
　

Self-propelled Motion and Collective Effect of
Active Elements in Nonequilibrium Systems

January 2018

Department of Physics, Division of Fundamental Science,
Graduate School of Science, Chiba University

Yuki Koyano





　 (千葉大学審査学位論文)

Self-propelled Motion and Collective Effect of
Active Elements in Nonequilibrium Systems

January 2018

Department of Physics, Division of Fundamental Science,
Graduate School of Science, Chiba University

Yuki Koyano





Abstract

Self-propelled motion realized in non-equilibrium systems is now growing to be an important
topic of nonlinear physics. Not only motion of a single self-propelled particle (SPP) but also
collective motion of them are important problems. For collective motion of SPPs, spatio-temporal
patterns of the density profile and the mean velocity field are often discussed, whereas such pattern
formation can be also induced by active elements which cannot move by themselves under an isolated
condition. In this doctoral thesis, we consider two topics; one is motion of a single SPP and the
other is collective phenomena induced by active elements without mobility.

In the first half of the thesis, we discuss spontaneous motion of a single camphor particle on
water surface. We focus on motion through a spontaneous symmetry breaking; we consider motion
emerging through instabilization of rest state. As actual systems, we investigated the motion of
a camphor particle in a one-dimensional finite system with an inversion symmetry and that in
the two-dimensional circular system with inversion and rotational symmetries. We also analyzed
rotational motion of a symmetric camphor-driven rotor, which also emerges by the instabilization
of rest state.

In the latter half, we discuss diffusion enhancement and drift flow inside cells or on biomembrane
induced by active proteins, which change their shapes with energy supply. By conformational change
of active proteins, cytoplasm or biomenbrane is stirred, and thus diffusion is enhanced. When
the active proteins are distributed inhomogeneously, directional flow is also induced. By using a
mathematical model where an active protein is approximately considered to be a force dipole, we
discussed the collective effect of active proteins.
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Chapter 1

Preface

The idea “dissipative structure” has been proposed by I. Prigogine, who got Nobel Prize in
chemistry [1]. A dissipative system is defined as the system with continuous injections and drains of
energy without detailed balances, and thus the dissipative system is classified into nonequilibrium
systems. In such a dissipative system, spatio-temporal pattern can emerge through spontaneous
symmetry breaking, i.e., a seemingly-lower-entropy structure can emerge. Belousov-Zhabotinsky
reaction (BZ reaction) is a typical example exhibiting spatio-temporal pattern [2–4]. Commonly,
chemical reaction is a monotonical relaxation process, but oscillatory relaxation process of reactants
is observed in a batch system of BZ reaction. In an open system with injection of reactants and
drain of products such as reaction in a continuous-flow stirred tank reactor (CSTR), the stable
oscillation is observed instead of a stable steady state as shown in Fig. 1.0.1(a). Bénard convection
is also a typical example that exhibits spatio-temporal pattern [5, 6]. When a layer of fluid in a
shallow water chamber is heated from the below, rolled convection transferring the heat from the
bottom to the top is induced when the heat flow is more than a threshold value, while below it
only thermal diffusion without convective flow occurs. The rolled convection forms a spatial (or
spatio-temporal) pattern as shown in Fig. 1.0.1(b).

Elements which show systematic motion under continuous energy gain and dissipation are called
active matter [7–11]. From the definition mentioned in the previous paragraph, active matter is
also classified into dissipative structures. In some active matter systems, directional motion can
emerge through spontaneous symmetry breaking as shown in Fig. 1.0.1(c). Such directional motion
is considered to be one of the spontaneous spatio-temporal pattern formation in a broad sense. For
instance, a spot pattern and its motion is observed in a reaction-diffusion system [12–14]. Since
reaction-diffusion systems are often used as a typical example of the dissipative systems and the spot
shows the systematic motion, the motion of spots is considered to be both active matter and pattern
formation. It is noted that in some cases the direction of motion is predetermined by asymmetry
in the systems as shown in Fig. 1.0.1(d).

The significance of studying active matter is considered as follows: First of all, the self-propelled
systems are common in the actual world; animals are one of the examples, and it is natural that
one is motivated to understand the underlying mechanisms of the phenomena. The second point
is that the self-propelled motion is one of the characteristic behaviors in nonequilibrium system.
They consume free energy and convert it into kinetic energy, which is completely different from
kinetic-energy-conserved systems. The third point is possibility of application, e.g., drag delivery
systems [15] and soft actuators [16,17].

There are many types of mechanisms for self-propulsion. Here we introduce several self-propelled
systems. Janus particles, which are composed of semispheres having different surface properties,
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Figure 1.0.1: Schematic illustration of dissipative structures. (a) Time evolution of concentration
of a component in BZ reaction. The stable oscillation is observed instead of a stable steady state in
certain conditions. (b) Heat transfer in fluid from bottom to top. When the temperature difference
is large enough, convective flow is induced. (c) Motion of an element through spontaneous symmetry
breaking. (d) Motion of element whose direction of motion is predetermined.

are moving by using hydrodynamic effects [18, 19]. An oil droplet producing surfactants moves by
Marangoni flow induced by surface tension difference [20, 21]. Camphor particles on water surface
is moving using surface tension difference [22]. A pentanol droplet on water surface also moves with
the same mechanism as a camphor particle, but it also shows deformation coupled with motion [23].
Cell crawling is the result of the action-reaction between the cell and substrate [24]. Collective
motion of self-propelled particles is also an important one of the major topics [8,25,26]. Structures
much greater than an element are observed, such as cluster [25,26], band [11,27,28], or rolls [29].

It is true that actual systems are important, but its theoretical aspects are also important to
understand generic physical insights of active matter. Equation of motion for self-propelled particles
is often analyzed in terms of dynamical systems. This is because self-propelled motion is realized
with the balance of energy gain and dissipation, which has nonlinearity in most cases [30–32].

A typical example of a theoretical study is performed by Ohta and Ohkuma [11,33]. They studied
the relationship between the velocity of a self-propelled particle and its shape by constructing a
dynamical system:

d

dt
vα =γvα − |v|2vα − aSαβvβ, (1.0.1)

d

dt
Sαβ =− κSαβ + b

(
vαvβ − 1

2
|v|2

)
, (1.0.2)

where v is the velocity and Sαβ is the tensor which represents the degree of second-mode deformation
as shown in Fig. 1.0.2(a). Here Sαβ = nαnβ − δαβ/2 for a two-dimensional system. It is noted that
only the system symmetry is considered to construct the model. They reported that when the
rest state becomes unstable, the particle exhibits straight or rotational motion depending on the
parameters, a, b, γ, and κ.

2



n

v
(a) (b)

r

Figure 1.0.2: Schematic illustration of (a) Ohta-Ohkuma model for a deformable self-propelled
particle [11, 33] and (b) Vicsek model [25, 26] for collective motion of self-propelled particles. (a)
The velocity v and the characteristic direction of the second-mode deformation n is illustrated.
Here, n directs along the major axis of the elliptic deformation. (b) The self-propelled particles
with the same velocity and the radius for the interaction is illustrated. The self-propelled particle
located at the center of the circle changes the direction of the motion into the average direction of
the motion of self-propelled particles inside the circle.

Here we also introduce Vicsek model [25,26], which is a simple model of collective motion. The
velocities of the self-propelled particles are the same and constant:

vi(t) = veθi(t), (1.0.3)

where i identifies the particle and eθ is a unit vector eθ = (cos θ, sin θ). The direction of the motion
θi(t) is determined by the following equation:

θi(t) =
1

N(t)

N(t)∑
j=1

θj(t), (1.0.4)

where
∑N(t)

j=1 is a summation over the particles which are located in the circle with a radius of r,
whose center is the i-th particle. The schematic illustration is shown in Fig. 1.0.2(b). Each particle
obeys the following equation of motion:

xi(t+ 1) = xi(t) + vi(t)∆t. (1.0.5)

In this model, the direction of the motion is globally ordered for small noise and high density of the
self-propelled particles.

In this doctoral thesis, two topics are discussed. One is motion of a single self-propelled particle,
and the other is collective effect by active elements.

As for a single self-propelled particle, we discuss the motion of a camphor particle on wa-
ter surface. We investigate the motion emerging through spontaneous symmetry breaking. We
consider three cases; motion of a camphor particle in a one-dimensional finite system [34] and a
two-dimensional circular system [35], and motion of a camphor-driven rotor in a two-dimensional
system [36], which are discussed in Secs. 2.2, 2.4, and 2.5, respectively. We reduce a mathematical
model describing motion of a camphor particle around the rest state for each geometry, and analyze
bifurcation structures of the reduced equation. The bifurcation structures correspond to instabiliza-
tion of the rest state and indicate what kind of motion can occur. In Sec. 2.2, we consider motion
of a camphor particle confined in a one-dimensional system. In Sec. 2.3, the generalized equation
for motion of a self-propelled particle in a two-dimensional axisymmetric system is analyzed [37],

3



Chapter 1 Preface

and the results are applied to a two-dimensional circular system in Sec. 2.4. In Sec. 2.5, we consider
motion of a camphor-driven rotor whose center of mass is fixed.

As for collective effect by active elements, we consider collective flow induced by active proteins
inside cells or on biomembranes. Here we define an active protein to be a protein which shows con-
formational change in its shape with supply of substrates. It has been reported that the diffusion
inside cells are greater than the normal diffusion under thermal equilibrium. Such diffusion enhance-
ment is explained by the model where an active protein is considered to be a force dipole [38, 39].
The model was proposed by Mikhailov and Kapral, and it can be applied to various systems. In
Sec. 3.3, we analyze the model to clarify the effect of inhomogeneous distribution of force dipoles,
especially the effect of localization of them [40]. We also discuss the effect of alignment of force
dipoles in Sec. 3.4 [41].

4



Chapter 2

Camphor Particle Moving Through
Spontaneous Symmetry Breaking

2.1 Introduction

When a camphor particle is put on water surface, the camphor particle shows spontaneous
motion at the water surface [22,42–45]. The camphor-water system was firstly reported in nineteenth
century [42–44]. In recent decades, the camphor-water system has been attracting more and more
interest, since it is regarded as a self-propelled system.

The detailed mechanism of self-propelled motion is as follows. A camphor particle diffuses
camphor molecules on water surface and reduces the surface tension, since camphor molecules work
as surfactants. When the surface tension around the camphor particle becomes anisotropic, the
camphor particle is driven by the surface tension difference. Camphor molecules on water surface
sublimate into the air. Thus the water surface is not perfectly covered with camphor molecules and
the camphor particle can continue to move. The schematic illustration is shown in Fig. 2.1.1.

By attaching a plastic plate to the camphor particle asymmetrically, the diffusion of camphor
molecules on the water surface also becomes asymmetric, and as a consequence, the self-propulsion
is induced [22, 46]. On the other hand, a camphor particle with a symmetric shape, e.g., a disk-
shaped camphor particle, diffuses camphor molecules in a symmetric manner, and the rest state
with a symmetric profile of camphor molecules around the camphor particle can be considered. In
this case, the stability of the rest state is important. If the rest state is unstable, the camphor
particle exhibits the self-propulsion through spontaneous symmetry breaking [47,48].

Sublimation

Diffusion

Dissolution

γ
r

γ
f

Camphor particle

Camphor molecule (invisible)

Figure 2.1.1: Schematic illustration of a camphor-water system. The camphor particle is driven
when the surface tension of the front and rear sides, γf and γr, is different.
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

There are many systems in which a self-propelled particle moves by using surface tension [15,49–
57]. The advantage of the camphor-water system is that the experimental system is simple and it is
rather easy to construct complex systems that exhibit collective behaviour [58–60] and information
processing [61, 62], and so on. Another advantage is that the mathematical model is rather simple
and suitable for analytical investigations, which enables us to consider interaction with wall [63–65].

A camphor particle moves in the direction with the lower camphor concentration around the
particle, and the motion of camphor particle can be considered as a negative chemotaxis [30]. As the
other examples of chemotactic self-propelled motion, droplets detecting chemical gradient [66, 67]
and self-propelled molecular machines [68,69] are known.

In Sec. 2.2, we consider motion of a camphor particle in a one-dimensional finite region, which
is the simplest case where a camphor particle is confined in a certain region [34,48]. By reducing a
mathematical model and analyzing a reduced equation in terms of dynamical systems, we revealed
that a camphor particle shows oscillatory motion or rest state depending on the size of the finite
region and also on the resistance coefficient exerting on the particle. As an extension of a one-
dimensional finite region, we consider a motion of a camphor particle in a circular region. In this
case, the analysis on the reduced equation is more complicated than that for the one-dimensional
system. Thus, we begin with the analysis on an equation of motion for a self-propelled particle in
an axisymmetric system, which is constructed only by considering the symmetric properties under
the assumption that the system is close to the bifurcation point [37]. The results are described
in Sec. 2.3. Then, in Sec. 2.4, we consider the motion of a camphor particle in a circular region,
as a natural extension to the two-dimensional case [35]. The interesting point specific to the two-
dimensional system is that there are several candidates of motion when the rest state becomes
unstable such as rotational motion and oscillatory motion. In Sec. 2.5, we discussed the motion of
a camphor-driven rotor, which is constructed with two camphor particles connected with a rigid
bar [36]. By considering such geometry of self-propelled particle, we can investigate the spinning
motion.

2.2 Camphor particle in a one-dimensional finite region

In this section, motion of a camphor particle in a one-dimensional system is analyzed [34]. First
we introduce the mathematical model for the motion of a camphor particle, which is composed
of an ordinary differential equation and a partial differential equation. Then we reduce it into a
two-dimensional dynamical system and analyze the bifurcation structure of it.

2.2.1 Mathematical model

In this subsection, we introduce a mathematical model, and derive a dimensionless form of it.

Introduction of the mathematical model

Here we introduce the mathematical model based on the previous work by Nagayama et al. [47].
We assume a camphor particle is a point particle, whose position is denoted as X = X(t). The time
evolution equation for the position of the camphor particle is given by the following equation:

m
d2X

dt2
= −ηdX

dt
+ F (X; c), (2.2.1)

where m is a mass of the camphor particle, η is a resistance coefficient, and F is a driving force. The
explicit expression of F is obtained as follows; the surface tension γ is a function of the concentration

6



Section 2.2 Camphor particle in a one-dimensional finite region

field c. Here we assume γ(c) = −Γc+ γ0, where Γ(> 0) is a constant and γ0 is the surface tension
of pure water. Since the driving force originates from the surface tension difference at the lefthand
and righthand sides of the particle, we have

F (X; c) =k {γ(c(X + ϵ))− γ(c(X − ϵ))}

=kϵ

(
∂γ(c(x, t))

∂x

∣∣∣∣
x=X+0

+
∂γ(c(x, t))

∂x

∣∣∣∣
x=X−0

)
=−K

(
∂c

∂x

∣∣∣∣
x=X+0

+
∂c

∂x

∣∣∣∣
x=X−0

)
, (2.2.2)

where k > 0 and K = kϵΓ > 0. Here we assume that we can take the limit where ϵ goes to zero but
K = kϵΓ keeps its finite value.

The time evolution equation for the concentration field of camphor molecules c at water surface
is described as:

∂c

∂t
= D

∂2c

∂x2
− αc+ f(x;X), (2.2.3)

where D is a diffusion constant and α is a dissipation rate of camphor molecules from water surface
by sublimation into the air and dissolution into aqueous phase. It is noted that the diffusion constant
should be considered as effective one, since the diffusion is enhanced by the Marangoni flow [70].
The Marangoni flow is the flow induced by the shear stress at free surface originating the surface
tension difference [71]. The function f is a supply from the camphor particle, and has a form:

f(x;X) = c0δ(x−X), (2.2.4)

where c0 is a supply rate from the camphor particle per unit time and δ(x) is the Dirac’s delta
function. The Neumann condition:

∂c

∂x

∣∣∣∣
x=0,R

= 0 (2.2.5)

is imposed to Eq. (2.2.3), which means no diffusional flux at the boundaries.

Dimensionless form of the mathematical model

The evolution equation for the concentration field in Eq. (2.2.3) is nondimensionalized. Here-
after, dimensionless variables are denoted by adding tildes (̃ ). The dimensionless time, t̃, length,
x̃, and concentration field, c̃, are set as t̃ = αt, x̃ =

√
α/Dx, and c̃(x̃, t̃) = c(x, t)/c0, respectively.

By substituting these dimensionless variables into Eq. (2.2.3), we obtain

∂c̃(x̃, t̃)

∂t̃
=
∂2c̃(x̃, t̃)

∂x̃2
− c̃(x̃, t̃) +

1

c0α
f

(√
D

α
x̃;X

(
t̃

α

))
. (2.2.6)

Here, the source term in Eq. (2.2.6), f , is rewritten as

f̃(x̃; X̃(t̃)) =
1

c0α
f

(√
D

α
x̃;X

(
t̃

α

))
=

1√
αD

δ
(
x̃− X̃

(
t̃
))
, (2.2.7)

where X̃(t̃) =
√
α/DX(t̃/α). Here we use δ(ax) = δ(x)/|a|. Then we obtain the dimensionless

equation for the concentration field as

∂c̃(x̃, t̃)

∂t̃
=
∂2c̃(x̃, t̃)

∂x̃2
− c̃(x̃, t̃) + f̃

(
x̃; X̃(t̃)

)
, (2.2.8)

7
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where

f̃(x̃; X̃(t̃)) =
1√
αD

δ
(
x̃− X̃(t̃)

)
. (2.2.9)

Then, we show the manner of the nondimensionalization on the equation of motion, Eq. (2.2.1).
The driving force is represented as

F

(√
D

α
; X̃(t̃)c0c̃

(
x̃, t̃
))

= −Kc0
√
α

D

(
∂c̃(x̃, t̃)

∂x̃

∣∣∣∣
x̃=X̃(t̃)+0

+
∂c̃(x̃, t̃)

∂x̃

∣∣∣∣
x̃=X̃(t̃)−0

)
. (2.2.10)

The variables, t, x, X, c, and F , in the equation of motion, Eq. (2.2.1), are replaced with t̃, x̃, X̃,
c̃, and F̃ , respectively. Then we obtain

m̃
d2X̃(t̃)

dt̃2
= −η̃ dX̃(t̃)

dt̃
+ F̃

(
X̃(t̃); c̃

(
x̃, t̃
))
, (2.2.11)

where

F̃ (X̃(t̃); c̃
(
x̃, t̃
)
) = −

(
∂c̃(x̃, t̃)

∂x̃

∣∣∣∣
x̃=X̃(t̃)+0

+
∂c̃(x̃, t̃)

∂x̃

∣∣∣∣
x̃=X̃(t̃)−0

)
. (2.2.12)

Here we define m̃ = mαD/(Kc0) and η̃ = ηD/(Kc0).

Hereafter, we use the dimensionless model and omit tildes (˜).

2.2.2 Reduction of the mathematical model

In this section, we derive a reduced equation for the dynamics of the camphor particle position
through the expansion of the mathematical model around the solution for the rest state. First,
we expand the concentration field c with regard to trigonometric function, i.e., cos(kπ/R) for
k = 0, 1, 2, · · · ,

d

dt
ck =

(
i
kπ

R

)2

ck − ck + fk(X), (2.2.13)

where ck and fk are the concentration field and the source term in wavenumber space, respectively.
Here fk is given by f0 = 1 and fk = 2 cos(kπX/R) for k ≥ 1. The Green’s function gk for Eq. (2.2.13)
satisfies the following equation: (

d

dt
+

(
kπ

R

)2

+ 1

)
gk(t) = δ(t), (2.2.14)

and is solved as:

gk(t) = exp

(
−
(
k2π2

R2
+ 1

)
t

)
Θ(t), (2.2.15)

where Θ(t) is the Heaviside’s step function, i.e., Θ(t) = 1 for t ≥ 0 and Θ(t) = 0 otherwise. By
using gk(t), the concentration field ck(t) in wavenumber space is expressed as:

ck(t) =

∫ t

−∞
dt′2 cos

(
kπ

R
X(t′)

)
exp

(
−
(
k2π2

R2
+ 1

)
(t− t′)

)
. (2.2.16)
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Section 2.2 Camphor particle in a one-dimensional finite region

We expand Eq. (2.2.16) with regard to the position X, the velocity Ẋ, and the acceleration Ẍ
following the procedure in the previous work on the spot dynamics in a reaction-diffusion system [72].

ck =2e−At

∫ t

−∞
dt′ cos

(
κX(t′)

)
eAt′

=
2e−At

A
cos (κX(t)) exp (At)− 2e−At

A

∫ t

−∞
dt′
(
−κdX(t′)

dt′
sin
(
κX(t′)

))
eAt′

=
2e−At

A
cos (κX(t)) e−At +

2κe−At

A2

dX(t)

dt
sin (κX(t)) exp (At)

− 2κ exp(−At)
A2

∫ t

−∞
dt′

{
d2X(t′)

dt′2
sin
(
κX(t′)

)
+ κ

(
dX(t′)

dt′

)2

cos
(
κX(t′)

)}
eAt′

= · · · , (2.2.17)

where A = k2π2/R2+1 and κ = kπ/R. The expanded concentration field is obtained by converting
ck into the real space.

c(x, t) =c0(x,X)

+ Ẋc1(x,X) + Ẋ2c2(x,X) + Ẋ3c3(x,X) + · · ·
+ Ẍc4(x,X) + · · ·
+ (higher order terms & cross terms). (2.2.18)

Here we neglect the higher-order terms of X and the higher-order derivatives with regard to time.
Then we calculate the driving force from Eq. (2.2.18), and expand it around X = R/2 as X =
R/2 + δX:

m ¨δX = −η ˙δX + F (δX, ˙δX, ¨δX), (2.2.19)

where

F =− 2

sinhR
δX − 4

3 sinhR
(δX)3 +

(coshR− 1)(sinhR+R)

2(sinhR)2
˙δX

+
−3 sinhR+R coshR

4(sinhR)2
(δX)2 ˙δX

−
(
sinhR(sinhR−R) +R2(coshR− 1)

)
(coshR− 1)

8(sinhR)3
¨δX

− sinhR(3 sinhR− 5R coshR) +R2(2 + (sinhR)2)

8(sinhR)3
δX
(

˙δX
)2

−
(
(2− coshR)R3 + 6R2 sinhR+ 3(coshR+ 1)(sinhR−R)

)
(coshR− 1)2

48(sinhR)4

(
˙δX
)3

≡A(R)δX +B(R)(δX)3 + C(R) ˙δX

+ E(R)(δX)2 ˙δX +G(R) ¨δX +H(R)δX
(

˙δX
)2

+ I(R)
(

˙δX
)3
. (2.2.20)

The detailed calculation is shown in Appendix A.1.1. The coefficients of terms in the driving force F
are the function of R. C(R) is positive for all R > 0 and A(R), B(R), G(R), and I(R) are negative
for all R > 0. The dependence of the coefficients on R is shown in Fig. A.1.1 in Appendix A.1.2.
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Figure 2.2.1: Phase diagram of the bifurcation structure obtained by the theoretical analysis. The
curve in the diagram is η = C(R). Reproduced from Ref. [34].

2.2.3 Analysis on bifurcation structure

The second-order ordinary differential equation Eq. (2.2.19) with Eq. (2.2.20) is regarded as a
two-dimensional dynamical system on (δX, ˙δX). The phase point (δX, ˙δX) = (0, 0) is a fixed point
which corresponds to the steady state, i.e., a camphor particle is settled at the center of the water
channel. The linearized equation around the fixed point is derived as follows:

d

dt

(
δX
˙δX

)
=

(
0 1

−ω2 2β

)(
δX
˙δX

)
≡M

(
δX
˙δX

)
, (2.2.21)

where ω =
√

−A(R)/(m−G(R)) and β = (C(R)−η)/(2m−2G(R)). The eigenvalue of the matrix

M is λ± = β± i
√

−β2 + ω2, and thus the Hopf bifurcation occurs where the bifurcation parameter
β = C(R) − η is 0. The value of β depends on the water channel length R and the resistance
coefficient η, so that R and η are considered to be the bifurcation parameters in experiments. The
phase diagram of the bifurcation structure is shown in Fig. 2.2.1. When η is smaller and larger than
C(R), then the rest state is stable and unstable, respectively.

From the weakly nonlinear analysis [74], when 3I(R)ω2 +E(R) is positive or negative, then the
bifurcation type is supercritical or subcritical Hopf bifurcation. E(R), I(R), and ω include A(R)
and G(R), which depend on the water channel length R, and ω also depends on m. In Fig. 2.2.2,
the border between supercritical and subcritical Hopf bifurcation, 3I(R)ω2 + E(R) = 0, is shown
on R-m plane.

We numerically calculated Eqs. (2.2.19) and (2.2.20) for R = 1 and 8, and plotted the amplitudes
for the stable and unstable oscillation in Fig. 2.2.3. The branch of unstable amplitude, which is
characteristic for subcritical Hopf bifurcation, appears only in a narrow range of η for R = 8.

2.2.4 Comparison with a one-dimensional infinite system

The same analysis can be adopted for the motion of a camphor particle in a one-dimensional infi-
nite system. Based on the same equation as in Eqs. (2.2.9) and (2.2.11) but without the boundaries,
the driving force F is calculated as

F =
1

2
Ẋ(t)− 1

8
Ẍ(t)− 1

16
(Ẋ(t))3. (2.2.22)

10



Section 2.2 Camphor particle in a one-dimensional finite region

0 2 4 6 8 10

1

0.8

0.6

0.4

0.2

0
Supercritical Subcritical

R

m

E(R) = 0 3I(R)ω2+E(R) = 0

Figure 2.2.2: Plot of 3I(R)ω2+E(R) = 0 on R-m plane. The curve 3I(R)ω2+E(R) = 0 approaches
E(R) = 0 for m→ ∞. Reproduced from Ref. [34].
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Figure 2.2.3: Bifurcation diagram for (a) R = 1 and (b) R = 8, numerically obtained based
on Eqs. (2.2.19) and (2.2.20). The blue and red dots show the stable and unstable amplitudes,
respectively. It is noted that the dots on the zero amplitude indicate the rest state. We see
supercritical and subcritical Hopf bifurcations for R = 1 and R = 8, respectively. The mass m is
set to be m = 0.01. Reproduced from Ref. [34].
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

The detailed calculation is provided in Appendix A.1.3. The driving force does not depend on
the position but on the velocity and acceleration of the camphor particle, since the system has a
translational symmetry. It is noted that the limit of Eq. (2.2.20) where R goes to infinity corresponds
to Eq. (2.2.22).

In the reduced equation: (
m+

1

8

)
Ẍ =

(
1

2
− η

)
Ẋ − 1

16
(Ẋ(t))3, (2.2.23)

the supercritical pitchfork bifurcation occurs, where the resistance coefficient η is the bifurcation
parameter. Nagayama et al. investigated the motion of a camphor particle with a finite size in a
one-dimensional infinite system [47]. They found that the supercritical and subcritical pitchfork
bifurcation occurs for the small and large size of a camphor particle, respectively. In the present
study, the size of a camphor particle is set to be infinitesimally small, and thus the present analysis
is consistent with the results by Nagayama et al.

2.2.5 Water channel length where the rest state is unstable

As shown in Fig. 2.2.1, the function C(R) has a peak around R ∼ 2. This peak indicates that the
rest state is easiest to become unstable at the water channel length where C(R) takes a maximum
value. Here we explain why there is a certain water channel length where the rest state is easiest
to become unstable by considering a semi-infinite system with a boundary.

First, we consider the translational motion with a constant velocity without boundaries. We
set the velocity of the particle to be v. Then the position of the camphor particle X and the
concentration field c is denoted as X = vt + const. and c(x − X; v). By setting z = x − X,
Eq. (2.2.9) is expressed as

−v dc
dz

=
d2c

dz2
− c+ δ(z). (2.2.24)

By substituting c = eλz, we obtain λ = −v/2 ±
√
v2/4 + 1 ≡ λ±. From the boundary condition

c(z → ±∞) = 0, the continuity at z = 0, and the discontinuity of the first derivative due to the
Dirac’s delta function, the coefficients of the general solutions c = eλ±z is determined as follows:

c(z; v) =


1√

v2 + 4
eλ+z, (z < 0),

1√
v2 + 4

eλ−z, (z > 0).
(2.2.25)

The Taylor expansion of the concentration field c around v = 0 is given as

c(z; v) =
1

2

(
1− v

z

2

)
e−|z|, (2.2.26)

where the more-than-second-order terms of v are truncated. By subtracting the steady state:

c0 = c(z; v = 0) =
1

2
e−|z| (2.2.27)

from Eq. (2.2.26), the effect of the motion on the concentration field c1 is obtained as

c1(z; v) = −1

4
vze−|z|, (2.2.28)
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Figure 2.2.4: Schematic illustration of a semi-infinite system with a boundary. A camphor particle
moves with a constant velocity v. The camphor particle and the boundary are located at x = 0 and
x = ℓ, respectively. Reproduced from Ref. [34].

where Eq. (2.2.26) is the summation of c0 and c1. Since the concentration field with zero velocity,
c0, has a symmetric profile with regard to the particle position, the driving force F0 originating
from c0 is zero. Thus the driving force working on the camphor particle is F1(v) = v/2 originating
from c1, which directs in the moving direction.

Then we consider the effect by the boundary. Here we assume that the particle is located at
the left side of the boundary as shown in Fig. 2.2.4. The distance between the particle and the
boundary is set to be ℓ. To satisfy the Neumann boundary condition, we add the concentration
field by the virtual camphor particle, which is located at the right side of the boundary and has a
velocity −v. The distance between the virtual particle and the boundary is also ℓ. We denote the
concentration field by the virtual particle as c0

∗+ c1
∗, where c0

∗ and c1
∗ are the concentration field

for the steady state and the proportional to the velocity, respectively. The explicit forms of them
are c0

∗(z; ℓ) = c0(z − 2ℓ) and c1
∗(z; ℓ, v) = c1(z − 2ℓ;−v), where 2ℓ is the distance between the

real and virtual camphor particles. Thus the concentration field for the system with the camphor
particle and the boundary is given by

c(z; v, ℓ) = c0(z) + c0
∗(z; ℓ) + c1(z; v) + c1

∗(z; ℓ, v). (2.2.29)

The driving forces F0
∗(ℓ) and F1

∗(ℓ, v) originating from c0
∗ and c1

∗ are described as −e−2ℓ and
−v(1/4− ℓ/2)e−2ℓ, respectively. Thus we have

F (v, ℓ) =F0 + F0
∗(ℓ) + F1(v) + F1

∗(ℓ, v)

=− e−2ℓ +
v

2
− v

4
(1− 2ℓ)e−2ℓ

≡g0(ℓ) + g1(ℓ)v +O(v2), (2.2.30)

where g0(ℓ) = −e−2ℓ and g1(ℓ) = 1/2− (1/4− ℓ/2)e−2ℓ. The coefficient g1(ℓ) of the first order of v
is plotted against ℓ in Fig. 2.2.5. In Fig. 2.2.5, g1(ℓ) has a peak around ℓ = 1, which indicates that
the camphor particle is greatly accelerated around ℓ = 1. The function C(R) in Eq. (2.2.20) is the
coefficient of the first order of v. When the water channel length R is 2, the distance between the
camphor particle and the boundaries is 1. Thus the fact that C(R) has a maximum value around
R ∼ 2 is consistent with the fact that g1(ℓ) has a maximum value around ℓ ∼ 1. In other words,
the peak of C(R) is qualitatively reproduced by considering the effect of a boundary.

By the way, the concentration field by the camphor particle resting at z = 0 is given in
Eq. (2.2.27) and its width is about 2. Thus the result indicates that the rest state is easiest to
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Figure 2.2.5: Coefficient g1(ℓ) of the first order of v in F1(v)+F1
∗(ℓ, v). Reproduced from Ref. [34].

be unstable when the water channel length and the width of the profile of concentration field is
comparable.

2.2.6 Comparison with the numerical results

To confirm the theoretical results, we performed numerical calculations based on Eqs. (2.2.9)
and (2.2.11). We used the Euler method for Eq. (2.2.11) and the implicit method for Eq. (2.2.9).
The time and spatial steps were 10−5 and 10−3, respectively. The mass m was fixed to m = 10−2.

The typical trajectories are shown in Fig. 2.2.6. Figure 2.2.6(a) shows a trajectory approaching
a limit-cycle orbit and Fig. 2.2.6(b) shows a damped oscillation approaching the rest state. We
numerically obtained the stable amplitudes and maximum and minimum velocities for two param-
eters, i.e., the water channel length R and the resistance coefficient η. The results are shown in
Fig. 2.2.7. We confirmed that the bifurcation occurred at certain pairs of R and η.

The phase diagram obtained by numerical results is shown in Fig. 2.2.8. The qualitative fea-
tures were the same as the theoretical results though the numerical results slightly differed from
the theoretical ones quantitatively. It is expected that the difference between the numerical and
theoretical results mainly comes from the discretization of the Dirac’s delta function.

We also checked the validity of the reduction of our model in Subsection 2.2.2. Here we compared
the driving force obtained by numerical calculation with that obtained by reduction of the model.
The results for R = 1 and R = 8 are shown in Figs. 2.2.9 and 2.2.10, respectively. The driving
force obtained by the reduction of the model matched well for the water channel length R = 1,
but did not for R = 8. For smaller water channel, the confinement by the system boundary was
greater, and the amplitude of oscillation was smaller. Thus we conclude that the reduction is valid
moderately for a smaller water channel even though the bifurcation parameters, R and η, are not
close to the bifurcation point.

2.2.7 Comparison with the experimental results

The oscillatory motion of a camphor particle was reported by Hayashima et al. and observed
an oscillatory motion [48]. However, the oscillatory motion lasted within 1 min., since the aqueous
phase was too small (1.0 ml) and saturated with camphor molecules in short time.

In our experiments, we succeeded in observation of stable oscillations by increasing the volume
of the aqueous phase. We experimentally determined the bifurcation points between the rest and
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Figure 2.2.6: Trajectories on X-Ẋ plane and the concentration field. The water channel length R
was R = 1 for both (a) and (b), and the resistance coefficient η was set to be (a) η = 0.3 and (b)
η = 0.5. Reproduced from Ref. [34].
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Figure 2.2.9: Comparison between the numerical and analytical results for the water channel length
R = 1. The dark blue curves in (a-d) show the numerical result using the model equations (2.2.9)
and (2.2.11) and are all the same for (a-d). The orange curves show the driving force obtained by
the theoretical analysis: We substitute the values X, Ẋ, and Ẍ obtained by numerical calculation
into (a) the result in Eq. (2.2.20), AX +BX3+CẊ +EX2Ẋ +HXẊ2+ IẊ3+GẌ, (b) the result
in Eq. (2.2.20) without GẌ, AX+BX3+CẊ+EX2Ẋ+HXẊ2+IẊ3, (c) the first order terms of
position and velocity, AX+CẊ, and (d) the first order terms of position, velocity, and acceleration,
ẌAX + CẊ +GẌ. The resistance coefficient was η = 0.3. Reproduced from Ref. [34].
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Figure 2.2.10: Comparison between the numerical and analytical results for the water channel length
R = 8. The caption for these plots is the same as Fig. 2.2.9 except for the value of the water channel
length and the resistance coefficient; R = 8 and η = 0.45. Reproduced from Ref. [34].

oscillatory states, and then quantitatively compared the experimental results with the theoretical
results.

Experimental setup and methods

The water chamber was filled with pure water or glycerol aqueous solution (Wako, Japan),
whose volume was 250 ml. Pure water was prepared with the Millipore water purifying system
(UV3, Merck, Germany). A water channel was floated on the aqueous phase. The water channels
were prepared by making a rectangle hole in the Teflon sheet with thickness of 1 mm. The size of
rectangular holes was 4 mm for the short side and 15, 20, 25, 30, 35, 40, 45, and 50 mm for the long
side. Camphor particles were made of camphor powder (Wako, Japan) using a pill maker (Kyoto
Pastec, Japan). The camphor particles had cylinderical shapes, whose diamater and height were
3 and 1 mm, respectively. The camphor particle motion was captured by HD video camera (iVIS
HV30, CANON, Japan). The size of a frame of the movie was 720×480 pixels and the time resolution
was 1/30 s. By controlling the concentration of glycerol aqueous solution, the viscosities of solutions
were changed, which resulted in the change in the resistant force exerting on a camphor particle.
The viscosity was measured by vibrational viscometer (SV-10A, A&D, Japan). The experimental
setup is shown in Fig. 2.2.11. The experiments were performed at room temperature.

The movies were analyzed using ImageJ (NIH, USA). The characteristic period of oscillation
was 1-2 s and the oscillation seemed to settle to the stable oscillation sufficiently ca. 1 min. after
the camphor particle was floated. The camphor particle became smaller and they began to move
not only along but also perpendicular to the water channel ca. 10 min. after a camphor particle
was floated. Thus the movies were used from 1 to 6 min. after a camphor particle was floated for
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Camphor particle
(φ = 3 mm)

Water or
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Figure 2.2.11: Schematic illustration of the experimental setup. Reproduced from Ref. [34].
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Figure 2.2.12: (a) Snapshots of a camphor particle and water channel every 1/3 s. We used 3.5 mol/L
and 2.5 mol/L glycerol aqueous solution as an aqueous phase for (a)-1 and -2, respectively. Time
evolution of (b) the positions and (c) the velocities of camphor particles. The blue and orange
curves corresponding to (a)-1 and -2, respectively. Reproduced from Ref. [34].

the image processing. The experiments were made at least four times for each water channel length
and viscosity of the aqueous phase.

Experimental results

We observed the rest state and oscillatory motion of a camphor particle in a one-dimensional
water channel. The snapshots of the system and the time change in the position and velocity are
shown in Fig. 2.2.12. As shown in Fig. 2.2.12(a), two types of behavior, i.e., rest state ((a)-1)
and stable oscillation ((a)-2), were observed. We analyzed the amplitude of the oscillation and
local maximum and minimum of the velocity, which were detected by averaging the amplitude of
the oscillation and local maximum and minimum for every 5-s term. The results are shown in
Fig. 2.2.13. Near the bifurcation point, the standard deviations tended to be larger, since the
stability was close to neutral. The oscillatory motion was observed with smaller viscosity and larger
water channel. We classified the behavior into oscillation and rest state, and summarized as a phase
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Figure 2.2.13: Dependence of amplitudes and maximum and minimum velocities on the water
channel length R. The plots colored with green and magenta show the results for water and 3.5 M
glycerol aqueous solution, respectively. The bifurcation structures were observed around 15-20 mm
for water and 35 mm for 3.5 M glycerol aqueous solution. The error bars show the standard
deviations. Reproduced from Ref. [34].

diagram in Fig. 2.2.14.

Discussion on experimental results

Here, we discuss the physical meaning of the bifurcation structure in the motion of the camphor
particle in a one-dimensional finite region, as schematically shown in Fig. 2.2.15. For a small system
size, the camphor particle does not move since the camphor molecules are quickly saturated at the
water surface and do not produce sufficient driving force. Thus, the camphor particle stops at the
center position as in Fig. 2.2.15(b), where the driving force balances. By increasing the system size,
the saturation of the camphor molecules becomes slower and the camphor particle begins to move.
The particle does not exhibit translational motion owing to the confinement by the boundaries, but
it exhibits oscillation around the system center, as shown in Fig. 2.2.15(c). For the greater system
size, the amplitude of the position increases almost linearly and the amplitude of the velocity is
saturated, as shown in Figs. 2.2.7 and 2.2.13. This behavior can be understood by considering the
effect of the boundaries, which affect the motion of a camphor particle through the concentration
field. The characteristic length of the effect of the boundaries is considered to be the diffusion
length of the concentration field. For the system size greater than the diffusion length, the effect
of the boundaries is negligible except for the boundaries’ neighborhood. Therefore, a camphor
particle exhibits translational motion with an almost constant velocity that is determined only by
the viscosity of the aqueous phase, and it is reflected by a boundary when the camphor particle is
within the distance of the diffusion length from the boundaries, as shown in Fig. 2.2.15(d).

Quantitative comparison of the experimental results with the theoretical ones

We examine whether the order of bifurcation points obtained by theoretical analysis quanti-
tatively matches with the experiments. In the theoretical analysis, the bifurcation structure is
observed for R = O(1) and η = O(0.1 ∼ 1).

First, we estimate the order of R. The order of the water channel used in the experiments
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

was 10 mm. The diffusion length
√
D/α is estimated as

√
D/α ∼ 10 mm, which is the length

within which the particle is affected by the boundary through the concentration field. Here we do
not use the diffusion constant obtained by fluctuation-dissipation theorem, since the diffusion is
enhanced by the Marangoni flow [?]. The water channel length R̃ is R =

√
α/DR̃. Thus we have

R = 10 mm/10 mm = 1.

The order of resistance coefficient η is estimated as follows. For the relation between the resis-
tance coefficient η̃ and the viscosity ν, we assume the Stokes’ law, η̃ = 6πνa ∼ 10−5 kg/s, where a
is a radius of the particle. In the experiments, we used the particle with a radius of 1.5 mm. The
viscosity of pure water and glycerol aqueous solution were 1 mPa·s and 50 mPa·s, respectively.

The order of the driving force is estimated by the concentration field of the steady state. The
solution for the equation:

∂c

∂t
= D

∂2c

∂x2
− αc+ c0δ(x) (2.2.31)

is c0e
−
√

α/D|x|/(2
√
αD). The gradient of the concentration near the camphor particle is ±c0/(2D),

and thus the driving force F is F ∼ Kc0/D. The driving force F and sublimation rate α were
experimentally measured as F ∼ 1 µN and α ∼ (1.8 ± 0.4) × 10−2 s−1 in the previous work by
Suematsu et al. [75]. The resistance coefficient η̃ is η = D

√
αD/(Kc0)η̃. Thus we have

η =
D
√
αD

Kc0
η̃ =

D

Kc0

√
D

α
α× 6πη̂a

=
1

1 µN
× (10 mm)× (1.8× 10−2 s−1)× 6πη̂ × (1.5 mm)

∼6η̂ (Pa · s)−1. (2.2.32)

The resistance coefficient η is η ∼ 10−2 and η ∼ 10−1 for water and glycerol aqueous solution.
Thus the bifurcation point obtained by theoretical analysis is in good correspondence with that of
experiments.

2.2.8 Summary for Section 2.2

The motion of a camphor particle in a one-dimensional system is investigated [34]. A cam-
phor particle exhibits the rest state at the center of the system or oscillatory motion depending
on the physical parameters, the water channel length and the resistance coefficient. Oscillatory
motion emerges from the rest state through Hopf bifurcation. The theoretical results qualitatively
correspond to the numerical and experimental results.

2.3 Motion of a self-propelled particle in an axisymmetric system

In this section, we discuss motion of a symmetric self-propelled particle (SPP) in a system with
axial symmetry [37]. Here, we use the word “an axisymmetric system” as a system with inversion
and rotational symmetry. The considered self-propelled systems have symmetry, and therefore the
rest state at the center of the system should exist. It is noted that the stability of the steady state
depends on the physical parameters of the system. In some cases, the stability of the steady state
changes with the change in the physical parameter, i.e., a bifurcation occurs.

Here, we especially focus on the motion which emerges through a bifurcation from the rest state
at the system center position. Due to the dimensionality and symmetric property of the system,
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Figure 2.3.1: Relation between the instabilized direction and possible motion.

there are several candidates of motion when the rest state becomes unstable. The relation between
the instabilized direction and the possible motion is summarized in Fig. 2.3.1.

We first construct a dynamical system only considering the symmetric property of the original
system under the assumption that the system is close to the bifurcation point, and then analyze
the dynamical system using a weakly nonlinear analysis.

2.3.1 Construction of the dynamical system

The center of mass and velocity of a SPP are set to be x = (x1, x2), and v = ẋ = (v1, v2),
respectively. Here the dot (̇) denotes time derivative. We assume that the time change in the position
of the SPP, x, is represented by the equation of motion, which has the inversion and rotational
symmetries. Here, inversion and rotational symmetries indicate that the equation of motion is
invariant even though the coordinates are inverted and rotated with respect to the origin. We also
assume that the SPP moves around the origin with a sufficiently small velocity, i.e., |x(t)| ≪ 1 and
|v(t)| ≪ 1. The general form of the equation of motion under the above assumptions is represented
as: {

ẋ = v, (2.3.1a)

v̇ = ax+ bv + c|x|2x+ k|v|2v + h|v|2x+ n|x|2v + j(x · v)x+ p(x · v)v, (2.3.1b)

where a, b, c, k, h, n, j, and p are parameters. Equation (2.3.1) is a four-dimensional dynamical
system. In addition, we also assume a linear restoring force ax (a < 0) to discuss the motion around
the origin.

We set the time scale of harmonic oscillation to be 1 by setting the coefficient for the linear
restoring force to be a = −1. The dimensionless time t̃ is t̃ =

√
−at. Then the dynamical system
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

becomes

v̇ =− x+
b√
−a

v − c

a
|x|2x+ k

√
−a|v|2v + h|v|2x+

n√
−a

|x|2v +
j√
−a

(x · v)x+ p(x · v)v.

(2.3.2)

Hereafter, we redefine the variable for time t̃ → t, and the parameters b/
√
−a → b, −c/a → c,

k
√
−a→ k, n/

√
−a→ n, j/

√
−a→ j, and analyze the following equation:{

ẋ = v, (2.3.3a)

v̇ = −x+ bv + c|x|2x+ k|v|2v + h|v|2x+ n|x|2v + j(x · v)x+ p(x · v)v. (2.3.3b)

2.3.2 Weakly nonlinear analysis

In this subsection, we assume that there are two time scales of dynamics in Eq. (2.3.3); one is that
for the periodic motion by linear restoring force and the other is the slower one for perturbative
dynamics. First, the dynamical system for the perturbative dynamics is derived by separating
the time scales. Then the existence and linear stability of rotational and oscillatory motions are
analyzed.

