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I. ABSTRACT

This thesis investigates problems in Coding theory, a fundamental field of study for the reliable

transmission or storage of data. Contributions are in two general areas, permutation/multipermutation

codes and coding theory formalization. Linear Codes are well studied, but less is known about

nonlinear codes. Permutation and multipermutation codes are types of nonlinear codes. Formal-

ization involves the precise statement of mathematical theorems in a specified language in such a

way that the veracity of these theorems may be verified algorithmically. Although coding theory

is a field of study well-suited for formalization, work in coding theory formalization has been

relatively limited.

In this thesis we advance the study of permutation and multipermutation codes in three

ways. First, we extend an LP (linear programming) decoding method originally designed for

permutation codes in the Euclidean metric to permutation codes in the Kendall tau metric.

Second, we provide new methods for calculating Ulam permutation sphere sizes. The results are

used to present new bounds on the maximum possible size of permutation codes in the Ulam

metric, including the fundamental theorem that nontrivial perfect Ulam permutation codes do

not exist. Third, new methods for calculating Ulam multipermutation sphere sizes for certain

parameters are provided as well as resulting bounds on the maximum possible code size.

In this thesis we advance the study of formalization in coding theory in two ways. Contri-

butions are made using the Lean theorem proof assistant, a software designed specifically for

formalization. The first contribution is a set of files that formalize relevant basic mathematical

definitions and theorems as well as the famous Repetition codes and Hamming (7,4) code. The

second contribution is a set of files that formalize Levenshtein codes and related definitions and

theorems. Levenshtein codes are a type of nonlinear deletion and/or insertion correcting code.
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1. INTRODUCTION

In the information age that we live in, data is communicated and stored through a plethora of

digital devices. Without the advent of coding theory, reliable communication and data storage

would not be possible. Error-correcting codes, explained in chapter 2, are utilized constantly to

combat the inherent noise of communication channels. The study of these codes is called coding

theory.

Codes have also been improving since their advent in the late 1940’s and early 1950’s. With

their improvement communication becomes faster and data storage denser. In fact, current codes

can approach known limits to what is possible for certain communication schemes. However,

the quest to improve codes and to expand their underlying theory is not over by any means.

A. Contributions

The main contributions of this thesis can be divided into two large categories: 1) contributions

to coding theory in the area of permutation/multipermutation codes and 2) contributions to coding

theory in the area of formalization. We begin by providing some context for each contribution

before stating the actual results of each category.

The first category of contribution is to the field of permutation and multipermuation codes.

Permutation and multipermutation codes are types of nonlinear codes. Linear codes are well

studied and largely well-understood because of their close relation to linear algebra. On the other

hand, there remains much mystery in the field of nonlinear codes. Depending on the physical

scenario, nonlinear codes may demonstrate superior performance over linear codes. Hence it is

worthwhile to devote some energy to research in this area.

One category of nonlinear codes are permutation and multipermutation codes. Certain prop-

erties, discussed in later chapters, make permutation and multipermutation codes attractive can-

didates for use in applications such as flash memory devices. There are several questions that

must be answered before this is possible, and it is also necessary to generally expand the theory

of permutation and multipermutation codes.
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Our main contributions to permutation/multipermutation codes are threefold. We state them

here, although some explanation of the terminology of these statements is found in subsequent

chapters. First, we extend a decoding method to a new class of permutation codes, calling them

Kendall tau LP-decodable permutation codes. Second, we provide new ways of calculating Ulam

permutation sphere sizes, and use this to prove the fundamental bound on maximal code size

that perfect Ulam permutation codes do not exist. Third, we provide new ways of calculating

Ulam multipermutation sphere sizes, and use this to prove new bounds on the maximal code

size of Ulam multipermutation codes. These results were partially published in [37, 51, 52].

The second category of contribution is to the field of formalization in coding theory. Math-

ematical formalization involves the precise statement of mathematical theorems in a specified

language in such a way that the veracity of these theorems may be verified algorithmically. When

an error-correcting code fails to perform its purported function, errors in communication may

result. Moreover, the study of coding theory is often complex and proofs of the properties of

a particular error-correcting code may be difficult to understand or verify for non-specialists in

coding theory. Even among coding theorists, the vast quantity of coding schemes can sometimes

lead to miscommunication.

In the future, formalization may become a valuable tool for verifying properties of codes.

