワリの ¹³⁷Cs 濃度が増加すること、その吸収率は畑作物のヒマワリより水稲で大きいことを明らかにした。第3章では、農業用水に含まれる溶存態および懸濁態 ¹³⁷Cs の農作物への移行について、農業用水の影響が大きい水稲を使用して調査し、最も移行しやすい形態の ¹³⁷Cs が溶存態であることが明らかにした。第4章では、最も移行しやすい溶存態 ¹³⁷Cs を吸収しやすい水稲の生育ステージ毎に与えて、水稲の幼穂形成期頃~出穂期前に最も吸収し玄米に移行することを明らかにした。さらに、土壌中の交換性カリ含量と吸収量との関係を解明し、溶存態 ¹³⁷Cs を吸収抑制するためにカリ資材の増肥の効果を明らかにした。本章では、全体を通じた総括的な考察を行い、各章において十分にふれなかった点についても補足しつつ、今後の展開の可能性と問題点について述べる。

5.1 ポット試験での農業用水中の ¹³⁷Cs の移行

第 2 章から第 4 章までの水稲およびヒマワリのポット栽培はすべてガラス温室内で行った研究である。また、水稲では地下浸透について考慮しておらず、減水要因は主に稲の吸収および蒸発である。 移植時から成熟期まで湛水状態を維持しており、中干し期間を設けていない。そのため、実際の水田と条件が異なっておりポット栽培のため稲の根域がされて上根が多発生しているため水田での吸収率より過大評価をしている可能性がある。

交換性 K₂O が低い土壌では農業用水中の濃度が 1Bq/L 以上、交換性 K₂O が高い土壌でも 10Bq/L になると農作物中の放射性 Cs 濃度が増加する可能性がある (第 2 章)。これまで、福島県内の農業生産が行われている地域の河川や農業用水の溶存態放射性 Cs 濃度は、1Bq/L 未満がほとんどである。そのため水稲および畑作物では福島県で実施している土壌からの吸収抑制対策を実施すれば(福島県農林水産部 2015a、b)、農業用水が主要因として基準値を超えることはないと考えられる。

東京電力原発事故以降、福島県では 2012 年より米の全量全袋検査を実施し福島県内で生産された玄 米でこの基準値を超過したものは、2012 年は 71 点、2013 年は 28 点、2014 年は 2 点であり年々減少 し、2015 年は基準値超過がない(ふくしまの恵み安全対策協議会 放射性物質検査情報)。

2014 年には南相馬市で土壌中の交換性リ含量が十分量ある一部の地域の圃場でも基準値超過がみられ、農業用水が疑われ、河川などの放射性 Cs が調べられている(農林水産省 2014、)。福島県中通り地区などの河川(Tsuji, et al. 2014)と比較して溶存態放射性 Cs が高い値を示しているが、1Bq/L 未満であり、農業用水が主要因とは考えられない。

以上より、本研究より農作物の放射性 Cs の基準値超過に寄与する農業用水の 137Cs 濃度は土壌中の交換性

カリが低い土壌では 10Bq/L、カリ濃度が高い土壌では 1Bq/L が基準と考えられ、その前提でカリの増肥などの吸収抑制対策が必要になると考えられる。

5.2 水田での農業用水中の ¹³⁷Cs の移行

水稲のポット栽培による結果を一般化するためには、実栽培とは収量等条件が異なるため、水田での実栽培でのリスク評価が必要である。そのため、第2章と4章で算出した農業用水からの玄米の吸収率を使用し、水田一般での放射性Csの上昇リスクを計算してみた(図6-1)。

試算は溶存態 137 Cs 濃度別の玄米中の 137 Cs 濃度の増加について行った。試算式は下記のとおり。 農業用水由来の玄米の 137 Cs 濃度 (Bq/kg)

= {農業用水からの吸収率 (%) ×農業用水量 (L/10a) ×農業用水の ¹³⁷Cs 濃度 (Bq/L) } /玄米の収量 (kg/10a)

なお A、玄米の収量を福島県の平成 $22\sim26$ 年度の 5 カ年の平均収量の 556kg/10a とした(農林水産省 東北農政局福島地域センター公表値より算出)。また、農業用水量は水田(2001)の計算値である 1441 t /10a より、農業用水量を 1.5×10^6 L/10a とした。

