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Abstract

Self-propelled motion realized in non-equilibrium systems is now growing to be an important
topic of nonlinear physics. Not only motion of a single self-propelled particle (SPP) but also
collective motion of them are important problems. For collective motion of SPPs, spatio-temporal
patterns of the density profile and the mean velocity field are often discussed, whereas such pattern
formation can be also induced by active elements which cannot move by themselves under an isolated
condition. In this doctoral thesis, we consider two topics; one is motion of a single SPP and the
other is collective phenomena induced by active elements without mobility.

In the first half of the thesis, we discuss spontaneous motion of a single camphor particle on
water surface. We focus on motion through a spontaneous symmetry breaking; we consider motion
emerging through instabilization of rest state. As actual systems, we investigated the motion of
a camphor particle in a one-dimensional finite system with an inversion symmetry and that in
the two-dimensional circular system with inversion and rotational symmetries. We also analyzed
rotational motion of a symmetric camphor-driven rotor, which also emerges by the instabilization
of rest state.

In the latter half, we discuss diffusion enhancement and drift flow inside cells or on biomembrane
induced by active proteins, which change their shapes with energy supply. By conformational change
of active proteins, cytoplasm or biomenbrane is stirred, and thus diffusion is enhanced. When
the active proteins are distributed inhomogeneously, directional flow is also induced. By using a
mathematical model where an active protein is approximately considered to be a force dipole, we
discussed the collective effect of active proteins.
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Chapter 1

Preface

The idea “dissipative structure” has been proposed by I. Prigogine, who got Nobel Prize in
chemistry [1]. A dissipative system is defined as the system with continuous injections and drains of
energy without detailed balances, and thus the dissipative system is classified into nonequilibrium
systems. In such a dissipative system, spatio-temporal pattern can emerge through spontaneous
symmetry breaking, i.e., a seemingly-lower-entropy structure can emerge. Belousov-Zhabotinsky
reaction (BZ reaction) is a typical example exhibiting spatio-temporal pattern [2-4]. Commonly,
chemical reaction is a monotonical relaxation process, but oscillatory relaxation process of reactants
is observed in a batch system of BZ reaction. In an open system with injection of reactants and
drain of products such as reaction in a continuous-flow stirred tank reactor (CSTR), the stable
oscillation is observed instead of a stable steady state as shown in Fig. 1.0.1(a). Bénard convection
is also a typical example that exhibits spatio-temporal pattern [5,6]. When a layer of fluid in a
shallow water chamber is heated from the below, rolled convection transferring the heat from the
bottom to the top is induced when the heat flow is more than a threshold value, while below it
only thermal diffusion without convective flow occurs. The rolled convection forms a spatial (or
spatio-temporal) pattern as shown in Fig. 1.0.1(b).

Elements which show systematic motion under continuous energy gain and dissipation are called
active matter [7-11]. From the definition mentioned in the previous paragraph, active matter is
also classified into dissipative structures. In some active matter systems, directional motion can
emerge through spontaneous symmetry breaking as shown in Fig. 1.0.1(c). Such directional motion
is considered to be one of the spontaneous spatio-temporal pattern formation in a broad sense. For
instance, a spot pattern and its motion is observed in a reaction-diffusion system [12-14]. Since
reaction-diffusion systems are often used as a typical example of the dissipative systems and the spot
shows the systematic motion, the motion of spots is considered to be both active matter and pattern
formation. It is noted that in some cases the direction of motion is predetermined by asymmetry
in the systems as shown in Fig. 1.0.1(d).

The significance of studying active matter is considered as follows: First of all, the self-propelled
systems are common in the actual world; animals are one of the examples, and it is natural that
one is motivated to understand the underlying mechanisms of the phenomena. The second point
is that the self-propelled motion is one of the characteristic behaviors in nonequilibrium system.
They consume free energy and convert it into kinetic energy, which is completely different from
kinetic-energy-conserved systems. The third point is possibility of application, e.g., drag delivery
systems [15] and soft actuators [16,17].

There are many types of mechanisms for self-propulsion. Here we introduce several self-propelled
systems. Janus particles, which are composed of semispheres having different surface properties,
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Figure 1.0.1: Schematic illustration of dissipative structures. (a) Time evolution of concentration
of a component in BZ reaction. The stable oscillation is observed instead of a stable steady state in
certain conditions. (b) Heat transfer in fluid from bottom to top. When the temperature difference
is large enough, convective flow is induced. (c) Motion of an element through spontaneous symmetry
breaking. (d) Motion of element whose direction of motion is predetermined.

are moving by using hydrodynamic effects [18,19]. An oil droplet producing surfactants moves by
Marangoni flow induced by surface tension difference [20,21]. Camphor particles on water surface
is moving using surface tension difference [22]. A pentanol droplet on water surface also moves with
the same mechanism as a camphor particle, but it also shows deformation coupled with motion [23].
Cell crawling is the result of the action-reaction between the cell and substrate [24]. Collective
motion of self-propelled particles is also an important one of the major topics [8,25,26]. Structures
much greater than an element are observed, such as cluster [25,26], band [11,27,28], or rolls [29].

It is true that actual systems are important, but its theoretical aspects are also important to
understand generic physical insights of active matter. Equation of motion for self-propelled particles
is often analyzed in terms of dynamical systems. This is because self-propelled motion is realized
with the balance of energy gain and dissipation, which has nonlinearity in most cases [30-32].

A typical example of a theoretical study is performed by Ohta and Ohkuma [11,33]. They studied
the relationship between the velocity of a self-propelled particle and its shape by constructing a
dynamical system:

d

27V =Va — [v|%vq — aSapv35, (1.0.1)
iS =—rSp+0b 'I}U—}”U’Q (1.0.2)
dt af — af alg 2 5 .U.

where v is the velocity and S, is the tensor which represents the degree of second-mode deformation
as shown in Fig. 1.0.2(a). Here Syp = nang — dap/2 for a two-dimensional system. It is noted that
only the system symmetry is considered to construct the model. They reported that when the
rest state becomes unstable, the particle exhibits straight or rotational motion depending on the
parameters, a, b, v, and k.
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Figure 1.0.2: Schematic illustration of (a) Ohta-Ohkuma model for a deformable self-propelled
particle [11,33] and (b) Vicsek model [25,26] for collective motion of self-propelled particles. (a)
The velocity v and the characteristic direction of the second-mode deformation n is illustrated.
Here, n directs along the major axis of the elliptic deformation. (b) The self-propelled particles
with the same velocity and the radius for the interaction is illustrated. The self-propelled particle
located at the center of the circle changes the direction of the motion into the average direction of
the motion of self-propelled particles inside the circle.

Here we also introduce Vicsek model [25,26], which is a simple model of collective motion. The
velocities of the self-propelled particles are the same and constant:

’Ul'(t) = UEgi(t), (103)

where i identifies the particle and ey is a unit vector ey = (cos,sin ). The direction of the motion
0;(t) is determined by the following equation:

(1) = g 22 (0, (1.0.4)

~—

j=1

where Z;V:(? is a summation over the particles which are located in the circle with a radius of r,
whose center is the i-th particle. The schematic illustration is shown in Fig. 1.0.2(b). Each particle
obeys the following equation of motion:

xi(t + 1) = xl(t) + 'Ui(t)At. (1.0.5)

In this model, the direction of the motion is globally ordered for small noise and high density of the
self-propelled particles.

In this doctoral thesis, two topics are discussed. One is motion of a single self-propelled particle,
and the other is collective effect by active elements.

As for a single self-propelled particle, we discuss the motion of a camphor particle on wa-
ter surface. We investigate the motion emerging through spontaneous symmetry breaking. We
consider three cases; motion of a camphor particle in a one-dimensional finite system [34] and a
two-dimensional circular system [35], and motion of a camphor-driven rotor in a two-dimensional
system [36], which are discussed in Secs. 2.2, 2.4, and 2.5, respectively. We reduce a mathematical
model describing motion of a camphor particle around the rest state for each geometry, and analyze
bifurcation structures of the reduced equation. The bifurcation structures correspond to instabiliza-
tion of the rest state and indicate what kind of motion can occur. In Sec. 2.2, we consider motion
of a camphor particle confined in a one-dimensional system. In Sec. 2.3, the generalized equation
for motion of a self-propelled particle in a two-dimensional axisymmetric system is analyzed [37],
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and the results are applied to a two-dimensional circular system in Sec. 2.4. In Sec. 2.5, we consider
motion of a camphor-driven rotor whose center of mass is fixed.

As for collective effect by active elements, we consider collective flow induced by active proteins
inside cells or on biomembranes. Here we define an active protein to be a protein which shows con-
formational change in its shape with supply of substrates. It has been reported that the diffusion
inside cells are greater than the normal diffusion under thermal equilibrium. Such diffusion enhance-
ment is explained by the model where an active protein is considered to be a force dipole [38,39].
The model was proposed by Mikhailov and Kapral, and it can be applied to various systems. In
Sec. 3.3, we analyze the model to clarify the effect of inhomogeneous distribution of force dipoles,
especially the effect of localization of them [40]. We also discuss the effect of alignment of force
dipoles in Sec. 3.4 [41].



Chapter 2

Camphor Particle Moving Through
Spontaneous Symmetry Breaking

2.1 Introduction

When a camphor particle is put on water surface, the camphor particle shows spontaneous
motion at the water surface [22,42-45]. The camphor-water system was firstly reported in nineteenth
century [42-44]. In recent decades, the camphor-water system has been attracting more and more
interest, since it is regarded as a self-propelled system.

The detailed mechanism of self-propelled motion is as follows. A camphor particle diffuses
camphor molecules on water surface and reduces the surface tension, since camphor molecules work
as surfactants. When the surface tension around the camphor particle becomes anisotropic, the
camphor particle is driven by the surface tension difference. Camphor molecules on water surface
sublimate into the air. Thus the water surface is not perfectly covered with camphor molecules and
the camphor particle can continue to move. The schematic illustration is shown in Fig. 2.1.1.

By attaching a plastic plate to the camphor particle asymmetrically, the diffusion of camphor
molecules on the water surface also becomes asymmetric, and as a consequence, the self-propulsion
is induced [22,46]. On the other hand, a camphor particle with a symmetric shape, e.g., a disk-
shaped camphor particle, diffuses camphor molecules in a symmetric manner, and the rest state
with a symmetric profile of camphor molecules around the camphor particle can be considered. In
this case, the stability of the rest state is important. If the rest state is unstable, the camphor
particle exhibits the self-propulsion through spontaneous symmetry breaking [47,48].

o Camphor particle
o
o

.. o
Subllmatlong 5

J Camphor molecule (invisible)

. . o
Diffusion —

O O 000 o _O O

O
Dissolution (\
O

Figure 2.1.1: Schematic illustration of a camphor-water system. The camphor particle is driven
when the surface tension of the front and rear sides, v+ and -y, is different.
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There are many systems in which a self-propelled particle moves by using surface tension [15,49—
57]. The advantage of the camphor-water system is that the experimental system is simple and it is
rather easy to construct complex systems that exhibit collective behaviour [58-60] and information
processing [61,62], and so on. Another advantage is that the mathematical model is rather simple
and suitable for analytical investigations, which enables us to consider interaction with wall [63-65].

A camphor particle moves in the direction with the lower camphor concentration around the
particle, and the motion of camphor particle can be considered as a negative chemotaxis [30]. As the
other examples of chemotactic self-propelled motion, droplets detecting chemical gradient [66,67]
and self-propelled molecular machines [68,69] are known.

In Sec. 2.2, we consider motion of a camphor particle in a one-dimensional finite region, which
is the simplest case where a camphor particle is confined in a certain region [34,48]. By reducing a
mathematical model and analyzing a reduced equation in terms of dynamical systems, we revealed
that a camphor particle shows oscillatory motion or rest state depending on the size of the finite
region and also on the resistance coefficient exerting on the particle. As an extension of a one-
dimensional finite region, we consider a motion of a camphor particle in a circular region. In this
case, the analysis on the reduced equation is more complicated than that for the one-dimensional
system. Thus, we begin with the analysis on an equation of motion for a self-propelled particle in
an axisymmetric system, which is constructed only by considering the symmetric properties under
the assumption that the system is close to the bifurcation point [37]. The results are described
in Sec. 2.3. Then, in Sec. 2.4, we consider the motion of a camphor particle in a circular region,
as a natural extension to the two-dimensional case [35]. The interesting point specific to the two-
dimensional system is that there are several candidates of motion when the rest state becomes
unstable such as rotational motion and oscillatory motion. In Sec. 2.5, we discussed the motion of
a camphor-driven rotor, which is constructed with two camphor particles connected with a rigid
bar [36]. By considering such geometry of self-propelled particle, we can investigate the spinning
motion.

2.2 Camphor particle in a one-dimensional finite region

In this section, motion of a camphor particle in a one-dimensional system is analyzed [34]. First
we introduce the mathematical model for the motion of a camphor particle, which is composed
of an ordinary differential equation and a partial differential equation. Then we reduce it into a
two-dimensional dynamical system and analyze the bifurcation structure of it.

2.2.1 Mathematical model

In this subsection, we introduce a mathematical model, and derive a dimensionless form of it.

Introduction of the mathematical model

Here we introduce the mathematical model based on the previous work by Nagayama et al. [47].
We assume a camphor particle is a point particle, whose position is denoted as X = X (¢). The time
evolution equation for the position of the camphor particle is given by the following equation:

d’X dX
az ~ Tar
where m is a mass of the camphor particle, 7 is a resistance coefficient, and F' is a driving force. The
explicit expression of I is obtained as follows; the surface tension + is a function of the concentration

m + F(X;c), (2.2.1)
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field ¢. Here we assume 7y(c) = —I'c + 70, where I'(> 0) is a constant and 7 is the surface tension
of pure water. Since the driving force originates from the surface tension difference at the lefthand
and righthand sides of the particle, we have
F(X;c) =k{y(c(X +€)) —v(c(X —€))}
(B o)
Ox 2=X+0 Oz r=X—0
0 0
- K (c o ) (2.2.2)
Orl,mx0 O%le=x o
where £ > 0 and K = kel” > 0. Here we assume that we can take the limit where € goes to zero but
K = kel keeps its finite value.
The time evolution equation for the concentration field of camphor molecules ¢ at water surface
is described as: 5 o
c c
g DE) 5 —ac+ f(z; X), (2.2.3)
where D is a diffusion constant and « is a dissipation rate of camphor molecules from water surface
by sublimation into the air and dissolution into aqueous phase. It is noted that the diffusion constant
should be considered as effective one, since the diffusion is enhanced by the Marangoni flow [70].

The Marangoni flow is the flow induced by the shear stress at free surface originating the surface
tension difference [71]. The function f is a supply from the camphor particle, and has a form:

flx; X) = cod(x — X), (2.2.4)

where ¢g is a supply rate from the camphor particle per unit time and §(z) is the Dirac’s delta
function. The Neumann condition:

dc

=0 2.2.5
Ox z=0,R ( )

is imposed to Eq. (2.2.3), which means no diffusional flux at the boundaries.

Dimensionless form of the mathematical model

The evolution equation for the concentration field in Eq. (2.2.3) is nondimensionalized. Here-
after, dimensionless variables are denoted by adding tildes (7). The dimensionless time, #, length,
¥, and concentration field, ¢, are set as t = at, ¥ = \/a/Dx, and &(,t) = c(x,t)/co, respectively.
By substituting these dimensionless variables into Eq. (2.2.3), we obtain

oc(z,t)  0%e(z,t) . - 1 D _ t
5 o é(z,t) + Co—af (\/ZJ;X <a>> . (2.2.6)

Here, the source term in Eq. (2.2.6), f, is rewritten as

ﬂﬁX@%=1f( ) 6(2-X (). (2.2.7)

Cox

where X (f) = \/a/DX(f/a). Here we use 6(azx) = d(x)/|a|. Then we obtain the dimensionless
equation for the concentration field as

é(z,t 26(z,t . .
0 (at H_2 65527 D a0+ f (@;X(t)), (2.2.8)
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where

F@: X () = 5 (m - X(E)) . (2.2.9)

Then, we show the manner of the nondimensionalization on the equation of motion, Eq. (2.2.1).
The driving force is represented as

|D [a [ 0&(%,1) ’ 08(,t) ‘
X (F t)coé (2,1) | = —Kco + — . (2.2.10)
( ~)> D < 9 |3—%(@)+0 97 |a—x@-0

The variables, ¢, 2, X, ¢, and F, in the equation of motion, Eq. (2.2.1), are replaced with #, &, X,
¢, and F, respectively. Then we obtain

d2X (t dX L
i ;;,(t) — );E) F(X() & (& ,ﬂ), (2.2.11)
where
(D) = [ 22@D 9e(z, 1)
( ,E)) < 0z L:X({).H) - 0z ‘i:X(f)_(]) : (2.2.12)

Here we define m = maD/(Kc¢p) and 7 = nD/(Kcy).

Hereafter, we use the dimensionless model and omit tildes (7).

2.2.2 Reduction of the mathematical model

In this section, we derive a reduced equation for the dynamics of the camphor particle position
through the expansion of the mathematical model around the solution for the rest state. First,
we expand the concentration field ¢ with regard to trigonometric function, i.e., cos(kw/R) for
k=0,1,2,-,

2
ick = <’Lk};—> Cr — Ck + fk(X), (2.2.13)

where ¢ and fi are the concentration field and the source term in wavenumber space, respectively.
Here f, is given by fo = 1 and fi = 2cos(knX/R) for k > 1. The Green’s function g, for Eq. (2.2.13)

satisfies the following equation:
a (L (t) = 8(t) (2.2.14)
di R gk\l) = ) L

g(t) = exp <_ <’f;72f2 + 1> ) o(t), (2.2.15)

where O(¢) is the Heaviside’s step function, i.e., O(t) = 1 for ¢ > 0 and O(¢) = 0 otherwise. By
using gi(t), the concentration field ¢k (t) in wavenumber space is expressed as:

cu(t) = /; dt'2 cos <2X(t’)> exp (— (k;f + 1) (t — t’)) . (2.2.16)

8

and is solved as:
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We expand Eq. (2.2.16) with regard to the position X, the velocity X, and the acceleration X
following the procedure in the previous work on the spot dynamics in a reaction-diffusion system [72].

t
Ck :2eAt/ dt’ cos (KX (t)) e

—0o0

e At 2e~At i dx(t') . At
= 1 cos (kX (t)) exp (At) — 1 . at’ (—FL v Sin (Iﬁ;X(t/))> et

2e~At 2ke~ At dX (t)

— . —At
= cos (kX (t)) e "+ yE o

) %exp(_At)/t W {dzx(t/) din (R X()) + (dX(t/)>2COS (,QX(t’))} A

sin (kX (t)) exp (At)

A? - i dt'
__— (2.2.17)

where A = k?72/R?+1 and k = k7/R. The expanded concentration field is obtained by converting
¢, into the real space.

c(x,t) =co(x, X)
+ Xey(z, X) + X2e(z, X) + X3e3(x, X) + -
+ Xeg(z, X) +---
+ (higher order terms & cross terms). (2.2.18)

Here we neglect the higher-order terms of X and the higher-order derivatives with regard to time.
Then we calculate the driving force from Eq. (2.2.18), and expand it around X = R/2 as X =
R/240X:

méX = —néX + F(6X,6X,6X), (2.2.19)

where

2 4 coshR —1)(sinhR+ R) _.
a2 T 3amr® ) ( 2(sir)1}(1 R)? lax
—3sinh R+ Rcosh R
4(sinh R)?
(sinh R(sinh R — R) 4+ R*(cosh R — 1)) (coshR — 1) ..
— - 0X
8(sinh R)3
sinh R(3sinh R — 5Rcosh R) + R%(2 + (sinh R)?)
a 8(sinh R)3
((2 — cosh R)R® + 6R*sinh R + 3(cosh R + 1)(sinh R — R)) (cosh R — 1)? (5X>3
48(sinh R)4
=A(R)0X + B(R)(6X)% + C(R)6X

(6X)20X

5X (5X)2

i . L\ 2 . \3

+ E(R)(0X)26X + G(R)§X + H(R)§X (5X) +I(R) (5)() . (2.2.20)
The detailed calculation is shown in Appendix A.1.1. The coefficients of terms in the driving force F
are the function of R. C(R) is positive for all R > 0 and A(R), B(R), G(R), and I(R) are negative
for all R > 0. The dependence of the coefficients on R is shown in Fig. A.1.1 in Appendix A.1.2.
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Figure 2.2.1: Phase diagram of the bifurcation structure obtained by the theoretical analysis. The
curve in the diagram is n = C(R). Reproduced from Ref. [34].

2.2.3 Analysis on bifurcation structure

The second-order ordinary differential equation Eq. (2.2.19) with Eq. (2.2.20) is regarded as a
two-dimensional dynamical system on (6X,X). The phase point (6X,6X) = (0,0) is a fixed point
which corresponds to the steady state, i.e., a camphor particle is settled at the center of the water
channel. The linearized equation around the fixed point is derived as follows:

% (§§> - <_8J2 215> <g§) =M <§§> : (2.2.21)

where w = \/—A(R)/(m — G(R)) and 8 = (C(R) —n)/(2m — 2G(R)). The eigenvalue of the matrix
M is Ay = S +i/—B32% + w2, and thus the Hopf bifurcation occurs where the bifurcation parameter
B = C(R) —nis 0. The value of 5 depends on the water channel length R and the resistance
coefficient 7, so that R and 7 are considered to be the bifurcation parameters in experiments. The
phase diagram of the bifurcation structure is shown in Fig. 2.2.1. When 7 is smaller and larger than
C(R), then the rest state is stable and unstable, respectively.

From the weakly nonlinear analysis [74], when 3I(R)w? + E(R) is positive or negative, then the
bifurcation type is supercritical or subcritical Hopf bifurcation. E(R), I(R), and w include A(R)
and G(R), which depend on the water channel length R, and w also depends on m. In Fig. 2.2.2,
the border between supercritical and subcritical Hopf bifurcation, 3I(R)w? + E(R) = 0, is shown
on R-m plane.

We numerically calculated Egs. (2.2.19) and (2.2.20) for R = 1 and 8, and plotted the amplitudes
for the stable and unstable oscillation in Fig. 2.2.3. The branch of unstable amplitude, which is
characteristic for subcritical Hopf bifurcation, appears only in a narrow range of n for R = 8.

2.2.4 Comparison with a one-dimensional infinite system

The same analysis can be adopted for the motion of a camphor particle in a one-dimensional infi-
nite system. Based on the same equation as in Egs. (2.2.9) and (2.2.11) but without the boundaries,
the driving force F' is calculated as

F= 5X(t) - gX(t) — 1—6(X(t))3. (2.2.22)
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m
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R

0

Figure 2.2.2: Plot of 3I(R)w?+ E(R) = 0 on R-m plane. The curve 3I(R)w?+ E(R) = 0 approaches
E(R) =0 for m — oco. Reproduced from Ref. [34].
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Figure 2.2.3: Bifurcation diagram for (a) R = 1 and (b) R = 8, numerically obtained based
on Egs. (2.2.19) and (2.2.20). The blue and red dots show the stable and unstable amplitudes,
respectively. It is noted that the dots on the zero amplitude indicate the rest state. We see
supercritical and subcritical Hopf bifurcations for R = 1 and R = 8, respectively. The mass m is
set to be m = 0.01. Reproduced from Ref. [34].
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

The detailed calculation is provided in Appendix A.1.3. The driving force does not depend on
the position but on the velocity and acceleration of the camphor particle, since the system has a
translational symmetry. It is noted that the limit of Eq. (2.2.20) where R goes to infinity corresponds
to Eq. (2.2.22).

In the reduced equation:

<m 4 ;) X = <; - n) X - 11—6(X(t))3, (2.2.23)

the supercritical pitchfork bifurcation occurs, where the resistance coefficient 7 is the bifurcation
parameter. Nagayama et al. investigated the motion of a camphor particle with a finite size in a
one-dimensional infinite system [47]. They found that the supercritical and subcritical pitchfork
bifurcation occurs for the small and large size of a camphor particle, respectively. In the present
study, the size of a camphor particle is set to be infinitesimally small, and thus the present analysis
is consistent with the results by Nagayama et al.

2.2.5 Water channel length where the rest state is unstable

As shown in Fig. 2.2.1, the function C(R) has a peak around R ~ 2. This peak indicates that the
rest state is easiest to become unstable at the water channel length where C(R) takes a maximum
value. Here we explain why there is a certain water channel length where the rest state is easiest
to become unstable by considering a semi-infinite system with a boundary.

First, we consider the translational motion with a constant velocity without boundaries. We
set the velocity of the particle to be v. Then the position of the camphor particle X and the
concentration field ¢ is denoted as X = vt + const. and c¢(x — X;v). By setting z = =z — X,
Eq. (2.2.9) is expressed as

de d’c
U= c+0(2). (2.2.24)
By substituting ¢ = e*, we obtain A = —v/2 + \/v2/4+ 1 = M. From the boundary condition
¢(z — +o0) = 0, the continuity at z = 0, and the discontinuity of the first derivative due to the

Dirac’s delta function, the coefficients of the general solutions ¢ = e*+7 is determined as follows:
1
276)\+Z, (z <0),
c(zyv) = U1+4 (2.2.25)
7, (z>0).
v2+4

The Taylor expansion of the concentration field ¢ around v = 0 is given as

c(z;v) = % (1 - v%) e, (2.2.26)

where the more-than-second-order terms of v are truncated. By subtracting the steady state:
L -tel
cp=c(z;v=0) = ¢ (2.2.27)
from Eq. (2.2.26), the effect of the motion on the concentration field ¢; is obtained as

1
c1(z;v) = —sze_w, (2.2.28)

12
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Wall‘

Concentration

v

.

0 4

Camphor particle

Figure 2.2.4: Schematic illustration of a semi-infinite system with a boundary. A camphor particle
moves with a constant velocity v. The camphor particle and the boundary are located at x = 0 and
x = ¢, respectively. Reproduced from Ref. [34].

where Eq. (2.2.26) is the summation of ¢y and ¢;. Since the concentration field with zero velocity,
co, has a symmetric profile with regard to the particle position, the driving force F{ originating
from c¢q is zero. Thus the driving force working on the camphor particle is Fi(v) = v/2 originating
from c¢;, which directs in the moving direction.

Then we consider the effect by the boundary. Here we assume that the particle is located at
the left side of the boundary as shown in Fig. 2.2.4. The distance between the particle and the
boundary is set to be £. To satisfy the Neumann boundary condition, we add the concentration
field by the virtual camphor particle, which is located at the right side of the boundary and has a
velocity —v. The distance between the virtual particle and the boundary is also ¢. We denote the
concentration field by the virtual particle as cg* + ¢1*, where c¢p* and ¢;* are the concentration field
for the steady state and the proportional to the velocity, respectively. The explicit forms of them
are co*(z;¢) = co(z — 2¢) and c1*(z;0,v) = c1(z — 2¢; —v), where 2¢ is the distance between the
real and virtual camphor particles. Thus the concentration field for the system with the camphor
particle and the boundary is given by

c(z;v,0) = co(2) + co™(2;0) + c1(z;v) + 17 (25 4, v). (2.2.29)
The driving forces Fy*(¢) and Fy*(¢,v) originating from cp* and c;* are described as —e~2¢ and
—v(1/4 — £/2)e™2¢, respectively. Thus we have
F(v,0) =Fy+ Fy*(£) + Fi(v) + F1* (¢, v)
-2 VUV —20
- v V-2
e+ 4( O)e
=g0(0) + g1(£)v + O(v?), (2.2.30)

where go(£) = —e72¢ and g1 (¢) = 1/2 — (1/4 — £/2)e~2". The coefficient g;(¢) of the first order of v
is plotted against ¢ in Fig. 2.2.5. In Fig. 2.2.5, g1(¢) has a peak around ¢ = 1, which indicates that
the camphor particle is greatly accelerated around ¢ = 1. The function C'(R) in Eq. (2.2.20) is the
coefficient of the first order of v. When the water channel length R is 2, the distance between the
camphor particle and the boundaries is 1. Thus the fact that C'(R) has a maximum value around
R ~ 2 is consistent with the fact that ¢;(¢) has a maximum value around ¢ ~ 1. In other words,
the peak of C'(R) is qualitatively reproduced by considering the effect of a boundary.

By the way, the concentration field by the camphor particle resting at z = 0 is given in
Eq. (2.2.27) and its width is about 2. Thus the result indicates that the rest state is easiest to
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Figure 2.2.5: Coefficient g1 (¢) of the first order of v in Fy(v)+ F1*(¢,v). Reproduced from Ref. [34].

be unstable when the water channel length and the width of the profile of concentration field is
comparable.

2.2.6 Comparison with the numerical results

To confirm the theoretical results, we performed numerical calculations based on Egs. (2.2.9)
and (2.2.11). We used the Euler method for Eq. (2.2.11) and the implicit method for Eq. (2.2.9).
The time and spatial steps were 107° and 1073, respectively. The mass m was fixed to m = 1072,

The typical trajectories are shown in Fig. 2.2.6. Figure 2.2.6(a) shows a trajectory approaching
a limit-cycle orbit and Fig. 2.2.6(b) shows a damped oscillation approaching the rest state. We
numerically obtained the stable amplitudes and maximum and minimum velocities for two param-
eters, i.e., the water channel length R and the resistance coefficient 1. The results are shown in
Fig. 2.2.7. We confirmed that the bifurcation occurred at certain pairs of R and 7.

The phase diagram obtained by numerical results is shown in Fig. 2.2.8. The qualitative fea-
tures were the same as the theoretical results though the numerical results slightly differed from
the theoretical ones quantitatively. It is expected that the difference between the numerical and
theoretical results mainly comes from the discretization of the Dirac’s delta function.

We also checked the validity of the reduction of our model in Subsection 2.2.2. Here we compared
the driving force obtained by numerical calculation with that obtained by reduction of the model.
The results for R = 1 and R = 8 are shown in Figs. 2.2.9 and 2.2.10, respectively. The driving
force obtained by the reduction of the model matched well for the water channel length R = 1,
but did not for R = 8. For smaller water channel, the confinement by the system boundary was
greater, and the amplitude of oscillation was smaller. Thus we conclude that the reduction is valid
moderately for a smaller water channel even though the bifurcation parameters, R and 7, are not
close to the bifurcation point.

2.2.7 Comparison with the experimental results

The oscillatory motion of a camphor particle was reported by Hayashima et al. and observed
an oscillatory motion [48]. However, the oscillatory motion lasted within 1 min., since the aqueous
phase was too small (1.0 ml) and saturated with camphor molecules in short time.

In our experiments, we succeeded in observation of stable oscillations by increasing the volume
of the aqueous phase. We experimentally determined the bifurcation points between the rest and
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Figure 2.2.6: Trajectories on X-X plane and the concentration field. The water channel length R
was R =1 for both (a) and (b), and the resistance coefficient 7 was set to be (a) n = 0.3 and (b)
n = 0.5. Reproduced from Ref. [34].
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Figure 2.2.8: Phase diagram for the comparison of the theoretical results with numerical ones. The
marks “+” show the bifurcation points obtained by numerical calculations, and the solid line is the
bifurcation curve C(R) obtained by the theoretical analysis. Reproduced from Ref. [34].
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Figure 2.2.9: Comparison between the numerical and analytical results for the water channel length
R = 1. The dark blue curves in (a-d) show the numerical result using the model equations (2.2.9)
and (2.2.11) and are all the same for (a-d). The orange curves show the driving force obtained by
the theoretical analysis: We substitute the values X, X, and X obtained by numerical calculation
into (a) the result in Eq. (2.2.20), AX + BX3 4+ CX + EX?X + HXX? 4+ IX?+GX, (b) the result
in Eq. (2.2.20) without GX, AX + BX3+CX + EX?X + HX X2+ IX?, (c) the first order terms of
position and velocity, AX +CX, and (d) the first order terms of position, velocity, and acceleration,
XAX +CX + GX. The resistance coefficient was n = 0.3. Reproduced from Ref. [34].
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Figure 2.2.10: Comparison between the numerical and analytical results for the water channel length
R = 8. The caption for these plots is the same as Fig. 2.2.9 except for the value of the water channel
length and the resistance coefficient; R = 8 and 1 = 0.45. Reproduced from Ref. [34].

oscillatory states, and then quantitatively compared the experimental results with the theoretical
results.

Experimental setup and methods

The water chamber was filled with pure water or glycerol aqueous solution (Wako, Japan),
whose volume was 250 ml. Pure water was prepared with the Millipore water purifying system
(UV3, Merck, Germany). A water channel was floated on the aqueous phase. The water channels
were prepared by making a rectangle hole in the Teflon sheet with thickness of 1 mm. The size of
rectangular holes was 4 mm for the short side and 15, 20, 25, 30, 35, 40, 45, and 50 mm for the long
side. Camphor particles were made of camphor powder (Wako, Japan) using a pill maker (Kyoto
Pastec, Japan). The camphor particles had cylinderical shapes, whose diamater and height were
3 and 1 mm, respectively. The camphor particle motion was captured by HD video camera (iVIS
HV30, CANON, Japan). The size of a frame of the movie was 720x480 pixels and the time resolution
was 1/30 s. By controlling the concentration of glycerol aqueous solution, the viscosities of solutions
were changed, which resulted in the change in the resistant force exerting on a camphor particle.
The viscosity was measured by vibrational viscometer (SV-10A, A&D, Japan). The experimental
setup is shown in Fig. 2.2.11. The experiments were performed at room temperature.

The movies were analyzed using ImageJ (NIH, USA). The characteristic period of oscillation
was 1-2 s and the oscillation seemed to settle to the stable oscillation sufficiently ca. 1 min. after
the camphor particle was floated. The camphor particle became smaller and they began to move
not only along but also perpendicular to the water channel ca. 10 min. after a camphor particle
was floated. Thus the movies were used from 1 to 6 min. after a camphor particle was floated for
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Figure 2.2.11: Schematic illustration of the experimental setup. Reproduced from Ref. [34].
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Figure 2.2.12: (a) Snapshots of a camphor particle and water channel every 1/3 s. We used 3.5 mol/L
and 2.5 mol/L glycerol aqueous solution as an aqueous phase for (a)-1 and -2, respectively. Time
evolution of (b) the positions and (c) the velocities of camphor particles. The blue and orange
curves corresponding to (a)-1 and -2, respectively. Reproduced from Ref. [34].

the image processing. The experiments were made at least four times for each water channel length
and viscosity of the aqueous phase.

Experimental results

We observed the rest state and oscillatory motion of a camphor particle in a one-dimensional
water channel. The snapshots of the system and the time change in the position and velocity are
shown in Fig. 2.2.12. As shown in Fig. 2.2.12(a), two types of behavior, i.e., rest state ((a)-1)
and stable oscillation ((a)-2), were observed. We analyzed the amplitude of the oscillation and
local maximum and minimum of the velocity, which were detected by averaging the amplitude of
the oscillation and local maximum and minimum for every 5-s term. The results are shown in
Fig. 2.2.13. Near the bifurcation point, the standard deviations tended to be larger, since the
stability was close to neutral. The oscillatory motion was observed with smaller viscosity and larger
water channel. We classified the behavior into oscillation and rest state, and summarized as a phase
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Figure 2.2.13: Dependence of amplitudes and maximum and minimum velocities on the water
channel length R. The plots colored with green and magenta show the results for water and 3.5 M
glycerol aqueous solution, respectively. The bifurcation structures were observed around 15-20 mm
for water and 35 mm for 3.5 M glycerol aqueous solution. The error bars show the standard
deviations. Reproduced from Ref. [34].

diagram in Fig. 2.2.14.

Discussion on experimental results

Here, we discuss the physical meaning of the bifurcation structure in the motion of the camphor
particle in a one-dimensional finite region, as schematically shown in Fig. 2.2.15. For a small system
size, the camphor particle does not move since the camphor molecules are quickly saturated at the
water surface and do not produce sufficient driving force. Thus, the camphor particle stops at the
center position as in Fig. 2.2.15(b), where the driving force balances. By increasing the system size,
the saturation of the camphor molecules becomes slower and the camphor particle begins to move.
The particle does not exhibit translational motion owing to the confinement by the boundaries, but
it exhibits oscillation around the system center, as shown in Fig. 2.2.15(c). For the greater system
size, the amplitude of the position increases almost linearly and the amplitude of the velocity is
saturated, as shown in Figs. 2.2.7 and 2.2.13. This behavior can be understood by considering the
effect of the boundaries, which affect the motion of a camphor particle through the concentration
field. The characteristic length of the effect of the boundaries is considered to be the diffusion
length of the concentration field. For the system size greater than the diffusion length, the effect
of the boundaries is negligible except for the boundaries’ neighborhood. Therefore, a camphor
particle exhibits translational motion with an almost constant velocity that is determined only by
the viscosity of the aqueous phase, and it is reflected by a boundary when the camphor particle is
within the distance of the diffusion length from the boundaries, as shown in Fig. 2.2.15(d).

Quantitative comparison of the experimental results with the theoretical ones

We examine whether the order of bifurcation points obtained by theoretical analysis quanti-
tatively matches with the experiments. In the theoretical analysis, the bifurcation structure is
observed for R = O(1) and n = O(0.1 ~ 1).

First, we estimate the order of R. The order of the water channel used in the experiments
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Figure 2.2.14: Phase diagram obtained by experiments. Here we define the rest state as the state
where the averages of local maximum and minimum velocity is less than 30 mm/s. Reproduced

from Ref. [34].
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Figure 2.2.15: Schematic illustration for (a) the bifurcation diagram and (b)-(d) the typical behavior
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was 10 mm. The diffusion length \/D/a is estimated as \/D/a ~ 10 mm, which is the length
within which the particle is affected by the boundary through the concentration field. Here we do
not use the diffusion constant obtained by fluctuation-dissipation theorem, since the diffusion is
enhanced by the Marangoni flow [?]. The water channel length R is R = \/a/DR. Thus we have
R =10 mm/10 mm = 1.

The order of resistance coefficient 7 is estimated as follows. For the relation between the resis-
tance coefficient 7 and the viscosity v, we assume the Stokes’ law, 7 = 6mva ~ 107° kg/s, where a
is a radius of the particle. In the experiments, we used the particle with a radius of 1.5 mm. The
viscosity of pure water and glycerol aqueous solution were 1 mPa-s and 50 mPa-s, respectively.

The order of the driving force is estimated by the concentration field of the steady state. The
solution for the equation:

oc 0?c

5= D@ — ac+ cod(x) (2.2.31)

is coe_\/‘“/iDm /(2v/aD). The gradient of the concentration near the camphor particle is 4c/(2D),
and thus the driving force F' is F' ~ Kcy/D. The driving force F' and sublimation rate o were
experimentally measured as F' ~ 1 uN and o ~ (1.8 £0.4) x 1072 s~! in the previous work by
Suematsu et al. [75]. The resistance coefficient 7 is 7 = Dv/aD/(Kcp)7. Thus we have

DvoaD_. D [D P
= = —Q mna

n Kcy n KeyV « g

x (10 mm) x (1.8 x 1072 s71) x 677 x (1.5 mm)

“1uN
~67) (Pa-s)7t. (2.2.32)

The resistance coefficient 7 is 7 ~ 1072 and 7 ~ 10~! for water and glycerol aqueous solution.
Thus the bifurcation point obtained by theoretical analysis is in good correspondence with that of
experiments.

2.2.8 Summary for Section 2.2

The motion of a camphor particle in a one-dimensional system is investigated [34]. A cam-
phor particle exhibits the rest state at the center of the system or oscillatory motion depending
on the physical parameters, the water channel length and the resistance coefficient. Oscillatory
motion emerges from the rest state through Hopf bifurcation. The theoretical results qualitatively
correspond to the numerical and experimental results.

2.3 DMotion of a self-propelled particle in an axisymmetric system

In this section, we discuss motion of a symmetric self-propelled particle (SPP) in a system with
axial symmetry [37]. Here, we use the word “an axisymmetric system” as a system with inversion
and rotational symmetry. The considered self-propelled systems have symmetry, and therefore the
rest state at the center of the system should exist. It is noted that the stability of the steady state
depends on the physical parameters of the system. In some cases, the stability of the steady state
changes with the change in the physical parameter, i.e., a bifurcation occurs.