It may also be a unifying force, as formalization removes the ambiguity of language. Current

work in the area of the formalization of coding theory is limited. Libraries of coding theory are

necessary to aid future work, since any definitions or lemmas that are formalized in a proof-

assistant can be subsequently applied in future formalization.

As our main contribution to formalization in coding theory, we provide, to the best of our

knowledge, the first coding theory library for the Lean theorem proof assistant. The library is

called “Cotoleta” (COding Theory Over the LEan Theorem proof Assistant). The Lean theorem

proof assistant is a free software released by Microsoft Research in cooperation with Carnegie

Mellon University. Our library includes a couple of key components. First, it includes structures

that serve as templates for formalizing error correcting systems, and provides examples of these

with two well-known codes, repetition codes and the Hamming (7,4) code. Second, it includes



3

the formalization of definitions and lemmas related to Levenshtein codes, a type of deletion-

correcting code. These results were partially published in [38].

B. Organization of Thesis

The thesis is organized as follows. Chapter 2 introduces some pertinent basic ideas and

terminology of coding theory. It also provides a literature review of permutation/multipermutation

codes and formalization in coding theory. The next three chapters contain the main contributions

to the field of coding theory of permutations and multipermutations. In Chapter 3, Kendall tau

LP-decodable permutation codes are introduced, and some of their properties are examined. The

chapter includes a necessary and sufficient condition for extending LP (linear programming)

decoding methods as well as explicit examples of codes satisfying this condition. Chapter

4 discusses Ulam permutation codes and proves the nonexistence of nontrivial perfect Ulam

permutation codes. Chapter 5 considers Ulam multipermutation codes, and provides new bounds

on maximal code size.

Chapter 6 contains the main contributions to the field of coding theory formalization. It

introduces Cotoleta, the library for coding theory over the Lean theorem proof assistant. Some of

the important definitions, theorems, and examples in this library are presented. Finally, Chapter

7 concludes the thesis with some remarks on the overall research and possible future directions.
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2. PRELIMINARIES AND LITERATURE OVERVIEW

A. Introduction

Coding theory is both a narrow and a broad field of study. It is narrow in the sense that it

revolves around a single central topic: the properties and construction of error-correcting codes. It

is broad in the sense that the variety of codes is limitless, and their properties and the approaches

to their study is equally multifaceted.

In Sections 2-B and 2-C of this chapter, we introduce some of the basic ideas of coding

theory pertinent to the current work. Other ideas are introduced in their respective chapters as

necessary. The remaining sections provide an overview of some of the relevant coding theory

literature, particularly in the fields of permutation/multipermutation codes and formalization.

B. The Idea of Coding

Coding theory, or the study of error-correcting codes, is an answer to the problem of sending

or storing data reliably. What is a code, and what is its purpose? We provide here a rudimentary

look at the basic idea behind error-correcting codes. This is only meant to provide some context

for subsequent chapters, with the goal of keeping the current work as self-contained as possible.

This section is purposely broad and more precise definitions are introduced for specific codes

in later sections. For more detailed information on Coding theory, the reader is referred to texts

such as [12, 63, 66].

Firstly, let us describe one situation in which a code might arise. This is not the only situation,

but it illuminates the major concepts of coding theory. For this purpose, we recall the famous

engineering problem of Alice sending a message to Bob. Alice wishes to send a message m of

some set M of possible messages to Bob through a noisy channel. By noisy channel, we mean

that the message Alice intends to send to Bob may be corrupted (altered) as it passes through

the channel. The type of corruption that can occur will depend upon the channel in question.

For example, perhaps Alice wishes to send one of two possible messages, 0 or 1, corresponding

to no and yes. She may send a 0, but because of noise it is perceived by Bob as a 1. Or perhaps
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she sends a 0 but because of noise no message is perceived at all. Of course the type of possible

noise is not limited to these examples.

Rather than simply sending the original message across the channel, Alice can add some sort of

redundancy to her message (and possibly change the format altogether) to increase the probability

of it successfully reaching Bob. The process of adding redundancy is called encoding, and the set

C (typically a subset of a larger set X) of encoded messages is called a code. Members c ∈ C

are called codewords. Alice transmits a codeword through the channel instead of the original

message, and as a result of noise, Bob receives a potentially altered word ĉ at the other end of

the channel. This received word belongs to some superset Y ⊇ C of possible receivable words.

The received word ĉ is then decoded to obtain an estimation m̂ ∈ M of the original message

sent by Alice. If the decoding is successful, then m = m̂.