第2章のデータは、交換性 K 濃度の低い土壌 A で 10Bq/L の農業用水で栽培した時の吸収率 1.6%を使用し、第4章のデータは一般的なカリ施用をした土壌で 10Bq/L の農業用水で栽培した時の吸収率の 0.36%と福島県での放射性 Cs の吸収抑制対策での施肥基準(福島県農林水産部 2015a,b)である 250mg/kg 乾土を目標として土壌を調整した時の吸収率の 0.29%およびその倍量の 500mg/kg 乾土の時の吸収率 0.15%を使用した。

図 5-1 より、土壌中のカリ濃度が低い(栽培前の土壌中の交換性 K_2 0 含量 50 mg/kg 乾土)条件下では農業用水中の放射性 Cs 濃度が 2.3 Bq/L で、一般的なカリ施肥量の土壌(本研究では栽培前の土壌中の K_2 0 含量 100 mg/kg 乾土)では 9.5 Bq/L のとき、玄米の基準値の 100 Bq/L を超える可能性が考えられる。しかし、福島県での放射性 Cs の吸収抑制対策での施肥基準である 250 mg/kg 乾土以上であれば 10 Bq/L でも玄米の基準値の 100 Bq/L を超えないと試算された。

第2章から第4章までの水稲のポット栽培は、移植時から成熟期まで湛水状態を維持しており、中 干し期間を設けていない。そのため、稲の根域が制限されて上根が多発生し、放射性 Cs の吸収率を 水田におけるものより過大に評価をしている可能性がある。しかし、放射性 Cs の移行のリスク評価 する上では有効であると考えられる。

農業用水中の溶存態 ¹³⁷Cs が一部のため池水では 10Bq/L となっており(農林水産省農村振興局、福島県農林水産部 2014)、このような通常のカリの施肥量では本研究の吸収率より算出すると通常管理では玄米の基準値 100Bq/kg を超える可能性がある。しかし、前述のように土壌からの放射性 Cs の

吸収抑制対策として行われている塩化カリの基肥施用による土壌中の交換性 K_2O 含量を 250mg/kg 乾土 以上にすることで玄米の基準値 100Bq/kg を超える可能性は低いと考えられる。

さらに、農業用水が 10Bq/L を超えるような溶存態放射性 Cs を含む場合、ため池の底質土を取り除くなどの除染および水の放射性 Cs 濃度の定期的なモニタリングを実施することで基準値を超える可能性が低くなると考えられる。一方で、プルシアンブルーを坦持させた不織布を利用したカートリッジの利用(保高ら 2013、Yasutaka, et al. 2013、Yasutaka, et al. 2015)やラドディスクによる濃縮(藤村ら 2013)など、水中の迅速な放射性 Cs 濃度の測定法が開発されており、その利用が期待できる。また、懸濁態は大雨、台風などの災害時に増加することから(FFPRI 2012a, b, c)、災害時の懸濁態の高い水の流入を防ぐことで影響を軽減することができると考えられる。特に第4章で明らかにした水稲の幼穂形成期から出穂期までの非常に放射性 Cs を吸収する時期は農業用水中の放射性 Cs の影響を受けやすいため、災害時の農業用水の流入には注意が必要と考えられる。

5.3 まとめと今後の課題

前項では水稲における農業用水中の放射性 Cs の影響について考察した。本論文では基準値超過をもたらす農業用水の ¹³⁷Cs 濃度を想定し、吸収抑制対策の必要となる基準を明らかにすることを目的に実施した(図 5-2)。畑作物は水稲に比べて農業用水の影響を受けにくく、溶存態放射性 Cs が 10Bq/L でも土壌中の交換性カリ含量が高くすることで基準値を超える可能性は低い(第 2 章)。そのため、畑作物や園芸作物の栽培には農業用水由来の放射性 Cs によって基準値を超える可能性は低い。同様に前項で考察したように、水稲では塩化カリの基肥施用による土壌中の交換性 K₂O 含量を 250mg/kg 乾土以上にすることで農業用水由来によって玄米の基準値 100Bq/kg を超える可能性は低いと判断できる。本論文は、ポット栽培結果による解析結果であるため、今後被災地域での試験作付けや営農再開が行われる際に実際の水田や畑での調査研究やモニタリングをすることで、さらなる農業用水からの放射性 Cs の移行のメカニズムが明らかにする必要がある。