Here, we especially focus on the motion which emerges through a bifurcation from the rest state
at the system center position. Due to the dimensionality and symmetric property of the system,
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Figure 2.3.1: Relation between the instabilized direction and possible motion.

there are several candidates of motion when the rest state becomes unstable. The relation between
the instabilized direction and the possible motion is summarized in Fig. 2.3.1.

We first construct a dynamical system only considering the symmetric property of the original
system under the assumption that the system is close to the bifurcation point, and then analyze
the dynamical system using a weakly nonlinear analysis.

2.3.1 Construction of the dynamical system

The center of mass and velocity of a SPP are set to be x = (z1,22), and v = & = (v, v2),
respectively. Here the dot () denotes time derivative. We assume that the time change in the position
of the SPP, x, is represented by the equation of motion, which has the inversion and rotational
symmetries. Here, inversion and rotational symmetries indicate that the equation of motion is
invariant even though the coordinates are inverted and rotated with respect to the origin. We also
assume that the SPP moves around the origin with a sufficiently small velocity, i.e., |x(t)| < 1 and
|lv(t)] < 1. The general form of the equation of motion under the above assumptions is represented
as:

{ T =", (2.3.1a)
0 = ax + bv + cz|’x + k|v|*v + h|v|*x + n|z|*v + j(x - v)z +plx-v)v, (2.3.1b)
where a, b, ¢, k, h, n, j, and p are parameters. Equation (2.3.1) is a four-dimensional dynamical
system. In addition, we also assume a linear restoring force ax (a < 0) to discuss the motion around
the origin.

We set the time scale of harmonic oscillation to be 1 by setting the coefficient for the linear
restoring force to be a = —1. The dimensionless time ¢ is f = /—at. Then the dynamical system
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

becomes

v+ %(w -v)x + p(x - v)v.

Tt =
(2.3.2)

vV=—x+

b Ci 2 2 2
v — —|x|*x + kv —alv|*v + hl|lv]“x +
v~ Slafa + ky=alov + hlol

Hereafter, we redefine the variable for time ¢ — ¢, and the parameters b/\/—a — b, —c/a — c,
kv/—a — k, n/\/—a — n, j/v/—a — j, and analyze the following equation:

{ @ = v, (2.3.3a)

0= —x + bv + clz*x + kjv|*v + hlv*z + n|z|*v + j(z - v)x + p(z - v)v.  (2.3.3b)

2.3.2 Weakly nonlinear analysis

In this subsection, we assume that there are two time scales of dynamics in Eq. (2.3.3); one is that
for the periodic motion by linear restoring force and the other is the slower one for perturbative
dynamics. First, the dynamical system for the perturbative dynamics is derived by separating
the time scales. Then the existence and linear stability of rotational and oscillatory motions are
analyzed.

Separation of time scales

Here we assume that the first term in the righthand side in Eq. (2.3.3), —a, is the main term,
and the others are perturbative terms. We separate the time scale of the harmonic oscillation by
the term —a from those of changes in the amplitude and phase of the oscillation. We assume that
the perturbative terms in Eq. (2.3.3) are at the order of e. Then the time scales for the harmonic
oscillation and perturbation are set to be 7 =t and T = et (0 < € < 1), respectively [73]. The time
derivative is expressed as follows:

d _oro 0T

== EE-FE(?—T =0, + 0r. (2.3.4)

Since we separate the time scales of the oscillation and the change of amplitude and phase, we set
x = (r1,22) as

{ x1 =11(T) cos(t + ¢1(T)), (2.3.5a)
x9 = 12(T") cos(T + ¢2(T)). (2.3.5b)

Then the velocity v and the time derivative of it © are explicitly expressed as

{120 e st s )+ e{ri’ cos(r + dr) — iy sin(7 + 1)), (2:3.60)
Vo = (87— + 58T)x2 = —T9 Sin(T + gf)g) + 6{7‘2’ COS(T + qbg) — Tlgf)g/ SiD(T + gf)g)}, (236b)

01 = (8r + €0r)%x1 = (8,2 + 20,07 + 20711

= —r1cos(T + ¢1) — 2e{r1’sin(7 + ¢1) + rign cos(t + b1)} + O(?), (2.3.7a)
0y = (8r + €07)%xy = (8,2 + 260,07 + 20722

= —r9cos(T + ¢2) — 2e{ra’ sin(7 + @) + raghs’ cos(T + p2)} + O(?), (2.3.7b)

where the prime (') denotes the differential by 7. By substituting Egs. (2.3.5), (2.3.6), and (2.3.7)
into (2.3.3) and comparing the both sides of the equation as an identity with regard to e, we have
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the following equations; From the equation for v1, we have

O(): —ricosby = —rjcosby, (2.3.8)
O(e):  —2e{r/sinf + ri¢ cosb;}
2 2

= —brysinf; + cri(r cos? 01 + 192 cos? ) cos 0y — kri(ry sin? 01 + 742 sin? 02) sin 01

+ hrl(r12 sin? 0 + ro? sin® 02) cos 01 — nry (7“12 cos? 01 + 752 cos? ) sin 61,

—Jr1 (r12 sin 0y cos 1 + ro2 sin 05 cos 02) cos 01 + pry (7“12 sin 61 cos 61 + r92 sin 05 cos ) sin 0y,
= H(’I“l, T2, 91, 92),

(2.3.9)
and from the equation for ¥2, we also have

O(1): —rgcosby = —rycos by, (2.3.10)
O(e):  —2e{rysinfy + rogy’ cos by}
= —brysinfy + crg(r12 cos® 01 + r9? cos? 02) cos Oy — k‘r2(r12 sin? 0y + ro? sin® 02) sin Oy,
+ hrg(r12 sin? 01 + ry? sin® 02) cos Oy — nry (r12 cos? 01 + 122 cos? 02) sin 0,
— jrg(r12 sin 0y cos 01 + ro? sin 0y cos 02) cos Oy + prQ(nQ sin 01 cos 01 + r92 sin 05 cos 02) sin 6,

= H(r27 7’1,(92, 91)7
(2.3.11)

where we define 61 = 7+ ¢1 and 0o = 7 + ¢o.
To discuss the effect by the perturbative terms, we derive the equations for 7/, 7o', ¢1’, and ¢5’.
The time average of r;’sin? 1 over a period of oscillation, 27, is approximately calculated as

1 2 1 2 1
% TllsiHZ 91 d91 = 27T’f‘1// sin2 91 d91 = 57"1/. (2.3.12)
0 0

Here we assume that 1’ is a constant during one period. For the same reason, the amplitudes (r;
and 73), phases (¢1 and ¢»), and their derivatives (ro’, ¢1’, ¢2') are also considered to be constants

during one period.
By using the equation for v at the order of e:

{ —2e{ry'sin @y + r1¢1' cos b1} = H(r1,ra,61,602), (2.3.13a)
—2e{ry sin by + ro¢p1’ cos o} = H(ro,r1,02,601), (2.3.13b)
we have
( ’ d7“1 1 2 .
er' = - =5 H{(ry,72,01,02)sin6; dby, (2.3.14a)
0
d 1 2
57‘1¢1, = Tlﬂ = —— H(rl,rg,ﬁl,ﬁg) COS@l d91, (2.3.14b)
dt 27T 0
d 1 27
87"2, = % = —% H(’I“Q, T, 92, 91) sin 92 d92, (2314C)
0
1 27
87"2d)2/ — 7'2% = —— H(T’Q, 1, 02, 91) COS 02 d92 (2314d)
dt 2 0
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

We integrate them to obtain

d 1 1 1
% §brl+ (Bk—l—n—l—j)rl + <4(k:—|—n)+8(k—n+j)0052¢—(c—h—l—p)sm2¢)> 1792,
(2.3.15)
d 1 1 1 1
% = —§(3c+h+p)r12 + (—4(0—1— h) — g(c— h + p) cos 2¢ — é(k — n+j)sin2¢> 2, (2.3.16)
d’l"g 1 1 . 1 . 2
pr *b’l”g-l- (Sk—l—n—i—j)m + Z(k:—i—n)—l—g(k:—n—l—j)cosw)—f— g(c—h+p)81n2q§ r1°7T2,
(2.3.17)
d 1 1 1 1
% = —§(3c+h+p)7“22 + (—4(c—|—h) - g(c— h + p) cos2¢ + é( — n+])sm2¢> 2,

(2.3.18)

where we set ¢ to be ¢ = 01 — 6.
Here, we adopt the summation of phases ¢ = ¢1 + ¢2 and the phase difference ¢ = ¢1 — ¢2
instead of ¢; and ¢9. Then we have

% é(c—fH—p)(rl —1r9?)(1 — cos 2¢) — é(k‘—n—l—j)(mZ—l-rgQ) sin 2¢, (2.3.19)
0t — (et 8h A p)(r? +1%) — e hp)(n® + 1) cos 20
+ é(k‘ —n+7)(r1? — ro?) sin 2¢. (2.3.20)

In the righthand side of the time evolution equations for r1, ra, ¢, and ¢4 in Egs. (2.3.15), (2.3.17),
(2.3.19), and (2.3.20), only r1, re, and ¢ appear, while ¢ does not appear. Thus, the system is
intrinsically a three-variable system on 71, r9, and ¢, and ¢ is a slave variable.

Existence and linear stability of rotational motion

In this subsection, a solution for rotational motion is constructed, and then its linear stability is
analyzed. Here, we define rotational motion as the motion with a constant distance from the origin
having a constant velocity.

Firstly, we construct a solution for rotational motion. The solution for rotational motion should
satisfy 71 = ro = const. and ¢ = +m/2 = const. It is noted that ¢ = 7/2 and ¢ = —7/2 correspond
to counterclockwise and clockwise rotation on x1-x2 plane, respectively. Thus we set

1 =r9 = It > 0, (rrot = const.) (2.3.21)

¢== g (2.3.22)
and derive ryo. By substituting (r1, r2, @) = (Trot, Trot, £7/2) into Eq. (2.3.15), we have
brrot + = (k + 7)ot (2.3.23)
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(b)-1 (b)-2

~ -

Figure 2.3.2: Schematic illustration of the mode of perturbation represented on zi-xo plane, cor-
responding to each eigenvector. (a) Extension or contraction of the radius and (b,c) deformation
to an elliptic orbit. The corresponding eigenvalues are (a) —b, (b,c) (k —n + j)rwt?/2. Here we
consider the case that ¢ = h = p = 0. Reproduced from Ref. [37].

71 should be zero when (71,72, ) = (rrot, rrot, =7/2) is a fixed point. From a viewpoint of physics,
Trot should be positive. Thus, we obtain ry. = v/ —b/(k +n) for k +n < 0, since b is set to be a
positive value. By substituting (71,72, ¢) = (Trot, rot, £7/2) into Eq. (2.3.19), we also have gZ) =0,
and thus it is shown that (ri,72,¢) = (Trot, rot, £7/2) is a fixed point corresponding to rotational
motion.

Then we investigate the linear stability of the fixed point (r1,72,d) = (rrot, rrot, =7/2). Here we
set the perturbations for rq, 79, and ¢, which are denoted as Ary, Ary, and Ag, respectively. The
linearized equation around the fixed point is obtained as:

b 1 1 1
(k+3n_]) Tr0t2 *(C— h+p)rrot3

. = - k ] TO 2 n
Ar 27;4(5 30+ )T , 4 4 Ar
Ary | = —(k+3n—17j) Trot =+ —(5k+3n+ j)rrotQ ——(c—nh +p)7"r0t3 Ary
) 4 2 4 4 A
Ad 1 1 1 N ¢
—E(c—h—i—p)rrot 5(6_h+p)rrot §(k—n+9)7“rot
a B v Arq
=5 a —y)||Ar2]. (2.3.24)
0 —0 ¢ A

The eigenvalues of the matrix in Eq. (2.3.24) are a+ 3 and (o — B+¢)/24+/(a — B —€)2 + 875 /2.
The eigenvalues rewritten by b, ¢, h, j, k, n, and p instead of «, B, v, §, and € are —b and
(k —n + §)rwot?/2 £ ilc — h + p|rot2/2. The condition k — n + j < 0 is required for the linear
stability of the fixed point. When ¢, h, and p are zero, the corresponding eigenvector for —b is
(1/v/2,1/4/2,0), and the corresponding eigenvectors for (k—n+5)rot2/2 are (1/v/2, —1/+/2,0) and
(0,0,1). Here the eigenvalue (k — n + j)ro2/2 is degenerated.

In Fig. 2.3.2, the schematic illustration of the deformations of the orbit for the rotational motion
by the perturbations in the directions of eigenvectors is shown.

Therefore, we have the conditions for the linearly stable rotation as follows:

{ k+n <0, (Condition for the existence of the radius), (2.3.25a)
k—n+j<0, (Condition for the linear stability for the phase difference).(2.3.25b)

Existence and linear stability of oscillatory motion

In this subsection, a solution for oscillatory motion is constructed, and then its linear stability
is analyzed. Here, we define oscillatory motion as the reciprocal motion whose center is the origin
of x1-x2 plane.
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

First, we construct a solution for stable oscillatory motion. Here we set the amplitude of
oscillation to be rys. = const. and the direction of oscillation in x1-x2 plane to be . The domain
of definition for ¢ is 0 < ¢ < mw. Thus, the fixed point in (r1, 79, ¢) for oscillatory motion should
be 11 = Tose COSY, T9 = Tosc SinY, and ¢ = 0. By substituting the fixed point into Eqs. (2.3.15),
(2.3.17), and (2.3.19), we have

1 1

1 :§brosc cos Y + §(3k‘ +n+ j)rosc?’ cos 1, (2.3.26)
1 1

79 :gbrosc SiIl?,ZJ + g(gk +n+ j)rosc3 SiIl’(ﬁ, (2327)

The fixed point (7osc COS Y, roge sinw, 0) satisfies 71 = 0, 73 = 0, and qb = 0. Thus we have rys. =
2y/—b/(3k +n + j), where the condition 3k + n + j < 0 is required for ros. > 0.

Then we investigate the linear stability of the fixed point (rosc COS, Tose Sin 1y, 0), in the same
manner as in the case of rotational motion. We set the perturbations for r1, ro, and ¢ to be Arq,
Arsy, and A¢, respectively. The linearized equation around the fixed point is obtained as:

1
——(c = h 4 P)Tosc® sin® ¢ cos

—bcos? ) —bsin ) cos 4(

A‘T‘l 1 AT’l
Ary | = | —bsin cosv —bsin? ) —(c = h 4 p)Tose’ sin v cos® 1 Arg | . (2.3.29)
Ao S ) A¢

0 0 —Z(k_n‘i‘j)rosc

The eigenvalues of the matrix in Eq. (2.3.29) are —b, 0, and & = —(k — 1.+ j)7osc2/4. The condition
k —n+ j > 0 is required for the linear stability of the fixed point. The corresponding eigenvector
for —b, 0, and —(k — n + j)7osc>/4 are (cost,sinp,0), (—sine, cost,0), and (0,0, 1), respectively.
In Fig. 2.3.3, the schematic illustration of the deformations of the orbit for the oscillatory motion
by the perturbations in the directions of eigenvectors is shown. The eigenvalue 0 means that the
solution for oscillatory motion is neutral for the perturbation in the direction (0,0, 1), reflecting the
symmetric property of the system.
Therefore, we have the conditions for the linearly stable oscillation as follow:
{ 3k+n+37<0, (Condition for the existence of the amplitude), (2.3.30a)

k—n+j>0, (Condition for the linear stability of the phase difference).(2.3.30b)

2.3.3 Discussion on the results of weakly nonlinear analysis

We obtained the conditions for stable rotational motion:

{ kE+n <0, (Condition for the existence of the radius), (2.3.31a)
k—n+j <0, (Condition for the linear stability for the phase difference),(2.3.31b)

and those for oscillatory motion:

{ 3k+mn+j<0, (Condition for the existence of the amplitude), (2.3.32a)
E—n+j>0, (Condition for the linear stability of the phase difference),(2.3.32b)

by the weakly nonlinear analysis. From these conditions (2.3.31) and (2.3.32), only three coefficients
of the third-order terms, k, n, and j, appear and the other coefficients of them, ¢, h, and p, do
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(a) ¢

Direction of/ 7

oscillation osc
X

Figure 2.3.3: Schematic illustration of the mode of perturbation represented on z1-z2 plane, corre-
sponding to each eigenvector. (a) Extension or contraction of the amplitude, (b) deformation to an
elliptic orbit, and (c) rotation of oscillatory direction. The corresponding eigenvalues are (a) —b,
(b) —(k —n+ j)rosc2/4, and (c) 0. Here we consider the case that ¢ = h = p = 0. Reproduced from
Ref. [37].

Oscillation

Q
3k+n+j=0

Figure 2.3.4: Phase diagram for the stable motion. The diagram is plotted on k-n plane based on
the result of the weakly nonlinear analysis. Here the parameter j is fixed. The parameter set for
stable rotational and oscillatory motion are indicated red and cyan.

not appear. It is also said that the parameter region where rotational and oscillatory motion are
bistable does not exist within the regime of the weakly nonlinear analysis. The results (2.3.31) and
(2.3.32) are summarized in Fig. 2.3.4.

Here we consider the physical meaning of the terms k|v|?v, n|z|?v, and j(x-v)x, which determine
the type of stable motion. In the case of k < 0, n < 0, and j < 0, the term k|v|?v is a velocity-
dependent energy dissipation and n|x|?v and j(x - v)x are position-dependent energy dissipations.
In particular, the position-dependent energy dissipations depend on not only the position but also
the direction of the velocity. The terms n|z|?v and j(z - v)x are decomposed in the radial direction
e” and angular direction e’ as follows:

nlz|?v + j(z - v)x = (FD] + Ffj) (nxparv; + j(apvg)x;)
=(n+j)|z|(x - v)e" + n|z|(zv, — yv,)e’, (2.3.33)
where Fllj = z;z;/|z|* and Ff-j = 0;; — z;zj/|z*. To simplify the coefficients of e” and e’ they

are expressed v, and vy, where v = v,.e” + vpe?. Since v, and vy are given by v, = x;v;/|x| and
vp = Ejjzivj/|x|, we have

TEUET; - v T

(g o _rve 2.3.34
e " Tpxy || [z|’ ( )
vpe? —I'hy; = DLk Biye; _ 21ty — ayv @ (2.3.35)

KA TpTh || ||

28



Section 2.3 Motion of a self-propelled particle in an axisymmetric system

Here E is a 2 by 2 matrix, where E1; = FEoy = 0, E1o = —1, and F9; = 1. Here ! is defined as
x' = |z|e? Then Eq. (A.3.33) is expressed as
nlx|?v + j(z - v)x = (Fllj + Ff;) (nxparv; + jlapvg)x;)
=(n+ j)zrapvre’; + nzirrvge’;
=(n + j)|x*v,.€e" + n|x|>vge’. (2.3.36)
Thus, it is concluded that the force n|x|?v is isotropic, but j( - v)x is anisotropic with regard to

the position of a considered self-propelled particle. Here €”; = x;/(zpx) and e?; = Ejja;/(zpay).
As for the mathematical model exhibiting limit-cycle oscillation, van der Pol equation [76]:

i+ (pr+qa’)i+z=0, (p1 <0,q1 > 0) (2.3.37)
and Rayleigh equation [77]:
i+ (pp+qit)i+z=0, (p2<0,q >0) (2.3.38)

are familiar. Since these two equations converted into the same form, there is no qualitative dif-
ference in terms of bifurcation structure. By extending van der Pol equation (2.3.37) and Rayleigh
equation (2.3.38) into the two-dimensional axisymmetric system, we have

g+ (P + Qx> )z +x=0, (P, <0,Q;>0), (2.3.39)

4+ (P + Qo) )z +x=0, (P<0,Qs>0). (2.3.40)

By comparing with our model in Eq. (2.3.3), van der Pol-like equation (2.3.39) and Rayleigh-like
equation (2.3.40) exhibit stable rotational and oscillatory motion, respectively.

The both Rayleigh and van der Pol equations in Eqs. (2.3.37) and (2.3.38) show qualitatively
the same limit-cycle oscillation, i.e., the forms of third order of dissipative terms do not affect so
much. However, the forms of third order terms in Egs. (2.3.39) and (2.3.40) play an important role
to determine the stable orbit.

2.3.4 Conserved quantity for the model equation

In this subsection, the third order terms c|x|?x, h|v|?z, and p(z - v)v in Eq. (2.3.3), which do
not affect the results of the weakly nonlinear analysis, are discussed. Here we consider a conserved
quantity F' for the dynamical system in Eq. (2.3.3) withb=k=n=7=0:

{ T =0, (2.3.41a)
¥ = ax + c|z|*T + h|v|*z + p(z - v)v. (2.3.41b)
The conserved quantity F' = F(x,v) should satisfy the following equation:

dF  OF oOF

- . b = 0. 2.3.42
dt 8$Z i+ 8’01' vi ( )
From Eq. (2.3.42), the conserved quantity F' is explicitly derived as follows:

Fz,v) = f <exp(—(h +p)lzl) <(h fp)Q + 7 ip + v+ hipm?)) , (2.3.43)
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where f(-) € CY(R) is an arbitrary function. Since we heuristically found the form of conserved
quantity in Eq. (2.3.43), we can confirm that F' is a conserved quantity by the following calculation:

drt_df oy . df oY
dt Ay 9z, ' dY ov,

o+ pesni-n+ i)

= + o+ —— [z )z
ay h+p i

a
+
(h+p)3? h+p

Tiv;

c
h+p
+2exp(—(h + p)|z|?) (az; + cx’x; + hvz; + prjvjv;)vi]

+2exp(—(h + p)laf*)

C

S df 2 2 2\ .
_2dyexp( (h+p)|x| )[ <h+p+a+(h+p)|'v| + clz|* ) ziv;

_l’_

c 2 2
. +pxivi + (ax; + c|x|“z; + hlv|“z; —i—pxjvjvi)vi]
=0, (2.3.44)
where Y is the argument of f in Eq. (2.3.43), i.e.,

(h+p)

Y = exp(—(h + p)|x|?) ( 5 + = ot lv|? + cpya:\?) . (2.3.45)

h + h +

It is noted that F' is not energy for arbitrary f. If F' was energy, the dynamical system (2.3.41)
should be derived from the Hamiltonian equation:

. OF df 0X
B =50 =AY Boy (2:346)
. OF df 0X
Since 0Y/0x; and JY/Jv; are calculated as
oY _ h 2 h 2 2
ap. =~ 2o (At p)lal) (a+ (A4 p)lof” + clel*) (2.3.48)
)%
5y, 2 EXP ((h + p)|z|?) vi, (2.3.49)
the function f(Y') which holds Eqgs. (2.3.46) and (2.3.47) should satisfy
af 1 9
—_— == . 2.3.
Y Lo ((h+ ) (2.3.50)

When the coefficients h and p are zero, Y is not defined. The potential energy U(x) is however
defined instead of F:
alz[>  cla|*

U@) = -250 -

(2.3.51)
and mechanical energy E = K + U is also where K = |v|?/2.
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By setting f(Y) =Y/2 and w = h + p, and expanding F' around w = 0, we have

1
F =g exp(-wla’) (5 + o+ o + [af)
1 1
=5 (1= wlol + jule) (5 + 2+ 1o + ZaP)
c a v a

? 2 _C4 Cp4
=+ —+ —F — |z —i\wl —&-Z\wl + O(w)
2

:"’2| - %|w|2 - §|:1:|4 + const. + O(w)
=F + const. + O(w). (2.3.52)

Thus F' can be considered to be mechanical energy in the limit of w — 0, though it is not mechanical
energy for finite w (w # 0).

2.3.5 Stable motion in the region beyond the weakly nonlinear analysis

So far we discuss the stable motion with an infinitesimally small b > 0. In this subsection, we
consider the case with a finite value of b.

For rotational motion, we succeed to construct a solution for rotational motion even though b is
not infinitesimally small. We also analyze the linear stability of the solution for rotational motion.

By transforming the variables x1, 2, v1, and ve in Eq. (2.3.3) tor = V212 + 222, v = Vv12 + 092,
and © = cos!((z - v)/(rv)), we have the following dynamical system:

7 = vcos O, (2.3.53a)
b = —rcosO +bv + cr’ cos © + (h + p)rv? cos ©
+ <n + ;) 2y + %rzv c0s 20 + kv, (2.3.53b)
2 .
10 =~ $inO + rsin® — er¥sin© — hrv’sin© — %r% sin 20. (2.3.53¢)
\ T

In this dynamical system, the fixed point for rotational motion is expressed as (rg, vg, £7/2), where
ro and vy are both positive.

Here we assume ¢ = h = p = 0, i.e., the terms which do not affect the results of weakly nonlinear
analysis are neglected. First, the fixed point is determined. By substituting (7o, vo, £7/2) to the
dynamical system (2.3.53), we have

P =0, (2.3.54a)
0 = bug + nro?vy + kug®, (2.3.54b)
6=-2,1 (2.3.54¢)
To Vo
Since the fixed point satisfies 7 = © = © = 0, we have r¢? = vy? and vy? = —b/(k+n). Since ro > 0

and b > 0 hold, k+n < 0 is required for the existence of the fixed point corresponding to rotational
motion.

Then the linear stability of the fixed point is discussed. The perturbation terms Ar, Av, and
AO are introduced as r = rg + Ar, v = vp + Av, and © = 7/2 + AO, respectively. By substituting
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them into Eq. (2.3.54), we have the following equations for the time evolution equation for Ar, Awv,
and AO:

Ar 0 ) 0 ) —To Ar
Av | = [Zrro™ 2hro” 1o | [ Ay . (2.3.55)
: 2 2
AO — ——  jro AO
Tro Tro

Here we neglect the square and higher-order terms of Ar, Av, and A©. The characteristic polyno-
mial of the matrix is given by

M — (2k + 5)ro® A2 + 2(kjrot + 2)N +4b = 0. (2.3.56)

Here we define V()\) as V/(\) = A% — (2k + j)ro?A% + 2(kjro* + 2)\ + 4b. Considering 4b > 0, the
one of the solutions of V' (\) = 0 has a negative real value. There are two possible cases for the rest
two solutions of V/(A) = 0 as follows.

e Case I: All solutions are real.
As shown before, one of the solutions is negative. The signs of the other two solutions are
unknown, but they are the same and unchanged by changing the parameters k, n, and j, since
the intercept is always positive.

e Case II: One of the solutions is negative and two of them are complex conjugates.
The signs of the real parts of the complex conjugates are the same, and may be changed by
changing the parameters k, n, and j.

Thus, any bifurcation does not occur for the former case but it does for the latter case. Here, we
assume that the solution of V' (\) = 0 has negative real value and complex conjugates, and examine
that the real parts of complex conjugates can be zero for a certain parameter set of b, k, n, and j.
If we obtain a relation among b, k, n, and j where the sign of the complex conjugates changes, a
bifurcation occurs at where the parameter set satisfies the relation. We set two complex conjugates
solutions to be Ay =& +i¢ (§,{ € R, ¢ > 0) and the real solution to be A,, and then we have

M Ay 4+ A =\ + 26 = (2k + 5)ro?, (2.3.57a)
MAL F A A AN =206 + 24+ 2 = 2(kjro* + 2), (2.3.57b)
MALAL = M\ (€2 + ¢%) = —4b. (2.3.57c)

When £ = 0, Egs. (2.3.57) become

A = (2k + §)ro?, (2.3.58a)
¢? = 2(kjro* +2), (2.3.58b)
(% = —4b. (2.3.58¢)

By eliminating A, and ¢ from Egs. (2.3.58), we have
(2k 4+ j)kjb® = =2(k — n+ j)(k 4+ n)>. (2.3.59)

Thus a bifurcation occurs and the stability of the fixed point corresponding to rotational motion
changes at the surface expressed in Eq. (2.3.59) in the parameter space. The result is shown in
Fig. 2.3.5. For b = 0, Eq. (2.3.59) becomes k —n + j = 0 and the result is consistent with the result
by weakly nonlinear analysis in Eq. (2.3.25).
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(b) j=-1
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Figure 2.3.5: Phase diagram on k-n plane showing the parameter region for various b where the
rotational motion is stable. The parameter j is set to be (a) j =1 and (b) j = —1. For b = 0, the
result obtained here corresponds to the result obtained by weakly nonlinear analysis as shown in
Fig. 2.3.4.

For the oscillatory motion, on the other hand, we have not succeeded to construct a solution for
finite b > 0.
Here we introduce a related previous work by Keith and Rand [78]. They analyzed the dynamical
System:
i=-z+ei(l—az®— pi?), (2.3.60)

and analytically obtained the condition for the stable limit-cycle oscillation,
a+38>0, (2.3.61)

when ¢ is infinitesimally small. Since the third-order terms |z|?v and (z - v)v in Eq. (2.3.3) are
the same when the motion is limited to the line through the center of the system, b, n + j, and k
in Eq. (2.3.3) correspond to €, «, and f, respectively. Thus the condition for the existence of the
amplitude in Eq. (2.3.30)(a) is the same as the condition in Eq. (2.3.61).

They also performed the numerical simulations with finite €, and found that the line correspond-
ing to the threshold in Eq. (2.3.61) bends at the origin on the a-f plane. The degree of bending
becomes greater with an increase in ¢, and the threshold approaches a combination of two half-lines,
a=0for < 0and 8 =0 for @ <0, when ¢ — +oc.

2.3.6 Comparison with the numerical results

To confirm the validity of the theoretical results, we numerically calculated the time evolution
of  and v based on Eq. (2.3.3) using the Euler method. We also checked whether there were
quasi-periodic orbits or not. We used adaptive mesh method for the time step. The adaptive mesh
was set for each time step so that the changes in x1, x2, v1, and vy did not exceed the thresholds
for them.

First, we show typical examples of stable rotational and oscillatory motion in Fig. 2.3.6. The
stable motion depended on the parameter sets in Eq. (2.3.3). The parameter sets used in the
calculation and the stable motion were consistent with the theoretical results.

Next, by scanning the parameter sets, we made phase diagrams which show the kinds of stable
motion as shown in Fig. 2.3.7. The detailed manner is shown in Appendix A.2.1. The results were
compared with the theoretical results by the weakly nonlinear analysis in Egs. (2.3.25) and (2.3.30)
and also that for finite b in Eq. (2.3.59). The theoretical results matched well with the numerical
results.
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S IYVVYVTYY -

o 30 -1 0

time X,
Figure 2.3.6: Time evolutions of x; and x5 and trajectories on the xi-zo plane for stable (a)
rotational and (b) oscillatory motion, respectively. The lighter- and darker-colored curves show the
transient trajectory and the trajectory after sufficiently long time. The parameters were set to be
b=1and j =c=h=p =0 for both (a) and (b), and the other parameters were (a) k = —5,
n= -2, (b) k= —2, n = —5. The initial conditions were set to be z1 = 0.5, zo2 = 0.5, v; = 0, and
vg = 0.5 for both cases. Reproduced from Ref. [37].
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Figure 2.3.7: Comparison of the theoretical results with the numerical ones. The parameter b
was set to be (a) 0.1 and (b-d) 1. The symbols R, O, D, RD, and OD indicate stable rotational
motion, stable oscillatory motion, divergence to the infinity, coexistence of stable rotational motion
and divergence, and coexistence of stable oscillatory motion and divergence. The black line in (a)
shows the conditions for stable rotation and oscillation obtained by the weakly nonlinear analysis
in Egs. (2.3.25) and (2.3.30). Those in (b-d) show the conditions for stable rotation for finite b > 0
in Eq. (2.3.59). Reproduced from Ref. [37].
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Figure 2.3.8: Dependence of p(= rmin/Tmax) on n after sufficiently long time evolution (after time
interval 100000). The parameters were set to be b=1, k= -5, ¢c=h=p =0, (a) j =1, and (b)
j = —1. Between the region where rotational and oscillatory motion was stable, the region where
rotational and oscillatory motion were bistable and the region where quasiperiodic orbits were stable
were seen in the plots (a) and (b), respectively. The initial conditions in (i) and (ii) in Table A.1
in Appendix A.2.1 were adopted, and the obtained p is shown as cross and circle, respectively. (c)
Quasiperiodic orbit on xj-z2 plane. The parameters were the same as in (b) and the values of n
are indicated in the figure. Reproduced from Ref. [37].

We performed numerical calculation precisely near the boundaries on the parameter space be-
tween the regions where the rotational and oscillatory motions were observed. We found that
the bistable region of rotational and oscillatory motions and also the motion with quasiperiodic
orbits. We introduced p = 7min/Tmax, where mpi, and rpax are the minimun and maximun of
r = Vx12 + 192, and detected p as shown in Fig. 2.3.8. The variable p characterizes the motion:
In this case, p =1, p =0, and 0 < p < 1 correspond to rotational, oscillatory, and quasiperiodic
motion, respectively.

To see the quasiperiodic orbit, we calculated the trajectories with a larger b, i.e. with more energy
injection. In Fig. 2.3.9, we show the obtained quasiperiodic orbits for b = 2. The quasiperiodic
orbit was something like an elliptic orbit whose major (minor) axis was slowly rotating.

2.3.7 Summary for Section 2.3

The general equation for motion of a self-propelled particle in a two-dimensional axisymmet-
ric system is derived. By the weakly nonlinear analysis, the conditions for stable rotational and
oscillatory motion are obtained. We confirmed the validity of the results of the weakly nonlinear
analysis by numerical calculations. We also found the parameter region where quasi-periodic orbits
are stably observed [37]. As future work, we expect that the quasiperiodic orbit can be analyzed in
detail by considering the stable manifold where the quasi-periodic orbits are stable [79].
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n=-25 n=-2.35

Figure 2.3.9: Quasiperiodic orbits on the x1-z5 plane. The parameters were set to be b = 2, k = —5,
c=h=p=0,j=1, and the values of n are shown in the figure. Reproduced from Ref. [37].

2.4 Camphor particle in a circular region

As an extension of the one-dimensional system in Sec. 2.2, we consider a system where a camphor
particle is confined in the two-dimensional circular region [35]. By reducing a proposed model shown
below, we derive a dynamical system which has a form in Eq. (2.3.3), and then determine whether
a camphor particle shows stable rotation or oscillation, by applying the results in Sec. 2.3.

2.4.1 Mathematical model

In this subsection, we introduce a mathematical model, and derive a dimensionless form of it.

Introduction of the mathematical model

The center position of a camphor particle is represented by p = p(t) = (p(t), #(t)) in the two-
dimensional polar coordinates. The equation of motion with regard to the center position of a
camphor particle is described as:

Ip . dp _
aSﬁ = —{Sa + Fy(c; p), (2.4.1)
where o and ¢ are the mass and resistance coefficient per unit area, S(= me?) is the surface area of
a camphor particle, and Fy denotes the driving force originating from the surface tension difference.
Here, we set the radius of the camphor particle as e.

The driving force Fy originates from the surface tension difference around the camphor particle.
We assume that the driving force is obtained by summing up the force originating from surface
tension working on the periphery of the camphor particle. To avoid the dependence of €, we divide
the both sides of Eq. (2.4.1) with S, and then we take the limit that e goes to +0.

= lim — v (c(p+ en)) ndl, (2.4.2)

where Q = {r ‘\r —-p|l < e} is the circular region around the camphor particle with a radius of e,

and m is a unit vector represented as n = n(f) = (cos#, sin @) in the Cartesian coordinates. Here, we
assume that the surface tension + is a linear decreasing function with regard to ¢, i.e., v = —I'c+~y,
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Figure 2.4.1: Schematic illustration of the considered system. The position of the camphor particle
and an arbitrary position are denoted as p = (p,¢) and r = (r,0) in the two-dimensional polar
coordinates.

where I' is a positive constant and -y is surface tension of pure water as in Sec. 2.2. When the
gradient of concentration field ¢ is continuous at r = p, we have

o 2
F = EEIEO W—; /0 [c(p) +en(0) - Ve(p)] n(f)edd (2.4.3)
=T vc’r:p . (244)

In this case, the driving force is proportional to the gradient of concentration field. Hereafter, we
consider the following equation for the motion of a camphor particle:

d*p dp
— =—¢— + F(p;c). 24.
The time evolution for concentration field is described by the following equation:
oc(r,t
Cg; ) = DV¢(r,t) — ac(r,t) + f(r; p), (2.4.6)

where r is an arbitrary position in the circular region, D is the diffusion constant including the effect
of the Marangoni flow [70], « is the dissipation rate by sublimation and dissolution, and f denotes
the dissolution of camphor molecules from the camphor particle. Here, the domain of definition
for radial and angular components are given by p,r € [0,R], ¢,0 € [0,2x), which is shown in
Fig. 2.4.1. The camphor molecules are dissolved constantly at the position of the camphor particle,
p = (p(t),#(t)), and thus the source term f is considered as follows:

co
. 0(r=p)o(0 = ¢), (p>0),
f(rip) = cod(r —p) = . (2.4.7)
0
D5 — —
00 =), (p=0),
where ¢y is the amount of dissolved camphor molecules per unit time. The concentration field

satisfies the Neumann condition at the boundary:

oc(r,0,t)

=0. 2.4.
5| =0 (24.8)
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Dimensionless form of mathematical model

First, we consider the nondimensionalization of Eq. (2.4.6). The dimensions of a, D, and ¢
are [1/T], [L?/T], and [C/L?], respectively. Here, T, L, and C represent the dimensions of time,
length, and concentration, respectively. Thus, we introduce the dimensionless time, position, and
concentration as t = at, ¥ = \/a/D r, and ¢ = ac/co, respectively. By substituting the three
dimensionless variables into Eq. (2.4.6) and dividing the both sides of the above equation with ¢y,
we obtain

oé (7,0, o2 0
C(g,gf):<af2+7176+7“2392> (7,0,t) — ¢ (7,0,) + f(\/77“9\/7 (1), (t)

The source term is considered as follows:

;f<¢§ﬁ&¢fp@wﬂﬂ>ZV€Q5<¢ZF—¢ZP@>5W—¢@)

=57 (D)3 (H)
=7 (7,0;p,90). (2.4.10)

Here we use d(ax) = 6(x)/|al. Then, we have

(2.4.9)

aa@aa,f)_(a? 19 19

ot o2 T Far 2 agz) ¢(7,0,8) — ¢ (7,0,8) + f (7,05 p,9), (2.4.11)

where p = \/a/Dp.
Next, Eq. (2.4.5) is nondimensionalized. The variables t, 7, p, c are replaced with ¢, 7, p, ¢, and

then we have
d2o(F dp(t D_. |D_t
"Do‘gg(ﬂ = —f\/ng) +F (Ccfé (y/ap(t); VLT 2)) - (2.4.12)

In Eq. (2.4.12), we cannot eliminate all coefficients but one. Here, we adopt the dimensionless
driving force,

o 2m
F(p;c) = lim 1;/0 [c(p) + en(0) - Ve(p)] edbd

. a-T [*|c_[ [D_\ . -co. [ /D D
Jmy e | [J(Vd’)“n@ Vatl\var) |y

. Co . I 2 ~ l)~ ~ ~ D~ ~
_\/@51—13307%2 ; [c( ap>+en(9)~Vc< ap)]ed@

F(p;¢). (2.4.13)

I
—

Here, F' is a dimensionless driving force. Then we obtain

oa’D d%p faD dp
FC() dt2 FCO dt + ( ) ( )
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where

oD
FCO ’

EaD
FCO

3

(2.4.15)

o

For the simplicity, we omit tilde (), and the dimensionless evolution equations are described as

d’p d
0 i 2410
2T
F(p;c) = ~lirJrrlo [c(p)+mn(8)-Vec(p)]do (2.4.17)
é— 0
dc(r, 0 o 10 1
c<7(;t7t) = (87"2 + ;E + 742@92) C(T‘, 97t) - C(Tv 0>t) + f(ra Qa P ¢) (2418)
Lo(r = )36~ 9), (p>0),
frip) =50 —p) =1 | (2.4.19)
—b(r—p), (p=0).

Hereafter, we proceed the analysis using Eqs. (2.4.16) and (2.4.18).