The most well-known and well-studied class of codes are linear codes. A linear code may be

defined as follows. Let Fq be a finite field of cardinality q, and F n
q the n-dimensional vector

space over Fq. A linear code C is any k-dimensional linear subspace of F n
q , where n and k are

positive integers with k ≤ n. The term linear comes from the fact that any linear combination

of codewords is again another codeword (a characteristic of being a linear subspace). Referring

to the previous explanation, the message set M is typically taken to be the set F k
q of k-length

vectors over Fq, of which there are qk. This means that the encoding process takes a k-length

vector and converts it to an n-length vector. In this context the parameter k is known as the

number of information bits and the parameter n is known as the length of the code.

The rate of a linear code is defined as the ratio between the number k of information bits

and the length n of the code. In other words, the rate R of a linear code is defined as k/n.

Notice that k/n = (ln(qk))/(ln(qn)) = (ln #F k
q )/(ln #F n

q ) = (ln #C)/(ln #F n
q ), where #A is

notation for the cardinality of the set A. Hence the rate may also be defined as the ratio between

the natural log of the size #C of the code, and the natural log of the size of F n
q , of which C

is a linear subspace. Later we will define rate of permutation codes analogously. A large rate

is desirable, as it corresponds to faster communication through a channel (or to denser storage

in a similar context). At the same time, having no redundancy means a lower probability of
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successful transmission or storage of a message.

One of the triumphs of Claude Shannon’s famous 1948 paper, “A mathematical theory of

communication” ([68]), was to show that it is possible to successfully transmit a message through

a noisy channel with arbitrarily high probability for any rate below what he defined as the

capacity of the channel. However, no practical codes were provided at that time. A big question

of coding theory is how to choose codes C with high probability of successful communication,

i.e. arbitrarily small probability of error, while maintaining high rates.

As the name suggests, an error-correcting code is simply a code where errors that occur as

a result of a noisy channel can be corrected. Correcting errors introduced by the noisy channel

enables the original intended message to be recovered. One key concept in error-correcting codes

relevant to the current work is the idea of minimum distance. This is discussed in the next section.

C. Minimum Distance in Coding Theory

We begin the discussion of minimum distance by considering the most commonly studied

distance in coding theory, the Hamming distance. Given vectors x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn) in F n
q , the Hamming distance dH(x,y) between x and y is defined as dH(x,y) :=

#{i ∈ [n] : xi 6= yi}. In the definition, [n] is notation for the set of integers {1, 2, . . . , n}.

In words, the Hamming distance is simply the number of pairwise disagreements between two

vectors of equal length. The minimum Hamming distance d of a linear code C is defined as

d := min{dH(c1, c2) ∈ Z≥0 : c1, c2 ∈ C, c1 6= c2}.

In terms of the communication model, suppose that a codeword c = (c1, c2, . . . cn) is sent

through the channel one element at a time, beginning with c1 and ending with cn. The Hamming

distance corresponds to any errors introduced by noise in the channel that causes anything other

than the transmitted ci’s to be received. For example, suppose (0, 0, 0, 0, 0) is sent through the

channel but (0, 1, 0, 0, 3) is received. In such a situation we would say that 2 disagreement errors

occurred, and accordingly the Hamming distance between (0, 0, 0, 0, 0) and (0, 1, 0, 0, 3) is 2.

Given t ∈ Z≥0, whenever the minimum Hamming distance of a linear code C is 2t+1 or greater,

then t disagreement errors of the nature described above are correctable.



7

To see why t disagreement errors are correctable given a minimum Hamming distance of at

least 2t+1, suppose that any codeword c is sent through a channel. If t or fewer errors occur, then

the resulting received word ĉ will be within Hamming distance t of the transmitted codeword c.

Meanwhile, since all other codewords are at least distance 2t+1 from c, it follows that ĉ is at least

distance t+1 away from all other codewords that are not c. Hence the transmitted codeword c is

uniquely determined by simply choosing the codeword that has the smallest Hamming distance

from ĉ.

The Hamming distance is appropriate for certain types of errors and codes, but not for others.

For instance, the Hamming distance can account for errors known as bit flips, where a 0 or 1

is sent through a channel but the opposite is received (1 instead of 0, or 0 instead of 1). In this

case the length of a transmitted vector is preserved so that the Hamming distance makes sense

and it also corresponds exactly to the number of errors that occur. However, it is not suited for

a situation, for example, when an element within a transmitted codeword is deleted, causing the

received word to be of a shorter length than the original sent codeword.

