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Wind speed distribution derived from AMSR-E

0.1x0.1 Gridded AMSR-E Wind Speed
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Fig.10.1x0.1deg Gridded Mean wind speed from 2003 to 2008
(Suga, 2011)
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Fig.2 Comparison between AMSR-E and SeaWinds(Suga, 2011)
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Fig.3 Comparison of stability-dependent and neutral wind
speeds for (top) unstable, (middle) neutral and (bottom) stable
conditions. (from Kara et al. (2008))
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Fig.4 Typical variations of (top) stability-dependent and (middle)
equivalent neutral winds with height along with (bottom) the
differences between the two.(from Kara et al. (2008))
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Table 1 Specifications of AMSR-E
on board Aqua

Orbit Sun-synchronous
Altitude 705km

Inclination 98 deg

Local time 04:30, 16:30(UT)
Frequency 6.925, 10.65, 18.7,

23.8, 36.5, 89.0 (GHz)
o —m | SPatial res.  5~50km

Polarization ~ HH and VV
Incidence angel 55 degrees

Fig.1 Study area covered by
AMSR-E onboard Aqua

Fig.2 JKEO buoy (Measurement height 4m)

. P Swath 1450km
during the period from 2003 |, . 2003-2008 Wind speed at Equivalent Stability
to 2008. (Stars indicate the erio
locati . fth JKEO buoys at == | Neutral Wind =) | dependent Wind
ocation of the JKEO & KEO 4m speed at 10m speed at 10m
buoys.)
LKB code (Tang and Liu, 1996)
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Fig.4 Results of validation against JKEO buoy (2007-2008)
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Fig.5 Results of relative bias and RMSE for JKEO
buoy wind speed

AMSR-E SDW (AMSR-E SST)

..Fig.6 Comparison of AMSR-
~E derived wind speeds with
~and without consideration of
“atmospheric stability

Mean difference of SDW(AMSR-E SST)-AMSR-E wind speed
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" AMSR-E s'Dw'(NG'SST)
.. Fig.7 Comparison of AMSR-
~E derived wind speeds with

~and without consideration of
“atmospheric stability

Mean difference of SDW-AMSR-E wind speed

(a) AMSR-E derived (b) AMSR-E SDW
Weibull energy density  (AMSR-E SST) derived
Weibull energy density

(c) AMSR-E SDW
(NGSST) derived
Weibull energy density

Fig.8 Comparison of AMSR-E derived Weibull energy density
with and without consideration of atmospheric stability
(different SST sources)
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Fig.9 Comparison of energy densities derived from JKEO buoy,
AMSR-E with and without consideration of atmospheric stability.
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