2.4.2 Steady state in an infinite system

In this section, the steady concentration field when a camphor particle stops at p = (p, ¢) in
the two-dimensional polar coordinates is obtained. The concentration field satisfies Eq. (2.4.18)
without time derivative term:

(82 10 1 92

F) + S or + 7"2892> c(r,0) —c(r,0) + f(r,0;p,¢0) = 0. (2.4.20)

The expansions of ¢(r,0) and f(r,0; p, ¢) in wavenumber space are represented as

9(r,0) =5 m_zoo / o () Ton ()€™ el (2.4.21)
f(r,0;p,¢ Z / Fon(B) T (k)™ kedk, (2.4.22)

where 7, is the first-kind Bessel function of m-th order. Here we use Hankel transform and Fourier
expansion for the in radial and angular direction, respectively. The details of Hankel transform is
expressed in Appendix A.3.1. We calculate f,,(k) as follows:

= /27r /OO 1(5(7" — 0)8(0 — §) T (kr)e ™™ rdrd = Jy, (kp)e™ 9. (2.4.23)
o Jo T

Therefore, we have

f(r,0;p,0) / T (k1) T (kp) €™ O~ k(. (2.4.24)

m*—oo
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By substituting the above expansions into Eq. (2.4.20), and solving with regard to g, (k), we have
Jm(kp)e_im¢

gm (k) = 241 (2.4.25)
Thus, the steady state is calculated as:
L & [ Tmlkp) im(0—p)
g(r,0) = z_:oo e Tm(kr)e kdk (2.4.26)
_ L /OO ! — (k\/r2 + p? — 2rpcos(6 — gb)) kdk (2.4.27)
27T 0 k'2 + 1
1
- 2 2 _ _
—27TIC0 (\/r + p? — 2rpcos(f qb)) , (2.4.28)

where K,, is the second-kind modified Bessel function of the n-th order. Here we use the formulae
in Ref. [81] (Eq. (4) in p.361 and Eq. (5) in p.425).

2.4.3 Reduction of the driving force for a camphor particle in an infinite system

The driving force is calculated as follows:

F =i (< 1082 ) (pey + pdes) = 16 { (3= 092) 0 + (i + 209) 0}
_ % {/5 (,0'2 +p2d')2) e, + pod (p2 +p2¢'>2> %} + % {_3[34)2% +p¢'536¢} . (2.4.29)

Since the position, velocity, acceleration, jerk (time derivative of acceleration) are represented as pe,,,
petodes, (1= pd?) eyt (pd+259) eg and (7 = 356 — 3p66) e, (0 + 356 + 35 — pd°) ey,
the vector form of the driving force is expressed as:

k 2 k
F="(—-vpuer +logZ ) p— —p— , 2.4.30
yo < YEuler + lOg 6) P—15-P 3% 1p° p ( )

where the terms which related to the jerk are neglected. Here the detailed calculation is provided

in Appendix A.3.2.

2.4.4 Steady state in a circular region

1
The steady state g(r, ) with the source term f(r,0) = ;5(1“ — p)o(0 — ¢) satisfies the following

equation:

o T ror T Zog
The steady state g(r,6) and the source term f(r,6) are expanded using Hankel expansion [80] for
r-direction and Fourier series for #-direction.

(82 10 102 )g(r,e) r0) + f(r6) =0, (2.4.31)

o

1 > .
(T 9) 27I' Z Zamngmnmm\(k‘mnr)ezmea (2432)

m=—o00n=0

T 0 271' Z Zamnjm mn P jm|( ) Zm(97¢)~ (2433)

m=—oo n=0
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By substituting Egs. (2.4.32) and (2.4.33) into Eq. (2.4.31), we have

02 10 1 02
{‘(aﬂﬂar*zaea)*l}g(“g)

2 10 102 1 &= o
= { <6’l“2 + ;E + 7‘2892) + 1} % Z Zamngmnﬂm|(kmnr) e

m=—o0 n=0

- 2T Z Z am”(kan + 1)gmn*-7|m|(kmn'r) e’
m=—oo n=0
= 5= > D i) (kmn ) Tl (Bmn)e ™02, (2.4.34)

m=—oon=0

By solving with regard to ¢gyn, we have

\-7|m| (kmnp)e_im¢

_ 2.4.35
g = = o 7 4 1) ( )
Thus, the steady state g(r,6) in real space is written as
a
9(r.0) = 27r Z Z o (k o 2 41) Tion) ki) Ty (R )0, (2.4.36)
m=—oon
In Subsection 2.4.2, we obtain the steady state in an infinite region as follows:

1
c(r,0) = Q—ICO (\/?"2 + p? — 2rpcos( — qﬁ)) , (2.4.37)

m

where p = (p, ¢) is the position of the camphor particle in the two-dimensional polar coordinates.
To satisfy the Neumann boundary condition, we adequately add the general solution for Eq. (2.4.31)
without the source term, i.e., the homogeneous form of Eq. (2.4.31):

2 10 1 9
(87”2+r(97"+7“2892> g(r,0) —g(r,0) =0, (2.4.38)

as correction terms. From the definition of the modified Bessel functions, the general solution of
Eq. (2.4.38) is expressed as

c(r,0) :AOICO( ) + BoZo(r)
+ZAIC ) + BnZn(r)) cosm(0 — ¢) + > _ (C 7) 4+ DTy (r)) sinm(6 — ¢).
" (2.4.39)

By considering the symmetric property of the system, the m-th mode term should be expressed
only by cosm(0 — ¢), i.e., Cp, and D,, should be zero. Furthermore, K, (r) (n > 1) is not suitable
R

2
for representing the concentration field of camphor, since / / Ky (r)rdrdf diverges for n > 1.
0

0
Ko(r) diverges at 7 = 0 and is not suitable when a camphor particle is off the origin. When a
camphor particle is located at the origin, ICo(r) is already included as the steady state without the
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Neumann boundary. Thus, for the both cases, the concentration field with the correction terms
should be given by the following form:

c(r,0) = %ICO <\/7“2 + p? —2rpcos(6 — ¢ ) Z By (1) cosm(6 — ¢). (2.4.40)

Then, the coefficients B,, are determined by the boundary condition

0
EC(T’ 0) L 0, (2.4.41)
that is
L 2ICO <\/7"2 + p? —2rpcos(f — ¢)) = - g B, OLm(r) cosm (0 — ¢) . (2.4.42)
2m Or r=R m=0 r r=R

If OKo (\/7‘2 + p? —2rpcos(f — gzﬁ)) /Or at r = R is expanded with regard to cosm(f — ¢), we can
determine B,,. By using the formula represented in Eq. (8) in p.361 of Ref. [81]:

Ko (\/R2 + 72 — 2Rr cos 9) Z Kn( ) cos nb, (for R > r), (2.4.43)

n=—odo
we have

2T
;R / Ko (\/R2 + p? —2Rpcos(f — ¢)> cosn(0 — ¢)db
0

_ 9 i Ko (R) I ( )/QWcosm(Q—qb)COSTL(@—QS)d@
~ OR " mip 0

m=—00

o 0 2775mn n=>0
= 3B ; K (R)Zin(p) { T mm En #+ 0;

2B 1) (n=0)

_ OR
=\ L (), oK)
or "V OR
oK (R)

OR

Here we use K_,,(r) = K (r) and Z_,,,(r) = Z,,,(r). As a consequence, we have
1 Ky(R)
2m Ij(R)
1K, (R)

=2n To(p) (n=0,1,2,---). (2.4.44)

(2.4.46)

Thus, we have

cmwzimﬁ¢ﬂ+ﬁ—%mww—@)
1 Ko'(R) 1 o Kn/(R)
- ﬂIg’(R) To(p)Zo(r) — szﬂ

2o TPV (r) cosm(6 = 9). (2.4.47)
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Next, the conservation of integration of concentration over the circular region,

R 27
/ / c(r,0)rdrdd =1, (2.4.48)
o Jo

is checked. We directly integrate as follows:

R 27
/ / c(r, 0)rdrdd
o Jo

- iﬂ /R /27r Ko (VT 72 = 2rpcos(d — 6)) rdrde + ;Bm /OR /027r T,(r) cosm(6 — d)rdrdf
27r Z /27r {/ Lin(r)rdr + /pR ’Cm(T)Im(p)rdr} cosm (0 — ¢)db

m=—0Q

+ZB / /277 r) cosm(0 — ¢)rdrdo, (2.4.49)

where we use the formula (Eq. (8) in p.361 of Ref. [81]):

[e.e]

> Kn(p)Za(r) cosnd, (for R > r),
Ko <\/r2 ¥ 02— 2rpcos(d — ¢)) — | n=C (2.4.50)
Z K () I, (p) cos nd, (for R < r).

By integrating the both sides of Eq. (2.4.49) with regard to 6, the integration is zero except for
m = 0, and we have

R R
{ OplCo(p)Io(r)rdr—i—/p ICO(T)IO(p)rdr} +27TB()/O Zo(r)rdr

= {Ko(p)pZ1(p) + Zo(p) (pK1(p) — RK1(R))} + 2mBoRZ1 (R)
= (1 = RZy(p)K1(R)) + 2m BoRZ1(R)
— 1. (2.4.51)

Here we use Ko(r)Z1(r) + Zo(r)Ki(r) = 1/r (cited by Eq. (20) in p.80 of Ref. [81]). We also use
formulae (r/Ci(r)) = Ki(r) + rKi(r) = =Ko(r) and (rZy1(r)) = Z1(r) + rZi(r) = Zo(r), which are
represented in Eq. (4) in p.79 of Ref. [81].

2.4.5 Reduction of the driving force for a camphor particle in a circular region

The concentration field ¢ is expanded with the Bessel functions so-called “discrete Hankel trans-
form” and Fourier series on radial and angular directions, respectively.

c(r,0,t) Z Zamncmn m|(kmnr)eim0. (2.4.52)

mf—oon 0
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

The details of “discrete Hankel transform” is expressed in Appendix A.3.1. The source term in
Eq. (2.4.7) is also expanded as

(r,0:,6) =200~ p(0))3(6 — 6(0)

1 > , ,
“or S tmn Ty (ke p(®))e™ ™0 Ty (k)™ (2.4.53)

m=—00 n=0

Thus we have the equation for concentration in wavenumber space:

OCmn (t)
ot

= —(kmn® + )emn(t) + T (kmnp(t))e ™m0, (2.4.54)

First, the Green’s function g, (t) is calculated. The Green’s function satisfies the following equa-
tion:

OGmn (t
gat() = —(kmn? 4 1) gmn(t) + 6(t). (2.4.55)
By solving the above equation, we have
Gn(t) = e~ O (1), (2.4.56)

where O(t) is the Heaviside’s step function.
Using the Green’s function g¢,,,, the concentration field ¢y, in wavenumber space is described
as

Conn (t / Tion) (Fmnp(')) e = Frmn 1)) gy (2.4.57)

By adopting partial integration on Eq. (2.4.57), we have the following expression:

- %J\m\(kmnp(t))e—imqﬁ( )+ % {—kmni)(t)j\;n\(kmnp(t)) + im(i’(t)~7|m|(k‘mnp(t))} o~ ime(t)
i (B (0) T B 0) + o (P01 T (i p(6)) — 26K ()D(0) T (o (1)

—im@ () Typn| (kmnp(t)) — m2(¢(t))2ﬁm|(kmnp(t))} o~ ime(t)

i { o PO T B 0) — B 50)50) Ty B ) + Bikisa (1)) T (1)
— Ko (5(0))* Ty (kp(£)) + Bk 1 (5()*S) T ey i p(8)) + Bk s (D)D) Ty (B (1)
o 3hnn 250 (D(1))2 T i (1)) + 1 (8) T (innp(£)) + 32t >¢<tmm\<kmp< )
—im* (1)) Ty (knnp(£)) } €~

fo (2.4.58)
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Section 2.4 Camphor particle in a circular region

The detailed calculation is provided in Appendix A.3.3. Thus we have
c(r, 0 t)

- Z Z k2 _|_ 1 m| mnp( ))‘ﬂm|(k§mnr) zm(9—¢(t))

m=—oon=0 M"

. Z Z%{—kmnmt)m;n\(kp(t»+im¢<t>mm|<kmnp<t>>}J|m|<kmnr>eim<9*¢<t”

+ o P Z e L DO Ty (i () + K> (52T (R (2))
2 (k2, +1
- 2’Lkmnmp( )¢<t)\7\m\(kmnp< ) — Zm¢(t)~7|m\(kmnp(t))
—nf<¢@»2awq@mmp@»}tﬂmmkmnmemﬂﬂﬁﬂﬂ
+o- Z 2 { Fomn 7 (8 Tpp (B (1)) — 32,1, 5(0)5(8) Ty (i (£)

m=—oon

+3mmnmp<> <> i (8)) = K, ()T (R (1))
+ ik, m(p(1)*d(t <> \mmkmnp(tmm Wp(0) () T k(1))
- S 2p(8) (D) 2Ty R (1)) + 110 S (8) T (e (1))

+3m (1) (t)J] (mnp( £)) — im3(p(t))3 Tt (krmnp(t } ol () /O =90,
(2.4.59)

By taking the summation of Eq. (2.4.59), we have the concentration field as follows:

c(r; p)

=0’ (R,r) + i’ (R,r)(r - p) + " (R,7) (7 p)* + I°(R, 1) |pl?
+¢o (R, 7) (r- p)
+ (R, 7)(r - p)® + (R, r)|pl(r - p)
+ g (Rr) (p- )+ I (R,r) (1 p) (- p) + cg*(R,7) (7 )
+ @ Rl (r-p)+ ARr) (rp) (p-p) + S (R,7) (r-p)° (1 p)
+ P (R,r)(p- p)+ (Rr)1° + S(R,r) (r-p) (r- p) + G (R,7) (r-p)* + (R, 7) (r- P)
+ 2 (Rr) ol (r - p) + P (Ror) (r-p) (p- ) + & (Ryr) (r-p) (r-p)° + S (R,r) (r- p) (p- )
+ 2 (R,r) |pl? (r- ) + F(R,r) (r - p)? (1 - p)
+ P (Ryr) (p- P) + X (R,) (p- p) + 3 (R,7) (- p) (- ) + G (R,7) (- p) (r- P)
+ P (Rr) pf (r- )+ B (Rr) [ (r-p) + S (R.r) (r-p) (p- P) + (R, 7) (r- p)°
+ P (R,r) (rp) (b P)+ EXR,r) (r-p)* (r- P)+ P (Rr) (r-p) (p- P)
+ B (Rr) (r-p)(p-p)+ R (R,r)(r-p)(r-p)(r-p). (2.4.60)

where we truncate the higher-order terms of p and ¢. The detailed calculation, the explicit forms
of czj, and their plots are provided in Appendix A.3.4.

45



Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

By calculating the gradient of Eq. (2.4.60) at » = p, we have the reduced driving force as follows:

F(p,p,p) =— Ve(r;p)l,_,
=a(R)p+b(R)p + c(R)|pl’p+ g(R)p + h(R)|p|*p + j(R)(p - p)p

k(R)|p[p+ h(R)|p|*p + p(R)(p - p)p, (2.4.61)
where
o)~ (520 20 (2.4.6)
b(R) 4i < VEuler + log i) + é (2]%(]%) + <1 + ;2) (Ii(lR))Q> : (2.4.63)
- (50 548
o) =~ 552+ 55 (- (&) @iy * @oor) —
R =5 (ST R~z ~ iy (0 w) monn
+(7+ %) G * e (2 9) @oor - (@) <I<1R>>(2>4 "
i =6z (15w + 5m * @e (7 w) @) (2467)
k(R) = — %
g (207 s~ (7)o ~ O ) s g
(2.4.68)
o) == (14 3) o+ (14 ) e + Aol + 45 ). (2.4.69)

0 =g (i it~ () ity ~ () iy
* <}§2 * 3) (Ii(lR))z + (122 + 3) (Zé(lR)) ) : (2.4.70)

Here yguler denotes the Euler’s constant (ygyler ~ 0.577). We confirm that, when R goes to infinity,
the coefficients a(R), b(R), ¢(R), h(R), j(R), k(R), n(R), and p(R) correspond to the ones for the
infinite system shown in Eq. (2.4.30). The dependence of the coefficients on the radius of water
chamber R is shown in Appendix A.3.5.

Since we have the reduced driving force, the dynamical system becomes:

(0 — g(R))p =a(R)p + (b(R) — )p + c(R)|p?p + h(R) o + j(R)(p - H)p
k(R)|826 + n(R)|p*6 + p(R)(p - ). (2.4.71)

Then we investigate the bifurcation structure of Eq. (2.4.71). We check the stable motion by using
the conditions for stable rotation and oscillation in Egs. (2.3.25) and (2.3.30), respectively. To apply
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Figure 2.4.2: Plots of Fosc(R) = K(R) + N(R), Fyot(R) = 3K(R) + N(R) + J(R), and F.(R) =
K(R) — N(R) + J(R) against the radius of the water chamber R. Rotational motion is linearly
stable in a certain range of R, which is indicated by coloring with magenta.

the conditions, we convert time ¢ into 7 = wt, where w(R, ) = \/—a(R)/(c — g(R)), and have

p=—p+(B(R,0) —E)p+C(R,0)|p[’p+ H(R)|p|’p + J(R,0)(p- p)p
K (R,0)|p% + N(R,0)|pp + P(R)(p- $)p, (24.72)

where B(R,0) = b(R)/w(R,0), = = £/w(R,0), C(R,0) = ¢(R)/w(R,0)%, H(R) = h(R), J(R,0) =
J(R)/w(R,0), K(R,0) = k(R)w(R,0), N(R,0) = n(R)/w(R,0c), and P(R) = p(R). The stability
of the rest state at the center of the circular region is determined by the sign of B(R,o) — E.
For negative B(R, o) — =, the rest state is linearly stable. When we fix the radius of the circular
region R, the bifurcation parameter is the (dimensionless) resistance coefficient =. By decreasing =,
B(R,0) — E becomes negative, then Hopf bifurcation occurs, and the rest state becomes unstable.
The stable motion is determined by the conditions in Egs. (2.3.25) and (2.3.30). Here we show them
again below; For stable rotation,

K(R)+ N(R) <0,
{ K(R)— N(R)+ J(R) <0, (2.4.73)
and for stable oscillation,
3K(R) 4+ N(R) + J(R) < 0,
{ K(R) — N(R)+ J(R) > 0, (2.4.74)

should be satisfied. We show the R-dependence of functions Fye(R) = K(R) + N(R), Fiot(R) =
3K(R)+N(R)+J(R), and Firi(R) = K(R)— N(R)+J(R) in Fig. 2.4.2. Asin Fig. 2.4.2, rotational
motion of a camphor particle in the two-dimensional circular region is linearly stable for a certain
range around R = 1, and oscillatory motion of it is unstable. When the radius of the water chamber
is around R = 1, the camphor particle near the center position is affected by the boundary through
the concentration field, since the length is normalized by the diffusion length. Thus the rotational
motion is stable when the boundary effect is sufficiently large.

It is noted that the conditions in Egs. (2.4.73) and (2.4.74) are valid for large |a(R)|, i.e., for small
R. The coefficients a(R), ¢(R), h(R), j(R), n(R), and p(R), which are the coefficients of position-
related terms, go to zero for R — co. Thus for sufficiently large R, the position-independent force
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Figure 2.4.3: Numerical results on the trajectories of a camphor particle for the resistance coefficient
& = 0.18. The camphor particle exhibited rotational motion. (a) The trajectory on the z-y plane.
(b) Time evolutions of x(t) and y(¢) shown in blue- and red-colored curves, respectively. The initial
conditions for the position and velocity of the camphor particle were x = 0.1, y = 0.2, v, = —0.01,
and v, = 0, respectively. The concentration field ¢ was zero at every point in the region.

exerted on the camphor particle becomes smaller, and straight motion should be observed at least
near the center position of the circular region.

2.4.6 Comparison with the numerical results

To confirm the theoretical results, we performed numerical calculations based on Egs. (2.4.16)
and (2.4.18). We used the Euler method for Eq. (2.4.16) and the explicit method for Eq. (2.4.18).
The time and spatial steps were 10™° and 1072, respectively. The mass per unit area o was fixed
to sigma = 1072, In order to calculate the force acting on the camphor particle in Eq. (2.4.17), we
adopted the summation over 40 arc elements as the integration in Eq. (2.4.17).

Here we show the results for the radius of the circular region R = 1. The results for the resistance
coefficient per unit area £ = 0.18 and & = 0.2 are shown in Figs. 2.4.3 and 2.4.4, respectively. The
initial conditions were the same. We obtained the trajectories toward the circular orbit whose
center corresponds to the center of the circular chamber for £ = 0.18 and toward the rest state at
the center of the circular chamber for £ = 0.2. Thus it is expected that the bifurcation point exists
between £ = 0.18 and £ = 0.2. The bifurcation point for R = 1 expected by the theoretical analysis
is ca. 0.218 and the order of the bifurcation point is the same as that by the numerical results.
The comparison of the bifurcation structure obtained by numerical calculation with the theoretical
analysis remains as future work.

2.4.7 Comparison with the experimental results

We also made experiments to confiem the theoretical results. Here we observed motion of a
camphor particle in the water chamber whose radius was continuously controlled.
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Figure 2.4.4: Numerical results on the trajectories of a camphor particle for the resistance coefficient
& = 0.2. The camphor particle finally stopped at the center of the circular region. (a) The trajectory
on the z-y plane. (b) Time evolutions of z(t) and y(¢) shown in blue- and red-colored curves,
respectively. The initial conditions for the position and velocity of the camphor particle were
x=0.1,y=0.2, v; = —0.01, and vy = 0, respectively. The concentration field ¢ was zero at every
point in the region.

Experimental setup

A camphor gel disk, whose diameter was 4.0 mm and thickness was 0.5 mm, was made of agar
gel in which water was replaced with camphor methanol solution. After the methanol dried up, a
camphor particle was floated on a water phase (15 mm in the depth). To achieve a variable-sized
water phase, an optical focus (IDC-025, Sigma-koki) was placed on the water phase whose radius R
could be changed. As the initial state, a camphor particle was placed on a small sized water phase
(R = 5.0 mm) where the disk was in the rest state. Then, the radius was increased to 13.0 mm and
the motion of the camphor particle was monitored.

Experimental results

At the initial stage with small size of water phase (R = 5.0 mm), the disk was in the rest state.
With an increase in the radius of the water chamber R, the disk started to move and finally showed
rotational motion as shown in Fig. 2.4.5(a). For rotational motion, both the moving speed v and
the position of the disk r were almost constant in time as shown in Fig. 2.4.5(b). The theoretical
results qualitatively explain the transition from the rest state at the center position of the circular
chamber to the rotational motion with an increase in the radius of the water chamber R.

2.4.8 Summary for Section 2.4

The motion of a camphor particle confined in the two-dimensional circular system is investi-
gated [35]. By reducing the model, we analyzed the bifurcation structure. The theoretical results
suggest that the rotational motion occurs when the rest state becomes unstable for a water cham-
ber whose radius is comparable with or smaller than the difusion length. The theoretical results
correspond to the numerical and experimental results.
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Figure 2.4.5: Motion of a camphor particle obtained in experiments. (a) Trajectory of the moving
camphor particle. (b) Time series of speed v, the position of the disk r, and the radius of the water
chamber R. The radius of the water chamber was gradually changed from 5.0 mm to 13.0 mm.

s

rigid bar
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Figure 2.5.1: Schematic illustration of a camphor-driven rotor seen from the top. A camphor-driven
rotor is composed of two camphor particles and a rigid bar connecting these camphor particles. The
center position of a camphor-driven rotor is fixed.

2.5 Symmetric camphor rotor

In this section, we discuss motion of a camphor-driven rotor, which is constructed with two
camphor particles connected with a rigid bar. As shown in Fig. 2.5.1, the considered camphor-
driven rotor has mirror symmetry, and therefore either clockwise and counterclockwise rotation is
possible.

2.5.1 Mathematical model

In order to discuss the mechanisms of the motion of the camphor-driven rotor, we consider a
mathematical model presented below. We define the center position of the i-th camphor particle
(1 = 1,2) as £;(t). The center of mass of both camphor particles is fixed to the origin of the
coordinate system ((£€1(t) +£2(t))/2 = 0). Thus, the center position of the i-th camphor particle is
defined only using a single angle 6(t), i.e.,

0(t) = Le(0()), £a(t) = —Le(0(t)), (2.5.1)

where we set a unit vector e(6(t)) as e(f) = e, cosf + e, sinf, and e, and e, are the unit vectors
along the x- and y-axes, respectively.
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Section 2.5 Symmetric camphor rotor

The time evolution of the surface concentration field of camphor molecules ¢(r,t) is described
as [22,47]

— =Vic—c+f, (2.5.2)

where —c describes sublimation into the air phase and f = f(r;#£1,#£2) is a function representing
the supply of camphor molecules from the camphor particles. Equation (2.5.2) is written using
dimensionless variables. In the same manner in Secs. 2.2 and 2.4, the real length, time, and con-
centration are normalized with the diffusion length \/D/«, the characteristic time of dissipation
of camphor molecules by sublimation and dissipation 1/a, and the ratio between the supply and
dissipation rates of camphor, fo/a, where D is the diffusion constant of camphor molecules, « is
the sublimation rate of camphor, and fy is the total supply of camphor from a single particle per
unit of real time.
Time evolution of #(t) is described as

d*0 do

105 = =0 +T, (2.5.3)

where I and 7 are the moment of inertia and the resistance coefficient for rotational motion of the
camphor particles, respectively, and they depend on ¢ as follows:

I(¢) =2neal?, (2.5.4)
n(l) =2me’kl?, (2.5.5)
where ¢ and k are dimensionless parameters corresponding to the mass and the resistance coefficient
per unit area for the camphor particles, respectively. The variable € is the radius of the camphor

particle. Here, the friction force working on the i-th camphor particle is described as —(Wezﬁ)éi.
In Eq. (2.5.3), T is the torque with respect to the origin acting on the rotor:

2 2
T=) tix [/ v (c(li + ce())) e(p)edg | (2.5.6)
i=1 0

where ~y(c) is a function that represents the dependence of the surface tension on the surface con-
centration of camphor molecules. Here, the vector product “x” describes the operation

axb= albg — a2b1, (257)

for a = aie; + asey, and b = bie; + baey. If we assume that the surface tension « is a linear
decreasing function of ¢ in the same way as in Secs. 2.2 and 2.4:

v(c) =70 —Te, (2.5.8)

where g is the surface tension of pure water, and T is a positive constant. Then Eq. (2.5.6) can be
rewritten as

2 2T
T = —Tle(9) x [/ c(l1+ ee(9)) e(p)edp — / c (L2 +ce(9)) e(p)edd| . (2.5.9)
0 0
Hereafter, we set I' = 1 without losing generality.
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

2.5.2 Analysis on the angular velocity depending on the rotor size

In this section, the dynamical system for the angular velocity of a single rotor is derived by the
reduction of the model equations and its bifurcation structure is revealed. We consider the limit of
€ — +0, i.e., the case where the radius of camphor particles is sufficiently small compared with the
diffusion length (= 1) and the radius of the rotor (= ¢).

By dividing the both sides of Eq. (2.5.3) with me?/?, we obtain

d?0 do 1
T T TR T oo n 2.5.1
T2 a T mee (2.5.10)
Here, we take the limit of € — +0, and we Obtain
1
@T - 61_1)1_1’_10 7I'62 - Z £i % VC(’I’)‘T:&, (2511)

i=1,2

from the simple calculation for the concentration ¢(r) with no divergence at r = ;.
The equation for the concentration field is represented in Eq. (2.5.2). The source term f in
Eq. (2.5.2) is given by

flrily, &) = > 5(r — &) Z 57’— 5(p— 6;), (2.5.12)

1=1,2 212

since we consider that the size of the camphor particles is infinitesimally small. Here, 7 is represented
as 7 = (r,¢) in the two-dimensional polar coordinates.

The concentration field is the summation of the concentration field made by each camphor
particle since the equation for the concentration field is linear. Thus, the concentration field made
by a rotor is given by

c(r) = cs(r; 1) + cs(r; £2), (2.5.13)

where c4(7; €) is the concentration field made by a single camphor particle located at £, i.e., the
solution of Eq. (2.5.2) with the source term §(r — £). When the velocity of the camphor particle is
sufficiently small, the concentration field made by a single particle cs(r; £) is analytically expressed
as

ea(:8) =coo(N) + 1o\ (1 — £) - £+ o\ (1 — £) - £ + con (V) W Fen(V) [r—8) 4] ’
FesoN)(r —£) - ¥ + e (V) W (r— ) - €+ cs2(N) [(r ) .éf’ tesz(N)E- £
+esa(N) [(r 0 -4 [(r —0 e] : (2.5.14)

where A = |r — £|, the dot over variables () represents the time derivative, and the dot between
vectors () represents inner product. Here,

(V) = 5-Ko (V) c10(N) = K (),

e () = %)\ICl ), et (N) = —%)\Kl 0,

enN) = 1Ko (V) (V) = — 5 N Ka (),

() = MG (V) V) =~ 5 Ko(N),

c3s () = S%AQICQ()\), caa(N) = —éml(x), (2.5.15)
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Section 2.5 Symmetric camphor rotor

where IC,, is the second-kind modified Bessel function of the n-th order. It is noted that the term
composed of variables with totally more-than-three-time derivatives is neglected. The derivation is
shown in Appendix A.3.2.

From Eq. (2.5.13), the torque per contact area (2.5.11) is represented as

lim T = > T (2.5.16)

e—+0 e

Ti 18 the torque per contact area working on a camphor particle originating from self-made concen-
tration field, and calculated as

-1 2m
Tii :& x lim /
0

Jim — cs (U + ee(9); £;5) e(d)edd
1 S WA T BV D
_ _ loe 2 ) 026 — 25 453 2 (43 51
g ( YVEuler + 10g 6) PO — 00— 09+ 0 (§-0), (2.5.17)

where Ygyer is the Euler’s constant (ygyer =~ 0.577). Here we calculated the torque 7;; by taking the
vector product of £; with Eq. (2.4.30). Here we used Ox b = 629, Ox b = 625, and £x ¢ = (2 <9 — 93>
Then, we consider the torque working on one camphor particle by the other camphor particle.

Since the concentration field cs(r;£) does not diverge except at r = £, the torque per contact area
by the other camphor particle, 7;; (i # j), is calculated as

1 . 1 .. 1 . 1 e
i =— —Ko (20) 20 + —KC1 (20) 070 — ——KCy (20) £°6° — ——Ko(20)0* (6 — 6° 2.5.1
iy = = =Ko (20) 0+ Ky (20) O — K1 (20) 06 — ko200 (6 - 67), (25.8)
by using Eq. (2.5.11).
From Egs. (2.5.10), (2.5.17), and (2.5.18), we have the reduced equation:

ol = — 1)+ —— > T (2.5.19)

. 1 2
=— KO+ — (—'yEuler + log — — Ko (26)) 0
47 €
1

.. 1 . 1
——(1-2 2 ——(1+2 20)) 126% + —
o (120K (20) 6 — oo (14 20K (20)) 267 +

(1 - 202K5(20)) (9 - 6%).
(2.5.20)
Based on the description, we discuss a bifurcation structure. We consider the stable solution of

6 = const. = w. When the rotor rotates with a constant angular velocity, w and @ should be zero.
Thus we have

1 2 1
[ (—vEuler +1log = — Ko (2£)> - n] w— —— [3 (14 20K (20)) €% +2 (1 — 202K5(20))] w® = 0.
4 € 967
(2.5.21)
Here, we define the coefficients of w and w? as G(¢) = [~YEuler + log(2/€) — Ko (20)] /(47) — k and
H(0) = — [3(1+ 20K, (20)) £ 4+ 2 (1 — 202K4(20))] /(967), respectively. The dependence of G(¢)

and H(¢) on /¢ is displayed in Fig. 2.5.2. The stable angular velocity is realized when G(¢) is
positive and H(¢) is negative, and thus the bifurcation point is £ = ¢., where G(¢.) = 0.
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Figure 2.5.2: Plots of the coefficients G(¢) and H(¢). The parameters are set to be kK = 1.2 and
e = 0.1e'/4. Reproduced from Ref. [36].
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Figure 2.5.3: Velocity and angular velocity depending on £. Parameters are k = 1.2 and € = 0.1e'/4.
Reproduced from Ref. [36].

The stable angular velocity w is given by /—G(¢)/H(¢) for G(£{) > 0 and 0 for G({) < 0,
and its dependence on £ is shown in Fig. 2.5.3. At ¢ ~ 0.35, pitchfork bifurcation occurs when
we set the parameters as £ = 1.2 and € = 0.1e!/%.! Over the bifurcation point, the rest state
becomes unstable and rotational motion occurs with a constant angular velocity either clockwise
or counterclockwise. The asymptotic form of the stable angular velocity for £ — oo is given by
w = /8 (—YEuler + l0g(2/€)) — 327k /¢ x £~1. The dependence w ox ¢! for sufficiently large ¢ is
trivial, since the interaction of camphor particles becomes small with an increase of ¢ and each
camphor particle moves with a constant velocity independently.

2.5.3 Comparison with the numerical results

We performed numerical calculations of the rotor dynamics according to Egs. (2.5.2) and (2.5.3).
The supply rate from the camphor particle in Eq. (2.5.2) was given as

frily ly) = > ! B (1 + tanh 6"’;_“)] : (2.5.22)

, me?
i=1,2

1We used € = 0.1e!/* to compare with the numerical results by the following reason: In the analytical framework
in which the source term is the Dirac’s delta function, the force originating from a camphor particle moving at a
constant velocity ve, is written as F = [(—vguler + log(2/€))v/(47) — (1/(327))v® + O(v°)]e,. On the while, in the
framework that camphor molecules are dissolved inside a circular region with a radius of R, it can be written as
F = [(—7guler + log(2/R) — 1/4)v/(47) — (1/(327))v* + O(v®)]e, [82]. Therefore, these two situations correspond to
each other by setting e = Rexp(1/4).
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Figure 2.5.4: Numerical results on the angular velocity as a function of time for a small and a large
rotor: (a) ¢ = 0.3 and (b) ¢ = 0.5. The initial conditions were § = 1, df/dt = 0.1, and ¢ = 0 at all
space points. Reproduced from Ref. [36].

(€)) (b)

%

Figure 2.5.5: Profiles of camphor concentration at ¢ = 100 for (a) £ = 0.3, (b) ¢ = 0.5, and (c)
¢ = 1.0, obtained by numerical calculation. The rotor did not move in (a) and it rotated clockwise
in (b) and (c). The initial conditions were all the same as those in Fig. 2.5.4. Reproduced from
Ref. [36].

where § is a smoothing parameter set to be § = 0.025. The total supply from a single camphor
particle was approximately equal to 1. We used the Euler method to calculate the reaction terms,
and explicit method for the diffusion term. The time and spatial steps were 10~ and 0.025,
respectively. The parameters were set as e = 0.1, 0 = 0.004, and x = 0.12. As for the concentration
field, we considered a circular outer boundary with a radius of 10, which hardly affects the motion
of the rotor for £ < 5. In order to calculate the force acting on each camphor particle in Eq. (2.5.9),
we adopted the summation over 32 arc elements as the integration in Eq. (2.5.9). We performed
numerical calculations and obtained the time evolution of the angle 0(¢) and the angular velocity
df/dt. We investigated the behavior of a rotor depending on the distance between two camphor
particles 2¢. For larger ¢, the rotor moved stationarily, whereas for smaller ¢, it stopped as shown
in Fig. 2.5.4. The snapshots of the camphor concentration for various ¢ are shown in Fig. 2.5.5.
In the case when the rotor did not move, the camphor concentration profile was symmetric with
respect to the axis connecting the centers of two camphor particles as in Fig. 2.5.5(a). In contrast,
if it rotated, the profile had chiral asymmetry as shown in Fig. 2.5.5(b,c).

In Fig. 2.5.6, we present the stationary speed of the center position of each camphor particle and
the stationary angular velocity of the rotor as a function of rotor radius ¢. For large ¢, we expect
that the interaction between the two camphor particles becomes negligible. In such a case, the both
camphor particles should move at the speed equal to that for a single camphor particle without any
constraints. Then, the angular velocity should be inversely proportional to £. For small ¢, we can
see the transition-like behaviour between static and moving rotor around ¢ ~ 0.33 in Fig. 2.5.6, and
thus the theoretical results were confirmed. We consider the numerical error comes from the size
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Figure 2.5.6: Numerical results on stationary speed (a) and stationary angular velocity (b) as a
function of the rotor radius ¢. Reproduced from Ref. [36].

(a) Side view 4 ;

(b) Slanted view

G

Figure 2.5.7: Schematic illustration of the experimental setup. The side view (a) and the slanted
view (b) of the rotor are shown. Reproduced from Ref. [36].

effect of the camphor particle. We expect this transition originates from pitchfork bifurcation, at
which the stable rest state becomes unstable.

2.5.4 Comparison with the experimental results

In order to confirm the theoretical results, we also performed the experiments. We studied the
motion of a simple rotor driven by two camphor particles glued below the ends of a plastic stripe
as illustrated in Fig. 2.5.7. The system could rotate around a vertical axis located at the center
of the stripe. The particles were made by pressing camphor (Sigma-Aldrich) in a pill maker. The
radius of each camphor particle was 1.5 mm and it was 1 mm high. The rotor was floating on a
water surface in the square tank (tank side 120 mm) and the water level was 10 mm. In order to
reduce the hydrodynamic flows, the central part of the plastic stripe was elevated above the water
level so that only the bottom surface of camphor particles had contact with water surface and the
stripe did not touch it. The time evolution of rotor was recorded using a digital camera (NEX
VG20EH, SONY) and the coordinates of red dots (cf. Fig. 2.5.8(b)) located over the centers of
camphor particles were obtained using the ImageJ (NIH, USA). A typical time of experiment was
in the range from 5 to 10 min.
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Figure 2.5.8: Experimental results on rotor motion. (a) Time evolution of a horizontal coordinate
of one of marking dots for a rotor with ¢ = 8.5 mm in the time interval from 300 s to 310 s. (b)
Period for the rotor with £ = 8.5 mm as a function of time. Reproduced from Ref. [36].

The distance between the axis and the particle center £ was controlled as the parameter. Periodic
changes in the horizontal coordinate of one of the dots of the rotor with £ = 8.5 mm are shown
in Fig. 2.5.8(a). During the time of all experiments we observed highly regular rotations without
any significant perturbations of rotor motion. The period of oscillations was measured as the
time between the successive maxima separately in each 30-s interval. Typically the period slowly
increased with time as illustrated in Fig. 2.5.8(b). The changes were not significant and for the
subsequent analysis we considered the values obtained in the time interval from 300 s to 400 s.

Figure 2.5.9 illustrates the speed of center position of the particle (a) and the angular velocity
(b) as the function of /. The speed grew monotonically with an increase in ¢. It can be expected
that for a large £ the speed saturates to be the one for a separated camphor particle. By considering
the angular velocity instead of the velocity, we observed a single peak of angular velocity around
£ = 2.5 mm as a function of £. For large ¢, it was a decreasing function. Such features well correspond
to the theoretical results. It is noted that the rest state was not observed in our experiments. We
expect that the rest state can be observed for larger resistance, and it can be realized by using the
glycerol aqueous solution whose viscosity is greater than that of pure water as the aqueous phase
[34,47].

2.5.5 Summary for Section 2.5

The motion of a symmetric camphor-driven rotor is investigated [36]. A camphor-driven rotor
stops or rotates depending on the size of the rotor (the length of the bar). We analyzed the stable
angular velocity for a camphor-driven rotor, and clarified that there is a bifurcation point where
the zero angular velocity corresponding to the rest state becomes unstable. The theoretical results
were confirmed by the numerical calculations and the experiments.

o7



Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

a b
(@) 120 ®) 20
- 2
@ Eor
e | z
g L 3 L
= 60 S 10
Q (]
0 | >
) 5k
| =i
2
0 | | | | < 0 | | | |
0 10 20 0 10 20
£ (mm) £ (mm)

Figure 2.5.9: Experimental results on rotor motion as a function of rotor radius ¢. (a) Speed of
the camphor particle. (b) Angular velocity of a rotor. The green and red points indicate the
experimental errors. Reproduced from Ref. [36].
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Chapter 3

Hydrodynamic Collective Effect of
Active Elements

3.1 Introduction

In biological cells, there are many proteins which have functions, e.g., pumps, channels, actua-
tors, and so on. They recursively change their shapes and act by consuming chemical energy which
is typically supplied from adenosine triphosphate (ATP). We call such proteins as “active proteins”
in this thesis.