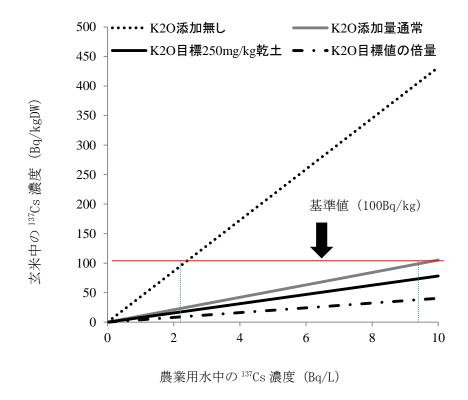


図 5-1 農業用水由来の水田での放射性 Cs の上昇の試算値 (ポット試験結果から試算)

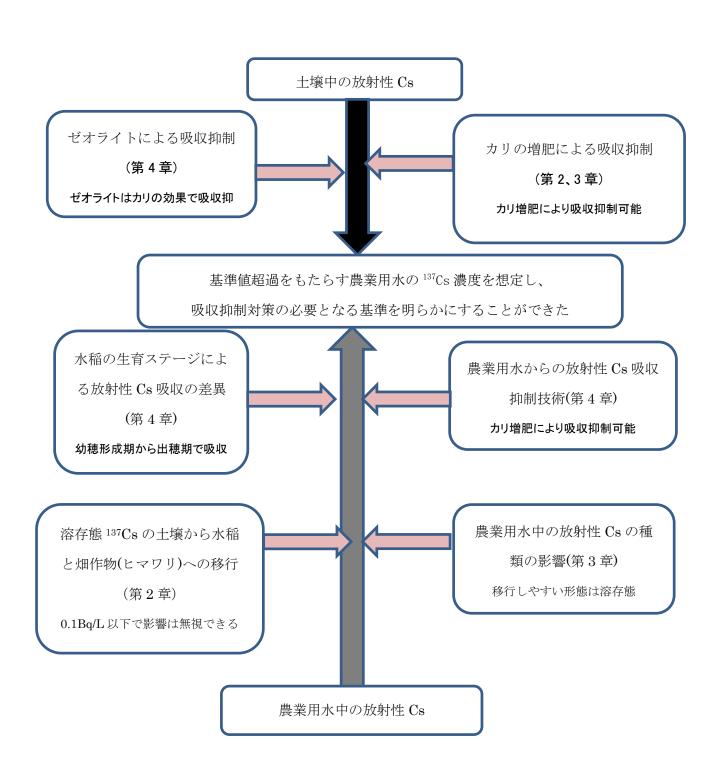


図 5-2 本論文の結果概要図

要旨

2011 年、福島県の山林からの流れる農業用水を使用して栽培した一部の玄米の放射性セシウム濃度が 500Bq/kg を超えた。そこで、農業用水に含まれる放射性セシウム(以下、¹³⁷Cs)の玄米への移行が疑わ れた。本論文では、農作物に含まれる放射性 Cs の基準値超過をもたらす農業用水の ¹³⁷Cs 濃度を想定し、 吸収抑制対策の必要となる基準を明らかにした。本研究は、¹³⁷Cs を含む水を灌水してポットで育てた水 稲玄米およびヒマワリの ¹³⁷Cs 濃度を測定することで行った。溶存態 ¹³⁷Cs を含む水で育てた玄米および 畑作物(ヒマワリ)の ¹³⁷Cs 濃度は、¹³⁷Cs 濃度が福島県の農業用水とほぼ同等の 0.1Bq/L の農業用水から の移行は、放射性 Cs の基準値(一般食品で 100Bq/kg) では水道水添加と差が無く、農業用水中の ¹³⁷Cs 濃度が 10Bq/L では農作物の ¹³⁷Cs 濃度が増加した。農業用水中の ¹³⁷Cs(溶存態、土壌粒子結合態、有機 物結合態) から玄米への ¹³⁷Cs の移行は溶存態 ¹³⁷Cs が最も吸収されやすかった。その次に、溶存態 ¹³⁷Cs を水稲が吸収しやすい生育ステージについて調査したところ、幼穂形成期から出穂期前が、他の時期に 比べて玄米への ¹³⁷Cs 移行が高まり、カリの吸収時期とほぼ一致した。また、土壌からの移行と同様に土 壌中の交換性カリ含量の増加により農業用水からの移行も低減できた。放射性 Cs 吸収抑制資材であるゼ オライトの吸収抑制の持続効果は主に土壌中の交換性カリ含量の増加による影響であることを明らかに した。以上より、畑作物は水稲に比べて農業用水の影響を受けにくく、溶存態放射性 Cs が 10Bq/L でも 土壌中の交換性カリ含量が高くすることで基準値を超える可能性は低く、畑作物や園芸作物の栽培には 農業用水由来の放射性 Cs によって基準値を超える可能性は低い。水稲では塩化カリの基肥施用による土 壌中の交換性 K₂O 含量を 250mg/kg 乾土以上にすることで農業用水由来によって玄米の基準値 100Bq/kg を超える可能性は低いと判断できる。

Summary

After the FDNPP accident, radiocesium concentrations in brown rice grown in some mountainous areas in Fukushima Prefecture, Japan, were found to exceed 500 Bq kg⁻¹. Contaminated irrigation water flowing from a nearby mountain forest was suspected as the source of the radiocesium.