Separation of time scales

Here we assume that the first term in the righthand side in Eq. (2.3.3), −x, is the main term,
and the others are perturbative terms. We separate the time scale of the harmonic oscillation by
the term −x from those of changes in the amplitude and phase of the oscillation. We assume that
the perturbative terms in Eq. (2.3.3) are at the order of ε. Then the time scales for the harmonic
oscillation and perturbation are set to be τ = t and T = εt (0 < ε≪ 1), respectively [73]. The time
derivative is expressed as follows:

d

dt
=
∂τ

∂t

∂

∂τ
+
∂T

∂t

∂

∂T
≡ ∂τ + ε∂T . (2.3.4)

Since we separate the time scales of the oscillation and the change of amplitude and phase, we set
x = (x1, x2) as {

x1 = r1(T ) cos(τ + ϕ1(T )), (2.3.5a)

x2 = r2(T ) cos(τ + ϕ2(T )). (2.3.5b)

Then the velocity v and the time derivative of it v̇ are explicitly expressed as{
v1 = (∂τ + ε∂T )x1 = −r1 sin(τ + ϕ1) + ε{r1′ cos(τ + ϕ1)− r1ϕ1

′ sin(τ + ϕ1)}, (2.3.6a)

v2 = (∂τ + ε∂T )x2 = −r2 sin(τ + ϕ2) + ε{r2′ cos(τ + ϕ2)− r1ϕ2
′ sin(τ + ϕ2)}, (2.3.6b)

v̇1 = (∂τ + ε∂T )
2x1 = (∂τ

2 + 2ε∂τ∂T + ε2∂T
2)x1

= −r1 cos(τ + ϕ1)− 2ε{r1′ sin(τ + ϕ1) + r1ϕ1
′ cos(τ + ϕ1)}+O(ε2), (2.3.7a)

v̇2 = (∂τ + ε∂T )
2x2 = (∂τ

2 + 2ε∂τ∂T + ε2∂T
2)x2

= −r2 cos(τ + ϕ2)− 2ε{r2′ sin(τ + ϕ2) + r2ϕ2
′ cos(τ + ϕ2)}+O(ε2), (2.3.7b)

where the prime (′) denotes the differential by T . By substituting Eqs. (2.3.5), (2.3.6), and (2.3.7)
into (2.3.3) and comparing the both sides of the equation as an identity with regard to ε, we have
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

the following equations; From the equation for v̇1, we have

O(1) : − r1 cos θ1 = −r1 cos θ1, (2.3.8)

O(ε) : − 2ε{r1′ sin θ1 + r1ϕ1
′ cos θ1}

= −br1 sin θ1 + cr1(r1
2 cos2 θ1 + r2

2 cos2 θ2) cos θ1 − kr1(r1
2 sin2 θ1 + r2

2 sin2 θ2) sin θ1

+ hr1(r1
2 sin2 θ1 + r2

2 sin2 θ2) cos θ1 − nr1(r1
2 cos2 θ1 + r2

2 cos2 θ2) sin θ1,

− jr1(r1
2 sin θ1 cos θ1 + r2

2 sin θ2 cos θ2) cos θ1 + pr1(r1
2 sin θ1 cos θ1 + r2

2 sin θ2 cos θ2) sin θ1,

≡ H(r1, r2, θ1, θ2),

(2.3.9)

and from the equation for v̇2, we also have

O(1) : − r2 cos θ2 = −r2 cos θ2, (2.3.10)

O(ε) : − 2ε{r2′ sin θ2 + r2ϕ1
′ cos θ2}

= −br2 sin θ2 + cr2(r1
2 cos2 θ1 + r2

2 cos2 θ2) cos θ2 − kr2(r1
2 sin2 θ1 + r2

2 sin2 θ2) sin θ2,

+ hr2(r1
2 sin2 θ1 + r2

2 sin2 θ2) cos θ2 − nr2(r1
2 cos2 θ1 + r2

2 cos2 θ2) sin θ2,

− jr2(r1
2 sin θ1 cos θ1 + r2

2 sin θ2 cos θ2) cos θ2 + pr2(r1
2 sin θ1 cos θ1 + r2

2 sin θ2 cos θ2) sin θ2

= H(r2, r1, θ2, θ1),

(2.3.11)

where we define θ1 = τ + ϕ1 and θ2 = τ + ϕ2.

To discuss the effect by the perturbative terms, we derive the equations for r1
′, r2

′, ϕ1
′, and ϕ2

′.
The time average of r1

′ sin2 θ1 over a period of oscillation, 2π, is approximately calculated as

1

2π

∫ 2π

0
r1

′ sin2 θ1 dθ1 =
1

2π
r1

′
∫ 2π

0
sin2 θ1 dθ1 =

1

2
r1

′. (2.3.12)

Here we assume that r1
′ is a constant during one period. For the same reason, the amplitudes (r1

and r2), phases (ϕ1 and ϕ2), and their derivatives (r2
′, ϕ1

′, ϕ2
′) are also considered to be constants

during one period.

By using the equation for v̇ at the order of ε:{
−2ε{r1′ sin θ1 + r1ϕ1

′ cos θ1} = H(r1, r2, θ1, θ2), (2.3.13a)

−2ε{r2′ sin θ2 + r2ϕ1
′ cos θ2} = H(r2, r1, θ2, θ1), (2.3.13b)

we have 

εr1
′ =

dr1
dt

= − 1

2π

∫ 2π

0
H(r1, r2, θ1, θ2) sin θ1 dθ1, (2.3.14a)

εr1ϕ1
′ = r1

dϕ1
dt

= − 1

2π

∫ 2π

0
H(r1, r2, θ1, θ2) cos θ1 dθ1, (2.3.14b)

εr2
′ =

dr2
dt

= − 1

2π

∫ 2π

0
H(r2, r1, θ2, θ1) sin θ2 dθ2, (2.3.14c)

εr2ϕ2
′ = r2

dϕ2
dt

= − 1

2π

∫ 2π

0
H(r2, r1, θ2, θ1) cos θ2 dθ2. (2.3.14d)
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

We integrate them to obtain

dr1
dt

=
1

2
br1 +

1

8
(3k + n+ j)r1

3 +

(
1

4
(k + n) +

1

8
(k − n+ j) cos 2ϕ− 1

8
(c− h+ p) sin 2ϕ

)
r1r2

2,

(2.3.15)

dϕ1
dt

= −1

8
(3c+ h+ p)r1

2 +

(
−1

4
(c+ h)− 1

8
(c− h+ p) cos 2ϕ− 1

8
(k − n+ j) sin 2ϕ

)
r2

2, (2.3.16)

dr2
dt

=
1

2
br2 +

1

8
(3k + n+ j)r2

3 +

(
1

4
(k + n) +

1

8
(k − n+ j) cos 2ϕ+

1

8
(c− h+ p) sin 2ϕ

)
r1

2r2,

(2.3.17)

dϕ2
dt

= −1

8
(3c+ h+ p)r2

2 +

(
−1

4
(c+ h)− 1

8
(c− h+ p) cos 2ϕ+

1

8
(k − n+ j) sin 2ϕ

)
r1

2,

(2.3.18)

where we set ϕ to be ϕ = θ1 − θ2.
Here, we adopt the summation of phases ϕ+ = ϕ1 + ϕ2 and the phase difference ϕ = ϕ1 − ϕ2

instead of ϕ1 and ϕ2. Then we have

dϕ

dt
=− 1

8
(c− h+ p)(r1

2 − r2
2)(1− cos 2ϕ)− 1

8
(k − n+ j)(r1

2 + r2
2) sin 2ϕ, (2.3.19)

dϕ+
dt

=− 1

8
(5c+ 3h+ p)(r1

2 + r2
2)− 1

8
(c− h+ p)(r1

2 + r2
2) cos 2ϕ

+
1

8
(k − n+ j)(r1

2 − r2
2) sin 2ϕ. (2.3.20)

In the righthand side of the time evolution equations for r1, r2, ϕ, and ϕ+ in Eqs. (2.3.15), (2.3.17),
(2.3.19), and (2.3.20), only r1, r2, and ϕ appear, while ϕ+ does not appear. Thus, the system is
intrinsically a three-variable system on r1, r2, and ϕ, and ϕ+ is a slave variable.

Existence and linear stability of rotational motion

In this subsection, a solution for rotational motion is constructed, and then its linear stability is
analyzed. Here, we define rotational motion as the motion with a constant distance from the origin
having a constant velocity.

Firstly, we construct a solution for rotational motion. The solution for rotational motion should
satisfy r1 = r2 = const. and ϕ = ±π/2 = const. It is noted that ϕ = π/2 and ϕ = −π/2 correspond
to counterclockwise and clockwise rotation on x1-x2 plane, respectively. Thus we set

r1 =r2 = rrot > 0, (rrot = const.) (2.3.21)

ϕ =± π

2
, (2.3.22)

and derive rrot. By substituting (r1, r2, ϕ) = (rrot, rrot, ±π/2) into Eq. (2.3.15), we have

ṙ1 =
1

2
brrot +

1

2
(k + n)rrot

3. (2.3.23)
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Figure 2.3.2: Schematic illustration of the mode of perturbation represented on x1-x2 plane, cor-
responding to each eigenvector. (a) Extension or contraction of the radius and (b,c) deformation
to an elliptic orbit. The corresponding eigenvalues are (a) −b, (b,c) (k − n + j)rrot

2/2. Here we
consider the case that c = h = p = 0. Reproduced from Ref. [37].

ṙ1 should be zero when (r1, r2, ϕ) = (rrot, rrot,±π/2) is a fixed point. From a viewpoint of physics,
rrot should be positive. Thus, we obtain rrot =

√
−b/(k + n) for k + n < 0, since b is set to be a

positive value. By substituting (r1, r2, ϕ) = (rrot, rrot,±π/2) into Eq. (2.3.19), we also have ϕ̇ = 0,
and thus it is shown that (r1, r2, ϕ) = (rrot, rrot,±π/2) is a fixed point corresponding to rotational
motion.

Then we investigate the linear stability of the fixed point (r1, r2, ϕ) = (rrot, rrot,±π/2). Here we
set the perturbations for r1, r2, and ϕ, which are denoted as ∆r1, ∆r2, and ∆ϕ, respectively. The
linearized equation around the fixed point is obtained as:

 ˙∆r1
˙∆r2

∆̇ϕ

 =


b

2
+

1

4
(5k + 3n+ j)rrot

2 1

4
(k + 3n− j) rrot

2 1

4
(c− h+ p)rrot

3

1

4
(k + 3n− j) rrot

2 b

2
+

1

4
(5k + 3n+ j)rrot

2 −1

4
(c− h+ p)rrot

3

−1

2
(c− h+ p)rrot

1

2
(c− h+ p)rrot

1

2
(k − n+ j)rrot

2


∆r1
∆r2
∆ϕ



≡

α β γ
β α −γ
δ −δ ε

∆r1
∆r2
∆ϕ

 . (2.3.24)

The eigenvalues of the matrix in Eq. (2.3.24) are α+β and (α−β+ ε)/2±
√

(α− β − ε)2 + 8γδ/2.
The eigenvalues rewritten by b, c, h, j, k, n, and p instead of α, β, γ, δ, and ε are −b and
(k − n + j)rrot

2/2 ± i|c − h + p|rrot2/2. The condition k − n + j < 0 is required for the linear
stability of the fixed point. When c, h, and p are zero, the corresponding eigenvector for −b is
(1/

√
2, 1/

√
2, 0), and the corresponding eigenvectors for (k−n+j)rrot2/2 are (1/

√
2,−1/

√
2, 0) and

(0, 0, 1). Here the eigenvalue (k − n+ j)rrot
2/2 is degenerated.

In Fig. 2.3.2, the schematic illustration of the deformations of the orbit for the rotational motion
by the perturbations in the directions of eigenvectors is shown.

Therefore, we have the conditions for the linearly stable rotation as follows:{
k + n < 0, (Condition for the existence of the radius), (2.3.25a)

k − n+ j < 0, (Condition for the linear stability for the phase difference).(2.3.25b)

Existence and linear stability of oscillatory motion

In this subsection, a solution for oscillatory motion is constructed, and then its linear stability
is analyzed. Here, we define oscillatory motion as the reciprocal motion whose center is the origin
of x1-x2 plane.
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

First, we construct a solution for stable oscillatory motion. Here we set the amplitude of
oscillation to be rosc = const. and the direction of oscillation in x1-x2 plane to be ψ. The domain
of definition for ψ is 0 ≤ ψ < π. Thus, the fixed point in (r1, r2, ϕ) for oscillatory motion should
be r1 = rosc cosψ, r2 = rosc sinψ, and ϕ = 0. By substituting the fixed point into Eqs. (2.3.15),
(2.3.17), and (2.3.19), we have

ṙ1 =
1

2
brosc cosψ +

1

8
(3k + n+ j)rosc

3 cosψ, (2.3.26)

ṙ2 =
1

2
brosc sinψ +

1

8
(3k + n+ j)rosc

3 sinψ, (2.3.27)

ϕ̇ =0. (2.3.28)

The fixed point (rosc cosψ, rosc sinψ, 0) satisfies ṙ1 = 0, ṙ2 = 0, and ϕ̇ = 0. Thus we have rosc =
2
√

−b/(3k + n+ j), where the condition 3k + n+ j < 0 is required for rosc > 0.
Then we investigate the linear stability of the fixed point (rosc cosψ, rosc sinψ, 0), in the same

manner as in the case of rotational motion. We set the perturbations for r1, r2, and ϕ to be ∆r1,
∆r2, and ∆ϕ, respectively. The linearized equation around the fixed point is obtained as:

 ˙∆r1
˙∆r2

∆̇ϕ

 =


−b cos2 ψ −b sinψ cosψ −1

4
(c− h+ p)rosc

3 sin2 ψ cosψ

−b sinψ cosψ −b sin2 ψ 1

4
(c− h+ p)rosc

3 sinψ cos2 ψ

0 0 −1

4
(k − n+ j)rosc

2


∆r1
∆r2
∆ϕ

 . (2.3.29)

The eigenvalues of the matrix in Eq. (2.3.29) are −b, 0, and ε̃ = −(k−n+ j)rosc2/4. The condition
k − n + j > 0 is required for the linear stability of the fixed point. The corresponding eigenvector
for −b, 0, and −(k − n+ j)rosc

2/4 are (cosψ, sinψ, 0), (− sinψ, cosψ, 0), and (0, 0, 1), respectively.
In Fig. 2.3.3, the schematic illustration of the deformations of the orbit for the oscillatory motion

by the perturbations in the directions of eigenvectors is shown. The eigenvalue 0 means that the
solution for oscillatory motion is neutral for the perturbation in the direction (0, 0, 1), reflecting the
symmetric property of the system.

Therefore, we have the conditions for the linearly stable oscillation as follow:{
3k + n+ j < 0, (Condition for the existence of the amplitude), (2.3.30a)

k − n+ j > 0, (Condition for the linear stability of the phase difference).(2.3.30b)

2.3.3 Discussion on the results of weakly nonlinear analysis

We obtained the conditions for stable rotational motion:{
k + n < 0, (Condition for the existence of the radius), (2.3.31a)

k − n+ j < 0, (Condition for the linear stability for the phase difference),(2.3.31b)

and those for oscillatory motion:{
3k + n+ j < 0, (Condition for the existence of the amplitude), (2.3.32a)

k − n+ j > 0, (Condition for the linear stability of the phase difference),(2.3.32b)

by the weakly nonlinear analysis. From these conditions (2.3.31) and (2.3.32), only three coefficients
of the third-order terms, k, n, and j, appear and the other coefficients of them, c, h, and p, do
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r
osc r

osc

(a) (b) (c)

Figure 2.3.3: Schematic illustration of the mode of perturbation represented on x1-x2 plane, corre-
sponding to each eigenvector. (a) Extension or contraction of the amplitude, (b) deformation to an
elliptic orbit, and (c) rotation of oscillatory direction. The corresponding eigenvalues are (a) −b,
(b) −(k−n+ j)rosc

2/4, and (c) 0. Here we consider the case that c = h = p = 0. Reproduced from
Ref. [37].

k + n = 0 k - n + j = 0

3k + n + j = 0

j

- j
Rotation

k

n

ー
2

ー
2

Oscillation

Figure 2.3.4: Phase diagram for the stable motion. The diagram is plotted on k-n plane based on
the result of the weakly nonlinear analysis. Here the parameter j is fixed. The parameter set for
stable rotational and oscillatory motion are indicated red and cyan.

not appear. It is also said that the parameter region where rotational and oscillatory motion are
bistable does not exist within the regime of the weakly nonlinear analysis. The results (2.3.31) and
(2.3.32) are summarized in Fig. 2.3.4.

Here we consider the physical meaning of the terms k|v|2v, n|x|2v, and j(x·v)x, which determine
the type of stable motion. In the case of k < 0, n < 0, and j < 0, the term k|v|2v is a velocity-
dependent energy dissipation and n|x|2v and j(x · v)x are position-dependent energy dissipations.
In particular, the position-dependent energy dissipations depend on not only the position but also
the direction of the velocity. The terms n|x|2v and j(x ·v)x are decomposed in the radial direction
er and angular direction eθ as follows:

n|x|2v + j(x · v)x =
(
Γ
∥
ij + Γ⊥

ij

)
(nxkxkvj + j(xkvk)xj)

=(n+ j)|x|(x · v)er + n|x|(xvy − yvx)e
θ, (2.3.33)

where Γ
∥
ij = xixj/|x|2 and Γ⊥

ij = δij − xixj/|x|2. To simplify the coefficients of er and eθ, they

are expressed vr and vθ, where v = vre
r + vθe

θ. Since vr and vθ are given by vr = xivi/|x| and
vθ = Eijxivj/|x|, we have

vre
r =Γ

∥
ijvj =

xkvkxi
xkxk

=
x · v
|x|

x

|x|
, (2.3.34)

vθe
θ =Γ⊥

ijvj =
EklxkvlEijxj

xkxk
=
x1v2 − x2v1

|x|
x⊥

|x|
. (2.3.35)
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

Here E is a 2 by 2 matrix, where E11 = E22 = 0, E12 = −1, and E21 = 1. Here x⊥ is defined as
x⊥ = |x|eθ Then Eq. (A.3.33) is expressed as

n|x|2v + j(x · v)x =
(
Γ
∥
ij + Γ⊥

ij

)
(nxkxkvj + j(xkvk)xj)

=(n+ j)xkxkvre
r
i + nxkxkvθe

θ
i

=(n+ j)|x|2vrer + n|x|2vθeθ. (2.3.36)

Thus, it is concluded that the force n|x|2v is isotropic, but j(x · v)x is anisotropic with regard to
the position of a considered self-propelled particle. Here eri = xi/(xkxk) and e

θ
i = Eijxj/(xkxk).

As for the mathematical model exhibiting limit-cycle oscillation, van der Pol equation [76]:

ẍ+ (p1 + q1x
2)ẋ+ x = 0, (p1 < 0, q1 > 0) (2.3.37)

and Rayleigh equation [77]:

ẍ+ (p2 + q2ẋ
2)ẋ+ x = 0, (p2 < 0, q2 > 0) (2.3.38)

are familiar. Since these two equations converted into the same form, there is no qualitative dif-
ference in terms of bifurcation structure. By extending van der Pol equation (2.3.37) and Rayleigh
equation (2.3.38) into the two-dimensional axisymmetric system, we have

ẍ+ (P1 +Q1|x|2)ẋ+ x = 0, (P1 < 0, Q1 > 0), (2.3.39)

ẍ+ (P2 +Q2|ẋ|2)ẋ+ x = 0, (P2 < 0, Q2 > 0). (2.3.40)

By comparing with our model in Eq. (2.3.3), van der Pol-like equation (2.3.39) and Rayleigh-like
equation (2.3.40) exhibit stable rotational and oscillatory motion, respectively.

The both Rayleigh and van der Pol equations in Eqs. (2.3.37) and (2.3.38) show qualitatively
the same limit-cycle oscillation, i.e., the forms of third order of dissipative terms do not affect so
much. However, the forms of third order terms in Eqs. (2.3.39) and (2.3.40) play an important role
to determine the stable orbit.

2.3.4 Conserved quantity for the model equation

In this subsection, the third order terms c|x|2x, h|v|2x, and p(x · v)v in Eq. (2.3.3), which do
not affect the results of the weakly nonlinear analysis, are discussed. Here we consider a conserved
quantity F for the dynamical system in Eq. (2.3.3) with b = k = n = j = 0:{

ẋ = v, (2.3.41a)

v̇ = ax+ c|x|2x+ h|v|2x+ p(x · v)v. (2.3.41b)

The conserved quantity F = F (x,v) should satisfy the following equation:

dF

dt
=
∂F

∂xi
ẋi +

∂F

∂vi
v̇i = 0. (2.3.42)

From Eq. (2.3.42), the conserved quantity F is explicitly derived as follows:

F (x,v) = f

(
exp(−(h+ p)|x|2)

(
c

(h+ p)2
+

a

h+ p
+ |v|2 + c

h+ p
|x|2

))
, (2.3.43)
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where f(·) ∈ C1(R) is an arbitrary function. Since we heuristically found the form of conserved
quantity in Eq. (2.3.43), we can confirm that F is a conserved quantity by the following calculation:

dF

dt
=
df

dY

∂Y

∂xi
ẋi +

df

dY

∂Y

∂vi
v̇i

=
df

dY

[
−2(h+ p) exp(−(h+ p)|x|2)

(
c

(h+ p)2
+

a

h+ p
+ |v|2 + c

h+ p
|x|2

)
xivi

+ 2 exp(−(h+ p)|x|2) c

h+ p
xivi

+2 exp(−(h+ p)|x|2)(axi + cx2xi + hv2xi + pxjvjvi)vi
]

=2
df

dY
exp(−(h+ p)|x|2)

[
−
(

c

h+ p
+ a+ (h+ p)|v|2 + c|x|2

)
xivi

+
c

h+ p
xivi + (axi + c|x|2xi + h|v|2xi + pxjvjvi)vi

]
=0, (2.3.44)

where Y is the argument of f in Eq. (2.3.43), i.e.,

Y = exp(−(h+ p)|x|2)
(

c

(h+ p)2
+

a

h+ p
+ |v|2 + c

h+ p
|x|2

)
. (2.3.45)

It is noted that F is not energy for arbitrary f . If F was energy, the dynamical system (2.3.41)
should be derived from the Hamiltonian equation:

ẋi =
∂F

∂vi
=

df

dY

∂X

∂vi
, (2.3.46)

v̇i =− ∂F

∂xi
= − df

dY

∂X

∂xi
. (2.3.47)

Since ∂Y/∂xi and ∂Y/∂vi are calculated as

∂Y

∂xi
=− 2 exp

(
(h+ p)|x|2

) (
a+ (h+ p)|v|2 + c|x|2

)
, (2.3.48)

∂Y

∂vi
=2 exp

(
(h+ p)|x|2

)
vi, (2.3.49)

the function f(Y ) which holds Eqs. (2.3.46) and (2.3.47) should satisfy

df

dY
=

1

2
exp

(
(h+ p)|x|2

)
. (2.3.50)

When the coefficients h and p are zero, Y is not defined. The potential energy U(x) is however
defined instead of F :

U(x) = −a|x|
2

2
− c|x|4

4
, (2.3.51)

and mechanical energy E = K + U is also where K = |v|2/2.
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Section 2.3 Motion of a self-propelled particle in an axisymmetric system

By setting f(Y ) = Y/2 and w = h+ p, and expanding F around w = 0, we have

F =
1

2
exp(−w|x|2)

( c

w2
+
a

w
+ |v|2 + c

w
|x|2

)
≃1

2

(
1− w|x|2 + 1

2
w2|x|4

)( c

w2
+
a

w
+ |v|2 + c

w
|x|2

)
=

c

2w2
+

a

2w
+

|v|2

2
− a

2
|x|2 − c

2
|x|4 + c

4
|x|4 +O(w)

=
|v|2

2
− a

2
|x|2 − c

4
|x|4 + const.+O(w)

=E + const.+O(w). (2.3.52)

Thus F can be considered to be mechanical energy in the limit of w → 0, though it is not mechanical
energy for finite w (w ̸= 0).

2.3.5 Stable motion in the region beyond the weakly nonlinear analysis

So far we discuss the stable motion with an infinitesimally small b > 0. In this subsection, we
consider the case with a finite value of b.

For rotational motion, we succeed to construct a solution for rotational motion even though b is
not infinitesimally small. We also analyze the linear stability of the solution for rotational motion.

By transforming the variables x1, x2, v1, and v2 in Eq. (2.3.3) to r =
√
x12 + x22, v =

√
v12 + v22,

and Θ = cos−1((x · v)/(rv)), we have the following dynamical system:

ṙ = v cosΘ, (2.3.53a)

v̇ = −r cosΘ + bv + cr3 cosΘ + (h+ p)rv2 cosΘ

+

(
n+

j

2

)
r2v +

j

2
r2v cos 2Θ + kv3, (2.3.53b)

vΘ̇ = −v
2

r
sinΘ + r sinΘ− cr3 sinΘ− hrv2 sinΘ− j

2
r2v sin 2Θ. (2.3.53c)

In this dynamical system, the fixed point for rotational motion is expressed as (r0, v0,±π/2), where
r0 and v0 are both positive.

Here we assume c = h = p = 0, i.e., the terms which do not affect the results of weakly nonlinear
analysis are neglected. First, the fixed point is determined. By substituting (r0, v0,±π/2) to the
dynamical system (2.3.53), we have

ṙ = 0, (2.3.54a)

v̇ = bv0 + nr0
2v0 + kv0

3, (2.3.54b)

Θ̇ = −v0
r0

+
r0
v0
. (2.3.54c)

Since the fixed point satisfies ṙ = v̇ = Θ̇ = 0, we have r0
2 = v0

2 and v0
2 = −b/(k+n). Since r0 > 0

and b > 0 hold, k+n < 0 is required for the existence of the fixed point corresponding to rotational
motion.

Then the linear stability of the fixed point is discussed. The perturbation terms ∆r, ∆v, and
∆Θ are introduced as r = r0 +∆r, v = v0 +∆v, and Θ = π/2 + ∆Θ, respectively. By substituting
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them into Eq. (2.3.54), we have the following equations for the time evolution equation for ∆r, ∆v,
and ∆Θ:  ∆̇r

∆̇v

∆̇Θ

 =

 0 0 −r0
2nr0

2 2kr0
2 r0

2

r0
− 2

r0
jr0

2


∆r

∆v
∆Θ

 . (2.3.55)

Here we neglect the square and higher-order terms of ∆r, ∆v, and ∆Θ. The characteristic polyno-
mial of the matrix is given by

λ3 − (2k + j)r0
2λ2 + 2(kjr0

4 + 2)λ+ 4b = 0. (2.3.56)

Here we define V (λ) as V (λ) = λ3 − (2k + j)r0
2λ2 + 2(kjr0

4 + 2)λ + 4b. Considering 4b > 0, the
one of the solutions of V (λ) = 0 has a negative real value. There are two possible cases for the rest
two solutions of V (λ) = 0 as follows.

• Case I: All solutions are real.
As shown before, one of the solutions is negative. The signs of the other two solutions are
unknown, but they are the same and unchanged by changing the parameters k, n, and j, since
the intercept is always positive.

• Case II: One of the solutions is negative and two of them are complex conjugates.
The signs of the real parts of the complex conjugates are the same, and may be changed by
changing the parameters k, n, and j.

Thus, any bifurcation does not occur for the former case but it does for the latter case. Here, we
assume that the solution of V (λ) = 0 has negative real value and complex conjugates, and examine
that the real parts of complex conjugates can be zero for a certain parameter set of b, k, n, and j.
If we obtain a relation among b, k, n, and j where the sign of the complex conjugates changes, a
bifurcation occurs at where the parameter set satisfies the relation. We set two complex conjugates
solutions to be λ± = ξ ± iζ (ξ, ζ ∈ R, ζ > 0) and the real solution to be λr, and then we have

λr + λ+ + λ− = λr + 2ξ = (2k + j)r0
2, (2.3.57a)

λrλ+ + λ+λ− + λ−λr = 2λrξ + ξ2 + ζ2 = 2(kjr0
4 + 2), (2.3.57b)

λrλ+λ− = λr(ξ
2 + ζ2) = −4b. (2.3.57c)

When ξ = 0, Eqs. (2.3.57) become 
λr = (2k + j)r0

2, (2.3.58a)

ζ2 = 2(kjr0
4 + 2), (2.3.58b)

λrζ
2 = −4b. (2.3.58c)

By eliminating λr and ζ from Eqs. (2.3.58), we have

(2k + j)kjb2 = −2(k − n+ j)(k + n)2. (2.3.59)

Thus a bifurcation occurs and the stability of the fixed point corresponding to rotational motion
changes at the surface expressed in Eq. (2.3.59) in the parameter space. The result is shown in
Fig. 2.3.5. For b = 0, Eq. (2.3.59) becomes k−n+ j = 0 and the result is consistent with the result
by weakly nonlinear analysis in Eq. (2.3.25).
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Figure 2.3.5: Phase diagram on k-n plane showing the parameter region for various b where the
rotational motion is stable. The parameter j is set to be (a) j = 1 and (b) j = −1. For b = 0, the
result obtained here corresponds to the result obtained by weakly nonlinear analysis as shown in
Fig. 2.3.4.

For the oscillatory motion, on the other hand, we have not succeeded to construct a solution for
finite b > 0.

Here we introduce a related previous work by Keith and Rand [78]. They analyzed the dynamical
system:

ẍ = −x+ ϵẋ
(
1− αx2 − βẋ2

)
, (2.3.60)

and analytically obtained the condition for the stable limit-cycle oscillation,

α+ 3β > 0, (2.3.61)

when ϵ is infinitesimally small. Since the third-order terms |x|2v and (x · v)v in Eq. (2.3.3) are
the same when the motion is limited to the line through the center of the system, b, n + j, and k
in Eq. (2.3.3) correspond to ϵ, α, and β, respectively. Thus the condition for the existence of the
amplitude in Eq. (2.3.30)(a) is the same as the condition in Eq. (2.3.61).

They also performed the numerical simulations with finite ϵ, and found that the line correspond-
ing to the threshold in Eq. (2.3.61) bends at the origin on the α-β plane. The degree of bending
becomes greater with an increase in ϵ, and the threshold approaches a combination of two half-lines,
α = 0 for β < 0 and β = 0 for α < 0, when ϵ→ +∞.

2.3.6 Comparison with the numerical results

To confirm the validity of the theoretical results, we numerically calculated the time evolution
of x and v based on Eq. (2.3.3) using the Euler method. We also checked whether there were
quasi-periodic orbits or not. We used adaptive mesh method for the time step. The adaptive mesh
was set for each time step so that the changes in x1, x2, v1, and v2 did not exceed the thresholds
for them.

First, we show typical examples of stable rotational and oscillatory motion in Fig. 2.3.6. The
stable motion depended on the parameter sets in Eq. (2.3.3). The parameter sets used in the
calculation and the stable motion were consistent with the theoretical results.

Next, by scanning the parameter sets, we made phase diagrams which show the kinds of stable
motion as shown in Fig. 2.3.7. The detailed manner is shown in Appendix A.2.1. The results were
compared with the theoretical results by the weakly nonlinear analysis in Eqs. (2.3.25) and (2.3.30)
and also that for finite b in Eq. (2.3.59). The theoretical results matched well with the numerical
results.
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Figure 2.3.6: Time evolutions of x1 and x2 and trajectories on the x1-x2 plane for stable (a)
rotational and (b) oscillatory motion, respectively. The lighter- and darker-colored curves show the
transient trajectory and the trajectory after sufficiently long time. The parameters were set to be
b = 1 and j = c = h = p = 0 for both (a) and (b), and the other parameters were (a) k = −5,
n = −2, (b) k = −2, n = −5. The initial conditions were set to be x1 = 0.5, x2 = 0.5, v1 = 0, and
v2 = 0.5 for both cases. Reproduced from Ref. [37].
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Figure 2.3.7: Comparison of the theoretical results with the numerical ones. The parameter b
was set to be (a) 0.1 and (b-d) 1. The symbols R, O, D, RD, and OD indicate stable rotational
motion, stable oscillatory motion, divergence to the infinity, coexistence of stable rotational motion
and divergence, and coexistence of stable oscillatory motion and divergence. The black line in (a)
shows the conditions for stable rotation and oscillation obtained by the weakly nonlinear analysis
in Eqs. (2.3.25) and (2.3.30). Those in (b-d) show the conditions for stable rotation for finite b > 0
in Eq. (2.3.59). Reproduced from Ref. [37].
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Figure 2.3.8: Dependence of ρ(= rmin/rmax) on n after sufficiently long time evolution (after time
interval 100000). The parameters were set to be b = 1, k = −5, c = h = p = 0, (a) j = 1, and (b)
j = −1. Between the region where rotational and oscillatory motion was stable, the region where
rotational and oscillatory motion were bistable and the region where quasiperiodic orbits were stable
were seen in the plots (a) and (b), respectively. The initial conditions in (i) and (ii) in Table A.1
in Appendix A.2.1 were adopted, and the obtained ρ is shown as cross and circle, respectively. (c)
Quasiperiodic orbit on x1-x2 plane. The parameters were the same as in (b) and the values of n
are indicated in the figure. Reproduced from Ref. [37].

We performed numerical calculation precisely near the boundaries on the parameter space be-
tween the regions where the rotational and oscillatory motions were observed. We found that
the bistable region of rotational and oscillatory motions and also the motion with quasiperiodic
orbits. We introduced ρ = rmin/rmax, where rmin and rmax are the minimun and maximun of
r =

√
x12 + x22, and detected ρ as shown in Fig. 2.3.8. The variable ρ characterizes the motion:

In this case, ρ = 1, ρ = 0, and 0 < ρ < 1 correspond to rotational, oscillatory, and quasiperiodic
motion, respectively.

To see the quasiperiodic orbit, we calculated the trajectories with a larger b, i.e. with more energy
injection. In Fig. 2.3.9, we show the obtained quasiperiodic orbits for b = 2. The quasiperiodic
orbit was something like an elliptic orbit whose major (minor) axis was slowly rotating.

2.3.7 Summary for Section 2.3

The general equation for motion of a self-propelled particle in a two-dimensional axisymmet-
ric system is derived. By the weakly nonlinear analysis, the conditions for stable rotational and
oscillatory motion are obtained. We confirmed the validity of the results of the weakly nonlinear
analysis by numerical calculations. We also found the parameter region where quasi-periodic orbits
are stably observed [37]. As future work, we expect that the quasiperiodic orbit can be analyzed in
detail by considering the stable manifold where the quasi-periodic orbits are stable [79].
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Figure 2.3.9: Quasiperiodic orbits on the x1-x2 plane. The parameters were set to be b = 2, k = −5,
c = h = p = 0, j = 1, and the values of n are shown in the figure. Reproduced from Ref. [37].

2.4 Camphor particle in a circular region

As an extension of the one-dimensional system in Sec. 2.2, we consider a system where a camphor
particle is confined in the two-dimensional circular region [35]. By reducing a proposed model shown
below, we derive a dynamical system which has a form in Eq. (2.3.3), and then determine whether
a camphor particle shows stable rotation or oscillation, by applying the results in Sec. 2.3.

2.4.1 Mathematical model

In this subsection, we introduce a mathematical model, and derive a dimensionless form of it.

Introduction of the mathematical model

The center position of a camphor particle is represented by ρ = ρ(t) = (ρ(t), ϕ(t)) in the two-
dimensional polar coordinates. The equation of motion with regard to the center position of a
camphor particle is described as:

σS
d2ρ

dt2
= −ξS dρ

dt
+ Fd(c;ρ), (2.4.1)

where σ and ξ are the mass and resistance coefficient per unit area, S(= πϵ2) is the surface area of
a camphor particle, and Fd denotes the driving force originating from the surface tension difference.
Here, we set the radius of the camphor particle as ϵ.

The driving force Fd originates from the surface tension difference around the camphor particle.
We assume that the driving force is obtained by summing up the force originating from surface
tension working on the periphery of the camphor particle. To avoid the dependence of ϵ, we divide
the both sides of Eq. (2.4.1) with S, and then we take the limit that ϵ goes to +0.

F = lim
ϵ→+0

1

S
Fd

= lim
ϵ→+0

1

S

∫
∂Ω
γ (c(ρ+ ϵn))ndl, (2.4.2)

where Ω =
{
r
∣∣∣|r − ρ| < ϵ

}
is the circular region around the camphor particle with a radius of ϵ,

and n is a unit vector represented as n = n(θ) = (cos θ, sin θ) in the Cartesian coordinates. Here, we
assume that the surface tension γ is a linear decreasing function with regard to c, i.e., γ = −Γc+γ0,

36



Section 2.4 Camphor particle in a circular region

φ
ρ

-R

-R

R

R

θ r

x

y

arbitrary position in the region

camphor particle

Figure 2.4.1: Schematic illustration of the considered system. The position of the camphor particle
and an arbitrary position are denoted as ρ = (ρ, ϕ) and r = (r, θ) in the two-dimensional polar
coordinates.

where Γ is a positive constant and γ0 is surface tension of pure water as in Sec. 2.2. When the
gradient of concentration field c is continuous at r = ρ, we have

F = lim
ϵ→+0

−Γ

πϵ2

∫ 2π

0
[c(ρ) + ϵn(θ) · ∇c(ρ)]n(θ)ϵdθ (2.4.3)

=− Γ ∇c|r=ρ . (2.4.4)

In this case, the driving force is proportional to the gradient of concentration field. Hereafter, we
consider the following equation for the motion of a camphor particle:

σ
d2ρ

dt2
= −ξ dρ

dt
+ F (ρ; c). (2.4.5)

The time evolution for concentration field is described by the following equation:

∂c(r, t)

∂t
= D∇2c(r, t)− αc(r, t) + f(r;ρ), (2.4.6)

where r is an arbitrary position in the circular region, D is the diffusion constant including the effect
of the Marangoni flow [70], α is the dissipation rate by sublimation and dissolution, and f denotes
the dissolution of camphor molecules from the camphor particle. Here, the domain of definition
for radial and angular components are given by ρ, r ∈ [0, R], ϕ, θ ∈ [0, 2π), which is shown in
Fig. 2.4.1. The camphor molecules are dissolved constantly at the position of the camphor particle,
ρ = (ρ(t), ϕ(t)), and thus the source term f is considered as follows:

f(r;ρ) = c0δ(r − ρ) =


c0
r
δ(r − ρ)δ(θ − ϕ), (ρ > 0),

c0
πr
δ(r − ρ), (ρ = 0),

(2.4.7)

where c0 is the amount of dissolved camphor molecules per unit time. The concentration field
satisfies the Neumann condition at the boundary:

∂c(r, θ, t)

∂r

∣∣∣∣
r=R

= 0. (2.4.8)
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

Dimensionless form of mathematical model

First, we consider the nondimensionalization of Eq. (2.4.6). The dimensions of α, D, and c0
are [1/T], [L2/T], and [C/L2], respectively. Here, T, L, and C represent the dimensions of time,
length, and concentration, respectively. Thus, we introduce the dimensionless time, position, and
concentration as t̃ = αt, r̃ =

√
α/D r, and c̃ = αc/c0, respectively. By substituting the three

dimensionless variables into Eq. (2.4.6) and dividing the both sides of the above equation with c0,
we obtain

∂c̃
(
r̃, θ, t̃

)
∂t̃

=

(
∂2

∂r̃2
+

1

r̃

∂

∂r̃
+

1

r̃2
∂2

∂θ2

)
c̃
(
r̃, θ, t̃

)
− c̃

(
r̃, θ, t̃

)
+

1

c0
f

(√
D

α
r̃, θ;

√
D

α
ρ̃
(
t̃
)
, ϕ
(
t̃
))

.

(2.4.9)
The source term is considered as follows:

1

c0
f

(√
D

α
r̃, θ;

√
D

α
ρ
(
t̃
)
, ϕ
(
t̃
))

=

√
α

D

1

r̃
δ

(√
D

α
r̃ −

√
D

α
ρ
(
t̃
))

δ
(
θ − ϕ

(
t̃
))

=
1

r̃
δ
(
r̃ − ρ

(
t̃
))
δ
(
θ − ϕ

(
t̃
))

≡f̃ (r̃, θ; ρ̃, ϕ) . (2.4.10)

Here we use δ(ax) = δ(x)/|a|. Then, we have

∂c̃
(
r̃, θ, t̃

)
∂t̃

=

(
∂2

∂r̃2
+

1

r̃

∂

∂r̃
+

1

r̃2
∂2

∂θ2

)
c̃
(
r̃, θ, t̃

)
− c̃

(
r̃, θ, t̃

)
+ f̃ (r̃, θ; ρ̃, ϕ) , (2.4.11)

where ρ̃ =
√
α/Dρ.

Next, Eq. (2.4.5) is nondimensionalized. The variables t, r, ρ, c are replaced with t̃, r̃, ρ̃, c̃, and
then we have

σDα
d2ρ̃(t̃)

dt̃
= −ξ

√
Dα

dρ̃(t̃)

dt̃
+ F

(
c0
α
c̃

(√
D

α
ρ̃(t̃);

√
D

α
r̃,
t̃

α

))
. (2.4.12)

In Eq. (2.4.12), we cannot eliminate all coefficients but one. Here, we adopt the dimensionless
driving force,

F (ρ; c) = lim
ϵ→+0

−Γ

πϵ2

∫ 2π

0
[c(ρ) + ϵn(θ) · ∇c(ρ)] ϵdθ

= lim
ϵ̃→+0

α

D

−Γ

πϵ̃2

∫ 2π

0

[
c0
α
c̃

(√
D

α
ρ̃

)
+ ϵ̃n(θ) · ∇̃c0

α
c̃

(√
D

α
ρ̃

)]√
D

α
ϵ̃dθ

=
c0√
αD

lim
ϵ̃→+0

−Γ

πϵ̃2

∫ 2π

0

[
c̃

(√
D

α
ρ̃

)
+ ϵ̃n(θ) · ∇c̃

(√
D

α
ρ̃

)]
ϵ̃dθ

≡ c0Γ√
αD

F̃ (ρ̃; c̃) . (2.4.13)

Here, F̃ is a dimensionless driving force. Then we obtain

σα2D

Γc0

d2ρ̃

dt̃2
= −ξαD

Γc0

dρ̃

dt̃
+ F̃ (ρ̃; c̃) , (2.4.14)
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Section 2.4 Camphor particle in a circular region

where

σ̃ ≡ σα2D

Γc0
, ξ̃ ≡ ξαD

Γc0
. (2.4.15)

For the simplicity, we omit tilde (˜), and the dimensionless evolution equations are described as

σ
d2ρ

dt2
= −ξ dρ

dt
+ F (ρ; c), (2.4.16)

F (ρ; c) = lim
ϵ̃→+0

∫ 2π

0
[c (ρ) + n(θ) · ∇c (ρ)] dθ (2.4.17)

∂c(r, θ, t)

∂t
=

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
c(r, θ, t)− c(r, θ, t) + f(r, θ; ρ, ϕ). (2.4.18)

f(r;ρ) = δ(r − ρ) =


c0
r
δ(r − ρ)δ(θ − ϕ), (ρ > 0),

c0
πr
δ(r − ρ), (ρ = 0),

(2.4.19)

Hereafter, we proceed the analysis using Eqs. (2.4.16) and (2.4.18).

2.4.2 Steady state in an infinite system

In this section, the steady concentration field when a camphor particle stops at ρ = (ρ, ϕ) in
the two-dimensional polar coordinates is obtained. The concentration field satisfies Eq. (2.4.18)
without time derivative term:(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
c(r, θ)− c(r, θ) + f(r, θ; ρ, ϕ) = 0. (2.4.20)

The expansions of c(r, θ) and f(r, θ; ρ, ϕ) in wavenumber space are represented as

g(r, θ) =
1

2π

∞∑
m=−∞

∫ ∞

0
gm(k)Jm(kr)eimθkdk, (2.4.21)

f(r, θ; ρ, ϕ) =
1

2π

∞∑
m=−∞

∫ ∞

0
fm(k)Jm(kr)eimθkdk, (2.4.22)

where Jm is the first-kind Bessel function of m-th order. Here we use Hankel transform and Fourier
expansion for the in radial and angular direction, respectively. The details of Hankel transform is
expressed in Appendix A.3.1. We calculate fm(k) as follows:

fm(k) =

∫ 2π

0

∫ ∞

0

1

r
δ(r − ρ)δ(θ − ϕ)Jm(kr)e−imθrdrdθ = Jm(kρ)e−imϕ. (2.4.23)

Therefore, we have

f(r, θ; ρ, ϕ) =
1

2π

∞∑
m=−∞

∫ ∞

0
Jm(kr)Jm(kρ)eim(θ−ϕ)kdk. (2.4.24)
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

By substituting the above expansions into Eq. (2.4.20), and solving with regard to gm(k), we have

gm(k) =
Jm(kρ)e−imϕ

k2 + 1
. (2.4.25)

Thus, the steady state is calculated as:

g(r, θ) =
1

2π

∞∑
m=−∞

∫ ∞

0

Jm(kρ)

k2 + 1
Jm(kr)eim(θ−ϕ)kdk (2.4.26)

=
1

2π

∫ ∞

0

1

k2 + 1
J0

(
k
√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
kdk (2.4.27)

=
1

2π
K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
, (2.4.28)

where Kn is the second-kind modified Bessel function of the n-th order. Here we use the formulae
in Ref. [81] (Eq. (4) in p.361 and Eq. (5) in p.425).

2.4.3 Reduction of the driving force for a camphor particle in an infinite system

The driving force is calculated as follows:

F =
k

4π

(
−γEuler + log

2

ϵ

)(
ρ̇eρ + ρϕ̇eϕ

)
− k

16π

{(
ρ̈− ρϕ̇2

)
eρ +

(
ρϕ̈+ 2ρ̇ϕ̇

)
eϕ

}
− k

32π

{
ρ̇
(
ρ̇2 + ρ2ϕ̇2

)
eρ + ρϕ̇

(
ρ̇2 + ρ2ϕ̇2

)
eϕ

}
+

k

48π

{
−3ρ̇ϕ̇2eρ + ρϕ̇3eϕ

}
. (2.4.29)

Since the position, velocity, acceleration, jerk (time derivative of acceleration) are represented as ρeρ,

ρ̇eρ+ρϕ̇eϕ,
(
ρ̈− ρϕ̇2

)
eρ+

(
ρϕ̈+ 2ρ̇ϕ̇

)
eϕ, and

(...
ρ − 3ρ̇ϕ̇2 − 3ρϕ̇ϕ̈

)
eρ+

(
ρ
...
ϕ + 3ρ̈ϕ̇+ 3ρ̇ϕ̈− ρϕ̇3

)
eϕ,

the vector form of the driving force is expressed as:

F =
k

4π

(
−γEuler + log

2

ϵ

)
ρ̇− k

16π
ρ̈− k

32π
|ρ̇|2 ρ̇, (2.4.30)

where the terms which related to the jerk are neglected. Here the detailed calculation is provided
in Appendix A.3.2.

2.4.4 Steady state in a circular region

The steady state g(r, θ) with the source term f(r, θ) =
1

r
δ(r − ρ)δ(θ − ϕ) satisfies the following

equation: (
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
g(r, θ)− g(r, θ) + f(r, θ) = 0. (2.4.31)

The steady state g(r, θ) and the source term f(r, θ) are expanded using Hankel expansion [80] for
r-direction and Fourier series for θ-direction.

g(r, θ) =
1

2π

∞∑
m=−∞

∞∑
n=0

amngmnJ|m|(kmnr)e
imθ, (2.4.32)

f(r, θ) =
1

2π

∞∑
m=−∞

∞∑
n=0

amnJm(kmnρ)J|m|(kmnr)e
im(θ−ϕ). (2.4.33)
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By substituting Eqs. (2.4.32) and (2.4.33) into Eq. (2.4.31), we have{
−
(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
+ 1

}
g(r, θ)

=

{
−
(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
+ 1

}
1

2π

∞∑
m=−∞

∞∑
n=0

amngmnJ|m|(kmnr) e
imθ

=
1

2π

∞∑
m=−∞

∞∑
n=0

amn(kmn
2 + 1)gmnJ|m|(kmnr) e

imθ

=
1

2π

∞∑
m=−∞

∞∑
n=0

amnJ|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ). (2.4.34)

By solving with regard to gmn, we have

gmn =
J|m|(kmnρ)e

−imϕ

2π(kmn
2 + 1)

. (2.4.35)

Thus, the steady state g(r, θ) in real space is written as

g(r, θ) =
1

2π

∞∑
m=−∞

∞∑
n=0

amn

2π(kmn
2 + 1)

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ). (2.4.36)

In Subsection 2.4.2, we obtain the steady state in an infinite region as follows:

c(r, θ) =
1

2π
K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
, (2.4.37)

where ρ = (ρ, ϕ) is the position of the camphor particle in the two-dimensional polar coordinates.
To satisfy the Neumann boundary condition, we adequately add the general solution for Eq. (2.4.31)
without the source term, i.e., the homogeneous form of Eq. (2.4.31):(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
g(r, θ)− g(r, θ) = 0, (2.4.38)

as correction terms. From the definition of the modified Bessel functions, the general solution of
Eq. (2.4.38) is expressed as

c(r, θ) =A0K0(r) +B0I0(r)

+

∞∑
m=1

(AmKm(r) +BmIm(r)) cosm(θ − ϕ) +

∞∑
m=1

(CmKm(r) +DmIm(r)) sinm(θ − ϕ).

