
Development of Quicklook and Precision

Synthetic Aperture Radar Processing System

for UAV and Microsatellite Platform using

Mobile Heterogeneous Computing

July 2016

Bambang Setiadi

Graduate School of Advanced Integration Science

CHIBA UNIVERSITY

(千葉大学審査学位論文)	

Development of Quicklook and Precision
Synthetic Aperture Radar Processing System
for UAV and Microsatellite Platform using

Mobile Heterogeneous Computing

July 2016

Bambang Setiadi

Graduate School of Advanced Integration Science
CHIBA UNIVERSITY

Abstract

Synthetic Aperture Rada (SAR) technology offers high resolution imaging tech-

nique for earth observation in all weather condition and all-day operation. SAR

sensors usually mounted on spaceborne or airborne platforms and can work in

different wavelengths and use various wave polarizations to accommodate di-

verse remote sensing applications. Nowadays, the availability of lightweight

unmanned aerial vehicle (UAV) and microsatellite platforms offered lower cost

and risk in SAR sensor development, deployment and operation. However,

these lightweight platforms have significant limitations on the payloads size,

weight, and power (SWAP).

SAR processing which converts raw data into the two-dimensional image is

an important part of the SAR system. Due to SWAP limitations, the usage

of compact embedded high-performance computing (HPC) for onboard SAR

processing is getting a lot of attentions. However, not many have been focus-

ing on using heterogeneous mobile computing as a feasible solution. In this

thesis, we developed onboard quicklook and precision SAR processing systems

for UAV and microsatellite using mobile heterogeneous computing platform

consisting of an integrated mobile CPU and GPU.

The quicklook SAR processor is designed for L-band CP-SAR sensor onboard

future GAIA-II microsatellite and able to generate low-resolution. It is based

on modified spectral analysis (SPECAN) algorithm for monostatic stripmap

mode SAR image formation. The precision SAR processor which based on

Range-Doppler Algorithm (RDA) is intended for generating high-resolution

images for L-band linearly polarized SAR sensor onboard the future JX-2 UAV.

To optimize the algorithms, we analyze the details of both algorithms to find

parallelism potentials. For a given SAR raw data our model uses (1) data

partitioning based on the number of samples in range and azimuth directions

ii

to balance the task workload on the underlying hardware (2) identification and

separation of SAR processing tasks into coarse and fine-grained parallel tasks.

To evaluate the result, we have implemented the sequential version of both

applications on single CPU core as the baseline. The quicklook implementation

is validated using actual raw data from JERS-1 SAR sensor that has similar

characteristics with GAIA II CP-SAR sensor, and the precision algorithm is

validated using publicly available raw data from a UAV based stripmap mode

LFMCW SAR sensor. We have evaluated our proposed approach using various

size inputs number of samples and bins on a middle-end mobile heterogeneous

CPU-GPU development kit. Implementation on an integrated quad-core CPU

and 192 cores CPU showed that regardless of the size of range samples and

azimuth bin, speedup up to 4.2 and 6.5x can be achieved for quicklook and

precision application respectively.

iii

Abstract
(in Japanese)

モバイル異種計算を用いた無人航空機及び小型衛星プラットフォームのクイックル

ックと精密合成開口レーダ信号処理システムの開発	

	

ヨサファットマイクロ波リモートセンシング研究室は現在,マルチバンドの円偏波合

成開口レーダ搭載航空機と小型衛星の研究開発を行っている。

無人航空機と小型衛星にセンサを搭載することで開発と運用中のリスクとコストを

低減することができる。しかし、これらのプラットフォームにはサイズや重量やセ

ンサーペイロードとパワー（SWAP）などの様々な制限がある。	

SWAP に制限があるため、オンボード処理には従来の HPC を使用することが困難で

あり、代わりに DSP、ASICや FPGAなどの高性能組込みコンピューティングシステ

ム（HPEC）を使うのが解決策となる。

モバイル異種計算プラットフォームは SAR処理を加速する機会を持っている。

この論文では、マルチコア CPUと多くのコア GPUからなる移動異種の計算プラット

フォームを使用して、無人航空機や小型衛星のアプリケーションのためのクイック

ルックと精密合成開口レーダ信号処理システムを開発した。

与えられた SAR 生データに対し、我々のパフォーマンスモデルは（1）CPU と GPU

の性能特性を用い、（2）順次 SAR処理タスクの識別と粗ときめの細かい並列タスク

への分離（3）レンジ方向のサンプル数とアジマスビン数を用い、基盤となるハード

ウェア上の処理負荷を分散させることができる。

クアッドコア CPUと 192コア CPU上での実装がレンジサンプルおよびアジマスビン

のサイズに関係なく、クイックルックと精度アプリケーションに比べ、シーケンシ

ャルのバージョンがそれぞれの 4.2と 6.5倍に高速化することが示された。

Contents

Abstract ii

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Contributions . 4

1.3 Outline . 5

2 Background and Related Works 6

2.1 CP-SAR Development at JMRSL 6

2.1.1 Development of CP-SAR System for UAV 8

2.1.2 Development of CP-SAR system for Microsatellite 11

2.1.3 Development of SAR Processing System 15

2.2 Parallelism . 18

2.2.1 Speedup and Amdahl’s Law 19

2.2.2 Types of Parallelism . 20

v

CONTENTS vi

2.2.3 Parallel Computation Models 21

2.3 Heterogeneous Computing . 22

2.3.1 General Purpose Processors (GPP) 23

2.3.2 Digital Signal Processors 23

2.3.3 GPGPU . 24

2.3.4 Field Programmable Gate Array (FPGA) 25

2.4 Parallel Programming Languages 26

2.4.1 OpenCL . 26

2.4.2 CUDA . 27

2.4.3 OpenMP . 28

2.4.4 MPI . 29

2.5 Real-time Systems . 29

2.5.1 Types of Real-time Tasks 30

2.5.2 Features . 31

2.6 Related Works . 31

3 SAR Processing on Mobile Heterogeneous Platform 35

3.1 SPECAN on Mobile Heterogeneous Computing 35

3.1.1 Requirements for the Quicklook Processor 36

3.1.2 Modified SPECAN Algorithm 37

CONTENTS vii

3.1.3 Sequential Implementation 44

3.1.4 Heterogeneous CPU/GPU Implementation 46

3.1.5 Data Partitioning . 48

3.1.6 Range Compression . 49

3.1.7 Linear RCMC . 49

3.1.8 Deramping . 50

3.1.9 Phase Compensation . 50

3.2 RDA on Mobile Heterogeneous Computing 51

3.2.1 Requirements for the Precision Processor 51

3.2.2 Range-Doppler Algorithm 51

3.2.3 Sequential Implementation 57

3.2.4 Heterogeneous CPU/GPU implementation 60

4 Experimental Results 66

4.1 Experimental Setup . 66

4.2 SPECAN Results . 68

4.2.1 Input Data . 68

4.2.2 Experimental Results . 69

4.3 RDA Results . 70

4.3.1 Input Data . 70

4.3.2 Experimental Results . 71

4.3.3 Double Precision vs Single Precision 71

5 Conclusion and Future Work 77

5.1 Conclusions . 77

5.2 Contributions . 78

5.3 Future Works . 79

Bibliography 80

A Publications List 91

A.1 Peer reviewed journal papers . 91

A.2 Conference papers . 92

viii

List of Tables

2.1 CP-SAR Objectives . 7

2.2 CP-SAR Sensor Onboard GAIA II Specification 14

4.1 Specification of evaluation hardware & software 67

4.2 GAIA-II and JERS-I parameters comparison) 68

4.3 Data set parameters) . 69

4.4 SPECAN processor program execution time 70

4.5 JX-II and CASIE parameters comparison) 70

4.6 RDA processor program execution time 71

ix

List of Figures

2.1 JX-2 Unmanned Aerial Vehicle (UAV) 8

2.2 CP-SAR functional block diagram 9

2.3 CP-SAR Antennas . 10

2.4 Chirp signals . 11

2.5 Analog to Digital Converter and Chirp Signal Generator Hard-

ware (a) Front side view. (b) Left side of view (c) Top View (d)

Right View . 12

2.6 CP-SAR sensor onboard GAIA-II microsatellite 13

2.7 (a) RHCP and (b) LHCP Antenna for GAIA-II 15

2.8 Functional block diagram for CP-SAR sensor onboard GAIA-II 16

3.1 General flow of the Quicklook processor 37

3.2 SPECAN algorithm processing flow. (a) Reference SPECAN

algorithm (b) Implemented modified SPECAN algorithm 38

3.3 Flow chart of sequential SPECAN implementation 45

x

3.4 Flow Chart of RDA on Heterogeneous Platform 48

3.5 General steps of Range Doppler Algorithm 54

3.6 Range Doppler Algorithm . 58

3.7 Flow Chart of RDA on Heterogeneous Platform 62

3.8 Parallel task execution scenario 62

3.9 Flow Chart of Parallel CPU and GPU Threads 65

4.1 NVidia Jetson-TK1 development board hardware 67

4.2 Intensity image of JERS-1 SAR sample data used for the exper-

iment if processed with Range Doppler Algorithm (3 Looks) . . 72

4.3 Intensity image of JERS-I SAR sample data(all images in 1 look) 73

4.4 Sample Intensity image of microASAR from CASIE-09 pro-

cessed raw SAR data processed with original Range Doppler

Algorithm from the sample data. 74

4.5 Intensity image of CASIE-09 SAR sample data (all images in 1

look) . 75

4.6 Difference of range compression image result using double and

single precision. 76

4.7 Difference of azimuth compression image result using double

and single precision. 76

xi

Chapter 1

Introduction

1.1 Motivation and Objectives

Josaphat Microwave Remote Sensing Laboratory is carrying out research and

development of Circularly Polarized Synthetic Aperture Radar (CP-SAR) sen-

sors in various electromagnetic wave bands (L,C and X band). The SAR sen-

sors will be deployed on UAV and micro satellite platforms, because the de-

velopment and operations of sensors in these platforms have lower cost, lower

risk and agile compare to the conventional aircrafts and satellites. However,

lightweight UAV and microsatellite have several major limitations related to

the sensor payload: size, weight and power (SWAP) [1, 2].

Miniaturization of SAR sensor system is an answer to the challenge of SWAP

on lightweight SAR platforms. Currently there are efforts to develop smaller

SAR sensor subsystems including smaller antennas, radio frequency (RF) sub-

system, signal generators and raw data processing. Onboard raw SAR sensor

data processing (or on-board SAR processing) as one of key part of SAR sensor

1

1.1. Motivation and Objectives 2

system is also significantly influenced by this challenge [3, 4, 5].

The SAR processing subsystems main objective is to convert raw data pro-

duced by sensors into two dimensional image. It is usually done digitally using

high performance computing (HPC) system due to complex computations and

large amount of data. Desktop computers with CPU and GPU, clusters of

networked computers and super computers constitute the vast majority of

hardware platforms used for processing raw SAR data. Due to SWAP limita-

tions, it is difficult to use conventional HPC for SAR processing onboard UAV

and microsatellite platforms. Consequently, making the usage of high perfor-

mance embedded computing systems (HPEC) such as special purpose digital

signal processors (DSPs), application-specific integrated circuits (ASIC), field

programmable gate array (FPGA) and lightweight single board personal com-

puters as suitable solution candidates for this problem [6, 7].

General purpose computing on graphics processing units (GPGPU) and hetero-

geneous computing has recently gained considerable attention in SAR process-

ing domain. GPGPU is based on using the GPU as a co-processor accelerator

to offload computationally intensive tasks from the CPU, whereas heteroge-

neous computing is a term that refer to the practice of using more than one

type of processors or cores for computation. In this case GPGPU computing

can also be referred to as heterogeneous CPU/GPU computing [6].

Despite the facts that heterogeneous computing platforms such as desktops

and servers with CPU and GPU are widely available and already used for

SAR processing, minor approach has been done to use the mobile version of

the heterogeneous computing platform for onboard SAR processing. Mobile

heterogeneous computing platforms which integrates energy efficient CPU and

GPU, provides opportunity to accelerate SAR processing onboard lightweight

1.1. Motivation and Objectives 3

platforms. However, mapping SAR processing algorithm to mobile heteroge-

neous platform involves many design decisions to make and is not a direct task

[8, 9].

In this thesis we developed on-board quicklook and precision SAR processing

systems for UAV and microsatellite applications using mobile heterogeneous

computing platform consisting of a multicore CPU and many core GPU. The

quicklook processing represents the case where low-resolution imagery is re-

quired especially during SAR data acquisition and raw data preview process.

On the other hand, the precision SAR processing represents the case where

producing high resolution imagery is the main users objective.

The quicklook processor application is designed for L-band CP-SAR sensor on-

board future GAIA-II microsatellite and developed to produce low-resolution

images with additional function of enabling rapid preview of CP-SAR im-

ageries. It is based on modified spectral analysis (SPECAN) algorithm for

monostatic stripmap mode SAR image formation.

The precision processor application is designed for L-band linearly polarized

SAR sensor onboard the future JX-2 UAV and developed to produce high-

resolution imageries for advanced applications such as interferometry and po-

larimetry. It is based on Range Doppler Algorithm which consists of com-

pressions in range and azimuth direction with range cell migration correction

process in between.

To optimize the algorithm on mobile heterogeneous platform, we use an offline

profiling step to determine the performance of a systems CPU and GPUs

with respect to SPECAN and RDA algorithms. For a given SAR raw data our

performance model uses (1) the CPU and GPU performance characteristics (2)

1.2. Contributions 4

identification and separation of sequential SAR processing tasks into coarse and

fine grained parallel tasks (3) the number of samples in range directions and

number of azimuth bins to balance the processing workload on the underlying

hardware. Speed-ups is achieved through series of assessment, parallelization,

optimization and deployment (APOD) design cycle. The run-time partitioning

scheme exploits task, data and pipeline parallelism by sharing the parallelizable

task between the CPU and GPU and assigning non parallelizable computation

on the CPU.

1.2 Contributions

The specific contributions of this research are summarised as follows:

• We have designed and developed quicklook SAR processing system based

on modified SPECAN algorithm for use on-board future GAIA-II CP-

SAR satellite space-borne platform.

• We have designed and developed precision SAR processing system based

on Range Doppler algorithm for use on-board future JX-2 CP-SAR air-

borne platform.

• We have implemented and tested the quicklook SAR processing system

based on modified SPECAN algorithm for use on-board future JX-2 CP-

SAR airborne platform on mobile heterogeneous computing hardware as

an effort to overcome the SWAP limitation.