In this study, we investigated the migration of dissolved radiocesium (¹³⁷Cs) from irrigation water into brown rice (*Oryza sativa* L. Hitomebore) and sunflower (*Helianthus annuus* L.) by determining the concentrations of ¹³⁷Cs in brown rice from plants and sunflower grown in pots irrigated with water containing dissolved ¹³⁷Cs at a concentration of 0.1, 1.0, or 10 Bq L⁻¹. We found that when the ¹³⁷Cs concentration in the irrigation water was 0.1 Bq L⁻¹, the amount of ¹³⁷Cs that migrated into the rice was below the provisional regulation value for ¹³⁷Cs in brown rice. For sunflower plants, the ¹³⁷Cs concentrations depended substantially on soil type when plants were irrigated with water containing ¹³⁷Cs at >10 Bq L⁻¹, but not when plants were irrigated with water containing ¹³⁷Cs at <0.1 Bq L⁻¹. For sunflower plants grown in soil with a high content of exchangeable potassium, the migration of ¹³⁷Cs from the irrigation water and the soil to the plants was reduced.

We also investigated how ¹³⁷Cs uptake into brown rice obtained from plants grown in pots irrigated with ¹³⁷Cs-containing water (1.0 or 10 Bq L⁻¹) depended on the distribution of ¹³⁷Cs in the dissolved fraction, the soil-particle-bound fraction, or the organic-matter-bound fraction. For each ¹³⁷Cs fraction, the ¹³⁷Cs concentration in the brown rice increased in proportion to the concentration in the water. The dissolved ¹³⁷Cs was absorbed at a higher rate than the organic-matter-bound and soil-particle-bound ¹³⁷Cs. Absorption rates from each fraction were higher in soil with a high exchangeable-potassium content than in soil with a low exchangeable-potassium content. Furthermore, the rates of absorption of dissolved and organic-matter-bound ¹³⁷Cs were similar for soils with the same exchangeable-potassium contents.

We also conducted experiments to determine the growth stage at which brown rice took up the most ¹³⁷Cs from the contaminated irrigation water. Specifically, rice plants were grown in continuously flooded pots and irrigated with demineralized water prior to treatment with water containing dissolved ¹³⁷Cs during one of four periods: from transplanting to 28 days after transplanting (DAT), from 29 to 43 DAT, from 44 to 68 DAT (heading), and from 69 to 101 DAT (ripening). Irrigation with contaminated water from 44 to 68 DAT resulted in the highest concentrations of ¹³⁷Cs in the grain, hull, upper straw, and lower straw, compared with irrigation during the other periods. These results indicate that reduction of the migration of ¹³⁷Cs from irrigation water to brown rice will require that the use of ¹³⁷Cs-contaminated water (such as influent from mountains that have receive radioactive fallout) should be avoided during the heading stage. In addition, the exchangeable-potassium content in soil

should be increased before the heading stage because high the exchangeable-potassium content can suppress ¹³⁷Cs uptake.

Increasing the exchangeable-potassium content in the soil also reduced ¹³⁷Cs migration from irrigation water to brown rice. For rice currently planted in the areas of Fukushima Prefecture mentioned above, measures to maintain high exchangeable-potassium content in the soil can be expected to lessen the impact of ¹³⁷Cs contamination in agricultural water, which is thought to be the main source of the high concentration of ¹³⁷Cs in the brown rice. It has been shown that suppression of ¹³⁷Cs uptake by zeolites is primarily the result of their ability to increase the amount of exchangeable potassium in soil.

Thus, compared to rice, field crops are less susceptible to the influence of dissolved radiocesium (at concentrations such as 10 Bq L⁻¹) in irrigation water, by exceed the reference value (100 Bq kg⁻¹) of brown rice for high exchangeable-potassium content in the soil. The likelihood is low that field crops and horticultural crops will exceed the reference value for radiocesium when exposed to contaminated irrigation water during cultivation. Field crops are likely to exceed the reference value for radiocesium derived from irrigation water in the cultivation of horticultural crops is low. The ¹³⁷Cs concentration in brown rice can be determined not to exceed the reference value (100 Bq kg⁻¹) as a result of the use of contaminated irrigation water and the exchange of K₂O content (250 mg kg⁻¹ dry soil) in the soil due to the application of KCl as a basal fertilizer.