(2.4.39)

By considering the symmetric property of the system, the m-th mode term should be expressed
only by cosm(θ − ϕ), i.e., Cm and Dm should be zero. Furthermore, Kn(r) (n ≥ 1) is not suitable

for representing the concentration field of camphor, since

∫ 2π

0

∫ R

0
Kn(r)rdrdθ diverges for n ≥ 1.

K0(r) diverges at r = 0 and is not suitable when a camphor particle is off the origin. When a
camphor particle is located at the origin, K0(r) is already included as the steady state without the
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

Neumann boundary. Thus, for the both cases, the concentration field with the correction terms
should be given by the following form:

c(r, θ) =
1

2π
K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

∞∑
m=0

BmIm(r) cosm(θ − ϕ). (2.4.40)

Then, the coefficients Bm are determined by the boundary condition

∂

∂r
c(r, θ)

∣∣∣∣
r=R

= 0, (2.4.41)

that is

1

2π

∂

∂r
K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)∣∣∣∣
r=R

= −
∞∑

m=0

Bm
∂Im(r)

∂r
cosm(θ − ϕ)

∣∣∣∣
r=R

. (2.4.42)

If ∂K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
/∂r at r = R is expanded with regard to cosm(θ − ϕ), we can

determine Bm. By using the formula represented in Eq. (8) in p.361 of Ref. [81]:

K0

(√
R2 + r2 − 2Rr cos θ

)
=

∞∑
n=−∞

Kn(R)In(r) cosnθ, (for R > r), (2.4.43)

we have

∂

∂R

∫ 2π

0
K0

(√
R2 + ρ2 − 2Rρ cos(θ − ϕ)

)
cosn(θ − ϕ)dθ

=
∂

∂R

∞∑
m=−∞

Km(R)Im(ρ)

∫ 2π

0
cosm(θ − ϕ) cosn(θ − ϕ)dθ

=
∂

∂R

∞∑
m=−∞

Km(R)Im(ρ)

{
2πδmn (n = 0)
πδmn (n ̸= 0)

=


2π
∂K0(R)

∂R
I0(ρ) (n = 0)

π

(
∂Kn(R)

∂R
In(ρ) +

∂K−n(R)

∂R
I−n(ρ)

)
(n ̸= 0)

= 2π
∂Kn(R)

∂R
In(ρ) (n = 0, 1, 2, · · · ). (2.4.44)

Here we use K−m(r) = Km(r) and I−m(r) = Im(r). As a consequence, we have

B0 =
1

2π

K′
0(R)

I ′
0(R)

I0(ρ), (2.4.45)

Bm =
1

π

K′
m(R)

I ′
m(R)

Im(ρ). (2.4.46)

Thus, we have

c(r, θ) =
1

2π
K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

2π

K0
′(R)

I0′(R)
I0(ρ)I0(r)−

1

π

∞∑
m=1

Km
′(R)

Im′(R)
Im(ρ)Im(r) cosm(θ − ϕ). (2.4.47)
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Section 2.4 Camphor particle in a circular region

Next, the conservation of integration of concentration over the circular region,∫ R

0

∫ 2π

0
c(r, θ)rdrdθ = 1, (2.4.48)

is checked. We directly integrate as follows:∫ R

0

∫ 2π

0
c(r, θ)rdrdθ

=
1

2π

∫ R

0

∫ 2π

0
K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
rdrdθ +

∞∑
m=0

Bm

∫ R

0

∫ 2π

0
Im(r) cosm(θ − ϕ)rdrdθ

=
1

2π

∞∑
m=−∞

∫ 2π

0

{∫ ρ

0
Km(ρ)Im(r)rdr +

∫ R

ρ
Km(r)Im(ρ)rdr

}
cosm(θ − ϕ)dθ

+
∞∑

m=0

Bm

∫ R

0

∫ 2π

0
Im(r) cosm(θ − ϕ)rdrdθ, (2.4.49)

where we use the formula (Eq. (8) in p.361 of Ref. [81]):

K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=



∞∑
n=−∞

Kn(ρ)In(r) cosnθ, (for R > r),

∞∑
n=−∞

Kn(r)In(ρ) cosnθ, (for R < r).

(2.4.50)

By integrating the both sides of Eq. (2.4.49) with regard to θ, the integration is zero except for
m = 0, and we have{∫ ρ

0
K0(ρ)I0(r)rdr +

∫ R

ρ
K0(r)I0(ρ)rdr

}
+ 2πB0

∫ R

0
I0(r)rdr

= {K0(ρ)ρI1(ρ) + I0(ρ) (ρK1(ρ)−RK1(R))}+ 2πB0RI1(R)
= (1−RI0(ρ)K1(R)) + 2πB0RI1(R)
= 1. (2.4.51)

Here we use K0(r)I1(r) + I0(r)K1(r) = 1/r (cited by Eq. (20) in p.80 of Ref. [81]). We also use
formulae (rK1(r))

′ = K1(r) + rK′
1(r) = −K0(r) and (rI1(r))′ = I1(r) + rI ′

1(r) = I0(r), which are
represented in Eq. (4) in p.79 of Ref. [81].

2.4.5 Reduction of the driving force for a camphor particle in a circular region

The concentration field c is expanded with the Bessel functions so-called “discrete Hankel trans-
form” and Fourier series on radial and angular directions, respectively.

c(r, θ, t) =
1

2π

∞∑
m=−∞

∞∑
n=0

amncmn(t)J|m|(kmnr)e
imθ. (2.4.52)
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The details of “discrete Hankel transform” is expressed in Appendix A.3.1. The source term in
Eq. (2.4.7) is also expanded as

f(r, θ; ρ, ϕ) =
1

r
δ(r − ρ(t))δ(θ − ϕ(t))

=
1

2π

∞∑
m=−∞

∞∑
n=0

amnJ|m|(kmnρ(t))e
−imϕ(t)J|m|(kmnr)e

imθ. (2.4.53)

Thus we have the equation for concentration in wavenumber space:

∂cmn(t)

∂t
= −(kmn

2 + 1)cmn(t) + J|m|(kmnρ(t))e
−imϕ(t). (2.4.54)

First, the Green’s function gmn(t) is calculated. The Green’s function satisfies the following equa-
tion:

∂gmn(t)

∂t
= −(kmn

2 + 1)gmn(t) + δ(t). (2.4.55)

By solving the above equation, we have

gmn(t) = e−(kmn
2+1)tΘ(t), (2.4.56)

where Θ(t) is the Heaviside’s step function.

Using the Green’s function gmn, the concentration field cmn in wavenumber space is described
as

cmn(t) =

∫ t

−∞
J|m|(kmnρ(t

′))e−imϕ(t′)e−(kmn
2+1)(t−t′)dt′. (2.4.57)

By adopting partial integration on Eq. (2.4.57), we have the following expression:

cmn

=
1

A
J|m|(kmnρ(t))e

−imϕ(t) +
1

A2

{
−kmnρ̇(t)J ′

|m|(kmnρ(t)) + imϕ̇(t)J|m|(kmnρ(t))
}
e−imϕ(t)

+
1

A3

{
kmnρ̈(t)J ′

|m|(kmnρ(t)) + kmn
2(ρ̇(t))2J ′′

|m|(kmnρ(t))− 2ikmnmρ̇(t)ϕ̇(t)J ′
|m|(kmnρ(t))

−imϕ̈(t)J|m|(kmnρ(t))−m2(ϕ̇(t))2J|m|(kmnρ(t))
}
e−imϕ(t)

+
1

A4

{
−kmn

...
ρ (t)J ′

|m|(kmnρ(t))− 3kmn
2ρ̇(t)ρ̈(t)J ′′

|m|(kmnρ(t)) + 3ikmnmρ̈(t)ϕ̇(t)J ′
|m|(kmnρ(t))

− kmn
3(ρ̇(t))3J ′′′

|m|(kρ(t)) + 3ikmn
2m(ρ̇(t))2ϕ̇(t)J ′′

|m|(kmnρ(t)) + 3ikmnmρ̇(t)ϕ̈(t)J ′
|m|(kmnρ(t))

+ 3kmnm
2ρ̇(t)(ϕ̇(t))2J ′

|m|(kmnρ(t)) + im
...
ϕ (t)J|m|(kmnρ(t)) + 3m2ϕ̇(t)ϕ̈(t)J|m|(kmnρ(t))

−im3(ϕ̇(t))3J|m|(kmnρ(t))
}
e−imϕ(t)

+ · · · . (2.4.58)
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The detailed calculation is provided in Appendix A.3.3. Thus we have

c(r, θ, t)

=
1

2π

∞∑
m=−∞

∞∑
n=0

amn

k2mn + 1
J|m|(kmnρ(t))J|m|(kmnr)e

im(θ−ϕ(t))

+
1

2π

∞∑
m=−∞

∞∑
n=0

amn

(k2mn + 1)2

{
−kmnρ̇(t)J ′

|m|(kρ(t)) + imϕ̇(t)J|m|(kmnρ(t))
}
J|m|(kmnr)e

im(θ−ϕ(t))

+
1

2π

∞∑
m=−∞

∞∑
n=0

amn

(k2mn + 1)3

{
kmnρ̈(t)J ′

|m|(kmnρ(t)) + kmn
2(ρ̇(t))2J ′′

|m|(kρ(t))

− 2ikmnmρ̇(t)ϕ̇(t)J ′
|m|(kmnρ(t))− imϕ̈(t)J|m|(kmnρ(t))

−m2(ϕ̇(t))2J|m|(kmnρ(t))
}
J|m|(kmnr)e

im(θ−ϕ(t))

+
1

2π

∞∑
m=−∞

∞∑
n=0

amn

(k2mn + 1)4

{
−kmn

...
ρ (t)J ′

|m|(kmnρ(t))− 3k2mnρ̇(t)ρ̈(t)J ′′
|m|(kmnρ(t))

+ 3ikmnmρ̈(t)ϕ̇(t)J ′
|m|(kmnρ(t))− k3mn(ρ̇(t))

3J ′′′
|m|(kmnρ(t))

+ 3ik2mnm(ρ̇(t))2ϕ̇(t)J ′′
|m|(kmnρ(t)) + 3ikmnmρ̇(t)ϕ̈(t)J ′

|m|(kmnρ(t))

+ 3kmnm
2ρ̇(t)(ϕ̇(t))2J ′

|m|(kmnρ(t)) + im
...
ϕ (t)J|m|(kmnρ(t))

+3m2ϕ̇(t)ϕ̈(t)J|m|(kmnρ(t))− im3(ϕ̇(t))3J|m|(kmnρ(t))
}
J|m|(kmnr)e

im(θ−ϕ(t)).

(2.4.59)

By taking the summation of Eq. (2.4.59), we have the concentration field as follows:

c(r;ρ)

= c000 (R, r) + c100 (R, r)(r · ρ) + c200 (R, r)(r · ρ)2 + c201 (R, r)|ρ|2

+ c110 (R, r) (r · ρ̇)
+ c300 (R, r)(r · ρ)3 + c301 (R, r)|ρ|2(r · ρ)
+ c210 (R, r) (ρ · ρ̇) + c211 (R, r) (r · ρ) (r · ρ̇) + c120 (R, r) (r · ρ̈)
+ c310 (R, r)|ρ|2 (r · ρ̇) + c311 (R, r) (r · ρ) (ρ · ρ̇) + c312 (R, r) (r · ρ)2 (r · ρ̇)
+ c220 (R, r) (ρ · ρ̈) + c221 (R, r) |ρ̇|2 + c222 (R, r) (r · ρ) (r · ρ̈) + c223 (R, r) (r · ρ̇)2 + c130 (R, r) (r ·

...
ρ)

+ c320 (R, r) |ρ̇|2 (r · ρ) + c321 (R, r) (r · ρ̇) (ρ · ρ̇) + c322 (R, r) (r · ρ) (r · ρ̇)2 + c323 (R, r) (r · ρ) (ρ · ρ̈)
+ c324 (R, r) |ρ|2 (r · ρ̈) + c325 (R, r) (r · ρ)2 (r · ρ̈)
+ c230 (R, r) (ρ ·

...
ρ) + c231 (R, r) (ρ̇ · ρ̈) + c232 (R, r) (r · ρ̇) (r · ρ̈) + c233 (R, r) (r · ρ) (r ·

...
ρ)

+ c330 (R, r) |ρ|2 (r ·
...
ρ) + c331 (R, r) |ρ̇|2 (r · ρ̇) + c332 (R, r) (r · ρ) (ρ ·

...
ρ) + c333 (R, r) (r · ρ̇)3

+ c334 (R, r) (r · ρ) (ρ̇ · ρ̈) + c335 (R, r) (r · ρ)2 (r ·
...
ρ) + c336 (R, r) (r · ρ̇) (ρ · ρ̈)

+ c337 (R, r) (r · ρ̈) (ρ · ρ̇) + c338 (R, r) (r · ρ) (r · ρ̇) (r · ρ̈) . (2.4.60)

where we truncate the higher-order terms of ρ and ϕ. The detailed calculation, the explicit forms
of cijk , and their plots are provided in Appendix A.3.4.
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By calculating the gradient of Eq. (2.4.60) at r = ρ, we have the reduced driving force as follows:

F (ρ, ρ̇, ρ̈) =− ∇c(r;ρ)|r=ρ

=a(R)ρ+ b(R)ρ̇+ c(R)|ρ|2ρ+ g(R)ρ̈+ h(R)|ρ̇|2ρ+ j(R)(ρ · ρ̇)ρ
+ k(R)|ρ̇|2ρ̇+ h(R)|ρ|2ρ̇+ p(R)(ρ · ρ̇)ρ̇, (2.4.61)

where

a(R) =
1

4π

(
K′

0(R)

I ′
0(R)

+
K′

1(R)

I ′
1(R)

)
, (2.4.62)

b(R) =
1

4π

(
−γEuler + log

2

ϵ

)
+

1

8π

(
2
K′

1(R)

I ′
1(R)

+

(
1 +

1

R2

)
1

(I ′
1(R))

2

)
, (2.4.63)

c(R) =
1

32π

(
3
K′

0(R)

I ′
0(R)

+ 4
K′

1(R)

I ′
1(R)

+
K′

2(R)

I ′
2(R)

)
, (2.4.64)

g(R) =− 1

16π
+

1

16π

(
−
(
R+

1

R

)
I ′′
1 (R)

(I ′
1(R))

3
+

1

(I ′
1(R))

2

)
, (2.4.65)

h(R) =
1

64π

(
8
K′

0(R)

I ′
0(R)

+ 4
K′

1(R)

I ′
1(R)

− 4
K′

2(R)

I ′
2(R)

− 2R
I ′′
0 (R)

(I ′
0(R))

3
−
(
R+

1

R

)
I ′′
1 (R)

(I ′
1(R))

3

+

(
R+

4

R

)
I ′′
2 (R)

(I ′
2(R))

3
+

6

(I ′
0(R))

2
+

(
2

R2
+ 3

)
1

(I ′
1(R))

2
−
(

8

R2
+ 3

)
1

(I ′
2(R))

2

)
,

(2.4.66)

j(R) =
1

16π

(
4
K′

0(R)

I ′
0(R)

+ 4
K′

1(R)

I ′
1(R)

+
1

(I ′
0(R))

2
+

(
1 +

1

R2

)
1

(I ′
1(R))

2

)
, (2.4.67)

k(R) =− 1

32π

+
1

128π

(
3
(
1 +R2

) (I ′′
1 (R))

2

(I ′
1(R))

4
−
(
3

R
+ 7R

)
I ′′
1 (R)

(I ′
1(R))

3
−
(
1 +R2

) I ′′′
1 (R)

(I ′
1(R))

3
+ 4

1

(I ′
1(R))

2

)
,

(2.4.68)

n(R) =
1

32π

((
1 +

1

R2

)
1

(I ′
1(R))

2
+

(
1 +

4

R2

)
1

(I ′
2(R))

2
+ 4

K′
2(R)

I ′
2(R)

+ 4
K′

1(R)

I ′
1(R)

)
, (2.4.69)

p(R) =
1

32π

(
4
K′

1(R)

I ′
1(R)

+ 4
K′

2(R)

I ′
2(R)

−
(
1

R
+R

)
I ′′
1 (R)

(I ′
1(R))

3
−
(
4

R
+R

)
I ′′
2 (R)

(I ′
2(R))

3

+

(
2

R2
+ 3

)
1

(I ′
1(R))

2
+

(
8

R2
+ 3

)
1

(I ′
2(R))

2

)
. (2.4.70)

Here γEuler denotes the Euler’s constant (γEuler ≃ 0.577). We confirm that, when R goes to infinity,
the coefficients a(R), b(R), c(R), h(R), j(R), k(R), n(R), and p(R) correspond to the ones for the
infinite system shown in Eq. (2.4.30). The dependence of the coefficients on the radius of water
chamber R is shown in Appendix A.3.5.

Since we have the reduced driving force, the dynamical system becomes:

(σ − g(R))ρ̈ =a(R)ρ+ (b(R)− ξ)ρ̇+ c(R)|ρ|2ρ+ h(R)|ρ̇|2ρ+ j(R)(ρ · ρ̇)ρ
+ k(R)|ρ̇|2ρ̇+ n(R)|ρ|2ρ̇+ p(R)(ρ · ρ̇)ρ̇. (2.4.71)

Then we investigate the bifurcation structure of Eq. (2.4.71). We check the stable motion by using
the conditions for stable rotation and oscillation in Eqs. (2.3.25) and (2.3.30), respectively. To apply
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Figure 2.4.2: Plots of Fosc(R) = K(R) + N(R), Frot(R) = 3K(R) + N(R) + J(R), and Fcrt(R) =
K(R) − N(R) + J(R) against the radius of the water chamber R. Rotational motion is linearly
stable in a certain range of R, which is indicated by coloring with magenta.

the conditions, we convert time t into τ = ωt, where ω(R, σ) =
√

−a(R)/(σ − g(R)), and have

ρ̈ =− ρ+ (B(R, σ)− Ξ)ρ̇+ C(R, σ)|ρ|2ρ+H(R)|ρ̇|2ρ+ J(R, σ)(ρ · ρ̇)ρ
+K(R, σ)|ρ̇|2ρ̇+N(R, σ)|ρ|2ρ̇+ P (R)(ρ · ρ̇)ρ̇, (2.4.72)

where B(R, σ) = b(R)/ω(R, σ), Ξ = ξ/ω(R, σ), C(R, σ) = c(R)/ω(R, σ)2, H(R) = h(R), J(R, σ) =
j(R)/ω(R, σ), K(R, σ) = k(R)ω(R, σ), N(R, σ) = n(R)/ω(R, σ), and P (R) = p(R). The stability
of the rest state at the center of the circular region is determined by the sign of B(R, σ) − Ξ.
For negative B(R, σ) − Ξ, the rest state is linearly stable. When we fix the radius of the circular
region R, the bifurcation parameter is the (dimensionless) resistance coefficient Ξ. By decreasing Ξ,
B(R, σ)− Ξ becomes negative, then Hopf bifurcation occurs, and the rest state becomes unstable.
The stable motion is determined by the conditions in Eqs. (2.3.25) and (2.3.30). Here we show them
again below; For stable rotation, {

K(R) +N(R) < 0,
K(R)−N(R) + J(R) < 0,

(2.4.73)

and for stable oscillation, {
3K(R) +N(R) + J(R) < 0,
K(R)−N(R) + J(R) > 0,

(2.4.74)

should be satisfied. We show the R-dependence of functions Fosc(R) = K(R) + N(R), Frot(R) =
3K(R)+N(R)+J(R), and Fcrt(R) = K(R)−N(R)+J(R) in Fig. 2.4.2. As in Fig. 2.4.2, rotational
motion of a camphor particle in the two-dimensional circular region is linearly stable for a certain
range around R = 1, and oscillatory motion of it is unstable. When the radius of the water chamber
is around R = 1, the camphor particle near the center position is affected by the boundary through
the concentration field, since the length is normalized by the diffusion length. Thus the rotational
motion is stable when the boundary effect is sufficiently large.

It is noted that the conditions in Eqs. (2.4.73) and (2.4.74) are valid for large |a(R)|, i.e., for small
R. The coefficients a(R), c(R), h(R), j(R), n(R), and p(R), which are the coefficients of position-
related terms, go to zero for R → ∞. Thus for sufficiently large R, the position-independent force
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Figure 2.4.3: Numerical results on the trajectories of a camphor particle for the resistance coefficient
ξ = 0.18. The camphor particle exhibited rotational motion. (a) The trajectory on the x-y plane.
(b) Time evolutions of x(t) and y(t) shown in blue- and red-colored curves, respectively. The initial
conditions for the position and velocity of the camphor particle were x = 0.1, y = 0.2, vx = −0.01,
and vy = 0, respectively. The concentration field c was zero at every point in the region.

exerted on the camphor particle becomes smaller, and straight motion should be observed at least
near the center position of the circular region.

2.4.6 Comparison with the numerical results

To confirm the theoretical results, we performed numerical calculations based on Eqs. (2.4.16)
and (2.4.18). We used the Euler method for Eq. (2.4.16) and the explicit method for Eq. (2.4.18).
The time and spatial steps were 10−5 and 10−2, respectively. The mass per unit area σ was fixed
to sigma = 10−2. In order to calculate the force acting on the camphor particle in Eq. (2.4.17), we
adopted the summation over 40 arc elements as the integration in Eq. (2.4.17).

Here we show the results for the radius of the circular region R = 1. The results for the resistance
coefficient per unit area ξ = 0.18 and ξ = 0.2 are shown in Figs. 2.4.3 and 2.4.4, respectively. The
initial conditions were the same. We obtained the trajectories toward the circular orbit whose
center corresponds to the center of the circular chamber for ξ = 0.18 and toward the rest state at
the center of the circular chamber for ξ = 0.2. Thus it is expected that the bifurcation point exists
between ξ = 0.18 and ξ = 0.2. The bifurcation point for R = 1 expected by the theoretical analysis
is ca. 0.218 and the order of the bifurcation point is the same as that by the numerical results.
The comparison of the bifurcation structure obtained by numerical calculation with the theoretical
analysis remains as future work.

2.4.7 Comparison with the experimental results

We also made experiments to confiem the theoretical results. Here we observed motion of a
camphor particle in the water chamber whose radius was continuously controlled.
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Figure 2.4.4: Numerical results on the trajectories of a camphor particle for the resistance coefficient
ξ = 0.2. The camphor particle finally stopped at the center of the circular region. (a) The trajectory
on the x-y plane. (b) Time evolutions of x(t) and y(t) shown in blue- and red-colored curves,
respectively. The initial conditions for the position and velocity of the camphor particle were
x = 0.1, y = 0.2, vx = −0.01, and vy = 0, respectively. The concentration field c was zero at every
point in the region.

Experimental setup

A camphor gel disk, whose diameter was 4.0 mm and thickness was 0.5 mm, was made of agar
gel in which water was replaced with camphor methanol solution. After the methanol dried up, a
camphor particle was floated on a water phase (15 mm in the depth). To achieve a variable-sized
water phase, an optical focus (IDC-025, Sigma-koki) was placed on the water phase whose radius R
could be changed. As the initial state, a camphor particle was placed on a small sized water phase
(R = 5.0 mm) where the disk was in the rest state. Then, the radius was increased to 13.0 mm and
the motion of the camphor particle was monitored.

Experimental results

At the initial stage with small size of water phase (R = 5.0 mm), the disk was in the rest state.
With an increase in the radius of the water chamber R, the disk started to move and finally showed
rotational motion as shown in Fig. 2.4.5(a). For rotational motion, both the moving speed v and
the position of the disk r were almost constant in time as shown in Fig. 2.4.5(b). The theoretical
results qualitatively explain the transition from the rest state at the center position of the circular
chamber to the rotational motion with an increase in the radius of the water chamber R.

2.4.8 Summary for Section 2.4

The motion of a camphor particle confined in the two-dimensional circular system is investi-
gated [35]. By reducing the model, we analyzed the bifurcation structure. The theoretical results
suggest that the rotational motion occurs when the rest state becomes unstable for a water cham-
ber whose radius is comparable with or smaller than the difusion length. The theoretical results
correspond to the numerical and experimental results.
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Figure 2.4.5: Motion of a camphor particle obtained in experiments. (a) Trajectory of the moving
camphor particle. (b) Time series of speed v, the position of the disk r, and the radius of the water
chamber R. The radius of the water chamber was gradually changed from 5.0 mm to 13.0 mm.

camphor particle

rigid bar

Figure 2.5.1: Schematic illustration of a camphor-driven rotor seen from the top. A camphor-driven
rotor is composed of two camphor particles and a rigid bar connecting these camphor particles. The
center position of a camphor-driven rotor is fixed.

2.5 Symmetric camphor rotor

In this section, we discuss motion of a camphor-driven rotor, which is constructed with two
camphor particles connected with a rigid bar. As shown in Fig. 2.5.1, the considered camphor-
driven rotor has mirror symmetry, and therefore either clockwise and counterclockwise rotation is
possible.

2.5.1 Mathematical model

In order to discuss the mechanisms of the motion of the camphor-driven rotor, we consider a
mathematical model presented below. We define the center position of the i-th camphor particle
(i = 1, 2) as ℓi(t). The center of mass of both camphor particles is fixed to the origin of the
coordinate system ((ℓ1(t) + ℓ2(t))/2 = 0). Thus, the center position of the i-th camphor particle is
defined only using a single angle θ(t), i.e.,

ℓ1(t) = ℓe(θ(t)), ℓ2(t) = −ℓe(θ(t)), (2.5.1)

where we set a unit vector e(θ(t)) as e(θ) = ex cos θ + ey sin θ, and ex and ey are the unit vectors
along the x- and y-axes, respectively.
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The time evolution of the surface concentration field of camphor molecules c(r, t) is described
as [22,47]

∂c

∂t
= ∇2c− c+ f, (2.5.2)

where −c describes sublimation into the air phase and f = f(r; ℓ1, ℓ2) is a function representing
the supply of camphor molecules from the camphor particles. Equation (2.5.2) is written using
dimensionless variables. In the same manner in Secs. 2.2 and 2.4, the real length, time, and con-
centration are normalized with the diffusion length

√
D/α, the characteristic time of dissipation

of camphor molecules by sublimation and dissipation 1/α, and the ratio between the supply and
dissipation rates of camphor, f0/α, where D is the diffusion constant of camphor molecules, α is
the sublimation rate of camphor, and f0 is the total supply of camphor from a single particle per
unit of real time.

Time evolution of θ(t) is described as

I(ℓ)
d2θ

dt2
= −η(ℓ)dθ

dt
+ T , (2.5.3)

where I and η are the moment of inertia and the resistance coefficient for rotational motion of the
camphor particles, respectively, and they depend on ℓ as follows:

I(ℓ) =2πϵ2σℓ2, (2.5.4)

η(ℓ) =2πϵ2κℓ2, (2.5.5)

where σ and κ are dimensionless parameters corresponding to the mass and the resistance coefficient
per unit area for the camphor particles, respectively. The variable ϵ is the radius of the camphor
particle. Here, the friction force working on the i-th camphor particle is described as −(πϵ2κ)ℓ̇i.

In Eq. (2.5.3), T is the torque with respect to the origin acting on the rotor:

T =

2∑
i=1

ℓi ×
[∫ 2π

0
γ (c (ℓi + ϵe(ϕ))) e(ϕ)ϵdϕ

]
, (2.5.6)

where γ(c) is a function that represents the dependence of the surface tension on the surface con-
centration of camphor molecules. Here, the vector product “×” describes the operation

a× b = a1b2 − a2b1, (2.5.7)

for a = a1ex + a2ey, and b = b1ex + b2ey. If we assume that the surface tension γ is a linear
decreasing function of c in the same way as in Secs. 2.2 and 2.4:

γ(c) = γ0 − Γc, (2.5.8)

where γ0 is the surface tension of pure water, and Γ is a positive constant. Then Eq. (2.5.6) can be
rewritten as

T = −Γℓe(θ)×
[∫ 2π

0
c (ℓ1 + ϵe(ϕ)) e(ϕ)ϵdϕ−

∫ 2π

0
c (ℓ2 + ϵe(ϕ)) e(ϕ)ϵdϕ

]
. (2.5.9)

Hereafter, we set Γ = 1 without losing generality.
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Chapter 2 Camphor Particle Moving Through Spontaneous Symmetry Breaking

2.5.2 Analysis on the angular velocity depending on the rotor size

In this section, the dynamical system for the angular velocity of a single rotor is derived by the
reduction of the model equations and its bifurcation structure is revealed. We consider the limit of
ϵ→ +0, i.e., the case where the radius of camphor particles is sufficiently small compared with the
diffusion length (= 1) and the radius of the rotor (= ℓ).

By dividing the both sides of Eq. (2.5.3) with πϵ2ℓ2, we obtain

σ
d2θ

dt2
= −κdθ

dt
+

1

2πϵ2ℓ2
T . (2.5.10)

Here, we take the limit of ϵ→ +0, and we obtain

1

πϵ2
T → lim

ϵ→+0

1

πϵ2
T = −

∑
i=1,2

ℓi × ∇c(r)|r=ℓi
, (2.5.11)

from the simple calculation for the concentration c(r) with no divergence at r = ℓi.
The equation for the concentration field is represented in Eq. (2.5.2). The source term f in

Eq. (2.5.2) is given by

f(r; ℓ1, ℓ2) =
∑
i=1,2

δ(r − ℓi) =
∑
i=1,2

1

r
δ(r − ℓ)δ(ϕ− θi), (2.5.12)

since we consider that the size of the camphor particles is infinitesimally small. Here, r is represented
as r = (r, ϕ) in the two-dimensional polar coordinates.

The concentration field is the summation of the concentration field made by each camphor
particle since the equation for the concentration field is linear. Thus, the concentration field made
by a rotor is given by

c(r) = cs(r; ℓ1) + cs(r; ℓ2), (2.5.13)

where cs(r; ℓ) is the concentration field made by a single camphor particle located at ℓ, i.e., the
solution of Eq. (2.5.2) with the source term δ(r − ℓ). When the velocity of the camphor particle is
sufficiently small, the concentration field made by a single particle cs(r; ℓ) is analytically expressed
as

cs(r; ℓ) =c00(λ) + c10(λ)(r − ℓ) · ℓ̇+ c20(λ)(r − ℓ) · ℓ̈+ c21(λ)
∣∣∣ℓ̇∣∣∣2 + c22(λ)

[
(r − ℓ) · ℓ̇

]2
+ c30(λ)(r − ℓ) ·

...
ℓ + c31(λ)

∣∣∣ℓ̇∣∣∣2 (r − ℓ) · ℓ̇+ c32(λ)
[
(r − ℓ) · ℓ̇

]3
+ c33(λ)ℓ̇ · ℓ̈

+ c34(λ)
[
(r − ℓ) · ℓ̇

] [
(r − ℓ) · ℓ̈

]
, (2.5.14)

where λ = |r − ℓ|, the dot over variables ( ˙ ) represents the time derivative, and the dot between
vectors (·) represents inner product. Here,

c00(λ) =
1

2π
K0 (λ) , c10(λ) = − 1

4π
K0 (λ) ,

c20(λ) =
1

16π
λK1 (λ) , c21(λ) = − 1

16π
λK1 (λ) ,

c22(λ) =
1

16π
K0 (λ) , c30(λ) = − 1

96π
λ2K2(λ),

c31(λ) =
1

32π
λK1 (λ) , c32(λ) = − 1

96π
K0(λ),

c33(λ) =
1

32π
λ2K2(λ), c34(λ) = − 1

32π
λK1(λ), (2.5.15)

52



Section 2.5 Symmetric camphor rotor

where Kn is the second-kind modified Bessel function of the n-th order. It is noted that the term
composed of variables with totally more-than-three-time derivatives is neglected. The derivation is
shown in Appendix A.3.2.

From Eq. (2.5.13), the torque per contact area (2.5.11) is represented as

lim
ϵ→+0

1

πϵ2
T =

∑
i,j=1,2

τij . (2.5.16)

τii is the torque per contact area working on a camphor particle originating from self-made concen-
tration field, and calculated as

τii =ℓi × lim
ϵ→+0

−1

πϵ2

∫ 2π

0
cs (ℓi + ϵe(ϕ); ℓj) e(ϕ)ϵdϕ

=
1

4π

(
−γEuler + log

2

ϵ

)
ℓ2θ̇ − 1

16π
ℓ2θ̈ − 1

32π
ℓ4θ̇3 +

1

48π
ℓ2
(...
θ − θ̇3

)
, (2.5.17)

where γEuler is the Euler’s constant (γEuler ≃ 0.577). Here we calculated the torque τii by taking the

vector product of ℓi with Eq. (2.4.30). Here we used ℓ×ℓ̇ = ℓ2θ̇, ℓ×ℓ̈ = ℓ2θ̈, and ℓ×
...
ℓ = ℓ2

(...
θ − θ̇3

)
.

Then, we consider the torque working on one camphor particle by the other camphor particle.
Since the concentration field cs(r; ℓ) does not diverge except at r = ℓ, the torque per contact area
by the other camphor particle, τij (i ̸= j), is calculated as

τij =− 1

4π
K0 (2ℓ) ℓ

2θ̇ +
1

8π
K1 (2ℓ) ℓ

3θ̈ − 1

16π
K1 (2ℓ) ℓ

5θ̇3 − 1

24π
K2(2ℓ)ℓ

4
(...
θ − θ̇3

)
, (2.5.18)

by using Eq. (2.5.11).

From Eqs. (2.5.10), (2.5.17), and (2.5.18), we have the reduced equation:

σθ̈ =− κθ̇ +
1

2ℓ2

∑
i,j=1,2

τij (2.5.19)

=− κθ̇ +
1

4π

(
−γEuler + log

2

ϵ
−K0 (2ℓ)

)
θ̇

− 1

16π
(1− 2ℓK1 (2ℓ)) θ̈ −

1

32π
(1 + 2ℓK1 (2ℓ)) ℓ

2θ̇3 +
1

48π

(
1− 2ℓ2K2(2ℓ)

) (...
θ − θ̇3

)
.

(2.5.20)

Based on the description, we discuss a bifurcation structure. We consider the stable solution of
θ̇ = const. ≡ ω. When the rotor rotates with a constant angular velocity, ω̇ and ω̈ should be zero.
Thus we have[

1

4π

(
−γEuler + log

2

ϵ
−K0 (2ℓ)

)
− κ

]
ω − 1

96π

[
3 (1 + 2ℓK1 (2ℓ)) ℓ

2 + 2
(
1− 2ℓ2K2(2ℓ)

)]
ω3 = 0.

(2.5.21)

Here, we define the coefficients of ω and ω3 as G(ℓ) = [−γEuler + log(2/ϵ)−K0 (2ℓ)] /(4π) − κ and
H(ℓ) = −

[
3 (1 + 2ℓK1 (2ℓ)) ℓ

2 + 2
(
1− 2ℓ2K2(2ℓ)

)]
/(96π), respectively. The dependence of G(ℓ)

and H(ℓ) on ℓ is displayed in Fig. 2.5.2. The stable angular velocity is realized when G(ℓ) is
positive and H(ℓ) is negative, and thus the bifurcation point is ℓ = ℓc, where G(ℓc) = 0.
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Figure 2.5.2: Plots of the coefficients G(ℓ) and H(ℓ). The parameters are set to be κ = 1.2 and
ϵ = 0.1e1/4. Reproduced from Ref. [36].
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Figure 2.5.3: Velocity and angular velocity depending on ℓ. Parameters are κ = 1.2 and ϵ = 0.1e1/4.
Reproduced from Ref. [36].

The stable angular velocity ω is given by
√

−G(ℓ)/H(ℓ) for G(ℓ) > 0 and 0 for G(ℓ) < 0,
and its dependence on ℓ is shown in Fig. 2.5.3. At ℓ ≃ 0.35, pitchfork bifurcation occurs when
we set the parameters as κ = 1.2 and ϵ = 0.1e1/4.1 Over the bifurcation point, the rest state
becomes unstable and rotational motion occurs with a constant angular velocity either clockwise
or counterclockwise. The asymptotic form of the stable angular velocity for ℓ → ∞ is given by
ω =

√
8 (−γEuler + log(2/ϵ))− 32πκ/ℓ ∝ ℓ−1. The dependence ω ∝ ℓ−1 for sufficiently large ℓ is

trivial, since the interaction of camphor particles becomes small with an increase of ℓ and each
camphor particle moves with a constant velocity independently.

2.5.3 Comparison with the numerical results

We performed numerical calculations of the rotor dynamics according to Eqs. (2.5.2) and (2.5.3).
The supply rate from the camphor particle in Eq. (2.5.2) was given as

f(r; ℓ1, ℓ2) =
∑
i=1,2

1

πϵ2

[
1

2

(
1 + tanh

ϵ− |r − ℓi|
δ

)]
, (2.5.22)

1We used ϵ = 0.1e1/4 to compare with the numerical results by the following reason: In the analytical framework
in which the source term is the Dirac’s delta function, the force originating from a camphor particle moving at a
constant velocity vex is written as F = [(−γEuler + log(2/ϵ))v/(4π) − (1/(32π))v3 + O(v5)]ex. On the while, in the
framework that camphor molecules are dissolved inside a circular region with a radius of R, it can be written as
F = [(−γEuler + log(2/R)− 1/4)v/(4π)− (1/(32π))v3 +O(v5)]ex [82]. Therefore, these two situations correspond to
each other by setting ϵ = R exp(1/4).
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Figure 2.5.4: Numerical results on the angular velocity as a function of time for a small and a large
rotor: (a) ℓ = 0.3 and (b) ℓ = 0.5. The initial conditions were θ = 1, dθ/dt = 0.1, and c = 0 at all
space points. Reproduced from Ref. [36].
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Figure 2.5.5: Profiles of camphor concentration at t = 100 for (a) ℓ = 0.3, (b) ℓ = 0.5, and (c)
ℓ = 1.0, obtained by numerical calculation. The rotor did not move in (a) and it rotated clockwise
in (b) and (c). The initial conditions were all the same as those in Fig. 2.5.4. Reproduced from
Ref. [36].

where δ is a smoothing parameter set to be δ = 0.025. The total supply from a single camphor
particle was approximately equal to 1. We used the Euler method to calculate the reaction terms,
and explicit method for the diffusion term. The time and spatial steps were 10−4 and 0.025,
respectively. The parameters were set as ϵ = 0.1, σ = 0.004, and κ = 0.12. As for the concentration
field, we considered a circular outer boundary with a radius of 10, which hardly affects the motion
of the rotor for ℓ ≤ 5. In order to calculate the force acting on each camphor particle in Eq. (2.5.9),
we adopted the summation over 32 arc elements as the integration in Eq. (2.5.9). We performed
numerical calculations and obtained the time evolution of the angle θ(t) and the angular velocity
dθ/dt. We investigated the behavior of a rotor depending on the distance between two camphor
particles 2ℓ. For larger ℓ, the rotor moved stationarily, whereas for smaller ℓ, it stopped as shown
in Fig. 2.5.4. The snapshots of the camphor concentration for various ℓ are shown in Fig. 2.5.5.
In the case when the rotor did not move, the camphor concentration profile was symmetric with
respect to the axis connecting the centers of two camphor particles as in Fig. 2.5.5(a). In contrast,
if it rotated, the profile had chiral asymmetry as shown in Fig. 2.5.5(b,c).

In Fig. 2.5.6, we present the stationary speed of the center position of each camphor particle and
the stationary angular velocity of the rotor as a function of rotor radius ℓ. For large ℓ, we expect
that the interaction between the two camphor particles becomes negligible. In such a case, the both
camphor particles should move at the speed equal to that for a single camphor particle without any
constraints. Then, the angular velocity should be inversely proportional to ℓ. For small ℓ, we can
see the transition-like behaviour between static and moving rotor around ℓ ≃ 0.33 in Fig. 2.5.6, and
thus the theoretical results were confirmed. We consider the numerical error comes from the size
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Figure 2.5.6: Numerical results on stationary speed (a) and stationary angular velocity (b) as a
function of the rotor radius ℓ. Reproduced from Ref. [36].

(a) Side view

(b) Slanted view
2ρ

ℓ

Figure 2.5.7: Schematic illustration of the experimental setup. The side view (a) and the slanted
view (b) of the rotor are shown. Reproduced from Ref. [36].

effect of the camphor particle. We expect this transition originates from pitchfork bifurcation, at
which the stable rest state becomes unstable.

2.5.4 Comparison with the experimental results

In order to confirm the theoretical results, we also performed the experiments. We studied the
motion of a simple rotor driven by two camphor particles glued below the ends of a plastic stripe
as illustrated in Fig. 2.5.7. The system could rotate around a vertical axis located at the center
of the stripe. The particles were made by pressing camphor (Sigma-Aldrich) in a pill maker. The
radius of each camphor particle was 1.5 mm and it was 1 mm high. The rotor was floating on a
water surface in the square tank (tank side 120 mm) and the water level was 10 mm. In order to
reduce the hydrodynamic flows, the central part of the plastic stripe was elevated above the water
level so that only the bottom surface of camphor particles had contact with water surface and the
stripe did not touch it. The time evolution of rotor was recorded using a digital camera (NEX
VG20EH, SONY) and the coordinates of red dots (cf. Fig. 2.5.8(b)) located over the centers of
camphor particles were obtained using the ImageJ (NIH, USA). A typical time of experiment was
in the range from 5 to 10 min.
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Figure 2.5.8: Experimental results on rotor motion. (a) Time evolution of a horizontal coordinate
of one of marking dots for a rotor with ℓ = 8.5 mm in the time interval from 300 s to 310 s. (b)
Period for the rotor with ℓ = 8.5 mm as a function of time. Reproduced from Ref. [36].

The distance between the axis and the particle center ℓ was controlled as the parameter. Periodic
changes in the horizontal coordinate of one of the dots of the rotor with ℓ = 8.5 mm are shown
in Fig. 2.5.8(a). During the time of all experiments we observed highly regular rotations without
any significant perturbations of rotor motion. The period of oscillations was measured as the
time between the successive maxima separately in each 30-s interval. Typically the period slowly
increased with time as illustrated in Fig. 2.5.8(b). The changes were not significant and for the
subsequent analysis we considered the values obtained in the time interval from 300 s to 400 s.

Figure 2.5.9 illustrates the speed of center position of the particle (a) and the angular velocity
(b) as the function of ℓ. The speed grew monotonically with an increase in ℓ. It can be expected
that for a large ℓ the speed saturates to be the one for a separated camphor particle. By considering
the angular velocity instead of the velocity, we observed a single peak of angular velocity around
ℓ = 2.5 mm as a function of ℓ. For large ℓ, it was a decreasing function. Such features well correspond
to the theoretical results. It is noted that the rest state was not observed in our experiments. We
expect that the rest state can be observed for larger resistance, and it can be realized by using the
glycerol aqueous solution whose viscosity is greater than that of pure water as the aqueous phase
[34,47].

2.5.5 Summary for Section 2.5

The motion of a symmetric camphor-driven rotor is investigated [36]. A camphor-driven rotor
stops or rotates depending on the size of the rotor (the length of the bar). We analyzed the stable
angular velocity for a camphor-driven rotor, and clarified that there is a bifurcation point where
the zero angular velocity corresponding to the rest state becomes unstable. The theoretical results
were confirmed by the numerical calculations and the experiments.
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Figure 2.5.9: Experimental results on rotor motion as a function of rotor radius ℓ. (a) Speed of
the camphor particle. (b) Angular velocity of a rotor. The green and red points indicate the
experimental errors. Reproduced from Ref. [36].
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Chapter 3

Hydrodynamic Collective Effect of
Active Elements

3.1 Introduction

In biological cells, there are many proteins which have functions, e.g., pumps, channels, actua-
tors, and so on. They recursively change their shapes and act by consuming chemical energy which
is typically supplied from adenosine triphosphate (ATP). We call such proteins as “active proteins”
in this thesis.

Recently, the direct observation of particles inside a cell have been available, and it was reported
that diffusion was enhanced compared with normal diffusion under thermal equilibrium [83, 84].
Parry et al. reported that cellular metabolism fluidizes the cytoplasm though it is viscous enough
to be a glass state without cellular metabolism. Guo et al. embedded tracer particles in a Mer-
anoma cell (skin cancer cell), and observed trajectories of the tracer particles [84]. The tracer
particles showed random motion similar to Brownian motion, but its mean square displacement
was much greater than that of the Brownian motion under thermal fluctuations. Such an effect
was also reported in vitro [85], as well as in a cell. They observed the diffusion at biphase fluid
in a microchannel; one fluid included substrates and the other breakdown enzymes. Here enzymes
and substrates are comparable to active proteins and source of chemical energy, respectively. The
diffusion of enzymes to the substrate phase is greater than that in the case when the substrates were
not included. Thus, micro-scale active elements immersed in a fluid seem to enhance the diffusion.

To explain the diffusion enhancement in a system with active elements such as active proteins,
Mikhailov and Kapral proposed a model with an assumption that active proteins are considered
to be force dipoles immersed in fluid [38]. The assumption is valid for a dilute system of active
proteins, since dipole approximation is appropriate in the regime of far field. It is also supported
by the fact that an elastic network mimicking a conformation of an active protein has a slow
relaxation dynamics [86]. For arbitrary deformations, the rapid relaxation dynamics takes place in
the first stage, followed by the slow dynamics toward to the original configuration with the lowest
energy. Such a lowest-energy state depends on the chemical circumstance of substrate, and the
deformation process to the new stable configuration of the protein caused by the switching of the
stable configurations is considered to be slow dynamics along a one-dimensional orbit. This model
can be applied not only to cytoplasm (a three-dimensional system) but also to biomembrane (a
two-dimensional system).

In this chapter, we first summarize the previous results by Mikhailov and Kapral in Sec. 3.2.
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r R
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Figure 3.2.1: Schematic illustration on a force dipole. A protein in cytoplasm and biomembrane is
modeled as a force dipole immersed in a three- and two-dimensional fluid.

They explained the diffusion enhancement by active force dipoles. In Sec. 3.3, we consider a localized
effect of force dipoles, as an example of an inhomogeneous system [40]. In the previous study and in
Sec. 3.3, we assumed that the orientation of force dipoles is randomly distributed. We also discussed
the effect of nematic order of force dipoles in Sec. 3.4. We consider the case that the force dipoles
are perfectly aligned in a one direction, and compare the results in the case of randomly directed
force dipoles [41].

3.2 Mathematical model and previous results

In this section, we show the derivation of the model for the motion of particles induced by active
elements through hydrodynamic interaction and the explanation of diffusion enhancement by them,
which was proposed by Mikhailov and Kapral [38].