• We have implemented and tested the quicklook SAR processing system

based on Range-Doppler algorithm for use on-board future JX-2 CP-

1.3. Outline 5

SAR airborne platform on mobile heterogeneous computing hardware as

an effort to overcome the SWAP limitation.

• We formulated a method to balance the load of SPECAN algorithm

between CPU and GPU on mobile heterogeneous platform in order to

optimize execution.

• We formulated a method to balance the load of RDA algorithm between

CPU and GPU on mobile heterogeneous platform in order to optimize

execution.

1.3 Outline

This thesis is organized as follows:

• In Chapter 2 provides the background information and context neces-

sary to understand the material presented in the subsequent chapters.

This includes a discussion of CP-SAR hardware development and SAR

processing software development in JMRSL. We also present background

information on SPECAN and Range Doppler Algorithms.

• In Chapter 3 presents the a modified SPECAN algorithm for satellite

borne and RDA for airborne SAR sensor. Our SPECAN and RDA ker-

nels for GPU are also presented.

• In Chapter 4 describe the experimental setup, performance model and

dynamic partitioning for CPU and GPU system.

• In Chapter 5 presents the conclusion and further research.

Chapter 2

Background and Related Works

2.1 CP-SAR Development at JMRSL

Synthetic Aperture Radar (SAR) is a well-known remote sensing technology

that offers the possibility of earth observation under all weather conditions

with day and night time operation [10], [11]. Most of SAR sensors for earth

remote sensing applications available today are linear polarized sensors which

send and receive horizontal or vertical wave polarization. Josaphat Microwave

Remote Sensing Laboratory (JMRSL) of Center for Environmental Remote

Sensing, Chiba University, has been working on the development of circularly

polarized SAR (CP-SAR) sensors to explore the usage of elliptical polariza-

tion wave for SAR applications. The objective of using elliptical polarization

wave is to explore various possibilities offered by circularly polarized scattering

phenomena. The future CP-SAR sensors systems will be deployed on a small

UAV and a microsatellite.

Table 2.1 summarizes various basic experiments and applications of CP-SAR

6

2.1. CP-SAR Development at JMRSL 7

Table 2.1: CP-SAR Objectives

Field Items Details

Basic SAR Ex-
periment

Scattering mech-
anism of CP mi-
crowave

studying scattering mechanism from
vegetation, cryosphere, soil and rocks,
desert, etc.

Interferometry LP vs CP interferometric SAR, DEM
generation

Axial ratio im-
age

Vegetation, geologic, cryosphere map-
ping

SAR Applica-
tions

Land cover map-
ping

Forest/non-forest area classification
Paddy field/wet land extraction Man-
grove area mapping Snow - iceberg de-
tection

Disaster moni-
toring

Earthquake, Volcano eruption, Flood,
forest fire, landslides, etc.

Cryosphere
monitoring

Iceberg and glacier, Arctic routing

Ocean monitor-
ing

Oil spill, ocean wave

[2]. Although many of the applications listed in Table 2.1 require the deploy-

ment of satellite CP-SAR sensors, it would be a reasonable way to investigate

the CP-SAR capability using an unmanned aerial vehicle (UAV) as a testing

platform. Recently UAV has gained more popularity as a preferable choice for

SAR sensor platform due to its properties such as relatively easier and agile

mission deployment, lower implementation cost and lower risk when compared

with conventional airborne or space-borne systems [1, 12].

Several concurrent efforts for the development of CP-SAR sensor systems are

taking place at JMRSL: antenna, RF system, signal generator, data communi-

cations and SAR data processing. This thesis focused on a part of SAR data

processing task: development of on-board SAR processing system for the UAV

and microsatellite based sensor. The following sections describe summary of

CP-SAR sensor system development at JMRSL, followed by literature research

2.1. CP-SAR Development at JMRSL 8

on the field of on-board SAR processing with concentration on the usage of

heterogeneous computing platform.

2.1.1 Development of CP-SAR System for UAV

Figure 2.1 shows a small UAV called Josaphat laboratory experimental UAV

(JX-2) which will become the platform for L-band SAR sensor system under

development. During flight, it is capable of having a ground speed of approx-

imately 30-40 m/s with operating altitude of 1-4 km and flight endurance up

to 4 hours. The UAV has wing span of 6 m, body length of 4.75 m and total

weight of 146 kg including 25 kg payload, i.e. the SAR sensor, ground position-

ing system (GPS), inertial measurement unit (IMU) and data communication

link.

Figure 2.1: JX-2 Unmanned Aerial Vehicle (UAV)

The CP-SAR sensor system is composed of a chirp signal generator, RF Mod-

ule, CP antenna, analog to digital converter/ data recorder, SAR processor,

motion sensing module and data downlink module. The CP antenna is con-

nected to the RF module, while the motion sensing module contains an inertial

measurement unit (IMU) that receives position signals from GPS antenna. In

2.1. CP-SAR Development at JMRSL 9

order to communicate with the ground station, a data link antenna is con-

nected to the data downlink module. Figure 2.3 shows the antenna developed

by Yohandri et.al. [13].

Figure 2.2: CP-SAR functional block diagram

The RF subsystem consists of a transmitter, receiver, local oscillator and low

noise amplifier with total weight of approximately 10 kg. The transmitter

mixes the 150 MHz bandwidth chirp up to 1.27 GHz for transmission. The

receiver and local oscillator are used to mix the RF radar return from the

antenna to an offset baseband and amplify it so that it can be sampled by the

ADC subsystem.

The signal generator subsystem generates chirp signal as the input for RF

subsystem. It is implemented using a field programmable gate array (FPGA)

to enable rapid modification to the generated chirp signal. The chirp signal

generator must be able to generate chirp signal with various configurations

depending on the mission requirement such as flight height and platform speed.

The parameters of generated chirp signal that can be modified are: chirp

bandwidth, pulse duration and pulse repetition frequency (PRF). Direct digital

synthesizer (DDS) technique is used for the chirp signal generation process

2.1. CP-SAR Development at JMRSL 10

Figure 2.3: CP-SAR Antennas

because it has many advantages compare to its analog counterpart. Figure

2.4 shows an example of real and imaginary components of the chirp signal

created by the signal generator subsystem developed by Suto et.al [14].

The analog to digital converter/data recorder subsystem handles the sam-

pling and down-converting of signal received by the CP antenna. After down-

converting to the baseband, the data are stored in a solid-state drive storage.

This data is known as a raw SAR data or phase histories, and will be pro-

cessed further using signal processing technique in order to produce a SAR

image. shows the photographs of chirp generator subsystem, analog to digital

converter (ADC) and data recording subsystem, and the SAR processor on a

compact single PC board.

The processing was previously done using Range Doppler algorithm imple-

mented in MATLAB scripting language in order to accelerate the development

process and lower the learning curve. We also have implemented several other

2.1. CP-SAR Development at JMRSL 11

Figure 2.4: Chirp signals

algorithms such as Chirp Scaling and Spectral Analysis as part of the devel-

opment [15, 16, 17, 18]. Details on the SAR processing is presented in section

2.1.3 respectively.

The processing of raw sensor data into full resolution image is usually carried

out in the ground station because it involves complex computation and large

amount of memory which requires high performance computing (HPC) facility.

It is difficult to do onboard the platform due to size, weight and power con-

straints. But recent developments in computing has made this task suitable

for desktop computing, although real-time processing of SAR data without

HPC is still under intensive research [6].

2.1.2 Development of CP-SAR system for Microsatel-

lite

As part of the development roadmap, besides using airborne platform, JMRSL

will also deploy the L-band CP-SAR sensors on spaceborne platform which will

2.1. CP-SAR Development at JMRSL 12

Figure 2.5: Analog to Digital Converter and Chirp Signal Generator Hardware
(a) Front side view. (b) Left side of view (c) Top View (d) Right View

be a microsatellite called GAIA-II [19]. An illustration of the CP-SAR onboard

the GAIA-II is depicted in Figure 2.6. CP-SAR sensor onboard the satellite

is utilizing the elliptical wave propagation and scattering phenomenon by ra-

diating and receiving the elliptically polarized wave, which includes circular

and linear polarizations. Elliptical polarized sensor is considered not depend

on the platform posture, and able to lower the effect of Faraday rotation in

Ionosphere.

The SAR sensor transmits and receives L-band chirp pulses with PRF between

2,000 to 2,500 Hz. It is designed as a low cost, light, low power, low profile

sensor that transmits and receives left-handed circular polarization (LHCP)

and right-handed circular polarization (RHCP). Besides producing single look

complex (SLC) image and amplitude image, this sensor can also generate var-

2.1. CP-SAR Development at JMRSL 13

Figure 2.6: CP-SAR sensor onboard GAIA-II microsatellite

ious SAR images unique to elliptically polarized sensor e.g. axial ratio image

(ARI), ellipticity and tilt angle [19, 20].

GAIA-II satellite will orbit between 500 to 700 km, with 50 km swath width

and maximum spatial resolution of 30 m. The L-band (1.27 GHz) antenna size

is 2.0 m in elevation and 5.0 in azimuth direction, with 97.6 inclination angle

and 29.0 off nadir angle. The satellite has the form of 1m cube with maximum

weight of 100 kg.

Table 2.2 summarizes the specification of CP-SAR onboard GAIA-II [20].

To withstand the space environment, Osanai et.al. has developed a 1.275

GHz Right Handed Circularly Polarized (RHCP) and Left Handed Circularly

Polarized (LHCP) SAR antenna using Kevlar honeycomb core which have the

advantage of lightweight and heat and shock resistance [21]. The antenna has

the size of 267 mm by 267 mm with the radiating size of 101 mm by 101

mm, and bandwidth values for RHCP and LHCP of 90 MHz and 180 MHz

respectively (Figure 2.7).

A functional block diagram of the CP-SAR system onboard GAIA II satellite

and SAR processor on the ground station is shown in Figure 2.8. The space-

2.1. CP-SAR Development at JMRSL 14

Table 2.2: CP-SAR Sensor Onboard GAIA II Specification

Parameter Value

Altitude 500 - 700 km
Inclination angle 97.6◦

Frequency 1.27 GHz
Polarization LL, LR, RL, RR
Gain/Axial Ratio >30 dBic / <3 dB
Off nadir angle 29◦

Swath width 50 km
Spatial resolution 30 m
Peak power 90-300 W
Bandwidth 10 MHz
PRF 2000-2500 Hz
Platform size 1 m × 1 m × 1 m
Weight 100 kg
Antenna size 2.0 m x 5.0 m

borne SAR sensor system diagram is similar with the UAV based airborne

sensor system. Both system have the same signal generator, RF, antenna,

ADC & Data Recorder, Motion Sensing, GPS and communication modules.

The data downlink module will transmit received SAR signal to the ground

station via data link antenna. The CP antenna is connected to the RF module,

while the motion sensing module contains an inertial measurement unit (IMU)

that receives position signals from GPS antenna. In order to communicate with

the ground station, a data link antenna is connected to the data downlink

module.

In current design, due to stricter size and power limitation the SAR processing

subsystem is done on the ground station, consequently SAR processor is not

installed onboard the satellite.

2.1. CP-SAR Development at JMRSL 15

Figure 2.7: (a) RHCP and (b) LHCP Antenna for GAIA-II

2.1.3 Development of SAR Processing System

Besides the radar subsystem that generates, transmits, receives and records

the backscattered signals, another important component of a SAR system is

module that converts the SAR raw data into two dimensional images called

SAR processor. Algorithm that is used for SAR processor is also known as

SAR image formation algorithm. Currently there are various SAR processing

algorithms available and some of the most commonly used are: Range Doppler,

Chirp Scaling, SPECAN and Omega-K [11, 22, 23].

According to the types of processing, there are three types of processing can

be performed to the raw data: survey processing (quicklook), Precision pro-

cessing and ScanSAR processing. Different with precision processing that aim

to produce high resolution image, quicklook processing objective is to produce

reduced-resolution imagery of a full square scene with reasonable speed [24].

Although most SAR application requires high-resolution image, there are cases

where low-resolution is also important, for example when browsing from large

collection of raw data to find the area of interest.

2.1. CP-SAR Development at JMRSL 16

Figure 2.8: Functional block diagram for CP-SAR sensor onboard GAIA-II

Because of the complex computations requirements and large amount of raw

data produced by SAR sensors, SAR processing is usually done digitally using

high performance computing (HPC) system. Processing of raw SAR data

is done using desktop computers with CPU and GPU, clusters of networked

computers and super.

The development of SAR processor software in JMRSL was started with the

development of JERS-1 SAR raw data processor based on Range Doppler

Algorithm (RDA) using MATLAB programming language [17, 18]. MATLAB

was used due to the availability of vast mathematical, signal processing and

image processing libraries. It also has user friendly development environment

that support the write, test and debug software development cycle.

The effort was continued by development of SAR processors using other algo-

rithms i.e. Chirp Scaling and Spectral Analysis (SPECAN). To accelerate the

2.1. CP-SAR Development at JMRSL 17

processing for existing satellite borne SAR, there was also efforts to develop

the GPU version of RDA and SPECAN algorithms [16, 17, 18, 25].

To support the spaceborne SAR development that will be mounted on GAIA-

II microsatellite, a SPECAN algorithm based quicklook processor has also

been designed and developed. This quick-look SAR processor is designed for

L-band CP-SAR sensor onboard GAIA-II microsatellite, which will produce

low-resolution images and enable rapid preview of CP-SAR images on com-

modity of the shelf computer system. The algorithm is based on modified

spectral analysis (SPECAN) algorithm for SAR image formation. The result

is validated using actual raw data from JERS-1 SAR sensor that has similar

characteristics with GAIA-II CP SAR sensor [26].

Due to SWAP limitations, it is difficult to use conventional HPC for onboard

processing, thus making the usage of high performance embedded computing

systems (HPEC) such as special purpose digital signal processors, ASICS and

FPGA as alternative solutions for this problem.

Besides the development of SAR processing system on the ground station,

there also development of the onboard version of the system. The initial effort

of this onboard processor development in JMRSL was marked by the develop-

ment of FPGA based FFT computation for SAR sensor onboard Microsatellite

[15]. Further development was continued by Panggabean et.al. with the de-

velopment of A Single-on-Chip for Onboard SAR Imaging Processor Based on

the LEON3 soft-core processor implemented on FPGA [27].

Despite the facts that heterogeneous computing platforms such as desktops

and servers with CPU and GPU are widely available and already used for

SAR processing, minor approach has been done to use mobile heterogeneous

2.2. Parallelism 18

computing platform for onboard SAR processing. Mobile heterogeneous com-

puting platforms which integrates CPU and GPU provides opportunity to

accelerate SAR processing application. However, mapping the complex pro-

cessing algorithm to mobile heterogeneous platform is not a direct task with

many design decisions.

