

<The 23rd CEReS International Symposium>

Hardware Implementation and Verification of Parallelized Direct Digital Synthesizer (PDDS) using FPGA

2015. 12. 02.

Young-Deuk Kim

Tu-Hwan Kim, Min-Wook Heo, Jinhong An, Heein Yang and Jae-Hyun Kim

Synthetic aperture radar and VLBI Lab. http://space.ajou.ac.kr Space Electronics and Information Technology Ajou University, Korea

Introduction

■ Background

- > Synthetic Aperture Radar is radar sensor by using microwave
 - ✓ In generally, the resolution of the SAR is determined by the pulse width, the resolution is improved as the pulse width is small
 - \checkmark Since it is difficult to reduce pulse width, SAR used chirp signal that easy to change the bandwidth

Motivation

- $\,\succ\,$ Chirp signal can be generated in the analog and digital
 - ✓ In analog case, fever and harmonic frequently occur
 - ✓ In digital case, truncation occurs by the digital generation process

☐ Contribution

- Propose methods for compensating a phase error caused by the chirp signal digital
 - ✓ Curve fitting method
 - ✓ Parameter calculation method
- > Performance analysis

1

Related Works

Introduction

> Activity sense

☐ Synthetic Aperture Radar(SAR)

Related Works

- ➤ Activity sensor that offers the image of target by using microwaves
- Regardless of the weather and day-light conditions, it can obtain a high-resolution images
- Operates on moving-platformSatellites, UAVs, cars, and etc.
- Utilizing such as earth observation, acquisition of military information, natural disaster monitoring, and resource exploration

< KOMPSAT-5(2013.8.22 launched)>

Table. Frequency bands according to the center frequency and wavelenth

Frequency Band	Ka	Ku	Х	С	S	L	Р
Frequency [GHz]	40-25	17.6-12	12-7.5	7.5-3.75	3.75-2	2-1	0.5-0.25
Wavelength [cm]	0.75-1.2	1.7-2.5	2.5-4	4-8	8-15	15-30	60-120

6

Related Works

☐ Chirp signal - Linear FM(LFM) signal

> Chirp signal equation

$$x(t) = rect\left(\frac{t}{T}\right) A e^{\frac{j\pi\beta t^2}{T}} \cdots (1)$$

> Instantaneous frequency are derived by (1)

$$f(t) = \frac{1}{2\pi} \frac{d\emptyset(t)}{dt} = \frac{1}{2\pi} \frac{d(\pi \beta t^2)}{dt} = \beta t$$

A = amplitude

T = pulse duration

 $t = time \ variable \ in \ seconds$

 $\beta = LFM$ rate or chirp rate in hertz per second

SAR and VI BU shoredon

Related Works Characteristics of chirp signal In general, narrower the pulse duration, better the resolution. By increasing the bandwidth, chirp signal enhance the resolution. $\Delta R = \frac{c}{2} = \frac{c}{2B}$ $\Delta R = \text{resolution}$ c = speed of light B = chirp bandwidthPulse Width, T Frequency F_1 Frequency F_2 Frequency F_3 Frequency F_4 Frequency F_3 Frequency F_4 Frequ

Propose Method(1)

☐ Proposed method - curve fitting method

- > Curve fitting method
 - 1. Parameterize the phase output of Ideal signal and DDS signal
 - 2. Calculate the difference between the two formulas
 - 3. Compensate for the error in the frequency accumulator
- > Example of curve fitting
 - ✓ Ideal phase : $f_{ideal}(x) = 62.91t^2 + 2.024t 188.5$
 - ✓ DDS phase : $f_{PDDS}(x) = 62.91t^2 0.363t 189.1$
- > Example of calculation of difference between the two formulas
 - ✓ Ideal frequency : $f'_{ideal}(x) = 125.82t + 2.024$
 - ✓ DDS frequency : $f'_{PDDS}(x) = 125.82t 0.363$
 - ✓ Difference : 1.661

<The factors influencing phase error>

13

17

Performance Analysis

Performance Analysis — Curve Fitting Method Result As a result of compensating a phase error, ideal signal and the PDDS signal appears substantially overlap to graph Well reflected in the phase error to curve fitting data

<Ideal signal, PDDS signal and compensating phase of PDDS signal>

Back up slide

Conclusion

Synthetic Aperture Radar(SAR)

Conclusion

- ☐ We verify that both curve fitting and parameter calculation method compensated phase error
- ☐ Curve fitting method can compensate the error even if amplifier or RF module is considered
 - > The more circuit or hardware extend, the more useful
- □ In parameter calculation method case, compensation process is simple

Synthetic Aperture Radar(SAR)

□ RADAR

- > RAdio Detection And Ranging
- Device using microwaves to measure the distance for detecting a observation target
- ☐ Transmitted and received signals
 - ➤ Transmitted (Tx)
 - ✓ Generally , pulse of triangular waveform
 - Received (Rx)
 - \checkmark Changes appearing in the received waveform represent the features of the observation target
 - ✓ Delay of the received signal (delay) represents the distance to the observation target

☐ Resolution

- > Ability to distinguish two adjacent objects
- $\triangleright \Delta R = c\tau/2$
 - \checkmark c = speed of light
- $\checkmark \tau = \text{pulse width}$

24

Propose - Curve Fitting Method

☐ Extraction process of phase error

- > When comparing the ideal signal and PDDS signal waveform , many error occurs in phase than amplitude
- > After extracting the phase of each signal in time domain, to determine the error by a subtraction operation
- ➤ Curve fitting the error in the second order polynomial ✓ Previously , using the cftool (curve fitting tool)
- ➤ Using the data which error has been curve fitting, and compensating the phase of the PDDS signal

SAR and VLBI Laborato

26

Result

☐ Feature of DDS chirp signal generator

> Spectrum purity is not good by the signal generation method of Digital system

27