3.2.1 Derivation of equation for the distribution of tracer particles

In the model, the cytoplasm and biomembrane around active proteins are considered to be three-
and two-dimensional fluid, respectively. It is assumed that active proteins induce flow when they
change their shape. An active protein acts as a force dipole under far-field approximation.

A force dipole is composed of a pair of point forces F and −F , which act on different two points
as shown in Fig. 3.2.1. The directions of forces are opposite to each other and parallel to the line
connecting the two points on which the forces are exerted. The flow v induced by a force dipole
located at R(t) is described as

vα(r) =

[
Gαβ

(
r −R+

x(t)

2

)
−Gαβ

(
r −R− x(t)

2

)]
Fβ (3.2.1)

≃
∂Gαβ(r −R)

∂Rγ
eβ(t)eγ(t)m(R, t), (3.2.2)

where x is a vector directing from one point to the other, e is a unit vector proportional to x and
F , and m(r, t) = |x(t)||F (r, t)| is the strength of the force dipole located at r at time t. Here
we adopt the Einstein summation convention, i.e., the summation symbols are omitted for doubled
subscripts. The function G is the Oseen tensor, which is the Green’s function of Stokesian equation,
and has a form:

Gαβ =
1

4πη

(
−(1 + ln(κr))δαβ +

rαrβ
r2

)
(3.2.3)
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Figure 3.2.2: Flow induced by a force dipole. A force dipole is immersed in (a) a three-dimensional
and (b) a two-dimensional systems, respectively.

for a two-dimensional system [87] and

Gαβ =
1

8πη

(
1

r
δαβ +

rαrβ
r3

)
(3.2.4)

for a three-dimensional system. It is noted that κ in Eq. (3.2.3) is the characteristic inverse length,
which related to Saffman-Delbrück length [88], κ−1 = ηh/(2ηs), where h is the thickness of the
membrane and η and ηs are the viscosity of the membrane and solvent, respectively. Here, δαβ is
the Kronecker’s detla, i.e., δαβ is 1 for α = β and 0 otherwise. The derivation of the Oseen tensor
is provided in Appendix B.1. The flow induced by a single protein in a three- and two-dimensional
fluid is shown in Fig. 3.2.2.

Here we consider the situation with many active proteins as shown in Fig. 3.2.3. Since the
Stokesian equation is linear, the flow induced by multiple force dipoles is the summation of the flow
induced by each force dipole. Tracer particles are carried by flow with the same velocity of the fluid
itself, and also affected by thermal noise. Thus, the velocity of a tracer particle is represented as
follows:

drα
dt

=
∑
i

∂Gαβ(r(t)−Ri)

∂Ri,γ
ei,β(t)ei,γ(t)mi(Ri, t) + fα(t), (3.2.5)

where the variable with subscript i represents that it is for the i-th force dipole and fα(t) denotes
thermal fluctuation, which satisfies ⟨fα(t)⟩ = 0 and ⟨fα(t)fα′(t′)⟩ = 2kBTγδαα′δ(t − t′) where γ is
the mobility coefficient of the tracer particle. Here kB and T are the Boltzmann constant and the
temperature, respectively. Since the identity δβγ∂Gαβ/∂Rγ = 0 holds, ei,βei,γ can be replaced with

N
(d)
i,βγ(t):

drα
dt

=
∑
i

∂Gαβ(r −Ri(t))

∂Ri,γ
N

(d)
i,βγ(t)mi(Ri, t) + fα(t). (3.2.6)
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Figure 3.2.3: Schematic illustration of the considered situtation. There are many active proteins
and a tracer particle is driven by the flow induced by active proteins.

Here N
(d)
i,βγ(t) is defined as:

N
(d)
i,βγ(t) = ei,β(t)ei,γ(t)−

1

d
δβγ , (3.2.7)

where d is a spatial dimension. If the dynamics for the orientation of the force dipoles is sufficiently
slower than that for the expansion and contraction of the force dipoles, the time dependence of

N
(d)
i,βγ(t) can be neglected.

The Kramers-Moyal coefficient of first order Vα(r) is calculated as follows:

Vα(r) = lim
∆t→0

1

∆t

⟨∫ t+∆t

t

∑
i

∂Gαβ(r(t1)−Ri)

∂Ri,γ
N

(d)
i,βγmi(Ri, t1)dt1

⟩
. (3.2.8)

Here we adopt the Stratonovich interpretation and use ⟨fα(t)⟩ = 0. Since the position of the tracer
particle r does not change in small time period [t, t+∆t], Eq. (3.2.8) is expanded as follows:

Vα(r)

= lim
∆t→0

1

∆t

⟨∫ t+∆t

t

∑
i

∂Gαβ(r(t)−Ri)

∂Ri,γ
N

(d)
i,βγmi(Ri, t1)dt1

+

∫ t+∆t

t

∫ t1

t

∑
i,j

∂2Gαβ(r(t)−Ri)

∂rδ∂Ri,γ

∂Gδβ′(r(t2)−Rj)

∂Rj,γ′
N

(d)
i,βγN

(d)
j,β′γ′mi(Ri, t1)mj(Rj , t2)dt2dt1

⟩

= lim
∆t→0

1

∆t

⟨∫ t+∆t

t

∑
i

∂Gαβ(r(t)−Ri)

∂Ri,γ
N

(d)
i,βγmi(Ri, t1)dt1

+

∫ t+∆t

t

∫ t1

t

∑
i,j

∂2Gαβ(r(t)−Ri)

∂rδ∂Ri,γ

∂Gδβ′(r(t2)−Rj)

∂Rj,γ′
N

(d)
i,βγN

(d)
j,β′γ′mi(Ri, t1)mj(Rj , t2)dt2dt1

+

∫ t+∆t

t

∫ t1

t

∫ t2

t

∑
i,j,k

∂2Gαβ(r(t)−Ri)

∂rδ∂Ri,γ

∂2Gδβ′(r(t)−Rj)

∂rδ′∂Rj,γ′

∂Gδ′β′′(r(t3)−Rk)

∂Rk,γ′′

×N (d)
i,βγN

(d)
j,β′γ′N

(d)
k,β′′γ′′mi(Ri, t1)mj(Rj , t2)mk(Rk, t3)dt3dt2dt1

⟩
. (3.2.9)
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Here we use the integration of Eq. (3.2.6) with regard to time:

rα(t1) =rα(t) +

∫ t1

t

∑
i

∂Gαβ(r −Ri(t2))

∂Ri,γ
N

(d)
i,βγ(t2)mi(Ri, t2)dt2 +

∫ t1

t
fα(t2)dt2 (3.2.10)

≡rα(t) + ∆rα(t, t1), (3.2.11)

the relation ⟨fα(t)⟩ = 0, and expansion of (∂Gαβ(r(t) + ∆rα(t, t1) − Ri))/(∂Ri,γ) with regard to
∆rα(t, t1). From the assumption ⟨mi(Ri, t1)⟩ = 0, the first term in Eq. (3.2.9) vanishes. The third
term in Eq. (3.2.9) also vanishes since the following equations hold for the Gaussian distribution:

⟨mi(Ri, t1)mj(Rj , t2)mk(Rk, t3)⟩ = ⟨mi(Ri, t1)mj(Rj , t2)⟩ ⟨mk(Rk, t3)⟩
+ ⟨mi(Ri, t1)⟩ ⟨mj(Rj , t2)mk(Rk, t3)⟩
+ ⟨mj(Rj , t2)⟩ ⟨mi(Ri, t1)mk(Rk, t3)⟩

=0. (3.2.12)

The derivative with regard to the position of tracer particle ∂/∂rδ is replaced with that with regard
to the position of a force dipole −∂/∂Ri,δ.

Vα(r) = − lim
∆t→0

1

∆t

∫ t+∆t

t

∫ t1

t

∑
i,j

∂2Gαβ(r(t)−Ri)

∂Ri,δ∂Ri,γ

∂Gδβ′(r(t)−Rj)

∂Rj,γ′

×
⟨
N

(d)
i,βγN

(d)
j,β′γ′

⟩
⟨mi(Ri, t)mj(Rj , t2)⟩ dt2dt1

= − lim
∆t→0

1

∆t

∫ t+∆t

t

∫ t1

t

∑
i,j

∂2Gαβ(r(t)−Ri)

∂Ri,δ∂Ri,γ

∂Gδβ′(r(t)−Rj)

∂Rj,γ′

×
⟨
N

(d)
i,βγN

(d)
j,β′γ′

⟩
2S(Ri)δijδ(t1 − t2)dt2dt1

= − lim
∆t→0

1

∆t

∫ t+∆t

t

∑
i

∂2Gαβ(r(t)−Ri)

∂Ri,δ∂Ri,γ

∂Gδβ′(r(t)−Ri)

∂Ri,γ′

⟨
N

(d)
i,βγN

(d)
i,β′γ′

⟩
S(Ri)dt1.

(3.2.13)

Here we assume ⟨mi(Ri, t1)mj(Rj , t2)⟩ = 2S(Ri)δijδ(t1−t2), which means that the considered time
scale for the dynamics of the tracer particle is sufficiently longer than that for the characteristic
correlation time of the activity force dipoles, and the activities of the force dipoles have no cor-
relation. It is noted that we explicitly consider the spatial dependence of the correlation function
S(Ri). Using f(R) =

∫
f(r′)δ(r′−R)dr′ and c(r) =

∑
i δ(r−Ri) where c(r) is the number density

of the force dipoles, we have

Vα(r)

= − lim
∆t→0

1

∆t

∫ t+∆t

t

∫ ∑
i

∂2Gαβ(r(t)− r′)

∂r′δ∂r
′
γ

∂Gδβ′(r(t)− r′)

∂r′γ′

⟨
N

(d)
i,βγN

(d)
i,β′γ′

⟩
S(r′)δ(r′ −Ri)dr

′dt1

= −
∫
∂2Gαβ(r(t)− r′)

∂r′δ∂r
′
γ

∂Gδβ′(r(t)− r′)

∂r′γ′

⟨
N

(d)
i,βγN

(d)
i,β′γ′

⟩
S(r′)c(r′)dr′

= −
∫
∂2Gαβ(r − r′)

∂r′δ∂r
′
γ

∂Gδβ′(r − r′)

∂r′γ′

⟨
N

(d)
i,βγN

(d)
i,β′γ′

⟩
S(r′)c(r′)dr′. (3.2.14)
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We assume that the property of orientational order of force dipoles is independent of the particles.

We define N
(d)
i,βγ = N̄

(d)
βγ + n

(d)
i,βγ , where N̄

(d)
βγ =

⟨
N

(d)
i,βγ

⟩
, and then we have

⟨
N

(d)
i,βγN

(d)
i,β′γ′

⟩
=N̄

(d)
βγ N̄

(d)
β′γ′ + N̄

(d)
βγ

⟨
n
(d)
j,β′γ′

⟩
+
⟨
n
(d)
i,βγ

⟩
N̄

(d)
β′γ′ +

⟨
n
(d)
i,βγn

(d)
i,β′γ′

⟩
=N̄

(d)
βγ N̄

(d)
β′γ′ + Λ

(d)
βγβ′γ′ , (3.2.15)

where Λ
(d)
βγβ′γ′ is defined as Λ

(d)
βγβ′γ′ ≡

⟨
n
(d)
βγn

(d)
β′γ′

⟩
. Thus we have

Vα(r) = −
(
N̄

(d)
βγ N̄

(d)
β′γ′ + Λ

(d)
βγβ′γ′

)∫ ∂2Gαβ(r − r′)

∂r′δ∂r
′
γ

∂Gδβ′(r − r′)

∂r′γ′
S(r′)c(r′)dr′. (3.2.16)

The Kramers-Moyal coefficient of second order Dαα′(r) is calculated as follows:

Dαα′(r) = lim
∆t→0

1

2∆t

⟨∫ t+∆t

t

∫ t+∆t

t

∑
i,j

∂Gαβ(r(t1)−Ri)

∂Ri,γ

∂Gα′β′(r(t2)−Rj)

∂Rj,γ′

× N
(d)
i,βγN

(d)
j,βγmi(Ri, t1)mj(Rj , t2)dt1dt2

⟩
+ lim

∆t→0

1

2∆t

⟨∫ t+∆t

t

∫ t+∆t

t
fα(t1)fα′(t2)dt1dt2

⟩
.

(3.2.17)

The second term is calculated as kBTγδαα′ ≡ DT δαα′ . The first term is calculated as follows:

Dαα′(r)−DT δαα′

= lim
∆t→0

1

2∆t

⟨∫ t+∆t

t

∫ t+∆t

t

∑
i,j

[
∂Gαβ(r(t)−Ri)

∂Ri,γ

∂Gα′β′(r(t)−Rj)

∂Rj,γ′

+

∫ t+∆t

t

∑
k

∂2Gαβ(r(t)−Ri)

∂rδ∂Ri,γ

∂Gα′β′(r(t)−Rj)

∂Rj,γ′

∂Gδβ′′(r(t3)−Ri)

∂Ri,γ′′
N

(d)
k,β′′γ′′mk(Rk, t3)dt3

+

∫ t+∆t

t

∑
k

∂Gαβ(r(t)−Ri)

∂Ri,γ

∂2Gα′β′(r(t)−Rj)

∂rδ∂Rj,γ′

∂Gδβ′′(r(t3)−Rj)

∂Rj,γ′′
N

(d)
k,β′′γ′′mk(Rk, t3)dt3

+

∫ t+∆t

t

∫ t+∆t

t

∑
k,l

∂2Gαβ(r(t)−Ri)

∂δ∂Ri,γ

∂2Gα′β′(r(t)−Rj)

∂rδ′∂Rj,γ′

∂Gδβ′′(r(t3)−Ri)

∂Ri,γ′′

∂Gδ′β′′′(r(t4)−Rj)

∂Rj,γ′′′

× N
(d)
k,β′′γ′′N

(d)
l,β′′′γ′′′mk(Rk, t3)ml(Rl, t4)dt3dt4

]
N

(d)
i,βγN

(d)
j,βγmi(Ri, t1)mj(Rj , t2)dt1dt2

⟩
.

(3.2.18)

From Eq. (3.2.12) and the following equation for the Gaussian distribution:

⟨mi(Ri, t1)mj(Rj , t2)mk(Rk, t3)ml(Rl, t4)⟩ = ⟨mi(Ri, t1)mj(Rj , t2)⟩ ⟨mk(Rk, t3)ml(Rl, t4)⟩
+ ⟨mi(Ri, t1)mk(Rk, t3)⟩ ⟨mj(Rj , t2)ml(Rl, t4)⟩
+ ⟨mi(Ri, t1)ml(Rl, t4)⟩ ⟨mj(Rj , t2)mk(Rk, t3)⟩ ,

(3.2.19)
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the second and third terms in Eq. (3.2.18) vanish, and the fourth term in Eq. (3.2.18) is the order
of ∆t and goes to zero for the limit of ∆t→ 0. Thus we have

Dαα′(r)−DT δαα′

= lim
∆t→0

1

2∆t

∫ t+∆t

t

∫ t+∆t

t

∑
i,j

∂Gαβ(r(t)−Ri)

∂Ri,γ

∂Gα′β′(r(t)−Rj)

∂Rj,γ′

×
⟨
N

(d)
i,βγN

(d)
j,βγ

⟩
⟨mi(Ri, t1)mj(Rj , t2)⟩ dt1dt2

= lim
∆t→0

1

∆t

∫ t+∆t

t

∑
i

∂Gαβ(r(t)−Ri)

∂Ri,γ

∂Gα′β′(r(t)−Ri)

∂Ri,γ′

⟨
N

(d)
i,βγN

(d)
i,βγ

⟩
S(Ri)dt2

=
(
N̄

(d)
βγ N̄

(d)
β′γ′ + Λ

(d)
βγβ′γ′

)∫ ∂Gαβ(r(t)− r′)

∂r′γ

∂Gα′β′(r(t)− r′)

∂r′γ′
S(r′)c(r′)dr′

=
(
N̄

(d)
βγ N̄

(d)
β′γ′ + Λ

(d)
βγβ′γ′

)∫ ∂Gαβ(r − r′)

∂r′γ

∂Gα′β′(r − r′)

∂r′γ′
S(r′)c(r′)dr′. (3.2.20)

When the number density of the active proteins and its activity depend on the position, Vα
and Dαα′ are the Kramers-Moyal coefficients of the first and second orders, respectively. Thus
the Fokker-Planck equation [89] for the dynamics of the distribution of tracer particles, n(r, t), is
described as:

∂n(r, t)

∂t
= − ∂

∂rα
(Vα(r)n(r, t)) +

∂2

∂rα∂rα′
(Dαα′(r)n(r, t)) , (3.2.21)

where

Vα(r) =− (N̄
(d)
βγ N̄

(d)
β′γ′ + Λ

(d)
βγβ′γ′)

∫
∂2Gαβ(r − r′)

∂r′δ∂r
′
γ

∂Gδβ′(r − r′)

∂r′γ′
S(r′)c(r′)dr′, (3.2.22)

Dαα′ =DT δαα′ +DA
αα′(r)

=DT δαα′ + (N̄
(d)
βγ N̄

(d)
β′γ′ + Λ

(d)
βγβ′γ′)

∫
∂Gαβ(r − r′)

∂r′γ

∂Gα′β′(r − r′)

∂r′γ′
S(r′)c(r′)dr′, (3.2.23)

Here DT is normal diffusion coefficient for a thermal equilibrium system.

Hereafter, we consider the two situations, one is the orientational order is absent, i.e., N̄
(d)
βγ = 0,

and the other is that the force dipoles are completely aligned in a certain direction. For the latter
case, the main term in Eq. (3.2.15) is the first term, and thus here we neglect the second term.

3.2.2 Diffusion enhancement by force dipoles

First we consider a system where force dipoles are uniformly distributed and the activity of each
force dipole is the same. Here we set c(r) = c0 and S(r) = S0. In this case, the Kramers-Moyal
coefficient of the first order should be 0 from the viewpoint of the symmetric property.

For the two-dimensional case with an infinite system size, we have

Dαα′ =

(
DT +

c0S0
32πη2

log
ℓ0
ℓc

)
δαα′ , (3.2.24)
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where we introduce a characteristic system size ℓ0 and a cut-off length ℓc [38]. For the three-
dimensional case with an infinite system size, we have

Dαα′ =

(
DT +

c0S0
60πη2ℓc

)
δαα′ . (3.2.25)

Equation (3.2.25) indicates that the diffusion is enhanced compared with the normal diffusion under
the thermal equilibrium [38]. We cannot take a limit that ℓc goes to 0 from the viewpoint of physics.
The cut-off length has a value whose order is the distance between the tracer particle and the nearest
force dipole. Thus the cut-off length ℓc is greater than ℓt + ℓp, where ℓt and ℓp are the radii of a
tracer particle and an active protein (force dipole), respectively.

When the force dipoles distribute with a constant gradient, the Kramers-Moyal coefficient of
the first order also take place. Here we assume the activity of each force dipole is the same. For
the two-dimensional case with an infinite system size, we have

Vα =
S0

32πη2
(∇c)α log

ℓ0
ℓc
. (3.2.26)

For the three-dimensional case with an infinite system size, we have

Vα =
S0

60πη2ℓc
(∇c)α. (3.2.27)

As we can see in Eqs. (3.2.24) and (3.2.26), the effect of force dipoles is long-ranged, i.e., its
dependence on distance is proportional to 1/r. Thus, to apply this model to an actual system, it is
more natural to consider the system with a finite system size.

3.3 Localized effect of force dipoles

As shown in the previous section, the diffusion enhancement in a two-dimensional system with
a constant number density of force dipoles logarithmically diverges with regard to the system size.
However, we can discuss with a cluster of force dipoles in the proposed model. In fact, a localized
structure of active proteins on biomembrane is known and referred to as a “lipid raft”. We also
discuss the localized effect of force dipoles in the three-dimensional case.

3.3.1 Fokker-Planck equation and convection-diffusion equation

In contrast to the case of the homogeneous number density of force dipoles, the directional drift
velocity is induced, i.e., the Kramers-Moyal coefficient of the first order has a nonzero value. The
Fokker-Planck equation (3.2.21) is transformed into in the following form

∂n(r, t)

∂t
= − ∂

∂rα
(Uα(r)n(r, t)) +

∂

∂rα

(
Dαα′(r, t)

∂n(r)

∂rα′

)
, (3.3.1)

where U is the drift velocity of the flow of tracer particles defined as:

Uα(r) = Vα(r)−
∂Dαα′(r)

∂rα′
. (3.3.2)

Since the diffusional flow is the product of diffusion coefficient and the gradient of the number
density of tracer particles, Eq. (3.3.1) is the convection-diffusion equation. Hereafter, we basically
discuss using U instead of V .
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3.3.2 Two-dimensional system

The expressions of Vα and Dαα′ shown in Eqs. (3.2.22) and (3.2.23) can be transformed into
more simple ones as shown below [40,41].

Vα(r) =− 1

32π2η2

∫
dr′

r′α
r′4
S(r + r′)c(r + r′), (3.3.3)

Dαα′ = DT δαα′ +
1

32π2η2

∫
dr′

r′αr
′
α′

r′4
S(r + r′)c(r + r′). (3.3.4)

The detailed calculations are provided in Appendix B.2.1.

Then, we consider the general form of the drift velocity U for the two-dimensional case. By
substituting the general expression for V and D for the two-dimensional case with disordered force
dipoles (Eqs. (3.3.3) and (3.3.4)) into the definition of U in Eq. (3.3.2), we have

Uα(r) =
1

32πη2
∂(S(r)c(r))

∂rα
+O(ℓc), (3.3.5)

The detailed calculation is provided in Appendix B.3.1. The drift velocity U is determined by the
local profile of the number density of force dipoles S(r) and its activity c(r), in contrast with V
and D which are determined by the global information of S(r)c(r). Here we consider a circular
region with force dipoles, i.e.,

c(r) =
1

2

[
1 + tanh

(
|R− r|
δ

)]
, (3.3.6)

where r is a distance from the origin and R is the radius of the disk occupied by force dipoles.
Since the tracer particles are swept up by the drift velocity at the periphery of the disk, the tracer
particles are accumulated into the disk. Figure 3.3.2 shows numerical results on the accumulation
of tracer particles inside the circular raft. The number density of the tracer particles n initially
had uniform distribution (n = 1). Based on the Fokker-Planck equation in Eq. (3.2.21) with the
Kramers-Moyal coefficients in Eqs. (3.3.3) and (3.3.4), the time evolution of the number density of
the tracer particles n was calculated. The distribution of active proteins was given by Eq. (3.4.2).
Finally, the distribution of tracer particles became steady, since the drift flow and diffusional flow
was balanced.

So far we qualitatively explain the accumulation of tracer particles into a circular raft occupied
by active proteins. Here we show the steady state for the distribution of tracer particles when
there exists a circular raft. We set the radius of the circular raft is R and the center of the raft
is corresponding to the origin of the coordinates. The distribution of tracer particles is defined as
n = n(r, θ) in the polar coordinates.

The drift velocity is defined as U = (Ux(x, y), Uy(x, y)). Here, we consider the situation that U
depends on only the distance from the center of the circular raft, r, and define U∥(r) as U∥(r) =
Ux(r, 0).

The equation for the distribution of the tracer particles is represented as follows:

∂n

∂t
= −1

r

∂

∂r
(rU∥(r)n) +

1

r

∂

∂r

(
rD∥(r)

∂n

∂r

)
, (3.3.7)
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1.7

n

0.7

t = 1 t = 5 t = 500

Figure 3.3.1: Numerical results on the accumulation of tracer particles to a circular region occupied
with active force dipoles in the two-dimensional system. Consequent snapshots of the number
density distribution are shown. The parameters were R = 16ℓc, δ = 0.5ℓc, S = 1, and D0/D

T = 1,
where D0 = DA(0). The time unit was ℓ2c/D

T ; the tracer particles were uniformly distributed with
n = 1 at t = 0. The spatial and time steps were 0.4ℓc and 10−7, respectively. Reproduced from
Ref. [41].

where D∥ is given by D∥(r) = Dxx(r, 0). For the steady state of n, ∂n/∂t should be zero.

0 =
1

r

∂

∂r
(rU∥(r)n) +

1

r

∂

∂r

(
rD∥(r)

∂n

∂r

)
. (3.3.8)

By solving Eq. (3.3.8) with regard to n(r), we have

n(r) = n0 exp

(∫ r

0

U∥(r
′)

D∥(r′)
dr′
)
, (3.3.9)

where n0 is a value of n(r) at r = 0. Here we use the boundary conditions, ∂n/∂t = 0 and Ur = 0
at r → ∞. When the cut-off length is small enough, the drift velocity is approximately represented
as U∥(r) = −U0δ(R− r), where U0 > 0. In this case, we obtain

∫ r

0

U∥(r
′)

D∥(r′)
dr′ =

{
0, (r < R),
−U0/D∥(R), (r > R),

(3.3.10)

and n is written as

n =

{
n0, (r < R),
n0 exp(−U0/D∥(R)), (r > R).

(3.3.11)

The theoretical results was confirmed by comparing the numerical results as shown in Fig. 3.3.2.

The accumulation of tracer particles in the region occupied by active proteins were observed for
other shape of the raft in numerical calculation. Here we show the numerical results on the time
evolution of the number density field of tracer particles with an elliptic raft and two circular rafts
in Fig. 3.3.3.

For a single circular raft, whose profile is given by

c(r) =

{
c0, (r < R),
0, (r > R),

(3.3.12)
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Figure 3.3.2: Accumulation of tracer particles by a raft occupied with active proteins. Radial profiles
at different time moments are displayed. The final profile (t = ∞) is determined by integrating
the analytical solution (3.3.9). The parameters are set to be R = 20ℓc, δ = 2ℓc, S = 1, and
Sc/(32π2η2DT ) = 1. Reproduced from Ref. [40].
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Figure 3.3.3: Numerical results on the accumulation of tracer particles to (a) an elliptic region
and (b) two circular regions occupied with active force dipoles in the two-dimensional system.
Consequent snapshots of the number density distribution are shown. (a) The major and minor axes
of the elliptic raft were 20ℓc and 10ℓc, respectively. (b) The radii of the circular rafts were 10ℓc and
6ℓc. The other parameters were set to be δ = 2ℓc, S = 1, and D0/D

T = 1, where D0 = DA(0). The
time unit was ℓ2c/D

T ; the particles were uniformly distributed with n = 1 at t = 0. Reproduced
from Ref. [40].

69



Chapter 3 Hydrodynamic Collective Effect of Active Elements

we have explicit forms of V and D except for the periphery of the raft as follows.

V (r) =− Sc0
32πη2



( r

R2 − r2
0

)
, (r < R− ℓc), R2

r(r2 −R2)
0

 , (r > R+ ℓc),

(3.3.13)

≡
(
V∥
0

)
, (3.3.14)

DA(r) =
Sc0

32πη2


ln

(√
R2 − r2

ℓc

)
1, (r < R− ℓc),

ln

(
r√

r2 −R2

)
1 +

R2

2r2

(
1 0
0 −1

)
, (r > R+ ℓc),

(3.3.15)

≡
(
D∥ 0

0 D⊥

)
, (3.3.16)

where

D∥ = ln

(
r√

r2 −R2

)
+
R2

2r2
, (3.3.17)

D⊥ = ln

(
r√

r2 −R2

)
− R2

2r2
. (3.3.18)

The profiles of V , D∥, and D⊥ are shown in Fig. 3.3.4. It is noted that for r ≫ R, D∥ and D⊥ are
asymptotically expressed as

D∥ =
Sc0

32πη2
R2

r2
, (3.3.19)

D⊥ =
Sc0

128πη2
R4

r4
. (3.3.20)

Thus the diffusion in the radial direction D∥ remains further compared with that in the angular
direction at the point far from the raft.

We also numerically calculated the profile of the diffusion enhancement in the case of an elliptic
raft as shown in Fig. 3.3.5. Note that, in contrast to the case with a circular raft, the anisotropy of
the diffusion enhancement, i.e., (DA

11−DA
22)/ξ, is present also inside the raft, where ξ = Sc/(32π2η2).

3.3.3 Three-dimensional system

For a three-dimensional case with no orientational order, Vα and Dαα′ are simplified in the same
manner as in the two-dimensional case:

Vα(r) =− 1

40π2η2

∫
dr′

r′α
r′6
S(r + r′)c(r + r′), (3.3.21)
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Figure 3.3.4: Profiles of the radial component of the velocity, V∥ obtained by the numerical inte-
gration (closed circles) and analytical calculation (solid curves) in the case with a circular raft of a
radius R, in which the number density of active proteins is c0. We set R/ℓc = 20 and S = 1. The
parameter ξ is the set of the parameters ξ = Sc/(32π2η2). Reproduced from Ref. [40].
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Figure 3.3.5: Diffusion enhancement for an elliptic raft with the semiaxes 20ℓc and 10ℓc and the
sharp boundary. The diffusion enhancement components (a) DA
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A
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12/ξ are
displayed, where ξ = Sc/(32π2η2). The diffusion anisotropy (DA
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panel (d). Reproduced from Ref. [40].
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Figure 3.3.6: Numerical results on the accumulation of tracer particles to a sphere occupied with
active force dipoles in a three-dimensional system. Consequent snapshots of the number density
distribution are shown. The parameters were R = 16ℓc, δ = 0.5ℓc, S = 1, and D0/D

T = 1, where
D0 = DA(0). The time unit was ℓ2c/D

T ; the particles were uniformly distributed with n = 1 at
t = 0. The spatial and time steps were 0.4ℓc and 10−7, respectively. Reproduced from Ref. [41].

Dαα′ = DT δαα′ +
1

80π2η2

∫
dr′

r′αr
′
α′

r′6
S(r + r′)c(r + r′). (3.3.22)

The detailed calculations are provided in Appendix B.2.2.

Then, we consider the general form of the drift velocity U for the three-dimensional case. By
substituting the general expression for V and D for three-dimensional case with disordered force
dipoles (Eqs. (3.3.21) and (3.3.22)) into the definition of U in Eq. (3.3.2), we have

Uα(r) =
1

60πη2ℓc

∂(c(r)S(r))

∂rα
+O(ℓc

0). (3.3.23)

The detailed calculation is provided in Appendix B.3.2. The drift velocity U is determined by the
local gradient of the number density of force dipoles and its activity.

Here we consider a spherical region with force dipoles, i.e.,

c(r) =
1

2

[
1 + tanh

(
|R− r|
δ

)]
, (3.3.24)

where r is a distance from the origin and R is a radius of the sphere occupied by force dipoles. In the
same way as in the two-dimensional system, tracer particles were accumulated into the sphere and
formed a steady distribution. Figure 3.3.3 shows numerical results on the accumulation of tracer
particles inside the circular raft. The number density of the tracer particles n initially had uniform
distribution (n = 1). Based on the Fokker-Planck equation in Eq. (3.2.21) with the Kramers-Moyal
coefficients in Eqs. (3.3.21) and (3.3.22), the time evolution of the number density of the tracer
particles n was calculated. The distribution of active proteins were given by Eq. (3.3.24). Finally,
the distribution of tracer particles became steady in the same case as in the two-dimensional case,
since the drift flow and diffusional flow was balanced.

3.4 Effect of orientational order of force dipoles

So far, we consider the active force dipoles without nematic order. In this section, we discuss
the effect of the alignment of force dipoles. Of course, we can take into account the dynamics of
the orientational order, but the model will become more complex. The aim of this section is to
check whether the orientational order plays an important role. We use the model in Eq. (3.2.21)
for a perfectly aligned force dipoles. For two dimensional systems, we consider the cases that the
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force dipoles are uniformly distributed inside a circular region. For three-dimensional systems, we
consider two cases, (i) the force dipoles are uniformly distributed in the entire space and (ii) they
are distributed inside a spherical region.

3.4.1 Two-dimensional system

For the two-dimensional case with perfectly orientated force dipoles, Vα and Dαα′ are simplified
as

Vα(r) =
1

16π2η2

∫
dr′

r′α
r′8
(
(r′1)

2 − (r′2)
2
)2
S(r + r′)c(r + r′), (3.4.1)

Dαα′(r) = DT δαα′ +
1

32π2η2

∫
dr′

r′αr
′
α′

r′8
(
(r′1)

2 − (r′2)
2
)2
S(r + r′)c(r + r′). (3.4.2)

Here we assume that the force dipoles are aligned in r1-direction. The detailed calculations are
provided in Appendix B.2.3.

Using the above expressions for Vα and Dαα′ , the drift velocity is obtained as

Uα(r) =
∇(S(r)c(r))

32πη2
+O(ℓc), (3.4.3)

where Q(r) = S(r)c(r). The detailed calculation is also provided in Appendix B.3.3. Surprisingly,
the orientational order does not appear in Eq. (3.4.3) and it is the same as the case when the
orientation of the force dipoles is random at least with regard to the main term. To confirm the
analytical results, we calculated the time evolution of the number density of tracer particles n based
on the Fokker-Planck equation in Eq. (3.2.21) with the Kramers-Moyal coefficients in Eqs. (3.4.1)
and (3.4.2). The distribution of active proteins is given by Eq. (3.4.2). The number density of
the tracer particles n initially had uniform distribution (n = 1). Finally, the distribution of tracer
particles become steady as shown in Fig. 3.4.1(a,b). It is noted that weak circulating flow of tracer
particles remained as shown in Fig. 3.4.1(c,d). The profile of reflecting the symmetric property of
the system.

3.4.2 Three-dimensional system

For the three-dimensional case with perfectly orientated force dipoles, Vα and Dαα′ are simplified
as

Vα(r) =
1

8π2η2

∫
dr′

r′α
r′6
P2(cos θ

′)2S(r + r′)c(r + r′), (3.4.4)

Dαα′(r) =DT δαα′ +
1

16π2η2

∫
dr′

r′αr
′
α′

r′6
P2(cos θ

′)2S(r + r′)c(r + r′), (3.4.5)

where P2 is Legendre polynomial of the second order. Here we use r3 = r cos θ and we assume
that the force dipoles are aligned in r3-direction. The detailed calculations are provided in Ap-
pendix B.2.4.

Then we obtain the general form of the drift velocity U as

Uα(r) =− 1

16π2η2

∫
σ
dsα′

r′αr
′
α′

r′6
P2(cos θ

′)2S(r + r′)c(r + r′). (3.4.6)
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Figure 3.4.1: Numerical results on the distribution of tracer particles (a,b) and their fluxes (c,d) in
the steady state of a two-dimensional system with orientationally ordered force dipoles that occupy a
circle in the center. Panel (b) shows the distribution enhanced in the region of low number densities.
The logarithm log10 j(r) of the local magnitude of the fluxes and their streamlines are displayed
in (c) and (d). The horizontal direction corresponds to the orientation line of force dipoles. The
parameters were R = 16ℓc, δ = 0.5ℓc, and S = 1. The spatial and time steps were 0.4ℓc and 10−7,
respectively. Reproduced from Ref. [41].

The integration is taken over the physical boundary σoutside and the small cut-off surface σinside
around r. The integration over the physical boundary σoutside becomes zero if S(r)c(r) = 0 at
the boundary. Here we consider the situation that S(r + r′)c(r + r′) ≡ Q(r + r′) is given by
Q(r+r′) = Q(r)+ r′β∂Q(r)/∂rβ. Then the integral over the small cut-off surface can be calculated
as

Uα(r) =
1

64π2η2

∫ 2π

0
dϕ

∫ π

0
dθ(ℓc

2 sin θ)r̂′α′
r̂′αr̂′α′

ℓc
4 (1− 3r̂′

2

3)
2

(
Q(r) + ℓcr̂′β

∂Q(r)

∂rβ

)
=

1

64π2η2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

1

ℓc
2 r̂

′
α(1− 3 cos2 θ)2

(
Q(r) + ℓcr̂′β

∂Q(r)

∂rβ

)
=

1

28πη2ℓc

(
1

3

∂Q(r)

∂r1
δα1e1 +

1

3

∂Q(r)

∂r2
δα2e2 +

11

15

∂Q(r)

∂r3
δα3e3

)
, (3.4.7)

where r̂ is a unit vector defined as r̂ = r/|r|. The result for U is the different from the case when
the orientation of the force dipoles is random. The average over r1-, r2-, and r3-directions is given

by considering the average of the numerical coefficient,
1

28

(
1

3
+

1

3
+

11

15

)
× 1

3
=

1

60
, which is the

same as the case when the orientation of the active proteins is random.

Here we consider the case with constant gradient of Q(r). Suppose that Q(r) = Q0 +Q1a · r,
where a = (a1, a2, a3) is a constant unit vector, which denotes the direction of the gradient of Q.
Then V , D, and U are calculated as follows:

V (r) =
Q1

32π2η2
1

ℓc



16π

21
a1

16π

21
a2

176π

105
a3

 =
Q1

14πη2
1

ℓc



1

3
a1

1

3
a2

11

15
a3

 , (3.4.8)
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and

DA(r) =
Q(r)

28πη2
1

ℓc


1

3
0 0

0
1

3
0

0 0
11

15

 . (3.4.9)

It is noted that Vα and (∂Dαα′)/(∂rα′) with constant gradient of Q still satisfy the equation Vα =
2(∂Dαα′)/(∂rα′), which is the same as the result in the case that the force dipoles are orientated
randomly [39].

The drift velocity U is calculated as follows:

U = V − ∂DA(r)

∂r
=

Q1

28πη2
1

ℓc



1

3
a1

1

3
a2

11

15
a3

 . (3.4.10)

The result is consistent with the general expression in Eq. (3.4.7). The detailed calculation is
provided in Appendix B.3.4.

Nematic order parameter

To describe the nematic state, tensor and scalar order parameters are known in the field of the
liquid crystals:

N =s

(
nn− 1

3
I

)

=s


 sin2 θ cos2 ϕ sin2 θ sinϕ cosϕ sin θ cos θ cosϕ

sin2 θ sinϕ cosϕ sin2 θ sin2 ϕ sin θ cos θ sinϕ
sin θ cos θ cosϕ sin θ cos θ sinϕ cos2 θ

− 1

3

 1 0 0
0 1 0
0 0 1

 , (3.4.11)

where N and s are the tensor and scalar order parameters, respectively. Here, s takes a value
between 0 and 1, where s = 0 and s = 1 correspond to the completely disordered and ordered
states, respectively. n is a unit vector, which represents the direction of the nematic phase.

Here we consider the situation that the orientation of active proteins is completely ordered in
the direction of z-axis. Thus, we set s = 1 and θ = 0. By using the tensor order parameter N , the
flux U is represented as

U(r) =
1

60πη2ℓc

(
I +

6

7
N

)
∇Q(r). (3.4.12)

The diffusion tensor D for Q(r) = Q0 + Q1a · r (constant for Q1 = 0 and linear profile with
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constant gradient for Q1 ̸= 0) is also represented by using N ,

DA(r) =
Q(r)

64π2η2
1

ℓc


16π

21
0 0

0
16π

21
0

0 0
176π

105



=
Q(r)

60πη2ℓc

 1 0 0
0 1 0
0 0 1

+
Q(r)

70πη2ℓc


−1

3
0 0

0 −1

3
0

0 0
2

3

 =
Q(r)

60πη2ℓc

(
I +

6

7
N

)
. (3.4.13)

Steady state

Here we consider the steady state when the normal diffusion under thermal equilibrium is neg-
ligible. We set DT to be 0. The diffusion tensor with local approximation is adopted. The Fokker-
Planck equation is represented as

∂n(r, t)

∂t
= − ∂

∂rα
(Uα(r)n(r, t)) +

∂

∂rα

(
Dαα′(r)

∂n(r, t)

∂rα′

)
. (3.4.14)

To obtain the steady state, the time derivative of n is set to be zero:

∂

∂rα
(Uα(r)n(r)) =

∂

∂rα

(
Dαα′(r)

∂n(r)

∂rα′

)
. (3.4.15)

Then we integrate the both sides with regard to rα, and obtain

Uα(r)n(r) =Dαα′(r)
∂n(r)

∂rα′
+ Cα. (3.4.16)

When Uα(r) and Dαα′(r) are zero at |r| → ∞, Cα should be zero.

Uα(r) =Dαα′(r)
∂ lnn(r)

∂rα′
. (3.4.17)

By using U and D in Eqs. (3.4.12) and (3.4.13), we obtain

1

60πη2ℓc

(
Iαα′ +

6

7
Nαα′

)
∂Q(r)

∂rα′
=

Q(r)

60πη2ℓc

(
Iαα′ +

6

7
Nαα′

)
∂ lnn

∂rα′
, (3.4.18)

(3.4.19)

and finally we have

n(r) =C ′′Q(r). (3.4.20)

It is noted that this result does not depend on the value of s.
Next we consider the steady state for DT ̸= 0. We cannot easily construct a general solution

in the same way as in the case of DT = 0, since the diffusional flow induced by thermal noise and
active elements are not parallel. Here we consider the steady state of the distribution of tracer
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particles when the active proteins are distributed in a spherical region. We derive an approximated
solution and show numerical results. We assume the active proteins inside the spherical region are
aligned in the r3-direction, and uniformly distributed, i.e.,

Q(r) =

{
Q0, (r < R),
0, (r > R),

(3.4.21)

where R is a radius of the spherical region. We also assume that the gradient of Q is −Q1δ(r−R)er,
where er is a unit vector directed in the radial direction.

The constant C in Eq. (3.4.16) should be considered to be εαβγ(∂Aγ)/(∂rβ), where εαβγ is Levi-
Civita symbol (an asymmetric tensor) and A(r) is a vector that A(r → 0) = 0 due to the boundary
condition. Then we obtain

Uα(r)n(r) =Dαα′(r)
∂n(r)

∂rα′
+ εαβγ

∂Aγ

∂rβ
. (3.4.22)

Here we transform to the radial coordinates (r, θ, ϕ). From the symmetrical consideration,
U(r)(∝ ∇Q(r)) and n(r) should be independent of ϕ, and A should have a form as A(r) =
(0, 0, A(r, θ)) in the polar coordinates. First, we consider the decomposition of Uα andDαα′(∂n)/(∂rα′)
with regard to er and eθ. We obtain the decomposed Uα into r- and θ-directions from Eq. (3.4.12):

Uα(r) =
1

60πη2ℓc

(
I +

6

7
N

)
∇Q(r) =

Q1δ(r −R)

60πη2ℓc

(
I +

6

7
N

)
(−er)

=
Q1δ(r −R)

140πη2ℓc

{(
1 +

4

7
P2(cos θ)

)
er −

3

7
sin 2θeθ

}
. (3.4.23)

We also obtain the decomposed Dαα′(∂n)/(∂rα′) into r- and θ-directions from Eq. (3.4.13):

Dαα′
∂n

∂rα′
=

{
DT Iαα′ +

Q(r)

60πη2ℓc

(
Iαα′ +

6

7
Nαα′

)}(
er
∂n

∂r
+ eθ

1

r

∂n

∂θ

)
=DT

(
∂n

∂r
er +

1

r

∂n

∂θ
eθ

)
+

Q(r)

140πη2ℓc

{((
1 +

4

7
P2(cos θ)

)
∂n

∂r
− 3

7
sin 2θ

1

r

∂n

∂θ

)
er

+

(
−3

7
sin 2θ

∂n

∂r
+

(
9

7
− 4

7
P2(cos θ)

)
1

r

∂n

∂θ

)
eθ

}
. (3.4.24)

Thus, we obtain the following two equations:

1

60πη2ℓc

∂Q

∂r

(
1 +

4

7
P2(cos θ)

)
n−DT ∂n

∂r
− Q

60πη2ℓc

((
1 +

4

7
P2(cos θ)

)
∂n

∂r
− 3

7
sin 2θ

1

r

∂n

∂θ

)
=

1

r sin θ

∂

∂θ
(A sin θ),

(3.4.25)

− 1

60πη2ℓc

∂Q

∂r

3

7
sin 2θ n−DT 1

r

∂n

∂θ
− Q

60πη2ℓc

(
−3

7
sin 2θ

∂n

∂r
+

(
9

7
− 4

7
P2(cos θ)

)
1

r

∂n

∂θ

)
= −1

r

∂

∂r
(rA).

(3.4.26)
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Inside the circular region, Eqs. (3.4.25) and (3.4.26) lead to

−DT ∂n

∂r
− Q

60πη2ℓc

((
1 +

4

7
P2(cos θ)

)
∂n

∂r
− 3

7
sin 2θ

1

r

∂n

∂θ

)
=

1

r sin θ

∂

∂θ
(A sin θ), (3.4.27)

−DT 1

r

∂n

∂θ
− Q

60πη2ℓc

(
−3

7
sin 2θ

∂n

∂r
+

(
9

7
− 4

7
P2(cos θ)

)
1

r

∂n

∂θ

)
= −1

r

∂

∂r
(rA). (3.4.28)

Outside the raft, Eqs. (3.4.25) and (3.4.26) lead to

−DT ∂n

∂r
=

1

r sin θ

∂

∂θ
(A sin θ), (3.4.29)

−DT 1

r

∂n

∂θ
=− 1

r

∂

∂r
(rA). (3.4.30)

Equations (3.4.29) and (3.4.30) are solved as

n(r, θ) =

∞∑
k=0

{
akr

k +
bk
rk+1

}
Pk(cos θ), (3.4.31)

A(r, θ) =

∞∑
k=0

{
akkr

k +
bk(k + 1)

rk+1

}
C

−1/2
k (cos θ)

sin θ
. (3.4.32)

Assuming that there are only 0 and 2 modes, then we have

n(r, θ) = a+
b

r3
P2(cos θ), (3.4.33)

A(r, θ) =
3b

r3
C

−1/2
2 (cos θ)

sin θ
, (3.4.34)

where P2 is the second-order Legendre polynomials and C
−1/2
2 is the second-order Gegenbauer

polynomials (ultraspherical polynomials) of the degree of −1/2.
By integrating the both sides of Eqs. (3.4.29) and (3.4.30) with regard to r ∈ [R− 0, R+ 0], we

obtain

− 1

60πη2ℓc

(
1 +

4

7
P2(cos θ)

)
Q0

2
(nout + nin)−DT (nout − nin)

− 1

60πη2ℓc

((
1 +

4

7
P2(cos θ)

)
Q0

2
(nout − nin)

)
= 0, (3.4.35)

1

60πη2ℓc

3

7
sin 2θ

Q0

2
(nout + nin)−

1

60πη2ℓc

(
−3

7
sin 2θ

Q0

2
(nout − nin)

)
= −(Aout −Ain), (3.4.36)

where R is a radius of the spherical region. Here we used
∫
δ(x)θ(x)dx = 1/2.

From Eq. (3.4.35), we obtain

DTnin =
1

60πη2ℓc

(
1 +

4

7
P2(cos θ)

)
Q0nout +DTnout, (3.4.37)

and thus we have

nout =
nin

1
60πη2ℓcDT

(
1 + 4

7P2(cos θ)
)
Q0 + 1

. (3.4.38)
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Figure 3.4.2: Numerical results on the distribution of tracer particles (a,b) and their fluxes (c,d)
in the steady state of a three-dimensional system with orientationally ordered force dipoles that
occupy a sphere in the center. Part (b) shows the distribution enhanced in the region of low number
densities. The logarithm log10 j(r) of the local magnitude of the fluxes and their streamlines are
displayed in (c) and (d). The vertical direction corresponds to the orientation line of force dipoles.
The parameters were R = 16ℓc, δ = 0.5ℓc, and S = 1. The spatial and time steps were 0.4ℓc(= 0.4)
and 10−7, respectively. Reproduced from Ref. [41].