In this thesis we developed quicklook and precision SAR processing systems

for UAV and microsatellite applications using mobile heterogeneous computing

platform consisting of a multicore CPU and many core GPU. The quicklook

processing represents the case where low-resolution imagery is required during

SAR data acquisition and the precision processing represents the case where

producing high resolution imagery is the main objective.

The quicklook processor application is designed for L-band CP-SAR sensor on-

board future GAIA-II microsatellite and developed to produce low-resolution

images with additional function of enabling rapid preview of CP-SAR im-

ageries. It is based on modified spectral analysis (SPECAN) algorithm for

monostatic stripmap mode SAR image formation. Details will be presented in

the following chapters.

2.2 Parallelism

The trend of multi-core architectures has pushed the exploration and exploita-

tion of its benefits by finding obvious and hidden parallelism inside compu-

tations. A software may have tasks that can inherently run in parallel or

redesigned to do so. The main guidelines of parallelism is to run computa-

tional intensive tasks, which takes a lot of time, in parallel. More and more

legacy application are being redesigned to exploit this possibility. However,

2.2. Parallelism 19

The level of parallelism that can be exploited has limitations.

2.2.1 Speedup and Amdahl’s Law

The speed of a program is the time it takes for a program to execute which

can be measured using any increment of time. Speedup is the ratio between

the time to run a program sequentially (on single processor) and the time to

run a program in multiple processor:

S =
T (1)

T (j)
, (2.1)

where T (j) is the time it takes to run the program on j processors. Efficiency

is speedup divided by the number of processors which is an important factor

due to the cost of the additional processors.

The maximum speedup that a program can achieve when executed on multiple

processor is dictated by Amdahl’s law [28]. It states that, if s is the sequential

part of the program and 1−s is the part that can be parallelized, the maximum

expected speedup S when using P number of processors can be defined as:

S(P) =
1

s+ 1−s
P

(2.2)

When the number of processor is unlimited, the maximum speedup is limited

by the sequential part of the program. Which means that in order to get the

best speedup, we have to parallelize the part of the program that takes most

of the execution time.

However, Amdahl’s Law is a generalized argument which has been re-evaluated

over the years to adapt to current multicore era [29, 30]. Various models also

2.2. Parallelism 20

have been introduced based on scalable computing where problem size can

increase due to increasing computing power.

2.2.2 Types of Parallelism

According on how often the subtasks inside a computation need to synchronize

or communicate with each other, parallelism inside an application or compu-

tation can be categorized into:

• Fine grained, if the subtasks must communicate many times per second.

Fine-grained parallelism is typically in the form of loop level which can

be done incrementally one loop at a time. It does not require deep

knowledge of the code. To get decent speedup, a lot of loops have to be

parallelize. And, finally has potentially many synchronization points at

the end of each parallel loop.

• Coarse grained, if the subtasks do not communicate many times per

second. Coarse grained parallelism make larger loops parallel at higher

call-tree level potentially in-closing of many small loops. It has more

parallel code at once but requires fewer synchronization points which can

reduce overhead. However, coarse grained parallelism requires depeeder

knowledge of the underlying code.

• Embarrassingly parallel, if the subtasks rarely communicate. Embarrass-

ingly parallel applications are considered the easiest to parallelize.

2.2. Parallelism 21

2.2.3 Parallel Computation Models

Parallel computation models are needed to structure the design process of

parallel programs. Conceptually parallel program can be modelled in one the

following categories [31]:

• Farmer-Worker/Master-Slave: the workload can be distributed among

algorithmically identical processes, each one taking different input argu-

ments than the other. Usually, a Farmer thread or process is responsible

into splitting and assigning work among the Worker threads/processes.

The idle Worker threads are usually part of a thread pool, where the

Farmer thread checks for available threads to assign work. When a

Worker thread finishes its work, it becomes again part of the thread

pool waiting for further assignments.

• Divide and conquer: the problem can be divided recursively in smaller

problems until they become small enough to be fast to solve. Finally, all

the partial solutions are combined to solve the initial problem. It is im-

portant to point out that each sub-problem is theoretically independent

of the others, which makes concurrent or parallel execution feasible.

• Data parallelism: computation follows the data. The data are distributed

in different computing nodes each one performing the same task (execut-

ing the same code) on its own data. When finished, the data are usually

gathered on a single node forming the final solution.

• Task parallelism: in this model the basic tasks/function can be isolated,

each one being responsible for solving a specific sub-problem. Each task

acts on specific arguments providing specific outputs. The dependency

2.3. Heterogeneous Computing 22

between these tasks can be represented using an acyclic directed graph.

The way these tasks can be mapped onto a structure of processors is

not trivial, thus two types of execution models can be concluded: data-

driven and demanddriven. In the data-driven execution model, a task

proceeds to execution when the input arguments are available, while in

the demand-driven, execution of a task occurs when the provided data

are required further in the pipeline.

• Bulk-synchronous: the problem is solved through an iterative process,

until solution convergence. Every iteration consists of three distinct

steps: a computation step, a communication step and finally a syn-

chronisation step. Each process performs the computation steps asyn-

chronously with respect to the other processes. When computations end,

processes can exchange data if required. Finally, for consistency, a syn-

chronisation step follows where all individual processes reach a certain

point before proceeding further.

• Hybrid: combination of the above models.

2.3 Heterogeneous Computing

The need for specific domain computing has led to the development of hard-

ware diversity on single system. Heterogeneous computing refers to systems

that utilize more than one type of processors in order to gain better com-

puting and energy efficiency. The objectives are to get the best performance

from different types of processors, including specialized kinds of processor for

specific tasks. It includes both serial and parallel processing and creates a

challenge for application developer on how to map the available tasks into

2.3. Heterogeneous Computing 23

the best processing device available on the system. As an example, in a het-

erogeneous CPU and GPU computing system, GPU have graphics rendering

capabilities and also able to perform mathematically intensive computations

on very large data sets, while the CPUs can run the operating system and

perform traditional serial tasks [32, 33, 34].

This section describes the most important hardware categories that can be

found nowadays in computing infrastructures that can also be found inside a

heterogeneous computing platform.

2.3.1 General Purpose Processors (GPP)

This category includes all conventional and general purpose computer archi-

tectures which usually comprise of one or more same CPU cores. GPP have

shared-memory architectures with layers of cache hierarchy and also supports

complex performance oriented hardware level optimisations such as branch

prediction and dynamic execution. They are mostly used as stand-alone pro-

cessors inside a computer, however in newer designs, have also been designed

as high performance coprocessors, such as Knights Corner and Knights Land-

ing architecture (brand name Xeon Phi) from Intel. This category of hardware

targets most of the market spectrum, from mobile devices to servers, and are

offered by many industrial vendors like Intel, AMD, IBM and ARM.

2.3.2 Digital Signal Processors

In modern applications, almost every application involved the processing of

digital signals. To improve the speed of such applications a specialized DSP

2.3. Heterogeneous Computing 24

processors were designed in order to be able to manipulate digitals signals ef-

ficiently. A DSP processors architecture is different in many ways compare to

other processors. For example, DSP processor has a signal processing oriented

Instruction Set Architecture (ISA), which enables easier and faster implemen-

tation of digital signal processing applications.

As required from these algorithms they perform a significant amount of oper-

ations in parallel per work cycle. Such operations can be Multiply-accumulate

(MAC) operations or Fast Fourier Transform (FFT) loops. Moreover, in order

to provide multiple operations per cycle and low power at the same time, they

operate in lower frequencies. Example companies designing DSP architectures

are Texas Instruments, NXP and Freescale.

2.3.3 GPGPU

Besides graphics rendering, a graphics processing unit (GPU) can also per-

form general computations that would usually be conducted by the CPU and

referred to as General Purpose GPU (GPGPU).

Nowadays GPGPUs are used for various high-powered CPU domain tasks such

as physics calculations, encryption/decryption, scientific computations and the

generation of cryptocurrencies. By remodeling the problem to suit graphics

calculations, the massive parallelism capability of GPU can compete with the

computation rate of most powerful CPUs for various parallel processing tasks.

The same graphics shader cores which render allow multiple pixels simultane-

ously can also be used process multiple data at the same time. Although a

shader core is simpler than a CPU, a high-end GPU may consist of thousands

of shader cores compare to a multicore CPU, which might only have eight or

2.3. Heterogeneous Computing 25

twelve cores.

After DirectX 10 included unified shaders in its shader core specifications for

Windows Vista, focus on GPGPU computing has been increased. Development

high-level programming languages and API to ease GPU programming has

been taking places, especially by major GPU producers such as AMD and

NVIDIA. Two major GPGPU APIs are OpenCL and CUDA.

To enhance the computational capabilities of GPU simple computing cores

then added, making it ALU (arithmetic logic unit) heavy. GPGPU suitable

for applications with high arithmetic intensity, large input data sets and min-

imal dependencies between data elements during processing. High arithmetic

intensity means that the ratio value between numbers of operations and data

transfer during operations is high.

GPGPU is designed to have a complex memory-hierarchy which consist of on-

chip memories, with multiple cache layers, and off-chip memories. Currently

most GPUs are as accelerators of the main CPU, however integrated graphics

solutions also exist. For examples Intels new processor designs (Sandy Bridge,

Ivy Bridge, Haswell) and ARMs Mali T60x architecture integrates GPUs and

GPPs into a signle SoC and share the same physical memory space.

Example companies that provide GPUs are NVIDIA, AMD, Intel, ARM, Imag-

ination Technologies and Qualcomm.

2.3.4 Field Programmable Gate Array (FPGA)

Hardware based solutions offers the best inherent performance in terms of ex-

ecution speed, Unfortunately, designing application specific integreated circuit

2.4. Parallel Programming Languages 26

(ASIC) for every application is time consuming and not flexible.

FPGAs consist of reconfigurable logic blocks connected with each other with

programmable interconnects. Although the performance is lower compared

to a custom made ASIC solution, but the reprogrammability makes it more

flexible compare to ASIC. FPGAs offer high speed I/Os operation and high

data buses size which make them appropriate for real-time or high volume

applications.

Example companies that provide FPGAs are Achronix, Altera, Atmel and

XILINX.

2.4 Parallel Programming Languages

2.4.1 OpenCL

Open Computing Language (OpenCL) is a programming framework for de-

veloping software that runs on platforms consisting of CPUs, GPUs, DSPs,

FPGAs and other processors or hardware accelerators in a single platform

[35].

OpenCL project was pioneered by Apple Inc. which then transfer it to non-

profit Kronos Group since 2008. It is supported by major companies such as

Intel, NVIDIA, ARM, AMD and Qualcomm. Each of these providers release

their own OpenCL implementation for their hardware platform.

The OpenCL platform uses a model where single host connected to one or

more compute devices. Each of this compute device consists of one or more

compute units that made of one or more processing elements. Finally, each

2.4. Parallel Programming Languages 27

processing element executes code as Single Instruction Multiple Data (SIMD)

or Single Program Multiple Data (SPMD).

An OpenCL program consists of the host and the device code. The host code

is responsible for initialization, communication, and execution of the kernels

among the compute devices. The device code is a kernel or a collection of

kernels running on the compute devices written in a data/task parallel fashion.

An index space with varying dimensionality from one to three is used to process

the data. Each element of this index space is a work-item, and a collection of

work-items is called work-group. Each workgroup is independent of any other

one, and multiple work-groups can run in parallel. Thus, work-groups should

not directly share data, but work-items of a work-group can communicate and

synchronize [36].

2.4.2 CUDA

NVIDIA corp develop Common Device Unified Architecture (CUDA) to make

it easier for programmer to use its GPUs. It was released in 2007 and the latest

stable version is 7.5 in 2016. Its popularity among academia and industry has

boost the implementation of various compute intensive applications to GPU

platform.

CUDA has similar programming models with OpenCL, it assumes a single host

with one or more GPU capable devices. The host is responsible for communi-

cations and synchronizations between CPU and GPU, and for the invocations

of kernels that run on GPU. The host code is responsible for coordination

CUDA organize threads on GPU into blocks called threadblocks, and thread-

blocks are further grouped into grid. CUDA memory system has two types of

2.4. Parallel Programming Languages 28

physical address spaces: an off-chip DRAM and an on-chip memory. There

are four different memory spaces: the global memory, the constant memory,

the local memory and shared memory.

When targetting NVIDIA GPUs CUDA is a major solution because it has pro-

grammer friendly extension to existing programming language, making parallel

applications the implementation simpler for those who already have a clear un-

derstanding of the programming model.

GPU programming optimizations may require deep understanding of both

the application domain and the underlying hardware used which depends on

the capabilities of each programmer. Furthermore, CUDA comes with pre-

optimized libraries for different application domains, such as linear algebra

(CUBLAS), signal processing (CUFFT), neural networks (CUDNN), image

processing (NPP) and various other libraries.

2.4.3 OpenMP

OpenMP (Open Multi-Processing) is an application programming framework

that supports shared memory multiprocessing programming in various pro-

gramming languages, supporting different processor architectures and operat-

ing systems. It consists of a set of compiler directives, library routines, and

environment variables that influence run-time behavior that hides the imple-

mentation details from the programmers.

OpenMP uses the fork-join parallelization model, where a master thread is

split into a pre-specified number of threads which share the tasks among them.

Once forked, the threads run concurrently and depending on the nature of the

parallelized application synchronization or communication between threads is

2.5. Real-time Systems 29

required which controlled using pragmas.

2.4.4 MPI

Message Passing Interface (MPI) is a standardized and portable message-

passing system to function on a wide variety of parallel computers. The

message passing paradigm enabled programming of parallel applications on

distributed machines with separate memory spaces.

Although initially targeted only for distributed memory architectures, due to

the trend of network connected multi-core processors, MPI then also supported

this distributed and shared memory (hybrid architectures). There exists dif-

ferent implementations of MPI such as MPICH, LAM-MPI and OpenMPI.

An MPI program starts with environment initialization step to create the

communication domain between distributed machines. Each machine then

performs its work and in parallel until finished then the MPI environment is

terminated. During the parallel execution, machines can communicate using

different message passing calls according to the required communication. Cur-

rently MPI supports various communication such as broadcast, gather/scatter

and reduce.

2.5 Real-time Systems

Real-time systems are computing systems that have to react to input within

strict timing constraints. The correctness of a real-time system is specified

by the accuracy of the calculated output and also by meeting the required

deadlines. To characterize a system as real-time, a clear understanding of the

2.5. Real-time Systems 30

working environment and which influence its timing characteristics is needed.