謝辞

本試験の本研究および論文作成にあたり御指導いただいた千葉大学園芸学研究科の犬伏和之教授に 謹んで感謝の意を表します。また、本論文の副査として綿密なる御校閲の労を賜り、ご指導を賜った 千葉大学園学研究科の松岡延浩教授、坂本一憲教授、唐常源教授に厚く御礼申し上げます。

本研究の計画・遂行するにあたり福島県農業総合センター小巻克巳所長、佐々木昭博前所長をはじめとする皆様にはご指導、ご意見ご協力いただき深く感謝いたします。植物体および交換態放射性セシウムの一部を測定いただきました安全農業推進部分析課の皆様に、土壌の放射性セシウム濃度の測定をいただきました同位体研究所の皆様に、土壌中の交換性カリ含量の測定および土壌などの試験試料の準備ご協力いただきました生産環境部およびクレアテラの皆様に感謝いたします。また、本試験の栽培管理をする上でご助力いただきました作物園芸部花き科および農場管理課および臨時職員の皆様に感謝いたします。

本研究を行う際に貴重なご意見ご指導いただきました国立研究開発法人農業環境技術研究所の荒尾知人研究コーディネータ様をはじめとする皆様、国立研究開発法人産業技術総合研究所の川本 徹様、保高徹生様、ParajuliDurga 様、福島大学環境放射能研究所の塚田祥文教授に感謝いたします。

本研究の一部は、国立研究開発法人産業技術総合研究所「融合・連携推進予算(戦略予算)土壌と 食品に係る放射性物質リスク管理技術の開発」、農林水産省委託プロジェクト「農地等の放射性物質 の除去・低減技術の開発(農地土壌における放射性セシウム動態予測技術および拡散防止技術の開 発)」および福島県健康管理基金繰入金で実施しました。本研究の取りまとめに至るまでには、その 他にも多くの皆様に各種の御助言や御協力をいただきましたことに、心より感謝いたします。

最後に、試験遂行と本論文取りまとめの際に家庭を守り陰ながら支えてくれた妻 愛に深く感謝します。

引用文献

- 荒川市郎・平子喜一 2014. 東京電力福島第一原子力発電所の事故に伴う原子力災害に対する福島県農業総合センターの取り組み 福島県農業総合センター研究報告 放射性物質対策特集号:1-5.
- FFPRI 独立行政法人森林総合研究所 2012a. プレスリリース 融雪期における渓流水中の放射性物質の 観測結果 http://www.ffpri.affrc.go.jp/press/2012/20120612/documents/20120612.pdf (2015年10月20日現在)
- FFPRI 独立行政法人森林総合研究所 2012b. プレスリリース 梅雨期における渓流水中の放射性物質 の 観 測 結 果 http://www.ffpri.affrc.go.jp/press/2012/20120921/documents/20120921.pdf (2015 年 10 月 20 日現在)
- FFPRI 独立行政法人森林総合研究所 2012c. プレスリリース 8~10 月における渓流水中の放射性物質の 観 測 結 果 http://www.ffpri.affrc.go.jp/press/2012/20121220/documents/20121220.pdf (2015年10月20日現在)
- 福島県原子力災害対策本部 2011. 稲の作付に関する考え方 http://www.pref.fukushima.lg.jp/download/1/230408ine.pdf (2015年12月29日現在)
- 福島県農林水産部 2012. 「ふくしまからはじめよう。」農業技術情報(第25号) 「農業用被覆資材等からの放射性物質の付着防止等」https://www.pref.fukushima.lg.jp/download/1/future25H240413.pdf (2015年12月29日現在)
- 福島県農林水産部 2015a. 「ふくしまからはじめよう。」農業技術情報 (第49号) 「28年産大豆とそばの放射性セシウム吸収抑制対策」http://www.pref.fukushima.lg.jp/uploaded/attachment/105458.pdf (2015年12月29日現在)
- 福島県農林水産部 2015b. 「ふくしまからはじめよう。」農業技術情報(第50号)「28年産米の放射性セシウム吸収抑制対策」 http://www.pref.fukushima.lg.jp/uploaded/attachment/144611.pdf (2015年12月29日現在)
- ふくしまの恵み安全対策協議会. 放射性物質検査情報 2013. https://fukumegu.org/ok/kome/ (2015年12月 29日現在)
- 藤村恵人・ 山口裕顕・ 梅原孝之・ 武藤景子 2013. 固相抽出ディスクを用いた農業用水の放射性セシウム 濃度測定. *Radioisotopes*, 62(11), 841-845.
- 長谷川栄一・斉藤公夫・安井孝臣・久末勉・塩島光洲 1987. 水稲のカリウム及びナトリウム吸収. 宮城県 農業センター研究報告 55:19-36
- 神山和則・小原洋・高田祐介・齋藤隆・佐藤睦人・吉岡邦雄・谷山一郎 2015. 2011年高濃度放射性セシウム汚染玄米発生の土壌要因. 農業環境技術研究所報告 34:63-73.