Recently, the direct observation of particles inside a cell have been available, and it was reported
that diffusion was enhanced compared with normal diffusion under thermal equilibrium [83, 84].
Parry et al. reported that cellular metabolism fluidizes the cytoplasm though it is viscous enough
to be a glass state without cellular metabolism. Guo et al. embedded tracer particles in a Mer-
anoma cell (skin cancer cell), and observed trajectories of the tracer particles [84]. The tracer
particles showed random motion similar to Brownian motion, but its mean square displacement
was much greater than that of the Brownian motion under thermal fluctuations. Such an effect
was also reported in vitro [85], as well as in a cell. They observed the diffusion at biphase fluid
in a microchannel; one fluid included substrates and the other breakdown enzymes. Here enzymes
and substrates are comparable to active proteins and source of chemical energy, respectively. The
diffusion of enzymes to the substrate phase is greater than that in the case when the substrates were
not included. Thus, micro-scale active elements immersed in a fluid seem to enhance the diffusion.

To explain the diffusion enhancement in a system with active elements such as active proteins,
Mikhailov and Kapral proposed a model with an assumption that active proteins are considered
to be force dipoles immersed in fluid [38]. The assumption is valid for a dilute system of active
proteins, since dipole approximation is appropriate in the regime of far field. It is also supported
by the fact that an elastic network mimicking a conformation of an active protein has a slow
relaxation dynamics [86]. For arbitrary deformations, the rapid relaxation dynamics takes place in
the first stage, followed by the slow dynamics toward to the original configuration with the lowest
energy. Such a lowest-energy state depends on the chemical circumstance of substrate, and the
deformation process to the new stable configuration of the protein caused by the switching of the
stable configurations is considered to be slow dynamics along a one-dimensional orbit. This model
can be applied not only to cytoplasm (a three-dimensional system) but also to biomembrane (a
two-dimensional system).

In this chapter, we first summarize the previous results by Mikhailov and Kapral in Sec. 3.2.
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F

-F R+x/2

R—x/2

Figure 3.2.1: Schematic illustration on a force dipole. A protein in cytoplasm and biomembrane is
modeled as a force dipole immersed in a three- and two-dimensional fluid.

They explained the diffusion enhancement by active force dipoles. In Sec. 3.3, we consider a localized
effect of force dipoles, as an example of an inhomogeneous system [40]. In the previous study and in
Sec. 3.3, we assumed that the orientation of force dipoles is randomly distributed. We also discussed
the effect of nematic order of force dipoles in Sec. 3.4. We consider the case that the force dipoles
are perfectly aligned in a one direction, and compare the results in the case of randomly directed
force dipoles [41].

3.2 Mathematical model and previous results

In this section, we show the derivation of the model for the motion of particles induced by active
elements through hydrodynamic interaction and the explanation of diffusion enhancement by them,
which was proposed by Mikhailov and Kapral [38].

3.2.1 Derivation of equation for the distribution of tracer particles

In the model, the cytoplasm and biomembrane around active proteins are considered to be three-
and two-dimensional fluid, respectively. It is assumed that active proteins induce flow when they
change their shape. An active protein acts as a force dipole under far-field approximation.

A force dipole is composed of a pair of point forces F' and —F', which act on different two points
as shown in Fig. 3.2.1. The directions of forces are opposite to each other and parallel to the line
connecting the two points on which the forces are exerted. The flow v induced by a force dipole
located at R(t) is described as

) = |G (7= R+ 50 ) = Gus (r = = 20 ) | 1y (3.2.1)

2 2
0Gap(r — R)

:O%Teg(t)eﬂ,(t)m(R,t), (3.2.2)

gl
where x is a vector directing from one point to the other, e is a unit vector proportional to x and
F, and m(r,t) = |x(t)||F(r,t)| is the strength of the force dipole located at 7 at time ¢. Here
we adopt the Einstein summation convention, i.e., the summation symbols are omitted for doubled
subscripts. The function G is the Oseen tensor, which is the Green’s function of Stokesian equation,

and has a form:

1 Tols
Gop = gy (1 +(sr)ds + 7257 (3.2.3)
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Figure 3.2.2: Flow induced by a force dipole. A force dipole is immersed in (a) a three-dimensional
and (b) a two-dimensional systems, respectively.

for a two-dimensional system [87] and

1 1 Talg
Gos= — (15, 2.4
A 8mn (r s+ 73 > (3.24)

for a three-dimensional system. It is noted that x in Eq. (3.2.3) is the characteristic inverse length,
which related to Saffman-Delbriick length [88], k=1 = nh/(2ns), where h is the thickness of the
membrane and 7 and 7, are the viscosity of the membrane and solvent, respectively. Here, d,z is
the Kronecker’s detla, i.e., 43 is 1 for a = 3 and 0 otherwise. The derivation of the Oseen tensor
is provided in Appendix B.1. The flow induced by a single protein in a three- and two-dimensional
fluid is shown in Fig. 3.2.2.

Here we consider the situation with many active proteins as shown in Fig. 3.2.3. Since the
Stokesian equation is linear, the flow induced by multiple force dipoles is the summation of the flow
induced by each force dipole. Tracer particles are carried by flow with the same velocity of the fluid
itself, and also affected by thermal noise. Thus, the velocity of a tracer particle is represented as

follows:
dra

dt

=30 Xt 2B e (OmaRet) + £al0) (3.25)
i vy

where the variable with subscript i represents that it is for the i-th force dipole and f,(t) denotes

thermal fluctuation, which satisfies (f,(t)) = 0 and (fo(t)for (t')) = 2kpTV00a0(t — t') where 7 is

the mobility coefficient of the tracer particle. Here kg and T are the Boltzmann constant and the

temperature, respectively. Since the identity 6g,0Go3/0R, = 0 holds, e; ge; 4 can be replaced with

d
N9 (t):

dra _ 3 0Gap(r — Rilt)) \ (a)

dt R i oy ()M (R, 1) + fa(t). (3.2.6)

%
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Figure 3.2.3: Schematic illustration of the considered situtation. There are many active proteins
and a tracer particle is driven by the flow induced by active proteins.

Here N Z.(’?W(t) is defined as:
d 1
NG, (6) = eisbein () = =05, (3.2.7)

where d is a spatial dimension. If the dynamics for the orientation of the force dipoles is sufficiently
slower than that for the expansion and contraction of the force dipoles, the time dependence of
Ni(fé)y(t) can be neglected.

The Kramers-Moyal coefficient of first order V,,(r) is calculated as follows:

1 t+AL 8Ga5(T(t1) —R)
Va(r) = lim < / Z o ND mi(Ry, ty)dty ). (3.2.8)

At—0 At

Here we adopt the Stratonovich interpretation and use (f,(t)) = 0. Since the position of the tracer
particle r does not change in small time period [¢,t + At], Eq. (3.2.8) is expanded as follows:

Va(r)
t+At oG )
_ L ap(r @ . .
= A% A </ Z aR Nigymi( By 1) dba
HHALh 52G (r(t) — R;) 0Gsp(r(t2) — Rj) | (d) 1 (d)
/ / 87"581%27 8RM/ Ni,ﬁ’yNjﬁ/’y/mi(Riytl)mj(Rjat2)dt2dt1
L1 [ AR 0Gas(r(t) — Ri) ()
Aliglo Az </ Z OR; - N; g mi(Ri, t1)dt
ALt 320 (r(t) — Ri) 0Gsp(r(t2) — R;)  (a) \(d)
/ / 8T58R1»7 aRj y Niﬁ,yNngl,y/mi(Ri,tl)mj(RjatQ)dthtl
/ t+At/“/t2 PGap(r(t) — Ri) Gsp (r(t) — R;) dGypn(r(t3) — Ry)
87“58RZ Y 67“5/8}%],7/ 8Rkﬁu
xN(,ﬁLN](CQ, N i (Rt (B to)m (R )ttty ). (3.2.9)
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Here we use the integration of Eq. (3.2.6) with regard to time:

t1

t1
ra(t1) =ra(t / ZaGO‘B ( ))Ni(,%)»y(tQ)mi(Ri?tZ)dtQ+ falts)dts (3.2.10)

t

=rq(t) + Ara(t,tl), (3.2.11)

the relation (f,(t)) = 0, and expansion of (0G.g(r(t) + Ara(t,t1) — R;))/(0R; ) with regard to
Arq(t,t1). From the assumption (m;(R;,t1)) = 0, the first term in Eq. (3.2.9) vanishes. The third
term in Eq. (3.2.9) also vanishes since the following equations hold for the Gaussian distribution:

(mi (R, t1)m; (R, t2)my (Ry, t3)) = (mi( Ry, t1)m;(Ry, t2)) (my(Ry, t3))
+ (mi(Ri, 1)) (my (R, ta)my (R, t3))
+ (m; (R, t2)) (mi (R, t1)mi(Ry, t3))
=0. (3.2.12)

The derivative with regard to the position of tracer particle 9/0rs is replaced with that with regard
to the position of a force dipole —0/0R; 5.

Va(r) = — lim /HN/“ 0*Gap(r(t) — R;) 0Gsp (r(t) — R;)
o= A0 At OR; s0R; OR;.

d d
% < NG NG, > (mi(Ra, t)m; (R, t2)) dtadty

/”At/“ ?Gap(r(t) — R;) 0Gsp (r(t) — Ry)
R, 50 R,

— — lim —
A}SIEO At

d
x <Nl([3)vNJ(B)’ ’> 25(R;)0i;0(t1 — to)dtadty

. 1/”“ O*Gop(r(t) — R;) 0G5z (r(t) — R;)
- ALO At OR; s0R; OR;

(@) (@) A
<NZ DN > S(R;)dt.
(3.2.13)

Here we assume (m;(R;, t1)m;(R;,t2)) = 25(R;)0;;0(t1 —t2), which means that the considered time
scale for the dynamics of the tracer particle is sufficiently longer than that for the characteristic
correlation time of the activity force dipoles, and the activities of the force dipoles have no cor-
relation. It is noted that We explicitly consider the spatial dependence of the correlation function
S(R;). Using f(R) = [ f(r R)dr' and c(r) = >, §(r— R;) where ¢(r) is the number density
of the force dlpoles we have

Va(r)
_ AI?EOE /t+A / 092Gl ar5ar) —7) 6GW§$ ) < N N9, > S8 — Ry,
- / OQGgfg(gr; = 6%%(72,_ & (NN Sae(ryar. (3.2.14)
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We assume that the property of orientational order of force dipoles is independent of the particles.

We define N;’ (d) =N éf? + ng’dgv, where N /éi) = <NZ.(’%)7>, and then we have

(NN ) =W 58 () + i) 8+ (it )

(d) (d) (d)
=NJNG, + A5 (3.2.15)
where A(ﬁ )B’ , 1s defined as A,(B) = <néd7)ngf)7,> Thus we have
2 / /
(d) (d) (d) 0 Gag(’l“ -Tr ) 8G55’(r -Tr ) / / /
Va(r) = (N N , + AB75’7’> / orion o, S(r)e(r’)dr'. (3.2.16)

The Kramers-Moyal coefficient of second order D,/ (7) is calculated as follows:

Do) = [ [ et = R iyt = R
oo/ \T At~>0 2At c’)Rm 6Rj !

(d) (d) t+At pt+AL
X N,B’YNJ mmi(Ri,tl)mj(Rj,tg)dtldt2> + 111_1)1 TAt </ fa tl)fa (tz)dtldt2> .
(3.2.17)

The second term is calculated as kpT¥0aa = DT 80qs. The first term is calculated as follows:

Do (1) — D600
= imoxi (] e / 5~ [Gaslr(t) = Ri) 0Guip(r(t) = Ry)
= A0 24\ J, OR; , OR;
t+AtL GQG (’l"(t) - R,Z) 0G o /(T(t) - R) oG N(T(t ) - R/L)
af o' ] Je] 3 (d)
N, 1A 5
+ /t - 87’68Ri77 8Rj7/yl aRi7/~/” k,B"y mk(Rk‘ t3)dt3
t+At 0Gop5(r(t) — R;) 0*Gy ((r(t) — R;) 0Gspr(r(ts) — Rj)
aB\T % o' 7 03 3 J (d)
+ / 8R i 8’[“(58Rj’,y/ aRj7,y// Nk,,@”’y"mk(Rk7 t3)dt3
/HN /M 02 Cla(r(t) = Re) Gl (r(t) — Ry) 0 (r(t5) — R:) Gy (r(t)) — Ry)
000R; -~ ar(;/@Rm/ aRi;y// aRj,,y///

X Nk(: ,C%” //NZ(B)W mmk(Rk7 t3)m[<Rl, t4)dt3dt4 1(5)7N3(%)'yml(R“ tl)mj(R]7 t2)dt1dt2> .
(3.2.18)

From Eq. (3.2.12) and the following equation for the Gaussian distribution:

(mi(Ry, t1)m; (R, t2)mg (R, t3)mi(Ry, ta)) = (mi(Ri, t1)my (R, t2)) (me (R, t3)mi (R, ta))
+ (mi (R, t1)mg(Ry, t3)) (mj (R, ta)my(Ry, ta))

+ (mi (R, t1)my(Ry, ta)) (mj (R, t2)my (R, t3)) ,
(3.2.19)
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the second and third terms in Eq. (3.2.18) vanish, and the fourth term in Eq. (3.2.18) is the order
of At and goes to zero for the limit of At — 0. Thus we have
Do (7) — DTcSaa

_1 /t+At /t+At aGa,B( ( ) Rz) 8Ga/5/(1"(t) _Rj)
T AtS0 2A¢ ORi sy ORjy

<Nz(cé)'yN](B)'y> <mZ(R/L, tl)mj(Rj, t2)> dtldtg

. 1 t+At 0Gap(r(t) — R;) 0Gyp (r(t) — R;) (d) ~r(d)
Al A /t OR; OR; ., <N i»ﬁvNiﬂv> S(R;)dt
_ () (@) (d) IGap(r(t) — ') 0Gap (r(t) — ')
= <N6'7 Nﬁ/ Aﬁwﬁ’ /) / 67”7 8r’lyl S(r’)c(’r")d’r‘/
d d d 8Ga5 (’l" — ’l“/) 8Ga15/ (T — ’I“/)
< NN, +A§W)W> / o o S(r')e(r')dr'. (3.2.20)

When the number density of the active proteins and its activity depend on the position, V,
and D, are the Kramers-Moyal coefficients of the first and second orders, respectively. Thus
the Fokker-Planck equation [89] for the dynamics of the distribution of tracer particles, n(r,t), is
described as:

on(r,t) 0 0?
g = " ar. Valrn(,0) + 55— (Dac (r)n(r, 1)) (3.2.21)

82Ga5(r —7") 0G5z (r — 1)
orsort 87"’7,

Va(r) = — (NSNS, + A%, ) / S(r)e(r)dr', (3.2.22)

BBy

Daa’ —DT(Saoc +Daa’( )

OGlas(r — 1) 0Gorz(r — 1/
=D 600 + (NSNS, + A5, ) / B;:, r) %ff ") S er)dr!,  (3.2.23)
gl ¥

Here DT is normal diffusion coefficient for a thermal equilibrium system.

Hereafter, we consider the two situations, one is the orientational order is absent, i.e., N (f? =0,
and the other is that the force dipoles are completely aligned in a certain direction. For the latter
case, the main term in Eq. (3.2.15) is the first term, and thus here we neglect the second term.

3.2.2 Diffusion enhancement by force dipoles

First we consider a system where force dipoles are uniformly distributed and the activity of each
force dipole is the same. Here we set c¢(r) = ¢p and S(r) = Sp. In this case, the Kramers-Moyal
coefficient of the first order should be 0 from the viewpoint of the symmetric property.

For the two-dimensional case with an infinite system size, we have

C()So 60
Dy = (DT + Somp? log £> e (3.2.24)
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where we introduce a characteristic system size ¢y and a cut-off length ¢, [38]. For the three-
dimensional case with an infinite system size, we have

Doy = <DT i (%) Sener'- (3.2.25)
Equation (3.2.25) indicates that the diffusion is enhanced compared with the normal diffusion under
the thermal equilibrium [38]. We cannot take a limit that ¢, goes to 0 from the viewpoint of physics.
The cut-off length has a value whose order is the distance between the tracer particle and the nearest
force dipole. Thus the cut-off length /. is greater than ¢; 4+ ¢,, where ¢; and ¢, are the radii of a
tracer particle and an active protein (force dipole), respectively.

When the force dipoles distribute with a constant gradient, the Kramers-Moyal coefficient of
the first order also take place. Here we assume the activity of each force dipole is the same. For
the two-dimensional case with an infinite system size, we have

So A
= log —. 2.2
Va 2 (Ve)q log 7. (3.2.26)
For the three-dimensional case with an infinite system size, we have
So
Vo, =——(Ve),. 3.2.27
o =gomr. Ve ( )

As we can see in Egs. (3.2.24) and (3.2.26), the effect of force dipoles is long-ranged, i.e., its
dependence on distance is proportional to 1/r. Thus, to apply this model to an actual system, it is
more natural to consider the system with a finite system size.

3.3 Localized effect of force dipoles

As shown in the previous section, the diffusion enhancement in a two-dimensional system with
a constant number density of force dipoles logarithmically diverges with regard to the system size.
However, we can discuss with a cluster of force dipoles in the proposed model. In fact, a localized
structure of active proteins on biomembrane is known and referred to as a “lipid raft”. We also
discuss the localized effect of force dipoles in the three-dimensional case.

3.3.1 Fokker-Planck equation and convection-diffusion equation

In contrast to the case of the homogeneous number density of force dipoles, the directional drift
velocity is induced, i.e., the Kramers-Moyal coefficient of the first order has a nonzero value. The
Fokker-Planck equation (3.2.21) is transformed into in the following form

on(r,t) 0 0 on(r)
B T (Un(r)n(r,t)) + o <Daa/(7’,t) or ) (3.3.1)
where U is the drift velocity of the flow of tracer particles defined as:
D,
Ua(r) = Vo(r) — w (3.3.2)

Since the diffusional flow is the product of diffusion coefficient and the gradient of the number
density of tracer particles, Eq. (3.3.1) is the convection-diffusion equation. Hereafter, we basically
discuss using U instead of V.
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Section 3.3 Localized effect of force dipoles

3.3.2 Two-dimensional system

The expressions of V,, and D, shown in Egs. (3.2.22) and (3.2.23) can be transformed into
more simple ones as shown below [40,41].

1 r!
Va(r) = — S22 /dr'rﬁ‘1 (r+7re(r +7'), (3.3.3)
T 1 T/ T‘/ !
Daa’ =D 6aa’ + W /dr' j:/f S(T + T/)C(’I" =+ 7"/). (334)

The detailed calculations are provided in Appendix B.2.1.

Then, we consider the general form of the drift velocity U for the two-dimensional case. By
substituting the general expression for V' and D for the two-dimensional case with disordered force
dipoles (Egs. (3.3.3) and (3.3.4)) into the definition of U in Eq. (3.3.2), we have

1 A(S(r)e(r))

Ualr) :3271'772 Ora

+O(L,), (3.3.5)

The detailed calculation is provided in Appendix B.3.1. The drift velocity U is determined by the
local profile of the number density of force dipoles S(r) and its activity ¢(r), in contrast with V'
and D which are determined by the global information of S(7)c(r). Here we consider a circular
region with force dipoles, i.e.,

o(r) = % {1 + tanh ('Ré_rﬂ : (3.3.6)

where 7 is a distance from the origin and R is the radius of the disk occupied by force dipoles.
Since the tracer particles are swept up by the drift velocity at the periphery of the disk, the tracer
particles are accumulated into the disk. Figure 3.3.2 shows numerical results on the accumulation
of tracer particles inside the circular raft. The number density of the tracer particles n initially
had uniform distribution (n = 1). Based on the Fokker-Planck equation in Eq. (3.2.21) with the
Kramers-Moyal coefficients in Egs. (3.3.3) and (3.3.4), the time evolution of the number density of
the tracer particles n was calculated. The distribution of active proteins was given by Eq. (3.4.2).
Finally, the distribution of tracer particles became steady, since the drift low and diffusional flow
was balanced.

So far we qualitatively explain the accumulation of tracer particles into a circular raft occupied
by active proteins. Here we show the steady state for the distribution of tracer particles when
there exists a circular raft. We set the radius of the circular raft is R and the center of the raft
is corresponding to the origin of the coordinates. The distribution of tracer particles is defined as
n = n(r,0) in the polar coordinates.

The drift velocity is defined as U = (Uy(z,y), Uy(z,y)). Here, we consider the situation that U
depends on only the distance from the center of the circular raft, r, and define Uj(r) as Uj(r) =
U,(r,0).

The equation for the distribution of the tracer particles is represented as follows:

on 10 18( 8n)

a :—;E(T‘UH(T)H)—F;* D”(T)E

g (3.3.7)
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Chapter 3 Hydrodynamic Collective Effect of Active Elements

Figure 3.3.1: Numerical results on the accumulation of tracer particles to a circular region occupied
with active force dipoles in the two-dimensional system. Consequent snapshots of the number
density distribution are shown. The parameters were R = 16/, 6 = 0.5(., S =1, and Do/DT =1,
where Dy = DA4(0). The time unit was ¢2/D”’; the tracer particles were uniformly distributed with
n =1 at t = 0. The spatial and time steps were 0.4¢, and 1077, respectively. Reproduced from
Ref. [41].

where D) is given by D (r) = Dy.(r,0). For the steady state of n, dn/dt should be zero.

10 10 on
By solving Eq. (3.3.8) with regard to n(r), we have
" Uyr') /)
n(r) = ng exp dr' |, 3.3.9
) ( o Dy(r) (3:39)

where ng is a value of n(r) at r = 0. Here we use the boundary conditions, dn/0t = 0 and U, = 0
at r — 0o. When the cut-off length is small enough, the drift velocity is approximately represented
as Uj(r) = —Uod(R — 1), where Uy > 0. In this case, we obtain

PO e [0, (r <R),
0 D”(T”) N { _UO/DH(R), (r > R)’ (3310)
and n is written as
_ no, (T < R),
"= { no eXp(—Uo/DH(R)), (r > R). (3.3.11)

The theoretical results was confirmed by comparing the numerical results as shown in Fig. 3.3.2.

The accumulation of tracer particles in the region occupied by active proteins were observed for
other shape of the raft in numerical calculation. Here we show the numerical results on the time
evolution of the number density field of tracer particles with an elliptic raft and two circular rafts
in Fig. 3.3.3.

For a single circular raft, whose profile is given by

o(r) = { o E: <R), (3.3.12)
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1.6

1.4}

I

x /4.

Figure 3.3.2: Accumulation of tracer particles by a raft occupied with active proteins. Radial profiles
at different time moments are displayed. The final profile (¢ = co) is determined by integrating
the analytical solution (3.3.9). The parameters are set to be R = 20/,, 6 = 2(., S = 1, and
Sc/(327?n>DT) = 1. Reproduced from Ref. [40].

Figure 3.3.3: Numerical results on the accumulation of tracer particles to (a) an elliptic region
and (b) two circular regions occupied with active force dipoles in the two-dimensional system.
Consequent snapshots of the number density distribution are shown. (a) The major and minor axes
of the elliptic raft were 20¢. and 10/, respectively. (b) The radii of the circular rafts were 10/, and
6¢.. The other parameters were set to be § = 2£., S = 1, and Dy/D” = 1, where Dy = D4(0). The
time unit was £2/D”; the particles were uniformly distributed with n = 1 at ¢ = 0. Reproduced
from Ref. [40].
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we have explicit forms of V and D except for the periphery of the raft as follows.

r
(Rg—r2>, (r<R-1.),
SCO

0
Vi(r)=—- 327 R2 (3.3.13)
r(r2 —R?) |, (r>R+/{),
0
(Y
= (0) , (3.3.14)
2 _ 2
o | m (Y T)a, (r<R—1,),
DA(r) == ¢ (3.3.15)
S d MG LR RO aas
"\ Ve oz l\o —1) ¢
_(Dy 0
(30 b0
where
r R?
r R?

The profiles of V, D, and D, are shown in Fig. 3.3.4. It is noted that for r > R, D) and D, are
asymptotically expressed as

SCO R2
SC[) R4
= —. 3.3.20
LT 12812 rd ( )

Thus the diffusion in the radial direction D) remains further compared with that in the angular
direction at the point far from the raft.

We also numerically calculated the profile of the diffusion enhancement in the case of an elliptic
raft as shown in Fig. 3.3.5. Note that, in contrast to the case with a circular raft, the anisotropy of
the diffusion enhancement, i.e., (D{} —D2}) /&, is present also inside the raft, where &€ = Sc/(32r%9?).

3.3.3 Three-dimensional system

For a three-dimensional case with no orientational order, V,, and D, are simplified in the same
manner as in the two-dimensional case:

1

Va(r) = — ——
(r) 4072n?2

/
/dr’r/‘é (r+7re(r +7'), (3.3.21)
r
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Figure 3.3.4: Profiles of the radial component of the velocity, V| obtained by the numerical inte-
gration (closed circles) and analytical calculation (solid curves) in the case with a circular raft of a
radius R, in which the number density of active proteins is ¢g. We set R/¢. = 20 and S = 1. The
parameter ¢ is the set of the parameters £ = Sc/(3272n?). Reproduced from Ref. [40].

-1.5 -3.5

Figure 3.3.5: Diffusion enhancement for an elliptic raft with the semiaxes 20/, and 10{. and the
sharp boundary. The diffusion enhancement components (a) Di} /¢, (b) Dgy/€, and (c) Diy/€ are
displayed, where ¢ = Sc/(3272n?). The diffusion anisotropy (D7} — D4})/¢ is additionally shown in
panel (d). Reproduced from Ref. [40].
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Figure 3.3.6: Numerical results on the accumulation of tracer particles to a sphere occupied with
active force dipoles in a three-dimensional system. Consequent snapshots of the number density
distribution are shown. The parameters were R = 16/, § = 0.5{., S = 1, and Dy/DT = 1, where
Dy = DA(0). The time unit was ¢2/D”; the particles were uniformly distributed with n = 1 at
t = 0. The spatial and time steps were 0.4/, and 10~7, respectively. Reproduced from Ref. [41].

1 rior!,
Dt = Db + g3 / A28 S (4 1) el + 7). (3.3.22)
The detailed calculations are provided in Appendix B.2.2.

Then, we consider the general form of the drift velocity U for the three-dimensional case. By

substituting the general expression for V' and D for three-dimensional case with disordered force
dipoles (Egs. (3.3.21) and (3.3.22)) into the definition of U in Eq. (3.3.2), we have

L 0((r)S(r))

= 0:.0). 3.2
607724, Ors + Ot (3.3.23)

Ua(r)

The detailed calculation is provided in Appendix B.3.2. The drift velocity U is determined by the
local gradient of the number density of force dipoles and its activity.
Here we consider a spherical region with force dipoles, i.e.,

o(r) = % {1 + tanh ('R - r’)] : (3.3.24)

where r is a distance from the origin and R is a radius of the sphere occupied by force dipoles. In the
same way as in the two-dimensional system, tracer particles were accumulated into the sphere and
formed a steady distribution. Figure 3.3.3 shows numerical results on the accumulation of tracer
particles inside the circular raft. The number density of the tracer particles n initially had uniform
distribution (n = 1). Based on the Fokker-Planck equation in Eq. (3.2.21) with the Kramers-Moyal
coefficients in Egs. (3.3.21) and (3.3.22), the time evolution of the number density of the tracer
particles n was calculated. The distribution of active proteins were given by Eq. (3.3.24). Finally,
the distribution of tracer particles became steady in the same case as in the two-dimensional case,
since the drift flow and diffusional flow was balanced.

3.4 Effect of orientational order of force dipoles

So far, we consider the active force dipoles without nematic order. In this section, we discuss
the effect of the alignment of force dipoles. Of course, we can take into account the dynamics of
the orientational order, but the model will become more complex. The aim of this section is to
check whether the orientational order plays an important role. We use the model in Eq. (3.2.21)
for a perfectly aligned force dipoles. For two dimensional systems, we consider the cases that the
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Section 3.4 Effect of orientational order of force dipoles

force dipoles are uniformly distributed inside a circular region. For three-dimensional systems, we
consider two cases, (i) the force dipoles are uniformly distributed in the entire space and (ii) they
are distributed inside a spherical region.

3.4.1 Two-dimensional system

For the two-dimensional case with perfectly orientated force dipoles, V,, and D, are simplified

as
1 r 2
Va(r) ~Ton2? /alr'rl8 ((r)? = (r5)*) " S(r +7')e(r +7'), (3.4.1)
T 1 (TaTal (1182 7122 / /
Dao/ (1) = D 0 + 32n72 dr o ((r)* = (19)%)" S(r + r)e(r + /). (3.4.2)

Here we assume that the force dipoles are aligned in ri-direction. The detailed calculations are
provided in Appendix B.2.3.
Using the above expressions for V,, and D, the drift velocity is obtained as

V(S(r)e(r))

+ O(4,), (3.4.3)
where Q(r) = S(r)c(r). The detailed calculation is also provided in Appendix B.3.3. Surprisingly,
the orientational order does not appear in Eq. (3.4.3) and it is the same as the case when the
orientation of the force dipoles is random at least with regard to the main term. To confirm the
analytical results, we calculated the time evolution of the number density of tracer particles n based
on the Fokker-Planck equation in Eq. (3.2.21) with the Kramers-Moyal coefficients in Egs. (3.4.1)
and (3.4.2). The distribution of active proteins is given by Eq. (3.4.2). The number density of
the tracer particles n initially had uniform distribution (n = 1). Finally, the distribution of tracer
particles become steady as shown in Fig. 3.4.1(a,b). It is noted that weak circulating flow of tracer
particles remained as shown in Fig. 3.4.1(c,d). The profile of reflecting the symmetric property of
the system.

3.4.2 Three-dimensional system

For the three-dimensional case with perfectly orientated force dipoles, V,, and D, are simplified

as
1 /
Valr) =gz / dr' % Pafeos 0)2S(r + 1')e(r + 1), (3.4.4)
T 1 rirl, 9
Door (1) =DT 6000 + 67272 /dr’ (’:‘n,b?‘ Py(cos0)°S(r +7')e(r +7'), (3.4.5)

where P5 is Legendre polynomial of the second order. Here we use r3 = rcosf and we assume
that the force dipoles are aligned in rs-direction. The detailed calculations are provided in Ap-
pendix B.2.4.

Then we obtain the general form of the drift velocity U as

1 7"/067';/
Ua(T) = — W /U dSa/TTPQ(COS 0/)25(71 —+ T,)C(T' + 'I"/). (346)
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(a) (b) (c)
n n
H‘LS H 1.1
0.3 0.9

Figure 3.4.1: Numerical results on the distribution of tracer particles (a,b) and their fluxes (c,d) in
the steady state of a two-dimensional system with orientationally ordered force dipoles that occupy a
circle in the center. Panel (b) shows the distribution enhanced in the region of low number densities.
The logarithm log;q j(r) of the local magnitude of the fluxes and their streamlines are displayed
in (c¢) and (d). The horizontal direction corresponds to the orientation line of force dipoles. The
parameters were R = 16/, § = 0.5¢,, and S = 1. The spatial and time steps were 0.4¢, and 1077,
respectively. Reproduced from Ref. [41].
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The integration is taken over the physical boundary ooutside and the small cut-off surface ojpgide
around r. The integration over the physical boundary ooutsige becomes zero if S(r)c(r) = 0 at
the boundary. Here we consider the situation that S(r 4+ v')c(r + ') = Q(r + 7') is given by
Q(r+7r') = Q(r)+r30Q(r)/0rg. Then the integral over the small cut-off surface can be calculated
as

2m Q N R .
Ua(r) 1/ d¢/ do(e.> sin@)r’a/r a7’4a (1— 3r’§)2 (Q(T) +€CT’5W>
0 0 l orp

:647r2772 .
1 2m R . 8Q(r)
= ' (1= 2 n\2 y OW\Tr)
647r2n2/0 dgb/o d@sm@éczra( 3cos” 0) <Q(r)+£cr5 ors >
1 19Q(r) 19Q(r) 110Q(r)
- 2872, <3 ary 01t 375, Tlazea ¥ 5, Flases |, (3.4.7)

where 7 is a unit vector defined as # = r/|r|. The result for U is the different from the case when

the orientation of the force dipoles is random. The average over ri-, ro-, and rs-directions is given
1 /1 1 11 1 1

b, idering th f th ical coefficient, — [ - + - + — | x = = —, which is th

y considering the average of the numerical coefficient, oo (3 + 3 + 15) 3 = pg’ Which is the

same as the case when the orientation of the active proteins is random.

Here we consider the case with constant gradient of Q(r). Suppose that Q(r) = Qo + Q1a - r,
where a = (a1, az,a3) is a constant unit vector, which denotes the direction of the gradient of Q.
Then V', D, and U are calculated as follows:

167 1
o1 M 3
Q1 1 167 Q1 1 1
Vir) — 1 167 _ L 3.4.8
(r) 32722 L, 21 2 147n? £, 32 | ( )
1767 11
105 © 157
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and

1
3 0 O
Q(r) 1 1
Ny o U
15

It is noted that V,, and (0Dgq)/(0ry) with constant gradient of @ still satisfy the equation V,, =
2(0Dyw')/(0ry), which is the same as the result in the case that the force dipoles are orientated
randomly [39].

The drift velocity U is calculated as follows:

1

—Q

3l

ODA(r) Q1 1 1

- S - . 3.4.10

or 28m2 0, | 3% (34.10)
1

5%

The result is consistent with the general expression in Eq. (3.4.7). The detailed calculation is
provided in Appendix B.3.4.

Nematic order parameter

To describe the nematic state, tensor and scalar order parameters are known in the field of the
liquid crystals:

1
N = —-I
s(nn 3)

sin? 0 cos? ¢ sin? @sin ¢ cos ¢ sin 6 cos @ cos ¢ 1 1 00
=s sin? @ sin ¢ cos ¢ sin? @ sin? ¢ sinfcosfsing | — 3 010 . (3.4.11)
sinfcosfcos¢  sinfcosfsin g cos? 0 0 01

where N and s are the tensor and scalar order parameters, respectively. Here, s takes a value
between 0 and 1, where s = 0 and s = 1 correspond to the completely disordered and ordered
states, respectively. m is a unit vector, which represents the direction of the nematic phase.

Here we consider the situation that the orientation of active proteins is completely ordered in
the direction of z-axis. Thus, we set s =1 and 8 = 0. By using the tensor order parameter N, the
flux U is represented as

1

6
= SOmE <1 + 7N> vQ(r). (3.4.12)

Ul(r)

The diffusion tensor D for Q(r) = Qo + Q1a - r (constant for 1 = 0 and linear profile with
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constant gradient for Q)1 # 0) is also represented by using N,

16
- 0 0
A, Qr) 1 167
b7(r) T 64m2n2 L, 0 21 0
0 1767
105
1 0 O
1 00 3
Q(r) Q(r) 1 Q(r) 6
_ 010 _Z = =N . 3.4.13
607n2L, 00 1 + 707324, 0 3 g 607n2L, +7 ( )
0 0 3

Steady state

Here we consider the steady state when the normal diffusion under thermal equilibrium is neg-
ligible. We set DT to be 0. The diffusion tensor with local approximation is adopted. The Fokker-
Planck equation is represented as

on(r,t) d

0
= o (Ua(r)n(r,t)) + ET <Dao/ (r)

8”(r’t)> . (3.4.14)

ory

To obtain the steady state, the time derivative of n is set to be zero:

e (Ua(rn(r)) = o (Do) ). (3.4.15)

Then we integrate the both sides with regard to r., and obtain

on(r)

Ua (’I")?’L(’I‘) =D (T) Ta’

+C,. (3.4.16)

When U, (r) and D, (r) are zero at |r| — oo, C, should be zero.

Olnn(r)

ore

an(r) :Docoz’(r) (3417)

By using U and D in Egs. (3.4.12) and (3.4.13), we obtain

1 6 0Q(r) Q(r) 6 dlnn
(I + 2N, - Lo + 2Ny | 221 3.4.18
60mn2L,. < + 7 > Ore  60mn2l, + 7 Ory ( )

(3.4.19)
and finally we have
n(r) =C"Q(r). (3.4.20)

It is noted that this result does not depend on the value of s.

Next we consider the steady state for DT % 0. We cannot easily construct a general solution
in the same way as in the case of DT = 0, since the diffusional flow induced by thermal noise and
active elements are not parallel. Here we consider the steady state of the distribution of tracer
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particles when the active proteins are distributed in a spherical region. We derive an approximated
solution and show numerical results. We assume the active proteins inside the spherical region are
aligned in the rs-direction, and uniformly distributed, i.e.,

Q(r) = { (Cfo’ E: i g;: (3.4.21)

where R is a radius of the spherical region. We also assume that the gradient of @ is —Q16(r — R)e,.,
where e, is a unit vector directed in the radial direction.

The constant C' in Eq. (3.4.16) should be considered to be e4g,(0A,)/(0r3), where €43+ is Levi-
Civita symbol (an asymmetric tensor) and A(r) is a vector that A(r — 0) = 0 due to the boundary
condition. Then we obtain

on(r) 0A,

Ua(r)n(r) =Dour (T)Ta/ + 5aﬁ787m-

(3.4.22)

Here we transform to the radial coordinates (r,6,¢). From the symmetrical consideration,
U(r)(x VQ(r)) and n(r) should be independent of ¢, and A should have a form as A(r) =
(0,0, A(r, 0)) in the polar coordinates. First, we consider the decomposition of U, and Do/ (On)/(0r4)
with regard to e, and eg. We obtain the decomposed U,, into r- and #-directions from Eq. (3.4.12):

1 6 o(r—R 6
0utr) g, (1 77) 920 = S (148 (e
:W { <1 + 2 Pyfcos e)) er — 2sin 2969} . (3.4.23)

We also obtain the decomposed Do/ (0n)/(0ry) into r- and O-directions from Eq. (3.4.13):

on Q(r) 6 on 10n
Do o— =3 DT Loy + =2 Tnas + = N y— e
A Oy { aa’ 607720, < oo’ 7 Noa )} (e or % 60)

:DT <an€r + 18n69>
T

or 00
Q) ! L T
+ T40miL, 1+ 7P2(COS 0) 5, ~ 7Sl 297‘ 50 ) &
3 . on 9 4 10n
+ <—7 sin 295 + (7 - ?PQ(COS 0)) r89> 89} . (3.4.24)

Thus, we obtain the following two equations:

L 9Q 4 7In Q 4 on 3 . _1dn
FrYY R 1+ -P 0 —D — 1+ P on.-— o 29~
60702l Or ( + 7 »(cos )> " or  60mn3L, <( + 7 2(C080)> ar 7™ 07" 69)
1 0

- rsinf 90

(Asin®),
(3.4.25)

1 0Q3 . r10n Q 3 . on 9 4 10n
B 5 A AR S (U SO V'L (= 1on
60mn2, or 720 m 290 compr, \ 7 Sm205, 1 {7 7 (eost) ) g
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Inside the circular region, Eqgs. (3.4.25) and (3.4.26) lead to

on Q 4 on 3 10n 1 0
— Ti - — - — R —
D or 60l ((1 + 7P2(COS 0)) o 7 sin 26— 89) rsm«989(Asme) (3.4.27)
10n Q 3 on 9 4 10n 10
Tion .9 on ony _ 1O
- r a0  60mn3L, ( 7 sin 26 or + <7 7P2(COS 9)> r 69) ror (rA). (34.28)
Outside the raft, Egs. (3.4.25) and (3.4.26) lead to
on 1 0
_pr=— A 4.2
Or rsinf 80( sin6), (34.29)
1on 10
-DT= ———(rd A
rod 87"( ) (3.4.30)
Equations (3.4.29) and (3.4.30) are solved as
Z { anr® + ey } Py(cos ), (3.4.31)
=0
= be(k+1)) Cp /2((:059)
_ k k k
A(r,0) = kzo {akk:r + = } o (3.4.32)
Assuming that there are only 0 and 2 modes, then we have
n(r,0) = a+ T%Pg(cos 0), (3.4.33)

3b 051/2 (cos @)
73 sin 6

A(r,0) = (3.4.34)
where P, is the second-order Legendre polynomials and C, /2 i the second-order Gegenbauer
polynomials (ultraspherical polynomials) of the degree of —1/2.