We assumed that DTnout ≪ 1 and nin = Q0, and then we have

nout =60πη2ℓcD
T

(
1− 4

7
P2(cos θ) +

16

49
P2(cos θ)

2 − · · ·
)
. (3.4.39)

When we neglect the higher-orders of 4P2(cos θ)/7, then we have a = 60πη2ℓcD
T , b = −240πη2ℓcD

T /7
in Eqs. (3.4.33) and (3.4.34).

Since A has a value depending on r and θ, the steady flow of tracer particles exists. It is noted
that the profile of tracer particles does not change in time, thus the flow should circulate. Here
we show numerical results based on the Fokker-Planck equation (3.2.21) with the Kramers-Moyal
coefficients in Eqs. (3.4.1) and (3.4.2). The distribution of the force dipoles is given in Eq. . The
number density of the tracer particles n initially had uniform distribution (n = 1). We calculated
the time evolution of the distribution of tracer particles, and obtained the steady state as shown
in Fig. 3.4.2(a,b). We also obtained the steady flow of tracer particles as shown in Fig. 3.4.2(c,d).
We can see the circulating flow, which clearly has the secondmode as expected by the theoretical
calculation in Eq. (3.4.34).

3.5 Summary

In this chapter, we discussed the hydrodynamic collective effect of active elements modeled as
force dipoles. Especially for a two-dimensional system, the finite size effect is critical since the
diffusion coefficient diverges for an infinite system according to the proposed model. The real
system, however, can be inhomogeneous or can have a typical size, thus it is worth investigating the
localized effect of force dipoles. In the inhomogeneous system, directional flow takes place, resulting
in the accumulation of tracer particles toward the force dipoles. We also investigated the effect of
the alignment of active elements. We found that the accumulation of tracer particles occurs. For
a three-dimensional system, circulating flow of tracer particles occurs even though the distribution
of tracer particles is steady.
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Chapter 4

Conclusion

So far we have studied the active system with continous energy injection and dissipation. As
mentioned in Preface, seemingly-lower-entropy structures can emerge in dissipative systems, and
our aim was to understand what kind of structure emerges in the actual systems – self-propelled
motions through spontaneous symmetry breaking and collective effects of active elements.

In the first half, we investigate the motion of self-propelled particle emerging through sponta-
neous symmetry breaking. We consider three types of geometries; a one-dimensional finite system
with inversion symmetry, a two-dimensional circular system with inversion and rotational symme-
try, and a rotor system with rotational symmetry. We discussed motion of a camphor particle on
water surface, based on the mathematical model. The model was reduced around the rest state,
and the bifurcation structures were determined which indicate what kind motion occurs. As the
future work, we would like to investigate the interaction between shape and motion. For example,
using the camphor driven rotors, which discussed in Sec. 2.5, the interaction between them can be
investigated.

In the latter half, we consider collective effects by active force dipoles, especially the localized
and alignment effects. We considered the dynamics of fluid with active force dipoles, and derived
that diffusion is enhanced by the recursive deformation of active proteins. When force dipoles
are localized, not only the diffusion enhancement but also directional flow of tracer particles is
induced by force dipoles. In this case, tracer particles are accumulated in the region with the force
dipoles. As for the aligned force-dipole cluster, circulating flow of tracer particles ws found in a
three-dimensional system, though the distribution of tracer particles is steady. In the model, it is
assumed that force dipoles are dilute enough and that the flow induced force dipoles is described
by the Oseen tensor. Thus it remains as future work to investigate whether diffusion enhancement
can take place in a systems with denser active elements.

By proceeding our research on active systems further, we hope we will contribute generic un-
derstanding of nonequilibrium systems in future.
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Appendix A

Supplementary Information for
Chapter 2

In this chapter, the supplementary information for Chapter 2 is provided.

A.1 Supplementary information for Section 2.2

A.1.1 Derivation of Eq. (2.2.20)

In this subsection, the driving force expanded with regard to the position, velocity, and accelera-
tion of the camphor particle is derived. The gradient of concentration field expanded in wavenumber
space is expressed as follows:

∂c

∂x
= − 1

R

∞∑
k=1

kπ

R
ck(X, Ẋ, Ẍ) sin

(
kπ

R
x

)
. (A.1.1)

By calculating the expansion as in Eq. (2.2.17), we have
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∂x
=− 1

R
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k=1

kπ

R
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kπ

R
x

)

= − 1

R
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kπ
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x

))
︸ ︷︷ ︸

Term which is not related to the time derivative of X

− 1
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k=1
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R

2κ

A2
sin (κX) sin
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x
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Term proportional to Ẋ
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+
1

R

∞∑
k=1

(
kπ

R

2κ2

A3
cos (κX) sin

(
kπ

R
x

))
Ẋ2
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Ẋ3

︸ ︷︷ ︸
Term proportional to Ẋ3
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(A.1.2)
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where we neglect the higher-order terms of X and the higher-order derivatives with regard to time.
Here, we set A = k2π2/R2 + 1 and κ = kπ/R. The driving force is calculated by the definition in
Eq. (2.2.12), and then expanded around x = R/2.

Here we show several relations for the calculation.

∞∑
k=1

k sin kx

k2 + α2
=


π

2

sinhα(π − x)

sinhαπ
, [0 < x < 2π],

− π

2

sinhα(π + x)

sinhαπ
, [−2π < x < 0].

(A.1.3)

Equation (A.1.3) is referred from Ref. [90]. By differentiating Eq. (A.1.3) with regard to α and k,
we obtain the following relations.
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=



π

4α

coshα(π − x)

sinhαπ

+
π

4

{
(π − x) sinhα(π − x)

sinhαπ
− π coshα(π − x) coshαπ

(sinhαπ)2

}
, [0 < x < 2π],

π

4α

coshα(π + x)

sinhαπ

+
π

4

{
(π + x) sinhα(π + x)

sinhαπ
− π coshα(π + x) coshαπ

(sinhαπ)2

}
, [−2π < x < 0].

(A.1.4)
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π(π − x) sinhα(π − x) coshαπ

(sinhαπ)2

−π
2 coshα(π − x)

sinhαπ
+ 2

π2 coshα(π − x)(coshαπ)2

(sinhαπ)3

}
, [0 < x < 2π],

π

16α3

coshα(π + x)

sinhαπ

− π

16α2

{
(π + x) sinhα(π + x)

sinhαπ
− π coshα(π + x) coshαπ

(sinhαπ)2

}
− π

16α

{
(π + x)2 coshα(π + x)

sinhαπ
− 2

π(π + x) sinhα(π + x) coshαπ

(sinhαπ)2

−π
2 coshα(π + x)

sinhαπ
+ 2

π2 coshα(π + x)(coshαπ)2

(sinhαπ)3

}
, [−2π < x < 0].

(A.1.5)
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∞∑
k=1

k3 sin kx

(k2 + α2)3
=



3π

16α

{
−(π − x) coshα(π − x)

sinhαπ
+
π sinhα(π − x) coshαπ

(sinhαπ)2

}
+

π

16

{
−(π − x)2 sinhα(π − x)

sinhαπ
+ 2

π(π − x) coshα(π − x) coshαπ

(sinhαπ)2

+
π2 sinhα(π − x)

sinhαπ
− 2

π2 sinhα(π − x)(coshαπ)2

(sinhαπ)3

}
, [0 < x < 2π],

3π

16α

{
(π + x) coshα(π + x)

sinhαπ
− π sinhα(π + x) coshαπ

(sinhαπ)2

}
+

π

16

{
(π + x)2 sinhα(π + x)

sinhαπ
− 2

π(π + x) coshα(π + x) coshαπ

(sinhαπ)2

−π
2 sinhα(π + x)

sinhαπ
+ 2

π2 sinhα(π + x)(coshαπ)2

(sinhαπ)3

}
, [−2π < x < 0].

(A.1.6)

∞∑
k=1

k4 cos kx

(k2 + α2)4

=



π

32α3

coshα(π − x)

sinhαπ
− π

32α2

(
(π − x) sinhα(π − x)

sinhαπ
− π coshα(π − x) coshαπ

(sinhαπ)2

)
− π

16α

(
(π − x)2 coshα(π − x)

sinhαπ
− 2

π(π − x) sinhα(π − x) coshαπ

(sinhαπ)2

−π
2 coshα(π − x)

sinhαπ
+ 2

π2 coshα(π − x)(coshαπ)2

(sinhαπ)3

)
− π

96

(
(π − x)3 sinhα(π − x)

sinhαπ
− 3

π(π − x)2 coshα(π − x) coshαπ

(sinhαπ)2

− 3
π2(π − x) sinhα(π − x)

sinhαπ
+ 6

π2(π − x) sinhα(π − x)(coshαπ)2

(sinhαπ)3

+5
π3 coshα(π − x) coshαπ

(sinhαπ)2
− 6

π3 coshα(π − x)(coshαπ)3

(sinhαπ)4

)
,

[0 < x < 2π],

π

32α3

coshα(π + x)

sinhαπ
− π

32α2

(
(π + x) sinhα(π + x)

sinhαπ
− π coshα(π + x) coshαπ

(sinhαπ)2

)
− π

16α

(
(π + x)2 coshα(π + x)

sinhαπ
− 2

π(π + x) sinhα(π + x) coshαπ

(sinhαπ)2

−π
2 coshα(π + x)

sinhαπ
+ 2

π2 coshα(π + x)(coshαπ)2

(sinhαπ)3

)
− π

96

(
(π + x)3 sinhα(π + x)

sinhαπ
− 3

π(π + x)2 coshα(π + x) coshαπ

(sinhαπ)2

− 3
π2(π + x) sinhα(π + x)

sinhαπ
+ 6

π2(π + x) sinhα(π + x)(coshαπ)2

(sinhαπ)3

+5
π3 coshα(π + x) coshαπ

(sinhαπ)2
− 6

π3 coshα(π + x)(coshαπ)3

(sinhαπ)4

)
,

[−2π < x < 0].

(A.1.7)
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By using the formulae, each term in Eq. (A.1.2) is calculated separately and then the driving
force originating from the inhomogeneity of the surface tension is calculated.

Term which is not related to the time derivative of X

The term which is not related to the time derivative of X in Eq. (A.1.2) is expressed as follows:

− 1

R

∞∑
k=1

kπ

R

2

k2π2/R2 + 1
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)

= − 1

π

∞∑
k=1

k

k2 +R2/π2

(
sin
(
k
π

R
(x+X)

)
+ sin

(
k
π

R
(x−X)

))
. (A.1.8)

In the case of
[
0 <

π

R
(x+X) < 2π

]
∩
[
0 <

π

R
(x−X) < π

]
, we have

− 1

R

∞∑
k=1

kπ

R

2

k2π2/R2 + 1
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)
= −sinh(R− (x+X)) + sinh(R− (x−X))

2 sinhR
,

(A.1.9)

where we apply Eq. (A.1.3). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

2

k2π2/R2 + 1
cos

(
kπ

R
x

)
sin

(
kπ

R
(X + 0)

)
= −sinh(R− 2X) + sinhR

2 sinhR
. (A.1.10)

In the case of
[
0 <

π

R
(x+X) < π

]
∩
[
−2π <

π

R
(x−X) < 0

]
, we have

− 1

R

∞∑
k=1

kπ

R

2

k2π2/R2 + 1
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)
=

− sinh(R− (x+X)) + sinh(R+ (x−X))

2 sinhR
,

(A.1.11)

where we apply Eq. (A.1.3). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

2

k2π2/R2 + 1
cos

(
kπ

R
x

)
sin

(
kπ

R
(X + 0)

)
=

− sinh(R− 2X) + sinhR

2 sinhR
. (A.1.12)

The driving force originating from the component of concentration field which is not related to the
time derivative of X is calculated as follows:

−

{
− 1

R

∞∑
k=1

kπ

R

2

k2π2/R2 + 1
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X+0

−

{
− 1

R

∞∑
k=1

kπ

R

2

k2π2/R2 + 1
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X−0

= −− sinh(R− 2X) + sinhR

2 sinhR
−
(
−sinh(R− 2X) + sinhR

2 sinhR

)
=

sinh(R− 2X)

sinhR
. (A.1.13)
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Term proportional to Ẋ

The term proportional to Ẋ in Eq. (A.1.2) is expressed as follows:

− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)

= − 1

R (π/R)2

∞∑
k=1

k2

(k2 +R2/π2)2

(
cos
(
k
π

R
(x−X)

)
− cos

(
k
π

R
(x+X)

))
. (A.1.14)

In the case of
[
0 <

π

R
(x+X) < 2π

]
∩
[
0 <

π

R
(x−X) < π

]
, we have

− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)
= −cosh(R− (x−X))

4 sinhR

− 1

4

{
(R− (x−X)) sinh(R− (x−X))

sinhR
− R cosh(R− (x−X)) coshR

(sinhR)2

}
+

cosh(R− (x+X))

4 sinhR

+
1

4

{
(R− (x+X)) sinh(R− (x+X))

sinhR
− R cosh(R− (x+X)) coshR

(sinhR)2

}
, (A.1.15)

where we apply Eq. (A.1.4). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
(X − 0)

)
= − coshR

4 sinhR
− 1

4

{
R− R(coshR)2

(sinhR)2

}
+

cosh(R− 2X)

4 sinhR
+

1

4

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

}
. (A.1.16)

In the case of
[
0 <

π

R
(x+X) < π

]
∩
[
−2π <

π

R
(x−X) < 0

]
, we have

− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)
= −cosh(R+ (x−X))

4 sinhR

− 1

4

{
(R+ (x−X)) sinh(R+ (x−X))

sinhR
− R cosh(R+ (x−X)) coshR

(sinhR)2

}
+

cosh(R− (x+X))

4 sinhR

+
1

4

{
(R− (x+X)) sinh(R− (x+X))

sinhR
− R cosh(R− (x+X)) coshR

(sinhR)2

}
, (A.1.17)
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where we apply Eq. (A.1.4). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
X

)
= − coshR

4 sinhR
− 1

4

{
R− R(coshR)2

(sinhR)2

}
+

cosh(R− 2X)

4 sinhR
+

1

4

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

}
. (A.1.18)

The driving force proportional to Ẋ is calculated as follows:

−

{
− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X+0

−

{
− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X−0

=
coshR

2 sinhR
+

1

2

{
R− R(coshR)2

(sinhR)2

}
− cosh(R− 2X)

2 sinhR
− 1

2

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

}
=

coshR

2 sinhR
− R

2(sinhR)2

− cosh(R− 2X)

2 sinhR
− 1

2

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

}
. (A.1.19)

Term proportional to Ẍ

The term proportional to Ẍ in Eq. (A.1.2) is expressed as follows:

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)

(k2π2/R2 + 1)3

)
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)

=
1

R (π/R)4

∞∑
k=1

k2(
k2 + (R/π)2

)3 (cos(k πR (x−X)
)
− cos

(
k
π

R
(x+X)

))
. (A.1.20)

In the case of
[
0 <

π

R
(x+X) < 2π

]
∩
[
0 <

π

R
(x−X) < π

]
, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)

(k2π2/R2 + 1)3

)
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)
=

cosh(R− (x−X))

16 sinhR

− 1

16

{
(R− (x−X)) sinh(R− (x−X))

sinhR
− R cosh(R− (x−X)) coshR

(sinhR)2

}
− 1

16

{
(R− (x−X))2 cosh(R− (x−X))

sinhR
− 2

R(R− (x−X)) sinh(R− (x−X)) coshR

(sinhR)2
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−R
2 cosh(R− (x−X))

sinhR
+ 2

R2 cosh(R− (x−X))(coshR)2

(sinhR)3

}
− cosh(R− (x+X))

16 sinhR

+
1

16

{
(R− (x+X)) sinh(R− (x+X))

sinhR
− R cosh(R− (x+X)) coshR

(sinhR)2

}
+

1

16

{
(R− (x+X))2 cosh(R− (x+X))

sinhR
− 2

R(R− (x+X)) sinh(R− (x+X)) coshR

(sinhR)2

−R
2 cosh(R− (x+X))

sinhR
+ 2

R2 cosh(R− (x+X))(coshR)2

(sinhR)3

}
, (A.1.21)

where we apply Eq. (A.1.5). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)

(k2π2/R2 + 1)3

)
sin

(
kπ

R
x

)
sin

(
kπ

R
(X − 0)

)
=

coshR

16 sinhR
− 1

16

{
R− R(coshR)2

(sinhR)2

}
− 1

8

{
−R

2 coshR

sinhR
+
R2(coshR)3

(sinhR)3

}
− cosh(R− 2X)

16 sinhR
+

1

16

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

}
+

1

16

{
(R− 2X)2 cosh(R− 2X)

sinhR
− 2

R(R− 2X) sinh(R− 2X) coshR

(sinhR)2

−R
2 cosh(R− 2X)

sinhR
+ 2

R2 cosh(R− 2X)(coshR)2

(sinhR)3

}
. (A.1.22)

In the case of
[
0 <

π

R
(x+X) < π

]
∩
[
−2π <

π

R
(x−X) < 0

]
, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)

(k2π2/R2 + 1)3

)
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)
=

cosh(R+ (x−X))

16 sinhR

− 1

16

{
(R+ (x−X)) sinh(R+ (x−X))

sinhR
− R cosh(R+ (x−X)) coshR

(sinhR)2

}
− 1

16

{
(R+ (x−X))2 cosh(R+ (x−X))

sinhR
− 2

R(R+ (x−X)) sinh(R+ (x−X)) coshR

(sinhR)2

−R
2 cosh(R+ (x−X))

sinhR
+ 2

R2 cosh(R+ (x−X))(coshR)2

(sinhR)3

}
− cosh(R− (x+X))

16 sinhR

+
1

16

{
(R− (x+X)) sinh(R− (x+X))

sinhR
− R cosh(R− (x+X)) coshR

(sinhR)2

}
+

1

16

{
(R− (x+X))2 cosh(R− (x+X))

sinhR
− 2

R(R− (x+X)) sinh(R− (x+X)) coshR

(sinhR)2

−R
2 cosh(R− (x+X))

sinhR
+ 2

R2 cosh(R− (x+X))(coshR)2

(sinhR)3

}
, (A.1.23)
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where we apply Eq. (A.1.5). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)

(k2π2/R2 + 1)3

)
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)
=

coshR

16 sinhR
− 1

16

{
R− R(coshR)2

(sinhR)2

}
− 1

8

{
−R

2 coshR

sinhR
+
R2(coshR)3

(sinhR)3

}
− cosh(R− 2X)

16 sinhR
+

1

16

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

}
+

1

16

{
(R− 2X)2 cosh(R− 2X)

sinhR
− 2

R(R− 2X) sinh(R− 2X) coshR

(sinhR)2

−R
2 cosh(R− 2X)

sinhR
+ 2

R2 cosh(R− 2X)(coshR)2

(sinhR)3

}
. (A.1.24)

Therefore, the driving force proportional to Ẍ is calculated as follows:

−

{
− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X+0

−

{
− 1

R

∞∑
k=1

kπ

R

2(kπ/R)

(k2π2/R2 + 1)2
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X−0

= − coshR

8 sinhR
− R

8(sinhR)2
+
R2 coshR

4(sinhR)3
+

cosh(R− 2X)

8 sinhR

− 1

8

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

}
− 1

8

{
(R− 2X)2 cosh(R− 2X)

sinhR
− 2

R(R− 2X) sinh(R− 2X) coshR

(sinhR)2

−R
2 cosh(R− 2X)

sinhR
+ 2

R2 cosh(R− 2X)(coshR)2

(sinhR)3

}
. (A.1.25)

Term proportional to Ẋ2

The term proportional to Ẋ2 in Eq. (A.1.2) is expressed as follows:

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)2

(k2π2/R2 + 1)3

)
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)

=
1

R (π/R)3

∞∑
k=1

k3(
k2 + (R/π)2

)3 (sin(k πR (x+X)
)
+ sin

(
k
π

R
(x−X)

))
. (A.1.26)

In the case of
[
0 <

π

R
(x+X) < 2π

]
∩
[
0 <

π

R
(x−X) < π

]
, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)2

(k2π2/R2 + 1)3

)
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)
=

3

16

{
−(R− (x+X)) cosh(R− (x+X))

sinhR
+
R sinh(R− (x+X)) coshR

(sinhR)2

}
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+
1

16

{
−(R− (x+X))2 sinh(R− (x+X))

sinhR
+ 2

R(R− (x+X)) cosh(R− (x+X)) coshR

(sinhR)2

+
R2 sinh(R− (x+X))

sinhR
− 2

R2 sinh(R− (x+X))(coshR)2

(sinhR)3

}
+

3

16

{
−(R− (x−X)) cosh(R− (x−X))

sinhR
+
R sinh(R− (x−X)) coshR

(sinhR)2

}
+

1

16

{
−(R− (x−X))2 sinh(R− (x−X))

sinhR
+ 2

R(R− (x−X)) cosh(R− (x−X)) coshR

(sinhR)2

+
R2 sinh(R− (x−X))

sinhR
− 2

R2 sinh(R− (x−X))(coshR)2

(sinhR)3

}
, (A.1.27)

where we apply Eq. (A.1.6). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)2

(k2π2/R2 + 1)3

)
cos

(
kπ

R
x

)
sin

(
kπ

R
(X − 0)

)
=

3

16

{
−(R− 2X) cosh(R− 2X)

sinhR
+
R sinh(R− 2X) coshR

(sinhR)2

}
+

1

16

{
−(R− 2X)2 sinh(R− 2X)

sinhR
+ 2

R(R− 2X) cosh(R− 2X) coshR

(sinhR)2

+
R2 sinh(R− 2X)

sinhR
− 2

R2 sinh(R− 2X)(coshR)2

(sinhR)3

}
. (A.1.28)

In the case of
[
0 <

π

R
(x+X) < 2π

]
∩
[
−2π <

π

R
(x−X) < 0

]
, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)2

(k2π2/R2 + 1)3

)
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)
=

3

16

{
−(R− (x+X)) cosh(R− (x+X))

sinhR
+
R sinh(R− (x+X)) coshR

(sinhR)2

}
+

1

16

{
−(R− (x+X))2 sinh(R− (x+X))

sinhR
+ 2

R(R− (x+X)) cosh(R− (x+X)) coshR

(sinhR)2

+
R2 sinh(R− (x+X))

sinhR
− 2

R2 sinh(R− (x+X))(coshR)2

(sinhR)3

}
+

3

16

{
(R+ (x−X)) cosh(R+ (x−X))

sinhR
− R sinh(R+ (x−X)) coshR

(sinhR)2

}
+

1

16

{
(R+ (x−X))2 sinh(R+ (x−X))

sinhR
− 2

R(R+ (x−X)) cosh(R+ (x−X)) coshR

(sinhR)2

−R
2 sinh(R+ (x−X))

sinhR
+ 2

R2 sinh(R+ (x−X))(coshR)2

(sinhR)3

}
, (A.1.29)

where we apply Eq. (A.1.6). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)2

(k2π2/R2 + 1)3

)
cos

(
kπ

R
x

)
sin

(
kπ

R
(X + 0)

)
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=
3

16

{
−(R− 2X) cosh(R− 2X)

sinhR
+
R sinh(R− 2X) coshR

(sinhR)2

}
+

1

16

{
−(R− 2X)2 sinh(R− 2X)

sinhR
+ 2

R(R− 2X) cosh(R− 2X) coshR

(sinhR)2

+
R2 sinh(R− 2X)

sinhR
− 2

R2 sinh(R− 2X)(coshR)2

(sinhR)3

}
. (A.1.30)

The driving force proportional to Ẋ2 is calculated as follows:

−

{
− 1

R

∞∑
k=1

kπ

R

2(kπ/R)2

(k2π2/R2 + 1)3
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X+0

−

{
− 1

R

∞∑
k=1

kπ

R

2(kπ/R)2

(k2π2/R2 + 1)3
cos

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X−0

=
3

8

{
(R− 2X) cosh(R− 2X)

sinhR
− R sinh(R− 2X) coshR

(sinhR)2

}
+

1

8

{
(R− 2X)2 sinh(R− 2X)

sinhR
− 2

R(R− 2X) cosh(R− 2X) coshR

(sinhR)2

−R
2 sinh(R− 2X)

sinhR
+ 2

R2 sinh(R− 2X)(coshR)2

(sinhR)3

}
. (A.1.31)

Term proportional to Ẋ3

The term proportional to Ẋ3 in Eq. (A.1.2) is expressed as follows:

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)3

(k2π2/R2 + 1)4

)
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)

=
2

R (π/R)4

∞∑
k=1

k4(
k2 + (R/π)2

)4 cos
(
k π
R (x−X)

)
− cos

(
k π
R (x+X)

)
2

. (A.1.32)

In the case of
[
0 <

π

R
(x+X) < 2π

]
∩
[
0 <

π

R
(x−X) < π

]
, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)3

(k2π2/R2 + 1)4

)
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)
=

1

32

cosh(R− (x−X))

sinhR
− 1

32

(
(R− (x−X)) sinh(R− (x−X))

sinhR
− R cosh(R− (x−X)) coshR

(sinhR)2

)
− 1

16

(
(R− (x−X))2 cosh(R− (x−X))

sinhR
− 2

R(R− (x−X)) sinh(R− (x−X)) coshR

(sinhR)2

−R
2 cosh(R− (x−X))

sinhR
+ 2

R2 cosh(R− (x−X))(coshR)2

(sinhR)3

)
− 1

96

(
(R− (x−X))3 sinh(R− (x−X))

sinhR
− 3

R(R− (x−X))2 cosh(R− (x−X)) coshR

(sinhR)2

− 3
R2(R− (x−X)) sinh(R− (x−X))

sinhR
+ 6

R2(R− (x−X)) sinh(R− (x−X))(coshR)2

(sinhR)3

98



A.1 Supplementary information for Section 2.2

+5
R3 cosh(R− (x−X)) coshR

(sinhR)2
− 6

R3 cosh(R− (x−X))(coshR)3

(sinhR)4

)
− 1

32

cosh(R− (x+X))

sinhR
+

1

32

(
(R− (x+X)) sinh(R− (x+X))

sinhR
− R cosh(R− (x+X)) coshR

(sinhR)2

)
+

1

16

(
(R− (x+X))2 cosh(R− (x+X))

sinhR
− 2

R(R− (x+X)) sinh(R− (x+X)) coshR

(sinhR)2

−R
2 cosh(R− (x+X))

sinhR
+ 2

R2 cosh(R− (x+X))(coshR)2

(sinhR)3

)
+

1

96

(
(R− (x+X))3 sinh(R− (x+X))

sinhR
− 3

R(R− (x+X))2 cosh(R− (x+X)) coshR

(sinhR)2

− 3
R2(R− (x+X)) sinh(R− (x+X))

sinhR
+ 6

R2(R− (x+X)) sinh(R− (x+X))(coshR)2

(sinhR)3

+5
R3 cosh(R− (x+X)) coshR

(sinhR)2
− 6

R3 cosh(R− (x+X))(coshR)3

(sinhR)4

)
, (A.1.33)

where we apply Eq. (A.1.7). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)3

(k2π2/R2 + 1)4

)
sin

(
kπ

R
x

)
sin

(
kπ

R
(X − 0)

)
=

1

32

coshR

sinhR
− 1

32

(
R− R(coshR)2

(sinhR)2

)
− 1

8

(
−R

2 coshR

sinhR
+
R2(coshR)3

(sinhR)3

)
− 1

96

(
R3 − 3

R3(coshR)2

(sinhR)2
− 3R3 + 6

R3(coshR)2

(sinhR)2
+ 5

R3(coshR)2

(sinhR)2
− 6

R3(coshR)4

(sinhR)4

)
− 1

32

cosh(R− 2X)

sinhR
+

1

32

(
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

)
+

1

16

(
(R− 2X)2 cosh(R− 2X)

sinhR
− 2

R(R− 2X) sinh(R− 2X) coshR

(sinhR)2

−R
2 cosh(R− 2X)

sinhR
+ 2

R2 cosh(R− 2X)(coshR)2

(sinhR)3

)
+

1

96

(
(R− 2X)3 sinh(R− 2X)

sinhR
− 3

R(R− 2X)2 cosh(R− 2X) coshR

(sinhR)2

− 3
R2(R− 2X) sinh(R− 2X)

sinhR
+ 6

R2(R− 2X) sinh(R− 2X)(coshR)2

(sinhR)3

+5
R3 cosh(R− 2X) coshR

(sinhR)2
− 6

R3 cosh(R− 2X)(coshR)3

(sinhR)4

)
. (A.1.34)

In the case of
[
0 <

π

R
(x+X) < 2π

]
∩
[
−2π <

π

R
(x−X) < 0

]
, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)3

(k2π2/R2 + 1)4

)
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)
=

1

32

cosh(R+ (x−X))

sinhR
− 1

32

(
(R+ (x−X)) sinh(R+ (x−X))

sinhR
− R cosh(R+ (x−X)) coshR

(sinhR)2

)
− 1

16

(
(R+ (x−X))2 cosh(R+ (x−X))

sinhR
− 2

R(R+ (x−X)) sinh(R+ (x−X)) coshR

(sinhR)2
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−R
2 cosh(R+ (x−X))

sinhR
+ 2

R2 cosh(R+ (x+X))(coshR)2

(sinhR)3

)
− 1

96

(
(R+ (x−X))3 sinh(R+ (x−X))

sinhR
− 3

R(R+ (x−X))2 cosh(R+ (x−X)) coshR

(sinhR)2

− 3
R2(R+ (x−X)) sinh(R+ (x−X))

sinhR
+ 6

R2(R+ (x−X)) sinh(R+ (x−X))(coshR)2

(sinhR)3

+5
R3 cosh(R+ (x−X)) coshR

(sinhR)2
− 6

R3 cosh(R+ (x−X))(coshR)3

(sinhR)4

)
− 1

32

cosh(R− (x+X))

sinhR
+

1

32

(
(R− (x+X)) sinh(R− (x+X))

sinhR
− R cosh(R− (x+X)) coshR

(sinhR)2

)
+

1

16

(
(R− (x+X))2 cosh(R− (x+X))

sinhR
− 2

R(R− (x+X)) sinh(R− (x+X)) coshR

(sinhR)2

−R
2 cosh(R− (x+X))

sinhR
+ 2

R2 cosh(R− (x+X))(coshR)2

(sinhR)3

)
+

1

96

(
(R− (x+X))3 sinh(R− (x+X))

sinhR
− 3

R(R− (x+X))2 cosh(R− (x+X)) coshR

(sinhR)2

− 3
R2(R− (x+X)) sinh(R− (x+X))

sinhR
+ 6

R2(R− (x+X)) sinh(R− (x+X))(coshR)2

(sinhR)3

+5
R3 cosh(R− (x+X)) coshR

(sinhR)2
− 6

R3 cosh(R− (x+X))(coshR)3

(sinhR)4

)
, (A.1.35)

where we apply Eq. (A.1.7). By substituting x = X, we have

− 1

R

∞∑
k=1

kπ

R

(
− 2(kπ/R)3

(k2π2/R2 + 1)4

)
sin

(
kπ

R
x

)
sin

(
kπ

R
(X + 0)

)
=

1

32

coshR

sinhR
− 1

32

(
R− R(coshR)2

(sinhR)2

)
− 1

8

(
−R

2 coshR

sinhR
+
R2(coshR)3

(sinhR)3

)
− 1

96

(
R3 − 3

R3(coshR)2

(sinhR)2
− 3R3 + 6

R3(coshR)2

(sinhR)2
+ 5

R3(coshR)2

(sinhR)2
− 6

R3(coshR)4

(sinhR)4

)
− 1

32

cosh(R− 2X)

sinhR
+

1

32

(
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

)
+

1

16

(
(R− 2X)2 cosh(R− 2X)

sinhR
− 2

R(R− 2X) sinh(R− 2X) coshR

(sinhR)2

−R
2 cosh(R− 2X)

sinhR
+ 2

R2 cosh(R− 2X)(coshR)2

(sinhR)3

)
+

1

96

(
(R− 2X)3 sinh(R− 2X)

sinhR
− 3

R(R− 2X)2 cosh(R− 2X) coshR

(sinhR)2

− 3
R2(R− 2X) sinh(R− 2X)

sinhR
+ 6

R2(R− 2X) sinh(R− 2X)(coshR)2

(sinhR)3

+5
R3 cosh(R− 2X) coshR

(sinhR)2
− 6

R3 cosh(R− 2X)(coshR)3

(sinhR)4

)
. (A.1.36)
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The driving force proportional to Ẋ3 is therefore calculated as follows:

−

{
− 1

R

∞∑
k=1

kπ

R

2(kπ/R)3

(k2π2/R2 + 1)4
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X+0

−

{
− 1

R

∞∑
k=1

kπ

R

2(kπ/R)3

(k2π2/R2 + 1)4
sin

(
kπ

R
x

)
sin

(
kπ

R
x

)}∣∣∣∣∣
x=X−0

= − coshR

16 sinhR
− R

16(sinhR)2
+
R2 coshR

4(sinhR)3
+

R3

24(sinhR)2
− R3(coshR)2

8(sinhR)4

+
1

16

cosh(R− 2X)

sinhR
− 1

16

(
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

)
− 1

8

(
(R− 2X)2 cosh(R− 2X)

sinhR
− 2

R(R− 2X) sinh(R− 2X) coshR

(sinhR)2

−R
2 cosh(R− 2X)

sinhR
+ 2

R2 cosh(R− 2X)(coshR)2

(sinhR)3

)
− 1

48

(
(R− 2X)3 sinh(R− 2X)

sinhR
− 3

R(R− 2X)2 cosh(R− 2X) coshR

(sinhR)2

− 3
R2(R− 2X) sinh(R− 2X)

sinhR
+ 6

R2(R− 2X) sinh(R− 2X)(coshR)2

(sinhR)3

+5
R3 cosh(R− 2X) coshR

(sinhR)2
− 6

R3 cosh(R− 2X)(coshR)3

(sinhR)4

)
. (A.1.37)

Taylor expansion of the driving force

The driving force F is obtained as

F =−
(
∂c

∂x

∣∣∣∣
x=X+0

+
∂c

∂x

∣∣∣∣
x=X−0

)
=
sinh(R− 2X)

sinhR

+

(
coshR

2 sinhR
− R

2(sinhR)2
− cosh(R− 2X)

2 sinhR

−1

2

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

})
dX

dt

+

(
− coshR

8 sinhR
− R

8(sinhR)2
+
R2 coshR

4(sinhR)3
+

cosh(R− 2X)

8 sinhR

− 1

8

{
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

}
− 1

8

{
(R− 2X)2 cosh(R− 2X)

sinhR
− 2

R(R− 2X) sinh(R− 2X) coshR

(sinhR)2

−R
2 cosh(R− 2X)

sinhR
+ 2

R2 cosh(R− 2X)(coshR)2

(sinhR)3

})
d2X

dt2

+

(
3

8

{
(R− 2X) cosh(R− 2X)

sinhR
− R sinh(R− 2X) coshR

(sinhR)2

}
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+
1

8

{
(R− 2X)2 sinh(R− 2X)

sinhR
− 2

R(R− 2X) cosh(R− 2X) coshR

(sinhR)2

−R
2 sinh(R− 2X)

sinhR
+ 2

R2 sinh(R− 2X)(coshR)2

(sinhR)3

})(
dX

dt

)2

+

(
− coshR

16 sinhR
− R

16(sinhR)2
+
R2 coshR

4(sinhR)3
+

R3

24(sinhR)2
− R3(coshR)2

8(sinhR)4

+
1

16

cosh(R− 2X)

sinhR
− 1

16

(
(R− 2X) sinh(R− 2X)

sinhR
− R cosh(R− 2X) coshR

(sinhR)2

)
− 1

8

(
(R− 2X)2 cosh(R− 2X)

sinhR
− 2

R(R− 2X) sinh(R− 2X) coshR

(sinhR)2

−R
2 cosh(R− 2X)

sinhR
+ 2

R2 cosh(R− 2X)(coshR)2

(sinhR)3

)
− 1

48

(
(R− 2X)3 sinh(R− 2X)

sinhR
− 3

R(R− 2X)2 cosh(R− 2X) coshR

(sinhR)2

− 3
R2(R− 2X) sinh(R− 2X)

sinhR
+ 6

R2(R− 2X) sinh(R− 2X)(coshR)2

(sinhR)3

+5
R3 cosh(R− 2X) coshR

(sinhR)2
− 6

R3 cosh(R− 2X)(coshR)3

(sinhR)4

))(
dX

dt

)3

.

(A.1.38)

To analyze the stability of the rest state, F is expanded around the fixed point X = R/2. We set
X = R/2 + δX (δX ≪ R) and obtain the force related to δX as

F =− 6δX + 4(δX)3

3 sinhR

+

(
coshR

2 sinhR
− R

2(sinhR)2
− 1 + 2(δX)2

2 sinhR
− 1

2

{
4(δX)2

sinhR
− R(1 + 2(δX)2) coshR

(sinhR)2

})
˙δX

+

(
R2 coshR

4(sinhR)3
+

1 + 2(δX)2

8 sinhR
− coshR

8 sinhR
− R

8(sinhR)2
− 1

8

{
4(δX)2

sinhR
− R(1 + 2(δX)2) coshR

(sinhR)2

}
−1

8

{
4(δX)2

sinhR
− 8R(δX)2 coshR

(sinhR)2
− R2(1 + 2(δX)2)

sinhR
+ 2

R2(1 + 2(δX)2)(coshR)2

(sinhR)3

})
¨δX

+

(
3

8

{
−2δX + 8(δX)3

sinhR
+
R(6δX + 4(δX)3) coshR

3(sinhR)2

}
+

1

8

{
−8(δX)3

sinhR
+
R(4δX + 8(δX)3) coshR

(sinhR)2

+
R2(6δX + 4(δX)3)

3 sinhR
− R2(12δX + 8(δX)3)(coshR)2

3(sinhR)3

})(
˙δX
)2

+

(
− coshR

16 sinhR
− R

16(sinhR)2
+
R2 coshR

4(sinhR)3
+

R3

24(sinhR)2
− R3(coshR)2

8(sinhR)4
+

1

16

1 + 2(δX)2

sinhR

− 1

16

(
4(δX)2

sinhR
− R(1 + 2(δX)2) coshR

(sinhR)2

)
− 1

8

(
4(δX)2

sinhR
− 8R (δX)2 coshR

(sinhR)2
− R2(1 + 2(δX)2)

sinhR
+
R2(2 + 4(δX)2)(coshR)2

(sinhR)3

)
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− 1

48

(
−12R(δX)2 coshR

(sinhR)2
− 12R2(δX)2

sinhR
+

24R2(δX)2(coshR)2

(sinhR)3

+5
R3(1 + 2(δX)2) coshR

(sinhR)2
− 6

R3(1 + 2(δX)2)(coshR)3

(sinhR)4

))(
˙δX
)3
. (A.1.39)

By neglecting the higher-order terms of δX, ˙δX, and ¨δX, we have

F (δX, ˙δX, ¨δX) =− 2

sinhR
δX − 4

3 sinhR
(δX)3 +

(coshR− 1)(sinhR+R)

2(sinhR)2
˙δX

+
1

(sinhR)2
(−3 sinhR+R coshR) (δX)2 ˙δX

− 1

8(sinhR)3
(sinhR(sinhR−R) +R2(coshR− 1))(coshR− 1) ¨δX

− 1

4(sinhR)3
{
sinhR(3 sinhR− 5R coshR) +R2(2 + (sinhR)2)

}
δX
(

˙δX
)2

− 1

48(sinhR)4
(
(2− coshR)R3 + 6R2 sinhR

+3(coshR+ 1)(sinhR−R)) (coshR− 1)2
(

˙δX
)3
,

(A.1.40)

which is Eq. (2.2.20).

A.1.2 Dependence of the coefficients in Eq. (2.2.20) on the water channel length
R

The coefficients of δX, ˙δX, and ¨δX and their cross terms in the driving force in Eq. (2.2.20)
depends on R. Here we show the dependence of A, B, C, E, G, H, and I on the water channel
length R in Fig. A.1.1.

A.1.3 Derivation of Eq. (2.2.22)

The dimensionless form of the equation for concentration field is given by

∂c(x, t)

∂t
=
∂2c(x, t)

∂x2
− c(x, t) + f(x, t), (A.1.41)

Here, f(x, t) is the source term. The Green’s function g(x, t), which is the concentration field
with f(x, t) = δ(x)δ(t), is considered. By introducing the Green’s function and the source term in
wavenumber space,

g(x, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
˜̃g(k, ω)eikx+iωtdkdω, (A.1.42)

f(x, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
eikx+iωtdkdω, (A.1.43)

and substituting them into Eq. (A.1.41), we have the equation for the Green’s function in wavenum-
ber space, ˜̃g, as follows: (

iω − (ik)2 + 1
)
˜̃g(k, ω) = 1. (A.1.44)
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Figure A.1.1: Plots of the coefficients A(R), B(R), C(R), E(R), G(R), H(R), and I(R) against the
water channel length R.
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Thus we have
˜̃g(k, ω) =

1

iω + k2 + 1
. (A.1.45)

Then ˜̃g(k, ω) is transformed with regard to ω as follows.

1

2π

∫ ∞

−∞
˜̃g(k, ω)eiωtdω =

1

2πi

∫ ∞

−∞

1

ω − i(k2 + 1)
eiωtdω

=e−(k2+1)tΘ(t)

≡g̃(k, t), (A.1.46)

where Θ(t) is the Heaviside’s step function. It is noted that the function g̃(k, t) satisfies the following
equations:

g(x, t) =
1

2π

∫ ∞

−∞
g̃(k, t)eikxdk, (A.1.47)(

∂

∂t
+ k2 + 1

)
g̃(k, t) = δ(t). (A.1.48)

Here we define c(x, t) as the concentration field when the source term in Eq. (A.1.41) is f =
δ(x−X(t)). The concentration field and source term in wavenumber space are expressed as

c̃(k, t) ≡
∫ ∞

−∞
c(x, t)e−ikxdx, (A.1.49)

∫ ∞

−∞
δ(x−X(t))e−ikx = e−ikX(t)dx. (A.1.50)

Using the Green’s function g̃(k, t), c̃(k, t) is expressed as in the following integral.

c̃(k, t) =

∫ ∞

−∞
e−ikX(t′)g̃(k, t− t′)dt′. (A.1.51)

Using partial integration, the integral form in Eq. (A.1.51) is expanded as follows:

c̃(k, t) =
e−ikX(t)

k2 + 1
+
ikẊ(t)e−ikX(t)

(k2 + 1)2
− (ikẌ(t) + k2(Ẋ(t))2)e−ikX(t)

(k2 + 1)3

− ik3(Ẋ(t′))3e−ikX(t′)

(k2 + 1)4
+ (higher order terms). (A.1.52)

Since the concentration field in real space is expressed as

c(x, t) =
1

2π

∫ ∞

−∞
c̃(k, t)eikxdk, (A.1.53)

the gradient of the concentration field is obtained by integrating the following form:

∂

∂x
c(x, t) =

i

2π

∫ ∞

−∞
kc̃(k, t)eikxdk

=
i

2π

∫ ∞

−∞

{
k

k2 + 1
+

ik2Ẋ(t)

(k2 + 1)2
− ik2Ẍ(t) + k3(Ẋ(t))2

(k2 + 1)3
− ik4(Ẋ(t))3

(k2 + 1)4

}
eik(x−X(t))dk.

(A.1.54)
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Then each term is calculated. The first term, which corresponds the gradient of the steady state,
is integrated as follows:

i

2π

∫ ∞

−∞

k

k2 + 1
eik(x−X(t))dk =

i

2π

∫ ∞

−∞

1

2

{
1

k + i
+

1

k − i

}
eik(x−X(t))dk

=
1

2

{
−e−(x−X(t)), x−X(t) > 0,

e(x−X(t)), x−X(t) < 0.
(A.1.55)

From the definition of the driving force, the driving force originating from the concentration field
of the steady state is given by

−

(
∂c

∂x

∣∣∣∣
X(t)+0

+
∂c

∂x

∣∣∣∣
X(t)−0

)
= 0. (A.1.56)

The second term is integrated as follows:

− 1

2π

∫ ∞

−∞

k2

(k2 + 1)2
Ẋ(t)eik(x−X(t))dk

= − 1

2π

∫ ∞

−∞

{
1

4i

(
1

k − i
− 1

k + i

)
+

1

4

(
1

(k − i)2
+

1

(k + i)2

)}
Ẋ(t)eik(x−X(t))dk

=
1

4

{
−Ẋ(t)e−(x−X(t)) + Ẋ(t)(x−X(t))e−(x−X(t)), x−X(t) > 0,

−Ẋ(t)ex−X(t) − Ẋ(t)(x−X(t))e(x−X(t)), x−X(t) < 0

= −1

4
Ẋ(t)e−|x−X(t)| + Ẋ(t)|x−X(t)|e−|x−X(t)|. (A.1.57)

From the definition of the driving force, the driving force originating from the second term is given
by

−

(
∂c

∂x

∣∣∣∣
X(t)+0

+
∂c

∂x

∣∣∣∣
X(t)−0

)
=

1

2
Ẋ(t). (A.1.58)

The third term is integrated as follows:

1

2π

∫ ∞

−∞

k2

(k2 + 1)3
Ẍ(t)eik(x−X(t))dk

=
1

2π

∫ ∞

−∞

{
1

16i

(
1

k − i
− 1

k + i

)
− 1

16

(
1

(k − i)2
+

1

(k + i)2

)
+

1

8i

(
1

(k − i)3
− 1

(k + i)3

)}
Ẍ(t)eik(x−X(t))dk

=
1

8



1

2
Ẍ(t)e−(x−X(t)) +

1

2
Ẍ(t)(x−X(t))e−(x−X(t)) − 1

2
Ẍ(t)(x−X(t))2e−(x−X(t)),

x−X(t) > 0,
1

2
Ẍ(t)e(x−X(t)) − 1

2
Ẍ(t)(x−X(t))e(x−X(t)) − 1

2
Ẍ(t)(x−X(t))2e(x−X(t)),

x−X(t) < 0

=
1

16
Ẍ(t)e−|x−X(t)| +

1

16
Ẍ(t)|x−X(t)|e−|x−X(t)| − 1

16
Ẍ(t)(x−X(t))2e−|x−X(t)|. (A.1.59)
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From the definition of the driving force, the driving force originating from the third term is given
by

−

(
∂c

∂x

∣∣∣∣
X(t)+0

+
∂c

∂x

∣∣∣∣
X(t)−0

)
= −1

8
Ẍ(t). (A.1.60)

The fourth term is integrated as follows:

− i

2π

∫ ∞

−∞

k3

(k2 + 1)3
(Ẋ(t))2eik(x−X(t))dk

= − i

2π

∫ ∞

−∞

{
3

16i

(
1

(k − i)2
− 1

(k + i)2

)
+

1

8

(
1

(k − i)3
+

1

(k + i)3

)}
(Ẋ(t))2eik(x−X(t))dk

=
1

16

{
3(Ẋ(t))2(x−X(t))e−(x−X(t)) − (Ẋ(t))2(x−X(t))2e−(x−X(t)), x−X(t) > 0,

3(Ẋ(t))2(x−X(t))e(x−X(t)) + (Ẋ(t))2(x−X(t))2e(x−X(t)), x−X(t) < 0.