- Kato, N. 2012. Countermeasures to Reduce Radiocaesium Contamination in Paddy rice, Soybean and cabbage. *International Science Symposium on combating radionuclide contamination in Agro-soil environment, Fukushima, Japan*: 317-318.
- Kato, N., Kihou, N., Fujamura, S., Ikeba, M., Miyazaki, N., Saito, Y., Eguchi, T. and Itoh, S. 2015. Potassium fertilizer and other materials as countermeasures to reduce radiocesium levels in rice: Results of urgent experiments in 2011 responding to the Fukushima Daiichi Nuclear Power Plant accident. Soil Science and Plant Nutrition, 61: 179-190.
- 経済産業省. 2011. ニュースリリース 放射性物質放出量の一部誤りについて http://warp.ndl.go.jp/info:ndljp/pid/6086248/www.meti.go.jp/press/2011/10/20111020001/201110 20001.html (2015年10月20日現在)
- 木村眞子人・仁王以智夫・丸本卓哉・金沢晋二郎・筒木潔・犬伏和之・植田徹・松口龍彦・若尾紀夫・斎藤 雅典・宮下清貴・山本広基・松本聰 1994. 土壌生化学:96-98.
- Kinoshita, N., Sueki, K., Sasa, K., Kitagawa, J., Ikarashi, S., Nishimura, T., Wong, Y., Satou, Y., Handa, K., Takahashi, T., Sato, M. and Yamagata, T. 2011. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proceedings of the National Academy of Sciences of the United States of America. 108-49:19526-19529.
- 小林智之・齊藤誠一・原有 2014. 野菜の放射性セシウム (Cs) の吸収メカニズムと吸収抑制対策. 日本 土壌肥料学会雑誌 85:99-102.
- 駒村 美佐子・津村 昭人・山口 紀子・藤原 英司・木方 展治・小平 潔 2006. わが国の米、小麦および土 壌における⁹⁰Srと¹³7Cs濃度の長期モニタリングと変動解析 農業環境技術研究所報告24:1-21.
- Kondo, M., Maeda, H., Goto, A., Nakano, H., Kiho, N., Makino, T., Sato, M., Fujimura, S., Eguchi, T., Hachinohe, M., Hamamatsu, S., Ihara, H., Takai, T., Arai-Sanoh and Kimura, T. 2015.
 Exchangeable Cs/K ratio in soil is an index to estimate accumulation of radioactive and stable Cs in rice plant. Soil Science and Plant Nutrition, 61: 133-143.
- 厚生労働省 2011. 放射能汚染された食品の取り扱いについて http://www.mhlw.go.jp/stf/houdou/2r9852000001558e.html (2016年1月31日現在)
- 厚生労働省 2012a. リーフレット 食品中の放射性物質の新たな基準値 http://www.mhlw.go.jp/shinsai_jouhou/dl/leaflet_120329.pdf (2015年10月20日現在)
- 厚生労働省 2012b. 乳及び乳製品の成分規格等に関する省令の一部を改正する省令、乳及び乳製品の成分 規格等に関する省令別表の二の(一)の(1)の規定に基づき厚生労働大臣が定める放射性物質を定める

件及び食品、添加物等の規格基準の一部を改正する件について.

http://www.mhlw.go.jp/shinsai_jouhou/dl/tuuchi_120316.pdf

- 水田一枝 2001. 潅がい水による水田への N, P, K の流入量 福岡県における推定 日本作物學會紀事, 70(4): 595-598.
- 文部科学省 2011. プレスリリース 文部科学省及び米国エネルギー省航空機による航空機モニタリングの 測定結果について

http://radioactivity.nsr.go.jp/ja/contents/4000/3710/24/1305820_20110506.pdf(2015年10月20日現在)

- 文部科学省 1982. 放射能測定法シリーズ No.13 ゲルマニウム半導体検出器等を用いる機器分析のための 試料の前処理法: 6.
- Myttenaere, C., Bourdeau, P., Masset, M. 1969. Relative importance of soil and water in the indirect contamination of flooded rice with radiocaesium. *Health Physics*, 16: 701-707.
- Nemoto, K. and Abe, J. 2013. Radiocesium Absorption by Rice in Paddy Field Ecosystems.