The system must operate in the same time scale with the environment, and

guarantee that it will respond fast according to the environments evolution.

Sometimes, such systems may be compromised when external, nonnatural,

events disrupt the timing characteristics of the environment it operates in.

False modeling of the environment timing characteristics can cause real-time

systems to malfunction causing to the incorrect correlation between the sys-

tems time and the environments time. [37].

2.5.1 Types of Real-time Tasks

According to the criticality of a system’s deadline, real-time systems can be

divided into three categories [37]:

• Hard: the miss of a deadline causes catastrophic consequences to the

system or the environment. An example of a hard real-time system is

an airplanes motors and sensors control where deadline miss may cause

catastrophic result from the feedback control loop.

• Firm: the missed deadline produces useless data for the system but does

not damage the system or the environment. Miss deadline in a firm real-

time system may lead to quality degradation, for examples tasks in signal

processing domain, like video encoding/decoding or video streaming.

• Soft: the data produced after a deadline are still useful but lead to a

degradation of the systems performance, for example in a graphic user

interface of an application.

2.6. Related Works 31

2.5.2 Features

A real-time system needs to have six fundamental properties to be able to host

a critical application:

• Timeliness: able to guarantee that all the imposed deadlines are going

to be met.

• Predictability: developed in a way where extensive analysis schemes can

be applied to them, and varying behaviour over different scheduling tech-

niques can be predicted.

• Efficiency: operates correctly on certain timing, power, area and compu-

tational power constraints.

• Robustness: behave correctly in extreme workload cased.

• Fault tolerance: able to tolerate permanent or transient faults and con-

tinue working correctly without compromise the systems operation.

• Maintainability: supports extensions or modifications to the system which

can take place without much integration effort.

2.6 Related Works

To overcome the limited signal processing efficiency improvement, the most

straightforward way to accelerate the SAR imaging is by using the parallel

algorithm on high-performance computing (HPC) platforms. There are two

kinds of methods can be applied to SAR imaging processing in HPC: the global

shared memory system, and the distributed network of independent nodes [38].

2.6. Related Works 32

Some researchers have implemented SAR imaging algorithms using special

purpose DSP [39, 40, 41] and FPGA [42, 43, 41, 27] which can reach the level

of real-time processing. However, the special purpose nature of the solutions

makes the generality of this approach another challenging problem. There

also exists several generic parallel implementations using CPU based utilizing

OpenMP and MPI technologies [44, 45, 46], yet they are still have difficulties

to achieve real-time processing performance.

In recent years, heterogeneous computing in Synthetic Aperture Radar pro-

cessing has been a popular research topic. Clemente et.al. and Bisceglie et.al.

demonstrate the potential of using GPU for SAR processing in context of

Range Doppler Algorithm [47, 6]. The authors review the main computational

features of a range-Doppler Synthetic Aperture Radar (SAR) algorithm, dis-

closing the degree of parallelism in SAR processing operations in context of

GPU programming model.

Further parallelization of Range Doppler Algorithm on a single GPU is re-

viewed by authors in [17, 48, 49], followed review of the usage in multiple

GPU [50]. GPU implementation of other processing algorithms also have been

reviewed, for example SPECAN algorithm in [25], Chirp Scaling [18, 51], and

Backprojection algorithm in [52, 53, 54].

Various existing research on GPU based methods for SAR imaging showed

improvement of execution times for dozens of times and able to outperform

traditional HPC methods [55, 56, 47]. However, several issues such as data

transfer between CPU and GPU [57] and limited number of GPU devices

and coordination in the usage of multiple GPU for computation [57, 56] still

become major challenges. Although GPU computing can increase the efficiency

of computation by many times using SIMD methods, they still cannot achieve

2.6. Related Works 33

the practical requirement for fast and real-time imaging.

Another factor that become a challenge in heterogeneous computing for SAR

is that, often the computing power of the CPU is not optimized or sometime

under utilized. On the typical case, CPU is only used for logical processing,

controlling and input output tasks [57, 8]. To overcome this challenge, there

are efforts to use multi-core parallelism on the CPU in order to gain processing

efficiency [56]. However, the efficiency of parallel processing in CPU and GPU

are at a different level, making the CPU contribution not as impressive as

expected [8].

According to [8] there are three limiting factors in current heterogeneous CPU-

GPU based SAR imaging:

• GPU memory size limitation. Due to small amount of GPU memory,

typical SAR data with large size, can not fit into GPU memory which

requires more complex processing and memory management technique.

• CPU power underutilization. Most CPU-GPU based SAR processing

do not optimize the usage of CPU power and using CPU only for task

coordination and IO related task.

• Lack of collaborative computing solution. There is a need to answer the

scalability challenge of using both CPU and GPU computing resources

in order to meet real-time imaging requirements.

In this work, we proposed to solve the problem of achieving near real-time SAR

processing using quick-look and precision algorithm utilizing mobile heteroge-

neous computing platform. A recent study on the capability of GPU on mobile

platform suggests that GPU embedded platforms have considerable potential

2.6. Related Works 34

for SAR processing tasks. This new emerging platform offers various advan-

tage such as low power consumption, light weight and standard programming

tools, which could open new possibilities of the embedded space applications

in Synthetic Aperture Radar processing [58]. The previous study focus specif-

ically on the porting existing based SAR application to the embedded GPU

platform by maximize offloading task from CPU to GPU without considering

how to best balance the load between the CPU and GPU. Design examples of

utilizing GPUs to accelerate SAR processing computations can also be found

in [59, 60, 61, 58, 49]. However to the best of our knowledge, there is no prior

work that provides insight how the mobile CPU and GPU can balance the

processing workload in context of SAR processing on quick-look and precision

algorithm to achieve the best speed-ups.

Chapter 3

SAR Processing on Mobile

Heterogeneous Platform

3.1 SPECAN on Mobile Heterogeneous Com-

puting

This section presents the development of on-board quicklook SAR processing

for the GAIA-II microsatellite platform. The software processes the SAR sen-

sor raw data into intensity images for preview operation during satellite data

acquisition mission. First, SPECAN algorithm for quicklook SAR processing

is introduced, followed by discussion on the software implementations archi-

tecture for heterogeneous multicores. There are two versions implementations:

sequential and heterogeneous CPU/GPU.

35

3.1. SPECAN on Mobile Heterogeneous Computing 36

3.1.1 Requirements for the Quicklook Processor

The quicklook SAR processor on-board JX-2 UAV has the following objectives:

1. Processing the IQ signal acquired by the sensor into an amplitude image

in near real-time fashion during the flight, and

2. The moderately low resolution image produced will be saved to disk and

transmitted to the ground station for quick review of SAR image during

a flight mission.

3. The processor is converting the raw data into image continuously as long

as there is raw data in the buffer.

Because of the intensive computational process involved, the trade-off between

the processing speed and the SAR image quality becomes a major concern.

This works objective is to get a fast preview of SAR images during a mission,

thus the processing speed becomes a priority over image quality. Which makes

the usage of quicklook algorithm suitable for the purpose.

In terms of SAR processing, due to the similar geometry, the algorithm for

processing linearly polarized SAR (LP-SAR) raw data can also be used to

process CP-SAR data. In actual operation, a LP-SAR sensor will operate in

full polarimetric mode: LL, LR, RL and RR polarization which can be divided

into four channel ADC output. These facts made the volume of data produced

by full polarimetric CP-SAR system four times as big as the linear polarization

sensor.

The typical flow of a quicklook SAR processing is depicted in Figure 3.1. In

general, the quicklook processing subsystem consists of three main process:

3.1. SPECAN on Mobile Heterogeneous Computing 37

a raw data file buffer processor loop that reads raw signal and motion data

file from the data recording subsystem, a process that convert the data using

quicklook algorithm and a process that write the resulting image in common

graphical format (e.g. jpg, bmp, png, gif) back to the storage in the data

recording.

The processed SAR images in data recorder then will be transmitted to the

ground system via the data downlink in order to give user a quick preview of

the currently observed SAR area.

Figure 3.1: General flow of the Quicklook processor

3.1.2 Modified SPECAN Algorithm

To produce the quicklook image specified by requirements in previous sec-

tion, we have selected to implement the processor using Spectral Analysis

(SPECAN) algorithm. SPECAN algorithm was invented in 1979 by Mac-

Donald Dettwiler and Associates (MDA) to perform real-time processing on

SEASAT SAR data. This algorithm provides efficient method of producing

space borne SAR imagery of modest resolution, which makes it ideal for quick-

look imaging [22]. Quicklook images produced by SPECAN algorithm showed

3.1. SPECAN on Mobile Heterogeneous Computing 38

degradation of the image quality. Recent work has been done to implement

new methods of correcting the degradation while still focus on the main ad-

vantage of this algorithm which is efficiency in computation [62, 63].

Generally, SAR processing algorithm is divided into two main steps: processing

in range and azimuth direction. Azimuth is the direction of platform flight

while range is the direction perpendicular to azimuth. The original SPECAN

algorithm depicted in Figure 3.2 consists of general processing in range and

azimuth direction [22, 64].

Figure 3.2: SPECAN algorithm processing flow. (a) Reference SPECAN algo-
rithm (b) Implemented modified SPECAN algorithm

In SPECAN algorithm, range processing contains only pulse compression of

3.1. SPECAN on Mobile Heterogeneous Computing 39

received signals in the range direction, while azimuth processing consists of

linear range cell migration correction (RCMC), deramping with weighting and

FFT, descalloping, multilooking or phase compensation and deskewing with

stitching operation. The range compression is done by pulse compression be-

tween the received signals in a range bin with the replica of transmitted signal.

Using fast convolution technique, the range compression is carried out as mul-

tiplication in the frequency domain involving FFT and inverse FFT operation.

The azimuth processing steps are started with a linear RCMC operation to

compensate the effect of range migration. After deramping and FFT operation

that equals to time domain convolution, a descalloping operation takes place.

Descalloping is done by applying functions which are inversely proportional to

the predicted antenna gain pattern function to correct the scalloping effect due

to different magnitude of each burst. If required, multilook processing must be

done to generate a multilook image, but in the case of single look image, only

phase compensation is done instead. The last stage is the step to correct the

skewing effect in the result of each burst and a stitching process to combine

all of the resulting SAR images into a single look image.

Figure 3.2 (b) shows the flow of modified SPECAN algorithm implemented

in this work. The modified algorithm consists only of range compression, lin-

ear RCMC, deramping and FFT, phase compensation and multilook process.

Range compression is implemented as an FFT operation to range samples in

an azimuth gates with a range reference function, followed by multiplication

operation and an IFFT operation on the result. A single range reference func-

tion is used for all azimuth gates. After range compression, RCMC is applied

by shifting the range compressed data set at certain value for each range gates.

First the range curvature is calculated using Doppler centroid, chirp rate and

3.1. SPECAN on Mobile Heterogeneous Computing 40

chirp center value, followed by interpolation operation. The calculation is

executed in the frequency domain, by applying a pair of FFT and inverse FFT

operation.

Deramping calculation consists of a creation of complex matched filter using

Doppler and PRF information, followed by matched filtering operation to the

data set in range gates. Deramping is based on the stretch technique which

allows linear manipulation of the time and bandwidth coordinates of a lin-

ear frequency modulated signal by mixing it with another signal of different

frequency-time slope to slow down, speed up or time reverse the signal [62, 65].

Assuming that a linear frequency modulation (FM) signal has the following

form:

s(t) = ejπK(t−τr)2 ,−Tc
2
≤ t ≤ Tc

2
(3.1)

where K is the signal FM rate, Tc is pulse time extent, and is the time position

of the zero frequency of the signal. The zero frequency of the target is the static

phase point, the time at which the phase rate goes from positive to negative

or vice versa. If the phase switch-over occurs in the middle of the signal

time duration, the zero frequency will be at the same position as the center

frequency.

The instantaneous frequency of the FM signal can be calculated using the first

derivative of its phase, θ. From Equation 3.1, the phase, θs, of the transmitted

signal is:

θs(t) = jπK(t− τc)2

ωinst =
dθs(t)

dt
= 2πK(t− τc)

(3.2)

3.1. SPECAN on Mobile Heterogeneous Computing 41

which shows that the instantaneous frequency, , is a linear function of time.

Next, we apply the stretch technique. If the linear FM signal in Equation 3.1 is

multiplied with another linear FM signal with different FM rate , and shifted

with respect to s(t), the product is a linear FM signal with FM rate equals to

(K +K1):

s1(t) = ejπK(t−τr)2 ,−Tc
2
≤ t ≤ Tc

2

s(t)s1(t) = ejπ(K+K1)t2e−jπK1(Kτc+K1τr)tejπ(Kτc
2+K1taur2)t

(3.3)

The first term in 3.3 is a linear FM signal with the FM rate of (K +K1), the

second term is a constant frequency signal, and the third is a constant complex

number. In SPECAN algorithm, the same linear FM signal multiplication

technique is also applied. The target signal is transformed from linear FM

chirps to constant frequency signal using K as the value of K1. This process

creates a deramped signal, d(t), such as

s1(t) = ejπK(t−τr)2 ,−Tc
2
≤ t ≤ Tc

2
(3.4)

The phase,θd(t), and instantaneous frequency, ω′inst(t), of this signal are

θd(t) = πK{2(τr − τc)t+ (τr
2 − τc2)}

ω′inst(t) = 2πK(τr − τc),
(3.5)

where the instantaneous frequency does not vary with time.

In SPECAN algorithm, the matched filter is created using the FM rate of the

transmitted pulse to generate the conjugate of the ideal received signal. It is

then used to deramp the received data by a complex multiplication in the time

domain. After deramping, each target will have a constant frequency value

3.1. SPECAN on Mobile Heterogeneous Computing 42

proportional to the time position of its zero Doppler frequency with respect to

that of the reference function in Equation 3.2.

To narrow most of the energy of each target to a single frequency bin, a FFT

operation is performed on this signal. The relative positions of the targets

time locations will be detected at the correct positions relative to each other.

Short length FFT blocks are placed along the deramped signal such that each

targets trajectory is included in at least one FFT input vector [22].

Several important issues related to FFT operation after the deramping are:

how to determine the position of the first FFT, how to calculate the length of

FFT, how to select the correct FFT output, and where to put subsequent FFT

operation. The length of the FFT operation is influenced by several factors

such as the desired azimuth resolution, prevention of aliasing and computing

efficiency [22]. Larger number of FFT point will cause heavier computational

load.

