

To accurately evaluate global changes in carbon, water, and energy balances, we require to evaluate the spatio-temporal variability of plant phenology with a high spatiotemporal resolution.

From the in situ ecological research view point, satellite remote-sensing approach has not been sufficiently tested and validated by the ground-truthing.

Relationship between the amount and spatial resolution of the available datasets for phenological observations.

[Nagai et al. In press, Fig. 4: Int J Biometeorol]

However,

It is pretty difficult to collect ground-truthing at multiple points in various ecosystem sites.

We are not always to obtain the representative of ecosytem site.

Global PEN 90" sites

Material & method:

- (1) We collected leaf-coloring information published on the web sites during 21 November 2014 and 25 November 2014 in Kanagawa, Japan.
- (2) We examined the relationship between leaf-coloring information and Landsat-8/OLI-observed green-red vegetation index (GRVI) on 23 November 2014.

Aim:

We evaluated the usability of leaf-coloring information published on the web sites to provide ground-truthing for the mapping of spatio-temporal variability of leaf-coloring phenology by using in situ and satellite remote-sensing data.

- □: green leaves, ○: start of leaf-coloring,
- \triangle : pre-peak of leaf-coloring, \times : peak,
- ♦: post-peak of leaf-coloring, ↑: leaf-fall

[Nagai et al. 2015 Jpn J Biometeorol]

Summary of leaf-coloring information published on the web sites

Table 2. Leaf-coloring information available on web sites from 21 and 25 November 2014 in Kanagawa prefecture, Japan

City	Main reported point, garden, or area	Number of reports	Number of overlapping reports
Hakone	Asinoko (lake), Hakone Museum	22	13
Kamakura	Zuisen-ji (temple), Enkaku-ji (temple)	10	6
Yokohama	Sankeien (garden), Yamashita-Park Avenue	8	4
Yamakita	Tanzawako (lake), Nakagawa Hot Spring	5	5
Isehara	Oyamadera (temple), Oyama-Afuri Shrine	2	3
Yugawara	Ikemine Momiji-no-Sato	2	3
Sagamihara	Mt. Jinba	2	1
Hadano	Kobo-yama (mountain)	2	0
Minami-Ashikaga	Daiyuzan Saijyo-ji (temple)	1	2
Oiso	Prefectural Oiso Jyoyama Park	1	1
Kiyokawa	Miyagaseko (lake)	1	2
Kawasaki	Ikuta-Ryokuchi (park)	1	0

1st finding:

Leaf-coloring information published on the web sites were widely distributed in sights of mountains (Hakone and Tanzawa) and cities (Kamakura and Yokohama).

[Nagai et al. 2015 Jpn J Biometeorol]

2nd finding:

Leaf-coloring information published on the web sites in multiple points in mountainous region provided useful ground-truthing for satellite remote-sensing along the vertical gradient.

Summary of source of leaf-coloring information on the web sites

Table 3. Source of leaf-coloring information published on web sites from 21 to 25 November 2014 Tourism service rurubu.com (JTB Publishing) http://www.rurubu.com Tourism service Walkenblus (Kadokawa Corporation)

Kadokawa Corporation)

jalan.net (Recruit Lifestyle Co., Ltd.) http://www.walkerplus.com/ 11 http://www.jalan.net Tourism service Meteorological tenki.jp (Japan Weather Association) http://www.tenki.jp/ 21 service Meteorological service Park Prefectural Oiso Jyoyama Park http://www.kanagawa-park.or.jp/ ooisojoyama/ http://www.sankeien.or.jp. Park Yokohama-Ryokuchi Co., Ltd. www.kanagawaparks.com/mitsuik Tourism society Prefectural Tourist Association http://www.kanagawa-kankou.or.jp/ Hot Iris Procisio Ciety
Kamakura City Tourist Association Tourism society http://www.hakone.or.jp/ Tourism society Tourism society Minamiashigara City http://www.mcity-kankokyokai.com/ Tourist Association City office Isehara City http://www.city.isehara.kanagawa.jp/ Town office Town Yamakita http://www.town.yamakita.kanagawa.jp/ Temple Enkakuji http://www.engakuji.or.jp/ Museum Hakone Museum of Art http://www.moaart.or.jp/hakone

[Nagai et al. 2015 Jpn J Biometeorol]

Spatial distributions of GRVI in deciduous forests on (a) 31st
May 2014 and (b) 23rd November 2014. We only
colored deciduous forests.

[Nagai et al. 2015 Jpn J Biometeorol]

Relationship between altitude and phenology stage (0: green leaves; 1: start of leaf-coloring; 2: pre-peak of leaf-colouring; 3: peak; 4: post-peak of leaf-colouring; 5: leaf-fall) in deciduous forests based on leaf-colouring information published on the web sites.

[Nagai et al. 2015 Jpn J Biometeorol]

Relationship between altitude and GRVI in deciduous forests at locations obtained leaf-coloring information on the web sites.

[Nagai et al. 2015 Jpn J Biometeorol]