By integrating the both sides of Eqgs. (3.4.29) and (3.4.30) with regard to r € [R — 0, R+ 0], we
obtain

1 4
(1 + — P5(cos 9)) %(nom + Nin) — DT(nout — Nin)

60mn2L, 7
1 1 Qo
— m ((1 + 7P2(COS 9)) 5 (nout nin)> == O, (3435)
3 1 3 .
607‘(’]726 ? sin 20Q (nout + nin) — W <—7 sin 20%(77/01113 - nin)> = —(Aout - Ain), (3436)

where R is a radius of the spherical region. Here we used [ 6(z)0(z)dx =1/2.
From Eq. (3.4.35), we obtain

1 4
T?’Lin :W <1 + ?PQ(COS 9)) Qonout + DTTLout, (3437)
and thus we have
Nin

7607"]2@ T (1+ Pg(cos 0)) Qo+1

(3.4.38)

Nout =
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Figure 3.4.2: Numerical results on the distribution of tracer particles (a,b) and their fluxes (c,d)
in the steady state of a three-dimensional system with orientationally ordered force dipoles that
occupy a sphere in the center. Part (b) shows the distribution enhanced in the region of low number
densities. The logarithm log,qj(7) of the local magnitude of the fluxes and their streamlines are
displayed in (c) and (d). The vertical direction corresponds to the orientation line of force dipoles.
The parameters were R = 16/, 6 = 0.5¢., and S = 1. The spatial and time steps were 0.4¢.(= 0.4)
and 1077, respectively. Reproduced from Ref. [41].

We assumed that DTngy < 1 and ny, = Qo, and then we have

4 1
Now =60mn20.DT (1 - ?Pg(cos 0) + £P2(cos )% — . ) . (3.4.39)

When we neglect the higher-orders of 4P (cos #) /7, then we have a = 60712, DT, b = —2407n*¢.D* /7
in Egs. (3.4.33) and (3.4.34).

Since A has a value depending on r and 6, the steady flow of tracer particles exists. It is noted
that the profile of tracer particles does not change in time, thus the flow should circulate. Here
we show numerical results based on the Fokker-Planck equation (3.2.21) with the Kramers-Moyal
coefficients in Eqgs. (3.4.1) and (3.4.2). The distribution of the force dipoles is given in Eq. . The
number density of the tracer particles n initially had uniform distribution (n = 1). We calculated
the time evolution of the distribution of tracer particles, and obtained the steady state as shown
in Fig. 3.4.2(a,b). We also obtained the steady flow of tracer particles as shown in Fig. 3.4.2(c,d).
We can see the circulating flow, which clearly has the secondmode as expected by the theoretical
calculation in Eq. (3.4.34).

3.5 Summary

In this chapter, we discussed the hydrodynamic collective effect of active elements modeled as
force dipoles. Especially for a two-dimensional system, the finite size effect is critical since the
diffusion coefficient diverges for an infinite system according to the proposed model. The real
system, however, can be inhomogeneous or can have a typical size, thus it is worth investigating the
localized effect of force dipoles. In the inhomogeneous system, directional flow takes place, resulting
in the accumulation of tracer particles toward the force dipoles. We also investigated the effect of
the alignment of active elements. We found that the accumulation of tracer particles occurs. For
a three-dimensional system, circulating flow of tracer particles occurs even though the distribution
of tracer particles is steady.
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Chapter 4

Conclusion

So far we have studied the active system with continous energy injection and dissipation. As
mentioned in Preface, seemingly-lower-entropy structures can emerge in dissipative systems, and
our aim was to understand what kind of structure emerges in the actual systems — self-propelled
motions through spontaneous symmetry breaking and collective effects of active elements.

In the first half, we investigate the motion of self-propelled particle emerging through sponta-
neous symmetry breaking. We consider three types of geometries; a one-dimensional finite system
with inversion symmetry, a two-dimensional circular system with inversion and rotational symme-
try, and a rotor system with rotational symmetry. We discussed motion of a camphor particle on
water surface, based on the mathematical model. The model was reduced around the rest state,
and the bifurcation structures were determined which indicate what kind motion occurs. As the
future work, we would like to investigate the interaction between shape and motion. For example,
using the camphor driven rotors, which discussed in Sec. 2.5, the interaction between them can be
investigated.

In the latter half, we consider collective effects by active force dipoles, especially the localized
and alignment effects. We considered the dynamics of fluid with active force dipoles, and derived
that diffusion is enhanced by the recursive deformation of active proteins. When force dipoles
are localized, not only the diffusion enhancement but also directional flow of tracer particles is
induced by force dipoles. In this case, tracer particles are accumulated in the region with the force
dipoles. As for the aligned force-dipole cluster, circulating flow of tracer particles ws found in a
three-dimensional system, though the distribution of tracer particles is steady. In the model, it is
assumed that force dipoles are dilute enough and that the flow induced force dipoles is described
by the Oseen tensor. Thus it remains as future work to investigate whether diffusion enhancement
can take place in a systems with denser active elements.

By proceeding our research on active systems further, we hope we will contribute generic un-
derstanding of nonequilibrium systems in future.
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Appendix A

Supplementary Information for
Chapter 2

In this chapter, the supplementary information for Chapter 2 is provided.

A.1 Supplementary information for Section 2.2

A.1.1 Derivation of Eq. (2.2.20)

In this subsection, the driving force expanded with regard to the position, velocity, and accelera-
tion of the camphor particle is derived. The gradient of concentration field expanded in wavenumber
space is expressed as follows:

9 1k . k
=2y (X, X, X) sin (;x> . (A.1.1)
By calculating the expansion as in Eq. (2.2.17), we have

Oc km km
% = — sz ka sin (RLU)

km 2 km
= _E 2 <RA cos (kX)) sin (R'%))

Term which is not related to the time derivative of X

km 2k . km . 1 km 2k . km ..
_Z<R 2 sin (kX)) sin <Rx>>X—|—RZ(R Ve sin (kX)) sin <Rx>>X

k=
Term proportional to X Term proportional to X
o o
km 2K2 km kw23 km 3
—Z —3 COs nX)sm( )) Z( — 7 sin nX)sm(x))X ,
R ( R A R = R A R
Term proportional to X2 Term proportional to X3

(A.1.2)
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where we neglect the higher-order terms of X and the higher-order derivatives with regard to time.
Here, we set A = k?72/R? 4+ 1 and k = kr/R. The driving force is calculated by the definition in
Eq. (2.2.12), and then expanded around x = R/2.

Here we show several relations for the calculation.

7 sinh (7 — x)
ksinke ] 3 suhar Dot a1y
k4o ) msinha(r+x) -

2  sinharm

k=1 , [—21 < 2z < 0].

Equation (A.1.3) is referred from Ref. [90]. By differentiating Eq. (A.1.3) with regard to « and k,
we obtain the following relations.

- cosha(r — )
4o sinhorm
. LT (m —x) ?inha(ﬂ—x) B ﬂcosha(ﬂ—x) goshonr ’ 0 < < 21,
k= cos kx 4 sinh ar (sinh arr)
1 a2)? = (A.1.4)
1 (k2 + a?) - cosha(r + )
4o sinharm
7 (7 +2) ‘sinh a(r +z) mcosh a(‘ﬂ' + ) cosh ar  or<a<O].
4 sinh ar (sinh ar)?
(7 cosha(r —x)
16a®  sinhar
o (m —x)sinha(r —z) wcosha(mr — ) cosham
1602 sinh o (sinh ar)?
T (r — x)? cosh a(m — ) _27r(7r—a:) sinh a(m — z) cosh ar
16cv sinh ar (sinh arr)?
. _7'(‘2 COS'hOé(ﬂ'—l') +27r2 coshoz(7'r—x)(coshom)2 o<z <2,
k= cos k:x sinh am (sinh ar)3
(CEYEE = (A.1.5)
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(37 (m —x)cosha(mr —x) wsinha(r — ) cosh ar
160 { B sinh ar (sinh ar)? }
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By using the formulae, each term in Eq. (A.1.2) is calculated separately and then the driving
force originating from the inhomogeneity of the surface tension is calculated.

Term which is not related to the time derivative of X

The term which is not related to the time derivative of X in Eq. (A.1.2) is expressed as follows:
— l i @72 cos ij sin kjaz
Rk:1 R k272 /R? +1 R R
liL (sin (kz(erX)) + sin (kﬁ(x—X))) (A.1.8)
™~ k? + R?/m? R R ’ o
In the case of [O< %(w—i—X) < 277] N [0< %(x—X) <7T:|, we have

Lk kr \ . (kx \ _ sinh(R— (z+ X)) +sinh(R — (z — X))
RZR 22/R2+1 <R$>SIH<R‘I">__ 2sinh R ’

(A.1.9)

where we apply Eq. (A.1.3). By substituting z = X, we have

1 X km 2 km . (km sinh(R — 2X) +sinh R
N2 s (BT x — . (A1
R; Rk:27r2/R2+1COS<Rx> Sm(R( +0)> 2sinh R (A.1.10)

In the case of |:0<%($+X)<7T} N [—27r<%(x—X)<O],Wehave

2 kr km . (kr \  —sinh(R— (z + X)) +sinh(R + (z — X))
52572 YT <R~””) sin <R$> = N ,

(A.1.11)

where we apply Eq. (A.1.3). By substituting z = X, we have
1 X km 2 km . [k —sinh(R — 2X) +sinh R
—= —_— — —(X = . A.1.12
R; Rk2w2/R2+1COS<Rx>Sln<R( +0)> 2sinh R ( )

The driving force originating from the component of concentration field which is not related to the
time derivative of X is calculated as follows:

{ R Z R m (Zr:r) o <kgx> }‘z:X-i-O
{ R Z R m <er) o <er> }|xX—0

_ —sinh(R - 2X) +sinhR (_sinh(R —2X) +sinh R)

B 2sinh R 2sinh R
_ sinh(R — 2X)

Y (A.1.13)
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Term proportional to X

The term proportional to X in Eq. (A.1.2) is expressed as follows:

- = Z km___2(kn/R) sin k—ﬂx sin k—ﬂx
R (k?m%/R? + 1) R R
k2

—— (W/R)Q ; S (cos (75 (2 = X)) = cos (b5 (e + X)) . (AL14)

In the case of [0<%(ZL‘—|—X)<27T] N {0<%(x—X}<7r},wehave

S () ()
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4sinh R
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4sinh R
1 ((R—(z+X))sinh(R— (z+ X)) Rcosh(R— (x+ X))coshR
+ 4 { sinh R a (sinh R)? } ’ (A-1.15)

where we apply Eq. (A.1.4). By substituting z = X, we have

A () ()

__coshR 1 { _ R(cosh R)2}

isithR 4 (sinh R)?2
cosh(R—2X) 1 [(R—2X)sinh(R—2X) Rcosh(R—2X)coshR (A1.16)
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In the case of |:O<%(.%’+X)<7T:| N [—2W<%(:C—X)<O],Wehave

S () ()
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cosh(R — (x + X))
4sinh R
1 ((R—(z+X))sinh(R— (z+ X)) Rcosh(R— (z+ X))coshR
T3 { sinh R a (sinh R)? } ' (A.1.17)
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where we apply Eq. (A.1.4). By substituting z = X, we have

1 Xkr  2(kr/R) . (kr \ . (kT
TR R er 0 R RN

coshR 1 { _ R(cosh R)z}

~4sinhR 4 (sinh R)2
cosh(R—2X) 1 {(R—2X)sinh(R—2X) Rcosh(R—2X)coshR (A.1.18)
4sinh R 4 sinh R (sinh R)?2 ) o

The driving force proportional to X is calculated as follows:

ANk 2km/R) L (km N (kT
R4 R (&2n2/R2+12 "\ R")™\R"
k=1 z=X+40

e () ()

_{_;

M2

k=1 z=X—-0
_ coshR 1 R(cosh R)?
2sinh R 5 { (sinh R)? }
cosh(R—2X) 1 [(R—2X)sinh(R—2X) Rcosh(R—2X)coshR
~ 2sinhR 2 { sinh R B (sinh R)? }
cosh R R

" 2sinh R 2(sinh R)2
_cosh(R—2X) 1 ((R-2X)sinh(R—2X) Rcosh(R—2X)coshR (A.1.19)
2sinh R 2 sinh R (sinh R)? ’ o

Term proportional to X

The term proportional to X in Eq. (A.1.2) is expressed as follows:

Sokm( 2km/R) N\ (kT N (kw
_ ;kZl 2 <— (272 R + 1>3> sin (Rx> sin <Rx>
1 > k2 - -
=% (/)" ; <k2 N (R/7r)2>3 (cos (kﬁ (x — X)) — cos (kﬁ (x + X))) . (A.1.20)

In the case of [O< %(z—FX) < 27?] N [0< %(m—X) <7r}, we have
1 Xk 2(km/R) . [k . [km
“R2R (~a gy ) sin () o ()
_ cosh(R — (z — X))
16sinh R

1 ([(R—(r—X))sinh(R— (x — X)) Rcosh(R— (xr— X))coshR

16 { sinh R a (sinh R)? }

B 1{(R— (r — X))?cosh(R — (x — X)) 3 2R(R— (r — X))sinh(R — (x — X)) cosh R
16 sinh R (sinh R)?
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_R2 cosh(R — (z — X))

R?cosh(R — (z — X))(cosh R)?
sinh R 2 (sinh R)3 }
cosh(R — (z + X))
; 16sinh R
1 { (R—(r+X))sinh(R— (v + X)) Rcosh(R — (v + X)) coshR}
16 sinh R (sinh R)?
N 1 {(R— (z 4+ X))*cosh(R — (z + X)) 2R(R— (x 4+ X))sinh(R — (x + X)) cosh R
16 sinh R (sinh R)?
2 2 cosh(R — (z cosh R)?
R Cosh(silh};m+X)) +2R h(R (Sl(nhj;zig))( h R) }’ (A1.21)

where we apply Eq. (A.1.5). By substituting x = X, we have

S () () (s o)

cosh R 1 {R R(cosh R)* } 1 {_R2 cosh R R?*(cosh R)3}

" 16sinhR 16 (sinh R)? 8 SR (sinh R)3
_cosh(R—2X) 1 f(R—2X)sinh(R—2X) Rcosh(R—2X)coshR
16 sinh R E { sinh R B (sinh R)? }
1 { (R —2X)%cosh(R — 2X) 2R(R —2X)sinh(R — 2X) cosh R
16 sinh R (sinh R)?
R?cosh(R — 2X) R? cosh(R — 2X)(cosh R)?
a sinh R + (sinh R)3 } ' (A-1.22)

In the case of [O<%(:€+X)<7r} N [—27r<%(m—X)<O],wehave

S (s ) (5

_ cosh(R + (z — X))

16sinh R
1 { (R+ (z— X))sinh(R+ (z — X)) Rcosh(R+ (v — X))coshR}
16 sinh R (sinh R)?
B 1{(R+ (x — X))?cosh(R + (z — X)) B 2R(R+ (x — X))sinh(R+ (z — X)) cosh R
16 sinh R (sinh R)?
_R2 cosh(R + (x — X)) N 2R2 cosh(R + (z — X))(cosh R)? }
sinh R (sinh R)3
cosh(R — (z + X))
- 16sinh R
1{(R— (z + X))sinh(R — (z + X))  Rcosh(R — (x—i—X))coshR}
16 sinh R (sinh R)?2
N 1{(R— (x + X))?cosh(R — (z + X)) B 2R(R— (x4 X))sinh(R — (x + X)) cosh R
16 sinh R (sinh R)?
2 2cosh(R — (z cosh R)?
R cosh(silh}(: + X)) N 2R h(R (Sl(nh;;))( h R) } ’ (A1.23)
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where we apply Eq. (A.1.5). By substituting z = X, we have

- ;:o 7 () () o (52)

cosh R 1 {R R(cosh R)* R)? } 1 {_R2 coshR  R?(cosh R)3}

" 16sinh R 16 (sinh R)2 8 sinh R + (sinh R)3
_cosh(R—-2X) 1 — 2X)sinh(R —2X) Rcosh(R —2X)cosh R
16 sinh R 16 { sinh R (sinh R)? }
N 1 { (R —2X)%cosh(R — 2X) 2R(R —2X)sinh(R — 2X) cosh R
16 sinh R (sinh R)?
R%cosh(R — 2X) R? cosh(R — 2X)(cosh R)?
a sinh R 2 (smh R)3 } ' (A.1.24)

Therefore, the driving force proportional to X is calculated as follows:

]

)1 . kr  2(kr/R) (kT [ km
R4 R (2r2/R2+ 12"\ R" )™\ R”
=1 x=X+0

S G ()

__coshR R N R%cosh R N cosh(R — 2X)
~ 8sinhR  8(sinh R)2  4(sinh R)3 8sinh R
1 { (R—2X)sinh(R—2X) Rcosh(R - 2X) coshR}
8

sinh R (sinh R)?
1 f(R- 2X)? cosh(R — 2X) B 2R(R —2X)sinh(R — 2X) cosh R
8 sinh R (sinh R)?
R%cosh(R — 2X) R? cosh(R — 2X)(cosh R)?
a sinh R 2 (sinh R)3 } ' (A-1.25)

Term proportional to X2
The term proportional to X2 in Eq. (A.1.2) is expressed as follows:
1 X kr 2(km/R)? kr \ . (k=
-5 7 ) o (7)o (52)
1 . k3

R (r/R)’ ; (k2 + (/) (sin (k5 (@ + X)) +sin (k7 (@ = X)) . (A.126)

In the case of |:0<%($+X)<27T] N [0<%(x—X)<7r},wehave

7 () () (7)
B i (R—(x+ X))cosh(R— (x+ X)) Rsinh(R— (z+ X))cosh R
16 {_ sinh R * (sinh R)? }

1
R

T
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N 1f (R—(= + X))?sinh(R — (z + X)) N 2R(R —(z+ X)) cosh(R — (v + X)) cosh R
16 sinh R (sinh R)?
+R2 sinh(R— (z + X)) 2R2 sinh(R — (x + X))(cosh R)?
sinh R (sinh R)3
N 3 [ (BR—(z—X))cosh(R— (z — X)) n Rsinh(R — (xr — X)) cosh R
16 sinh R (sinh R)?
n 1 (R—(z— X))?sinh(R — (x — X)) n 2R(R — (z — X)) cosh(R — (z — X)) cosh R
16 sinh R (sinh R)?
R%sinh(R — (z — X)) _ R%sinh(R — (z — X))(cosh R)?
— A12
* sinh R 2 (sinh R)3 ’ ( )
where we apply Eq. (A.1.6). By substituting z = X, we have
km 2(km/R)? km . [k
_ = Z < (2n2 R+ 1) > cos <Rx) sin (R(X - O)>
B i (R —2X)cosh(R — 2X) n Rsinh(R — 2X)cosh R
~ 16 sinh R (sinh R)?
n 1{ (R- 2X)?sinh(R — 2X) n 2R(R —2X)cosh(R —2X)cosh R
16 sinh R (sinh R)?
2 _ 2 _ 2
R s1nl'1(R 2X) 2R smh(R‘ 2X)(cosh R) . (A.1.28)
sinh R (sinh R)3

In the case of [O<%(w+X)<27r] N [—2W<%($—X)<O},Wehave

1 X kr 2(km/R)* cos kﬂ'x sin kﬂx
_ = M) sin [ 22
R R  (k2n2/R2 4+ 1)3 R R

_ 3 {_(R— (x + X)) cosh(R — (z + X)) N Rsinh(R — (a:—i—X))coshR}

16 sinh R (sinh R)?
N 1 {_(R— (z + X))%sinh(R — (z + X)) +2R(R— (x4 X)) cosh(R — (x + X)) cosh R
16 sinh R (sinh R)?
R?sinh(R — (z + X)) 2R2 sinh(R — (x + X))(cosh R)?
* sinh R a (sinh R)3 }
3 { (R+ (v —X))cosh(R+ (v — X)) Rsinh(R+ (v — X))coshR}
16 sinh R (sinh R)?
N 1 { (R+ (z— X))?*sinh(R+ (z — X)) 2R(R+ (x — X))cosh(R + (z — X)) cosh R
16 sinh R (sinh R)?
Zsi Zsi T — cos 2
R smh(sill—](%x X)) +2R sinh(R —l(—Si(nhR_ig))( h R) }’ (A.1.20)

where we apply Eq. (A.1.6). By substituting z = X, we have

1 Z ke < kw’f%f}r N > cos <’gg;> sin (Z(X + 0)>
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3 (R—2X)cosh(R—2X) Rsinh(R—2X)cosh R
{ B sinh R (sinh R)? }
1 {_(R —2X)?sinh(R — 2X) n 2R(R —2X) cosh(R — 2X) cosh R
sinh R (sinh R)?
R%sinh(R — 2X) R?%sinh(R — 2X)(cosh R)?
sinh R a (sinh R)3 } ‘

16

(A.1.30)

The driving force proportional to X2 is calculated as follows:

{ gﬁ e Qk/T%QR il) s (klgx) o <Igm>pr+o

e () ()

{ —2X) cosh(R —2X) Rsinh(R —2X)cosh R}
41
8

sinh R (sinh R)?
{ (R —2X)?sinh(R — 2X) 3 2R(R —2X) cosh(R —2X)cosh R
sinh R (sinh R)?
B R%sinh(R — 2X) N 2R2 sinh(R — 2X)(cosh R)? }
sinh R (sinh R)3 '

(A.1.31)

Term proportional to X3

The term proportional to X3 in Eq. (A.1.2) is expressed as follows:

Ry 2(km/R)3 . (kr \ . [k«
TR R\ e+ 0t ) "\ BT\ R
k=1

_ 9 ) k‘4 CcOS (k% (-f - X)) — COs (k% (.CL‘ + X)) . (A132)

R(r/R)" kzl (k2 + (R/m?)’ ?

In the case of [O<%(m+X)<27r] N {0<%(x—X)<7r},wehave

1 X km 2(kw/R)3 _(kr \ . [(km
TR R\ B2+ 0t )) "\ BT\ R
k=1

_ 1 cosh(R—(z - X)) 1 ((R— (x — X))sinh(R — (z — X)) Rcosh(R — (a:—X))coshR)

32 sinh R 32 sinh R (sinh R)?
1 <(R— (r — X))?cosh(R — (z — X)) B 2R(R — (r — X))sinh(R — (x — X)) cosh R
16 sinh R (sinh R)?2
R?cosh(R — (z — X)) 2R2 cosh(R — (z — X))(cosh R)?
a sinh R + (sinh R)3 >
1 ((R —(z — X))3sinh(R — (z — X)) B 3R(R — (2 — X))?cosh(R — (z — X)) cosh R
96 sinh R (sinh R)?
B 3R2(R — (z — X)) sinh(R — (z — X)) N 6R2(R — (x — X)) sinh(R — (z — X))(cosh R)?
sinh R (sinh R)3
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45 R3cosh(R — (z — X)) cosh R 6R3 cosh(R — (x — X))(cosh R)3>

(sinh R)2 a (sinh R)4

lcosh(R—(z+X)) 1 <(R — (z+ X))sinh(R — (z + X)) Rcosh(R — (z + X)) coshR)

32 sinh R 32 sinh R (sinh R)?
n 1 <(R— (x + X))?cosh(R — (z + X)) B 2R(R— (x + X))sinh(R — (z + X)) cosh R

16 sinh R (sinh R)?

_R2 cosh(R — (z + X)) N 2R2 cosh(R — (z + X))(cosh R)2>
sinh R (sinh R)3

N 1 <(R — (z+ X))?sinh(R - (z + X)) 3R(R — (x4 X))?cosh(R — (x + X)) cosh R

96 sinh R (sinh R)?

R*(R — (x + X))sinh(R — (z + X)) R*(R — (x + X))sinh(R — (z + X))(cosh R)?

-3 sinh R +0 (sinh R)3
3 _ 3 - ’
+5R cosh(R . (x + X)) cosh R —GR cosh(R .(x+X))(coshR) ’ (A.1.33)
(sinh R)? (sinh R)*

where we apply Eq. (A.1.7). By substituting z = X, we have

_1 Z ki ( k%g"%fi e ) sin (k;ra:) sin (ZT(X - 0)>

B 1 coshR 1 < B R(coshR)2> 1 <_R2 cosh R R2(CoshR)3>

32sinh R 32 (sinh R)2 8 SuhR | (smh R
1 < RS R3 (.cosh R)? a4 6R3 ('cosh R)? N R3 (.cosh R)? B R3 (.cosh R)4>
96 (sinh R)? (sinh R)? (sinh R)? (sinh R)*
1 cosh(R—2X) 1 [((R—2X)sinh(R—2X) Rcosh(R—2X)coshR
32 sinhR 32 < sinh R a (sinh R)? >
N 1 <(R —2X)?cosh(R - 2X) 2R(R —2X)sinh(R — 2X) cosh R
16 sinh R (sinh R)?
R%cosh(R — 2X) N R? cosh(R — 2X)(cosh R)2>
sinh R (sinh R)3

R(R —2X)?cosh(R — 2X) cosh R

N 1 <(R —2X)3sinh(R — 2X) 5
96 sinh R (sinh R)?
B 3R2(R —2X)sinh(R — 2X) n 6R2(R —2X)sinh(R — 2X)(cosh R)?
sinh R (sinh R)3
R3 cosh(].% —2X)coshR 6R3 cosh(R - 2X)(cosh R)d) ' (A1.34)
(sinh R)? (sinh R)4

In the case of [O<%(m+X)<27r] N [—2W<%($—X)<O},wehave

5 () ) ()

_ 1 cosh(R+(z—-X)) 1 ((R+(:c—X))sinh(R+(x—X)) B Rcosh(R+(x—X))coshR>

32 sinh R 32 sinh R (sinh R)2
1 ((R+ (z— X))?cosh(R + (x — X)) B 2R(R+ (x — X))sinh(R+ (z — X)) cosh R
16 sinh R (sinh R)?
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R%cosh(R + (z — X)) N 2R2 cosh(R + (x + X))(cosh R)2>
- sinh R (sinh R)3
R(R+ (x — X))?cosh(R+ (z — X)) cosh R

1 <(R+ (r — X))?sinh(R + (x — X)) s
96 sinh R (sinh R)?
B 3R2(R + (z — X))sinh(R+ (z — X)) N 6RQ(R + (z — X)) sinh(R + (z — X))(cosh R)?
sinh R (sinh R)3
R3cosh(R+ (z — X)) cosh R R3 cosh(R + (z — X))(cosh R)3
o ( (sin(hR)Q ! 0 : (si(nhR)4))( ) )
_leosh(R—(z+X)) 1 <(R — (z + X)) sinh(R — (2 + X)) Rcosh(R — (z + X))coshR>
32 sinh R 32 sinh R (sinh R)?
N 1 ((R— (z 4+ X))*cosh(R — (z + X)) 2R(R— (z + X))sinh(R — (z + X)) cosh R
16 sinh R (sinh R)?
_R2 cosh(R — (z + X)) N 2R2 cosh(R — (x + X))(cosh R)2>
sinh R (sinh R)3
N 1 ((R— (z + X))3sinh(R — (z + X)) —SR(R_ (z + X))%cosh(R — (z + X)) cosh R
96 sinh R (sinh R)?
B 3R2(R — (z + X)) sinh(R — (z + X)) N 6R2(R — (2 + X)) sinh(R — (z + X))(cosh R)?
sinh R (sinh R)3
3cosh(R — (z cos 3 cosh(R — (z cosh R)?
+5R h(R(Sin(h;—)j()) hR 6R h(R (anh—;i))( h R) > ’ (A1.35)

where we apply Eq. (A.1.7). By substituting x = X, we have

_ % 001 %ﬂ <_ (k?fr(f/szl)‘*) sin (ZR) sin (Z(X + 0)>

k=
1 coshR 1 < B R(coshR)Q) 1 (_R2 cosh R RQ(COShR)3>

32sinh R 32 (sinh R)2 8 SR (sinh R)3
1 <R3 3 3Rg(cosh R)? Py 6R3(cosh R)? R3(cosh R)? B R3(cosh R)4>
96 (sinh R)? (sinh R)? (sinh R)? (sinh R)4
1 cosh(R—2X) 1 [((R—2X)sinh(R—2X) Rcosh(R—2X)coshR
32 sinhR 32 < sinh R a (sinh R)2 )
n 1 <(R —2X)?cosh(R — 2X) B 2R(R —2X)sinh(R — 2X) cosh R
16 sinh R (sinh R)?
B R%cosh(R — 2X) N 2R2 cosh(R — 2X)(cosh R)2>
sinh R (sinh R)3
N 1 <(R —2X)3sinh(R — 2X) 3R(R —2X)%cosh(R — 2X) cosh R
96 sinh R (sinh R)?
B 3R2(R —2X)sinh(R — 2X) n 6R2(R —2X) sinh(R — 2X)(cosh R)?
sinh R (sinh R)3
R3 cosh(]'% —2X)coshR 6R3 cosh(R - 2X)(cosh R)3> . (A.1.36)
(sinh R)? (sinh R)4
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The driving force proportional to X3 is therefore calculated as follows:

L e ()= ()]

k=1
{ Lo~hkr 20km/RP <k7rx> - (kwx>}
Y R R (k272 R2 4 R R
R~ R (k272 /R? 4+ 1) R R R
cosh R R R?cosh R R3 B R3(cosh R)?

~ "16smnh R 16(simhR)2 | A(simhR)? | 24(snh R)?  S(sinh R)
1 cosh(R—2X) 1 [((R—-2X)sinh(R—2X) Rcosh(R—2X)coshR
16  sinhR 16 ( sinh R a (sinh R)? )
1 ((R —2X)2cosh(R — 2X) 2R(R —2X)sinh(R — 2X) cosh R
8 sinh R (sinh R)?
R? cosh(R — 2X) N R? cosh(R — 2X)(cosh R)2>
sinh R (sinh R)3
1 <(R —2X)3sinh(R — 2X) 3R(R —2X)?cosh(R — 2X) cosh R
48 sinh R (sinh R)?
3R2(R —2X)sinh(R — 2X) n 6R2(R —2X)sinh(R — 2X)(cosh R)?
sinh R (sinh R)3
5R3 cosh(R —2X)coshR 6R3 cosh(R — 2X)(cosh R)5>
(sinh R)? (sinh R)4 '

(A.1.37)

Taylor expansion of the driving force

The driving force F' is obtained as
(2], 8,
07 |,mxi0 0T[p=x o

_ sinh(R — 2X)
- sinhR
cosh R R cosh(R — 2X)
<2sinhR ~ 2(sinhR)?2 2sinhR

1 [(R—2X)sinh(R—2X) Rcosh(R—2X)coshR )\ dX

2 { sinh R B (sinh R)? }) dt
cosh R R R%*cosh R cosh(R — 2X)

<_ 8sinh R 8(sinh R)2 + 4(sinh R)3 8sinh R
1 ((R—2X)sinh(R—2X) Rcosh(R—2X)coshR

{ sinh R B (sinh R)? }
{ (R —2X)%cosh(R — 2X) 2R(R —2X)sinh(R — 2X) cosh R

sinh R (sinh R)?
B R%cosh(R — 2X) N 2R2 cosh(R — 2X)(cosh R)? }) d*X
sinh R (sinh R)3 dt?
N (3 { (R —2X)cosh(R —2X)  Rsinh(R - 2X) coshR}
8 sinh R (sinh R)?

ool = ool
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1 { (R —2X)%sinh(R — 2X) 2R(R —2X)cosh(R — 2X) cosh R

8 sinh R (sinh R)?
R2sinh(R — 2X) N R?sinh(R — 2X)(cosh R)? }) <dX> 2
sinh R (sinh R)3 dt
cosh R R R?cosh R R3 R3(cosh R)?
<_ 16sinh R 16(sinh R)2 * 4(sinh R)3 - 24(sinh R)2  8(sinh R)*
1 cosh(R—2X) 1 [((R—2X)sinh(R—2X) Rcosh(R—2X)coshR
16 sinhR 16 ( sinh R B (sinh R)2 )
1 <(R —2X)?cosh(R — 2X) B 2R(R —2X)sinh(R — 2X) cosh R
8 sinh R (sinh R)?
R%cosh(R — 2X) n R? cosh(R — 2X)(cosh R)2>
sinh R (sinh R)3
1 ((R —2X)3sinh(R — 2X) 3R(R —2X)?cosh(R — 2X) cosh R
48 sinh R (sinh R)?
B 3R2(R —2X)sinh(R — 2X) N 6R2(R — 2X)sinh(R — 2X)(cosh R)?
sinh R (sinh R)3
+5R3 cosh(R —2X)coshR 6R3 cosh(R — 2X)(cosh R)3 >> (dX) 3
(sinh R)? (sinh R)* dt ) -

(A.1.38)

To analyze the stability of the rest state, F' is expanded around the fixed point X = R/2. We set
X =R/2+ X (60X < R) and obtain the force related to § X as

60X +4(6X)°

B = 5amr
< coshR R 14 2(6X)? 1 {4(6X)2 RO+ 2(5X)2)coshR}> 5X
2sinh R 2(sinh R)? 2sinh R 2 | sinhR (sinh R)?
R?coshR  1+2(5X)?> coshR R 1 (4(6X)?2 R(14+2(6X)?) coshR
<4(sinh R)3 * 8sinh R 8sinhR 8(sinhR)2 8 { sinh R (sinh R)? }
1 {4(5)()2 _ 8R(6X)*coshR  R*(1+2(6X)?) N 2R2(1 +2(6X)?)(cosh R)? }) en
8 | sinh R (sinh R)? sinh R (sinh R)3
3( 20X +8(0X)2 R(66X +4(6X)3) cosh R
* <8 {_ sinh R 3(sinh R)? }
1{ 8(6X)> R(40X +8(6X)3)coshR
8 {_ sinh R (sinh R)2
R*(66X +4(0X)?)  R*(120X + 8(6X)%)(cosh R)? }> (5')()2
3sinh R 3(sinh R)3
cosh R R R%cosh R R3 R3(coshR)? 1 1+2(6X)?
<_16 Suh R 16(snhR)? | 4(smbhR)® 24(sinh R)2  8(sinh R)* 16 bR

1 /4(6X)?> R(1+2(6X)?) cosh R
16 < sinhR (sinh R)? )

1 /4(6X)? 8R(6X)?coshR R?*(1+2(6X)?) R*2+4(6X)?)(cosh R)?
8 < sinhR (sinh R)? B sinh R + (sinh R)3 >
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1 <_12R(5X)2coshR 12R%(6X)%  24R?(6X)?(cosh R)?

48 (sinh R)2 B sinh R (Sinh R)5
R(1+2(0X)*)coshR  R*(1+2(6X)*)(cosh R)?® - \3
+5 (sinh R)? —0 (sinh R)* ) ) (5X) . (A.1.39)

By neglecting the higher-order terms of §X, 6X, and X, we have

2 4 3 (coshR —1)(sinh R+ R)
- 0X — — (0X) ,
sinh R 3sinh R 2(sinh R)?

+ (smth)2 (=3sinh R 4+ Rcosh R) (6X)%0X

F(6X,6X,6X) = — 6X

1 ..
- m(sinh R(sinh R — R) + R*(cosh R — 1))(cosh R — 1)6 X

1
~ I{smb B {sinh R(3sinh R — 5Rcosh R) + R*(2 + (sinh R)?)} 6.X (6X)
i
1

" 48(sinh R) ((2 —cosh R)R® + 6R” sinh R
. \3
+3(cosh R+ 1)(sinh R — R)) (cosh R — 1)2 <5X> 7

(A.1.40)
which is Eq. (2.2.20).
A.1.2 Dependence of the coefficients in Eq. (2.2.20) on the water channel length
R

The coefficients of 6X, §X, and X and their cross terms in the driving force in Eq. (2.2.20)
depends on R. Here we show the dependence of A, B, C, E, G, H, and I on the water channel
length R in Fig. A.1.1.

A.1.3 Derivation of Eq. (2.2.22)

The dimensionless form of the equation for concentration field is given by

dc(z,t)  0%c(a,t)
ot Ox?

—C(."L‘,t)—l—f(l’,t), (A.1.41)

Here, f(x,t) is the source term. The Green’s function g(z,t), which is the concentration field
with f(x,t) = 0(x)d(t), is considered. By introducing the Green’s function and the source term in
wavenumber space,

g(x,t) = / / §(k,w)e** Tt ddw, (A.1.42)
27‘(’

f(z,t) :W / N / N ekt g dw, (A.1.43)

and substituting them into Eq. (A.1.41), we have the equation for the Green’s function in wavenum-
ber space, g, as follows: )
(iw — (ik)* + 1) g(k,w) = (A.1.44)
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Figure A.1.1: Plots of the coefficients A(R),
water channel length R.

B(R), C(R), E(R), G(R), H(R), and I(R) against the
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Thus we have )

gk, w) = ———5——. Al4
Then g(k,w) is transformed with regard to w as follows.
1 - iwt _ 1 > 1 iwt
or | IkweTde =50 | e W
:e—(kQ—l—l)t@(t)
=g(k,t), (A.1.46)

where O(t) is the Heaviside’s step function. It is noted that the function g(k, t) satisfies the following
equations:

g, t) = % /_ Z Gk, ) d, (A.1.47)
(Gt +1)s
5 TR+ 1) gk, t) = 0(t). (A.1.48)

Here we define ¢(z,t) as the concentration field when the source term in Eq. (A.1.41) is f =
0(x — X (t)). The concentration field and source term in wavenumber space are expressed as

[ee]
é(k,t) E/ c(x, t)e *dy, (A.1.49)
/ §(x — X(t))e = ¢~ RXO) gy, (A.1.50)

Using the Green’s function g(k,t), é(k,t) is expressed as in the following integral.
) ) ,
i(k,t) = / e X Gkt —t')dt. (A.1.51)
—0o0

Using partial integration, the integral form in Eq. (A.1.51) is expanded as follows:

e~ kX (?) z'k:X(t)e_ikX(t) (sz(t) + k2 (X(t) 2)e— kX (1)

c(k,t) = —
) =TT T ey (k2 + 1)3
13 (X (1)) 3e—ikX ()
_ik¥( (22)_)’_ i)4 + (higher order terms). (A.1.52)
Since the concentration field in real space is expressed as
1 [ '
clwt) = o / é(k, t)e e dk, (A.1.53)
™ —0o0

the gradient of the concentration field is obtained by integrating the following form:
9 i < ikx
%c(m,t) =5 /_OO ke(k,t)e™™  dk

_ [k XE)  iEPXO R R XS aemxo) g,
2w oo | KRR+ (K24 1)2 (k2 +1)3 (k2 +1)4 '

(A.1.54)
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Then each term is calculated. The first term, which corresponds the gradient of the steady state,
is integrated as follows:

ATk kX~ ool{ 1 1 }eik(:c—xundk

2 J_ o K2+ 1 2m k+v k—1
1 [ —e(@=X®) z—X(t) >0
—= ’ ) A.155
{ewxwx v - X(t) < 0. (A.1.55)

From the definition of the driving force, the driving force originating from the concentration field
of the steady state is given by

(& 0. (A.156)
Ox X(£)40 O X(t)—0
The second term is integrated as follows:
L[~ K Sik(a—X (1)
"% / T
1 1 1 1 1 - ,
il - X (#) e @E—X(1) gk
m{m( =) 1 e ) | e
X(t)e X(t)(@ - X()e "D w - X(1) >0,
X(t)e" X(t)(az— X (t))e@= X)), x—X(t) <0
= —ZX(t)e_‘x_X(t)‘ + X (t)|z — X(t)]e”l#=X®I (A.1.57)
From the definition of the driving force, the driving force originating from the second term is given
by
1.
(% 9e = —X(t). (A.1.58)
O X (t)+0 O X(t)—0 2

The third term is integrated as follows:

1 / TR g ueeXOgy
21 J_oo (K2 +1)3

_ Loy
C2m ) \16i \k—i k+i

1 1 1 1 1 1 ) P
16 <(l<ri)2 " (k+i)2> T <(ki)3 - (k+i)3>}X(t)e k(z=X (1) g,
%X (e~ =X)L 2K (1) (x — X (1)) X O) %X (t)(x — X (t))2e~ =X O),

2
_1 z—X(t) >0,
8 %X’ (£)e= X — %X’ (t)(x — X (t))el*=X®) — %X () (@ — X (t))2e@=X @),
x—X(t)<0
1

1 . 1 .
= 7X(t)€—|x—X(t)| + TGXU)M _ X(t)|€—|ac—X(t)| _

16 = X(t)(z — X(t))2e”l#= X0 (A.1.59)

16
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From the definition of the driving force, the driving force originating from the third term is given

by
[ 9e
O X ()40

The fourth term is integrated as follows:

3 . -
( i 3 (X(t))2elk(me(t))dk
> 0o
(%

Oc 1.
+ = - —X(). (A.1.60)
833 X(t)0> 8

7
2

K2+ 1)

7 3 1 1 1 1 1 . ik(o— X (

2 ) {162 <(k —i)? (k+i)2> T8 <(k —p (k+i)3> } Cete)te =
B(X(1)*(w = X (1)) — (X(1))*(z — X(8))?e™ ") 2 — X (1) >0,
3(X ()% (z — X (1)eXO) 4 (X (1)2(z — X (1))2e@X®) 2 — X (1) <.