(A.1.61)

From the definition of the driving force, the driving force originating from the fourth term is given
by

−

(
∂c

∂x

∣∣∣∣
X(t)+0

+
∂c

∂x

∣∣∣∣
X(t)−0

)
= 0. (A.1.62)

The fifth term is integrated as follows:

1

2π

∫ ∞

−∞

k3

(k2 + 1)3
(Ẋ(t))3eik(x−X(t))dk

=
1

2π

∫ ∞

−∞

{
1

32i

(
1

k − i
− 1

k + i

)
− 1

32

(
1

(k − i)2
+

1

(k + i)2

)
+

1

8i

(
1

(k − i)3
− 1

(k + i)3

)
− 1

16

(
1

(k − i)4
+

1

(k + i)4

)}
(Ẋ(t))3eik(x−X(t))dk

=
1

8



1

4
(Ẋ(t))3e−(x−X(t)) +

1

4
(Ẋ(t))3(x−X(t))e−(x−X(t))

−1

2
(Ẋ(t))3(x−X(t))2e−(x−X(t)) − 1

12
(Ẋ(t))3(x−X(t))3e−(x−X(t)), x−X(t) > 0

1

4
(Ẋ(t))3e−(x−X(t)) − 1

4
(Ẋ(t))3(x−X(t))e−(x−X(t))

−1

2
(Ẋ(t))3(x−X(t))2e−(x−X(t)) +

1

12
(Ẋ(t))3(x−X(t))3e−(x−X(t)), x−X(t) < 0

=
1

32
(Ẋ(t))3e−(x−X(t)) +

1

32
(Ẋ(t))3|x−X(t)|e−(x−X(t))

− 1

16
(Ẋ(t))3(x−X(t))2e−(x−X(t)) − 1

96
(Ẋ(t))3|x−X(t)|3e−(x−X(t)). (A.1.63)

From the definition of the driving force, the driving force originating from the fifth term is given by

−

(
∂c

∂x

∣∣∣∣
X(t)+0

+
∂c

∂x

∣∣∣∣
X(t)−0

)
= − 1

16
(Ẋ(t))3. (A.1.64)

From Eqs. (A.1.56), (A.1.58), (A.1.60), (A.1.62), and (A.1.64), the driving force F is given by

F = −

(
∂c

∂x

∣∣∣∣
X(t)+0

+
∂c

∂x

∣∣∣∣
X(t)−0

)
=

1

2
Ẋ(t)− 1

8
Ẍ(t)− 1

16
(Ẋ(t))3, (A.1.65)

which is the same as Eq. (2.2.22).
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A.2 Supplementary information for Section 2.3

A.2.1 Details in numerical calculation

To make phase diagrams shown in Fig. 2.3.7, we calculated the time evolution with four initial
conditions for each parameter set and unified the results. We used several initial conditions since
several types of motion are stable (typically two types of motion can be bistable) . The initial
conditions are summarized in Table A.1, and the phase diagram obtained by calculating each initial
condition is shown in Fig. A.2.1.

Table A.1: Initial conditions for x1, x2, v1, and v2. The variables Ro, Rr, and K in the table are set
to be Ro =

√
|2µ/(8A+ ϵ)|, Rr =

√
|2µ/(4B + ϵ)|, and K =

√
(n+ j)/(k + ϵ), respectively. Here

we set A = (3k + n + j)/8, B = (k + n)/4, µ = b/2, δ = 0.01, and ϵ = 0.005. Reproduced from
Ref. [37].

x1 x2 v1 v2
(i) Rr + δ δ 0 Rr

(ii) Ro 0 δ 2δ
(iii) 50Ro/b 50Ro/b+ δ 50KRo 50KRo + δ
(iv) δ 0 50Ro 50Ro + δ

A.3 Supplementary information for Section 2.4

A.3.1 Hankel transform and discrete Hankel transform

In this subsection, Hankel transform and “discrete Hankel transform” are introduced.

Hankel transform

Here we consider a function f(r) whose domain is r ∈ (0,∞). The Hankel transform of f(r) is
given by

f(r) =

∫ ∞

0
kF (k)Jn(kr)dk, (A.3.1)

where the F (k) is a function in wavenumber space, which is given by

F (k) =

∫ ∞

0
rf(r)Jn(kr)dr. (A.3.2)

The function Jn(r) is the first-kind Bessel function of n-th order.

Prepration for the calculation of the norm of Bessel function

The Bessel differential equation is given as(
d2

dr2
+

1

r

d

dr
+

(
1− ν2

r2

))
Jν(r) = 0. (A.3.3)
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Figure A.2.1: Phase diagrams obtained by the numerical calculation with different initial conditions.
The Roman numerals (i)-(iv) in the figure correspond to the initial conditions (i)-(iv) in Table A.2.1.
The parameters are set to be c = h = p = 0. The red, blue white, and yellow regions are
corresponding to the parameter regions where rotation, oscillation, divergence, and undeterminable
motion was observed. Here we clarified trajectories sufficiently distant from the origin with time as
divergence. Reproduced from Ref. [37].
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By replacing r with λr, we have(
d2

dr2
+

1

r

d

dr
+

(
λ2 − ν2

r2

))
Jν(λr) = 0. (A.3.4)

Equation (A.3.4) is transformed in the following form:

d

dr

(
r
dJν(λr)

dr

)
− ν2

r
Jν(λr) + λ2rJν(λr) = 0. (A.3.5)

Here we consider the difference between the following equations:
Jν(λnr)

[
d

dr

(
r
dJν(λmr)

dr

)
− ν2

r
Jν(λmr) + λm

2rJν(λmr)

]
= 0, (A.3.6a)

Jν(λmr)

[
d

dr

(
r
dJν(λnr)

dr

)
− ν2

r
Jν(λnr) + λn

2rJν(λnr)

]
= 0, (A.3.6b)

where these equations are obtained by multiplying Jν(λnr) and Jν(λmr) with (A.3.5) for λ = λm
and λ = λn, respectively. We have

Jν(λnr)
d

dr

(
r
dJν(λmr)

dr

)
−Jν(λmr)

d

dr

(
r
dJν(λnr)

dr

)
+(λm

2−λn2)rJν(λmr)Jν(λnr) = 0. (A.3.7)

Using Eq. (A.3.7), we have

− (λm
2 − λn

2)

∫
rJν(λmr)Jν(λnr)dr

=

∫ {
Jν(λnr)

d

dr

(
r
dJν(λmr)

dr

)
− Jν(λmr)

d

dr

(
r
dJν(λnr)

dr

)}
dr

=

[
Jν(λnr)

(
r
dJν(λmr)

dr

)
− Jν(λmr)

(
r
dJν(λnr)

dr

)]
. (A.3.8)

Bases satisfying the Dirichlet condition

From Eq. (A.3.8), we have

− (λm
2 − λn

2)

∫ R

0
rJν(λmr)Jν(λnr)dr

=

[
Jν(λnr)

(
r
dJν(λmr)

dr

)
− Jν(λmr)

(
r
dJν(λnr)

dr

)]R
0

, (A.3.9)

Here we set λn ≡ ξn/R. Since Jν(λmr) = 0 holds considering the Dirichlet condition, we have

(λm
2 − λn

2)

∫ R

0
rJν(λmr)Jν(λnr)dr = 0, (A.3.10)

where {ξn} is the set of points which satisfy Jν(ξn) = 0 and ξn > ξm for n > m. For m ̸= n, we
have ∫ R

0
rJν(λmr)Jν(λnr)dr = 0, (A.3.11)
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and thus Jν(λmr) and Jν(λnr) whose domains are [0, R] are orthogonal to each other for m ̸= n.
To obtain the norm of Jν(λnr), we calculate the following integration:∫ R

0
rJν(λnr)Jν(λnr)dr

= lim
λ→λn

∫ R

0
rJν(λr)Jν(λnr)dr

= − lim
λ→λn

1

λ2 − λn
2

[
Jν(λnr)

(
r
dJν(λr)

dr

)
− Jν(λr)

(
r
dJν(λnr)

dr

)]R
0

= − lim
λ→λn

R (λJν(λnR)J ′
ν(λR)− λnJν(λR)J ′

ν(λnR))

λ2 − λn
2 . (A.3.12)

By applying L’Hôpital’s rule, we have∫ R

0
rJν(λnr)Jν(λnr)dr

= − lim
λ→λn

R (Jν(λnR)J ′
ν(λR) + λRJν(λnR)J ′′

ν (λR)− λnRJ ′
ν(λR)J ′

ν(λnR))

2λ

= lim
λ→λn

R2

2

(
λn
λ
J ′
ν(λR)J ′

ν(λnR)−
(

1

λR
J ′
ν(λR) + J ′′

ν (λR)

)
Jν(λnR)

)
=
R2

2

(
J ′
ν(λnR)J ′

ν(λnR)−
(

1

λnR
J ′
ν(λnR) + J ′′

ν (λnR)

)
Jν(λnR)

)
. (A.3.13)

Since Jν(λnR) = 0 holds considering the Dirichlet condition, we have∫ R

0
rJν(λnr)Jν(λnr)dr =

R2

2

(
J ′
ν(λnR)

)2
=
R2

2

(
J ′
ν(ξn)

)2 ≡ 1

bνn
. (A.3.14)

Thus the functions
{√

bνnJν(λnr)
}
are the bases of the function space for [0, R]. The function f(r)

which satisfy the Dirichlet condition at r = R is given by

f(r) =
∑
n∈N

bνnfnλnJν(λnr), (A.3.15)

where

fn ≡
∫ R

0
f(r)Jν(λnr)rdr. (A.3.16)

The typical examples of the bases which satisfy the Dirichlet condition are plotted in Fig. A.3.1(a).

Bases satisfying the Neumann condition

From Eq. (A.3.8), we have

− (λm
2 − λn

2)

∫ R

0
rJν(λmr)Jν(λnr)dr

=

[
Jν(λnr)

(
r
dJν(λmr)

dr

)
− Jν(λmr)

(
r
dJν(λnr)

dr

)]R
0

. (A.3.17)
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Figure A.3.1: Typical examples of the bases which satisfy (a) Dirichlet and (b) Neumann conditions.

Here we set λn ≡ ζn/R. Since (∂Jν(λmr))/(∂r) = 0 holds considering the Neumann condition,
we have

(λm
2 − λn

2)

∫ R

0
rJν(λmr)Jν(λnr)dr = 0, (A.3.18)

where {ζn} is the set of points which satisfy J ′
ν(ζn) = 0 and ζn > ζm for n > m. Here J ′

ν(r) means
(∂Jν(r))/(∂r). For m ̸= n, we have∫ R

0
rJν(λmr)Jν(λnr)dr = 0, (A.3.19)

and thus Jν(λmr) and Jν(λnr) whose domains are [0, R] are orthogonal to each other for m ̸= n.

To obtain the norm of Jν(λnr), we calculate the following integration:∫ R

0
rJν(λnr)Jν(λnr)dr. (A.3.20)

From Eq. (A.3.13) and J ′
ν(λnR) = 0 from the Neumann condition, we have∫ R

0
rJν(λnr)Jν(λnr)dr = −R

2

2
J ′′
ν (λnR)Jν(λnR) = −R

2

2
J ′′
ν (ζn)Jν(ζn) ≡

1

aνn
. (A.3.21)

Thus the functions {
√
aνnJν(λnr)} are the bases of the function space for [0, R]. The function f(r)

which satisfy the Neumann condition at r = R is given by

f(r) =
∑
n∈N

aνnfnλnJν(λnr), (A.3.22)

where

fn ≡
∫ R

0
f(r)Jν(λnr)rdr. (A.3.23)

The typical examples of the bases which satisfy the Neumann condition are plotted in Fig. A.3.1(b).
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A.3.2 Calculation of the driving force in the two-dimensional infinite system

The concentration field and source term are decomposed by Hankel and Fourier transform in r-
and θ-directions, respectively.

c(r, θ; ρ, ϕ) =
1

2π

∞∑
m=−∞

∫ ∞

0
cm(k)J|m|(kr)e

imθkdk, (A.3.24)

f(r, θ; ρ, ϕ) =
1

2π

∞∑
m=−∞

∫ ∞

0
J|m|(kρ(t))J|m|(kr)e

im(θ−ϕ(t))kdk. (A.3.25)

By substituting Eqs. (A.3.24) and (A.3.25) into Eq. (2.4.18), we have

∂cm(k)

∂t
= −(k2 + 1)cm(k) + J|m|(kρ(t))e

−imϕ(t). (A.3.26)

First, we derive the Green’s function gm(k, t), which satisfies the following equation:

∂gm(k)

∂t
= −(k2 + 1)gm(k) + δ(t). (A.3.27)

The solution of Eq. (A.3.27) is obtained as

gm(k) =

{
e−(k2+1)t

0
= e−(k2+1)tΘ(t), (A.3.28)

where Θ(t) is the Heaviside’s step function. By using the Green’s function gm(k, t), the concentration
field cm(k, t) is expressed as

cm(k, t) =

∫ ∞

−∞
J|m|(kρ(t

′))e−imϕ(t′)gm(k, t− t′)dt′

=

∫ t

−∞
J|m|(kρ(t

′))e−imϕ(t′)e−(k2+1)(t−t′)dt′

=e−(k2+1)t

∫ t

−∞
J|m|(kρ(t

′))e−imϕ(t′)e(k
2+1)t′dt′ ≡ e−(k2+1)tI. (A.3.29)

The integral I is expanded using partial integration.

I =
1

A
J|m|(kρ(t))e

−imϕ(t) +
1

A2

{
−kρ̇(t)J ′

|m|(kρ(t)) + imϕ̇(t)J|m|(kρ(t))
}
e−imϕ(t)

+
1

A3

{
kρ̈(t)J ′

|m|(kρ(t)) + k2(ρ̇(t))2J ′′
|m|(kρ(t))

−2ikmρ̇(t)ϕ̇(t)J ′
|m|(kρ(t))− imϕ̈(t)J|m|(kρ(t))−m2(ϕ̇(t))2J|m|(kmnρ(t))

}
e−imϕ(t)

+
1

A4

{
−k3(ρ̇(t))3J ′′′

|m|(kρ(t)) + 3ik2m(ρ̇(t))2ϕ̇(t)J ′′
|m|(kρ(t))

+ 3km2ρ̇(t)(ϕ̇(t))2J ′
|m|(kρ(t))− im3(ϕ̇(t))3J|m|(kρ(t))

+ k
...
ρ (t)J ′

|m|(kρ(t)) + 3k2ρ̇ρ̈J ′′
|m|(kρ(t))− 3ikmρ̈ϕ̇J ′

|m|(kρ(t))

−3ikmρ̇ϕ̈J ′
|m|(kρ(t))− im

...
ρJ ′

|m|(kρ(t))− 3m2ϕ̇ϕ̈J ′
|m|(kρ(t))

}
e−imϕ(t)

+ · · · . (A.3.30)
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Here we denote k2 + 1 as A. Thus we have

c(r, θ; ρ, ϕ)

=
1

2π

∞∑
m=−∞

∫ ∞

0

1

A
J|m|(kρ(t))J|m|(kr)e

im(θ−ϕ(t))kdk

+
1

2π

∞∑
m=−∞

∫ ∞

0

1

A2

{
−kρ̇(t)J ′

|m|(kρ(t)) + imϕ̇(t)J|m|(kρ(t))
}
J|m|(kr)e

im(θ−ϕ(t))kdk

+
1

2π

∞∑
m=−∞

∫ ∞

0

1

A3

{
kρ̈(t)J ′

|m|(kρ(t)) + k2(ρ̇(t))2J ′′
|m|(kρ(t))− 2ikmρ̇(t)ϕ̇(t)J ′

|m|(kρ(t))

−imϕ̈(t)J|m|(kρ(t))−m2(ϕ̇(t))2J|m|(kρ(t))
}
J|m|(kr)e

im(θ−ϕ(t))kdk

+
1

2π

∞∑
m=−∞

∫ ∞

0

1

A4

{
−k3(ρ̇(t))3J ′′′

|m|(kρ(t)) + 3ik2m(ρ̇(t))2ϕ̇(t)J ′′
|m|(kρ(t))

+ 3km2ρ̇(t)(ϕ̇(t))2J ′
|m|(kρ(t))− im3(ϕ̇(t))3J|m|(kρ(t))

− k
...
ρ (t)J ′

|m|(kρ(t))− 3k2ρ̇ρ̈J ′′
|m|(kρ(t)) + 3ikmρ̈ϕ̇J ′

|m|(kρ(t))

+3ikmρ̇ϕ̈J ′
|m|(kρ(t)) + im

...
ρJ ′

|m|(kρ(t)) + 3m2ϕ̇ϕ̈J ′
|m|(kρ(t))

}
J|m|(kr)e

im(θ−ϕ(t))kdk.

(A.3.31)

The first term in Eq. (A.3.31) should correspond to the steady state:

1

2π
K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

k2 + 1
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk.

(A.3.32)
By changing the spatial scale as r = λr̃, ρ = λρ̃, and k = k̃/λ, we have

1

2π
K0

(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

k̃2 + λ2
Jm(k̃ρ̃(t))Jm(k̃r̃)eim(θ−ϕ(t))k̃dk̃.

(A.3.33)
By differentiating the both sides of Eq. (A.3.33) with regard to λ, we have

1

4πλ

√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)K1

(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

(k̃2 + λ2)2
Jm(k̃ρ̃(t))Jm(k̃r̃)eim(θ−ϕ(t))k̃dk̃. (A.3.34)

By setting λ = 1, we have

1

4π

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

(k2 + 1)2
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.35)
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Term proportional to ρ̇

By differentiating the both sides of Eq. (A.3.35) with regard to ρ,

1

4π

ρ− r cos(θ − ϕ)√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

4π
(ρ− r cos(θ − ϕ))K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

k

(k2 + 1)2
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.36)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z) on page 79 in Ref. [81], we have

− 1

4π
(ρ− r cos(θ − ϕ))K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

k

(k2 + 1)2
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.37)

The term proportional to ρ̇ is calculated using Eq. (A.3.37). We multiply the both sides of
Eq. (A.3.37) by − cos t and − sin t and integrate them on the small circle with the radius of ϵ
around r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

−k
πϵ2

ρ̇eρ
4π

∫ 2π

0
(ϵK0(ϵ) cos t) (− cos t)ϵdt =

k

4π
K0(ϵ)ρ̇eρ =

k

4π

(
−γEuler + log

2

ϵ

)
ρ̇eρ, (A.3.38)

−k
πϵ2

ρ̇eϕ
4π

∫ 2π

0
(ϵK0(ϵ) cos t) (− sin t)ϵdt = 0, (A.3.39)

where γEuler is the Euler’s constant (γEuler ≃ 0.577).

Term proportional to ϕ̇

By differentiating the both sides of Eq. (A.3.35) with regard to θ,

1

4π

rρ sin(θ − ϕ)√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

4π
rρ sin(θ − ϕ)K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

im

(k2 + 1)2
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.40)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

1

4π
rρ sin(θ − ϕ)K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

−im
(k2 + 1)2

Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.41)
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The term proportional to ϕ̇ is calculated using Eq. (A.3.41). We multiply the both sides of
Eq. (A.3.41) by cos t and sin t and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

−k
πϵ2

ϕ̇eρ
4π

∫ 2π

0
ϵρK0(ϵ) sin t(− cos t)ϵdt = 0, (A.3.42)

−k
πϵ2

ϕ̇eϕ
4π

∫ 2π

0
ϵρK0(ϵ) sin t(− sin t)ϵdt =

k

4π
ϵK0(ϵ)ρθ̇eϕ =

k

4π

(
−γEuler + log

2

ϵ

)
ρϕ̇eϕ. (A.3.43)

Term proportional to ρ̈

By differentiating the both sides of Eq. (A.3.34) with regard to λ,

− 1

4πλ2

√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)K1

(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
+

1

4πλ

(
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
K1

′
(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

−4λ

(k̃2 + λ2)3
Jm(k̃ρ̃(t))Jm(k̃r̃)eim(θ−ϕ(t))k̃dk̃. (A.3.44)

By dividing the both sides by −4λ, we have

1

16πλ3

√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)K1

(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
− 1

16πλ2
(
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
K1

′
(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

(k̃2 + λ2)3
Jm(k̃ρ̃(t))Jm(k̃r̃)eim(θ−ϕ(t))k̃dk̃. (A.3.45)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

1

16πλ2
(
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
K2

(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

(k̃2 + λ̃2)3
Jm(k̃ρ̃(t))Jm(k̃r̃)eim(θ−ϕ(t))k̃dk̃. (A.3.46)

By setting λ = 1, we have

1

16π

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

(k2 + 1)3
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.47)

By differentiating Eq. (A.3.47) with regard to ρ, we have

1

16π
2 (ρ− r cos(θ − ϕ))K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

16π
(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

k

(k2 + 1)3
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.48)
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Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

− 1

16π
(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

k

(k2 + 1)3
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.49)

The term proportional to ρ̈ is calculated using Eq. (A.3.49). We multiply the both sides of
Eq. (A.3.49) by − cos t and sin t and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

−k
πϵ2

ρ̈eρ
16π

∫ 2π

0

(
−ϵ2K1(ϵ) cos t

)
(− cos t)ϵdt = −k ρ̈eρ

16π
ϵK1(ϵ) = −k ρ̈eρ

16π
, (A.3.50)

−k
πϵ2

ρ̈eρ
16π

∫ 2π

0

(
−ϵ2K1(ϵ) cos t

)
(− sin t)ϵdt = 0. (A.3.51)

Term proportional to ρ̇2

By differentiating the both sides of Eq. (A.3.49) with regard to ρ, we have

− 1

16π

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

16π

(ρ− r cos(θ − ϕ))2√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

16π
(ρ− r cos(θ − ϕ))2K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

k2

(k2 + 1)3
Jm

′′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.52)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

− 1

16π

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

16π
(ρ− r cos(θ − ϕ))2K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

k2

(k2 + 1)3
Jm

′′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.53)

The term proportional to ρ̇2 is calculated using Eq. (A.3.53). We multiply cos t and − sin t to
the both sides of Eq. (A.3.53) and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

−k
πϵ2

ρ̇2eρ
16π

∫ 2π

0

(
−ϵK1(ϵ) + ϵ2K0(ϵ) cos

2 t
)
(− cos t)ϵdt = 0, (A.3.54)

−k
πϵ2

ρ̇2eϕ
16π

∫ 2π

0

(
−ϵK1(ϵ) + ϵ2K0(ϵ) cos

2 t
)
(− sin t)ϵdt = 0. (A.3.55)

The result that the driving force proportional to ṙ2 is zero is consistent with the translational
symmetry of the system.
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Term proportional to ρ̇ϕ̇

By differentiating the both sides of Eq. (A.3.49) with regard to θ, we have

− 1

16π
r sin(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

16π

(ρ− r cos(θ − ϕ))rρ sin(θ − ϕ)√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

16π
(ρ− r cos(θ − ϕ))rρ sin(θ − ϕ)K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

ikm

(k2 + 1)3
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.56)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

− 1

16π
r sin(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

16π
(ρ− r cos(θ − ϕ))rρ sin(θ − ϕ)K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

ikm

(k2 + 1)3
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.57)

The term proportional to ρ̇ϕ̇ is calculated using Eq. (A.3.57). We multiply the both sides of
Eq. (A.3.57) by cos t and − sin t and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

(−2)
−k
πϵ2

ρ̇ϕ̇eρ
16π

∫ 2π

0

(
ϵ2 sin tK1(ϵ)− ϵ2ρ2 sin t cos tK0(ϵ)

)
(− cos t)ϵdt = 0, (A.3.58)

(−2)
−k
πϵ2

ρ̇ϕ̇eϕ
16π

∫ 2π

0

(
ϵ2 sin tK1(ϵ)− ϵ2ρ2 sin t cos tK0(ϵ)

)
(− sin t)ϵdt = −k

ρ̇ϕ̇eϕ
8π

ϵK1(ϵ) = −
ρ̇ϕ̇eϕ
8π

.

(A.3.59)

Term proportional to ϕ̈

By differentiating the both sides of Eq. (A.3.47) with regard to θ, we have

1

8π
rρ sin(θ − ϕ)K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

16π
rρ sin(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

im

(k2 + 1)3
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.60)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z) , we have

− 1

16π
rρ sin(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

im

(k2 + 1)3
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.61)
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The term proportional to ϕ̈ is calculated using Eq. (A.3.61). We multiply the both sides of
Eq. (A.3.61) by − cos t and sin t and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

−k
πϵ2

ϕ̈eρ
16π

∫ 2π

0

(
−ϵ2ρK1(ϵ) sin t

)
(− cos t)ϵdt = 0, (A.3.62)

−k
πϵ2

ϕ̈eϕ
16π

∫ 2π

0

(
−ϵ2ρK1(ϵ) sin t

)
(− sin t)ϵdt = −k

ρϕ̈eϕ
16π

ϵK1(ϵ) = −k
ρϕ̈eϕ
16π

. (A.3.63)

Term proportional to ϕ̇2

By differentiating the both sides of Eq. (A.3.61) with regard to θ, we have

1

16π
rρ cos(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

16π

(rρ sin(θ − ϕ))2√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

16π
(rρ sin(θ − ϕ))2K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

m2

(k2 + 1)3
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.64)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

1

16π
rρ cos(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

16π
(rρ sin(θ − ϕ))2K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

m2

(k2 + 1)3
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.65)

The term proportional to ϕ̇2 is calculated using Eq. (A.3.65). We multiply the both sides of
Eq. (A.3.65) by − cos t and sin t and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

−k
πϵ2

ϕ̇2eρ
16π

∫ 2π

0

(
−ϵρ(ρ− ϵ cos t)K1(ϵ) + ϵ2ρ2 sin2 tK0(ϵ)

)
(− cos t)ϵdt = k

ρϕ̇2eρ
16π

ϵK1(ϵ) = k
ρϕ̇2eρ
16π

,

(A.3.66)

−k
πϵ2

ϕ̇2eϕ
16π

∫ 2π

0

(
−ϵρ(ρ− ϵ cos t)K1(ϵ) + ϵ2ρ2 sin2 tK0(ϵ)

)
(− sin t)ϵdt = 0. (A.3.67)
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Term proportional to ρ̇3

By differentiating the both sides of Eq. (A.3.46) with regard to λ, we have

− 2

16πλ3
(
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
K2

(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
+

1

16πλ2
(
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

) 3
2 K2

′
(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

−6λ

(k̃2 + λ̃2)4
Jm(k̃ρ̃(t))Jm(k̃r̃)eim(θ−ϕ(t))k̃dk̃. (A.3.68)

2

96πλ4
(
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
K2

(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
− 1

96πλ3
(
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

) 3
2 K2

′
(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

(k̃2 + λ̃2)4
Jm(k̃ρ̃(t))Jm(k̃r̃)eim(θ−ϕ(t))k̃dk̃. (A.3.69)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

1

96πλ3
(
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

) 3
2 K3

(
λ
√
r̃2 + ρ̃2 − 2r̃ρ̃ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

(k̃2 + λ̃2)4
Jm(k̃ρ̃(t))Jm(k̃r̃)eim(θ−ϕ(t))k̃dk̃. (A.3.70)

By setting λ = 1, we have

1

96π

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

) 3
2 K3

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

1

(k2 + 1)4
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.71)

By differentiating the both sides of Eq. (A.3.71) with regard to ρ, we have

3

96π
(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K3

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
(ρ− r cos(θ − ϕ))

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K3

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

k

(k2 + 1)4
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.72)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

− 1

96π
(ρ− r cos(θ − ϕ))

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

k

(k2 + 1)4
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.73)
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By differentiating the both sides of Eq. (A.3.73) with regard to ρ, we have

− 1

96π

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 2

96π
(ρ− r cos(θ − ϕ))2K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
(ρ− r cos(θ − ϕ))2

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

k2

(k2 + 1)4
Jm

′′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.74)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

− 1

96π

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
(ρ− r cos(θ − ϕ))2

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

k2

(k2 + 1)4
Jm

′′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.75)

By differentiating the both sides of Eq. (A.3.75) with regard to ρ, we have

− 2

96π
(ρ− r cos(θ − ϕ))K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

+
2

96π
(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π

(ρ− r cos(θ − ϕ))3√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
(ρ− r cos(θ − ϕ))3K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

k3

(k2 + 1)4
Jm

′′′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.76)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

3

96π
(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
(ρ− r cos(θ − ϕ))3K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

k3

(k2 + 1)4
Jm

′′′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.77)

The term proportional to ρ̇3 is calculated using Eq. (A.3.77). We multiply the both sides of
Eq. (A.3.77) by cos t and − sin t and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and
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ρ− r cos(θ − ϕ) = ϵ cos t.

−k
πϵ2

ρ̇3eρ
96π

∫ 2π

0

(
−3ϵ2K1(ϵ) cos t+ ϵ3K0(ϵ) cos

3 t
)
(− cos t)ϵdt

= k
ρ̇3eρ
96π

(
−3ϵK1(ϵ) +

3

4
ϵ3K0(ϵ)

)
= −k ρ̇

3eρ
32π

, (A.3.78)

−k
πϵ2

ρ̇3eϕ
96π

∫ 2π

0

(
3ϵ2K1(ϵ) cos t+ ϵ3K0(ϵ) cos

3 t
)
(− sin t)ϵdt = 0. (A.3.79)

Term proportional to ρ̇2ϕ̇

By differentiating the both sides of Eq. (A.3.75) with regard to θ, we have

− 2

96π
rρ sin(θ − ϕ)K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
rρ sin(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

+
2

96π
r sin(θ − ϕ)(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π

rρ sin(θ − ϕ)(ρ− r cos(θ − ϕ))2√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
rρ sin(θ − ϕ)(ρ− r cos(θ − ϕ))2K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

ik2m

(k2 + 1)4
Jm

′′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.80)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

1

96π
rρ sin(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

2

96π
r sin(θ − ϕ)(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
rρ sin(θ − ϕ)(ρ− r cos(θ − ϕ))2K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

ik2m

(k2 + 1)4
Jm

′′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.81)

The term proportional to ρ̇2ϕ̇ is calculated using Eq. (A.3.81). We multiply the both sides of
Eq. (A.3.81) by −3 cos t and −3 sin t and integrate them on the small circle with the radius of ϵ
around r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

3
−k
πϵ2

ρ̇2ϕ̇eρ
96π

∫ 2π

0

(
−ϵ2ρK1(ϵ) sin t− 2ϵ3K1(ϵ) sin t cos t+ ϵ3ρK0(ϵ) sin t cos

2 t
)
(− cos t)ϵdt = 0,

(A.3.82)
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3
−k
πϵ2

ρ̇2ϕ̇eϕ
96π

∫ 2π

0

(
−ϵ2ρK1(ϵ) sin t− 2ϵ3K1(ϵ) sin t cos t+ ϵ3ρK0(ϵ) sin t cos

2 t
)
(− sin t)ϵdt

=
k

πϵ2
ρ̇2ϕ̇eϕ
32π

(
−ϵρK1(ϵ) +

ϵ2

4
ρK0(ϵ)

)
= − k

πϵ2
ρ̇2ρϕ̇eϕ
32π

. (A.3.83)

Term proportional to ρ̇ϕ̇2

By differentiating the both sides of Eq. (A.3.73) with regard to θ, we have

− 1

96π
r sin(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 2

96π
rρ sin(θ − ϕ)(ρ− r cos(θ − ϕ))K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
rρ sin(θ − ϕ)(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

ikm

(k2 + 1)4
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.84)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

− 1

96π
r sin(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
rρ sin(θ − ϕ)(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

ikm

(k2 + 1)4
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.85)

By differentiating the both sides of Eq. (A.3.85) with regard to θ, we have

− 1

96π
r cos(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 2

96π
r2ρ sin2(θ − ϕ)K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
r2ρ sin2(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

+
1

96π
rρ cos(θ − ϕ)(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
r2ρ sin2(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π

r2ρ2 sin2(θ − ϕ)(ρ− r cos(θ − ϕ))√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
r2ρ2 sin2(θ − ϕ)(ρ− r cos(θ − ϕ))K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

−km2

(k2 + 1)4
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.86)
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Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

− 1

96π
r cos(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

2

96π
r2ρ sin2(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
rρ cos(θ − ϕ)(ρ− r cos(θ − ϕ))

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
r2ρ2 sin2(θ − ϕ)(ρ− r cos(θ − ϕ))K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

−km2

(k2 + 1)4
Jm

′(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.87)

The term proportional to ρ̇ϕ̇2 is calculated using Eq. (A.3.87). We multiply the both sides of
Eq. (A.3.87) by 3 cos t and 3 sin t and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

3
−k
πϵ2

ρ̇ϕ̇2eρ
96π

∫ 2π

0

(
−(ρ− ϵ cos t)ϵ2K2(ϵ) + 2ϵ3ρK1(ϵ) sin

2 t+ ϵ2K1(ϵ)ρ(ρ− ϵ cos t) cos t

−ϵ3ρ3K0(ϵ) sin
2 t cos t

)
(− cos t)ϵdt

= k
ρ̇ϕ̇2eρ
32π

(
−ϵ2K2(ϵ)− ϵρ2K1(ϵ) +

ϵ2ρ3

4
K0(ϵ)

)
= k

ρ̇ϕ̇2eρ
32π

(−2 + ρ2), (A.3.88)

3
−k
πϵ2

ρ̇ϕ̇2eϕ
96π

∫ 2π

0

(
−(ρ− ϵ cos t)ϵ2K2(ϵ) + 2ϵ3ρK1(ϵ) sin

2 t+ ϵ2K1(ϵ)ρ(ρ− ϵ cos t) cos t

−ϵ3ρ3 sin2 t cos tK0(ϵ)
)
(− sin t)ϵdt

= 0. (A.3.89)

Term proportional to ϕ̇3

By differentiating the both sides of Eq. (A.3.71) with regard to θ, we have

3

96π
rρ sin(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K3

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
rρ sin(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K3

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

im

(k2 + 1)4
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.90)

From the formula zKν
′(z) + νKν(z) = −zKν−1, we have

− 1

96π
rρ sin(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

im

(k2 + 1)4
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.91)
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By differentiating the both sides of Eq. (A.3.91) with regard to θ, we have

− 1

96π
rρ cos(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 2

96π
r2ρ2 sin2(θ − ϕ)K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
r2ρ2 sin2(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

−m2

(k2 + 1)4
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.92)

Using the relation zKν
′(z) + νKν(z) = −zKν−1, we have

− 1

96π
rρ cos(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
r2ρ2 sin2(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

−m2

(k2 + 1)4
Jm(kρ(t))Jm(kr)eim(θ−ϕ(t))kdk. (A.3.93)

By differentiating the both sides of Eq. (A.3.93) with regard to θ, we have

1

96π
rρ sin(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 2

96π
r2ρ2 sin(θ − ϕ) cos(θ − ϕ)K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
r2ρ2 sin(θ − ϕ) cos(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K2

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

+
2

96π
r2ρ2 sin(θ − ϕ) cos(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π

r3ρ3 sin3(θ − ϕ)√
r2 + ρ2 − 2rρ cos(θ − ϕ)

K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

1

96π
r3ρ3 sin3(θ − ϕ)K1

′
(√

r2 + ρ2 − 2rρ cos(θ − ϕ)
)

=
1

2π

∞∑
m=−∞

∫ ∞

0

−im3

(k2 + 1)4
Jm(kρ(t))Jm(kr)e−im(θ−ϕ(t))kdk. (A.3.94)

Using the relation zKν
′(z) + νKν(z) = −zKν−1(z), we have

1

96π
rρ sin(θ − ϕ)

(
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
K2

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
+

3

96π
r2ρ2 sin(θ − ϕ) cos(θ − ϕ)

√
r2 + ρ2 − 2rρ cos(θ − ϕ)K1

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

96π
r3ρ3 sin3(θ − ϕ)K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
=

1

2π

∞∑
m=−∞

∫ ∞

0

−im3

(k2 + 1)4
Jm(kρ(t))Jm(kr)e−im(θ−ϕ(t))kdk. (A.3.95)
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The term proportional to ϕ̇3 is calculated using Eq. (A.3.95). We multiply to the both sides of
Eq. (A.3.95) by cos t and − sin t and integrate them on the small circle with the radius of ϵ around
r = ρ for eρ and eϕ directions, respectively. Here we set ϵ =

√
r2 + ρ2 − 2rρ cos(θ − ϕ) and

ρ− r cos(θ − ϕ) = ϵ cos t.

k

πϵ2
ϕ̇3eρ
96π

∫ 2π

0

(
−ϵ3ρK2(ϵ) sin t− 3ϵ2ρ2 sin t(ρ− cos t)K1(ϵ) + ϵ3ρ3K0(ϵ) sin

3 t
)
(− cos t)ϵdt = 0,

(A.3.96)

k

πϵ2
ϕ̇3eϕ
96π

∫ 2π

0

(
−ϵ3ρK2(ϵ) sin t− 3ϵ2ρ2 sin t(ρ− cos t)K1(ϵ) + ϵ3ρ3K0(ϵ) sin

3 t
)
(− sin t)ϵdt

= k
ϕ̇3eϕ
96π

(
ϵ2ρK2(ϵ) + 3ϵρ3K1(ϵ)−

ϵ2

4
ρ3K0(ϵ)

)
= k

ϕ̇3eϕ
96π

(2ρ+ 3ρ3). (A.3.97)

Results

The driving force is obtained as follows:

F =
k

4π

(
−γEuler + log

2

ϵ

)(
ρ̇eρ + ρϕ̇eϕ

)
− k

16π

{(
ρ̈− ρϕ̇2

)
eρ +

(
ρϕ̈+ 2ρ̇ϕ̇

)
eϕ

}
− k

32π

{
ρ̇
(
ρ̇2 + ρ2ϕ̇2

)
eρ + ρϕ̇

(
ρ̇2 + ρ2ϕ̇2

)
eϕ

}
+

k

48π

{
−3ρ̇ϕ̇2eρ + ρϕ̇3eϕ

}
. (A.3.98)

When the positional vector is represented as ρ = ρeρ, then the velocity ρ̇, acceleration ρ̈, and jerk
(time derivative of acceleration)

...
ρ are expressed as

ρ̇ =ρ̇eρ + ρϕ̇eϕ, (A.3.99)

ρ̈ =
(
ρ̈− ρϕ̇2

)
eρ +

(
ρϕ̈+ 2ρ̇ϕ̇

)
eϕ, (A.3.100)

ρ̈ =
(...
ρ − 3ρ̇ϕ̇2 − 3ρϕ̇ϕ̈

)
eρ +

(
ρ
...
ϕ + 3ρ̈ϕ̇+ 3ρ̇ϕ̈− ρϕ̇3

)
eϕ. (A.3.101)

Thus the driving force is expressed as

F =
k

4π

(
−γEuler + log

2

ϵ

)(
ρ̇eρ + ρϕ̇eϕ

)
− k

16π

{(
ρ̈− ρϕ̇2

)
eρ +

(
ρϕ̈+ 2ρ̇ϕ̇

)
eϕ

}
− k

32π

{
ρ̇
(
ρ̇2 + ρ2ϕ̇2

)
eρ + ρϕ̇

(
ρ̇2 + ρ2ϕ̇2

)
eϕ

}
, (A.3.102)

where we neglected the terms related to the jerk. In vector form, we have

F =
k

4π

(
−γEuler + log

2

ϵ

)
ρ̇− k

16π
ρ̈− k

32π
|ρ̇|2 ρ̇. (A.3.103)
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The righthand side of the expanded concentration field in Eq. (A.3.31) is also obtained as follows:

c(r;ρ) (A.3.104)

=
1

2π
K0 (|r − ρ|)− 1

4π
K0 (|r − ρ|) (r − ρ) · ρ̇+

1

16π
|r − ρ|K1 (|r − ρ|) (r − ρ) · ρ̈

+
1

16π
|ρ̇|2K0 (|r − ρ|) + 1

16π
K0 (|r − ρ|) ((r − ρ) · ρ̇)2 + 1

32π
|ρ̇|2|r − ρ|K1 (|r − ρ|) (r − ρ) · ρ̇

− 1

96π
K0 (|r − ρ|) ((r − ρ) · ρ̇)3 + 1

32π
|r − ρ|2K2 (|r − ρ|) ρ̇ · ρ̈

− 1

32π
|r − ρ|K1 (|r − ρ|) ((r − ρ) · ρ̇) ((r − ρ) · ρ̈)− 1

96π
|r − ρ|2K2 (|r − ρ|) (r − ρ) ·

...
ρ

(A.3.105)

= c00 (|r − ρ|) + c10 (|r − ρ|) (r − ρ) · ρ̇+ c20 (|r − ρ|) (r − ρ) · ρ̈+ c21 (|r − ρ|) |ρ̇|2

+ c22 (|r − ρ|) [(r − ρ) · ρ̇]2 + c30 (|r − ρ|) (r − ρ) ·
...
ρ + c31 (|r − ρ|) |ρ̇|2 (r − ρ) · ρ̇

+ c32 (|r − ρ|) [(r − ρ) · ρ̇]3 + c33 (|r − ρ|) ρ̇ · ρ̈+ c34 (|r − ρ|) [(r − ρ) · ρ̇] [(r − ρ) · ρ̈] .
(A.3.106)

Here we used Eqs. (A.3.32), (A.3.37), (A.3.41), (A.3.49), (A.3.53), (A.3.57), (A.3.61), (A.3.65),
(A.3.77), (A.3.81), (A.3.87), and (A.3.95), and defined the following functions:

c00 (|r − ρ|) = 1

2π
K0 (|r − ρ|) , c10 (|r − ρ|) = − 1

4π
K0 (|r − ρ|) ,

c20 (|r − ρ|) = 1

16π
|r − ρ|K1 (|r − ρ|) , c21 (|r − ρ|) = − 1

16π
|r − ρ|K1 (|r − ρ|) ,

c22 (|r − ρ|) = 1

16π
K0 (|r − ρ|) , c30 (|r − ρ|) = − 1

96π
|r − ρ|2K2 (|r − ρ|) ,

c31 (|r − ρ|) = 1

32π
|r − ρ|K1 (|r − ρ|) , c32 (|r − ρ|) = − 1

96π
K0 (|r − ρ|) ,

c33 (|r − ρ|) = 1

32π
|r − ρ|2K2 (|r − ρ|) , c34 (|r − ρ|) = − 1

32π
|r − ρ|K1 (|r − ρ|) . (A.3.107)

The terms in Eq. (A.3.107) for the camphor particle located at ρ = (ρ, ϕ) = (0.1, 0) in the water
chamber with a radius of R = 1 are plotted in Fig. A.3.2.

A.3.3 Derivation of Eq. (2.4.58)

Equation (2.4.57) is

cmn(t) =

∫ t

−∞
J|m|(kmnρ(t

′))e−imϕ(t′)e−(kmn
2+1)(t−t′)dt′

=e−(kmn
2+1)t

∫ t

−∞
J|m|(kmnρ(t

′))e−imϕ(t′)e(kmn
2+1)t′dt′

=e−(kmn
2+1)tI, (A.3.108)

where I is defined as

I =

∫ t

−∞
J|m|(kmnρ(t

′))e−imϕ(t′)e(kmn
2+1)t′dt′. (A.3.109)
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c
00

(|r  ρ|) c
20

(|r  ρ|) (r  ρ) • ρ..c
10

(|r  ρ|) (r  ρ) • ρ.

c
21

(|r  ρ|) |ρ|2
.

c
22

(|r  ρ|) (r  ρ) • ρ. c
30

(|r  ρ|) (r  ρ) • ρ...

c
33

(|r  ρ|) (ρ • ρ)
...

c
34

(|r  ρ|) ((r  ρ) • ρ) ((r  ρ) • ρ)
...

c
31

(|r  ρ|) |ρ|2 ((r  ρ) • ρ)
. .

c
32

(|r  ρ|) ((r  ρ) • ρ)3
.

Figure A.3.2: Concentration fields expanded with regarded to the position, velocity, acceleration,
and jerk shown in Eq. (A.3.106). The radius of the water chamber R is R = 1. Here we set
ρ = (ρ, ϕ) = (0.1, 0), ρ̇ = (ρ̇, ϕ̇) = (0.1, 0), ρ̈ = (ρ̈, ϕ̈) = (0.1, 0), and

...
ρ = (

...
ρ ,

...
ϕ ) = (0.1, 0).
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By expanding I using the partial integration, we have

∫ t

−∞
J|m|(kρ(t

′))e−imϕ(t′)eAt′dt′

=
1

A
J|m|(kρ(t))e

−imϕ(t)eAt − 1

A2

{
k ˙ρ(t)J ′

|m|(kρ(t))− imϕ̇(t)J|m|(kρ(t))
}
e−imϕ(t)eAt

+
1

A3

{
kρ̈(t)J ′

|m|(kρ(t)) + k2(ρ̇(t))2J ′′
|m|(kρ(t))

−2ikmρ̇(t)ϕ̇(t)J ′
|m|(kρ(t))− imϕ̈(t)J|m|(kρ(t))−m2(ϕ̇(t))2J|m|(kρ(t))

}
e−imϕ(t)eAt

− 1

A4

{
k
...
ρ (t)J ′

|m|(kρ(t)) + k2ρ̇(t)ρ̈(t)J ′′
|m|(kρ(t))− 3ikmρ̈(t)ϕ̇(t)J ′

|m|(kρ(t)) + k3(ρ̇(t))3J ′′′
|m|(kρ(t))

− 3ik2m(ρ̇(t))2ϕ̇(t)J ′′
|m|(kρ(t))− 3ikmρ̇(t)ϕ̈(t)J ′

|m|(kρ(t))− 3km2ρ̇(t)(ϕ̇(t))2J ′
|m|(kρ(t))

−im
...
ϕ (t)J|m|(kρ(t))− 3m2ϕ̇(t)ϕ̈(t)J|m|(kρ(t)) + im3(ϕ̇(t))3J|m|(kρ(t))

}
e−imϕ(t)eAt

+ · · · , (A.3.110)

where we denote kmn = k and kmn
2 + 1 = A. By truncating the higher-order terms of ρ and

high-order time derivatives, we have Eq. (2.4.58).