The azimuth resolution obtained by an NFFT point of FFT can be formulated

as

ρaz−CP =

(
0.886PRFγw−az

NFFTKa

)
vcosθsq (3.6)

where γw−az is the broadening factor of the weighting window, Ka is the az-

imuth FM rate, and θsq is the squint angle which in our case equals to 0. The

length of FFT is governed by the PRF time: a mixed target will happen if it

is longer than the PRF time. Therefore, the upper limit of the FFT length is

the PRF value. The output sample spacing of the FFT output is calculated as

one PRF in the frequency domain, which equals to PRF/NFFT in frequency

3.1. SPECAN on Mobile Heterogeneous Computing 43

units; in time units, this corresponds to

∆y =
PRF

NFFTKa

. (3.7)

If the FFT size is not an efficient length (i.e., not in the power of 2), the

value can be zero padded to a nearest better length. After this operation, the

number of good points in the FFT output (Ngood) can be calculated as

Ngood = NFFT

(
Ta −

NFFT

PRF

)
Ka

PRF
(3.8)

where Ta is the synthetic exposure time. The frequency of target after der-

amping (ftar dr) can be given as

ftar−dr = fηc +Ka

(
η′mid − η′ramp0

)
(3.9)

where fηc is the Doppler centroid frequency, η′mid is time at the middle of target

exposure, and η′ramp0 is the time at which the reference function passes through

zero frequency. Then, the position of the good FFT can be calculated by

k =
NFFT

PRF
ftar−dr + 1 (3.10)

This indicates that the deramped frequency is at the k-th element, where the

value k is between 1 and NFFT .

After the valid pixel number is calculated, valid pixel value determines the size

of final result of phase compensation. The phase compensation of azimuth de-

ramped signal is done in the frequency domain. The phase compensation

process is composed of an FFT operation, filter calculation and matched fil-

3.1. SPECAN on Mobile Heterogeneous Computing 44

tering operation between the filter and the range gate of the deramped signal

dataset. Phase compensation also includes interpolation operation depending

on the calculated image resolution. In the modified SPECAN algorithm, the

descalloping process is skipped in order to avoid interpolation operation to

reduce computation load. The last step of this quicklook processing is mul-

tilooking which will reduce the scalloping effect in the image. Multilooking

process is carried out by averaging different parts of the signal spectrum to

form processed SAR images.

3.1.3 Sequential Implementation

Figure 3.3 shows the flow chart of sequential implementation of SPECAN

processor. The process takes three kind of input file, one configuration file,

leader file and raw data file respectively. The configuration file contains the

value related to the program execution parameter such as leader file name,

raw data file name and processing result file name. Leader file and raw data

file is actually part of a set of data from the SAR sensor. Leader file contains

information related to the SAR data and sensor i.e. data set summary, map

projection, platform position, attitude, radiometric, quality, spectra, ground

control point and facility related data. The raw data file contains records

related to file descriptor, signal data and processed data [66]

The implementation of SPECAN algorithm is as follows:

1. Before main processing, the program reads processing parameters from

a configuration and leader and then calculate several processing parame-

ters such as number of valid data in range and azimuth direction, Doppler

3.1. SPECAN on Mobile Heterogeneous Computing 45

Figure 3.3: Flow chart of sequential SPECAN implementation

centroid and Doppler rate value which will be used further in the pro-

gram.

2. The main processing of SPECAN algorithm consists of a loop that pro-

cess a segment of raw data that loaded into a 2D array (matrix). The

loop will be repeated as many as the number of segment and each one

will result in a SPECAN processed image. This data partitioning tech-

nique is applied because it is not possible to load the whole data into

3.1. SPECAN on Mobile Heterogeneous Computing 46

memory. After processing, all image segments will be combined into a

bigger image.

3. The range compression process is implemented as element-wise complex

number multiplication between a range reference function inside an array

and every range lines in the current data segment. The result is a 2D

range compressed data.

4. Range migration correction is applied to range compressed data inside

the 2D array. In our implementation, the range migration is implemented

using interpolation by means of sinc function.

5. Deramping process follows the range migration of 2D array data by first

creating an azimuth chirp signal or azimuth reference function. The

azimuth reference function then multiplied with the 2D array data to

complete the deramping process. FFT operation to the deramped data

in azimuth direction then applied to the data.

6. After azimuth FFT, a phase correction is applied using Doppler rate and

frequency step data that we calculate in previous step.

7. The 2D array result of phase correction is then written to storage, and the

program will continue processing the next available SAR data segment.

3.1.4 Heterogeneous CPU/GPU Implementation

Briefly, our parallel SPECAN algorithm is divided into eight steps depicted

in Figure 3.3: read configuration file, read data parameters from leader file,

parameter calculations, read segment of data/data partitioning, range com-

pression, range migration, deramping, azimuth FFT, phase compensation and

3.1. SPECAN on Mobile Heterogeneous Computing 47

write data segment. Among those task, the I/O related task is the non-

parallelizable while the rest of the task have potential to run in parallel.

We divide the process into steps carried out in CPU and in GPU, while trying

as much as possible to offload the parallelizable work to the GPU. Two pro-

cesses with tight relationship to input/output operations are handled by CPU

i.e. reading raw data from file to memory and writing the results image blocks

into file.

We also divide the process into steps according to its processing direction

i.e. range direction and azimuth direction. Since the mobile heterogeneous

platform usually does not have large amount of memory compare to the size

of raw SAR data, a data partitioning strategy is needed in order to be able to

distribute the work load between CPU and GPU.

In SPECAN processing, prior to range processing (range compress and range

migration) and azimuth processing (deramping, azimuth FFT and phase com-

pensation). A flow chart of the complete SPECAN algorithm implemented on

the heterogeneous framework is given in Figure 3.4. The processing steps are

as follows:

1. CPU divides the data along the azimuth direction

2. GPU executes range processing, which includes range compression and

range migration.

3. CPU transposes the data from range processing result into format suit-

able for azimuth processing. After that, it divides the data along the

range direction.

3.1. SPECAN on Mobile Heterogeneous Computing 48

4. Azimuth processing is performed on the GPU, which includes deramping,

azimuth FFT and phase compensation.

Using above approach, the coarse grained parallelism inside our SPECAN al-

gorithm can be identified i.e. data partitioning, range processing, data trans-

position and azimuth processing.

Figure 3.4: Flow Chart of RDA on Heterogeneous Platform

3.1.5 Data Partitioning

To distribute work to different processors, SAR data set must be partitioned

into subsets where each processor performs essentially identical operations on

each subset. There are a number of options that can be used to partitioning:

(a) azimuth sub-swaths or strips (b) range sub-swaths or strips, and (c) sub-

matrices. Each subset computed by launching a kernel on the GPU.

In current implementation the sub-matrices approach of partitioning which en-

ables for creating most work as possible is selected. Matrices size is calculated

using matched filter length size in either range or azimuth direction, which

3.1. SPECAN on Mobile Heterogeneous Computing 49

depend on the SAR system parameter. In order to optimize the execution

time on CPU and GPU, the following principles are also considered:

1. To minimize idle resources, size of one the block should be equal to the

size that can be process by CPU and GPU with the same latency value.

2. The size of block must be less than the size of GPU memory.

3. The length of the block must be selected with the value that optimize

the FFT operation, which leads to the nearest 2n value.

3.1.6 Range Compression

Range compression is implemented as an FFT operation to range samples in

an azimuth gates, followed by multiplication with range reference function and

IFFT of the result. A single range reference function is used for all azimuth

gates. To optimize the operation, first all the azimuth gates are transformed

using batched FFT operations, saved the result in GPU global memory, mul-

tiply the azimuth gates with range reference functions and batched IFFT of

the result. The optimum number of parallel execution per blocks depends on

the available GPU threads and memory, and limited by the available mem-

ory bandwidth. The global memory usage is optimized by coalesced read and

writes operations [47].

3.1.7 Linear RCMC

Range Cell Migration Correction (RCMC) is completed by shifting the range

compressed data set at certain value for each range gates. First the range

3.1. SPECAN on Mobile Heterogeneous Computing 50

curvature is calculated using Doppler centroid, chirp rate and chirp center value

followed by interpolation operation. The calculation is executed in frequency

domain, which involved a pair of FFT and IFFT operation. Parallel RCMC

operation is implemented by assigning each range gate to one thread and use

tiling method (by copying smaller chunks of data from GPU global memory

to shared memory) to enable efficient kernel computations.

3.1.8 Deramping

Deramping process calculation consists of a creation of complex matched filter

using Doppler and PRF information, followed by matched filtering operation

to the data set in range gates. Similar to range compression, the optimum

number of parallel execution per blocks also depend on the available GPU

thread and memory, and limited by the available bandwidth. We also apply

the coalesced read and write operation to optimize memory usage.

3.1.9 Phase Compensation

Before phase compensation operation, valid pixel calculation must be carried

out. Valid pixel value determined the size of final result of phase compensation.

The phase compensation of azimuth deramped signal is done in frequency

domain, consists of an FFT operation, filter calculation and matched filtering

operation between the filter and the range gate of the deramped signal dataset.

Phase compensation also included interpolation operation depending on the

calculated image resolution.

3.2. RDA on Mobile Heterogeneous Computing 51

3.2 RDA on Mobile Heterogeneous Comput-

ing

This section presents the development of on-board precision SAR processor

for the JX-2 UAV platform using Range Doppler Algorithm (RDA). First, the

general processing flow of Range-Doppler algorithm is presented, followed by

discussion on two implementations: sequential and heterogeneous CPU/GPU

version.

3.2.1 Requirements for the Precision Processor

The precision SAR processor on-board JX-2 UAV has the following objectives:

1. Processing the IQ signal acquired by the sensor into an amplitude image

during the SAR data acquisition flight.

2. The high resolution image produced will be saved to disk and transmitted

to the ground station for preview or further processing.

3. The processor is converting the raw data into image continuously as long

as there is raw data in the buffer.

3.2.2 Range-Doppler Algorithm

The Range-Doppler algorithm (RDA) is one of the oldest and the most com-

monly used algorithm for processing SAR data. The first successful applica-

tion of this algorithm is for processing SEASAT-the first satellite borne SAR

3.2. RDA on Mobile Heterogeneous Computing 52

mission-data in 1976. RDA is computationally efficient and, for typical space-

borne imaging geometries and it is an accurate approximation to the exact

SAR transfer function. Thus, the algorithm is phase-preserving and Single

Look Complex (SLC) images formed with RDA can be used for advanced

applications such as interferometry [67].

To achieve block processing efficiency RDA uses frequency domain operations

in range and azimuth directions, while maintaining the simplicity of one-

dimensional operations. It takes advantage of the approximate separability of

processing range and azimuth directions, allowed large difference in time scales

of the range and azimuth data, and by the use of range migration correction

(RCMC) between the two one-dimensional operations in order to compensate

the migration effect.

The RCMC operation is done in the range time and azimuth frequency do-

main to also gain block processing efficiency. This domain is known as ”range

Doppler” domain, because azimuth frequency is the same with Doppler fre-

quency. The algorithm is called range Doppler because the RCMC as the

unique feature of this algorithm is executed in this domain.

A key feature of this algorithm lies in fact that the processing of energy from

point targets, at the same range but different azimuth, is transformed to the

same location in azimuth frequency domain. Therefore, correction of one target

trajectory in this domain resulted in an effectively corrected family of target

trajectories that have the same slant range of closest approach.

To achieve efficiency in implementation, the matched filter convolution pro-

cess in range and azimuth directions are implemented as multiplication in

frequency domain. RDA able to accommodate range variant matched filtering

3.2. RDA on Mobile Heterogeneous Computing 53

and RCMC operation with relative ease, and all operations are performed in

one dimensional data arrays to achieve simplicity without losing efficiency.

Currently there are several variants of RDA available. For example, in order to

handle data with a moderate amount squint, in 1984 NASA added a secondary

range compression (SRC) step before RCMC is done. Using SRC the algorithm

able to compensate the range and azimuth coupling of target’s phase history

and helps to remove phase distortions in case of SAR with squinted or large

aperture datasets.

Figure 3.5 gives a block diagram of the basic RDA algorithm which suited

for processing data from relatively small squint angle and aperture lengths

antenna.

The following are the general steps of RDA:

1. Range compression is performed with fast convolution when the data are

in the azimuth time domain. In other words, a range FFT is performed

followed by a range matched filter multiply, and finally a range IFFT, to

complete the range compression.

2. An azimuth FFT transform the data into range Doppler domain, where

Doppler centroid estimation and most of the subsequent operations are

performed.

3. RCMC, which is range time and azimuth frequency dependent, is per-

formed in the range Doppler Domain, where a family of target trajec-

tories at the same range are transformed into one single trajectories so

that they now run parallel to the azimuth frequency axis.

3.2. RDA on Mobile Heterogeneous Computing 54

4. Azimuth matched filtering can be conveniently performed as a frequency

domain matched filter multiply at each range gate.

5. The final step in azimuth IFFT to transform the data back to the time

domain, resulting in a compressed image. Detection and look summation

can be done at this stage, if desired.

Figure 3.5: General steps of Range Doppler Algorithm

Data received from the radar system are referred to as signal data or raw data.

The raw data are first demodulated to baseband, so that the nominal center

frequency is zero. The demodulated radar signal, , received from a point target

can be modelled as (3.1).

s0(θ, η) = A0ωr

(
γ − 2R(η)

c

)
ωσ(η − ηc)

×e
(
− j4πf0R(η)

c

)
e

(
−j4πKr(γ− 2R(η)

c)
2) (3.11)

3.2. RDA on Mobile Heterogeneous Computing 55

Where

A0 = an arbitrary complex constant

γ = range time

ηc = azimuth time reference to closest approach

η = beam center offset time

ωr(τ) = range envelope (a rectangular function)

ωσ(τ)= azimuth envelope (a sinc-squared function)

f0 = radar center frequency

Kr = range chirp FM rate

R(η) = instantaneous slant range

The two omega terms model the magnitudes of the range and azimuth sig-

nals, and are often neglected in the signal analysis. The instantaneous slant

range,R(η), is given by:

R(η) =
√

(R2
0 + V 2

0 η
2), (3.12)

where R0 is the slant range closest approach.

For this target, the azimuth time, η, is referenced to zero Doppler. When

multiple targets are considered, a common absolute time, η, is needed, such as

η at the start of data acquisition.