(A.1.61)
From the definition of the driving force, the driving force originating from the fourth term is given

by
[ 9
ox

The fifth term is integrated as follows:

I 3 ik(z—X (1)

Sl 1 L1
T ) 32 \k—i k+4i) 32\ (k—i)?  (k+1i)2

R (R — L ! ¢ (1)) Peika-X (1)
BCANCEE (k+z)3> 16 <(k D Gty >}<X(t))3 S dk
(z

o0
1
- 16

e =0. (A.1.62)
Ox X(t)—0

X ()40

1 1 (o
4(X(t)):)’e )+Z( () (z — X (t)e” =X
1] 5 (R0 — X ()2 X0 (X (1)@~ X)X, oo X (1) >0
=311 o 1 o
5 X @)X - S (0) (@ - X (1)) X
| 5 (X0 — X ()20 4 L (X))~ X (1) X0, 2 X(1) <0
_1 8-(a—x() ;. 1 81y ~(=-X(1))
= 32(X(t)) + 55 (X(0)°|lz — X(t)le
1. o 1 o
- 176()(@))3(3; — X(t))2e~(==XM) _ %(X(t))gb: — X (t)]Pe =X, (A.1.63)
From the definition of the driving force, the driving force originating from the fifth term is given by
Jdc Oc 1 .
— | = — = ——(X(t)%. (A.1.64)
<8x x@w+o  9Tlxq o> 16

From Egs. (A.1.56), (A.1.58), (A.1.60), (A.1.62), and (A.1.64), the driving force F is given by
1. 1. 1 .
Fo_ |2 Oc = —X(t) - = X(t) — —(X(1)3, (A.1.65)
Ox X ()40 (t)—0

0| x
which is the same as Eq. (2.2.22).
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A.2 Supplementary information for Section 2.3

A.2.1 Details in numerical calculation

To make phase diagrams shown in Fig. 2.3.7, we calculated the time evolution with four initial
conditions for each parameter set and unified the results. We used several initial conditions since
several types of motion are stable (typically two types of motion can be bistable) . The initial
conditions are summarized in Table A.1, and the phase diagram obtained by calculating each initial
condition is shown in Fig. A.2.1.

Table A.1: Initial conditions for x1, x2, v1, and vo. The variables R,, R;, and K in the table are set

to be Ry = \/|2u/(8A +¢€)|, R: = \/|2u/(4B +€)|, and K = /(n + j)/(k + €), respectively. Here

we set A= 3k+n+j5)/8 B=(k+n)/4, p=>b/2, 6 = 0.01, and ¢ = 0.005. Reproduced from
Ref. [37].

il T2 (% ()
(i) Ry+0 ) 0 R,
(i) R 0 5 20
(iii) 50R,/b 50R,/b+6 B50KR, B50KR,+ 6
(iv) 5 0 50R,  50R,+6

A.3 Supplementary information for Section 2.4

A.3.1 Hankel transform and discrete Hankel transform

In this subsection, Hankel transform and “discrete Hankel transform” are introduced.

Hankel transform

Here we consider a function f(r) whose domain is r € (0,00). The Hankel transform of f(r) is
given by

flr)= /Ooo kF (k)T (kr)dk, (A.3.1)

where the F'(k) is a function in wavenumber space, which is given by
Pk = / r £ (1) T (k). (A.3.2)
0
The function J,,(r) is the first-kind Bessel function of n-th order.

Prepration for the calculation of the norm of Bessel function

The Bessel differential equation is given as

<d2 LLrd <1 _ ”2>) To(r) = 0. (A.3.3)

dr?2 = rdr 72
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(i)

(ii)

(1iii)

@v) | "0

Figure A.2.1: Phase diagrams obtained by the numerical calculation with different initial conditions.
The Roman numerals (i)-(iv) in the figure correspond to the initial conditions (i)-(iv) in Table A.2.1.
The parameters are set to be ¢ = h = p = 0. The red, blue white, and yellow regions are
corresponding to the parameter regions where rotation, oscillation, divergence, and undeterminable
motion was observed. Here we clarified trajectories sufficiently distant from the origin with time as
divergence. Reproduced from Ref. [37].
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By replacing r with Ar, we have

(Ciz+1d+ <)\2_’;z>>jy(>\r):0, (A.3.4)

rdr

Equation (A.3.4) is transformed in the following form:

i dJ,(Ar)
dr " dr

) — ”:j,,(m) + A7, (Ar) = 0. (A.3.5)

Here we consider the difference between the following equations:

Tv(Anr) LZ“ <TW> - Iij()\mr) + AmQTJ,,()\mT)] =0, (A.3.6a)
Tv(Amr) [;i (’”W) - lij(m) + AnQTJ,,()\nr)} =0, (A.3.6b)

where these equations are obtained by multiplying 7, (A7) and J,(Ap,r) with (A.3.5) for A = A\,
and A = Ay, respectively. We have

jl,()\nr)% <rd‘7”c(limr)> —jV(Amr)% <TCUV(§7M>+(/\m2—)\n2)rjl,(/\mr)j,,()\nr) =0. (A.3.7)

Using Eq. (A.3.7), we have

- ()‘mQ - )‘n2) /Tju()\mT)jy()\nr)dr

- o (A02) s (455 o

= |20 (222 - 0 (2 (A:33)

Bases satisfying the Dirichlet condition

From Eq. (A.3.8), we have

— (M2 = A2 /0 ! 7Ty (Amr) T (Anr)dr
= [0 (rEZR) g0, (22 )] N (43.9)

r T 0

Here we set A\, = &, /R. Since J, (A7) = 0 holds considering the Dirichlet condition, we have

R
2 — A2) / r T Oont) T Ot ) = 0, (A.3.10)
0

where {&,} is the set of points which satisfy J,(§,) = 0 and &, > &, for n > m. For m # n, we
have

R
/ Tju()\mr)ju(An'r)dr = 07 (A311)
0
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and thus J, (A1) and J,(A,r) whose domains are [0, R| are orthogonal to each other for m # n.
To obtain the norm of J,(\,r), we calculate the following integration:

R
/ Ty (M) Ty (Apr)dr
0

R
= lim r Ty (Ar) T, (Apr)dr

A=An Jo
, A, (\r) AT, )\ 1"
i s () (F) - qon (R |
ROy O R)TLAR) — ATy AR) T (A R))

By applying L’Hopital’s rule, we have
R
/ Ty (M) Ty (Apr)dr
0
— i BB TJAR) + ART, (A R) T (AR) = MRIy(AR) T (AnRR))
— A 2\
—gim (2 r ORI OWR) - (LT OR) + 7'OR)) T (WR)
T ash, 2 A\ AV viin ARV v v
R2 ! !/ 1 ! "
=5 <jV(AnR)jV(AnR) — ()\ Rjy()\nR) + J, ()\nR)> j,,()\nR)> . (A.3.13)
Since J,(AnR) = 0 holds considering the Dirichlet condition, we have
R R? R? 1
/0 Ty (M) Ty (Apr)dr = B3 (jlﬁ()\nR))Q =5 (jy’(gn))z = . (A.3.14)

Thus the functions {\/ bl,njl,()\nr)} are the bases of the function space for [0, R]. The function f(r)
which satisfy the Dirichlet condition at r = R is given by

F) =" bunfadnTy(Aar), (A.3.15)
neN
where n
fu= / ()T ). (A3.16)
0

The typical examples of the bases which satisfy the Dirichlet condition are plotted in Fig. A.3.1(a).

Bases satisfying the Neumann condition

From Eq. (A.3.8), we have

R

— (m? = M) /0 F o Oont) T )
_ [J,,@nr) (W) = 7 0un) (dj;“ﬂ N (A3.17)
0
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@ 7 T T T (b) 7 T T T
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r/R r/R

Figure A.3.1: Typical examples of the bases which satisfy (a) Dirichlet and (b) Neumann conditions.

Here we set A, = (,,/R. Since (0J,(Anr))/(0r) = 0 holds considering the Neumann condition,
we have

R
(A = A2) / Ty Amr) Ty (Anr)dr = 0, (A.3.18)
0

where {(,} is the set of points which satisfy 7,(¢,) = 0 and (, > (, for n > m. Here J,(r) means
(0T,(r))/(0r). For m # n, we have

R
/ Ty (Amm) Ty (Anr)dr =0, (A.3.19)
0

and thus J, (A7) and J,(\,r) whose domains are [0, R] are orthogonal to each other for m # n.
To obtain the norm of J,(\,r), we calculate the following integration:

/OR T (A1) Ty (Anr)dr. (A.3.20)

From Eq. (A.3.13) and J(\,R) = 0 from the Neumann condition, we have

1

R R2 RQ
/ Ty (M) Ty (Apr)dr = —?j;/()\nR)Jy()\nR) = —?J;/(Cn)j,,(gn) = (A.3.21)
0

Qyn

Thus the functions {\/a,,J,(A,7r)} are the bases of the function space for [0, R]. The function f(r)
which satisfy the Neumann condition at r = R is given by

FO) =" avnfadndy(Anr), (A.3.22)
neN
where
R
fn = / f(r) Ty (Anr)rdr. (A.3.23)
0

The typical examples of the bases which satisfy the Neumann condition are plotted in Fig. A.3.1(b).
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A.3.2 Calculation of the driving force in the two-dimensional infinite system

The concentration field and source term are decomposed by Hankel and Fourier transform in r-
and 6-directions, respectively.

c(r,0;p, ¢ Z / Tim) (k)™ kdk, (A.3.24)

m=—0oQ

f(r,0;p, ¢ Z / T (kp(£)) Ty (k)™ O ke, (A.3.25)

m*—oo

By substituting Egs. (A.3.24) and (A.3.25) into Eq. (2.4.18), we have

Oc (K i
¢ 615( ) _ —(k* + e (k) + Tjn (kp(t))e= ™o, (A.3.26)
First, we derive the Green’s function g,,(k,t), which satisfies the following equation:

Ogm (k

%t() = —(K* + 1)gm(k) + 5(t). (A.3.27)
The solution of Eq. (A.3.27) is obtained as
—(k2+1)t

gm (k) = { 8 = e (e ), (A.3.28)

where O(t) is the Heaviside’s step function. By using the Green’s function g, (k, t), the concentration
field ¢,,(k,t) is expressed as

em/(k,t) :/ ;7|m\(kp(t,))e_im¢(t/)gm(k7 t—t)dt'
t
_/ jlm‘(kp(t/))e_imqs(t')e—(k2+1)(t—ﬂ)dt/
t
:67(k2+1)t / ‘7|m|(kp(t/))efimqﬁ(t’)6(k2+1)t’dt/ = 67(k2+1)t1' (A329)

The integral I is expanded using partial integration.

1 =5 Tkl o Lk (0.T, (k1) + im(0) Ty (o ) b =0

A
g5 { BB Tl (ol0) + (02T k(1)

~2ikmp(0) ()T (ko (1)) — im(0) Ty (hp(t)) — (D)) Ty (i (1)) €=
+ iy LRI (ol0) + 36K m(po(0) (1) T (1)

+ 3km® p() (6(1)) 2T (kp (1)) = im*($(t)) Tign) (ko (2))
+ KD (8) T (kp(t)) + 3k2ppJ (kp(t)) = 3ikmpo T}, (kp(t))

=3ikmpo T} (ko(t)) — imD T, (kp(t)) = 3m 667}, (kp(t) )} e~ imo(t)
o (A.3.30)
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Here we denote k2 + 1 as A. Thus we have

c(r,0;p, ¢)

B iﬂ i / i %‘7"”'(kp(t))j\m\(kr)eim(a_‘b(t))kdk
Z / O Ty (k1)) + i) Ty (kp(£)) } T i) =4O el

5 3 5 (90T )+ RGO T 1)~ 2060600 T 50
—im(t) Tjm| (kp(t)) — m*(H(t))* Ty (kp(t))} Tiom| (k)™ OO g
Far 3 g (R T kot0) + 38m G000 (0

+ 3km?p(t) ((1))> T (kp(£)) — im® (S(t))* Ty (Eip(t))
— KD () Ty (kp(t)) = 3K ppT 0 (kp(1)) + Bikmpd T}, (kp(t))
BRI PGy (Rp(8)) + 0T Ty (kp(8)) + 3Gy (kp(6)) } T ()™ =4 e,

(A.3.31)
The first term in Eq. (A.3.31) should correspond to the steady state:
1 ,
— _ im(0—a(t))
Ko (\/7-2 22— 2rpcos(f — ¢ Z / kg — Tnlkp(£)) T (kr)e kdk.
(A.3.32)

By changing the spatial scale as r = A7, p = Ap, and k = E/A, we have

jm ())jm( e im(0—¢()) L. dk.

—IC0<)\\/7"2 p? — 2Fpcos(6 — qﬁ Z/

k2 + /\2
(A.3.33)
By differentiating the both sides of Eq. (A.3.33) with regard to A, we have
1
P 2 27pcos(f — d)Ka ()\\/fQ ¥ 52— 2ipcos(0 — ¢>))
4T\
1°°/°° 1 - N
= — Tn(kp(t)) Ty (k7)™ OO A.3.34
w3 ), G (0 35 (A.3.34)
By setting A = 1, we have
1 2 2 2 2
E\/T + p? —2rpcos(0 — P) K4 <\/7“ + p? —2rpcos(d — qb))
I o [~ 1 :
- = im(0—¢(t))
o m;m /0 i 1)2jm(kp(t))jm(kr)e kdk. (A.3.35)
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Term proportional to p
By differentiating the both sides of Eq. (A.3.35) with regard to p,

1 p —rcos(f — @)
AT \/r2 + p2 — 2rpcos(0 — P)

—i—%(p—rcos(@ ®))Ky' <\/7"2+,0 — 2rpcos(d — qb))

K1 <\/7“2 + p? — 2rpcos( — (b))

~or Z / k‘2—|—1 T (kp(t ))jm(kr)eim(0_¢(t))kdk. (A.3.36)

Using the relation zK,'(2) + vK,(z) = —2K,_1(2) on page 79 in Ref. [81], we have

- ﬁ (p—rcos(0 — ) Ko (\/7“2 + p? —2rpcos(6 — gb))

= Z / g5 () ) . (4.337)

The term proportional to p is calculated using Eq. (A.3.37). We multiply the both sides of
Eq. (A.3.37) by —cost and —sint and integrate them on the small circle with the radius of e
around r = p for e, and e, directions, respectively. Here we set € = \/ r2 4+ p2 — 2rpcos(f — ¢) and
p —rcos(f — @) = ecost.

—k pep 27

k k 2
pos. Byml (eKo(€) cost) (— cost)edt = E/Co(e)/’)ep = (—nyuler + log 6) pe,, (A.3.38)

—k‘ [')6(;5
me2 Am

(eKo(€) cost) (—sint)edt = 0, (A.3.39)
where Ygyler is the Euler’s constant (vgyler =~ 0.577).
Term proportional to ¢

By differentiating the both sides of Eq. (A.3.35) with regard to 6,

1 rpsin(f — ¢)
Am \/r2 4 p2 — 2rpcos

+ %’FpSIIl 0 — o)y (\/rz p? — 2rpcos(f — d)))

= qﬁ)Kl <\/7"2 + p? — 2rpcos(6 — gi)))

QW Z / k.g +1 T (kp()) Ton (k)™ 09O k. (A.3.40)

Using the relation 2K,/ (2) + vK,(2) = —2K,_1(z), we have

ﬁrp sin(f — ¢)Ko <\/7"2 + p? —2rpcos(6 — gb))

R © —im .
= — S im(0—o(t))

115



A Supplementary Information for Chapter 2

The term proportional to gzﬁ is calculated using Eq. (A.3.41). We multiply the both sides of
Eq. (A.3.41) by cost and sint and integrate them on the small circle with the radius of € around

= p for e, and e, directions, respectively. Here we set € = \/7'2 + p? —2rpcos(f — ¢) and
p — rcos(f — ¢) = ecost.

—k
qﬁep/ epko(€) sint(— cost)edt = 0, (A.3.42)
e 47 J,
_k' ] 27 k. . k 2 .
m/ epko(€) sint(—sint)edt = —elCo(€)phey = — | —VEuler +10g8 — | poey.  (A.3.43)
we? dm Jo A7 47 €

Term proportional to p

By differentiating the both sides of Eq. (A.3.34) with regard to A,

72 4+ p2 — 27pcos(f — ) Ky </\\/772 + p% — 2rpcos(6 — ¢)>

+ % (7*2 +p” — 2Ffcos(f — ¢)) Ky (A\/ﬁ + 72 — 27pcos(0 — ¢))

271' Z / k‘2—|—)\2 (kﬁ(t))jm(zi)eim(e_qs(t))];/‘d];?- (A.3.44)

m=—00

By dividing the both sides by —4\, we have
V2 + p2 — 27pcos( — §) Ky (x\\/fQ + p? — 27pcos(6 — qb))

1673
1
STy (7 + p* — 27pcos(0 — ¢)) Ky ()\\/7:2 7?2 — 2ipcos(0 — d’))
I — [ 1 . - -
= — _— 5 #)eim(O0—6W) L. k. A 34

Using the relation 2K,/ (2) + vK,(z) = —2K,—-1(2), we have

(7’ + p? — 27 pcos(f — 9)) Ks <)\\/7“2 p? — 27pcos(d — qS))

1672
1 3 > 1 L7 7.5\ ,im(0— 797
= o Z /0 mjm(kp(t))xn(kr)e 0= L dk. (A.3.46)

By setting A = 1, we have

1
Tor (r* + p* — 2rpcos(6 — (Z))) Ko (\/7‘2 + p? — 2rpcos( — d)))
1 )
- im(0—¢(t))
o Z / k2 TR T (kp(t)) T (kr)e kdk. (A.3.47)
By differentiating Eq. (A.3.47) with regard to p, we have
1

. _ 2 4+ _ _
167r2 (p—rcos(d — @) Ko <\/7" p? — 2rpcos(6 (b))

1
+ﬁ( p—1cos(f — ¢))\/12 4 p2 — 2rpcos(d — ¢)Ko’ (\/r2+p — 2rpcos(f — qﬁ))

1 o k .
= — - 7/ im(0—o(t))
= o mZ_OO | g Go0) Ttk kdk. (A.3.48)
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Using the relation z/C,/(z) + vK,(z) = —2K,—1(z), we have

— %(p —rcos(f — ¢))\/12 + p2 — 2rpcos( — §)K; <\/r2 + p? —2rpcos(6 — gb))

_ 1 - o k / im(0—ao(t
= m;)o/o G 1)3jm (kp(t)) T (k)™ 0= . (A.3.49)
The term proportional to p is calculated using Eq. (A.3.49). We multiply the both sides of
Eq. (A.3.49) by —cost and sint and integrate them on the small circle with the radius of € around
r = p for e, and e, directions, respectively. Here we set e = \/7“2 + p? —2rpcos(f — ¢) and
p — rcos(f — ¢) = ecost.

2w

—k pe, hep

_e2 - _ _phe _
(—€°K1(e) cost) (— cost)edt leWeICl(e) k167r’

—=—* A3.
me? 167 (4.3.50)

27

=W pep (—62}C1(e) cost) (—sint)edt = 0. (A.3.51)

T2 167 J,
Term proportional to p?

By differentiating the both sides of Eq. (A.3.49) with regard to p, we have

— VT = 2rpeos(0— o)1 (VIR o 2rpcos(d — 9))

1 (p —rcos(d — ¢))?
167 \/7“2 + p? —2rpcos(f — ¢

~ gz 0 reos8 — K (VT P 2rpeos(d —9)

)IC1 <\/r2 + p% — 2rpcos( — qS))

1 - - k2 " im(0—
=0 D /0 (VA (kp(t)) T (kr)e™ 0= k. (A.3.52)

m=—0oQ

Using the relation 2K,/ (2) + vK,(2) = —2K,_1(z), we have
1
- 167\/7“2 + p? —2rpcos(6 — ¢)Ky <\/r2 + p? — 2rpcos(6 — qb))

+ %(p —rcos(f — ¢))*Ko <\/7"2 + p? —2rpcos(f — gb))

1 &[> k2 4
_ M " im(0—o¢(t))
o mZ_OO /0 2 H)gjm (kp(t)) Tm (kr)e kdk. (A.3.53)

The term proportional to p? is calculated using Eq. (A.3.53). We multiply cost and —sint to
the both sides of Eq. (A.3.53) and integrate them on the small circle with the radius of € around
r = p for e, and e, directions, respectively. Here we set € = \/7“2 + p? —2rpcos(f — ¢) and
p — rcos(f — ¢) = ecost.

—k p?ep 27 ) )

—1or | (FeKi(e) + €Ko(€) cos™ ) (— cost)edt = 0, (A.3.54)
0

—k /‘)26¢ 27 ) , .

—3 16 (—EIC1(6) + €“Ko(€) cos t) (—sint)edt = 0. (A.3.55)

€2 167 J,

The result that the driving force proportional to 72 is zero is consistent with the translational
symmetry of the system.
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Term proportional to /')gﬁ

By differentiating the both sides of Eq. (A.3.49) with regard to 6, we have
1
rsin(f — ¢)\/r2 + p2 — 2rpcos(f — ¢)K1 <\/7“2 + p? —2rpcos( — ¢)>

167
K1 (\/7"2 + p? — 2rpcos( — qb))

1 (p—rcos(d —¢))rpsin(f — ¢)
16 \/r2 + p2 — 2rpcos(f — ¢)
1

- F(p —rcos(d — ¢))rpsin(d — @)Ky’ <\/r2 p? — 2rpcos(f — qb))

“or 3 G o) Tl (A.3.50

Using the relation 2K,/ (2) + vK,(z) = —2K,—-1(2), we have

— orsin(8 — OV 2 — 2rpeos(d — K (V2 + 7 — 2rpeos(d — )

+ %(p —rcos(f — ¢))rpsin(0 — ¢)Ko (\/7“2 + p? —2rpcos(6 — qﬁ))

= o Z / kz T (kp(£)) Ton (k)™ O~ ks (A.3.57)

The term proportional to p'(b is calculated using Eq. (A.3.57). We multiply the both sides of
Eq. (A.3.57) by cost and —sint and integrate them on the small circle with the radius of € around

= p for e, and e, directions, respectively. Here we set € = \/r2 + p? —2rpcos(f — ¢) and
p —rcos(f — @) = ecost.

Ay 2m
(*2)?5'01(;;? / (62 sintky (e) — e2p*sint cos tKo(€)) (— cost)edt = 0, (A.3.58)
0
—k pdey /27T 2 2 2 : _ poes _ pdeq
( 2)7'('62 67 J, (¢°sintkq(€) — €°p” sint cos to(€)) (— sint)edt = —k & eKi(e) = s
(A.3.59)
Term proportional to ¢
By differentiating the both sides of Eq. (A.3.47) with regard to 0, we have
1
8—rpsin(0 LS (\/r2 + p? —2rpcos(f — qb))
+ ersm (6 — o) \/7“2 + p2 —2rpcos(f — ) Ko’ <\/r2 + p? — 2rpcos(6 — ¢)>
=5 Z / k2 Iy T (kp(t)) T (k1) e™O0=¢M) k. (A.3.60)
Using the relation z/C,/(2) + vK,(2) = —2K,_1(z) , we have
1
— Krpsm (60— o) \/r2 + p? —2rpcos(6 — p)Kq <\/7"2 + p? —2rpcos(6 — gb))
= o Z / k2 I T (kp(£)) T (k1) ™ O=¢0) k. (A.3.61)
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The term proportional to gzﬁ is calculated using Eq. (A.3.61). We multiply the both sides of
Eq. (A.3.61) by —cost and sint and integrate them on the small circle with the radius of € around

= p for e, and e, directions, respectively. Here we set € = \/7'2 + p? —2rpcos(f — ¢) and
p — rcos(f — ¢) = ecost.

—k éep

27
g Ry / (—€?pKi(e)sint) (— cost)edt = 0, (A.3.62)
0

—kdeg [T, . : poes _ poey
— 1677/0 (—€°pK1(e) sint) (—sint)edt = —k——= 16m % ek () = —k 16m (A.3.63)
Term proportional to qﬁ2
By differentiating the both sides of Eq. (A.3.61) with regard to 6, we have
%rpcos 0 — $)\/12 + p? — 2rpcos(f — ¢)Ky (\/1"2 + p? — 2rpcos(6 — (;S))
1 (psin(f—¢))
K r2 4+ p? — 2rpcos(f —
167 2+ % —2rpcos(f — 9) 1 (\/ P p cos( ¢)>
+ %(rpsm(@ $))2 Ky (\/?"2 + p? —2rpcos(6 — qﬁ))
2
m im(0—g(t))
= o mzoo / G T (kp(t)) T (k7)€ kdk. (A.3.64)
Using the relation z/C,/(z) + vK,(z) = —2K,—1(z), we have
%rpcos 0 — ¢)\/12 + p? — 2rpcos(f — @)Ky (\/1"2 + p? — 2rpcos(6 — (;S))
1
- W(rpsm(@ $))*Ko (\/7“2 + p? —2rpcos(6 — gi)))
im(0—¢(t))
- Z / k2 g T ol T k) k. (A.3.65)

The term proportional to @2 is calculated using Eq. (A.3.65). We multiply the both sides of
Eq. (A.3.65) by —cost and sint and integrate them on the small circle with the radius of € around

= p for e, and e, directions, respectively. Here we set e = \/7“2 + p? —2rpcos(f — ¢) and
p — rcos(f — ¢) = ecost.

B 09 2w ? ?
Te]; qz16(;,0 /0 (—ep(p — ecost)1(e) + 2p* sin® tiy(€)) (— cost)edt = kpfﬁep eKale) = kpf&ip’
(A.3.66)
. 12 27
Telz ¢16(jr¢ /0 (—ep(p — ecost)Ki(e) + *p? sin® tho(€)) (— sint)edt = 0. (A.3.67)
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Term proportional to 3

By differentiating the both sides of Eq. (A.3.46) with regard to A, we have

2

~16m3 (7 + p* — 27pcos(d — ¢)) K ()\\/r2 p? — 27pcos(f — ¢))
1 3

+ 16702 (772 + /32 - QfﬁCOS(H - (;5))3 ’Cgl ()\\/’F2 + ﬁQ _ 27:,5COS(0 _ ¢)>

:% Z/o (122‘:?;2)4j< 5()) Ty (B7) ™ O— SO E g (A.3.68)

96727)\4 (T + 5 — 27 pcos(f — ¢)) Ko (A\/TQ p? — 27pcos(f — ¢))

_ 961>\3 (fFQ + 52 _ 277ﬁ008<9 — ¢))§ ,C2/ (A\/fQ T ﬁQ _ QfﬁCOS(Q — ¢)>

- Z / mjm(kp( )) Ton ()OO (A.3.69)

Using the relation 2K,/ (2) + vK,(2) = —2K,_1(z), we have

96717)\3 (T + — 27 pcos(f — ¢))2’C3 ()\\/TZ p? — 2rpcos(f — d)))

:% Z /0 MJ( P(1) T (k)™ O =0 k. (A.3.70)

By setting A = 1, we have

3
2

L o2 o
% (r* + p* = 2rpcos(d — (;S))

Ks (\/7“2 + p? —2rpcos(6 — (;5))
- 2i Z / k2 T (kp(t)) T (k)™= kd. (A.3.71)

By differentiating the both sides of Eq. (A.3.71) with regard to p, we have

%(P —rcos(§ — ¢))\/r? + p? — 2rpcos(6 — §)Ks (\/r2 + p% —2rpcos(6 — ¢)>

+96%(P—Tcos(0—¢)) (7” +p — 2rpcos(6 — ¢) (\/T2+p “2rpcos(f — ¢)>

1 k A
= — 7/ im(0—a(t))
=5 2 /0 2 )om (kp(8)) Tm (kr)e kedk. (A.3.72)

Using the relation z/C,/(z) + vK,(z) = —2K,—1(z), we have

- %( —rcos(0 — ¢)) (7'2 +p' - 2rpcos(f — ¢)) Ka (\/?”2 + p? —2rpcos(6 — gb))

3 X [ G ) Tuli)e O, (A3.73)
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By differentiating the both sides of Eq. (A.3.73) with regard to p, we have

_%("” +p* = 2rpcos(f — ¢)) Ka (\/7“2 p? —2rpcos(9—¢>))

B %(p —reos(f — ¢))2’C2 (\/7"2 + p? —2rpcos(6 — ¢)>

‘ﬁ(“ms@*eﬁ \/r2+p —2rpeos(0 — 9)Ks' (V17 + 9 = 2rpeos( - 4) )

27r Z / k:2+1 T (kep(£)) Ton (k)™ O~ k. (A.3.74)

Using the relation z/C,/(z) + vK,(z) = —2K,—1(z), we have

- % (r? + p* = 2rpcos(f — ¢)) K2 (\/7“2 + p? —2rpcos( — d)))

+ %(ﬂ —rcos(f = ¢)) 2\/T2 + p* = 2rpcos(0 — ¢)Ky (\/T2 + p? —2rpcos(6 — gi)))
Qﬂ Z / kz Ty ket £))Tom (k)™= k. (A.3.75)

By differentiating the both sides of Eq. (A.3.75) with regard to p, we have

B %(p —1cos(f — ¢))Ks (\/7"2 + p? —2rpcos(6 — gb))

_%%(P—TCOS(Q_@)\/ﬂ + p? —2rpcos(f — ¢K2 (\/7“2 p? —2rpcos(9—¢)))

+ %%(P —rcos(f — $))/r? + p> — 2rpcos(6 — $)Ky (\/7‘2 + p? — 2rpcos( — gf)))

1 (p—rcos(d —9))*
967 /12 + p2 — 2rpcos(f — ¢)

—I—£( —rcos(f — ¢)) 3/C1 (\/7“2—1-,0 — 2rpcos(f — gb))

K1 <\/1"2 + p2 —2rpcos(f — aﬁ))

Qﬂ Z / (CEL +1 T (kp(£)) Tom ()™ OO k. (A.3.76)

Using the relation 2K,/ (2) + vK,(z) = —2K,—-1(2), we have

%%(P —rcos(f — ¢))\/r? + p> — 2rpcos(f — §)Ky <\/7“2 + p? —2rpcos(f — ¢))

- %( —rcos(f — ¢))*Ko (\/7"2 + p? —2rpcos(6 — ¢)>

- > K " im(6—
o 3 [ e ) T ) O, (A3.77

The term proportional to p? is calculated using Eq. (A.3.77). We multiply the both sides of
Eq. (A.3.77) by cost and —sint and integrate them on the small circle with the radius of € around
= p for e, and e, directions, respectively. Here we set € = \/r2 + p? —2rpcos(f — ¢) and
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p —rcos(f — @) = ecost.

—k pSep 27 ) . ;
1e2 961 ; (—36 KC1(€) cost + €’ Ko(€) cos t) (— cost)edt
il 36K1 (€) + S Kole) ) = W (A.3.78)
N 967T ehl€ 46 (NS - 327'(" 0.
—k p36¢ 27 ) X 5 .
e 967 Jo (3€°KC1(€) cost + €Ky (e) cos® t) (— sint)edt = 0. (A.3.79)

Term proportional to p%

By differentiating the both sides of Eq. (A.3.75) with regard to 0, we have

— %rp sin(f — @)Ky <\/r2 + p? —2rpcos(6 — qﬁ))

1
- ﬁrpsm (0 — ¢)\/12 + p? — 2rpcos(0 — Ko/ <\/T2 + p? — 2rpcos(6 — gb))

+ ﬁr sin(@ — ¢)(p — rcos(d — ¢))\/12 + p% — 2rpcos(f — @)Ky (\/r2 + p? — 2rpcos(6 — gb))

1 rpsin(®— )(p — reos(t — 9))?
967 \/7“2 + p? —2rpcos(6 — 9)

+ %rpsm(@ ®)(p— TCOS(9 )’ K1 (\/7“2 +p? = 2rpcos(f — d)))

K1 (\/'r2 + p? —2rpcos(6 — qﬁ))

=9 Z / kz T (kp(t)) Ton (k)™ O =) k. (A.3.80)

Using the relation 2K,/ (2) + vK,(z) = —2K,—-1(2), we have

%rp sin(f — ¢)\/r2 4 p2 — 2rpcos(f — ¢)K1 (\/7"2 + p? —2rpcos(6 — qb))

+ %r sin(0 — ¢)(p — rcos(0 — ¢))v/12 + p? — 2rpcos(6 — §)Ku (\/7'2 +p? = 2rpeos(f — ¢))

— irp sin(f — ¢)(p — T‘COS(& — @) )QKO (\/”"2 +p? —2rp cos (6 — ¢))

27T Z / kz +1 T (kp(t)) Tom (k)™ O~ 0O k. (A.3.81)

The term proportional to p'2q5 is calculated using Eq. (A.3.81). We multiply the both sides of
Eq. (A.3.81) by —3cost and —3sint and integrate them on the small circle with the radius of €
around r = p for e, and e, directions, respectively. Here we set € = \/ 72 + p? — 2rpcos(f — ¢) and
p —rcos(f — @) = ecost.

3;k de)eP
me2 96w

2
/ (—e2plC1(e) sint — 2€3KC1 (€) sint cos t + €2 pkCo(€) sin t cos? t) (= cost)edt =0,
0
(A.3.82)
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me2 967
_k pPoey €2 _k pPpdey
=z e \ PO+ pokole) ) = —oa e (4.3.83)

Term proportional to p'ng2

By differentiating the both sides of Eq. (A.3.73) with regard to 6, we have

— %r sin(f — ¢) ('r2 + p? — 2rpcos(h — (b)) Ko (\/r2 + p? —2rpcos(d — ¢))

— %r,o sin(0 — ¢)(p — rcos( — ¢)) K2 (\/7“2 + p* = 2rpcos(f — ¢)>

— %rp sin(6 — ¢)(p — rcos(6 — ¢))y/r? + p* — 2rpcos(f — ¢) Ky’ (\/TQ +p? = 2rpcos(d — qb))

1  ikm .
= — e ! im(0—¢(t))
o m; /0 2+ 1)4~7m (kp(t)) Tm (kr)e kedk. (A.3.84)

Using the relation zK,/(2) + vK,(z) = —2K,—_1(2), we have

- frsm(e @) (r® +p* = 2rpcos(f — ¢)) K2 (\/7“2 +p? = 2rpcos(f — ¢>)

+ %rpsm(@ $)(p — 1 cos(0 — ¢))\/1r2 + p2 — 2rpcos(f — §)K; (\/7"2 + p? —2rpcos(6 — qb))

27r Z / ka +1 T (kp(£)) Ton (ker )™ O~ k. (A.3.85)

By differentiating the both sides of Eq. (A.3.85) with regard to 6, we have

- %r cos(0 — ¢) (r* + p* — 2rpcos(f — ¢)) Ko (\/r2 + p? — 2rpcos(6 — qﬁ))

2
- - 2 4+ _ _
T r2psin®(6 — )y <\/7’ p? — 2rpcos(6 ¢)>

- %r psin?(f — qﬁ)\/r? + p2 —2rpcos(f — ) Ko’ (\/7“2 + p% — 2rpcos(f — ¢)>

+ %rpcos(@ $)(p — rcos(0 — ) /12 + p2 — 2rpcos(6 — ¢)Ky <\/7"2 + p? —2rpcos(f — ¢)>

+ L1" psin®(0 — ¢)\/r2 + p2 — 2rpcos(f — @)Ky <\/7“2 + p? —2rpcos(6 — gb))

967
K1 <\/r2 + p? —2rpcos(6 — qﬁ))

Lr p?sin®(0 — ¢)(p — rcos(6 — ¢))
967 \/1"2 + p? —2rpcos(6 — ¢)

+£r p?sin?(6 — ¢)(p — rcos(d — ¢)) K1’ (\/1"2 02 —27~pcos(9—¢))

- Z / 3 () ) O (A.3.56)
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Using the relation z/C,/(z) + vK,(z) = —2K,—1(z), we have

- %r cos(0 — ¢) (7“2 + p? = 2rpcos(d — ¢ )) K2 (\/7"2 + p? — 2rpcos(6 — qb))

+WT psin?(0 — ¢)\/r2 + p2 — 2rpcos(f — @)Ky <\/r2—|—p — 2rpcos(f — qb))

+ %rpcos(& d)(p — rcos(0 — ) /12 + p — 2rpcos(6 — @)Ky <\/r2 + p? —2rpcos(6 — gb))

+ %7’ p*sin?(0 — ¢)(p — TCOS(Q — ¢))Ko (\/7’2 + p* = 2rpcos(0 — ¢))

= o Z / (S +1 T (kp(t)) Tom (k)™ O~ k. (A.3.87)

The term proportional to p¢? is calculated using Eq. (A.3.87). We multiply the both sides of
Eq. (A.3.87) by 3cost and 3sint and integrate them on the small circle with the radius of € around

= p for e, and e, directions, respectively. Here we set € = \/ r2 + p? —2rpcos(f — ¢) and
p — rcos(f — ¢) = ecost.

—k pé’e,
me2 96m

27
/ (=(p — €cost)e*Ka(€) + 2€°pK1(€) sin® t + K1 (€)p(p — ecost) cost
0

—3p3Ko(€) sin? t cost) (— cost)edt

-9 2,8 o
= kpifQ;P <_52K:2(€) - GP2K1(€) IC()( )) = k%(_z +p2)’ (A.3.88)

—k po?
3— p§6e¢ / (—(p — ecost)e’Ka(e) + 2¢* 1 (€) sin® t + €K (e)p(p — e cost) cost
TE 7™ Jo

—€°p? sin® t cos tho(€)) (— sint)edt
=0. (A.3.89)

Term proportional to ¢?