A.3.4 Derivation of Eq. (2.4.60)

The first term in the righthand side in Eq. (2.4.59) should correspond to the steady state with
a fixed camphor particle located at (ρ, ϕ). The steady state is independently obtained as shown in
Eq. (2.4.47). Thus we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
1

kmn
2 + 1

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=
1

2π
K0

(√
r2 + ρ2 − 2rρ cos(θ − ϕ)

)
− 1

2π

∞∑
m=−∞

Km
′(R)

Im′(R)
Im(ρ)Im(r)eim(θ−ϕ)

= (main term)− 1

2π

∞∑
m=−∞

Km
′(R)

Im′(R)
Im(ρ)Im(r)eim(θ−ϕ)

= (main term)− 1

2π

K0
′(R)

I0′(R)
Im(ρ)Im(r)− 1

π

∞∑
m=1

Km
′(R)

Im′(R)
Im(ρ)Im(r) cosm(θ − ϕ)

= (main term) +

∞∑
m=0

h00m (R)g00m (r, ρ) cosm(θ − ϕ)

= (main term) + a01(R, r) + a02(R, r)ρ2 + a03(R, r)ρ cos(θ − ϕ) + a04(R, r)ρ3 cos(θ − ϕ)

+ a05(R, r)ρ2 cos 2(θ − ϕ) + a06(R, r)ρ3 cos 3(θ − ϕ) +O(ρ4). (A.3.111)
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By changing the length scale, i.e., ρ → λρ, r → λr, R → λR, kmn → kmn/λ, amn → amn/λ
2, we

have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
1

kmn
2 + λ2

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

= (main term)− 1

2π

K0
′(λR)

I0′(λR)
Im(λρ)Im(λr)− 1

π

∞∑
m=1

Km
′(λR)

Im′(λR)
Im(λρ)Im(λr) cosm(θ − ϕ)

= (main term) +
∞∑

m=0

h̄00m (λ,R)ḡ00m (λ, r, ρ) cosm(θ − ϕ). (A.3.112)

Here we do not consider the main term, since the effect by the main term corresponds to the
concentration field without boundaries and is already calculated as shown in Eq. (A.3.105). By
differentiating the both sides with regard to λ and then dividing the both sides by 2λ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−1

(kmn
2 + λ2)2

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=
∞∑

m=0

(
h̄10m (λ,R)ḡ00m (λ, r, ρ) + h̄11m (λ,R)ḡ10m (λ, r, ρ)

)
cosm(θ − ϕ). (A.3.113)

By setting λ to be 1, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−1

(kmn
2 + 1)2

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=

∞∑
m=0

(
h10m (R)g00m (r, ρ) + h11m (R)g10m (r, ρ)

)
cosm(θ − ϕ). (A.3.114)

By differentiating the both sides of Eq. (A.3.114) with regard to ρ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−kmn

(kmn
2 + 1)2

J ′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=

∞∑
m=0

(
h10m (R)g01m (r, ρ) + h11m (R)g11m (r, ρ)

)
cosm(θ − ϕ)

= a11(R, r)ρ+ a12(R, r) cos(θ − ϕ) + 3a13(R, r)ρ2 cos(θ − ϕ) + a14(R, r)ρ cos 2(θ − ϕ)

+ a15(R, r)ρ2 cos 3(θ − ϕ) +O(ρ3). (A.3.115)

Similarly, by differentiating the both sides of Eq. (A.3.114) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
im

(kmn
2 + 1)2

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=

∞∑
m=1

m
(
h10m (R)g00m (r, ρ) + h11m (R)g10m (r, ρ)

)
sinm(θ − ϕ)

= a12(R, r)ρ sin(θ − ϕ) + a13(R, r)ρ3 sin(θ − ϕ) + a14(R, r)ρ2 sin 2(θ − ϕ)

+ a15(R, r)ρ3 sin 3(θ − ϕ) +O(ρ4). (A.3.116)
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By differentiating the both sides of Eq. (A.3.113) with regard to λ and then dividing the both sides
by 4λ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
1

(kmn
2 + λ2)3

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=

∞∑
m=0

(
h̄20m (λ,R)ḡ00m (λ, r, ρ) + h̄21m (λ,R)ḡ10m (λ, r, ρ) + h̄22m (λ,R)ḡ20m (λ, r, ρ)

)
cosm(θ − ϕ).

(A.3.117)

By setting λ to be 1, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
1

(kmn
2 + 1)3

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=

∞∑
m=0

(
h20m (R)g00m (r, ρ) + h21m (R)g10m (r, ρ) + h22m (R)g20m (r, ρ)

)
cosm(θ − ϕ). (A.3.118)

By differentiating the both sides of Eq. (A.3.118) with regard to ρ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
kmn

(kmn
2 + 1)3

J ′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=
∞∑

m=0

(
h20m (R)g01m (r, ρ) + h21m (R)g11m (r, ρ) + h22m (R)g21m (r, ρ)

)
cosm(θ − ϕ) (A.3.119)

= a21(R, r)ρ+ a22(R, r) cos(θ − ϕ) + 3a23(R, r)ρ2 cos(θ − ϕ) + a24(R, r)ρ cos 2(θ − ϕ)

+ a25(R, r)ρ2 cos 3(θ − ϕ) +O(ρ3). (A.3.120)

By differentiating the both sides of Eq. (A.3.119) with regard to ρ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
kmn

2

(kmn
2 + 1)3

J ′′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=

∞∑
m=0

(
h20m (R)g02m (r, ρ) + h21m (R)g12m (r, ρ) + h22m (R)g22m (r, ρ)

)
cosm(θ − ϕ) (A.3.121)

= a21(R, r) + 6a23(R, r)ρ cos(θ − ϕ) + a24(R, r) cos 2(θ − ϕ) + 2a25(R, r)ρ cos 3(θ − ϕ) +O(ρ2).
(A.3.122)

By differentiating the both sides of Eq. (A.3.119) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−imkmn

(kmn
2 + 1)3

J ′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=

∞∑
m=1

m
(
h20m (R)g01m (r, ρ) + h21m (R)g11m (r, ρ) + h22m (R)g21m (r, ρ)

)
sinm(θ − ϕ) (A.3.123)

=
1

2

[
2a22(R, r) sin(θ − ϕ) + 6a23(R, r)ρ2 sin(θ − ϕ) + 4a24(R, r)ρ sin 2(θ − ϕ)

+6a25(R, r)ρ2 sin 3(θ − ϕ)
]
+O(ρ3). (A.3.124)
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By differentiating the both sides of Eq. (A.3.118) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−im

(kmn
2 + 1)3

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=

∞∑
m=1

m
(
h20m (R)g00m (r, ρ) + h21m (R)g10m (r, ρ) + h22m (R)g20m (r, ρ)

)
sinm(θ − ϕ) (A.3.125)

= a22(R, r)ρ sin(θ − ϕ) + a23(R, r)ρ3 sin(θ − ϕ) + a24(R, r)ρ2 sin 2(θ − ϕ)

+ a25(R, r)ρ3 sin 3(θ − ϕ) +O(ρ4). (A.3.126)

By differentiating the both sides of Eq. (A.3.125) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−m2

(kmn
2 + 1)3

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

= −
∞∑

m=1

m2
(
h20m (R)g00m (r, ρ) + h21m (R)g10m (r, ρ) + h22m (R)g20m (r, ρ)

)
cosm(θ − ϕ) (A.3.127)

= −a22(R, r)ρ cos(θ − ϕ)− a23(R, r)ρ3 cos(θ − ϕ)− 2a24(R, r)ρ2 cos 2(θ − ϕ)

− 3a25(R, r)ρ3 cos 3(θ − ϕ) +O(ρ4). (A.3.128)

By differentiating the both sides of Eq. (A.3.117) with regard to λ and then dividing the both sides
by 6λ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−1

(kmn
2 + λ2)4

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=

∞∑
m=0

(
h̄30m (λ,R)ḡ00m (λ, r, ρ) + h̄31m (λ,R)ḡ10m (λ, r, ρ) + h̄32m (λ,R)ḡ20m (λ, r, ρ)

+h̄33m (λ,R)ḡ30m (λ, r, ρ)
)
cosm(θ − ϕ). (A.3.129)

By setting λ to be 1, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−1

(kmn
2 + 1)4

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=

∞∑
m=0

(
h30m (R)g00m (r, ρ) + h31m (R)g10m (r, ρ) + h32m (R)g20m (r, ρ) + h33m (R)g30m (r, ρ)

)
cosm(θ − ϕ).

(A.3.130)

By differentiating the both sides of Eq. (A.3.130) with regard to ρ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−kmn

(kmn
2 + 1)4

J ′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=
∞∑

m=0

(
h30m (R)g01m (r, ρ) + h31m (R)g11m (r, ρ) + h32m (R)g21m (r, ρ) + h33m (R)g31m (r, ρ)

)
cosm(θ − ϕ)

(A.3.131)

= a31(R, r)ρ+ a32(R, r)ρ cos(θ − ϕ) + 3a33(R, r)ρ2 cos(θ − ϕ) + a34(R, r)ρ cos 2(θ − ϕ)

+ a35(R, r)ρ2 cos 3(θ − ϕ) +O(ρ3). (A.3.132)
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By differentiating the both sides of Eq. (A.3.131) with regard to ρ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−kmn

2

(kmn
2 + 1)4

J ′′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=
∞∑

m=0

(
h30m (R)g02m (r, ρ) + h31m (R)g12m (r, ρ) + h32m (R)g22m (r, ρ) + h33m (R)g32m (r, ρ)

)
cosm(θ − ϕ)

(A.3.133)

= a31(R, r) + 6a33(R, r)ρ cos(θ − ϕ) + a34(R, r) cos 2(θ − ϕ) + 2a35(R, r)ρ cos 3(θ − ϕ) +O(ρ2).
(A.3.134)

By differentiating the both sides of Eq. (A.3.133) with regard to ρ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−kmn

3

(kmn
2 + 1)4

J ′′′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=

∞∑
m=0

(
h30m (R)g03m (r, ρ) + h31m (R)g13m (r, ρ) + h32m (R)g23m (r, ρ) + h33m (R)g33m (r, ρ)

)
cosm(θ − ϕ)

(A.3.135)

= 6a33(R, r) cos(θ − ϕ) + 2a35(R, r) cos 3(θ − ϕ) +O(ρ). (A.3.136)

By differentiating the both sides of Eq. (A.3.131) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−imkmn

(kmn
2 + 1)4

J ′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=
∞∑

m=1

m
(
h30m (R)g01m (r, ρ) + h31m (R)g11m (r, ρ) + h32m (R)g21m (r, ρ) + h33m (R)g31m (r, ρ)

)
sinm(θ − ϕ)

(A.3.137)

= a32(R, r) sin(θ − ϕ) + 3a33(R, r)ρ2 sin(θ − ϕ) + 2a34(R, r)ρ sin 2(θ − ϕ)

+ 3a35(R, r)ρ2 sin 3(θ − ϕ) +O(ρ3). (A.3.138)

By differentiating the both sides of Eq. (A.3.137) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−m2kmn

(kmn
2 + 1)4

J ′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

= −
∞∑

m=1

m2
(
h30m (R)g01m (r, ρ) + h31m (R)g11m (r, ρ) + h32m (R)g21m (r, ρ) + h33m (R)g31m (r, ρ)

)
cosm(θ − ϕ)

(A.3.139)

= −a32(R, r) cos(θ − ϕ)− 3a33(R, r)ρ2 cos(θ − ϕ)− 4a34(R, r)ρ cos 2(θ − ϕ)

− 9a35(R, r)ρ2 cos 3(θ − ϕ) +O(ρ3). (A.3.140)
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By differentiating the both sides of Eq. (A.3.133) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−imkmn

2

(kmn
2 + 1)4

J ′′
|m|(kmnρ)J|m|(kmnr)e

im(θ−ϕ)

=

∞∑
m=1

m
(
h30m (R)g02m (r, ρ) + h31m (R)g12m (r, ρ) + h32m (R)g22m (r, ρ) + h33m (R)g32m (r, ρ)

)
sinm(θ − ϕ)

(A.3.141)

= 6a33(R, r)ρ sin(θ − ϕ) + 2a34(R, r) sin 2(θ − ϕ) + 6a35(R, r)ρ sin 3(θ − ϕ) +O(ρ2).
(A.3.142)

By differentiating the both sides of Eq. (A.3.130) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−im

(kmn
2 + 1)4

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

=
∞∑

m=1

m
(
h30m (R)g00m (r, ρ) + h31m (R)g10m (r, ρ) + h32m (R)g20m (r, ρ) + h33m (R)g30m (r, ρ)

)
sinm(θ − ϕ)

(A.3.143)

= a32(R, r)ρ sin(θ − ϕ) + a33(R, r)ρ3 sin(θ − ϕ) + a34(R, r)ρ2 sin 2(θ − ϕ)

+ a35(R, r)ρ3 sin 3(θ − ϕ) +O(ρ4). (A.3.144)

By differentiating the both sides of Eq. (A.3.143) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
−m2

(kmn
2 + 1)4

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

= −
∞∑

m=1

m2
(
h30m (R)g00m (r, ρ) + h31m (R)g10m (r, ρ) + h32m (R)g20m (r, ρ) + h33m (R)g30m (r, ρ)

)
cosm(θ − ϕ)

(A.3.145)

= −a32(R, r)ρ cos(θ − ϕ)− a33(R, r)ρ3 cos(θ − ϕ)− 2a34(R, r)ρ2 cos 2(θ − ϕ)

− 3a35(R, r)ρ3 cos 3(θ − ϕ) +O(ρ4). (A.3.146)

By differentiating the both sides of Eq. (A.3.145) with regard to ϕ, we have

1

2π

∞∑
m=−∞

∞∑
n=0

amn
im3

(kmn
2 + 1)4

J|m|(kmnρ)J|m|(kmnr)e
im(θ−ϕ)

= −
∞∑

m=1

m3
(
h30m (R)g00m (r, ρ) + h31m (R)g10m (r, ρ) + h32m (R)g20m (r, ρ) + h33m (R)g30m (r, ρ)

)
sinm(θ − ϕ)

(A.3.147)

= −a32(R, r)ρ sin(θ − ϕ)− a33(R, r)ρ2 sin(θ − ϕ)− 4a34(R, r)ρ sin 2(θ − ϕ)

− 9a35(R, r)ρ3 sin 3(θ − ϕ) +O(ρ4). (A.3.148)

Here we define hijm(R) = h̄ijm(1, R) and the explicit forms of h̄ijm(λ,R) are as follows:

h̄00m (λ,R) = −σm
π

K′
m(λR)

I ′
m(λR)

, (A.3.149)
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h̄10m (λ,R) =
1

2λ

d

dλ
h̄00m (λ,R) = −σm

2π

(
1

λ2
+

m2

λ4R2

)
1

(I ′
m(λR))2

, (A.3.150)

h̄11m (λ,R) =
1

2λ
h̄00m (λ,R) = − σm

2πλ

K′
m(λR)

I ′
m(λR)

, (A.3.151)

h̄20m (λ,R) =
1

4λ

d

dλ

(
1

2λ

d

dλ
h̄00m (λ,R)

)
=
σm
4π

((
1

λ4
+

2m2

λ6R2

)
1

(I ′
m(λR))2

+

(
1

λ3
+

m2

λ5R2

)
RI ′′

m(λR)

(I ′
m(λR))3

)
, (A.3.152)

h̄21m (λ,R) =
1

4λ

(
1

2λ

d

dλ
h̄000 (λ,R)

)
+

1

4λ

d

dλ

(
1

2λ
h̄000 (λ,R)

)
=
σm
8π

(
−2

(
1

λ3
+

m2

λ5R2

)
1

(I ′
m(λR))2

+
K′

m(λR)

λ3I ′
m(λR)

)
, (A.3.153)

h̄22m (λ,R) =
1

4λ
h11m (λ,R) = − σm

8πλ2
K′

m(λR)

I ′
m(λR)

, (A.3.154)

h̄30m (λ,R) =
1

6λ

d

dλ

(
1

4λ

d

dλ

(
1

2λ

d

dλ
h̄00m (λ,R)

))
=− σm

24π

(
4

(
1

λ6
+

3m2

λ8R2

)
1

(I ′
m(λR))2

+

(
5

λ5
+

9m2

λ7R2

)
RI ′′

m(λR)

(I ′
m(λR))3

−
(

1

λ4
+

m2

λ6R2

)
R2I ′′′

m(λR)

(I ′
m(λR))3

+ 3

(
1

λ4
+

m2

λ6R2

)
R2(I ′′

m(λR))2

(I ′
m(λR))4

)
, (A.3.155)

h̄31m (λ,R) =
1

6λ

(
1

4λ

d

dλ

(
1

2λ

d

dλ
h̄00m (λ,R)

))
+

1

6λ

d

dλ

(
1

4λ

(
1

2λ

d

dλ
h̄00m (λ,R)

))
+

1

6λ

d

dλ

(
1

4λ

d

dλ

(
1

2λ
h̄00m (λ,R)

))
=
σm
16π

((
3

λ5
+

5m2

λ7R2

)
1

(I ′
m(λR))2

+ 2

(
1

λ4
+

m2

λ6R2

)
RI ′′

m(λR)

(I ′
m(λR))3

− K′
m(λR)

λ5I ′
m(λR)

)
,

(A.3.156)

h̄32m (λ,R)

=
1

6λ

(
1

4λ

(
1

2λ

d

dλ
h̄00m (λ,R)

))
+

1

6λ

(
1

4λ

d

dλ

(
1

2λ
h̄00m (λ,R)

))
+

1

6λ

d

dλ

(
1

4λ

(
1

2λ
h̄00m (λ,R)

))
=

σm
16π

(
K′

m(λR)

λ4I ′
m(λR)

−
(

1

λ4
+

m2

λ6R2

)
1

(I ′
m(λR))2

)
, (A.3.157)

h̄33m (λ,R) =
1

6λ
h̄22m (λ,R) = − σm

48πλ3
K′

m(λR)

I ′
m(λR)

, (A.3.158)
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where σm is equal to 1 for m ̸= 0 and 1/2 for m = 0. We also define gi0m(r, ρ) = ḡi0m(1, r, ρ) and the
explicit forms of ḡi0m(λ, r, ρ) are as follows:

ḡ00m (λ, r, ρ) =Im(λr)Im(λρ), (A.3.159)

ḡ10m (λ, r, ρ) =
d

dλ
ḡ00m (λ, r, ρ) = rI ′

m(λr)Im(λρ) + ρIm(λr)I ′
m(λρ), (A.3.160)

ḡ20m (λ, r, ρ) =
d2

dλ2
ḡ00m (λ, r, ρ) = r2I ′′

m(λr)Im(λρ) + 2rρI ′
m(λr)I ′

m(λρ) + ρ2Im(λr)I ′′
m(λρ),

(A.3.161)

ḡ30m (λ, r, ρ) =
d3

dλ3
ḡ00m (λ, r, ρ)

=r3I ′′′
m(λr)Im(λρ) + 3r2ρI ′′

m(λr)I ′
m(λρ) + 3rρ2I ′

m(λr)I ′′
m(λρ) + ρ3Im(λr)I ′′′

m(λρ).
(A.3.162)

The functions gijm(r, ρ) (j ̸= 0) are defined by the derivatives of gi0m(r, ρ) with regard to r and/or ρ
as follows:

g01m (r, ρ) =
d

dρ

(
g00m (r, ρ)

)
= Im(r)I ′

m(ρ), (A.3.163)

g02m (r, ρ) =
d2

dρ2
(
g00m (r, ρ)

)
= Im(r)I ′′

m(ρ), (A.3.164)

g03m (r, ρ) =
d3

dρ3
(
g00m (r, ρ)

)
= Im(r)I ′′′

m(ρ), (A.3.165)

g11m (r, ρ) =
d

dρ
g10m (r, ρ) = rI ′

m(r)I ′
m(ρ) + Im(r)I ′

m(ρ) + ρIm(r)I ′′
m(ρ), (A.3.166)

g12m (r, ρ) =
d2

dρ2
g10m (r, ρ) = rI ′

m(r)I ′′
m(ρ) + 2Im(r)I ′′

m(ρ) + ρIm(r)I ′′′
m(ρ), (A.3.167)

g13m (r, ρ) =
d3

dρ3
g10m (r, ρ) = rI ′

m(r)I ′′′
m(ρ) + 3Im(r)I ′′′

m(ρ) + ρIm(r)I(4)
m (ρ), (A.3.168)

g21m (r, ρ) =
d

dρ
g20m (r, ρ)

=r2I ′′
m(r)I ′

m(ρ) + 2rI ′
m(r)I ′

m(ρ) + 2rρI ′
m(r)I ′′

m(ρ) + 2ρIm(r)I ′′
m(ρ) + ρ2Im(r)I ′′′

m(ρ),
(A.3.169)

g22m (r, ρ) =
d2

dρ2
g20m (r, ρ)

=r2I ′′
m(r)I ′′

m(ρ) + 4rI ′
m(r)I ′′

m(ρ) + 2rρI ′
m(r)I ′′′

m(ρ) + 2Im(r)I ′′
m(ρ)

+ 4ρIm(r)I ′′′
m(ρ) + ρ2Im(r)I(4)

m (ρ), (A.3.170)

g23m (r, ρ) =
d3

dρ3
g20m (r, ρ)

=r2I ′′
m(r)I ′′′

m(ρ) + 6rI ′
m(r)I ′′′

m(ρ) + 2rρI ′
m(r)I(4)

m (ρ) + 6Im(r)I ′′′
m(ρ)

+ 6ρIm(r)I(4)
m (ρ) + ρ2Im(r)I(5)

m (ρ), (A.3.171)
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g31m (r, ρ) =
d

dρ
g30m (r, ρ)

=r3I ′′′
m(r)I ′

m(ρ) + 3r2I ′′
m(r)I ′

m(ρ) + 3r2ρI ′′
m(r)I ′′

m(ρ) + 6rρI ′
m(r)I ′′

m(ρ) + 3rρ2I ′
m(r)I ′′′

m(ρ)

+ 3ρ2Im(r)I ′′′
m(ρ) + ρ3Im(r)I(4)

m (ρ), (A.3.172)

g32m (r, ρ) =
d2

dρ2
g30m (r, ρ)

=r3I ′′′
m(r)I ′′

m(ρ) + 6r2I ′′
m(r)I ′′

m(ρ) + 3r2ρI ′′
m(r)I ′′′

m(ρ) + 6rI ′
m(r)I ′′

m(ρ) + 12rρI ′
m(r)I ′′′

m(ρ)

+ 3rρ2I ′
m(r)I(4)

m (ρ) + 6ρIm(r)I ′′′
m(ρ) + 6ρ2Im(r)I(4)

m (ρ) + ρ3Im(r)I(5)
m (ρ), (A.3.173)

g33m (r, ρ) =
d3

dρ3
g30m (r, ρ)

=r3I ′′′
m(r)I ′′′

m(ρ) + 9r2I ′′
m(r)I ′′′

m(ρ) + 3r2ρI ′′
m(r)I(4)

m (ρ) + 18rI ′
m(r)I ′′′

m(ρ)

+ 18rρI ′
m(r)I(4)

m (ρ) + 3rρ2I ′
m(r)I(5)

m (ρ) + 6Im(r)I ′′′
m(ρ) + 18ρIm(r)I(4)

m (ρ)

+ 9ρ2Im(r)I(5)
m (ρ) + ρ3Im(r)I(6)

m (ρ), (A.3.174)

By expanding the explicit form of gijm with respect to ρ, the functions akl(R, r) are determined as
follows:

a01(R, r) = h000 (R)I0(r), a02(R, r) =
1

4
h000 (R)I0(r),

a03(R, r) =
1

2
h001 (R)I1(r), a04(R, r) =

1

16
h001 (R)I1(r),

a05(R, r) =
1

8
h002 (R)I2(r), a06(R, r) =

1

48
h003 (R)I3(r), (A.3.175)

a11(R, r) =
1

2
((h100 (R) + 2h110 (R))I0(r) + h110 (R)rI ′

0(r)), (A.3.176)

a12(R, r) =
1

2
((h101 (R) + h111 (R))I1(r) + h111 (R)rI ′

1(r)), (A.3.177)

a13(R, r) =
3

16
((h101 (R) + 3h111 (R))I1(r) + h111 (R)rI ′

1(r)), (A.3.178)

a14(R, r) =
1

4
((h102 (R) + 2h112 (R))I2(r) + h112 (R)rI ′

2(r)), (A.3.179)

a15(R, r) =
1

16
((h103 (R) + 3h113 (R))I3(r) + h113 (R)rI ′

3(r)), (A.3.180)

a21(R, r) =
1

2
((h200 (R) + 2h210 (R) + 2h220 (R))I0(r) + (h210 (R) + 4h220 (R))rI ′

0(r) + h220 (R)r2I ′′
0 (r)),

(A.3.181)

a22(R, r) =
1

2
((h201 (R) + h211 (R))I1(r) + (h211 (R) + 2h221 (R))rI ′

1(r) + h221 (R)r2I ′′
1 (r)), (A.3.182)

a23(R, r) =
1

16
((h201 (R) + 3h211 (R) + 6h221 (R))I1(r) + (h211 (R) + 6h221 (R))rI ′

1(r) + h221 (R)r2I ′′
1 (r)),

(A.3.183)

a24(R, r) =
1

4
((h202 (R) + 2h212 (R) + 2h222 (R))I2(r) + (h212 (R) + 4h222 (R))rI ′

2(r) + h222 (R)r2I ′′
2 (r)),

(A.3.184)
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a25(R, r) =
1

16
((h203 (R) + 3h213 (R) + 6h223 (R))I1(r) + (h213 (R) + 6h223 (R))rI ′

1(r) + h223 (R)r2I ′′
3 (r)).

(A.3.185)

a31(R, r) =
1

2
((h300 (R) + 2h310 (R) + 2h320 (R))I0(r) + (h310 (R) + 4h320 (R) + 6h360 (R))rI ′

0(r)

+ (h320 (R) + 6h320 (R))r2I ′′
0 (r) + h310 (R))r3I ′′′

0 (r)), (A.3.186)

a32(R, r) =
1

2
((h301 (R) + h311 (R))I1(r) + (h311 (R) + 2h320 (R))rI ′

1(r)

+ (h320 (R) + 3h320 (R))r2I ′′
1 (r) + h330 (R))r3I ′′′

1 (r)), (A.3.187)

a33(R, r) =
1

16
((h301 (R) + 3h311 (R) + 6h321 (R) + 6h331 (R))I1(r) + (h311 (R) + 6h321 (R) + 18h361 (R))rI ′

1(r)

+ (h321 (R) + 9h331 (R))r2I ′′
1 (r) + h331 (R))r3I ′′′

1 (r)), (A.3.188)

a34(R, r) =
1

4
((h302 (R) + 2h312 (R) + 2h322 (R))I2(r) + (h312 (R) + 4h322 (R) + 6h362 (R))rI ′

2(r)

+ (h322 (R) + 6h322 (R))r2I ′′
2 (r) + h312 (R))r3I ′′′

2 (r)), (A.3.189)

a35(R, r) =
1

16
((h303 (R) + 3h313 (R) + 6h323 (R) + 6h333 (R))I3(r) + (h313 (R) + 6h323 (R) + 18h363 (R))rI ′

3(r)

+ (h323 (R) + 9h333 (R))r2I ′′
3 (r) + h333 (R))r3I ′′′

3 (r)), (A.3.190)

From the symmetric property of the system, the concentration field expanded with regard to ρ
should have the following form:

c(r;ρ)

= c000 (R, r) + c100 (R, r)(r · ρ) + c200 (R, r)(r · ρ)2 + c201 (R, r)|ρ|2 + c110 (R, r) (r · ρ̇)
+ c300 (R, r)(r · ρ)3 + c301 (R, r)|ρ|2(r · ρ)
+ c210 (R, r) (ρ · ρ̇) + c211 (R, r) (r · ρ) (r · ρ̇) + c120 (R, r) (r · ρ̈)
+ c310 (R, r)|ρ|2 (r · ρ̇) + c311 (R, r) (r · ρ) (ρ · ρ̇) + c312 (R, r) (r · ρ)2 (r · ρ̇)
+ c220 (R, r) (ρ · ρ̈) + c221 (R, r) |ρ̇|2 + c222 (R, r) (r · ρ) (r · ρ̈) + c223 (R, r) (r · ρ̇)2 + c130 (R, r) (r ·

...
ρ)

+ c320 (R, r) |ρ̇|2 (r · ρ) + c321 (R, r) (r · ρ̇) (ρ · ρ̇) + c322 (R, r) (r · ρ) (r · ρ̇)2 + c323 (R, r) (r · ρ) (ρ · ρ̈)
+ c324 (R, r) |ρ|2 (r · ρ̈) + c325 (R, r) (r · ρ)2 (r · ρ̈)
+ c230 (R, r) (ρ ·

...
ρ) + c231 (R, r) (ρ̇ · ρ̈) + c232 (R, r) (r · ρ̇) (r · ρ̈) + c233 (R, r) (r · ρ) (r ·

...
ρ)

+ c330 (R, r) |ρ|2 (r ·
...
ρ) + c331 (R, r) |ρ̇|2 (r · ρ̇) + c332 (R, r) (r · ρ) (ρ ·

...
ρ) + c333 (R, r) (r · ρ̇)3

+ c334 (R, r) (r · ρ) (ρ̇ · ρ̈) + c335 (R, r) (r · ρ)2 (r ·
...
ρ) + c336 (R, r) (r · ρ̇) (ρ · ρ̈)

+ c337 (R, r) (r · ρ̈) (ρ · ρ̇) + c338 (R, r) (r · ρ) (r · ρ̇) (r · ρ̈) . (A.3.191)

Comparing Eq. (A.3.191) with Eq. (A.3.111), we have

c000 (R, r) = a01(R, r), c100 (R, r) =
1

r
a03(R, r),

c200 (R, r) =
2

r2
a05(R, r), c201 (R, r) = a02(R, r)− a05(R, r),

c300 (R, r) =
4

r3
a06(R, r), c301 (R, r) =

1

r
(a04(R, r)− 3a06(R, r)). (A.3.192)
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Comparing Eq. (A.3.191) with Eqs. (A.3.115) and (A.3.116), we have

c110 (R, r) =
1

r
a12(R, r), c210 (R, r) = a11(R, r)− a14(R, r),

c211 (R, r) =
2

r2
a14(R, r), c310 (R, r) =

1

r
(a13(R, r)− a15(R, r)),

c311 (R, r) =
2

r
(a13(R, r)− a15(R, r)), c312 (R, r) =

4

r3
a15(R, r). (A.3.193)

Comparing Eq. (A.3.191) with Eqs. (A.3.120), (A.3.122), (A.3.124), (A.3.126), and (A.3.128), we
have

c120 (R, r) =
1

r
a22(R, r), c220 (R, r) = a21(R, r)− a24(R, r),

c221 (R, r) = a21(R, r)− a24(R, r), c222 (R, r) =
2

r2
a24(R, r),

c223 (R, r) =
2

r2
a24(R, r), c320 (R, r) =

2

r
(a23(R, r)− a25(R, r)),

c321 (R, r) =
4

r
(a23(R, r)− a25(R, r)), c322 (R, r) =

8

r3
a25(R, r),

c323 (R, r) =
2

r
(a23(R, r)− a25(R, r)), c324 (R, r) =

1

r
(a23(R, r)− a25(R, r)),

c325 (R, r) =
4

r3
a25(R, r). (A.3.194)

Comparing Eq. (A.3.191) with Eqs. (A.3.132), (A.3.134), (A.3.136), (A.3.138), (A.3.140), (A.3.142),
(A.3.144), (A.3.146), and (A.3.148), we have

c130 (R, r) =
1

r
a32(R, r), c230 (R, r) = a31(R, r)− a34(R, r),

c231 (R, r) = 3(a31(R, r)− a34(R, r)), c232 (R, r) =
6

r2
a34(R, r),

c233 (R, r) =
2

r2
a34(R, r), c330 (R, r) =

1

r
(a33(R, r)− a35(R, r)),

c331 (R, r) =
6

r
(a33(R, r)− a35(R, r)), c332 (R, r) =

2

r
(a33(R, r)− a35(R, r)),

c333 (R, r) =
8

r3
a35(R, r), c334 (R, r) =

6

r
(a33(R, r)− a35(R, r)),

c335 (R, r) =
4

r3
a35(R, r), c336 (R, r) =

6

r
(a33(R, r)− a35(R, r)),

c337 (R, r) =
6

r
(a33(R, r)− a35(R, r)), c338 (R, r) =

24

r3
a35(R, r). (A.3.195)

The terms in Eq. (A.3.191) for the camphor particle located at ρ = (ρ, ϕ) = (0.1, 0) in the water
chamber with a radius of R = 1 are plotted in Figs. A.3.3, A.3.4, A.3.5, A.3.6, A.3.7, A.3.8, and
A.3.9.
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Then we calculate the reduced driving force as follows:

∇rc(r;ρ)

=
1

r
c′
00
0 (R, r)r +

1

r
c′
10
0 (R, r)(r · ρ)r + c100 (R, r)ρ

+
1

r
c′
20
0 (R, r)(r · ρ)2r + 2c200 (R, r)(r · ρ)ρ+

1

r
c′
20
1 (R, r)|ρ|2r +

1

r
c′
11
0 (R, r) (r · ρ̇) r + c110 (R, r)ρ̇

+
1

r
c′
30
0 (R, r)(r · ρ)3r + 3c300 (R, r)(r · ρ)2ρ+

1

r
c′
30
1 (R, r)|ρ|2(r · ρ)r + c301 (R, r)|ρ|2ρ

+
1

r
c′
21
0 (R, r) (ρ · ρ̇) r +

1

r
c′
21
1 (R, r) (r · ρ) (r · ρ̇) r + c211 (R, r) (r · ρ̇)ρ+ c211 (R, r) (r · ρ) ρ̇

+
1

r
c′
12
0 (R, r) (r · ρ̈) r + c120 (R, r)ρ̈

+
1

r
c′
31
0 (R, r)|ρ|2 (r · ρ̇) r + c310 (R, r)|ρ|2ρ̇+

1

r
c′
31
1 (R, r) (r · ρ) (ρ · ρ̇) r + c311 (R, r) (ρ · ρ̇)ρ

+
1

r
c′
31
2 (R, r) (r · ρ)2 (r · ρ̇) r + 2c312 (R, r) (r · ρ) (r · ρ̇)ρ+ c312 (R, r) (r · ρ)2 ρ̇

+
1

r
c′
22
0 (R, r) (ρ · ρ̈) r +

1

r
c′
22
1 (R, r) |ρ̇|2 r +

1

r
c′
22
2 (R, r) (r · ρ) (r · ρ̈) r + c222 (R, r) (r · ρ̈)ρ

+ c222 (R, r) (r · ρ) ρ̈+
1

r
c′
22
3 (R, r) (r · ρ̇)2 r + 2c223 (R, r) (r · ρ̇) ρ̇+

1

r
c′
13
0 (R, r) (r ·

...
ρ) r + c130 (R, r)

...
ρ

+
1

r
c′
32
0 (R, r) |ρ̇|2 (r · ρ) r + c320 (R, r) |ρ̇|2 ρ+

1

r
c′
32
1 (R, r) (r · ρ̇) (ρ · ρ̇) r + c321 (R, r) (ρ · ρ̇) ρ̇

+
1

r
c′
32
2 (R, r) (r · ρ) (r · ρ̇)2 r + c322 (R, r) (r · ρ̇)2 ρ+ 2c322 (R, r) (r · ρ) (r · ρ̇) ρ̇

+
1

r
c′
32
3 (R, r) (r · ρ) (ρ · ρ̈) r + c323 (R, r) (ρ · ρ̈)ρ+

1

r
c′
32
4 (R, r) |ρ|2 (r · ρ̈) r + c324 (R, r) |ρ|2 ρ̈r

+
1

r
c′
32
5 (R, r) (r · ρ)2 (r · ρ̈) + 2c325 (R, r) (r · ρ) (r · ρ̈)ρ+ c325 (R, r) (r · ρ)2 ρ̈

+
1

r
c′
23
0 (R, r) (ρ ·

...
ρ) r +

1

r
c′
23
1 (R, r) (ρ̇ · ρ̈) r +

1

r
c′
23
2 (R, r) (r · ρ̇) (r · ρ̈) r + c232 (R, r) (r · ρ̈) ρ̇

+ c232 (R, r) (r · ρ̇) ρ̈+
1

r
c′
23
3 (R, r) (r · ρ) (r ·

...
ρ) r + c233 (R, r) (r ·

...
ρ)ρ+ c233 (R, r) (r · ρ)

...
ρ

+
1

r
c′
33
0 (R, r) |ρ|2 (r ·

...
ρ) r + c330 (R, r) |ρ|2

...
ρ +

1

r
c′
33
1 (R, r) |ρ̇|2 (r · ρ̇) r + c331 (R, r) |ρ̇|2 ρ̇

+
1

r
c′
33
2 (R, r) (r · ρ) (ρ ·

...
ρ) r + c332 (R, r) (ρ ·

...
ρ)ρ+

1

r
c′
33
3 (R, r) (r · ρ̇)3 r + 3c333 (R, r) (r · ρ̇)2 ρ̇

+
1

r
c′
33
4 (R, r) (r · ρ) (ρ̇ · ρ̈) r + c334 (R, r) (ρ̇ · ρ̈)ρ+

1

r
c′
33
5 (R, r) (r · ρ)2 (r ·

...
ρ) r

+ 2c335 (R, r) (r · ρ) (r ·
...
ρ)ρ+ c335 (R, r) (r · ρ)2

...
ρ +

1

r
c′
33
6 (R, r) (r · ρ̇) (ρ · ρ̈) r + c336 (R, r) (ρ · ρ̈) ρ̇

+
1

r
c′
33
7 (R, r) (r · ρ̈) (ρ · ρ̇) r + c337 (R, r) (ρ · ρ̇) ρ̈+

1

r
c′
33
8 (R, r) (r · ρ) (r · ρ̇) (r · ρ̈) r

+ c338 (R, r) (r · ρ̇) (r · ρ̈)ρ+ c338 (R, r) (r · ρ) (r · ρ̈) ρ̇+ c338 (R, r) (r · ρ) (r · ρ̇) ρ̈, (A.3.196)
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where prime (′) represents the differentiation with regard to r. By substituting ρ with r, we have

∇ρc(ρ;ρ)

=

[
1

ρ
c′
00
0 (R, ρ) + c′

10
0 (R, ρ)ρ+ c100 (R, ρ) + c′

20
0 (R, ρ)ρ3 + 2c200 (R, ρ)ρ2 + c′

20
1 (R, ρ)ρ+ c′

30
0 (R, ρ)ρ5

+3c300 (R, ρ)ρ4 + c′
30
1 (R, ρ)ρ3 + c301 (R, ρ)ρ2

]
ρ

+

[
1

ρ
c′
11
0 (R, ρ) +

1

ρ
c′
21
0 (R, ρ) + c′

21
1 (R, ρ)ρ+ c211 (R, ρ) + c′

31
0 (R, ρ)ρ+ c′

31
1 (R, ρ)ρ

+c311 (R, ρ) + c′
31
2 (R, ρ)ρ3 + 2c312 (R, ρ)ρ2

]
(ρ · ρ̇)ρ

+
[
c110 (R, ρ) + c211 (R, ρ)ρ2 + c310 (R, ρ)ρ2 + c312 (R, ρ)ρ4

]
ρ̇

+

[
1

ρ
c′
12
0 (R, ρ) +

1

ρ
c′
22
0 (R, ρ) + c′

22
2 (R, ρ)ρ+ c222 (R, ρ) + c′

32
3 (R, ρ)ρ+ c323 (R, ρ) + c′

32
4 (R, ρ)ρ

+c′
32
5 (R, ρ)ρ3 + 2c325 (R, ρ)ρ2

]
(ρ · ρ̈)ρ

+
[
c120 (R, ρ) + c222 (R, ρ)ρ2 + c324 (R, ρ)ρ2 + c325 (R, ρ)ρ4

]
ρ̈

+

[
1

ρ
c′
22
1 (R, ρ) + c′

32
0 (R, ρ)ρ+ c320 (R, ρ)

]
|ρ̇|2 ρ

+

[
1

ρ
c′
22
3 (R, ρ) +

1

ρ
c′
32
1 (R, ρ) + c′

32
2 (R, ρ)ρ+ c322 (R, ρ)

]
(ρ · ρ̇)2 ρ

+
[
2c223 (R, ρ) + c321 (R, ρ) + 2c322 (R, ρ)ρ2

]
(ρ · ρ̇) ρ̇

+

[
1

ρ
c′
13
0 (R, ρ) +

1

ρ
c′
23
0 (R, ρ) + c′

23
3 (R, ρ)ρ+ c233 (R, ρ) + c′

33
0 (R, ρ)ρ+ c′

33
2 (R, ρ)ρ

+c332 (R, ρ) + c′
33
5 (R, ρ)ρ3 + 2c335 (R, ρ)ρ2

]
(ρ ·

...
ρ)ρ

+
[
c130 (R, ρ) + c233 (R, ρ)ρ2 + c330 (R, ρ)ρ2 + c335 (R, ρ)ρ4

] ...
ρ

+

[
1

ρ
c′
23
1 (R, ρ) + c′

33
4 (R, ρ)ρ+ c334 (R, ρ)

]
(ρ̇ · ρ̈)ρ

+

[
1

ρ
c′
23
2 (R, ρ) +

1

ρ
c′
33
6 (R, ρ) +

1

ρ
c′
33
7 (R, ρ) + c′

33
8 (R, ρ)ρ+ c338 (R, ρ)

]
(ρ · ρ̇) (ρ · ρ̈)ρ

+
[
c232 (R, ρ) + c336 (R, ρ) + c338 (R, ρ)ρ2

]
(ρ · ρ̈) ρ̇+

[
c232 (R, ρ) + c337 (R, ρ) + c338 (R, ρ)ρ2

]
(ρ · ρ̇) ρ̈

+
1

ρ
c′
33
1 (R, ρ) |ρ̇|2 (ρ · ρ̇)ρ+ c331 (R, ρ) |ρ̇|2 ρ̇+

1

ρ
c′
33
3 (R, ρ) (ρ · ρ̇)3 ρ+ 3c333 (R, ρ) (ρ · ρ̇)2 ρ̇

(A.3.197)

= β1(R, ρ)ρ+ β2(R, ρ) (ρ · ρ̇)ρ+ β3(R, ρ)ρ̇+ β4(R, ρ) (ρ · ρ̈)ρ+ β5(R, ρ)ρ̈+ β6(R, ρ) |ρ̇|2 ρ
+ β7(R, ρ) (ρ · ρ̇)2 ρ+ β8(R, ρ) (ρ · ρ̇) ρ̇+ β9(R, ρ) (ρ ·

...
ρ)ρ+ β10(R, ρ)

...
ρ + β11(R, ρ) (ρ̇ · ρ̈)ρ

+ β12(R, ρ) (ρ · ρ̇) (ρ · ρ̈)ρ+ β13(R, ρ) (ρ · ρ̈) ρ̇+ β14(R, ρ) (ρ · ρ̇) ρ̈+ β15(R, ρ) |ρ̇|2 (ρ · ρ̇)ρ
+ β16(R, ρ) |ρ̇|2 ρ̇+ β17(R, ρ) (ρ · ρ̇)3 ρ+ β18(R, ρ) (ρ · ρ̇)2 ρ̇. (A.3.198)
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By expanding the functions βi(R, ρ) with regard to ρ, we have

F (ρ, ρ̇, ρ̈) =− ∇c(r;ρ)|r=ρ

=a(R)ρ+ b(R)ρ̇+ c(R)|ρ|2ρ+ g(R)ρ̈+ h(R)|ρ̇|2ρ+ j(R)(ρ · ρ̇)ρ
+ k(R)|ρ̇|2ρ̇+ h(R)|ρ|2ρ̇+ p(R)(ρ · ρ̇)ρ̇, (A.3.199)

where the functions a(R) and c(R) are the zeroth and second order coefficients of Taylor expansion
of β1(R, ρ) with regard to ρ, j(R) is the zeroth order coefficient of Taylor expansion of β2(R, ρ) with
regard to ρ, b(R) is the summation of (−γEuler + log(2/ϵ))/(4π) and the zeroth order coefficient
of Taylor expansion of β3(R, ρ) with regard to ρ, n(R) is the second order coefficient of Taylor
expansion of β3(R, ρ) with regard to ρ, g(R) is the summation of −1/(16π) and the zeroth order
coefficient of Taylor expansion of β5(R, ρ) with regard to ρ, h(R) is the zeroth order coefficient
of Taylor expansion of β6(R, ρ) with regard to ρ, p(R) is the zeroth order coefficient of Taylor
expansion of β8(R, ρ) with regard to ρ, and k(R) is the summation of −1/(32π) and the zeroth
order coefficient of Taylor expansion of β16(R, ρ) with regard to ρ.

The dependence of the coefficients on R is shown in Fig. A.3.10. When R goes to infinity, the
coefficients a(R), c(R), h(R), j(R), n(R), and p(R) go to zero and b(R), g(R), and k(R) go to
(−γEuler + log(2/ϵ))/(4π), −1/(16π), and −1/(32π), respectively, and thus these calculations are
consistent with the results for infinite case shown in Eq. (A.3.103).

A.3.5 Dependence of the coefficients in Eq. (2.4.61) on the water channel length
R

The coefficients of the terms in the driving force in Eq. (2.4.61) depends on R. Here we show
the dependence of a(R), b(R), c(R), g(R), h(R), j(R), k(R), n(R), and p(R) on the water channel
length R in Fig. A.3.10.
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c20

0
(R=1, r) (r • ρ)2

c
00

0
(R=1, r) c10

0
(R=1, r) (r • ρ)

c
20

1
(R=1, r) |ρ|2 c30

0
(R=1, r) (r • ρ)3 c30

1
(R=1, r) |ρ|2 (r • ρ)

Figure A.3.3: Concentration fields related to the steady state for the stopping camphor particle at
r = ρ. The explicit expressions for the components of the concentration field are in Eq. (A.3.192).
The radius of the water chamber R is R = 1. Here we set ρ = (ρ, ϕ) = (0.1, 0).
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c11

0
(R=1, r) (r • ρ)

.
c21

0
(R=1, r) (ρ • ρ)

.
c21

1
(R=1, r) (r • ρ)(r • ρ)

.

c31

0
(R=1, r) |ρ|2 (r • ρ)

.
c31

1
(R=1, r) (r • ρ)(ρ • ρ)

.
c31

2
(R=1, r) (r • ρ)2 (r • ρ)

.

Figure A.3.4: Concentration fields related to the first order of the velocity. The explicit expressions
for the components of the concentration field are in Eq. (A.3.193). The radius of the water chamber
R is R = 1. Here we set ρ = (ρ, ϕ) = (0.1, 0) and ρ̇ = (ρ̇, ϕ̇) = (0.1, 0).
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c12

0
(R=1, r) (r • ρ)
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(R=1, r) (r • ρ)(r • ρ)
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0
(R=1, r) (ρ • ρ)
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(R=1, r) (r • ρ)2 (r • ρ)
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Figure A.3.5: Concentration fields related to the first order of the acceleration. The explicit expres-
sions for the components of the concentration field are in Eq. (A.3.194). The radius of the water
chamber R is R = 1. Here we set ρ = (ρ, ϕ) = (0.1, 0) and ρ̈ = (ρ̈, ϕ̈) = (0.1, 0).
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(R=1, r) (r • ρ)(r • ρ)2

.

Figure A.3.6: Concentration fields related to the second order of the velocity. The explicit expres-
sions for the components of the concentration field are in Eq. (A.3.194). The radius of the water
chamber R is R = 1. Here we set ρ = (ρ, ϕ) = (0.1, 0) and ρ̇ = (ρ̇, ϕ̇) = (0.1, 0).
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Figure A.3.7: Concentration fields related to the first order of the jerk (time derivative of accelera-
tion). The explicit expressions for the components of the concentration field are in Eq. (A.3.195).
The radius of the water chamber R is R = 1. Here we set ρ = (ρ, ϕ) = (0.1, 0) and

...
ρ = (

...
ρ ,

...
ϕ ) =

(0.1, 0).