In range compression, range FFT is performed followed by a range matched

filter multiply. Range IFFT is then performed to the data after the range

3.2. RDA on Mobile Heterogeneous Computing 56

Matched filter multiply, where the range matched filter phase is defined as

s1(τ, η) = IFFTτ (FFT (s0(τ, η)G(fτ)) (3.13)

G(fτ) = e−jπKτ τ
2

(3.14)

Second step of RDA is azimuth FFT. In this stage, azimuth FFT is performed

on the data, which transforms the data into range Doppler domain (τ, fη).

s2(τ, fη) = FFT (s1(τ, η)) (3.15)

Third step of RDA is RCMC which performed by a range interpolation opera-

tion in the range Doppler domain. In RCMC, an interpolation is implemented

based on the sinc function. The data are corrected by the amount given by

RCM, which is defined in (2.6).

s3(τ, fη) = RCMC(s2(τ, fη)) (3.16)

∆(fη) =
λ2R0f

2
η

8V 2
t

(3.17)

Azimuth Compression is the fourth step of RDA. In azimuth compression,

azimuth matched filtering is performed on the data at each range gate in

range Doppler domain. Azimuth matched filter phase, Haz(fη),is as defined in

s4(τ, fη) = s3(τ, fη)Haz(fη) (3.18)

Haz(fη) = e

(
−jπ f

2
eta
Ka

)
(3.19)

Ka ≈
2V 2

τ

λR0

(3.20)

RDA has advantage from other algorithms as it is a simple and basic algorithm

3.2. RDA on Mobile Heterogeneous Computing 57

that can be adapted to most SAR processing tasks. RDA also has one of the

best trade-offs between accuracy and complexity. Many find it the easiest to

understand and implement although its accuracy is not the highest. RDA

can also be easily implemented in an efficient pipeline architecture where all

operations are done in one dimension at a time.

One of the disadvantages of RDA is the restrictive beam-width and squint

limitations. RDA also has high computation load as the interpolator used for

RCMC is a time consuming operation.

3.2.3 Sequential Implementation

Figure 3.6 shows the flow chart of sequential implementation of RDA processor

for UAV.

The implementation of RDA algorithm for UAV is as follows:

1. The program has three kinds of input: (1) program configuration (2)

flight position data (3) raw data. After reading the application config-

uration data, the program reads the flight position and calculate data

partitioning scheme.

2. The main loop of the program starts reading one segment of raw data at

a time until all data in the file is processed.

3. After reading a segment of raw data, an interpolation step to generate

missing data is required if the data is not uniformly sampled. An ad-

ditional step of interpolating missing data from the raw data is needed

if the data is not uniform in time. This step is required because RDA

algorithm works on uniformly sampled data.

3.2. RDA on Mobile Heterogeneous Computing 58

Figure 3.6: Range Doppler Algorithm

4. Range compression by frequency domain complex multiplication is car-

ried out between range reference function and the raw data.

5. Azimuth FFT to convert the range compressed data to frequency domain.

6. Azimuth compression by frequency domain complex multiplication is car-

ried out between azimuth reference function and Azimuth FFT data.

7. Azimuth IFFT to convert the data into time domain.

8. Write azimuth compressed data to disk buffer.

All the steps in the algorithms are done sequentially. As we can see from the

flow chart description, the processing of each segment of raw data is indepen-

dent to other segment. This means that there is an opportunity to accelerate

the program by processing of each segment in parallel.

3.2. RDA on Mobile Heterogeneous Computing 59

The details processing steps of each algorithms are described in Algorithm 1

to 5.

Algorithm 1: Interpolate Missing Data

Input: M1 /* raw signals with missing data */

Output: M2 /* raw signals with missing data filled */

initialization;
read the timestamp of each sample in M1;
for each missing timestamp do

interpolate new sample array from the previous and next array;
store array inside matrix M2;

end
return M2;

Algorithm 2: Range Compression

Input: M1, R1 /* raw data, range reference */

Output: M2 /* range compressed data */

initialization;
for each Vector V1 in M1 do

Read one vector into R1 ;
V2 = FFT(R1) * FFT(V1) ;
Save V2 into M2 ;

end
return M2 ;

Evaluating each sub process inside the RDA algorithm, we found the following

parallelism opportunities:

1. Missing data interpolation, we can parallelize the for loop that calculate

each missing data.

2. Range compress and Azimuth compress, there are opportunities to paral-

lelize the FFT operation for each range/azimuth samples and the vector

multiplication operation as well.

3. Azimuth FFT and Azimuth IFFT, there is an opportunity to parallelize

the FFT/IFFT operation for each azimuth samples. The implementation

3.2. RDA on Mobile Heterogeneous Computing 60

Algorithm 3: Azimuth FFT

Input: M1 /* raw data */

Output: M2 /* raw data after azimuth fft */

initialization;
for each Vector V1 in M1 do

Read one vector into R1 ;
V2 = FFT(R1) ;
Save V2 into M2 ;

end
return M2 ;

Algorithm 4: Azimuth Compression

Input: M1, R1 /* raw data, azimuth reference */

Output: M2 /* azimuth compressed data */

initialization;
for each Vector V1 in M1 do

Read one vector into R1 ;
V2 = FFT(R1) * FFT(V1) ;
Save V2 into M2 ;

end
return M2 ;

of these parallelization opportunities are discussed in the next section.

3.2.4 Heterogeneous CPU/GPU implementation

The RDA processing can be categorized into two kind of processing: process-

ing in the range direction and in azimuth direction. The Jetson TK1 mobile

heterogeneous platform that was used in our experiments consists of a four

cores CPU and 192 cores GPU. Compare to the size of raw SAR data plus

the amount of memory needed during processing, the available 2GB of RAM

is quite limited. Consequently, prior to the range processing (i.e. interpolate

missing data and range compression) the large-scale data should be divided

into smaller segments along the azimuth direction. And it should be divided

3.2. RDA on Mobile Heterogeneous Computing 61

Algorithm 5: Azimuth IFFT

Input: M1 /* raw data */

Output: M2 /* raw data after azimuth ifft */

initialization;
for each Vector V1 in M1 do

Read one vector into R1 ;
V2 = IFFT(R1) ;
Save V2 into M2 ;

end
return M2 ;

into smaller segments along the range direction before azimuth processing (i.e.

azimuth FFT, azimuth compression and azimuth IFFT).

A flow chart of the complete algorithm implemented on the heterogeneous

framework is given in Figure 3.6. The SAR data is processed step by step as

follows:

1. CPU divides the data along the azimuth direction

2. Range processing is executed on GPU, which includes missing data in-

terpolation and range compression.

3. CPU transposes the data from the result of range processing into format

for azimuth processing. After that, it divides the data along the range

direction.

4. The azimuth processing is performed on the GPU, which includes (az-

imuth FFT, azimuth compression and azimuth IFFT).

Concluding from above approach, the coarse grained parallelism inside our

RDA algorithm can be identified i.e. data partitioning, range processing, data

transposition and azimuth processing, which are similar with the SPECAN

processing algorithm. In above heterogeneous framework, the data processing

3.2. RDA on Mobile Heterogeneous Computing 62

Figure 3.7: Flow Chart of RDA on Heterogeneous Platform

between CPU and GPU is executed sequentially, bringing the total processing

time equal to the sum of processing time of CPU and the processing time of

GPU.

In order to accelerate the above execution scheme, a pipelining processing

approach between CPU and GPU based on data segment is proposed. We

take the advantage of asynchronous GPU kernels in order to execute different

task in CPU and GPU concurrently. This execution scenario is depicted in

figure 3.8.

Figure 3.8: Parallel task execution scenario

Because the processing of each data segment is independent with others, the

execution of one task on one data segment on CPU can be carried out in

3.2. RDA on Mobile Heterogeneous Computing 63

parallel with the execution of another task on GPU. For example, the CPU

task no. 2 can be run at the same time with the GPU task no. 1. And the

CPU task no N can be run at the same time with the GPU task no N-1.

Using above execution model, we can achieve the total execution time of data

approximately equal to the total execution of GPU, leading to the reduction

of total processing time.

Algorithm implementation on the GPU

The processing on GPU can be categorized into two types: range and azimuth

processing. Referring to previous section, majority the algorithm basically

consists of two mathematical operations:

1. FFT and IFFT, the forward and inverse Fast Fourier Transform which

converts the data from time to frequency domain and vice versa. These

operations are used in range compression, azimuth compression, azimuth

FFT and azimuth IFFT.

2. Complex Vector multiplication, which used by the missing data interpo-

lation, range compression and azimuth compression.

Both algorithms implementation on the GPU are as follows:

1. Vector multiplication, implemented as three level hierarchy of GPU threads:

threads, blocks and grids. Threads are grouped into blocks and multiple

blocks are grouped into grids. Each kernel function code will be executed

by every threads, and the result are stored in device memory. Since each

vector multiplication on SAR processing is independent with others, the

3.2. RDA on Mobile Heterogeneous Computing 64

multiplication of each vector element can be executed by one thread,

resulting a group of threads working on a single vector multiplication.

2. FFT and IFFT, one dimensional complex to complex FFT and IFFT op-

eration are implemented using the available cuFFT library. The range

and azimuth direction FFT/IFFT is implemented separately. To execute

multiple FFT/IFFT operation at the same time, the batch mode oper-

ation of cuFFT is used. Using cuFFT library enable us to use parallel

processing without having to develop our custom FFT implementation.

Using above approach we are able to identify the fine grained parallelism po-

tential inside the RDA algorithm.

Algorithm Implementation on the CPU

In our implementation, the CPU handles the tasks of data partitioning into

segments and arranging the direction of data in segments in range or azimuth

depending on the processing direction requirement. The task of arranging data

direction is implemented using transposition algorithm which is more time con-

suming compare to the data partitioning task. Because the transposition of

one segment of data is not related to other data segment, the CPU can carry

out this process using multithread which will reduce the processing time. On

the other hand, although the data partitioning task is not a time consuming

process, it plays an important role in the processing. Dividing data into un-

suitable blocks of segment will increase the algorithm complexity. We use the

following principles in order to partition the data into segments:

1. To minimize the idle resource, size of one the block should be equal to

3.2. RDA on Mobile Heterogeneous Computing 65

the size that can be process by CPU and GPU with the same latency

value.

2. The size of block must be less than the size of GPU memory.

3. The length of the block must be selected with the value that optimize

the FFT operation, which leads to the nearest 2n value.

Parallel CPU and GPU execution

After the CPU divide the large SAR data into different independent blocks,

the CPU and GPU can process each blocks concurrently. In range processing

some threads on CPU will transpose the (N+1)-th data block and instruct the

GPU to process the Nth data block simultaneously. Other thread can instruct

GPU to process the data block while waiting for (N+1)-th transposition. This

scenario is depicted in Figure 3.9.

Figure 3.9: Flow Chart of Parallel CPU and GPU Threads

Chapter 4

Experimental Results

This chapter contains the results and evaluation of the developed on-board

SAR processing software. Since actual CP-SAR data from UAV or Microsatel-

lite based sensor are not available yet, there are two possible testing scenarios:

using synthetic/simulated data generated with parameters from current sys-

tem under test or using actual data from currently available system that have

similar parameters with system under test. This thesis follows the second path

of using actual data from currently available air-borne and space-borne sen-

sor, in order to demonstrate the imaging capabilities of the software on actual

complex SAR data.

4.1 Experimental Setup

In order to test the software implementations, we use Jetson TK1 mobile

heterogeneous platform, a small (5 inches by 5 inches) board designed for de-

velopment of embedded and mobile applications depicted in Figure 4.1. The

66

4.1. Experimental Setup 67

Table 4.1: Specification of evaluation hardware & software

Parameter Value

Name Jetson TK-1
CPU 4+1 cores
CPU architecture Arm Cortex 15
GPU NVidia Tegra K1
GPU architecture Kepler
No of GPU Cores 192
GPU memory size 2 GB
Compute capability 3.2
OS Ubuntu Linux 14.04
Kernel version 3.10.40-gdacac96

Jetson TK1 is powered by the Tegra K1, a mobile processor featuring a CUDA-

capable GPU. It has a GK20A Kepler GPU with 192 cores and a quad-core

ARM Cortex-A15 32bit CPU. Jetson has 2GB of system RAM and run Ubuntu

Linux version 14.4. Table 4.1 shows the specification of the evaluation hard-

ware and the physical appearance is depicted in Figure 4.1.

Figure 4.1: NVidia Jetson-TK1 development board hardware

4.2. SPECAN Results 68

Table 4.2: GAIA-II and JERS-I parameters comparison)

Parameter JERS-I GAIA-II

Frequency 1.275 GHz 1.270 GHz
Bandwidth 15 MHz 10 MHz
Off-nadir angle 54.90 29
Pulse length 35.00 µs 50.00 µs
Polarization HH LL, LR, RL, RR
Swath width 75 km 50 km

4.2 SPECAN Results

We have implemented two types of quicklook SPECAN processors:

1. Sequential CPU version (SSC)

2. Heterogeneous CPU and GPU version (SCG)

Several measurements have been performed in order to record and compare the

processing speed of both quicklook SPECAN processor. The following sections

discuss details of input data used and results of the program executions.

4.2.1 Input Data

Actual data from Japanese JERS-1 SAR satellite has been chosen to test the

SPECAN algorithm due to its relatively similar system configuration and orbit

geometry with GAIA-II. Table 4.2 shows the comparison between JERS-1 and

GAIA-II configuration parameters.

JERS-1 has orbit altitude of 568 km compare to GAIA-II of 500 to 700 km and

both has approximately the same center frequency. JERS-1s off nadir angle is

4.2. SPECAN Results 69

Table 4.3: Data set parameters)

Parameter Value

Sensor name JERS-I SAR
Frequency 1.275 GHz
Bandwidth 15 MHz
Observation date 1998/1/17
Off-nadir angle 54.90
PRF 1555.20 Hz
Pulse length 35.00 µs
Sampling rate 17.073 MHz
Range samples 6144
Azimuth lines 19904
Polarization HH
Swath width 75 km
Data file size 242 mega Byte

wider (54.9) than GAIA-II (29) causing it to have wider swath-width (75 km

compared to 50 km).

Table 4.3. list the specification of JERS-1 satellite raw data used for testing

the SPECAN implementation.

The selected raw data set represents an area of approximately 75 km × 75 km,

acquired over southern part of Bali Island, Indonesia. Figure 4.2 shows the

intensity image of processed using Range Doppler algorithm.

4.2.2 Experimental Results

Table 4.4 shows the result of processing the whole sample data with sample

size of 6144 in range and 19904 azimuth lines using Sequential CPU and the

Heterogeneous on CPU/GPU. The value written is the average value of 100

times executions with minimum and maximum outliers value excluded.

