

Bhimasena's Core capabilities

Intelligent Vehicular Systems

Advanced Ground Vehicle : EOD Vehicle

CBRN Vehicle

Aerial Vehicles: UAV Backpack

Multirotor/VTOL UAV

High Altitude Long Endurance (HALE) UAV

Underwater/Marine Vehicles

Synthetic Aperture Radar (SAR)

Smart Energy Generation

Telecommunications: Micro Satellite

BHIMASENA

Outline

- Introduction
- Comparative Study
- · Design Requirement and Objective (DRO)
- Weight Estimation
- Geometry Sizing
- Performance and Stability Analysis
- Computational Fluid Dynamic Analysis
- Motor Selection and Dynamic Thrust
- Transition Scenario
- Material Selection
- Testing
- Future Work
- Conclusion

Bhimasena's R&D Areas

Control System and Automation:

Model-based autonomous control

Visual SLAM

Multi-rotor perception and control in winds

Laser scan registration for 3D mapping

Underwater guidance and navigation

Remote Sensing Technologies

UAV-based L/C Band CP Synthetic Aperture Radar

Microsatellite-based C/X Band CP SAR

Advanced Manufacturing

Advanced composite manufacturing

Rapid prototyping

Additive manufacturing

Smart Energy Generation

Hybrid PV-Wind Energy Technology

Smart energy storage

Introduction

- Vertical Takeoff and Landing (VTOL) UAV is a novel concept of UAV which integrates fixed wing and multirotor configuration so that it has the capability of vertical takeoff and landing with high range and long endurance mission.
- This VTOL UAV configuration can be developed for border surveillance to which there is no requirement for runway during takeoff and landing while maintaining the efficiency, speed, and range of a normal fixed-wing UAV.

Design Requirement BHIMASENA and Objective (DRO) · Vertical takeoff and landing capability Separate Lift and Thrust type

- Operating Speed 80 110 km/h
- Operating Altitude 1000 m ASL
- · Payload 1 kg
- Using 5 Rotors, 4 motors for hover and 1 motor for forward flight.
- Electrical Power
- Composite Materials

Future Work

- The result of this research will be optimized and applied into a full-scale hybrid UAV which carries 20 kg payload, both airframe and control design.
- Adding damping for stability and developing fully autonomous system for VTOL UAV.
- For the full scale UAV, we are going to design and manufacture the propellers in-house.

Conclusion

- VTOL UAV is a very potential technology solution for surveillance in the remote areas where runway infrastructure is nonexistent.
- Issues related to weight, vibration, energy consumption and aerodynamics characteristic must be addressed to fully harvest the benefit of VTOL-UAV.