 **Aguricultural Implications of the Fukushima Nuclear Accident: 19-27. Springer Press. Tokyo.
- 日本土壤肥料学会監修 1997. 土壤環境分析法:215-218.
- 日本学術振興会鉱物活用第 111 委員会・天然ゼオライト利用研究分科会 2006. 天然ゼオライト-利用にあたっての品質評価基準-:40-57.
- 農研機構 2012. プレスリリース 玄米の放射性セシウム低減のためのカリ施用. http://www.naro.affrc.go.jp/publicity_report/press/laboratory/narc/027913.html (2014年12月15日現在)
- 農林水産省 2014. プレスリリース:南相馬市における農業用水の水質調査結果(平成 26 年度). http://www.maff.go.jp/j/kanbo/joho/saigai/fukusima/pdf/yousui_h26_8.pdf (2014年12月15日現在) 農林水産省、福島県、(独)農業・食品産業技術総合研究機構、(独)農業環境技術研究所 2014. プレスリリース:放射性セシウム濃度の高い米が発生する要因とその対策について〜要因解析調査と試験栽培等の結果の取りまとめ〜(概要第2版)

http://www.maff.go.jp/j/kanbo/joho/saigai/pdf/youin_kome2.pdf (2015年10月20日)

農林水産省農村振興局、福島県農林水産部 2014. ため池等の放射性物質に関する実態と対策について~ 2013年度ため池等汚染拡散防止対策実証事業の調査結果概要~

http://www.maff.go.jp/j/kanbo/joho/saigai/pdf/tameike_tyousa25.pdf (2015年10月18日現在).

Ohno, T., Muramatsu, Y., Miura, Y., Oda, K., Inagawa, N., Ogawa, H., Yamazaki, A., Toyama, C. and Sato, M. 2012. Depth profiles of radioactive cesium and iodine released from the

- Fukushima Daiichi nuclear power plant in different agricultural fields and forests.

 Geochemical Journal. 46: 287-295.
- 小野田元・小野晃夫・下田勉・小野田憲・岩野鐵夫・長崎泰一・千葉末作 1998. 養液栽培水稲の生育と収量に及ぼす補光ランプの影響. 生物環境調節, 36(3): 151-157.
- Parajuli, D., Suzuki, Y., Sato, M., Takahashi, A., Tanaka, H., amd Kawamoto, T. 2016. Assessment of the measures for the extraction or fixation of radiocesium in soil. *Geoderma*, 267, 169-173.
- Sawhiney, B. 1972. Selective sorption and fixation of cations by clay minerals: a review. *Clays Clay Miner*, 20, 93-100.
- 齋藤正明・佐藤睦人 2014. カリ増施及び堆肥施用によるキャベツの放射性セシウム低減効果. 福島県農業 総合センター研究報告 放射性物質対策特集号:66-69.
- Saito, T., Ohkoshi, S., Fujimura, S., Iwabuchi, K., Saito, M., Nemoto, T., Sato, M., Sato, M., Sato, M., Sato, M., Yoshioka, K. and Tsukada, H. 2012. Effect of potassium application on root uptake of radiocesium in rice. *Proceedings of international symposium on environmental monitoring and dose estimation of residents after accident of TEPCO's Fukushima Daiichi Nuclear Power Station*: 165-169. Kyoto University Research Reactor Institute Press. Kyoto.
- Shiozawa, S. 2013. Vertical Migration of Radiocesium Fallout in Soil in Fukushima. *Aguricultural Implications of the Fukushima Nuclear Accident*: 49-60. Springer Press. Tokyo.
- 竹内恵・慶徳庄司・島田信二・木方展治 2014. カリによるダイズの放射性セシウムの吸収抑制効果.福島県 農業総合センター研究報告 放射性物質対策特集号:43-45.
- Suzuki, Y., Saito, T. and Tsukada, H. 2012. Phytoremediation of radiocesium in different soils using cultivated plants. *Proceedings of international symposium on environmental monitoring and dose estimation of residents after accident of TEPCO's Fukushima Daiichi Nuclear Power Station*: 170-173. Kyoto University Research Reactor Institute Press. Kyoto.
- Suzuki, Y., Yasutaka, T., Fujimura, S., Yabuki, T., Sato, M., Yoshioka, K. and Inubushi, K. 2015. Effect of the concentration of radiocesium dissolved in irrigation water on the concentration of radiocesium in brown rice. *Soil Science and Plant Nutrition*, 61: 191-199.
- 鈴木安和・保高徹生・矢吹隆夫・犬伏和之 2015. 用水中に含まれる溶存態放射性セシウムのヒマワリへの移行に関する研究. 福島県農業総合センター研究報告 7:31-36.
- 高橋知之 2013. 食品中の放射性核種濃度基準値の設定. 食品衛生学雑誌 54(2):97-101.