Moreover, until now we have focused on the linear code case, but there are other classes

of codes. For instance, permutation codes, defined in the next section, are nonlinear codes. A

plethora of distance metrics other than the Hamming distance may be applied in coding theory.

Different metrics are more appropriate for different types of codes or errors. The current work

considers several metrics: the Hamming metric, the Kendall tau metric, the Euclidean metric, the

Ulam metric, and the Levenshtein metric. While the metrics differ, the general idea is preserved:

the larger the minimum distance of a code, the more errors are correctable.

D. Permutation/Multipermutation Codes Literature Review

In this subsection we briefly review some of the publications related to permutation and

multipermutation codes. In 1965, D. Slepian published a paper entitled “Permutation Modulation”

[69], where he constructed a code by beginning with an initial sequence and then taking all

distinctive sequences formed by permuting the order of the numbers in this sequence. The class

of codes he constructed was suitable for the transmission of digital information in the presence
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of white Gaussian noise, a commonly used noise model. The codes introduced by Slepian may

be considered to be the first instance of permutation codes.

Efficient encoding is one aspect necessary for practical implementation of error-correcting

codes. Berger et. al. considered the problem of encoding for permutation codes introduced pre-

viously by Slepian [11]. They demonstrated the relative simplicity of encoding these permutation

codes.

As mentioned previously, another question in coding theory concerns the limits of maximal

code size for a given minimum distance. One technique to determine bounds on permutation code

size involves calculating spheres, or the number of permutations within a given distance (radius).

Deza and Frankl used calculations of permutation sphere sizes under the Hamming distance to

determine upper and lower bounds on permutation code size utilizing the Hamming distance

[25]. Other aspects of permutation codes in the Hamming metric were further expounded upon

by Blake, Cohen, and Deza, including questions of decoding algorithms [14, 15, 23].

Permutation codes have been suggested for a number of practical applications. One such

application of note was the use of permutation codes in powerline communications, proposed by

Vinck in 2000 [72, 73]. The proposal incorporated the Hamming distance for error-correction.

Chu et. al. later considered constructions of permutation codes for use in powerline communi-

cations [21]. A decoding method for permutation codes for powerline communications applying

distance-preserving mapping algorithms was discussed in [71].

Another recent application of permutation codes is to DNA storage. Church et. al. ([22])

and subsequently others ([16, 34]) demonstrated a remarkable proof of concept of the use of

artificial DNA for the storage of digital data. This has profound implications on potential data

storage density. Kiah et. al. showed in [49] that it is possible to integrate rank modulation codes

(permutation codes) into DNA coding schemes, with an advantage of high error tolerance. In

2017 Raviv et.al. provided an upper bound on the number of feasible permutations under the

aforementioned scheme.

One more application of permutation codes, which renewed interest in the subject since Jiang

et. al. first proposed it in 2009, is the application of permutation codes to flash memory [44].
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The scheme described would improve the stability and efficiency in programming flash memory

cells. Their proposal utilized the Kendall tau metric, which measures the minimum number of

adjacent transpositions to transform one permutation into another.

Barg et. al. and others further investigated permutation codes in the Kendall tau metric. They

provided upper and lower bounds on the maximum size of codes (including upper bounds based

on sphere-size calculations) and presented code constructions [10, 19, 28, 57, 61]. Snake-in-the-

box-codes (also called Gray codes) for rank modulation were also studied in the Kendall tau

metric in recent years [41, 76]–[78]. These codes are a type of permutation code that can detect

single errors and have the quality that successive codewords are obtainable by a single “push-

to-the-top” operation, an operation that played a pivotal role in Jiang et. al.’s original scheme.

In 2013 and 2014, Farnoud et. al. proposed the use of the Ulam metric in permutation and

multipermutation codes, again with applications to flash memory [29, 30]. While the Kendall tau

metric is appropriate to model certain errors in flash memory, the Ulam metric would better model

errors in certain situations resulting from faulty cells in flash memory devices. They provided

some loose bounds on the maximal possible code size of both permutation and multipermutation

code size in the Ulam metric. Gologlu et. al. gave new bounds for the maximal possible code size

of permutation codes in the Ulam metric [35]. They employed integer programming techniques

for these new bounds.

E. Formalization in Coding Theory Literature Review

Interest in formalization has been increasing in recent years. Numerous papers have been

published on the subject, including formalization papers related to information theory and coding

theory [1]–[3, 5, 8, 38, 62]. A journal dedicated to “automated or semi-automated formalization

efforts in any area,”1 called the “Journal of Formalized Reasoning” was also established in 2009.