147



A Supplementary Information for Chapter 2
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Figure A.3.8: Concentration fields related to the cross term of first order of the velocity and accelera-
tion. The explicit expressions for the components of the concentration field are in Eq. (A.3.195). The
radius of the water chamber R is R = 1. Here we set ρ = (ρ, ϕ) = (0.1, 0) and ρ̇ = (ρ̇, ϕ̇) = (0.1, 0).

c33

1
(R=1, r) |ρ|2 (r • ρ)

. .
c33

3
(R=1, r) (r • ρ)3

.

Figure A.3.9: Concentration fields related to the third order of the velocity. The explicit expressions
for the components of the concentration field are in Eq. (A.3.195). The radius of the water chamber
R is R = 1. Here we set ρ = (ρ, ϕ) = (0.1, 0) and ρ̇ = (ρ̇, ϕ̇) = (0.1, 0).
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Figure A.3.10: Plots of the coefficients a(R), b(R), c(R), g(R), h(R), j(R), k(R), n(R), and p(R)
against the radius of water chamber R, which are shown in Eqs. (2.4.62), (2.4.63), (2.4.64), (2.4.65),
(2.4.66), (2.4.67), (2.4.68), (2.4.69), and (2.4.70).
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Appendix B

Supplementary Information for
Chapter 3

In this chapter, the supplementary information for Chapter 3 is provided.

B.1 Derivation of Oseen tensors in a two- and three-dimensional
fluid

In this section, we derive the Oseen tensors in a two- and three-dimensional systems. The Oseen
tensors are the Green’s function of the Stokesian equation with point force at the origin:

∇p− η∇2v = F δ(r), (B.1.1)

where p is pressure, η is kinetic viscosity, v is flow field, F is a constant vector corresponding to
the external point force, and δ(r) is the Dirac’s delta function. We also assume incompressibility
of fluid:

∇ · v = 0. (B.1.2)

We consider the Fourier transform of p(r), v(r), and δ(r).

p(r) =
1

(2π)d

∫
p̃(k)eik·rdk, (B.1.3)

v(r) =
1

(2π)d

∫
ṽ(k)eik·rdk, (B.1.4)

δ(r) =
1

(2π)d

∫
eik·rdk, (B.1.5)

where d = 2, 3 denotes the spatial dimension. Then Eqs. (B.1.1) and (B.1.2) in wavenumber space
are

ikp̃(k) + ηk2ṽ(k) = F , (B.1.6)

(B.1.7)

ik · ṽ(k) = 0. (B.1.8)
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By operating the scalar product with k to Eq. (B.1.6), the second term of the lefthand side becomes
0 from Eq. (B.1.8). Then we have

p̃(k) = −i 1
k2

k · F . (B.1.9)

By substituting Eq. (B.1.9) to Eq. (B.1.6), we have

ṽ(k) =
1

ηk2

(
1 − kk

k2

)
· F , (B.1.10)

where 1 is the unit tensor.

Here we derive the Oseen tensor in the two-dimensional system [87]. In the calculation below,
we assume r = rex.

G =
1

(2π)2

∫
1

ηk2

(
1 − kk

k2

)
eik·rdk

=
1

(2π)2η

∫ 2π

0

∫ ∞

0

1

k

(
1 − kk

k2

)
eikr cos θdkdθ

=
1

2πη

∫ ∞

0

1

k
J0(kr)dk −

1

4π2η

∫ 2π

0

∫ ∞

0

1

k

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
eikr cos θdkdθ

=
1

2πη

∫ ∞

0

1

k
J0(kr)dk −

1

2πη

∫ ∞

0

1

k

(
J1(kr)

kr − J2(kr) 0

0 J1(kr)
kr

)
dk

=
1

2πη

∫ ∞

0

1

k

[
1

2
(J0(kr)− J2(kr)) 1 +

(
J2(kr) 0

0 0

)]
dk

=
1

4πη

[(
−γEuler + ln

2

ϵ′
+ 1

)
1 +

(
1 0
0 0

)]
=

1

4πη

[(
−γEuler + ln

2

ϵ

)
1 + exex

]
, (B.1.11)

where γEuler is the Euler’s constant (γEuler ≃ 0.577). Here we used the following integrals (from
Eq. (5) on page 19 in Ref. [81]): ∫ 2π

0
eix cos θdθ = 2πJ0(x), (B.1.12)

∫ 2π

0
cos2 θeix cos θdθ =

2πJ1(x)

x
− 2πJ2(x), (B.1.13)

∫ 2π

0
sin θ cos θeix cos θdθ = 0, (B.1.14)

∫ 2π

0
sin2 θeix cos θdθ =

∫ 2π

0
(1− cos2 θ)eix cos θdθ = 2πJ0(x)−

(
2πJ1(x)

x
− 2πJ2(x)

)
=

2πJ1(x)

x
,

(B.1.15)
where J0(x) + J2(x) = −J1(x)/2. We also use the following definite integrals:∫ ∞

ϵ

J0(x)

x
dθ = −γEuler + ln

2

ϵ
, (B.1.16)
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Figure B.1.1: Streamlines of flow field induced by a point force. The flow fields GαβFβ in (a) a
two-dimensional and (b) a three-dimensional systems are shown. Here we set F = ex.

∫ ∞

0

J2(x)

x
dθ =

1

2
. (B.1.17)

By considering the symmetry, the Oseen tensor for arbitrary r is expressed as

Gαβ =
1

4πη

(
−(1 + ln(κr))1 +

rαrβ
r2

)
, (B.1.18)

where κ is a positive constant. The streamlines of flow field GαβFβ induced by a point force in the
two-dimensional system are expressed in Fig. B.1.1(a).

Next, we derive the Oseen tensor in a three-dimensional system. In the calculation below, we
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assume r = rez.

G =
1

(2π)3

∫
1

ηk2

(
1 − kk

k2

)
eik·rdk

=
1

(2π)3η

∫ 2π

0

∫ 1

−1

∫ ∞

0

(
1 − kk

k2

)
eikr cos θdkd(cos θ)dϕ

=
1

4π2η

∫ ∞

0

2 sin(kr)

kr
dkd(cos θ)

− 1
8π3η

∫ 2π

0

∫ 1

−1

∫ ∞

0

 sin2 θ cos2 ϕ sin2 θ sinϕ cosϕ sin θ cos θ cosϕ
sin2 θ sinϕ cosϕ sin2 θ sin2 ϕ sin θ cos θ sinϕ
sin θ cos θ cosϕ sin θ cos θ sinϕ cos2 θ

 eikr cos θdkd(cos θ)dϕ

=
1

4πηr
− 1

8π2η

∫ 1

−1

∫ ∞

0

sin2 θ 0 0
0 sin2 θ 0
0 0 2 cos2 θ

 eikr cos θdkd(cos θ)

=
1

4πηr
− 1

8π2η

∫ ∞

0

−4 cos(kr)
k2r2

+ 4 sin(kr)
k3r3

0 0

0 −4 cos(kr)
k2r2

+ 4 sin(kr)
k3r3

0

0 0 4 sin(kr)
kr + 8 cos(kr)

k2r2
− 8 sin(kr)

k3r3

 dk

=
1

4πηr
− 1

8πηr

1 0 0
0 1 0
0 0 0


=

1
8πηr

− 1

8πηr

0 0 0
0 0 0
0 0 1


=

1
8πηr

+
ezez
8πηr

. (B.1.19)

In the above calculation, we use the following integral∫ 1

−1
x2eikrxdx =

[
eikrx

(
x2

ikr
− 2x

(ikr)2
+

2

(ikr)3

)]1
−1

=eikr
(

1

ikr
+

2

k2r2
− 2

ik3r3

)
− e−ikr

(
1

ikr
− 2

k2r2
+

2

ik3r3

)
=
2 sin(kr)

kr
− 4 cos(kr)

k2r2
+

4 sin(kr)

k3r3
. (B.1.20)

We also use the following integrals (from Eq. (4.3.142) on page 78 in Ref. [91]):∫ ∞

0

sinx

x
dx =

π

2
, (B.1.21)∫ ∞

0

(
−cosx

x2
+

sinx

x3

)
dx =

π

4
. (B.1.22)

By considering the symmetry, the Oseen tensor for arbitrary r is expressed as

Gαβ =
1

8πη

(
1

r
δαβ +

rαrβ
r3

)
. (B.1.23)

The streamlines of flow field GαβFβ induced by a point force in a three-dimensional system are
expressed in Fig. B.1.1(b).

154



B.2 Derivation of the simple forms of the Kramers-Moyal coefficients of the first and second orders

B.2 Derivation of the simple forms of the Kramers-Moyal coeffi-
cients of the first and second orders

In this section, we simplify the Kramers-Moyal coefficients of the first and second orders in
Eqs. (3.2.22) and (3.2.23).

B.2.1 Derivation of Eqs. (3.3.3) and (3.3.4)

According to the definition of the Kramers-Moyal coefficients of the first and second orders in
Eqs. (3.2.22) and (3.2.23) and the Oseen tensor in Eq. (B.1.18), we have

V (R) =
1

8

∫ [
2

(
∂Gα1

∂r1

∂Gα′1

∂r1
+
∂Gα2

∂r2

∂Gα′2

∂r2

)
+

(
∂Gα1

∂r2
+
∂Gα′2

∂r1

)(
∂Gα′1

∂r2
+
∂Gα′2

∂r1

)
+

(
∂Gα1

∂r1
+
∂Gα2

∂r2

)(
∂Gα′1

∂r1
+
∂Gα′2

∂r2

)]
S(R+ r)c(R+ r)dr. (B.2.1)

Here, we used

Λββ′γγ′ =
1

2π

∫ 2π

0
eβeβ′eγeγ′dθ

=
1

8

(
δββ′δγγ′ + δβγδβ′γ′ + δβγ′δβ′γ

)

=


3

8
(β, β′, γ, γ′) = (1, 1, 1, 1), (2, 2, 2, 2),

1

8
(β, β′, γ, γ′) = (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 1, 2, 1), (2, 2, 1, 1),

0 otherwise,

(B.2.2)

where e1 and e2 are first and second components of a unit vector e = (cos θ, sin θ), respectively.

The first term in the integral can be calculated as

∂2Gα1

∂r1∂rδ

∂Gδ1

∂r1
+
∂2Gα2

∂r2∂rδ

∂Gδ2

∂r2

=
1

(4πη)2

[(
δαδ
r2

− 2

r4
(2rαr1δ1δ + rαrδ + r1

2δαδ) +
8r1

2rαrδ
r6

)(
rδ
r2

− 2rδr1
2

r4

)
+

(
δαδ
r2

− 2

r4
(2rαr2δ2δ + rαrδ + r2

2δαδ) +
8r2

2rαrδ
r6

)(
rδ
r2

− 2rδr2
2

r4

)]
=

1

(4πη)2

(
−2rα
r4

+
8r1

2r2
2rα

r8

)
. (B.2.3)
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The second term in the integral can be calculated as(
∂2Gα1

∂r2∂rδ
+
∂2Gα2

∂r1∂rδ

)(
∂Gδ1

∂r2
+
∂Gδ2

∂r1

)
=

4

(4πη)2

(
− 1

r4
(rαr1δ2δ + rαr2δ1δ + r1r2δαδ) +

4r1r2rαrδ
r6

)(
−4r1r2rδ

r4

)
=

1

(4πη)2

(
−16r1r2

r4

)(
− 1

r4
(rαr1r2 + rαr2r1 + r1r2rα) +

4r1r2rα(r1
2 + r2

2)

r6

)
=

1

(4πη)2

(
−16r1

2r2
2rα

r8

)
. (B.2.4)

Here we use

∂2Gα1

∂r2∂rδ
+
∂2Gα2

∂r1∂rδ
=

4

4πη

(
− 1

r4
(rαr1δ2δ + rαr2δ1δ + r1r2δαδ) +

4r1r2rαrδ
r6

)
, (B.2.5)

∂Gδ1

∂r2
+
∂Gδ2

∂r1
=

1

4πη

(
−4r1r2rδ

r4

)
. (B.2.6)

The third term in the integral vanishes, because

∂Gδ1

∂r1
+
∂Gδ2

∂r2
= 0. (B.2.7)

Thus, we have

Vα(R) =− Λββ′γγ′

∫
∂2Gαβ

∂rγ∂rδ

∂Gδβ′

∂r′γ
S(R+ r)c(R+ r)dr

=
1

32π2η2

∫
rα
r4
S(R+ r)c(R+ r)dr. (B.2.8)

The Kramers-Moyal coefficient of the second order is simplified in the following manner:

D(R) =− 1

8

∫ [
2

(
∂2Gα1

∂r1∂rδ

∂Gδ1

∂r1
+
∂2Gα2

∂r2∂rδ

∂Gδ2

∂r2

)
+

(
∂2Gα1

∂r2∂rδ
+
∂2Gα2

∂r1∂rδ

)(
∂Gδ1

∂r2
+
∂Gδ2

∂r1

)
+

(
∂2Gα1

∂r1∂rδ
+
∂2Gα1

∂r2∂rδ

)(
∂Gδ1

∂r1
+
∂Gδ2

∂r2

)]
S(R+ r)c(R+ r)dr. (B.2.9)

The first term in the integral can be calculated as

∂Gα1

∂r1

∂Gα′1

∂r1
+
∂Gα2

∂r2

∂Gα′2

∂r2

=
1

(4πη)2

(
rα
r2

− 2r1
2rα
r4

)(
rα′

r2
− 2r1

2rα′

r4

)
+

1

(4πη)2

(
rα
r2

− 2r2
2rα
r4

)(
rα′

r2
− 2r2

2rα′

r4

)
=

1

(4πη)2

(
2rαrα′

r8
(
r1

4 + r2
4 − 2r1

2r2
2
))

. (B.2.10)

The second term is calculated as(
∂Gα1

∂r2
+
∂Gα′2

∂r1

)(
∂Gα′1

∂r2
+
∂Gα′2

∂r1

)
=

1

(4πη)2
16r1

2r2
2rαrα′

r8
, (B.2.11)
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since
∂Gα1

∂r2
+
∂Gα′2

∂r1
=

1

4πη

(
−4r1r2rα

r4

)
. (B.2.12)

The third term in the integral vanishes since

∂Gα1

∂r1
+
∂Gα2

∂r2
= 0. (B.2.13)

Thus, the diffusion tensor originating from the active force dipole, DA
αα′ , can be represented as

DA
αα′(R) =

∫
1

2(4πη)2
rαrα′

r4
S(R+ r)c(R+ r)dr. (B.2.14)

As an example of an actual system, we consider the case with constant concentration c0 in the
circular raft whose radius is R. Here, we regard S(r) as a constant. Since the system is symmetric
with regard to the center of the circular raft, we calculate in the case when r = (r, 0) without
losing generality. Inside of the raft (r < R − ℓc), V (r) and D(r) are calculated as follows. We
adopt the polar coordinates in which the origin corresponds to r. The range of the integral of radial

direction is
[
0,−r cos θ +

√
R2 − r2 sin2 θ

]
. The upper limit of the integral is obtained by solving

rmax
2 + r2 − 2rmaxr cos(π − θ) = R2 with regard to rmax.

V (rex) =
S

32π2η2

∫
1

r′4

(
r′1
r′2

)
c(r + r′)dr′

=
Sc0

32π2η2

∫ 2π

0

∫ −r cos θ+
√

R2−r2 sin2 θ

0

1

r′4

(
r′ cos θ
r′ sin θ

)
r′dr′dθ

=
Sc0

32π2η2

∫ 2π

0

(
−1

−r cos θ +
√
R2 − r2 sin2 θ

− −1

ℓc

)(
cos θ
sin θ

)
dθ

=− Sc0
32πη2

( r

R2 − r2
0

)
, (B.2.15)

DA(rex) =
S

32π2η2

∫
1

r′4

(
r′1

2 r′1r
′
2

r′1r
′
2 r′2

2

)
c(r + r′)dr′

=
Sc0

32π2η2

∫ 2π

0

∫ −r cos θ+
√

R2−r2 sin2 θ

0

1

r′4

(
r′2 cos2 θ r′2 sin θ cos θ

r′2 sin θ cos θ r′2 sin2 θ

)
r′dr′dθ

=
Sc0

32π2η2

∫ 2π

0

(
ln
(
−r cos θ +

√
R2 − r2 sin2 θ

)
− ln ℓc

)( cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

)
dθ

=
Sc0

32πη2


 π

2
ln
(
R2 − r2

)
0

0
π

2
ln
(
R2 − r2

)
+ ln

1

ℓc

(
π 0
0 π

)
=

Sc0
32πη2

ln

(√
R2 − r2

ℓc

)
1. (B.2.16)
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Outside of the raft (r > R+ ℓc), V (r) and D(r) are calculated as follows.

V (rex) =
S

32π2η2

∫
1

r′4

(
r′1
r′2

)
c(r + r′)dr′

=
Sc0

32π2η2

∫ 2π

0

∫ R

0

1

(r′2 + r2 − 2r′r cos θ)2

(
r′ cos θ − r
r′ sin θ

)
r′dr′dθ

=
Sc0

32π2η2

∫ R

0

 − 2πr

(R2 − r′2)2

0

 r′dr′

=− Sc0
32πη2

 R2

r(r2 −R2)
0

 , (B.2.17)

DA(rex)

=
S

32π2η2

∫
1

r′4

(
r′1

2 r′1r
′
2

r′1r
′
2 r′2

2

)
c(r + r′)dr′

=
Sc0

32π2η2

∫ 2π

0

∫ R

0

1

(r′2 + r2 − 2r′r cos θ)2

(
(r′ cos θ − r)2 r′ sin θ(r′ cos θ − r)

r′ sin θ(r′ cos θ − r) r′2 sin2 θ

)
r′dr′dθ

=
Sc0

32π2η2

∫ R

0


π(2r2 − r′2)

r2(r2 − r′2)
0

0
πr′2

r2(r2 − r′2)

 r′dr′

=
Sc0

32πη2


R2

2r2
+ ln

r√
r2 −R2

0

0 −R2

2r2
+ ln

r√
r2 −R2


=

Sc0
32πη2

{
ln

(
r√

r2 −R2

)
1 +

R2

2r2

(
1 0
0 −1

)}
. (B.2.18)

By introducing the rotation tensor R(θ) as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (B.2.19)

V (r) and D(r) are expressed as follows:

V (r) =V (r, θ) = V (rex)R(θ), (B.2.20)

D(r) =D(r, θ) = R(θ)D(rex)R(−θ), (B.2.21)

where

V (r) =− Sc0
32πη2



( r

R2 − r2
0

)
, (r < R− ℓc), R2

r(r2 −R2)
0

 , (r > R+ ℓc),

(B.2.22)
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D(r) =
Sc0

32πη2


ln

(√
R2 − r2

ℓc

)
1, (r < R− ℓc),

ln

(
r√

r2 −R2

)
1 +

R2

2r2

(
1 0
0 −1

)
, (r > R+ ℓc).

(B.2.23)

For the periphery of the raft R− ℓc < r < R+ ℓc, the calculation is more complex.

B.2.2 Derivation of Eqs. (3.3.21) and (3.3.22)

According to the definition of the Kramers-Moyal coefficients of the first and second orders in
Eqs. (3.2.22) and (3.2.23) and the Oseen tensor in Eq. (B.1.23), we have

V (R)

=
1

15

∫ [
2

(
∂Gα1

∂r1

∂Gα′1

∂r1
+
∂Gα2

∂r2

∂Gα′2

∂r2
+
∂Gα3

∂r3

∂Gα′3

∂r3

)
+

(
∂Gα1

∂r2
+
∂Gα′2

∂r1

)(
∂Gα′1

∂r2
+
∂Gα′2

∂r1

)
+

(
∂Gα2

∂r3
+
∂Gα′3

∂r2

)(
∂Gα′1

∂r2
+
∂Gα′2

∂r1

)
+

(
∂Gα1

∂r2
+
∂Gα′2

∂r1

)(
∂Gα′1

∂r2
+
∂Gα′2

∂r1

)
+

(
∂Gα1

∂r1
+
∂Gα2

∂r2
+
∂Gα3

∂r3
+
∂Gα1

∂r1

)(
∂Gα′1

∂r1
+
∂Gα′2

∂r2
+
∂Gα′3

∂r3

)]
S(R+ r)c(R+ r)dr.

(B.2.24)

Here, we used

Λββ′γγ′ =
1

4π

∫ 2π

0

∫ π

0
eβeβ′eγeγ′ sin θdθdϕ

=
1

15

(
δββ′δγγ′ + δβγδβ′γ′ + δβγ′δβ′γ

)

=



1

5
, (β, β′, γ, γ′) = (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3),

1

15
, (β, β′, γ, γ′) = (1, 1, 2, 2), (1, 1, 3, 3), (1, 2, 1, 2), (1, 2, 2, 1), (1, 3, 1, 3), (1, 3, 3, 1),

(2, 1, 1, 2), (2, 1, 2, 1), (2, 2, 1, 1), (2, 2, 3, 3), (2, 3, 2, 3), (2, 3, 3, 2),
(3, 1, 1, 3), (3, 1, 3, 1), (3, 3, 1, 1), (3, 2, 2, 3), (3, 2, 3, 2), (3, 3, 2, 2),

0, otherwise,

(B.2.25)

where e1, e2, and e3 are first, second, and third components of a unit vector e = (sin θ cosϕ, sin θ sinϕ,
cos θ), respectively. We also use the following relations.

∂Gα1

∂r1

∂Gα′1

∂r1
=

rαrα′

(8πη)2r6

(
1− 3r1

2

r2

)2

, (B.2.26)

∂Gα1

∂r2

∂Gα′2

∂r1
= −6rαr1r2

8πηr5
, (B.2.27)

∂Gα1

∂r1
+
∂Gα2

∂r2
+
∂Gα3

∂r3
= 0. (B.2.28)
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Thus we have

V (R) =
1

40η2π2

∫
dr
rα
r6
S(R+ r)c(R+ r). (B.2.29)

The Kramers-Moyal coefficient of the second order is simplified in the following manner:

D(R) = − 1

15

∫ [
2

(
∂2Gα1

∂r1∂rδ

∂Gδ1

∂r1
+
∂2Gα2

∂r2∂rδ

∂Gδ2

∂r2
+
∂2Gα3

∂r3∂rδ

∂Gδ3

∂r3

)
+

(
∂2Gα1

∂r2∂rδ
+
∂2Gα2

∂r1∂rδ

)(
∂Gδ1

∂r2
+
∂Gδ2

∂r1

)
+

(
∂2Gα2

∂r3∂rδ
+
∂2Gα2

∂r3∂rδ

)(
∂Gδ3

∂r1
+
∂Gδ3

∂r1

)
+

(
∂2Gα3

∂r1∂rδ
+
∂2Gα1

∂r3∂rδ

)(
∂Gδ3

∂r1
+
∂Gδ1

∂r3

)
+

(
∂2Gα1

∂r1∂rδ
+
∂2Gα2

∂r2∂rδ
+
∂2Gα3

∂r3∂rδ

)(
∂Gδ1

∂r1
+
∂Gδ2

∂r2
+
∂Gδ3

∂r3

)]
S(R+ r)c(R+ r)dr.

(B.2.30)

Thus we have

D(R) =
1

40η2π2

∫
rαrα′

r6
S(R+ r)c(R+ r)dr. (B.2.31)

B.2.3 Derivation of Eqs. (3.4.1) and (3.4.2)

Here we consider the situation that the direction of active proteins are aligned in the angle
θ = θ0, i.e.,

N̄
(2)
βγ N̄

(2)
β′γ′ =



cos4 θ0, (β, γ, β′, γ′) = (1, 1, 1, 1),
sin θ0 cos

3 θ0, (β, γ, β′, γ′) = (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (2, 1, 1, 1),
sin2 θ0 cos

2 θ0, (β, γ, β′, γ′) = (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1),
(2, 1, 1, 2), (2, 1, 2, 1), (2, 2, 1, 1),

sin3 θ0 cos θ0, (β, γ, β′, γ′) = (1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2), (2, 2, 2, 1),
sin4 θ0, (β, γ, β′, γ′) = (2, 2, 2, 2).

(B.2.32)
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According to the definition of the Kramers-Moyal coefficients of the first and second orders in
Eqs. (3.2.22) and (3.2.23) and the Oseen tensor in Eq. (B.1.18), we have

Vα(R)

= −N̄ (2)
βγ N̄

(2)
β′γ′

∫
∂2Gαβ

∂rγ∂rδ

∂Gδβ′

∂rγ′
S(R+ r)c(R+ r)dr

= −
∫ [

∂2Gα1

∂r1∂rδ

∂Gδ1

∂r1
cos4 θ0

+

{
∂2Gα1

∂r1∂rδ

(
∂Gδ1

∂r2
+
∂Gδ2

∂r1

)
+

(
∂2Gα1

∂r2∂rδ
+
∂2Gα2

∂r1∂rδ

)
∂Gδ1

∂r1

}
sin θ0 cos

3 θ0

+

{(
∂2Gα1

∂r2∂rδ
+
∂2Gα2

∂r1∂rδ

)(
∂Gδ1

∂r2
+
∂Gδ2

∂r1

)
+
∂2Gα1

∂r1∂rδ

∂Gδ2

∂r2
+
∂2Gα2

∂r2∂rδ

∂Gδ1

∂r1

}
sin2 θ0 cos

2 θ0

+

{
∂2Gα2

∂r2∂rδ

(
∂Gδ1

∂r2
+
∂Gδ2

∂r1

)
+

(
∂2Gα1

∂r2∂rδ
+
∂2Gα2

∂r1∂rδ

)
∂Gδ2

∂r2

}
sin3 θ0 cos θ0

+
∂2Gα2

∂r2∂rδ

∂Gδ2

∂r2
sin4 θ0

]
S(R+ r)c(R+ r)dr

= − 1

(4πη)2

∫ [(
−(r1

2 − r2
2)2rα

r8

)
cos4 θ0 +

(
−8r1r2(r1

2 − r2
2)rα

r8

)
sin θ0 cos

3 θ0

+

(
2(r1

2 − r2
2)2rα

r8
− 16r1

2r2
2rα

r8

)
sin2 θ0 cos

2 θ0 +

(
8r1r2(r1

2 − r2
2)rα

r8

)
sin3 θ0 cos θ0

+

(
−(r1

2 − r2
2)2rα

r8

)
sin4 θ0

]
S(R+ r)c(R+ r)dr

=
1

(4πη)2

∫ [(
(r1

2 − r2
2)2rα

r8

)
cos2 2θ0 +

(
4r1r2(r1

2 − r2
2)rα

r8

)
sin 2θ0 cos 2θ0

+

(
4r1

2r2
2rα

r8

)
sin2 2θ0

]
S(R+ r)c(R+ r)dr

=
1

(4πη)2

∫ (
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rα
r8
S(R+ r)c(R+ r)dr. (B.2.33)

By substituting r = r(cos θe1 + sin θe2), we have

Vα(R) =
1

(4πη)2

∫
rα
r4

cos2 2(θ − θ0)S(R+ r)c(R+ r)dr. (B.2.34)
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DA
αα′(R)

= N̄
(2)
βγ N̄

(2)
β′γ′

∫
∂Gαβ

∂rγ

∂Gα′β′

∂r′γ
S(R+ r)c(R+ r)dr

=

∫ [
∂Gα1

∂r1

∂Gα′1

∂r1
cos4 θ0

+

{
∂Gα1

∂r1

(
∂Gα′1

∂r2
+
∂Gα′2

∂r1

)
+

(
∂Gα1

∂r2
+
∂Gα2

∂r1

)
∂Gα′1

∂r1

}
sin θ0 cos

3 θ0

+

{(
∂Gα1

∂r2
+
∂Gα2

∂r1

)(
∂Gα′1

∂r2
+
∂Gα′2

∂r1

)
+
∂Gα1

∂r1

∂Gα′2

∂r2
+
∂Gα2

∂r2

∂Gα′1

∂r1

}
sin2 θ0 cos

2 θ0

+

{
∂Gα2

∂r2

(
∂Gα′1

∂r2
+
∂Gα′2

∂r1

)
+

(
∂Gα1

∂r2
+
∂Gα2

∂r1

)
∂Gα′2

∂r2

}
sin3 θ0 cos θ0

+
∂Gα2

∂r2

∂Gα′2

∂r2
sin4 θ0

]
S(R+ r)c(R+ r)dr

=
1

(4πη)2

∫ [(
r1

2 − r2
2
)2
rαrα′

r8
cos4 θ0 +

8r1r2
(
r1

2 − r2
2
)
rαrα′

r8
sin θ0 cos

3 θ0

+

(
−2(r1

2 − r2
2)2rαrα′

r8
+

16r1
2r2

2rαrα′

r8

)
sin2 θ0 cos

2 θ0

+

(
−
8r1r2

(
r1

2 − r2
2
)
rαrα′

r8

)
sin3 θ0 cos θ0

+

(
r1

2 − r2
2
)2
rαrα′

r8
sin4 θ0

]
S(R+ r)c(R+ r)dr

=
1

(4πη)2

∫ [(
r1

2 − r2
2
)2
rαrα′

r8
cos2 2θ0 +

4r1r2
(
r1

2 − r2
2
)
rαrα′

r8
sin 2θ0 cos 2θ0

+
4r1

2r2
2rαrα′

r8
sin2 2θ0

]
S(R+ r)c(R+ r)dr

=
1

(4πη)2

∫ (
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rαrα′

r8
S(R+ r)c(R+ r)dr. (B.2.35)

By substituting r = r(cos θe1 + sin θe2), we have

Dαα′(R) =
1

(4πη)2

∫
rαrα′

r4
cos2 2(θ − θ0)S(R+ r)c(R+ r)dr. (B.2.36)

B.2.4 Derivation of Eqs. (3.4.4) and (3.4.5)

Here we consider the situation that the direction of active proteins are aligned in the angle θ = 0,

i.e., N̄
(3)
33 N̄

(3)
33 = 1 and otherwise 0. According to the definition of the Kramers-Moyal coefficients

of the first and second orders in Eqs. (3.2.22) and (3.2.23) and the Oseen tensor in Eq. (B.1.23), we
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have

Vα(r) =− N̄
(3)
βγ N̄

(3)
β′γ′

∫
∂2Gαβ

∂ργ∂ρδ

∂Gδβ′

∂ργ′
S(r + ρ)c(r + ρ)dρ

=−
∫

∂2Gα3

∂ρδ∂ρ3

∂Gδ3

∂ρ3
S(r + ρ)c(r + ρ)dρ

=− 1

(8πη)2

∫
ρδ
ρ6

{
δαδ −

3

ρ2
(
2ραρ3δ3δ + ραρδ + ρ3

2δαδ
)
+

15ραρδρ3
2

ρ4

}
×
(
1− 3ρ3

2

ρ2

)
S(r + ρ)c(r + ρ)dρ

=
1

32π2η2

∫
ρα
ρ6
(
1− 6 cos2 θ + 9 cos4 θ

)
S(r + ρ)c(r + ρ)dρ

=
1

8π2η2

∫
ρα
ρ6
P2(cos θ)

2S(r + ρ)c(r + ρ)dρ, (B.2.37)

where P2 is Legendre polynomial of the second order. Here we used ρ3 = ρ cos θ.

As for the diffusion enhancement, we have

DA
αα′(r) =N̄

(3)
βγ N̄

(3)
β′γ′

∫
∂Gαβ

∂ργ

∂Gα′β′

∂ρ′γ
S(r + ρ)c(r + ρ)dρ

=

∫
∂Gα3

∂ρ3

∂Gα′3

∂ρ3
S(r + ρ)c(r + ρ)dρ

=
1

(8πη)2

∫
ραρα′

ρ6

(
1− 3ρ3

2

ρ2

)(
1− 3ρ3

2

ρ2

)
S(r + ρ)c(r + ρ)dρ

=
1

16π2η2

∫
ραρα′

ρ6
P2(cos θ)

2S(r + ρ)c(r + ρ)dρ. (B.2.38)

B.3 Derivation of the drift velocity U

In this section, we simplify the drift velocity in Eq. (3.3.2).

B.3.1 Two-dimensional case without orientational order

According to the definition of the drift velocity in Eq. (3.3.2) and the simplified Kramers coef-
ficients of the first and second orders in Eqs. (3.3.3) and (3.3.4), we have

Uα(r) =Vα(r)−
∂Dαα′(r)

∂rα′

=
1

32π2η2

∫ (
r′α
r′4

−
r′αr

′
α′

r′4
∂

∂rα′

)(
S(r + r′)c(r + r′)

)
dr′

=
1

32π2η2

∫ (
r′α
r′4

+

(
∂

∂r′α′

r′αr
′
α′

r′4

))
S(r + r′)c(r + r′)dr′

− 1

32π2η2

∫
σ

r′αr
′
α′

r′4
S(r + r′)c(r + r′)ds′α′ , (B.3.1)
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where
∫
σ ds

′
α′ is the integration along the periphery of the domain. Here, ∂/∂rα′ can be regarded

as ∂/∂r′α′ and the partial integration is used. The derivative in the integrand is calculated as

∂

∂rα′

rαrα′

r4
=
δαα′rα′

r4
+ 2

rα
r4

− 4
rαr

2
α′

r6
= −rα

r4
. (B.3.2)

Thus, only the surface term remains

Uα(r) = − 1

32π2η2

∫
σ

r′αr
′
α′

r′4
Q(r + r′)ds′α′ . (B.3.3)

The integration is taken over the physical boundary σoutside and the small cut-off surface σinside
around r. The integration taken over the physical boundary σoutside becomes zero if Q = 0 at the
boundary, as we always assume. As for the cut-off surface, we expand Q as

Q(r + r′) = Q(r) + r′α
∂Q(r)

∂rα
+O(r′

2
). (B.3.4)

Then, the integral over the small cut-off surface is calculated as

Uα(r) =− 1

32π2η2

∫
σ

r′αr
′
α′

r′4
Q(r + r′)ds′α′

=− 1

32π2η2

∫ 2π

0

r̂′αr̂′α′

ℓc
2

(
Q(r) + ℓcr̂′β

∂Q(r)

∂rβ
+O(ℓc

2)

)
(−ℓcr̂′α′dϕ′)

=
1

32πη2
∂Q(r)

∂rα
+O(ℓc), (B.3.5)

where r̂′α is a unit vector which is parallel to r′α, and r̂
′
1 = cosϕ′ and r̂′2 = sinϕ′. Here, we used

r̂′αr̂′α = 1, and the integrations of r̂α and r̂αr̂α′ with regard to ϕ over [0, 2π) are 0 and πδαα′ ,
respectively.

B.3.2 Three dimensional case without orientational order

According to the definition of the drift velocity in Eq. (3.3.2) and the simplified Kramers coef-
ficients of the first and second orders in Eqs. (3.3.21) and (3.3.22), we have

Uα(r) =Vα(r)−
∂Dαα′(r)

∂rα′

=
1

40π2η2

∫
r′α
r′6
Q(r + r′)dr′ − 1

80π2η2

∫
r′αr

′
α′

r′6
∂Q(r + r′)

∂rα′
dr′

=
1

40π2η2

∫
r′α
r′6
Q(r + r′)dr′

+
1

80π2η2

∫
∂

∂r′α′

{
r′αr

′
α′

r′6

}
Q(r + r′)dr′ − 1

80π2η2

∫
σ

r′αr
′
α′

r′6
Q(r + r′)dsα′ , (B.3.6)

where Q(r) = S(r)c(r), and
∫
σ dsα′ means the surface integral. Here ∂/∂r′α′ can be regarded as

∂/∂r′α′ , and the partial integration is used.

∂

∂r′α′

{
r′αr

′
α′

r′6

}
=
r′α′δαα′

r′6
+

3r′α
r′6

−
6r′αr

′
α′

2

r′8
= −2

r′α
r′6
. (B.3.7)
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Thus, we obtain

Uα(r) =− 1

40π2η2

∫
σ

r′αr
′
α′

r′6
Q(r + r′)dsα′ . (B.3.8)

B.3.3 Two-dimensional case with orientational order

According to the definition of the drift velocity in Eq. (3.3.2) and the simplified Kramers coef-
ficients of the first and second orders in Eqs. (3.4.1) and (3.4.2), we have

Uα(R) =Vα(R)− ∂Dαα′(R)

∂Rα′

=
1

(4πη)2

∫ (
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rα
r8
Q(R+ r)dr

− 1

(4πη)2

∫ (
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rαrα′

r8
∂Q(R+ r)

∂Rα′
dr

=
1

(4πη)2

∫ (
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rα
r8
Q(R+ r)dr

+
1

(4πη)2

∫
∂

∂rα′

{(
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rαrα′

r8

}
Q(R+ r)dr

− 1

(4πη)2

∫
σ

(
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rαrα′

r8
Q(R+ r)dsα′ , (B.3.9)

where Q(r) = S(r)c(r). Here ∂/∂Rα′ can be regarded as ∂/∂rα′ and the partial integration is used.
The derivatives in the integrands can be calculated as follows.

∂

∂rα′

{(
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rαrα′

r8

}
= 2 {r1 (2r1 cos 2θ0 + 2r2 sin 2θ0)− r2 (−2r2 cos 2θ0 + 2r1 sin 2θ0)}

×
(
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

) rαrα′

r8(
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2{δαα′rα′

r8
+ 2

rα
r8

− 8
rαr

2
α′

r10

}
=(4 + 1 + 2− 8)

(
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rαrα′

r8

=−
(
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rαrα′

r8
. (B.3.10)

∂

∂rα′

{(
((r1

2 − r2
2)2 − 4r1

2r2
2) cos 4θ0 + 4r1r2(r1

2 − r2
2) sin 4θ0

) rαrα′

r8

}
= r1

(
(4r1(r1

2 − r2
2)− 8r1r2

2) cos 4θ0 + (4r2(r1
2 − r2

2) + 8r1
2r2) sin 4θ0

) rαrα′

r8

+ r2
(
(−4r2(r1

2 − r2
2)− 8r1

2r2) cos 4θ0 + (4r1(r1
2 − r2

2)− 8r1r2
2) sin 4θ0

) rαrα′

r8

+
(
((r1

2 − r2
2)2 − 4r1

2r2
2) cos 4θ0 + 4r1r2(r1

2 − r2
2) sin 4θ0

){δαα′rα′

r8
+ 2

rα
r8

− 8
rαr

2
α′

r10

}
= (4 + 1 + 2− 8)

(
((r1

2 − r2
2)2 − 4r1

2r2
2) cos 4θ0 + 4r1r2(r1

2 − r2
2) sin 4θ0

) rαrα′

r8

= −
(
((r1

2 − r2
2)2 − 4r1

2r2
2) cos 4θ0 + 4r1r2(r1

2 − r2
2) sin 4θ0

) rαrα′

r8
. (B.3.11)
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Thus, only surface terms remain as follows.

Uα(R) = − 1

(4πη)2

∫
σ

(
(r1

2 − r2
2) cos 2θ0 + 2r1r2 sin 2θ0

)2 rαrα′

r8
Q(R+ r)dsα′ . (B.3.12)

The integration is taken over the physical boundary σoutside and the small cut-off surface σinside
around the R. The integration taken over the physical boundary σoutside becomes zero if Q = 0 at
the boundary and so on. Here we consider the situation that Q(R + r) is given by Q(R + r) =
Q(r) + rβ∂Q(r)/∂rβ. Then the integral over the small cut-off surface can be calculated as

Uα(R) =− 1

(4πη)2

∫ 2π

0
cos2 2(θ0 − ϕ)

r̂αr̂α′

ℓc
2

(
Q0 + ℓcr̂β

∂Q(r)

∂rβ

)
(−ℓcr̂α′dϕ)

=
∇Q
32πη2

. (B.3.13)

Here, we used the fact that the integration of cos2 2(θ0 − ϕ) cosϕ, cos2 2(θ0 − ϕ) sinϕ, cos2 2(θ0 −
ϕ) sinϕ cosϕ, cos 4(θ0 − ϕ) cosϕ, cos 4(θ0 − ϕ) sinϕ, cos 4(θ0 − ϕ) cos2 ϕ, and cos 4(θ0 − ϕ) sinϕ cosϕ
with regard ϕ over [0, 2π) are zero, and only the integration of cos2 2(θ0 − ϕ) cos2 ϕ and cos2 2(θ0 −
ϕ) sin2 ϕ with regard to ϕ over [0, 2π) is π/2 (the same value).

B.3.4 Three dimensional case with orientational order

According to the definition of the drift velocity in Eq. (3.3.2) and the simplified Kramers coef-
ficients of the first and second orders in Eqs. (3.4.4) and (3.4.5), we have

Uα(r)

= Vα(r)−
∂Dαα′(r)

∂rα′

=
1

32π2η2

∫
r′α
r′10

(
r′

2 − 3r′3
2
)2
Q(r + r′)dr′ − 1

64π2η2

∫
r′αr

′
α′

r′10

(
r′

2 − 3r′3
2
)2 ∂Q(r + r′)

∂rα′
dr′

=
1

32π2η2

∫
r′α
r′10

(
r′

2 − 3r′3
2
)2
Q(r + r′)dr′ +

1

64π2η2

∫
∂

∂rα′

{
r′αr

′
α′

r′10

(
r′

2 − 3r′3
2
)2}

Q(r + r′)dr′

− 1

64π2η2

∫
σ

r′αr
′
α′

r′10

(
r′

2 − 3r′3
2
)2
Q(r + r′)dsα′ , (B.3.14)

where Q(r) = S(r)c(r), and
∫
σ dsα′ means the surface integral. Here ∂/∂r′α′ can be regarded as

∂/∂r′α′ , and the partial integration is used.

∂

∂rα′

{
r′αr

′
α′

r′10

(
r′

2 − 3r′3
2
)2}

=

{
r′α′δαα′

r′10
+

3r′α
r′10

−
10r′αr

′
α′

2

r′12

}(
r′

2 − 3r′3
2
)2

+ 2
r′αr

′
α′

r′10
(r′

2 − 3r′3
2
)(2r′α′ − 6r′3δ3α′)

= −2
r′α
r′10

(
r′

2 − 3r′3
2
)2
. (B.3.15)

Thus, we obtain

Uα(r) = − 1

64π2η2

∫
σ

r′αr
′
α′

r′10

(
r′

2 − 3r′3
2
)2
Q(r + r′)dsα′ . (B.3.16)
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As an example of an actual system, we consider the case with constant gradient of the activity
of active proteins Q(r) = Q0 +Q1a · r, where Q(r) = S(r)c(r).

V (r) =
1

32π2η2

∫
r′α
r′6

(1− 3 cos2 θ)2Q(r + r′)dr′

=
Q0 +Q1a · r

32π2η2

∫
r′α
r′6

(1− 3 cos2 θ)2dr′ +
Q1

32π2η2

∫
r′α
r′6

(1− 3 cos2 θ)2
(
a · r′

)
dr′

=
Q0 +Q1a · r

32π2η2

∫ 2π

0

∫ π

0

∫ ∞

ℓc

r′2 sin θ

r′6
(1− 3 cos2 θ)2

 r′ sin θ cosϕ
r′ sin θ sinϕ
r′ cos θ

 dr′dθdϕ (B.3.17)

+
Q1

32π2η2

∫ 2π

0

∫ π

0

∫ ∞

ℓc

r′2 sin θ

r′6
(1− 3 cos2 θ)2

× (a1r
′ sin θ cosϕ+ a2r

′ sin θ sinϕ+ a3r
′ cos θ)

 r′ sin θ cosϕ
r′ sin θ sinϕ
r′ cos θ

 dr′dθdϕ

=
Q0 +Q1a · r

32π2η2

∫ π

0

1

2ℓc
2 sin θ(1− 3 cos2 θ)2

 0
0

2π cos θ

 dθ

+
Q1

32π2η2

∫ 2π

0

∫ π

0

1

ℓc
sin θ(1− 3 cos2 θ)2

× (a1 sin θ cosϕ+ a2 sin θ sinϕ+ a3 cos θ)

 sin θ cosϕ
sin θ sinϕ

cos θ

 dθdϕ

=
Q1

32π2η2
1

ℓc


16π

21
a1

16π

21
a2

176π

105
a3

 =
Q1

14πη2
1

ℓc


1

3
a1

1

3
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11
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 , (B.3.18)

and

D(r) =
1

64π2η2

∫
r′αr

′
α′

r′6
(1− 3 cos2 θ)2Q(r + r′)dr′

=
Q0 +Q1a · r

64π2η2

∫
r′αr

′
α′

r′6
(1− 3 cos2 θ)2dr′ +

Q1

64π2η2

∫
r′αr

′
α′
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(1− 3 cos2 θ)2

(
a · r′

)
dr′

=
Q0 +Q1a · r

64π2η2

∫ 2π

0

∫ π

0
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ℓc

r′2 sin θ
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(1− 3 cos2 θ)2

×

 r′2 sin2 θ cos2 ϕ r′2 sin2 θ sinϕ cosϕ r′2 sin θ cos θ cosϕ

r′2 sin2 θ sinϕ cosϕ r′2 sin2 θ sin2 ϕ r′2 sin θ cos θ sinϕ

r′2 sin θ cos θ cosϕ r′2 sin θ cos θ sinϕ r′2 cos2 θ

 dr′dθdϕ

+
Q1

64π2η2

∫ 2π

0

∫ π

0

∫ ∞

ℓc

r′2 sin θ

r′6
(1− 3 cos2 θ)2

× (a1r
′ sin θ cosϕ+ a2r

′ sin θ sinϕ+ a3r
′ cos θ)
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×

 r′2 sin2 θ cos2 ϕ r′2 sin2 θ sinϕ cosϕ r′2 sin θ cos θ cosϕ

r′2 sin2 θ sinϕ cosϕ r′2 sin2 θ sin2 ϕ r′2 sin θ cos θ sinϕ

r′2 sin θ cos θ cosϕ r′2 sin θ cos θ sinϕ r′2 cos2 θ

 dr′dθdϕ

=
Q0 +Q1a · r

64π2η2

∫ 2π

0

∫ π

0

1

ℓc
sin θ(1− 3 cos2 θ)2

×

 sin2 θ cos2 ϕ sin2 θ sinϕ cosϕ sin θ cos θ cosϕ
sin2 θ sinϕ cosϕ sin2 θ sin2 ϕ sin θ cos θ sinϕ
sin θ cos θ cosϕ sin θ cos θ sinϕ cos2 θ

 dθdϕ

+
Q1

64π2η2

∫ ∞

ℓc

1
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 0 0 0
0 0 0
0 0 0

 dr′

=
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64π2η2
1
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16π
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0 0

0
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176π
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1

3
0 0

0
1

3
0

0 0
11

15

 . (B.3.19)

It is noted that Vα and (∂Dαα′)/(∂rα′) with constant gradient of Q still satisfy the equation Vα =
2(∂Dαα′)/(∂rα′), which is the same as the result in Ref. [39].

∂Dαα′(r)

∂r
=

Q1

28πη2
1

ℓc


1

3
0 0

0
1

3
0

0 0
11

15


 a1

a2
a3

 =
Q1

28πη2
1

ℓc


1

3
a1

1

3
a2

11

15
a3

 , (B.3.20)

U = V − ∂D(r)

∂r
=

Q1

28πη2
1

ℓc


1

3
a1

1

3
a2

11

15
a3

 . (B.3.21)

Thus Eqs. (B.3.18) and (B.3.19) are obtained.
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