- Tanaka, K., Takahashi, Y., Sakaguchi, A., Umeo, M., Hayakawa, S., Tanida, H., Saito, T. and Kanai, Y. 2012. Vertical profiles of Iodine-131 and Cesium-137 in soils in Fukushima Prefecture related to the Fukushima Daiichi Nuclear Power Station Accident. Geochemical Journal, 46: 73-76.
- Tsukada, H., Hasegawa, H., Hisamatsu, S. and Yamasaki, S. 2002. Transfer of ¹³⁷Cs and stable Cs from paddy soil to polished rice in Aomori, Japan. *Journal of Environmental Radioactivity*, 59: 351-363.
- Tsukada, H., Takeda, A., Hisamatsu, S. and Inaba, J. 2008. Concentration and specific activity of fallout ¹³⁷Cs in extracted and particle-size fractions of cultivated soils. *Journal of Environmental Radioactivity*, 99: 875-881.
- Tsuji, H., Yasutaka, T., Kawabe, Y., Onishi, T., and Komai, T. 2014. Distribution of dissolved and particulate radiocesium concentrations along rivers and the relations between radiocesium concentration and deposition after the nuclear power plant accident in Fukushima. *Water research*, 60: 15-27.
- 内田滋夫・住谷みさ子・横須賀節子・大桃洋一郎 1987. 放射性核種の経根吸収経路による農作物への移行 放射性セシウムおよびストロンチウム. *Radioisotopes*, 36(11), 575-580.
- 内田滋夫・住谷みさ子・柳沢啓・大桃洋一郎 1991. 放射性核種の経根吸収による農作物への移行および転流に関する溢泌液の利用. Radioisotopes, 40(9), 347-353.
- 山口紀子・高田裕介・林健太郎・石川覚・倉俣正人・江口定夫・吉川省子・坂口敦・朝田景・和穎朗太・牧野知之・赤羽幾子・平舘俊太郎 2012. 土壌-植物系における放射性セシウムの挙動とその変動要因. 農業環境技術研究所報告 31,75-129.
- Yasutaka, T., Kawabe, Y., Kurosawa, A., and Komai, T. 2012. Monitoring dissolved radioactive cesium in Abukuma River in Fukushima Prefecture. *Proceedings of International Symposium on Environmental monitoring and dose estimation of residents after accident of TEPCO's Fukushima Daiichi Nuclear Power Station*: 137-140. Kyoto University Research Reactor Institute Press. Kyoto.
- 保高徹生・辻英樹・今藤好彦・鈴木安和 2013. プルシアンブルー不織布カートリッジを用いる水中 の溶存態放射性セシウムの迅速モニタリング技術の開発. 分析化学, 62(6): 499-506.
- Yasutaka, T., Kawamoto, T., Kawabe, Y., Sato, T., Sato, M., Suzuki, Y., Nakamura, K. and Komai, T. 2013. Rapid measurement of radiocesium in water using a Prussian blue impregnated nonwoven fabric, *Journal of Nuclear Science and Technology*, 50-7, 674-681

- Yasutaka, T., Tsuji, H., Kondo, Y., Suzuki, Y., Takahashi, A., and Kawamoto, T. 2015. Rapid quantification of radiocesium dissolved in water by using nonwoven fabric cartridge filters impregnated with potassium zinc ferrocyanide. *Journal of Nuclear Science and Technology*, 52(6): 792-800
- White, P. J. and Broadley, M. R. 2000. Tansley Review No. 113. New Phytologist, 147(2): 241-256. Zhu, Y. G. and Smolders, E. 2000. Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany, 51(351): 1635-1645.