By differentiating the both sides of Eq. (A.3.71) with regard to 0, we have

irpsm 0 — ¢)\/12 + p? — 2rpcos(f — ¢)K3 <\/r2 + p? —2rpcos(6 — qb))

967
1
+ ﬁrp sin(f — ¢) (7“2 + p? — 2rpcos(f — ) ) K3 (\/7“2 + p? —2rpcos(6 — (b))
im(0—o(t))
27T Z / k:2 — 1 T (kp(t) T (kr)e kdk. (A.3.90)
From the formula 2K,/(z) + vK,(z) = —2K,_1, we have

- %rp sin(0 — ¢) (r* + p* — 2rpcos(f — ¢)) K2 (\/?”2 + p? —2rpcos(f — ¢)>

= on Z / k;2 +1 T (kp(£)) T (k) ™0~ ek, (A.3.91)
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By differentiating the both sides of Eq. (A.3.91) with regard to 6, we have

— %rp cos(0 — ¢) (7‘2 + p? — 2rpcos(d — ng)) Ko <\/7’2 + p? —2rpcos(f — ¢)>

- %r p? sin?(0 — ¢)KCy <\/7'2 + p% — 2rpcos(6 — ¢))

—%r p?sin?(0 — ¢) \/r2+p —2rpcos(f — ¢)KC,’ <\/7“2+p 27";)008(9—@)

3 X [ o) a0 (A392)

Using the relation z/C,/(2) + vK,(2) = —2K,_1, we have

— %rp cos(0 — ¢) (7“2 +p® — 2rpcos(f — ¢)) Ko (\/7’2 + p? — 2rpcos(f — ¢))

1
+ ﬁr p2sin?(0 — ¢)\/r2 + ,02 —2rpcos(f — ¢)Kq (\/7‘2 + p? — 2rpcos(6 — qb))

3 X [ G o) a0 (A.3.93)

By differentiating the both sides of Eq. (A.3.93) with regard to 6, we have

%rp sin(6 — ¢) (r* + p* — 2rpcos(f — ¢)) Ko (\/7“2 + p? — 2rpcos(6 — (;S))

— %r p?sin(6 — @) cos(6 — ¢)Ka (\/7“2 + p? —2rpcos(f — ¢))

— %r p?sin(0 — ¢) cos(6 — ¢)\/r2 + p2 — 2rpcos( — ) Ko’ (\/7’2 + p? — 2rpcos(d — ¢)>

+ %r P sin(0 — ¢) cos(f — ¢)/r2 + p> — 2rpcos(d — $)Ky (\/7'2 +p? = 2rpcos(0 — (b))
1 r3p3sind(0 — )
967r /12 + p2 —2rpcos(f — ¢)

1
_— 2 4+ _ _
+ 96 3 p% sin®(0 — @)Ky (\/7' p? — 2rpcos(6 ¢))

Ky (\/TQ + p2 — 2rpcos(f — <Z5))

1 —im? )
= — - —im(6—¢(t))
T or Z /0 (k‘2 T 1)4 jM(kp(t))jm(kT)e kdk. (A.3.94)

Using the relation z/C,/(z) + vK,(z) = —2K,—1(z), we have

%Tp sin(f — ¢) (7’2 + p? — 2rpcos(h — qﬁ)) Ko (\/r2 + p% —2rpcos(6 — qﬁ))

+%r p?sin(0 — ¢) cos(6 — ¢)\/r2 + p2 — 2rpcos( — )1 <\/7“2+,0 — 2rpcos(f — ¢))

1
—%r p?sin®(0 — ¢)Ko (\/r2 P> —27"pcos(9—<b))

1 —im? .
= — - —im(0—(t))
=5 mZ_OO | G o) Tuthr)e kdk. (A.3.95)
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The term proportional to <Z'>3 is calculated using Eq. (A.3.95). We multiply to the both sides of
Eq. (A.3.95) by cost and —sint and integrate them on the small circle with the radius of € around

= p for e, and e, directions, respectively. Here we set € = \/7'2 + p? —2rpcos(f — ¢) and
p — rcos(f — ¢) = ecost.

ke,
Te2 967

27
/ (—e3plC2(e) sint — 3¢2p?sint(p — cost)K1(€) + €3 p>Ko(e) sin® t) (= cost)edt =0,
0
(A.3.96)

3
k2 q;66¢ / —€ pIC2 )sint — 3€2p2 sint(p — cost)Kq(€) + e3p3lC0(e) sin® t) (—sint)edt
e T
¢3

(2p +3p%). (A.3.97)

62
‘f’— ( pKCa(€) + 360K (e) — p3/co<e>) Sy

Results

The driving force is obtained as follows:

F =£ (—mﬂer +log z> </>ep + pé%) llgﬂ {(ﬂ po ) <p<5 + 2/>q5) e¢}

_ 32% {P (p'2 + p2q'52> e, + pd (p'2 + p2¢2) e¢} 45 { 3pd%e, + p¢3e¢} (A.3.98)

When the positional vector is represented as p = pe,, then the velocity p, acceleration p, and jerk
(time derivative of acceleration) £ are expressed as

p =pe, + poes, (A.3.99)
= (5—p¥) ep+ (pd+200) s, (A.3.100)
b= (7~ 396"~ 3p00) e, + (0 + 350 + 356 — pd* ) ey, (A.3.101)

Thus the driving force is expressed as

F zﬁ (—vEuler + log i) (pep + p$6¢> 1:; {(p p¢>2> ep+ (péii + 2p'd>) e¢}

— % {6 (% +020%) ep+ 06 (2 + 726 €5 } (A.3.102)

where we neglected the terms related to the jerk. In vector form, we have

k 2 k k:
F=— | —"gue +1log— ) p— 71) ~ 9o |P| p. (A.3.103)
47 € 167
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The righthand side of the expanded concentration field in Eq. (A.3.31) is also obtained as follows:

c(r; p) (A.3.104)

1 1 o1 .
:%Ko(\r—pl)—E/Co(lr—pl)(r—p)-p+w7|r—pllC1(|r—pD(7‘—p)‘p

2

1 .12 ]. . 1 .12 .
+167|p\ Ko (|7 —pl) + =Ko (|7 = p|) ((r — p) - p) +327|p\ [ = plKi(|r —pl)(r—p)-p

167

1 .3 1 9 .
%—FICo(\T pl) ((r—p)-p) +327\'r pI K2 (lr—pl)p-p

= Pl (= pl) (= p) - ) (r = p) ) — 5 lr — pKa (7~ pl) (-~ p) - 7
(A.3.105)
= coo (I — )+ 10 (Ir — pl) (r = ) - 3+ 20 (17— pI) (r = p) - -+ a1 (Ir — ) |5
ten(r = p)[(r = p) - A% + can (17— pl) (r = ) B+t (17— p) B (r — p) -
Fesy (v p) (r = p) - p° + css (17— pl) o+ esa (1 — pl) [(r — ) 3] [(r — p) -]
(A.3.106)

Here we used Egs. (A.3.32), (A.3.37), (A.3.41), (A.3.49), (A.3.53), (A.3.57), (A.3.61), (A.3.65),
(A.3.77), (A.3.81), (A.3.87), and (A.3.95), and defined the following functions:

1 1

coo (| = pl) = 5 Ko (Ir = pl). cwo (Jr = pl) = =Ko (Ir = pl),
1 1

cao (Jr = pl) = 7ol —plIKi(lr —pl), can(lr—pl) = —q—Ir = plKi (Ir = pl),
1 1

c2z (Ir = pl) = 1Ko (Ir = pI). cso (Ir = pl) = —gg—Ir = pl*Ka (Ir — pl)

1 1
cor(lr = pl) = o lr = plKa (r = pl), e (ir = pl) = =5 Ko (I = pl),
1 1
cas (I = pl) = o |r = pPKa (7 = pl) caa(r = pl) = =55 Ir = plKa (Ir = pl). (A3.107)

The terms in Eq. (A.3.107) for the camphor particle located at p = (p, ) = (0.1,0) in the water
chamber with a radius of R = 1 are plotted in Fig. A.3.2.

A.3.3 Derivation of Eq. (2.4.58)
Equation (2.4.57) is
t
Cmn (t) :/ J|m|(kmnp(t’))e—im¢(t/)e—(kmn?ﬂ)(t_t/)dt/

t

ze_(kmn2+l)t/ Tl (kmnp(#) )&~ ) ellrnn ™+ D gy

—~(kmn*+ 1)t (A.3.108)
where [ is defined as

t
I= / Tl (kmnp(t'))e~ MO elomn*+ D g1 (A.3.109)
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¢, (Ir=p) P ((r=p) < p)

c((r=p)(r=p)-p

A, B \\
IR
\\{{{‘\\‘en}\\}}\\\\\\\\\\w y
EP
o N

e (Ir=pl) ((r=p) < p)’

c[r=p) (r=p)-p

c(lr=pl) (p + p)

Figure A.3.2: Concentration fields expanded with regarded to the position, velocity, acceleration,
and jerk shown in Eq. (A.3.106). The radius of the water chamber R is R = 1. Here we set

p=(p,®) = (0.1,0), p= (p,d) = (0.1,0), p = (5,4) = (0.1,0), and ¥ = (¥, §) = (0.1,0).
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By expanding I using the partial integration, we have

t
/ tjim| (kp(t/))ef’im(ﬁ(tl)eAt/dt/

= S T p(e)e O OA o Lhp(0) Tl (p(t)) — (1) Ty k(1)) e o0

g {RBOT (ol0) + 25 (0) T (ki)

—mmmt)as(mm.(kp( )) = i) T (kp(8)) — M ($(1))* Ty (R (1)) b =m0
i KT Tl (p(0)) + B2 VBT (R(0) — Bibmi()d(0) T (kp(0) + K1) T k(1))
— 3ik2m(p(t))*$(8) Ty (kp(2)) — 3ikmp(e)G(O) T (kp(t)) — Skm2p(8) (D(1)) T (ko (2))

—im @ (£) T (kp(t)) — 3m>G(8)D(8) Tjom| (kp(t)) + im (¢(t))3~7|m|(kp(t))} et
S (A.3.110)

where we denote kp, = k and kmn? + 1 = A. By truncating the higher-order terms of p and
high-order time derivatives, we have Eq. (2.4.58).

A.3.4 Derivation of Eq. (2.4.60)

The first term in the righthand side in Eq. (2.4.59) should correspond to the steady state with
a fixed camphor particle located at (p, ¢). The steady state is independently obtained as shown in
Eq. (2.4.47). Thus we have

1 im 0—
Gy Z Zamnmuﬂml(kmnp)uﬂm|(kmn7") @=9)

m=—oo n=0 mn

= %Ko (\/1”2 p? —2rpcos(f — qb) QL Z g (0) L (r)e™(0=9)
= (main term) — % I;:/((g)) Im(p)Im(r)eimw*(b)
= (main term) — ;TIES,((;:)) Lo (p)Lin (1) — % Z I;:,((g))Im(p)Im(r) cosm(0 — ¢)

m=1

= (main term) + Z h2O(R) g% (r, p) cosm(0 — ¢)

m=0
= (main term) 4+ a® (R, ) + a"*(R,7)p* + a®*(R,r)pcos(d — ¢) + a®* (R, 7)p> cos(0 — )
(R, 7)p? cos2(0 — ¢) + a (R, r)p> cos 3(0 — ¢) + O(p*). (A.3.111)
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By changing the length scale, i.e., p — Ap, 7 — A, R — AR, ki — Emn /A, Gmn — Gmn /A2, we
have

1 i (O—
ar 2o 2 a5 Tl (k) T (k)™

: 1 Ko'(\R 1 o= K/ (AR
= (main term) — o I(())’(()\R)) m(AP) L (A1) — - mZ:1 M m(AP) L (Ar) cosm (0 — @)
= (main term) + i RN, R)GO (N, 7, p) cosm(6 — ¢). (A.3.112)
m=0

Here we do not consider the main term, since the effect by the main term corresponds to the
concentration field without boundaries and is already calculated as shown in Eq. (A.3.105). By
differentiating the both sides with regard to A and then dividing the both sides by 2\, we have

o Z Zamn +)\2) 5 Tl (Ko p) Ty (ki) ™00

m=—o00 n=0
S

= (N R)GY (N, p) + By (A, R)GrY (A, 7, p)) cos (8 — ). (A.3.113)

m=0

By setting A to be 1, we have

: > 3 - im(0—
27rm;wnz;)amnW‘ﬂmmkm"p)jlml(kmnr)e (0=¢)
= D (Pl (R)gyy (. p) + gy (R) gy (1, p)) cosm(8) — ). (A.3.114)
m=0

By differentiating the both sides of Eq. (A.3.114) with regard to p, we have

1 —k:mn .
o Z Z Gmn ] T 53 o) () Ty (im0

m=—o00 n=0 >2

= Z (han (R)gon (7, p) + Dy (R) g3 (7, p)) cosm (0 — )

= aH(R, r)p + a'?(R,r) cos(d — ¢) + 3a'3(R, r)p* cos(f — ¢) + a'*(R,7)pcos2(0 — ¢)
+a'(R,7)p? cos 3(0 — @) + O(p?). (A.3.115)

Similarly, by differentiating the both sides of Eq. (A.3.114) with regard to ¢, we have

271' Z Z mn )2 u7|m|(kmnp)~7|m|(kmn7n)eim(97¢)
m=—oo n=0
=Y m (R (R)g (r, p) + Bl (R) gy (1, p)) sinm(0 — o)
m=1
= alQ(R, r)psin(f — ¢) + al?’(R, r)p3 sin( — ¢) + a14(R, r)p2 sin2(6 — ¢)
+ a®(R,7)psin3(6 — ¢) + O(p). (A.3.116)
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By differentiating the both sides of Eq. (A.3.113) with regard to A and then dividing the both sides
by 4\, we have

o0 [e.e]

1 im(6—
7 2 2 s —i—)\?) 5Tl (ki) Ty (k) ™0~

m*—oo n=0

(R O R) gy (A, ) + Ry (A R) G (A, 7, p) + B (X, R) g, (A, 1, p)) cos (6 — ).
m=0
(A.3.117)
By setting A to be 1, we have
1 v v 1 k k im(0—9)
DD “mnmjlm( mnP)Tjm| (Kmnt)e
m=—o00 n=0 mn
= > (W (R)g (r, p) + by (R) gy (7, p) + BioZ (R) g (7, p)) cos m (6 — ¢). (A.3.118)
m=0
By differentiating the both sides of Eq. (A.3.118) with regard to p, we have
im(6—
2 Z Z M em? + 1) 1) 5T 0l () Tion (i)™ )
m=—o00 n=0
=Y (WY (R)gn (r, p) + Wit (R)gp (v, p) + hoa (R)gim (v, p)) cos m(6 — ) (A.3.119)
m=0
= a® (R, r)p + a®*(R,7) cos(0 — ¢) + 3a®(R,7)p* cos(0 — ¢) + a** (R, r)pcos 2(0 — ¢)
+ a®®*(R,r)p* cos 3(0 — @) + O(p°). (A.3.120)
By differentiating the both sides of Eq. (A.3.119) with regard to p, we have
i i i a kan j,/ (k )j (k T)eim(g—(ﬁ)
2m 0 " (kan + 1)3 fml mnl e
=Y (B (R)gh:(r, p) + hit (R) g, (7, p) + it (R) g (1, p)) cos m (6 — ) (A.3.121)
m=0
= a®*(R,7) + 6a®*(R,7)pcos(0 — ¢) + a** (R, 7) cos 2(6 — ¢) + 245 (R, r)pcos 3(0 — ¢) + O(p?).
(A.3.122)
By differentiating the both sides of Eq. (A.3.119) with regard to ¢, we have
I« w —imkmy, "k k im(6—a)
2 20 Do g5 (n) o ()
= m (b (R)gn, (r, p) + hiy (R)gp (v, p) + hi (R)gp (7, p)) sinm(6 — ¢)  (A.3.123)
m=1
1
=3 [2a?%(R,7)sin(0 — ¢) + 6a**(R,7)p? sin(0 — ¢) + 4a** (R, 7)psin2(0 — ¢)
+6a**(R,7)p?sin3(0 — ¢)] + O(p?). (A.3.124)
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By differentiating the both sides of Eq. (A.3.118) with regard to ¢, we have

o Ly Y amn )3Jm<kmnp>~7|m|<kmnr>eim<9—¢>

m=—o00 n=0
= Z (hi (R)gpy (. p) + hi (R) g, (7, p) + By (R) gy (. p)) sinm (6 — ¢)  (A.3.125)
= aQQ(R, rpsin(@ — ¢) + a® (R, r)p3sin( — ¢) + a** (R, r)p* sin2(0 — ¢)
+a®®(R,r)p3sin3(0 — @) + O(ph). (A.3.126)
By differentiating the both sides of Eq. (A.3.125) with regard to ¢, we have

2 .
27r Z Z mn n )3‘7‘7”\(kmnp)tﬂm|(kmn7“)elﬂ1(0—¢)

m=—oo n=0
- — Z m? (hod (R)go (v, p) + hiy (R)gnt (v, p) + it (R) gy (, p)) cosm(6 — ¢)  (A.3.127)

= —a2g(R, r)pcos(d — ¢) — a® (R, )p> cos( — ¢) — 2a** (R, 7)p* cos 2(6 — ¢)
—3a®(R,)p% cos 3(0 — ¢) + O(p*). (A.3.128)

By differentiating the both sides of Eq. (A.3.117) with regard to A and then dividing the both sides
by 6\, we have

1 -1 im(6—
o 2 2oy il (o) o ()
m=—oo n=0 mn

(P O\ R)goy (N, 7, p) + B (X, R) G (N, ) + Bt (N, R) g3 (A, p)

+hIB (N R)G(N, 7, p)) cosm(f — ). (A.3.129)
By setting A to be 1, we have

D Zamn T gy Oson ) T )0

m=—o00 n=0
00

(P (R) g (7, p) + By (R) g, (v, p) + hi (R) g (1, p) + i) (R) gy (7, p)) cos m(0 — 9.

m=0

(A.3.130)
By differentiating the both sides of Eq. (A.3.130) with regard to p, we have

1 —k ;
L mn im(0—¢)
D D oG T o) T (e

=Y (W3 (R)gm (r,p) + By (R) gy, (r, p) + hi? (R)gin (v, p) + hie (R) gy (7, p)) cos m (0 — ¢)

" (A.3.131)
= a*Y(R,7)p + a®*(R,7)pcos(d — ¢) + 3a>3 (R, r)p? cos(6 — ¢) + a> (R, r)pcos2(6 — ¢)
+ a®(R,7)p? cos 3(0 — ¢) + O(p?). (A.3.132)
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By differentiating the both sides of Eq. (A.3.131) with regard to p, we have

1 = = —Emn ,, .
a_ mn,, 9 = A kmn m kmn zm( d))
e 5 S b b
=D (W (R)g (r, p) + iy (R) g2 (7, p) + By (R) g
m=0

G (1, p) + h) (R) gy (7, p)) cosm(6) — ¢)

(A.3.133)

— ¢) + O(p°).
(A.3.134)

(R,7) + 6a>3 (R, 7)pcos(d — @) + a> (R, r) cos 2(0 — ¢) + 2a3 (R, r)pcos 3(0
By differentiating the both sides of Eq. (A.3.133) with regard to p, we have

_kmn3 " im(0—¢
w3 3 T ) )

S(R)goe(r, p) + i (R) gy (7, p) + B2 (R)gas (r, p) + his (R)gas (r, p)) cos m(6 — )
0

(A.3.135)
= 6a3(R,7) cos(d — @) + 2a* (R, ) cos 3(6 — ¢) + O(p). (A.3.136)

By differentiating the both sides of Eq. (A.3.131) with regard to ¢, we have

1l &= = —imk , i (60—
o mnimn kmn m kmn zm(@ ¢)
L5 Do et b
= > m () (R)gm (r, p) + iy (R) gy, (7, p) + B2 (R) g (7, p) + i (R) gy (1, p)) sinm (6 — ¢)
m=1

(A.3.137)
= a**(R,7)sin(0 — ¢) + 3¢ (R, r)p?sin( — ¢) + 24>} (R, 7)psin2(h — ¢)

+ 3a® (R, r)p*sin3(0 — ¢) + O(p*). (A.3.138)

By differentiating the both sides of Eq. (A.3.137) with regard to ¢, we have

1 00 00 . kmn ‘
e 20 Dy P Tl (n) T (e O
mf—oon 0

:_Zm h30

R)gpm (r,p) + hi (R) gy (1, p) + Bt (R) g, (v, p) + By (R) gy (7, p)) cos m(6 — &)

= —a**(R,r)cos(0 — ¢) — 3a>*(R, ) p? cos(0 — )
—9a% (R, 7)p? cos 3(0 — ¢) + O(p?).

(A.3.139)
— 4a* (R, r)pcos2(6 — ¢)

(A.3.140)
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By differentiating the both sides of Eq. (A.3.133) with regard to ¢, we have

m|

1 _imbnn”_ im(6—9)
o Z Zamn 4~7| (kmnp) Tjm| (kmnr)e

m (b (R)go: (. p) + hiny (R)gar (r, p) + his2 (R)gre (7, p) + hig (R)gar (r, p)) sinm (6 — ¢)

(A.3.141)
B(R,r)psin(f — ¢) + 2a* (R, 7)sin2(0 — ¢) + 64> (R, r)psin3(0 — ¢) + O(p?)

(A.3.142)
By differentiating the both sides of Eq. (A.3.130) with regard to ¢, we have

Z Z“m” )4«ﬂml(kmnp)ﬁm|(kmn7“>€m(9 ?
m—foon 0

[e.9]

m (R (R)go (r, p) + hil (R) o (1, p) +

m=1

W2 (R)gX(r, p) + hid (R)gil (r, p)) sinm(6 — ¢)

(A.3.143)
= a®(R,r)psin( — ¢) + a®3 (R, r)p®sin(0 — ¢) + a>* (R, r)p? sin2(0 — ¢)
+a®(R,r)p>sin3(0 — ¢) + O(ph). (A.3.144)
By differentiating the both sides of Eq. (A.3.143) with regard to ¢, we have
m2
mn jm k) Tjm| (kmn 6im(0_¢)
mz_:oonz% +1) im| (Bmn£) Tjm| (Kmn)

o0

= - Z m? (hp (R) g, (7, p) + hiy (R) gy (7, p) + e (R) g1 (v, p) + iy (R) gy, (7, p)) cos m(6 — )

(A.3.145)
a** (R, r)pcos(0 — ¢) — a**(R,7)p> cos(0 — ¢) — 2a>* (R, ) p? cos 2(0 — ¢)
—3a® (R, r)p? cos 3(0 — ¢) + O(p*).

(A.3.146)
By differentiating the both sides of Eq. (A.3.145) with regard to ¢, we have

3 .
Z Z mn 4-7|m|(kmnp)~7|m|(kmn7n)elm(9_¢)

m——oon 0 ” )

- Z m? (W) (R) gy (v, p) + hi (R) g (; p) + hie (R)gay (7, p) + hiyy (R) gy (7, p)) sinm (6 — o)
m=1

(A.3.147)
= —a®(R,r)psin(f — ¢) — a®*(R, r)p*sin(f — ¢) — 4a> (R, r)psin 2( — ¢)
—9a*®(R,7)p*sin3(0 — ¢) + O(ph). (A.3.148)
Here we define hf%(R) = l_zi%(l, R) and the explicit forms of B%()\, R) are as follows
. K ()\R)
OO (A _Im A.3.14
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_ 1 d- o 1 m2 1
10 _ %300 __9m [
RO\, R) = o d)\hm(A,R) o <A2 + A4R2> T O (A.3.150)
- 1= om K., (AR)
11 _ _~ 700 —_ZZm m A.3.151
_ 1d/1d-
20 - % - %700
Om 1 2m? 1 1 m? \ RI"(\R)
=" — m A.3.152
in <<A4 " AGR?) GREYIERS <A3 * ASR?) <z;n<AR>>3>’ (4.3.152)
_ 1 /1 d- 1d/[1-
21 _ - %300 = 2| = 300
o O B) =13 (2)\ /o R)> T <2>\h0 < R)>
Om 1 m? 1 K! (AR)
=" (2= m A3.1
8w( (AS*W@?)(IWR))”A?’%(AR))’ (4.3.153)
- 1 om K, (AR)
22 _ L1 ___Ym om
h2(\ R) = 4)\hm(>\,R) S T AR (A.3.154)
_ 1d/{1d/{1d-
h30 A - = 77]7/00 A
m (A TF) 6\ d) <4)\d)\ (2)\d)\ m (A )
__om (, i+ 3m? 1 N 3+ 9m?\ RI! (\R)
T 2r A6 T A8R2 ) (T (AR))? N UNTR2 ) (T! (AR))3
1 m? \ R*Z(\R) 1 m? \ R*(Z!(A\R))?
- (A“ AGRZ) @ (AR))? +3<A4+ A6R2> @, (\R) > (4.3.155)

~ 1 /14d (1 4d- 1d /1 /(14d-
31 _ - | = = - 700 -2 = = * 700
fim (A, B) ) <4)\ d\ (2)\ d)\hm()\’m)) T ondx <4)\ <2)\ d)\hm()\’R)))
1d/1d/[1-
[ [ RO\, R
Ty <4)\d)\ (2/\ m (A )>
m? ) RT" (AR) K! (AR) >

_0-77" 34_ 5m2 1 +9 i _
167 \\ N> " ATR? ) (Z/,(AR))? M UXSR?2 ) (T0,(AR))? MNI,(AR)

(A"3.156)
h32(\, R)

= % <41A (;}\Cgh%’()\, R)>> + 6% <41MdA (;Ah%?()\,R))) + 6%% <41A <21>\h9,?()\,R))>

- T o~ (v * ¥) gompe): (A8.157)

RBOLR) = Lr20 ) = ——m Km(AR) (A.3.158)

6A ™ ~487A3 I/ (AR)’
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where o, is equal to 1 for m # 0 and 1/2 for m = 0. We also define g20(r, p) = g(1,r, p) and the
explicit forms of g?(\,r, p) are as follows:

G0N 7, p) =LA L (Ap), (A.3.159)
G (A7, p) = dAgm V(A7 p) = 1T, (Ar) I (Ap) + pL(Ar)T;, (Ap), (A.3.160)
2
Im (A7, p) = ddv G\ 7, p) = 2T ()T (Ap) + 2rpZy, (M) T, (Ap) + p* T (Ar) T, (Ap),
(A.3.161)

d3
m A7 0) = am (A7 p)
—7“32"'()\7“) m(Ap) + 3r pI" (Ar)Z), (\p) + 3Tp2I/ (A)Z) (A\p) + ng (A (Ap).
(A.3.162)

The functions g%(r, p) (j # 0) are defined by the derivatives of gi(r, p) with regard to r and/or p
as follows:

981 p) = (620 9)) = T (1T, (A.3.163)
9200 0) = (6210.) = TV ), (A3.164)
90 ) = (20 ) = T Z), (A.3.165)
381(1:0) = 080(50) = PPV T () + T (5) + 6 (1)), (A.3.166)
G20 0) =012 0) = 1T VT 0) + 2V TA0) + TP (A.3.167)
0820, 0) =500, p) = P (VT(0) + BT E) + p T TN ), (A.3.168)

d
g2 (r, p) :%gﬁf (r, p)
=r*T)! (r)I,,(p) + 2rL,, (1)L, (p) + 2rpI}, (1)L (p) + 20 ()T (p) + p*Lin(r) I (p),

(A.3.169)
22 d2 20
Im (Tv ﬂ) :dipggm (T7 p)
=T} (r)Im(p) + 4T, (r)I), (p) + 2rpZ,, (r)Im(p) + 2Zm (1)) (p)
+4pTn (1) I (p) + T (r) I (p), (A.3.170)
d3
g2 (r, p) depggi? (r, p)
=r2Z0 (r) I (p) + 67T, (r) I (p) + 2rpZy, (1) IV (p) + 6L (r)Z o (p)
+ 6oL (1) I (p) + PP (1) IS (), (A:3.171)
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d
gt (r, p) :dfpgif(n p)

=L (r) Iy (p) + 3r° T, (1) I3, () + 312 pZyy () I, (p) + 61Ty, ()T, (p) + 3rp* Ty, (1) Ty ()
+ 30T (1) T (p) + P°Tin (1) I (), (A.3.172)
d2
32 30
Im (7‘, p) :TPQQm (T7 P)
=L (1) I (p) + 6r°L, (r) I (p) + 312 pZyy, (r) Iy (p) + 61T, (1) I3, (p) + 12rp Ty, (1) T3 (p)
+310°Z,, (1) IS (p) + 6pLn (1) () + 60° T (1)ZSD (p) + PP Lo (NI (p),  (A.3.173)
d3
33 _ 30
9m (’I”, p) _dipggm (T7 p)
=3T3 (r) I (p) + 9Ty (1) I () + 312 pT, (r) I (p) + 180T, (1) T ()
+ 18rpT, (IS (p) + 3rp° T, (NI () + 6Zin (r) I (p) + 18pTin(r) IS (p)
+9° T (NI (p) + p° Lo ()T (), (A.3.174)

By expanding the explicit form of gl with respect to p, the functions a*' (R, ) are determined as
follows:

W (R, 1) = W (R)To(r), W (R,r) = (HOR)To(r),

W (R,r) = SHR)T(r), W (R.r) = IO (R)T(),

W (R,r) = (WP (RIT(r), W (R,1) = S HP(R)T5(r), (A.3.175)
a''(R,7) :%((héO(R) + 20 (R))Zo(r) + hH(R)rZy(r)), (A.3.176)
a'?(R,r) :%((hi“(}z) + hIY(R)Zy(r) + A (R)rZ) (7)), (A.3.177)
a'*(R,r) :%((hiO(R) + 3 YR\ (r) + M (R)TT (1)), (A.3.178)
a'*(R,r) :i((héﬂ(R) + 2h3Y(R)) T (1) + RIL(R)r T4 (1)), (A.3.179)
a'®(R,r) :%((hgo(R) + 303N (R))Zs(r) + h3H (R)rZ4(r)), (A.3.180)

a®'(R,7) Z%((hﬁo(R) + 203 (R) + 2h5” (R))Zo(r) + (h§' (R) + 4hg*(R))rZy(r) + hi* (R)r* Ly (r)),
(A.3.181)

a*(R, ) Z%((h?O(R) + i (R)Za(r) + (AT (R) + 20 (R))rZy (r) + hi*(R)r*Z (r)),  (A.3.182)

a®(R, 1) = ((hi°(R) + 3hi"(R) + 6h{*(R))Z1(r) + (hi'(R) + 6h1*(R))r Ty (r) + hi*(R)r*Z{ (r)),

(A.3.183)

1
16¢

a*!(R,r) :%((hgo(R) + 2031 (R) + 2h3° (R))Zo(r) + (B3 (R) + 4h3%(R))rTy(r) + h3* (R)r°Ty (1)),
(A.3.184)
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a®(R,r) = 116((h§°(R) + 303 (R) + 6h3°(R))Zi(r) + (h3' (R) + 6h3*(R))rZy(r) + h3* (R)r*T3 (r)).
(A.3.185)

a®'(R,7) Z%((héo(R) + 205 (R) + 2k (R))Zo(r) + (hg' (R) + 4h52(R) + 6hg° (R))rZy(r)
+ (hg*(R) + 6hg” (R))r?Zg (r) + h§! (R)r°Zy (), (A.3.186)

a®(R,r) =%((h§’°(R) + i (R) Ty (r) + (R (R) + 2h* (R))rZ; (r)

+ (h32(R) + 3R (R))r*T] () + h33(R))r3T) (1)), (A.3.187)
)Zi(r) + (h$'(R) 4 63 (R) + 18h{°(R))r T} (r)
V3TV (1)), (A.3.188)

(R)
0 (R, 1) =5 (WO(R) + B (R) + GHP(R) + 64 (R)
+ (HPR) + 9P (R)PTL(r) + W (R)
0 (R, 1) =3 (H(R) + 208} () + 20 (R)To(r) + (1 (R) + 4h2(R) + 6 (R))r T (r)
+ (h32(R) + 6h32(R))r*TY (r) + ha'(R))r3 Ty (1)), (A.3.189)
a®(R,r) :%((hgo(R)+3h§1(R)+6h32( ) + 6h3°(R))Z3(r) + (h§'(R) + 6h5*(R) + 18h5°(R))rZj(r)
+ (H(R) + 9P (R)PTL(r) + WP (R)PTY (), (A.3.190)

From the symmetric property of the system, the concentration field expanded with regard to p
should have the following form:

co(r; p)
= %R, 1) + 2R, 7)(r - p) + AR, ) (r - p)? + AR, ) p|? + LR, ) (r - p)

+ (R, 7)(r - p)* + (R, ) |p[*(r - p)

+cg (Rr) (p- )+ ' (R,r) (1 p) (- p) + cg*(R,7) (7 p)

+ g (R.r)pl (r-p)+ " (Ror) (r-p) (p-p)+ B (R,r) (r-p)° (r-p)

+ 2 (Rr) (p- B) + (Rr) |p]° + 3P (R,r) (r- p) (r- p) + ¢3°(R,7) (7‘ p)> + i’ (R,r) (r- D)
+ cPR,r) P (r - p) + S (Rr) (r-p) (p- p) + E2(R,r) (r-p) (r- p)* + P (R,r) (r- p) (p- )
+ 2 (Rr) |pl* (r - p) + E(Ror) (- p)* (v - p)

+ P (Rr) (p- P)+ P (Rr) (p-p)+ S (R,r) (r-p) (r-p) + 5 (R,r) (v p) (r- P)

+ P (Rr) pf* (r- )+ P (R,r) 1 (r-p) + B(R.r) (r-p) (p- P)+ P (R,7) (r- p)°

+ P (Rr) (r-p) (p-p)+ ERyr) (r-p)* (r-P)+ P (Rr) (r-p) (p- )

+ P (R,r) (r-p)(p-p)+ @ (R,r)(r-p)(r-p)(r-p). (A.3.191)

Comparing Eq. (A.3.191) with Eq. (A.3.111), we have

AN (R,7) = a" (R, 7), (R, ) = %QOS(R,T),
AR, ) = a(R,7), (R, ) = a®(R, ) — (R, 7),
A(R7) = 5a(Ro1), (R, = LR, r) - 3R, ). (A3192)
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Comparing Eq. (A.3.191) with Eqgs. (A.3.115) and (A.3.116), we have

1
c(l)l(R, r) = ;alQ(R,T), cgl(R,T) = all(R,r) — a14(R,7"),
2 1
6%1(R7 T) = 7,72@14(}27 T): Cgl(R? T) = ;(alg(Rv T‘) - als(Ra 7")),
2 4
SYR,r) = ;(al?’(R, r)—a®(R, 7)), SYR,7) = 73@15(3, r). (A.3.193)

Comparing Eq. (A.3.191) with Egs. (A.3.120), (A.3.122), (A.3.124), (A.3.126), and (A.3.128), we
have

2 (R, ) = %a22(R,T‘), A (R,r) = a®(R,7) — a* (R, ),

A (R,r) = a®(R,7) — a®*(R, 1), AR, r) = %aM(R, ),

FAR,r) = 5a®(R,r), R(R,) = 2@ (Rr) — (R, 7)),
PR, ) = ~(@®(R,r) — (R, 7)), P(R,r) = Sa®(Rr),

FR) = @R =P Rr), R = (@P(Rr) - P(R)),

(R, r) = f—ga%(R, 7). (A.3.194)

Comparing Eq. (A.3.191) with Eqs. (A.3.132), (A.3.134), (A.3.136), (A.3.138), (A.3.140), (A.3.142),
(A.3.144), (A.3.146), and (A.3.148), we have

c(l)g(R, r) = %a32(R,r), 083(R,r) = a31(R, r)— a34(R,r),

(R, 1) = 3(a* (R, 1) — a® (R, ), (R, 1) = %a%(R, "),

c§3(R, r) = %a‘%(R, ), 083(]%,7") = %(a?’?’(R, r)— a*® (R, ),
BR) = SR - PR, R = @(R) - aP(R1),

(R, r) = %a%(R, "), B(R, ) = g(a?’?’(R,r) —dB(R,1)),
B(R,r) = %a%(R, "), B(R,r) = g(a33(R,r) — a(R,7)),

cgg(R, r) = g(a?’?’(R, r) — a35(R, ), cg?’(R,r) = %G%(Rﬂ")' (A.3.195)

The terms in Eq. (A.3.191) for the camphor particle located at p = (p,¢) = (0.1,0) in the water
chamber with a radius of R = 1 are plotted in Figs. A.3.3, A.3.4, A.3.5, A.3.6, A.3.7, A.3.8, and
A.3.9.
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Then we calculate the reduced driving force as follows:

Veye(rs; p)

= R+ R o)+ (R
¥R )+ 28 (R p)p+ PR+ SR (- p) b (R,
F R o+ 3R (- o)+ 1c'i’°<R, nlpf(r-pyr+ ' (R.r)lpl*p
£ R ) (p- Bk TR (o p) ()1t AN ) () p (R ()
+%c0 (R,7) (r-p)r + c*(R,7)p
o RO (- )+ R NpPp+ T (R (00 (0 9) e (Ror) (0 )
F 2 R) (o p) () 28 (Ror) () (- 9) p o+ B (R ()

F R ) (o B+ BRI P4 R (R) (o p) (0 )+ B (R (0 6)
PR (- p) b+ R (- 5P+ 28 (Rr) () ¢S (Rr) (0 )t (R
+ 1c’32<R, PIBE )+ GRR)BP p+ PR (7 6) (0 5)r+ PR (0 )

F R ) (0 p) (r g R R) () p k2 (Rr) () (r )

+ %e/?(R P rp)(p B+ Rr) (0 ) pt PR ol (- 3 + PR o fr
PR () () + 282 (o) () (- ) p+ B (BT ()

F B R (o Bk BRI (p Bt F R (0 5) (r )+ BRI ()

T+ B (R,7) (r-p')ﬁ—l—%c?, (R,r) (- p) (- B) 1+ B(R,r) (- ) p+ B(R,7) (v p) D

+ BB ol (o B) 4 (R 7)o B+ 1c’i’3<R R B (r-p)r+ P (B.r) |6 b
+%c’33<R,r><r~p><p-‘b‘)r+c%3<R,r><p B o+ R (o) 3R (- ) 6
SR (o p) (5 B+ PR, r><p-p>p+1c5 (B,r) (r-p)* (r-B)r

+28(R.r) (rp) (r- ) p+ B (Ror) (r - p)” p+1c6<R () (p-p)r+ P (Rr) (p- ) p
F B R (- 5) (0 P+ B(RT) (- p>p+1c8 (R,r) (r-p) (r-p) (r-p)r

+ @ B,r) (r-p) (r-p) p+ @R (r-p) (r-5) p+ B (Rr) (r-p) (- ) b, (A.3.196)
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where prime () represents the differentiation with regard to r. By substituting p with 7, we have

Voc(p; p)

1 00 10 20 20 30
= Ldo (R.p) + o (R, p)p+ i’ (R, p) + g (R, p)p* + 2c°(R, p)p? + 1 (R, p)p + ¢y (R, p)p°

30
+3ci’ (R, p)p* + 1 (R, p)p* + (R, p)pﬂ p

1 1
+ [pC’(l)l(R, p)+ EC’SI(R, p)+ T (R, p)p+ (R, p) + 5 (R, p)p+ T (R, p)p

+c (R, p) + 5 (R, p)p” + 2631 (R, p)p 2} (p-p)p

+ [co" (R, p) + 2" (R, p)p® + ' (R, p)p” + 3" (R, p)p"] p
1 1
- Le’%ﬁ(& p)+ ;c'?ﬁ(ff, p)+ 5 (R, p)p+ (R, p) + 5 (R, p)p + (R, p) + '3 (R, p)p

+¢3 (R, p)p” + 262 (R, p)pﬂ (p-P)p

+ [e0* (R, p) + (R, p)p* + P (R, p)p* + (R, p)p*]

(1,22 32 )
+ ;Cll (R,p) + o (R, p)p+ g’ ( ] )| 167 p
:1 22 1,32 32 .
s SR + 2R R )+ B R )+ AR, pﬂ (0o
+ [2¢8%(R, p) + ¢*(R, p) + 267 (R, p)p*] (p
1 13 1 ,23
+ ;Clo (R,p)+;do (R.p) + 3 (R.p)p+ B (R.p) + <5 (R.p)p+ €5 (R, p)p

+ (R, p) + 3 (R, )0 + 265 (R, 0)? ] (p- B) p

+ [’ (R, p) + (R, p)p” + ¢§* (R, p)p* + (R, p)p"] P
# LR+ R+ )] (5510
=3 (R, p) + 26’23(3 p)+ [1)6'?%3(3 p)+ 3 (R p)p+c*(R,p)| (p-p)(p-p)p

(R, p) + > (R, p) + (R, p)p*] (p- ) p+ [S (R, p) + (R, p) + (R, p)p°] (p- p)
PR ) 0 (- 9) p+ R[5 (R ) (- 0 p 3 (Rep) (0 ) 5
(A.3.197)
= B1(R,p)p + Ba(R,p) (p- p) p+ B3(R, p)p + Ba(R,p) (p- p) p+ B5(R, p)p + Bs(R, p) |p” p
+B1(R,p) (p- p)° p+ Bs(R,p) (p- p) p+ Bo(R,p) (p- P) p+ Bro(R, p) P + Bui(R, p) (p- ) p
+B12(R,p) (p- p) (p- B) p+ Brs(R,p) (p- ) p+ Pru(R,p) (p- p) p+ Bis(R, p) 1pI* (p- ) p
+ Bi6(R, p) |pI* p+ Brir(R, p) (p- £)° p+ Bis(R, p) (p- p)* p- (A.3.198)

[
1
;
1
b
[2

+
+ [23
+
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By expanding the functions f;(R, p) with regard to p, we have

F(p7 P; P) == VC(’I"; p)‘r:p
=a(R)p +b(R)p + c(R)|pl*p + 9(R)p+ h(R)|p*p + i(R)(p - p)p
+k(R)|p[*p+ h(R)|pI*p + p(R)(p - p)p, (A.3.199)

where the functions a(R) and ¢(R) are the zeroth and second order coefficients of Taylor expansion
of B1(R, p) with regard to p, j(R) is the zeroth order coefficient of Taylor expansion of S2(R, p) with
regard to p, b(R) is the summation of (—vyguer + l0g(2/€))/(4m) and the zeroth order coefficient
of Taylor expansion of fB3(R,p) with regard to p, n(R) is the second order coefficient of Taylor
expansion of 3(R, p) with regard to p, g(R) is the summation of —1/(167) and the zeroth order
coefficient of Taylor expansion of f5(R,p) with regard to p, h(R) is the zeroth order coefficient
of Taylor expansion of f¢(R, p) with regard to p, p(R) is the zeroth order coefficient of Taylor
expansion of fg(R,p) with regard to p, and k(R) is the summation of —1/(327) and the zeroth
order coefficient of Taylor expansion of 514(R, p) with regard to p.

