ログイン
English
千葉大学学術成果リポジトリ
ブラウズ
著者
刊行年(西暦)
雑誌名
資料種別
ランキング
アクセスランキング
ダウンロードランキング
その他
アカデミック・リンク・センター/附属図書館HP
千葉大学HP
このアイテムのアクセス数:
752
件
(
2025-01-27
05:37 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
ダウンロード回数
説明
HORN8_Nature_Electronics_2017_12_30_v1
pdf
2.36 MB
636
基本情報
データ種別:学術成果リポジトリ
タイトル
High-performance parallel computing for next-generation holographic imaging
タイトルの別表記
次世代ホログラフィックイメージング向けの高性能並列演算
作成者
SUGIE, Takashige
AKAMATSU, Takanori
NISHITSUJI, Takashi
作成者ID
1000070826833
研究者リゾルバ
HIRAYAMA, Ryuji
MASUDA, Nobuyuki
作成者ID
1000060323333
研究者リゾルバ
NAKAYAMA, Hirotaka
ICHIHASHI, Yasuyuki
作成者ID
1000080593532
研究者リゾルバ
SHIRAKI, Atsushi
作成者ID
1000010516462
研究者リゾルバ
OIKAWA, Minoru
作成者ID
1000090725756
研究者リゾルバ
TAKADA, Naoki
作成者ID
1000050290713
研究者リゾルバ
ENDO, Yutaka
作成者ID
1000050803293
研究者リゾルバ
KAKUE, Takashi
作成者ID
1000040634580
研究者リゾルバ
SHIMOBABA, Tomoyoshi
作成者ID
1000020360563
研究者リゾルバ
ITO, Tomoyoshi
作成者ID
1000020241862
研究者リゾルバ
作成者の別表記
杉江, 崇繁
赤松, 孝則
西辻, 崇
1000070826833
研究者リゾルバ
平山, 竜士
増田, 信之
1000060323333
研究者リゾルバ
中山, 弘敬
市橋, 保之
1000080593532
研究者リゾルバ
白木, 厚司
1000010516462
研究者リゾルバ
老川, 稔
1000090725756
研究者リゾルバ
高田, 直樹
1000050290713
研究者リゾルバ
遠藤, 優
1000050803293
研究者リゾルバ
角江, 崇
1000040634580
研究者リゾルバ
下馬場, 朋禄
1000020360563
研究者リゾルバ
伊藤, 智義
1000020241862
研究者リゾルバ
キーワード等
Holography
Electroholography
Computer-Generated Hologram
High Performance Computing
Field Programmable Gate Array
Hardware
Dedicated Computer
内容
[Abstract] Holography is a leading method of recording and reproducing 3D images. The increasingly widespread availability of computers has encouraged the development of holographic 3D screens (electroholography). Although electroholography was first proposed a half-century ago, it has not been used in practical applications. A fundamental problem is the enormous volume of data that a hologram requires. Even modern computational power is inadequate to process this volume of data in real time. The area from which the reconstructed image can be viewed is determined by the way in which the light diffracted by the hologram is spread, and this in turn depends on the pixel pitch of the hologram. A smaller pitch creates a wider viewing angle. At a pixel pitch of 1 μm, the viewing angle extends to 30°, thus making it practical for everyday applications. The pixel pitch of a typical current liquid crystal display is approaching this limit. However, a high-definition display device requires a large number of pixels, thus making processing challenging. At a 1 μm pixel pitch, even a display device that is 1 cm × 1 cm in size would require 100 million (108) pixels. Our group has been pursuing a five-year project with the goal of realising an arithmetic circuit that is able to drive a video-rate 1 cm × 1 cm computer-generated hologram of 108 pixels at a pixel pitch of 1 μm. In the course of this research, we have developed a special-purpose holography computing board by using eight large-scale field-programmable gate arrays (FPGAs). This computing board is far beyond the scope of current commercial offerings. We have also succeeded in achieving a parallel operation of 4,480 hologram calculation circuits on a single board. By clustering eight of these boards, we succeeded in increasing the number of parallel calculations to 35,840, thus allowing computations to be performed 1,000 times faster than those of a personal computer. By using a 3D image comprising 7,877 points, we succeeded in updating 108-pixel holograms at a video rate, thus allowing 3D movies to be projected. We further demonstrated that the system speed scales up in a linear manner as the number of parallel circuits is increased. The system operates at 0.25 GHz with an effective speed equivalent to 0.5 Pflops (1015 floating-point operations per second), matching that of a high-performance computer. These results suggest that a holographic 3D image system can be constructed using currently available technology. In a further step, we will upgrade the system to a large-scale integration (LSI) circuit that is 1 cm × 1 cm in size by using existing technology. Coupling this LSI to a 108-pixel display would create a chip dedicated to holography. Given that the computation of a hologram treats each pixel independently, a suitable arrangement of these dedicated chips could create a 3D video system of arbitrary size and shape (hemispherical, spherical, cylindrical, etc.). As one of immediate goals, we can create a wide 3D projection space by incorporating our dedicated chip into a head-mounted display.
ハンドルURL
https://opac.ll.chiba-u.jp/da/curator/105754/
フルテキストへのリンク
https://opac.ll.chiba-u.jp/da/curator/105754/HORN8_Nature_Electronics_2017_12_30_v1.pdf
NII資源タイプ
プレプリント
刊行年月
2017-12-30
DOI(出版者版)
10.1038/s41928-018-0057-5
著者版フラグ
author
カテゴリ
IGPR201811: 高画質なホログラフィの投影に成功! 3次元テレビの実用化に一歩前進
権利関係
Final version appeared in Nature Electronics, Vol. 1, pp. 254–259 (2018). doi: 10.1038/s41928-018-0057-5
その他の情報を表示
コンテンツの種類
プレプリント Preprint
DCMI資源タイプ
text
ファイル形式 [IMT]
application/pdf
言語 [ISO639-2]
eng
関連情報 (isVersionOf) [URL]
https://doi.org/10.1038/s41928-018-0057-5
ホームへ戻る