*Yousuke Sato¹ (e-mail: yousuke.sato@riken.jp) , Atsushi Higuchi², Akinobu Murakami³, Yuji Masutomi⁴ Kazuki Tsuchiya⁵, Daisuke Goto⁶, Akinori Takami⁶

1:RIKEN AICS, 2:CEReS Chiba University, 3:Tsukuba Univer 4. Ibaraki University, 5: University of tokyo, 6: NIES

nsing, The 3rd Symposium on Microsatellites for Ren

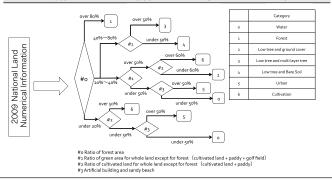
Motivation

To determine the urban planning and create policies to mitigate high temperature of urban area, impacts of afforestation and land use change should be estimated.

Several urban plannings were proposed. (Yamagata et al. 2011).

This study investigated the impacts of land use change and afforestation for these urban plannings through the experiment using a meteorological model.

Implement surface parameters into JMANHM


Surface parameters to express the land use :

Evapotranspiration coef. (β), Albedo (A), Heat Capacity (C_n)

These value were based on Kondo (2000) and MOriwaki et al. (2002)

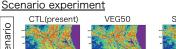
<u>Categorization of each grids</u>: Category of each grids was created from the "2009 National Land" Numerical Informatio" and Population of 2010 and 2050 (Ariga and Matsuhashi 2009)

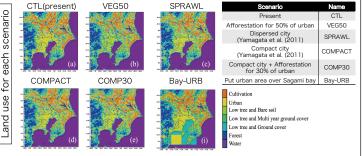
Land use (Category)	Albedo(A)	Heat Capacity (C_n)	Evapotranspiration Coefficient(β)
Forest	0.175	1.3	0.26
Low tree and ground cover	0.17	1.54	0.259
Low tree and multi-year ground cover	0.185	1.3	0.316
Low tree and bear soil	0.157	1.62	0.184
Urban	0.13	2.1	0.07
Cultivation	0.2	1.3	0.4
Water	0.06	4.18	1.0

Experimental setup and Scenario experiments

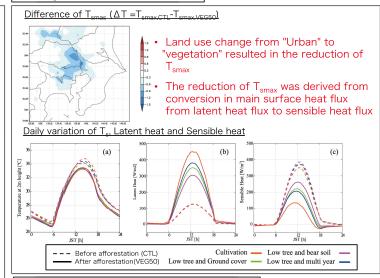
Model and experimental setup

Model: JMANHM(Saito et al. 2006)

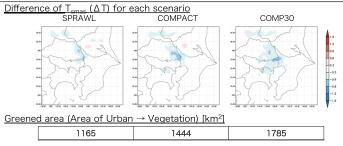

Grid resolution: 1km (horiontal), 40m~1120m (vertical)


Microphysics: 1-moment bulk (Yamada 2003) Turbulence: Nakanishi and Niino (2006)

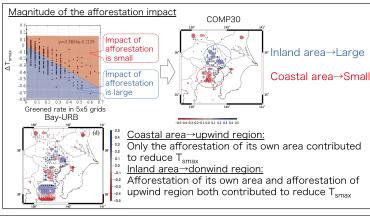
Surface flux: Land (Louis 1975), Sea(Kondo 1975)


Radiation: Kitagawa (2000)

Initial and Boundary condition : JMA-MANAL (u, v, $\,\theta$, q_v), NCEP2(SST) Calculation time: 10 days (20070810 00UTC ~ 20070817 00UTC)



Impacts of afforestation



Impacts of urban planning on T_{smax}

- Compact city was more effective for reducing T_{smax} than dispersed
- The afforestation futher reduced T_{smax}
- This came from the difference of greened (vegetated) area

Regional variability in the impact of afforestation

Summary

- Surface parameters were implemented into JMANHM
- Compact city and Afforestation was effective for reducing T_{smax}
- Afforestation of coastal region which is upwind region for general wind contributed to not only reducing T_{smax} in its own area but also that of inland (downwind region) region.