The dependence of the coefficients on R is shown in Fig. A.3.10. When R goes to infinity, the
coefficients a(R), c¢(R), h(R), j(R), n(R), and p(R) go to zero and b(R), g(R), and k(R) go to
(—VEuler + log(2/€))/(4m), —1/(167), and —1/(32m), respectively, and thus these calculations are
consistent with the results for infinite case shown in Eq. (A.3.103).

A.3.5 Dependence of the coefficients in Eq. (2.4.61) on the water channel length
R

The coefficients of the terms in the driving force in Eq. (2.4.61) depends on R. Here we show
the dependence of a(R), b(R), ¢(R), g(R), h(R), j(R), k(R), n(R), and p(R) on the water channel
length R in Fig. A.3.10.
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Figure A.3.3: Concentration fields related to the steady state for the stopping camphor particle at

A.3.192).

(

(p;¢) = (0.1,0).

p. The explicit expressions for the components of the concentration field are in Eq.

The radius of the water chamber R is R = 1. Here we set p

r
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¢ (R=1,7) (7 + ) ' (R=1,7) (p = ) &\ (R=1,7) (r+ p)(r + )

Figure A.3.4: Concentration fields related to the first order of the velocity. The explicit expressions
for the components of the concentration field are in Eq. (A.3.193). The radius of the water chamber
Ris R=1. Here we set p = (p,¢) = (0.1,0) and p = (p, ¢) = (0.1,0).
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¢ (R=1,7) (r+p) 2 (R=1,7) (p +p) ¢ (R=1, 1) (r+p)(r+p)

2 (R=1,7) (r+p)p +p) 2, (R=1,7) |pP*(r « p)

Figure A.3.5: Concentration fields related to the first order of the acceleration. The explicit expres-
sions for the components of the concentration field are in Eq. (A.3.194). The radius of the water
chamber R is R = 1. Here we set p = (p,¢) = (0.1,0) and p = (p, ¢) = (0.1,0).
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2 (R=1,7) |pP 2 (R=1,7) (r+p)’

R=L ) (e p)pep) R 1) (e p)(r e pY

Figure A.3.6: Concentration fields related to the second order of the velocity. The explicit expres-
sions for the components of the concentration field are in Eq. (A.3.194). The radius of the water
chamber R is R = 1. Here we set p = (p,¢) = (0.1,0) and p = (p, ¢) = (0.1,0).
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c®(R=1,7) (r«p) B (R=1,7) (p  p) B (R=1,7) (r+p)rep)

Figure A.3.7: Concentration fields related to the first order of the jerk (time derivative of accelera-
tion). The explicit expressions for the components of the concentration field are in Eq. (A3195)

The radius of the water chamber R is R = 1. Here we set p = (p,¢) = (0.1,0) and p = (P, ¢) =
(0.1,0).
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& (R=1,7) (p + ) & (R=1,7) (r p)(r + p)

P (R=1,7) (p « p)(r+p)

Figure A.3.8: Concentration fields related to the cross term of first order of the velocity and accelera-
tion. The explicit expressions for the components of the concentration field are in Eq. (A:3.195). The
radius of the water chamber R is R = 1. Here we set p = (p,¢) = (0.1,0) and p = (p, ¢) = (0.1,0).

¢ (R=1,7) [P (r + p) S (R=1,7) (r p)

Figure A.3.9: Concentration fields related to the third order of the velocity. The explicit expressions
for the components of the concentration field are in Eq. (A.3.195). The radius of the water chamber
Ris R=1. Here we set p = (p,¢) = (0.1,0) and p = (p, ¢) = (0.1,0).
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Figure A.3.10: Plots of the coefficients a(R), b(R), ¢(R), g(R), h(R), j(R), k(R), n(R), and p(R)
against the radius of water chamber R, which are shown in Egs. (2.4.62), (2.4.63), (2.4.64), (2.4.65),
(2.4.66), (2.4.67), (2.4.68), (2.4.69), and (2.4.70).
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Appendix B

Supplementary Information for
Chapter 3

In this chapter, the supplementary information for Chapter 3 is provided.

B.1 Derivation of Oseen tensors in a two- and three-dimensional
fluid

In this section, we derive the Oseen tensors in a two- and three-dimensional systems. The Oseen
tensors are the Green’s function of the Stokesian equation with point force at the origin:

Vp —nViv = Fé(r), (B.1.1)

where p is pressure, 7 is kinetic viscosity, v is flow field, F' is a constant vector corresponding to
the external point force, and d(r) is the Dirac’s delta function. We also assume incompressibility
of fluid:

V.-v=0. (B.1.2)

We consider the Fourier transform of p(r), v(r), and d(r).

) = gt [ )k (B.13)
o(r) = (2;)d / (k)™ dk, (B.1.4)
o(r) = (271r)d /eik'rdk, (B.1.5)

where d = 2,3 denotes the spatial dimension. Then Egs. (B.1.1) and (B.1.2) in wavenumber space
are

ikp(k) +nk*v(k) = F, (B.1.
(B.1.
ik - v(k) = 0. (B.1.8)
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By operating the scalar product with k to Eq. (B.1.6), the second term of the lefthand side becomes
0 from Eq. (B.1.8). Then we have

p(k) =—i—<k-F. (B.1.9)
By substituting Eq. (B.1.9) to Eq. (B.1.6), we have

(k) = 7%2(1—25)-F7 (B.1.10)

where 1 is the unit tensor.
Here we derive the Oseen tensor in the two-dimensional system [87]. In the calculation below,
we assume r = re;.

1 1 kk\ .

2w poo 1 )
/ / < _ > ezkrcosOdkde
27r

1 cos’0 sinfcosO\ ik coso
27?77 Jo(k:r 42y / / <Sin0c059 sin? @ ) ‘ dkl?

1 . 1 1 o q Jilkr) _ T (k‘r) 0
_ 1 o - kr 2
5 | R [ (Jo(kr) — Ja(kr)) 1 + < o o)|%

1 1 0
—% |:<_’7Euler+ln€/+1)]l+ <0 0>:|

1 2
:m _’}’Eulcr‘f‘lng :[].+e$ecl? ) (Blll)

where Ygyler is the Euler’s constant (yguer ~ 0.577). Here we used the following integrals (from
Eq. (5) on page 19 in Ref. [81]):

2r
/ €04 = o o (), (B.1.12)
0
2 ) 2
/ cos? e 30 dh = W‘Z?l(x) —2nJ2(x), (B.1.13)
0
2 .
/ sin 6 cos 0e' 30 dp = 0, (B.1.14)
0
2w ) 2m ) 9 9
/sw%mmw:/(1aﬁwmmw:%%@<mﬂ@%b@>:”$m,
0 0 T x
(B.1.15)
where Jo(z) + J2(x) = —J1(z)/2. We also use the following definite integrals:
oo 2
L/, gzix)dezz«—yEumr+-h1€, (B.1.16)
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B.1 Derivation of Oseen tensors in a two- and three-dimensional fluid

(@) (b)
0.1 —

l =

Figure B.1.1: Streamlines of flow field induced by a point force. The flow fields G,3Fp in (a) a
two-dimensional and (b) a three-dimensional systems are shown. Here we set F = e,.

/°° G (B.1.17)
0 z 2

By considering the symmetry, the Oseen tensor for arbitrary r is expressed as

1 o
Gag = 1 (=1 + Inger))1 + Tr;"ﬂ) , (B.1.18)

where « is a positive constant. The streamlines of flow field G,3F3 induced by a point force in the
two-dimensional system are expressed in Fig. B.1.1(a).

Next, we derive the Oseen tensor in a three-dimensional system. In the calculation below, we
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assume 7 = re,.

1 / 1

:<2w>3 nk?

kk

ka2

(1

) eik-’r’dk

277 / - / / <1—> %030 gk d(cos 0) d¢

°° 2sin(kr)
kr

~4n?y /
sl LA

sin? @ sin ¢ cos ¢

dkd(cos )

sin? @sin ¢ cos ¢ sin b cos f cos ¢ '
sin? @ sin? ¢ sin@ cos @ sin ¢ | ™" oo Gdkd(cos 0)d¢

sin? 6 cos? ¢

sinfcosfcos¢ sinfcosfsing cos? 0
sin ¢9 0 0
i 2 ikr cos 6
. / / sin 9 0 e dkd(cos )
47r77r 8T 9 cos2 f
__4cos(kr) 4 m(k )
L oot 2’” e 0o 0
_ _ _40025(12~cr) + 4 sin(kr) 0 dk
3p3
A 87T2 wer ke 4sin(kr) 8 cos(kr) 8sin(kr)
0 kr + kE2r2 T k33
IR 3 ¥
dnr  8mnr 00 0
EN U b
8mnr  8mnr 00 1
1 e.e,
_ ] B.1.19
8mnr + 8mnr ( )
In the above calculation, we use the following integral
1 2 1
2 ikrxz ikrx z 2z 2
dx = —_— =
[ teteria= e (5 - G+ o)
gk (L2 2 N (L2 2
ikr  k2r2 k33 ikr  k%r2 - ikSr3
2sin(kr)  4cos(kr)  4sin(kr)
= — . B.1.20
kr k2r2 k373 ( )
We also use the following integrals (from Eq. (4.3.142) on page 78 in Ref. [91]):
o
/ R (B.1.21)
0 x 2
o cosr sinz T
———+ — | dx=—. B.1.22
/0 < x2 x3 > S ( )
By considering the symmetry, the Oseen tensor for arbitrary r is expressed as
1 1 rols
Gag=—1| -9 . B.1.23
op 8mn (r af r3 > ( )

The streamlines of flow field G,3Fj induced by a point force in a three-dimensional system are

expressed in Fig. B.1.1(b).
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B.2 Derivation of the simple forms of the Kramers-Moyal coeffi-
cients of the first and second orders

In this section, we simplify the Kramers-Moyal coefficients of the first and second orders in
Egs. (3.2.22) and (3.2.23).

B.2.1 Derivation of Egs. (3.3.3) and (3.3.4)

According to the definition of the Kramers-Moyal coefficients of the first and second orders in
Egs. (3.2.22) and (3.2.23) and the Oseen tensor in Eq. (B.1.18), we have

1 0Ga1 0Gy1  0Ga2 0G0 0Ga1  0Gy2\ (0Gy1  0Garo
V(R)S/[2< ory  0Or * Orey  Org >+< Ory * or >< Ory * or )

aGal + aGaQ 8Ga’1 + aGa’Z
87"1 Brg 87“1 87“2

ﬂ S(R+r)e(R+r)dr. (B.2.1)

Here, we used

1 27
Aﬁ,@”y‘y’ :g /0 egeﬁxeveyxde

1
=5 (98017 + 057050y + 85105 )
(57 6,777 7/) = (17 17 17 1)7 (27 27 27 2)7

(ﬁ) /Bl’ 77 ’yl) = (17 ]‘7 2’ 2)7 (1’ 27 ]‘7 2)7 (1’ 2’ 27 ]‘)7 (27 1) 1’ 2)7 (27 17 2’ 1)’ (27 27 17 1)’

8
0 otherwise,

(B.2.2)

where e; and ey are first and second components of a unit vector e = (cos 6, sin 6), respectively.

The first term in the integral can be calculated as

9?Ga1 0Gs1 | 802G 0G5
87“187“5 87“1 87”287”5 87”2

D 8112 2rsr1 >
[( (2rar1515+ra7“5—|—7“1 Oas) + ng””) (Tg mzl >
r r T
8 2rsro?
27“a7“2525+7’a7"6+7"2 5045) T276n0/r6> (Tg 7"6:2 >:|
T T T
27“a 87"127'22ra

_ oM 12 Ta ) B.2.3
= i ( G o
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The second term in the integral can be calculated as

0?G a1 n 0?G o 0Gsy n 0Gso
87“267‘5 87“18’1“5 67’2 8’1“1
4 1 Ar17rorars 4rirors
= W (—7,4(7@7'1525 + T’QT2515 + T17’2(5a5) + 7'6) (— 7’4 )
1 1 1 4 a(r1? + 12
- (47n)2 <_ 6;27"2) <_T4(Ta7"17'2 + rorory + rirere) + nren (:61 iRk ))
2.2
_ 1 1671712 g . (B.2.4)
(47)? rs
Here we use
9%G,, 9%G, 4 1 4rirora
87’237’; * 87’187’1 ~ 4my <_7’4(TQT1525 FTar2015 + T1r20as) + 17?66) ’ (B.25)
6G51 8G52 1 47"1712745
= — . B.2.6
Orsy + orq 47n rd ( )
The third term in the integral vanishes, because
0Gs1 | 0G5
e + 1o =0. (B.2.7)
Thus, we have
0*Gop 0Gsp
Va(R) = — Aggroy | —— S(R R d
( ) BB vy 87’787“5 8T{y ( —I—T‘)C( =+ T) r
1 a
" S(R + 7)e(R + r)dr. (B.2.8)

- 32m2n2 | rt
The Kramers-Moyal coefficient of the second order is simplified in the following manner:
1/ D*Go1 0Gs1  0?Gaa 0Gs2 ?*Go1  0*Gaa 0Gs1 N 0Gs2
8 Ori10rs Orq OrqOrs Ora Ore0rs — Or10rs Ory ory

0*Gor n 0*Gar 0Gs1 . 0G5
or10rs  Ora0rs orq Ors

D(R) = -

>] S(R+7)c(R+r)dr. (B.2.9)

The first term in the integral can be calculated as

8Ga1 aGaq 4 8Ga2 8Go/2
87“1 87’1 37’2 37‘2

_ 1 Ta 2r12r,, To 27127 o n 1 Ta 21927, To 27927 o
(4mn)2 \ r2 ri r2 ri (47n)2 \ r2 rd r2 rd
1 21\ T ot
— (47”7)2 ( 7(21801 (7’14 + 7“24 — 27’127’22)> . (B210)
The second term is calculated as

aGal + 8Ga/2 8Ga/1 + aGalg . 1 16r12r22ra7"a/
Ora orq Ors ory ) (4mn)? 7S

: (B.2.11)
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since
0G o1 aGalg 1 4rirara

= — . B.2.12
Orsg + ort 4mn ( ri ( )

The third term in the integral vanishes since

0Ga1  0Gqa2

=0. B.2.13
87“1 + 37‘2 ( )

Thus, the diffusion tensor originating from the active force dipole, D*,./, can be represented as

1 raTo

DA, (R) —/wﬁS(R—i—r)c(R—i—r)dr. (B.2.14)

As an example of an actual system, we consider the case with constant concentration ¢g in the
circular raft whose radius is R. Here, we regard S(7) as a constant. Since the system is symmetric
with regard to the center of the circular raft, we calculate in the case when r = (r,0) without
losing generality. Inside of the raft (r < R —¥¢.), V(r) and D(r) are calculated as follows. We
adopt the polar coordinates in which the origin corresponds to r. The range of the integral of radial

direction is [0, —rcos® + V R2 — r2?sin? 9}. The upper limit of the integral is obtained by solving

Tmaz> + 12 — 2rmaer cos(m — 0) = R? with regard to rpmag.

S 1 r!
V(re;) :W / — ( ré > c(r +r")dr’
2w p—rcosf++/ R2—r2sin? /
/ / — T,Cf)SG r'dr'do
327r n? r! r'sin
Sco 2 - —1 cos
32mn* Jo —rcosf +/R2 —r2sin?20  le S

.
__ % < R? — 2 ) (B.2.15)

32mn? 0

1 7" 7’
4 172 gt
Drrea) 3212 2/744 < rhrl 2 >C(7‘+7‘)dr

2w p—7cos 9+\/m 1 7“’2 cos2 6 74/2 sin @ cos 0 P
2 : r'dr'df
327r n“Jo Jo

2 . 2 .
74\ 12 sinfcosd ' sin? 6
2

327r 772 . (ln
7T

Sco 5 ) 0 +lni T 0

~ 32mp? gln (R2 =12 e\ 0 =

2 _ 2
Sco R T) . (B.2.16)

2 .
~roos+ V2 —riein’ 9) —In gc) ( siﬁ(;scoesG 31235059 ) @

327r77 I
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Outside of the raft (r > R+ ¢.), V(r) and D(r) are calculated as follows.

S 1 r
Vres) :327722//4 ( ré > c(r+r')dr’

Sco o rcos@—1r\ ,,,
. dr'df
327T2 / / % 412 — 2r'r cos 6)2 < ' sin @ > rar

2nr
Sco /R S
=c——>3 RZ — 22 | vdr’
327.‘.2772 0 ( 0 )
R2
SCO _
~ T 3amp ( 7“(7"20—32> ) ) (B.2.17)

DA(rex
1 7'17”2 N
d
327T2 2 [ A < rhr > e +r)dr

Seo  [*T (r'cos® —r)2  'sinf(r' cosf—r)\ , ,
2 ! o ! 2 .. 92 r'dr'df
R o Jo (P 7“2 —2r'rcos )2 \ 7'sind(r' cosd —r) r'“ sin® 6

— '
r r2 2 0
- /d /
327T /0 L’Q o
T2(T2 _ TIQ)
Sco 2r2 _ R2 0
3271'77 R? r
_272 + In 772 — R2
Sco T R? 0
= 1 1 . B.2.18
327”]2{11( r2—R2> +2r2(0 —1>} ( )
By introducing the rotation tensor R(6) as
cosf) —sind
R() = <sin9 cos 0 > (B-2.19)
V(r) and D(r) are expressed as follows:
V(r)=V(r,0) = V(re,)R(0), (B.2.20)
D(T) :D(T, 0) = R(H)D(T81>R(—0)a (B221)
where
_r
(RQ—TQ), (r<R-—1{.),
SCO 0
= — B.2.22
r(r2 —R?) |, (r>R+/),
0
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m (Y (r<R—10,),
(r) =20 be (B.2.23)

32?2 r R (1 0

For the periphery of the raft R — ¢, < r < R+ /., the calculation is more complex.

B.2.2 Derivation of Egs. (3.3.21) and (3.3.22)

According to the definition of the Kramers-Moyal coefficients of the first and second orders in
Egs. (3.2.22) and (3.2.23) and the Oseen tensor in Eq. (B.1.23), we have

V(R)
1 / o (0Ga1 8Gan | 0Ga2 0Gus | 9Gas OGurs
N 15 87’1 87‘1 87“2 37"2 7”3 6r3
n 0G a1 n 0G oo 8Gaq 0G o 0G a2 8Ga/3 0Ga1 n 0G oo
87"2 87’1 37’2 87’1 87‘3 87’2 87'2 87’1
0Gqa1  0Gyr2 0G 1 8Ga/2
+(8T2+8T1><8T2 7“1)
0Go1  0Ga2 8Ga3 0G a1 oG o1y oG o2 0G w3
dr.
+( or1 * Oory * ors 87“1 ) ( ory ory ors >} SR+ )c(R+r)dr
(B.2.24)
Here, we used
2
ABB/WW' _— / €33/ E~Eq/ sin 0d0d¢
15 (566’5'77 + 0py0py + Oy 01y )
5 (/Baﬂlaf%fy) (1717171)7(2 2 272)7(3737373)7
1
_ 75 (5aﬁla’y,’7,) (1717272)’(]"17373)7(1’2’172)7(1’25251)7(1735153)7(1)37351)7
B (2,1,1,2),(2,1,2,1),(2,2,1,1),(2,2,3,3),(2,3,2,3), (2,3, 3,2),
(3,1,1,3),(3,1,3,1),(3,3,1,1),(3,2,2,3),(3,2,3,2),(3,3,2,2),
0, otherwise,

(B.2.25)

where e1, eg, and eg are first, second, and third components of a unit vector e = (sin  cos ¢, sin 6 sin ¢,
cos 0), respectively. We also use the following relations.

2\ 2
0Ga1 0Gart _ TaTa (1 _3n > 7 (B.2.26)

87“1 8’/”1 - (87‘(’7’])27”6 r2
0G o1 OGQ/Q . 6ror172
ory  Ort — Bwprd (0220
0Ga1 | 0Gaz  0Gas _ (B.2.28)

87‘1 (97’2 87“3
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Thus we have

1 Ta

The Kramers-Moyal coefficient of the second order is simplified in the following manner:

DR 1 { (a Ga1 0Gs1 | 9*Gaz 0G5y | 0*Goy aG(;g)
-5

1 ori10rs Or1 Org9Ors Ora Orsors Ors

0?Gon 82Ga2> <8G51 8G52> <82Ga2 82Ga2> <8G53 n 8G53>

<8r287"5 or10rs ory ory Or30rs + orsors ory ory
0Gsz  0Gs1
- (87“137“5 87“33?”5) ( ary | ors
P?Ga1 0?Gaa  0?°Gos 0Gs1  0Ggso  0Gss
dr.
+<8r187‘5 or90rs +8r387‘5 ory + Orsy + ors S(R+r)e(R+r)dr
(B.2.30)
Thus we have
D(R) = — /T"‘TD"S(RJF )e(R+7)d (B.2.31)
= 0 G r)c r)dr. 2.

B.2.3 Derivation of Egs. (3.4.1) and (3.4.2)

Here we consider the situation that the direction of active proteins are aligned in the angle
0= (907 i.e.,

( COS4903 (5,77/8/77/) = (171a1a1>7
sin 0y cos® 907 (67 7, /Bla 7/) = (17 L1, 2)7 (17 L2, 1)7 (17 2,1, 1)7 (27 L1, 1)7
NOND, = sin® g cos® 6o,  (B,7,6,7) = (1,1,2,2),(1,2,1,2),(1,2,2,1),
By (27171a )7(2717271)7(2727171)7
Sing 90 COs 607 (ﬁ7 Y, /8/7 7/) = (1) 27 27 2)7 (2) 1) 27 2)7 (27 2) 1) 2)7 (27 27 2) 1)7
Sin4 907 (67’77ﬁ/77/) = (272721 2)
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According to the definition of the Kramers-Moyal coefficients of the first and second orders in
Egs. (3.2.22) and (3.2.23) and the Oseen tensor in Eq. (B.1.18), we have

Va(R)
0? 0°Gap 8G55/
Ory0rs Or.

0?Go1 0Gs1
or10rs Ory

0Gs1  0Gyso 0?Ga1  0°Ga\ 0Gs1) .
{(97“187“5 < 87‘2 + 87“? ) + <8r28r5 * 8r18r5) 87“? }Sln00 cos™ o
0?Go1 0°Gaa 0Gs1  0Gs9 0?Go1 0Gsy  0?Gao 0G5,
{(67“267“5 07“187"5) < oro ory ) or10rs Ors Oro0rs Orq
0Gs1  0Gyso 0?Ga1  0°Ga\ 0Gs2) .
+ {67“2(97’5 ( 67’2 + 87"1 ) + <87“287’5 + 87'1(97’5) 87’2 }Slng 90 o8 90
82Ga2 8G52
Orq0rs Ora

1 2 ..2)\2 8 2 .2
=~ P / K—(rl 22 ) TO‘) cos® Oy + <— rura(ry S 2 )TO‘> sin 0 cos® Oy
™ r r

2 212 2.9 2 2

2(r” —ro®)rq  16r1°rere\ . o 9 8rira(ri® —r2%)ra\ . 3

S - S sin” 6y cos” 6y + 3 sin® 0y cos Oy
r r r

v(2) A7(2)
NﬁN

=/

S(R+r)c(R+r)dr

S4 00

+

} sin? 6 cos® 6y

sin’ 90} S(R+r)c(R+ r)dr

_|_

< (""12—7“22)%) sin 90] S(R + r)e(R + r)dr

— 92)? 4 -

7’8

2
( Tz ra> sin 200] S(R+7)c(R+r)dr

/ 1% — 1r9?) cos 20 + 2179 sin 290) —SS(R +7)c(R+ r)dr. (B.2.33)
r

By substituting » = r(cos fe; + sin fez), we have

22(0 — 00)S(R + r)c(R + 7)dr. (B.2.34)
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DA, (R)
@@ [ 9Gap 0Gup
= Ny Ny’ dry orl S(R+r)c(R+r)dr
0Ga1 0Go1 4
_ 6
|: 87“1 87"1 €os %0

_|_

0G a1 [ 0G o1 n 0G o9 N 0G a1 N 0G a2\ 0G 1
ory 87‘2 ory Ory ory ory

{ }sin 6 cos® 6y
aGa o o « o «a o'
{( 1 )<8G 1+8G 2)+8G16G 2+8G28G1
5'7"1
8

s 2 2
0 0
87‘2 (97‘2 8r1 87“1 87"2 87‘2 87“1 } SHL 0o o500

0Go2 [0Ga1  O0Gyo 0Gq1  0Ga2\ 0Gyio
87“2 ( 87“2 + 8’1”1 )+( + >

a2 oG a’2
87‘2 87“2

N (47r177)2 /

2(r12 —192)2rorer 167121920y
+ (- 2 + .
r r

} sin® 0 cos

87“2 8’!"1 87“2

sin® 00] S(R+7)c(R+r)dr

(7“12 — 7“22)2 ralo!

r8

8rira (7“12 — r22) Talo

sin 6 cos® 6y

cos” By +

r8

) sin? 0 cos? 6y

8riry (r12 - r22) Talo
T 8
r

) sin? 6 cos 6,

(T12 _ Tj:)Q ol sin* 4 S(R+7)c(R+r)dr
= (47r1?7)2 / [(HQ _ Tj:)Q lala! cos? 200 + Arrs (T12 7; T22) Tl sin 26 cos 26,
W sin? 290] S(R+7)c(R+r)dr
= (47377)2 / ((7“12 — 1r9?) cos 20y + 2r17y sin 290)2 rara S(R+ r)c(R+ r)dr. (B.2.35)
By substituting r» = r(cos fe; + sin fez), we have
Doo(R) = (47377)2 / TC;ZQI cos?2(0 — 00)S(R + r)c(R + r)dr. (B.2.36)

B.2.4 Derivation of Egs. (3.4.4) and (3.4.5)

Here we consider the situation that the direction of active proteins are aligned in the angle 8 = 0,

ie., Nég)Nég) = 1 and otherwise 0. According to the definition of the Kramers-Moyal coefficients
of the first and second orders in Egs. (3.2.22) and (3.2.23) and the Oseen tensor in Eq. (B.1.23), we
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have

3) (3 ) 8*Gas 0G5
a(r) =—NJNG d
Va(r) 0,005 Dpy (7 + p)c(r + p)dp

0*Gas 0Gs3
S(r+ p)e(r + p)d
9psdps Ops (r+ p)e(r + p)dp
1 s 3 5 15p4,p5p3>
= P8 3 605 — = (2papsdss + pa Sas) + —Lelols
(87rn)2/p6{ 5 pz(PPza 35 + Paps + padas) + o

3
(1 - ?) S(r+ p)e(r + p)dp
—; 701 _ 2 4
= Son0 / pi (1 —6cos” 0 +9cos™ 0) S(r + p)c(r + p)dp

Pa
T / gpz(cos 0)*S(r + p)c(r + p)dp, (B.2.37)

where P; is Legendre polynomial of the second order. Here we used p3 = pcos@
As for the diffusion enhancement, we have

_(3) = 0Gap OG o s
DA (r) =NPIN, BB (1 + p)e(r + p)dp
dpy  Op),

8CTYoz3@Go/3
S(r+ p)e(r + p)d
905 Ops (r+ p)e(r + p)dp

1 PaPo’ 3p3 3p3
:(87r17)2 / 61“06 <1 — ,02> (1 - p) S(r + p)e(r + p)dp
1

PaPo!
:167r2772 / p Py(cos 0)2S(r + p)c(r + p)dp.

(B.2.38)

B.3 Derivation of the drift velocity U

In this section, we simplify the drift velocity in Eq. (3.3.2).

B.3.1 Two-dimensional case without orientational order

According to the definition of the drift velocity in Eq. (3.3.2) and the simplified Kramers coef-
ficients of the first and second orders in Egs. (3.3.3) and (3.3.4), we have

() =V (r) — 2P00(T)

ory
327: 22 / <T/%1 T/faié/ ai) (S(r+7r")e(r +7")) dr’
327:2 <,£Z o > Té‘f; )) S(r +)c(r +r')dr’
32022 /U :;4& S(r +r')e(r +r')dsy, (B.3.1)
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where fg ds!, is the integration along the periphery of the domain. Here, 0/0r, can be regarded
as 0/0r!, and the partial integration is used. The derivative in the integrand is calculated as

0 ToTos  Oaa/To To rar?, Ta
= 2— —4—% = ——, B.3.2
Ory 14 rd + r4 76 ré ( )
Thus, only the surface term remains
1 rir’,
Ua(r) = 320 / i/f Q(r +7')ds.,. (B.3.3)
g

The integration is taken over the physical boundary ogutsiqe and the small cut-off surface ojnside
around 7. The integration taken over the physical boundary oguisidge becomes zero if Q = 0 at the
boundary, as we always assume. As for the cut-off surface, we expand @ as
oQ(r
Q(r ++) = Q)+, 22" L o2). (B.3.4)

¢ Orgy,

Then, the integral over the small cut-off surface is calculated as

1 Tl
Un(r) = = g / T2 Q(r + 1)l
1 27 7?/0[7:/0/ R 8@(7’) ) . /
- _ / —p,
- 3277-27]2 /0 602 <Q(T‘) + ECT B 67“5 + O(EC )) ( gcr o d(rb )
1 90Q(r)

= c)s B.3.
32mn? O, +O() (B.3.5)

where 17, is a unit vector which is parallel to r/,, and r'; = cos¢’ and 1’y = sin¢/. Here, we used

o1’ = 1, and the integrations of 7, and 7,7 with regard to ¢ over [0,27) are 0 and 74/,
respectively.

B.3.2 Three dimensional case without orientational order

According to the definition of the drift velocity in Eq. (3.3.2) and the simplified Kramers coef-
ficients of the first and second orders in Egs. (3.3.21) and (3.3.22), we have

D
1 r! no 1 rort, 0Q(r + 1)
:407r2172 /T%Q(r +r)dr - 8072n? / 7’0 Or g dr
1 r
:74()”2?72 /T/6Q(’r +r’)dr/

1 9 [rarw 1 il
* 80m2n? / or', { 7’0 }Q(r 7’ - 80m2n? /a 16 (r+7)dsar, (B.3.6)

where Q(r) = S(r)c(r), and [ ds, means the surface integral. Here 9/9r!, can be regarded as
d/0r!,, and the partial integration is used.

2
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Thus, we obtain

1 T ,
Ua(r) = — 107772 s (r+7)dsy. (B.3.8)

B.3.3 Two-dimensional case with orientational order

According to the definition of the drift velocity in Eq. (3.3.2) and the simplified Kramers coef-
ficients of the first and second orders in Egs. (3.4.1) and (3.4.2), we have

 9D,w(R)
ORu

( 12 — 19%) cos 20 + 2117 51n290) SQ(R—i—r)dr

/ r?— 7«2 cos 20y + 27172 sin 290)2 Tago/ aQ((;; -
T o

dr

™n)?
/ 12 — 19%) cos 209 + 217y sin 290) 5 Q(R + 7)dr

471'77
9 . 2 TaTo
rl — 19%) cos 26y + 2r173 sin 200) 5 } QR+ r)dr
r
)2 / ) cos 20 + 2rirg sin 290)2 rara QR+ 7)dsy, (B.3.9)
7”7

where Q(r) = S(r)c(r). Here 9/0R,s can be regarded as 0/0r, and the partial integration is used.
The derivatives in the integrands can be calculated as follows.

67(1/ {((T12 — 19%) cos 20 + 2r17g sin 200)2 rc:ﬂga’ }
= 2{r1 (2r1 cos 26y + 2rasin 26y) — ra (—2r3 cos 26y + 2r; sin 26y) }
x ((r1? — r2%) cos 26 + 27172 sin 26y ) TO:;“/
((7"12 — r22) cos 20y + 2r1r9 sin 200)2 {50“:;‘“/ 4+ 2% _ 8Tif§z’ }
=4+1+2-238) ((7‘12 — 19%) cos 20y + 2r17r sin 290)2 T‘;‘;a/

2 TaTo!
TS

= — ((r1* — r2%) cos 20 + 27172 5in 26, (B.3.10)

8 !
{(((r12 —15%)2 — dr12r52) cos 46 + drira(r1? — r?) sin d6g) L }

Ory 78
=7 ((4r1 (7“12 — 7'22) — 87’17’22) cos 40y + (4r2(r12 — 7’22) + 8r12r2) sin 490) TO‘ZO/
r
+ 79 ((—47“2(1“12 — r22) — 8r12r2) cos 46y + (4r1(r12 — r22) — 87“17"22) sin 400) Taga,
,

5 ! / 2/
+ (((T12 - r22)2 - 41"127“22) cos 46y + 47“17“2(7“12 — 7‘22) sin490) { aa;a + 2% — 8rafg‘ }
r r r

. Talol
=(4+1+2-3) (((1"12 — 7“22)2 — 4r12r22) cos 46q + 4r1r2(r12 — 7“22) Sln490) C;Sa

. Tala!
= — (((r* = r2) — 4r1%r9?) cos 46 + 4r17ro(r1? — r2?) sin 46,) arga (B.3.11)
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Thus, only surface terms remain as follows.

1
W /g ((r12 — 7“22) cos 20 + 2riro sin 200)
The integration is taken over the physical boundary ogoutside and the small cut-off surface oinside
around the R. The integration taken over the physical boundary ogutside becomes zero if () = 0 at
the boundary and so on. Here we consider the situation that Q(R + r) is given by Q(R + r) =
Q(r) +r30Q(r)/0rg. Then the integral over the small cut-off surface can be calculated as

Ta T'a

Ua(R) = — QR+ 7)ds,. (B.3.12)

1 n Falof oQ(r N
UalR) == (o053 /0 (:0822(00—¢)T£:2 <Q0+€c s a( )) (—lefordo)
__ve
—W. (B.3.13)

Here, we used the fact that the integration of cos?2(6y — @) cos @, cos? 2(6y — @) sin ¢, cos? 2(6y —
¢) sin ¢ cos ¢, cos4(0y — ¢) cos ¢, cos 4(0y — ¢) sin ¢, cos 4(fy — ¢) cos? ¢, and cos 4(y — ¢) sin ¢ cos ¢
with regard ¢ over [0,27) are zero, and only the integration of cos?2(fy — ¢) cos® ¢ and cos? 2(fy —
¢) sin? ¢ with regard to ¢ over [0, 27) is /2 (the same value).

B.3.4 Three dimensional case with orientational order

According to the definition of the drift velocity in Eq. (3.3.2) and the simplified Kramers coef-
ficients of the first and second orders in Egs. (3.4.4) and (3.4.5), we have

1 T /2 12\ 2 N, 1 ol 2\20Q(r +7')
= 7327[_2772 / - ao (T — 37"3 ) Q('r +7r )d’l" - 6471'2772 / :,13 ( —3r rs ) Td’!’
1 Ta (.12 22 1 o (rirl, /2 9\ 2
N 32m2n? / 10 (T, ~ 3 ) Q(r +ri)dr’ + 647202 / Ory { :,13 <T/ — 313 ) Qr +r')dr’

1 LT 2 2\ 2 ,
~ ban22 ) 0 (’” — 3r3 ) Q(r+r')dsas, (B.3.14)
o

where Q(r) = S(r)c(r), and [ ds, means the surface integral. Here 9/9r!, can be regarded as
d/0r!,, and the partial integration is used.

/
0 rar ' (2 32 2
a’ T’lo T

) 3! 10rl 2 2 2\ 2 ’7"’ 2 2
ot T - e (17— 5ig?) 2T 07— 30 20l — 6rf)

,10 ( — 3, )2. (B.3.15)

Thus, we obtain

1 T’/ // 2 2 2
Ua(r):—647r2n2/0 =% (r' —3rg) Q(r + ') dsu. (B.3.16)



B.3 Derivation of the drift velocity U

As an example of an actual system, we consider the case with constant gradient of the activity
of active proteins Q(r) = Qo + Q1a - r, where Q(r) = S(r)c(r).

V(r) :1/ 1"/’6( —3cos?0)?Q(r + r')dr’

32m2n?
Qo+ Qia-r T Q1 T 2 M2
_T Ta (1 — 3cos?0)2dr’ + o2 T%(l —3cos”6)? (a- ') dr’

r’sin  cos ¢

27 12
_Q0+Q1“ "“/ / / ! Sme (1-3cos20)? | #sinfsing | di'dfde (B.3.17)
le

2
32m=n r' cos 6

2 2 sin 9
(1-— 0
32772 / / /Ec 3 cos? )
r’sin  cos ¢

X (a7’ sin 0 cos ¢ + agr’ sinfsin ¢ + azr’ cosf) [ r'sinfsing | dr'dfde

r’ cos 6
Qo+ Qra-r [T 1 0
= 032 21 5 / 5 sinf(1 — 3cos®0)? 0 do
™n o 2L 27 cos 6
Ql 2 ™1 . 9 o
+W o ) ZSIHQ(I—BCOS 9)
sin 6 cos ¢
X (aysinf@cos ¢+ azsinfsing 4+ agcosf) | sinfsing | dode
cos 0
167ra 1a
- a1 Za1
Q1 1?617r _ Q1 ?a (B.3.18)
T 32n22 4, T U2l | 370 | o
o 1?(1% i ﬁ
105 3 15"

and

1 rr!,
D) =5 / 28 (1= 30t 0)°Q(r + 7')dr’
r

!t !
_Qog:lc’ilna /Ta;“/ (1 — 3cos?0)2dr’ + 64Q21772 / ralrﬁa (1-3cos®0)? (a-r')dr’
s r 7r
Qo+ Qia-r 7“ ? sin 9 9 9
:W é (1 —3cos”6)

2 . . 2 .
r’ sm 6 cos? ¢ r'“sin? @sinpcos ¢ 1'° sinf cos b cos ¢

?sin2fsingcosd  r'*sin?0sin2¢  r'*sin 9 cosfsing | dr'dfde

2 . 2 . .
r’ sm@cos@cosqb r'* sin 0 cos 6 sin ¢ "2 cos? 0

27
" sing 51110 2 12
(1-3 0
64772 / / /z o0

(a17’ sin 6 cos ¢ + azr’ sin O sin ¢ + asr’ cos 0)
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2 . 2 . . 2 .
r’“sin®fcos? ¢ r'“sin®fsingcos¢g 1'°sinf cos b cos ¢

x | r?sin?@singcosdp  r'Zsin?fsin¢ 2 Siﬂ@COSGSind) dr'dfd¢
r?sinfcosfcosd r'*sin6cosfsinp "2 cos? 0
2m
QOG—ZQIG T/ / — sinf(1 — 3cos? 6)?
m2n?
sin@cos®¢  sin?@sinpcos¢ sinfcosf cos
x | sin?@sin ¢ cos ¢ sin? @ sin? ¢ sinfcosfsing | dide
sinf cosfcos¢  sinfcosfsin @ cos? 6
0 00
Q1 1
Gdn2n? i 00 0 |d
be 000
1 1
% 0 0 3 0 O
+Qia-r1l 16 r) 1 1
:Q064Q212 £ o | QA )f o L o |. (B.3.19)
mén ¢ 21 176 287n? L, 3 1
0 —_— 0 0 —
105 15

It is noted that V,, and (0Dgq)/(0ry ) with constant gradient of @ still satisfy the equation V,, =
2(0Dgnqar)/(0rar), which is the same as the result in Ref. [39].

1 1
g 0 0 §a1
8Dozo/(r) Ql 1 1 “ Ql 1
1 1 1 B.3.20
or w03 0 2 o8m2l. | 3% | ( )
0o o 2 4 L
15 157
1
7
D 1
-y _ @& Cas | (B.3.21)

Thus Egs. (B.3.18) and (B.3.19) are obtained.
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