4.3. RDA Results 70

Table 4.4: SPECAN processor program execution time

Program Latency

Sequential CPU (SSC) 623.015 s
CPU/GPU (SCG) 95.848 s

Using values from Table 4.4, the speed-up value for SPECAN processor is:

SPECAN Speedupscg =
SSC Latency

SCG Latency
= 6.5 times (4.1)

4.3 RDA Results

4.3.1 Input Data

Actual raw data of microASAR UAV image from CASIE-09 has been chosen

to test the RDA algorithm to its relatively similar flight geometry with JX-2.

Table 4.5. list the comparison of of CASIE and JX-2 SAR platform.

Table 4.5: JX-II and CASIE parameters comparison)

Parameter JX-II CASIE

Frequency 1270 MHz 5428.76 MHz
Velocity 100 km/h 36-540 km/h
Altitude 1-4 km 1.5-3 km
Bandwidth 150 MHz (max) 80-200 MHz
PRF 1 kHz 7-14 kHz
Swath width 1000 m 300-2500 m

4.3. RDA Results 71

4.3.2 Experimental Results

Table 4.6, shows the result of processing the whole sample data with sample

size of 3884 in range and 1702 azimuth lines using Sequential CPU and the

Heterogeneous on CPU/GPU. The value written is the average value of 100

times executions with minimum and maximum outliers value excluded.

Table 4.6: RDA processor program execution time

Program Latency

Sequential CPU (SSC) 65.730 s
CPU/GPU (SCG) 15.650 s

Using values from Table 4.6, the speed-up value for RDA processor is:

RDASpeedupscg =
SSC Latency

SCG Latency
= 4.2 times (4.2)

4.3.3 Double Precision vs Single Precision

In order to observe the effects of the usage of double precision and single

precision floating point on the computation, we implemented the algorithm

using both data types. Figure 4.6 shows the difference between single precision

and double precision implementation.

4.3. RDA Results 72

Figure 4.2: Intensity image of JERS-1 SAR sample data used for the experi-
ment if processed with Range Doppler Algorithm (3 Looks)

4.3. RDA Results 73

(a) SPECAN sequential CPU

(b) SPECAN CPU/GPU

(c) RDA

Figure 4.3: Intensity image of JERS-I SAR sample data(all images in 1 look)

4.3. RDA Results 74

Figure 4.4: Sample Intensity image of microASAR from CASIE-09 processed
raw SAR data processed with original Range Doppler Algorithm from the
sample data.

4.3. RDA Results 75

(a) RDA sequential CPU

(b) RDA CPU/GPU

(c) Original RDA processor program included from sample data

Figure 4.5: Intensity image of CASIE-09 SAR sample data (all images in 1
look)

4.3. RDA Results 76

Figure 4.6: Difference of range compression image result using double and
single precision.

Figure 4.7: Difference of azimuth compression image result using double and
single precision.

Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this thesis we have developed quicklook and precision SAR processing al-

gorithm for mobile heterogeneous computing platform to overcome the SWAP

problem on UAV and Microsatellite platform.

The quicklook SAR processor is designed for L-band CP-SAR sensor onboard

future GAIA-II microsatellite and able to generate low-resolution. It is based

on modified spectral analysis (SPECAN) algorithm for monostatic stripmap

mode SAR image formation. The precision SAR processor which based on

Range-Doppler Algorithm (RDA) is intended for generating high resolution

images for L-band linearly polarized SAR sensor onboard the future JX-2 UAV.

To optimize the algorithms, we have analysed the details of both algorithms in

order to find parallelism potentials. For a given SAR raw data our parallelism

model uses (1) data partitioning based on the number of samples in range and

azimuth directions to balance the task workload on the underlying hardware

77

5.2. Contributions 78

(2) identification and separation of sequential SAR processing tasks into coarse

and fine grained parallel tasks.

To evaluate the result, we have implemented the sequential version of both

applications on single CPU core as the baseline. The quicklook implementation

is validated using actual raw data from JERS-1 SAR sensor that has similar

characteristics with GAIA II CP-SAR sensor and the precision algorithm is

validated using publicly available raw data from a UAV based stripmap mode

LFMCW SAR sensor. We have evaluated our proposed approach using various

size inputs number of samples and bins on a middle-end mobile heterogeneous

CPU-GPU development kit. Implementation on an integrated quad-core CPU

and 192 cores CPU showed that regardless of the size of range samples and

azimuth bin, speedup up to 4.2 and 6.5x over the sequential version can be

achieved for quicklook and precision application respectively.

5.2 Contributions

This dissertation makes novel contributions to the field of synthetic aperture

radar, particularly in regard to the SAR processing using quicklook and pre-

cision algorithm. These contributions are organized into two primary cate-

gories: implementation of quicklook using SPECAN algorithm on heteroge-

neous CPU/GPU architecture and implementation of precision algorithm and

implementation of precision processing using Range-Doppler algorithm on het-

erogeneous CPU/GPU architecture.

The specific contributions of this research are summarised as follows:

1. We have designed and developed quicklook SAR processing system based

5.3. Future Works 79

on modified SPECAN algorithm for use on-board future GAIA-II CP-

SAR satellite space-borne platform.

2. We have designed and developed precision SAR processing system based

on Range Doppler algorithm for use on-board future JX-2 CP-SAR air-

borne platform.

3. We have implemented and tested the quicklook SAR processing system

based on modified SPECAN algorithm for use on-board future JX-2 CP-

SAR airborne platform on mobile heterogeneous computing hardware as

an effort to overcome the SWAP limitation.

4. We have implemented and tested the quicklook SAR processing system

based on Range-Doppler algorithm for use on-board future JX-2 CP-

SAR airborne platform on mobile heterogeneous computing hardware as

an effort to overcome the SWAP limitation.

5.3 Future Works

The research presented in this thesis may be extended in a variety of ways.

Following is a list of some possible works:

1. Development of raw SAR data simulator using current UAV and Mi-

crosatellite parameters. In chapter 4, we have demonstrated the capabil-

ity of the on-board processor for UAV to generate SAR image using raw

data from actual UAV based sensor. However, the difference in sensor

specifications and flight geometry in our future JX-2 platform havent

been addressed. Although theoretically the developed processor will be

able to work with minor modifications to its configuration, but in order

5.3. Future Works 80

to fully calibrate the image quality, simulated data using exact sensor

parameters are required.

2. Experiments on other mobile heterogeneous platforms. We strongly sug-

gest to conduct experiments using other mobile heterogeneous platform

in order to find out how our algorithms run on different hardware con-

figuration.

3. SAR processing using multiple CPU/GPU hardware simultaneously. In

order to handle the challenge of real-time processing of multiple polar-

ization data produced by CP-SAR sensor, we propose the study on using

one or multiple mobile heterogeneous computing hardware to handle each

channel of CP-SAR output.

Bibliography

[1] V. C. Koo, Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim, C.-S. Lim,

C. C. Thum, T. S. Lim, Z. bin Ahmad, K. A. Mahmood, M. H. Bin

Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S.

Boey, A. L. Choo, and B. C. Sew, “A New Unmanned Aerial Vehicle

Synthetic Aperture Radar For Environmental Monitoring,” Progress In

Electromagnetics Research, vol. 122, pp. 245–268, 2012.

[2] J. T. Sri Sumantyo, “Circularly Polarized Synthetic Aperture Radar On-

board Unmanned Aerial Vehicle (CP-SAR UAV),” in Autonomous Control

Systems and Vehicles (K. Nonami, M. Kartidjo, K.-J. Yoon, and A. Budiy-

ono, eds.), pp. 175–192, Springer Japan, jul 2013.

[3] Z. Fang and J. Xia, “A miniature implementation of air-born SAR real-

time processing,” in 2009 2nd Asian-Pacific Conference on Synthetic

Aperture Radar, pp. 939–942, IEEE, oct 2009.

[4] J. F. Nouvel and O. R. du Plessis, “The ONERA compact SAR in Ka

band,” in Synthetic Aperture Radar (EUSAR), 2008 7th European Con-

ference on, pp. 1–4, IEEE, 2011.

[5] V. C. Koo and J.T. Sri Sumantyo, Development of a miniaturized -band

UAVSAR. [IEEE], 2012.

81

BIBLIOGRAPHY 82

[6] M. di Bisceglie, M. Di Santo, C. Galdi, R. Lanari, and N. Ranaldo, “Syn-

thetic Aperture Radar Processing with GPGPU,” IEEE Signal Processing

Magazine, vol. 27, pp. 69–78, mar 2010.

[7] A. Ahlander and B. Svensson, “Energy-Efficient Synthetic-Aperture

Radar Processing on a Manycore Architecture,” in 2013 42nd Interna-

tional Conference on Parallel Processing, pp. 330–338, IEEE, oct 2013.

[8] F. Zhang, G. Li, W. Li, W. Hu, and Y. Hu, “Accelerating Spaceborne

SAR Imaging Using Multiple CPU/GPU Deep Collaborative Comput-

ing.,” Sensors (Basel, Switzerland), vol. 16, p. 494, jan 2016.

[9] W. Sodsong, J. Hong, S. Chung, Y. Lim, S.-D. Kim, and B. Burgstaller,

“Dynamic partitioning-based JPEG decompression on heterogeneous mul-

ticore architectures,” Concurrency and Computation: Practice and Expe-

rience, vol. 28, pp. 517–536, feb 2016.

[10] G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing.

CRC Press, 1999.

[11] J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Sys-

tems and Signal Processing (Wiley Series in Remote Sensing and Image

Processing). Wiley-Interscience, 1991.

[12] M. Y. Chua and V. C. Koo, “FPGA-Based Chirp Generator for High

Resolution UAV SAR,” Progress In Electromagnetics Research, vol. 99,

pp. 71–88, 2009.

[13] Y. Yohandri, V. Wissan, I. Firmansyah, J. Sri Sumantyo, H. Kuze,

P. Rizki Akbar, and J. T. Sri Sumantyo, “Development of Circularly Po-

larized Array Antenna for Synthetic Aperture Radar Sensor Installed on

BIBLIOGRAPHY 83

UAV,” Progress In Electromagnetics Research C, vol. 19, no. January,

pp. 119–133, 2011.

[14] K. Suto, J. Sri Sumantyo, C. W. Guey, and K. V. Chet, “FPGA Based

Multiple Preset Chirp Pulse Generator For Synthetic Aperture Radar

Onboard Unmanned Aerial Vehicle System,” in The 20th CEReS Inter-

national Symposium, Symposium on Microsatellite for Remote Sensing

2013, pp. 2–3, 2013.

[15] T. Hirata, K. Namba, H. Ito, B. Setiadi, and J. T. S. Sumantyo,

“FFT computation FPGA for Microsatellite onboard Synthetic Aper-

ture Radar,” in International Workshop on Synthetic Aperture Radar

(IWSAR2009), 2009.

[16] Wumaier Muzapaer, Bambang Setiadi, and J.T. Sri Sumantyo, “Chirp

Scaling Algorithm using Matlab for SAR Image Signal Processing,” The

18th Remote Sensing Forum, The Society of Instrument and Control En-

gineers (SICE), pp.5-6, 28 February 2011 (Japan : Chiba),” in The 18th

Remote Sensing Forum, The Society of Instrument and Control Engineers

(SICE), (Chiba), pp. 5–6, The Society of Instrument and Control Engi-

neers (SICE), 2011.

[17] B. Setiadi, J. Sri Sumantyo, and H. Kuze, “Range doppler synthetic aper-

ture radar signal processing on CUDA,” in the 48th (2010) Spring Con-

ference, The Remote Sensing Society of Japan, 2010.

[18] B. Setiadi, J. Sri Sumantyo, and H. Kuze, “GPU Based Chirp Scaling

Algorithm for SAR Processing,” in IEICE Technical Report Vol. 111, No.

355, (Tokyo), pp. 77–79, IEICE, 2011.

BIBLIOGRAPHY 84

[19] J. T. S. Sumantyo, “Progress on development of synthetic aperture radar

onboard UAV and microsatellite,” in 2014 IEEE Geoscience and Remote

Sensing Symposium, pp. 1081–1084, IEEE, jul 2014.

[20] J. S. Sumantyo, “Development of Circularly Polarized Synthetic Aperture

Radar onboard Microsatellite for Earth Diagnosis,” in IGARSS 2011.

2011 IEEE International Geoscience and Remote Sensing Symposium.

Proceedings, pp. 929–932, 2011.

[21] Y. Osanai, J. T. S. Sumantyo, and Z. Baharuddin, “Development of

spaceborne antenna for circularly polarized SAR using Kevlar honeycomb

core,” in 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture

Radar (APSAR), pp. 231–234, IEEE, sep 2015.

[22] I. G. Cumming and F. H. Wong, Digital Signal Processing of Synthetic

Aperture Radar Data: Algorithms and Implementation (Artech House Re-

mote Sensing Library). Artech House, 2004.

[23] A. Hein, Processing of SAR Data: Fundamentals, Signal Processing, In-

terferometry (Signals and Communication Technology). Berlin: Springer,

2004.

[24] A. Thompson, E. Cheung, and C. Chang, “Precision SAR processing for

Radarsat,” in 1995 International Geoscience and Remote Sensing Sym-

posium, IGARSS ’95. Quantitative Remote Sensing for Science and Ap-

plications, vol. 3, pp. 2307–2309, IEEE, 1995.

[25] B. Setiadi, L. Bayuaji, J. Sri Sumantyo, and H. Kuze, “Parallel SPECAN

Algorithm for SAR Processing on GPU,” in International Conference on

Space, Aeronautical and Navigational Electronics (ICSANE 2012), pp. 61–

65, 2012.

BIBLIOGRAPHY 85

[26] B. Setiadi, Z. Baharuddin, G. F. Panggabean, H. Kuze, and J. T. S.

Sumantyo, “Development of Quicklook Processor for Circularly Polarized

Synthetic Aperture Radar onboard GAIA-II Microsatellite,” 2015.

[27] G. Panggabean, B. Setiadi, and J. S. Sumantyo, “A Single-on-Chip for

Onboard SAR Imaging Processor Based on the LEON3,” in The 11th

International Conference on Intelligent Unmanned Systems, 2015.

[28] G. M. Amdahl, “Validity of the single processor approach to achieving

large scale computing capabilities,” in Proceedings of the April 18-20,

1967, spring joint computer conference on - AFIPS ’67 (Spring), (New

York, New York, USA), p. 483, ACM Press, 1967.

[29] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,” Com-

puter, vol. 41, pp. 33–38, jul 2008.

[30] X.-H. Sun and Y. Chen, “Reevaluating Amdahl’s law in the multicore

era,” Journal of Parallel and Distributed Computing, vol. 70, pp. 183–

188, feb 2010.

[31] H. Sips, “Programming Languages for High Performance Computing,”

in Aspects of Computational Science a Textbook on High Performance

Computing (A. van der Steen., ed.), pp. 125–194, 1995.

[32] I. Tartalja and V. Milutinovic, “A survey of heterogeneous computing:

concepts and systems,” Proceedings of the IEEE, vol. 84, no. 8, pp. 1127–

1144, 1996.

[33] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan, “Heterogeneous

chip multiprocessors,” Computer, vol. 38, pp. 32–38, nov 2005.

BIBLIOGRAPHY 86

[34] S. Mittal and J. S. Vetter, “A Survey of CPU-GPU Heterogeneous Com-

puting Techniques,” ACM Computing Surveys, vol. 47, pp. 1–35, jul 2015.

[35] K. Karimi, N. G. Dickson, and F. Hamze, “A Performance Comparison

of CUDA and OpenCL,” p. 10, may 2010.

[36] B. R. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, “Chapter

2 - Introduction to OpenCL,” in Heterogeneous Computing with OpenCL,

pp. 15–38, 2013.

[37] G. Buttazzo, “Hard real-time computing systems: Predictable scheduling

algorithms and applications,” Computers & Mathematics with Applica-

tions, vol. 36, no. 3, p. 126, 1998.

[38] G. Pinitas, Towards Real-time SAR. PhD thesis, Delft University of Tech-

nology, jul 2014.

[39] P. Meisl, M. Ito, and I. Cumming, “Parallel processors for synthetic aper-

ture radar imaging,” in Proceedings of the 1996 ICPP Workshop on Chal-

lenges for Parallel Processing, pp. 124–131, IEEE Comput. Soc. Press,

1996.

[40] D. Wang and M. Ali, “Synthetic Aperture Radar on low power multi-core

Digital Signal Processor,” in 2012 IEEE Conference on High Performance

Extreme Computing, pp. 1–6, IEEE, sep 2012.

[41] S. K. Rethinagiri, O. Palomar, J. A. Moreno, O. Unsal, and A. Cristal,

“An energy efficient hybrid FPGA-GPU based embedded platform to ac-

celerate face recognition application,” in 2015 IEEE Symposium in Low-

Power and High-Speed Chips (COOL CHIPS XVIII), pp. 1–3, IEEE, apr

2015.

BIBLIOGRAPHY 87

[42] M. Pfitzner, S. Langemeyer, P. Pirsch, and H. Blume, “A flexible real-time

SAR processing platform for high resolution airborne image generation,”

in Proceedings of 2011 IEEE CIE International Conference on Radar,

pp. 26–29, IEEE, oct 2011.

[43] R. R. Hoare and D. Smetana, “Accelerating SAR processing on COTS

FPGA hardware using C-to-gates design tools,” in 2014 IEEE High Per-

formance Extreme Computing Conference (HPEC), pp. 1–6, IEEE, sep

2014.

[44] M. Cafaro, I. Epicoco, S. Fiore, D. Lezzi, S. Mocavero, and G. Aloisio,

“Near real-time parallel processing and advanced data management of

SAR images in grid environments,” Journal of Real-Time Image Process-

ing, vol. 4, pp. 219–227, aug 2009.

[45] G. Aloisio, M. Cafaro, I. Epicoco, and G. Quarta, “Teaching High Per-

formance Computing Parallelizing a Real Computational Science Appli-

cation,” 2005.

[46] G. Li, F. Zhang, L. Ma, W. Hu, and W. Li, “Accelerating SAR imaging

using vector extension on multi-core SIMD CPU,” in 2015 IEEE Interna-

tional Geoscience and Remote Sensing Symposium (IGARSS), pp. 537–

540, IEEE, jul 2015.

[47] C. Clemente, M. di Bisceglie, M. Di Santo, N. Ranaldo, and M. Spinelli,

“Processing of synthetic Aperture Radar data with GPGPU,” in 2009

IEEE Workshop on Signal Processing Systems, pp. 309–314, IEEE, oct

2009.

[48] S. Zhao and R. Wang, “A GPU Based Range-Doppler Algorithm for

SAR Imaging in OpenCL,” in 2011 First International Conference on

BIBLIOGRAPHY 88

Instrumentation, Measurement, Computer, Communication and Control,

pp. 224–227, IEEE, oct 2011.

[49] B. Liu, K. Wang, X. Liu, and W. Yu, “An Efficient SAR Processor Based

on GPU via CUDA,” in 2009 2nd International Congress on Image and

Signal Processing, pp. 1–5, IEEE, oct 2009.

[50] X. Ning, C. Yeh, B. Zhou, W. Gao, and J. Yang, “Multiple-GPU Acceler-

ated Range-Doppler Algorithm for Synthetic Aperture Radar Imaging,”

Cell, pp. 698–701, 2011.

[51] R. Wang, “Processing of SAR Data based on the Heterogeneous Archi-

tecture of GPU and CPU,” in IET International Radar Conference 2013,

pp. 0271–0271, Institution of Engineering and Technology, 2013.

[52] T. M. Benson, D. P. Campbell, and D. A. Cook, “Gigapixel spotlight syn-

thetic aperture radar backprojection using clusters of GPUs and CUDA,”

in 2012 IEEE Radar Conference, pp. 0853–0858, IEEE, may 2012.

[53] A. Fasih and T. Hartley, “GPU-accelerated synthetic aperture radar back-

projection in CUDA,” in 2010 IEEE Radar Conference, pp. 1408–1413,

IEEE, 2010.

[54] M. Duersch, “Backprojection for Synthetic Aperture Radar,” 2013.

[55] W. Chapman, S. Ranka, S. Sahni, M. Schmalz, U. K. Majumder,

L. Moore, and B. Elton, “Parallel processing techniques for the processing

of synthetic aperture radar data on GPUs,” in 2011 IEEE International

Symposium on Signal Processing and Information Technology (ISSPIT),

pp. 17–22, IEEE, dec 2010.

BIBLIOGRAPHY 89

[56] Z. Wu, Y. Liu, L. Zhang, N. Li, K. Du, and T. Balz, “Highly efficient

synthetic aperture radar processing system for airborne sensors using

CPU+GPU architecture,” Journal of Applied Remote Sensing, vol. 9,

p. 097293, apr 2015.

[57] Ming-cong Song, Y.-b. Liu, F.-j. Zhao, R. Wang, and H.-y. Li, “Processing

of SAR Data based on the Heterogeneous Architecture of GPU and CPU,”

in IET International Radar Conference 2013, pp. 0271–0271, Institution

of Engineering and Technology, 2013.

[58] M. Fatica and E. Phillips, “Synthetic Aperture Radar imaging on a

CUDA-enabled mobile platform,” pp. 1–5, 2014.

[59] L. Bin, W. Kaizhi, L. Xingzhao, and Y. Wenxian, “An Efficient Signal

Processor of Synthetic Aperture Radar Based on GPU,” in EUSAR 2010,

pp. 1054–1057, 2010.

[60] E. Hayden, M. Schmalz, W. Chapman, S. Ranka, and S. Sahni, “Tech-

niques for Mapping Synthetic Aperture Radar Processing Algorithms to

Multi-GPU Clusters,” in IEEE International Symposium on Signal Pro-

cessing and Information Technology (ISSPIT), 2012.

[61] O. Altun, S. Paker, and M. Kartal, “Realization of Interpolation-free

Fast SAR Range-Doppler Algorithm Using Parallel Processing on GPU,”

pp. 998–1002, 2013.

[62] H. Hobooti, Radiometric correction in range-SPECAN SAR processing.

PhD thesis, University of British Columbia, 1995.

[63] R. Lanari, S. Hensley, and P. Rosen, “Modified SPECAN algorithm for

ScanSAR data processing,” in IGARSS ’98. Sensing and Managing the

BIBLIOGRAPHY 90

Environment. 1998 IEEE International Geoscience and Remote Sensing.

Symposium Proceedings. (Cat. No.98CH36174), vol. 2, pp. 636–638 vol.2,

IEEE, 1998.

[64] A. Vidal-Pantaleoni and M. Ferrando, “On-board medium resolution SAR

processing for fast image generation,” International Journal of Remote

Sensing, vol. 25, pp. 161–176, jan 2004.

[65] W. Caputi, “Stretch: A Time-Transformation Technique,” IEEE Trans-

actions on Aerospace and Electronic Systems, vol. AES-7, pp. 269–278,

mar 1971.

[66] “CEOS SAR Data Products Format Standards,” tech. rep., 1989.

[67] J. Bennett and I. Cumming, “A Digital Processor for the Production of

Seasat Synthetic Aperture Radar Imagery,” LARS Symposia, 1979.

Appendix A

Publications List

A.1 Peer reviewed journal papers

1. B. Setiadi, M.Z. Baharuddin, G. F. Panggabean, H. Kuze, and J. T. Sri

Sumantyo, ”Development of Quicklook Processor for Circularly Polarized

Synthetic Aperture Radar onboard GAIA-II Microsatellite,” Progress

and Communication in Sciences, vol. 2, no. 2. pp. 3238, 08-Jan-2016.

2. B. Setiadi, G.F. Panggabean, J.T. Sri Sumantyo and V.C. Koo, ”De-

velopment of Raw Data Processing System for JX-2 UAV Using Mobile

Heterogeneous Computing” , Journal of Unmmaned System Technolo-

gies, July 23, 2016 - Accepted.

3. J. T. Sri Sumantyo, B. Setiadi, D. Perissin, M. Shimada, P. Mathieu,

M. Urai, and H. Z. Abidin, Analysis of Coastal Sedimentation Impact

to Jakarta Giant Sea Wall using PSI ALOS PALSAR, IEEE Geoscience

and Remote Sensing Letters (GRSL), July 14, 2016 Accepted.

91

A.2. Conference papers 92

A.2 Conference papers

1. B. Setiadi, J.T. Sri Sumantyo, and H. Kuze, GPU Based Chirp Scaling

Algorithm for SAR Processing, in IEICE Technical Report Vol. 111, No.

355, 2011, pp. 7779.

2. B. Setiadi, L. Bayuaji, J. T. Sri Sumantyo, and H. Kuze, Parallel SPECAN

Algorithm for SAR Processing on GPU, in International Conference on

Space, Aeronautical and Navigational Electronics (ICSANE 2012), 2012,

pp. 6165.

3. J. T. S. Sumantyo, B. Setiadi, D. Perissin, S. Masanobu, P.-P. Mathieu,

and M. Urai, Analysis of land deformation velocity using PSI ALOS

PALSAR: Impact of coastal sedimentation to future Jakarta giant sea

wall and waterfront city, in 2015 IEEE 5th Asia-Pacific Conference on

Synthetic Aperture Radar (APSAR), 2015, pp. 516521.

4. M. Z. Baharuddin, B. Setiadi, J. T. Sri Sumantyo, and H. Kuze, An

experimental network analyzer based ISAR system for studying SAR

fundamentals, in 2015 IEEE 5th Asia-Pacific Conference on Synthetic

Aperture Radar (APSAR), 2015, pp. 103107.

5. Heein Yang, Bambang Setiadi, Josaphat Tetuko Sri Sumantyo, and Jae-

Hyun Kim, Image Quality Comparison of Linear Polarized and Circular

Polarized SAR , in The 2nd Symposium on Microsatellites for Remote

Sensing (SOMIRES 2014), 2014.

6. Dodi Sudiana, Rokhmatuloh, Mia Rizkinia, Ardiansyah, Rahmat Arief,

Bambang Setiadi, Luhur Bayuaji, and Josaphat Tetuko Sri Sumantyo,

Analysis of Land Deformation on Slope Area using PS InSAR. Case

A.2. Conference papers 93

Study: Bandung Area , in International Conference on Space, Aeronau-

tical and Navigational Electronics 2013, 2013.

7. Nikhil Raj Poudyal, Ryutaro Tateishi, and Bambang Setiadi, Monitor-

ing Glacier Flow Velocity By Sar Interferometry And TextureTracking

Method Using Alos Palsar Data Around Mt. Everest Region, in The

34th Asian Conference on Remote Sensing 2013 , 2013.

8. Dodi Sudiana, Rokhmatuloh, Mia Rizkinia, Ardiansyah, Rahmat Arief,

Bambang Setiadi, Luhur Bayuaji, and Josaphat Tetuko Sri Sumantyo,

Analysis of Land Deformation on Slope Area using PS InSAR. Case

Study: Malang Area, in The 2013 International Conferences on Geo-

logical, Geographical, Aerospaces and Earth Sciences (AeroEarth 2013),

2013.

9. Luhur Bayuaji, Bambang Setiadi, and Josaphat Tetuko Sri Sumantyo,

Continous monitoring of Metropolitan city land deformation by DInSAR

technique on L, C and X-band SAR data, case study: Jakarta city, In-

donesia, in IEICE Technical Report Vol. 111, No. 355, 2011, pp. 4145.

	Abstract
	Introduction
	Motivation and Objectives
	Contributions
	Outline

	Background and Related Works
	CP-SAR Development at JMRSL
	Development of CP-SAR System for UAV
	Development of CP-SAR system for Microsatellite
	Development of SAR Processing System

	Parallelism
	Speedup and Amdahl's Law
	Types of Parallelism
	Parallel Computation Models

	Heterogeneous Computing
	General Purpose Processors (GPP)
	Digital Signal Processors
	GPGPU
	Field Programmable Gate Array (FPGA)

	Parallel Programming Languages
	OpenCL
	CUDA
	OpenMP
	MPI

	Real-time Systems
	Types of Real-time Tasks
	Features

	Related Works

	SAR Processing on Mobile Heterogeneous Platform
	SPECAN on Mobile Heterogeneous Computing
	Requirements for the Quicklook Processor
	Modified SPECAN Algorithm
	Sequential Implementation
	Heterogeneous CPU/GPU Implementation
	Data Partitioning
	Range Compression
	Linear RCMC
	Deramping
	Phase Compensation

	RDA on Mobile Heterogeneous Computing
	Requirements for the Precision Processor
	Range-Doppler Algorithm
	Sequential Implementation
	Heterogeneous CPU/GPU implementation

	Experimental Results
	Experimental Setup
	SPECAN Results
	Input Data
	Experimental Results

	RDA Results
	Input Data
	Experimental Results
	Double Precision vs Single Precision

	Conclusion and Future Work
	Conclusions
	Contributions
	Future Works

	Bibliography
	Publications List
	Peer reviewed journal papers
	Conference papers