More recently, Microsoft Research and Carnegie Mellon University released a new open source

theorem prover called Lean in 2015 (our research in formalization focuses on formalization

utilizing Lean).

1from “Journal of Formalized Reasoning” website, https://jfr.unibo.it
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Information theory is closely related to coding theory. Among other things, it establishes

theoretical bounds on what is possible for codes. One of the prominent libraries for the formal-

ization of coding theory is the “infotheo” library for Coq, developed by Affeldt, Garrigue, and

others. As the name suggests, this library also formalizes fundamental definitions and theorems of

information theory, including perhaps most notably formalizations of Shannon’s famous theorems

as detailed in [5]. This library also includes the formalization of several famous codes, including

Hamming codes, Reed-Solomon codes, and LDPC codes [2, 4].

Another well-known formalization software is the HOL theorem prover, which was also

released in the 1980’s. The lines of code referenced in [58] and [60] for the HOL theorem

prover contain information theory-related formalization. Both this work as well as the infotheo

library formalize the AEP (Asymptotic Equipartition Property) as well as concepts of entropy.

A considerable amount formalization for HOL (as well as another well-known theorem prover,

Isabelle), was also completed in in [40], including notions of entropy, mutual information, and

Markov chains. These are fundamental topics of information theory, and underlying concepts of

coding theory.

The information theory formalization work in the HOL theorem prover also includes work to

formalize general mathematics useful for future formalization such as Lebesgue integration and

probability theories over the extended reals ([59]) used in the formalization in [58]. Similarly,

the infotheo library in Coq makes use of the mathcomp and ssreflect extensions that contain

general mathematical definitions and theorems that can be utilized for formalization in other

areas like coding theory.

F. Conclusion

We provided in this chapter some of the basic notions and terms of coding theory. We also

outlined briefly some of the literature pertinent to the current study, especially in the areas

of permutation/multipermutation codes and coding theory formalization. Subsequent chapters

explain the actual contributions of the current research.
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3. KENDALL TAU LP-DECODABLE PERMUTATION CODES

A. Introduction

One way of defining a permutation code C is as an orbit {X~µ : X ∈ G}, where G is a set

of permutation matrices2 and ~µ is a Euclidean vector. If we consider the Euclidean distance to

model the noise of a communication channel, similarly to the way we saw the Hamming distance

model noise in previous examples, then one of the possible main goals of permutation codes is:

“for a given Euclidean vector ~λ, find an X~µ which minimizes the distance ||X~µ−~λ|| over X ∈ G

by an efficient algorithm.” This would correspond to the decoding process of communication,

where a received Euclidean vector is decoded to the codeword closest to it in terms of the

Euclidean distance. If the cardinality of G is large, then minimizing the aforementioned distance

may be computationally difficult.

In [75], Wadayama and Hagiwara introduced a novel solution to the above problem using

linear programming methods. They considered the following problem3:

maximize ~λTX~µ, for fixed Euclidean vectors ~µ,~λ

where X is taken over the Birkhoff polytope, which consists of doubly stochastic matrices, or a

subset of that polytope (see the appendices for the definitions of doubly stochastic matrices and

the Birkhoff polytope). They proved the fundamental theorem that a doubly stochastic matrix

X0 maximizes the problem above if and only if the matrix X0 minimizes the linear programing

problem below:

minimize ||X~µ− ~λ||, for fixed Euclidean vectors ~µ,~λ

where X is taken over the Birkhoff polytope and the distance || · || is the Euclidean distance.

The set of vertices of the Birkhoff polytope is exactly the set of permutation matrices. In other

words, Wadayama-Hagiwara’s problem is equivalent to the aforementioned permutation code

problem, in the form of a linear programming (LP) problem.

2In some references, G is chosen as a generalized permutation group, e.g., a signed permutation group.
3The original problem is to maximize Trace(~µ~λTX). It is directly obtained that Trace(~µ~λTX) = Trace(~λTX~µ) = ~λTX~µ
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This implies that LP techniques may be applied for decoding if G is the set of all permutation

matrices for a given dimension. The reader may have the question: “Is it possible to apply

this approach to a subset of permutation matrices?” The answer is yes. In [75], new classes

of permutation codes were proposed by considering sub-polytopes of the Birkhoff polytope.

However, these new classes potentially contain fractional vertices in which case its sub-polytope

contains vertices which are not permutation matrices. A novel method of constructing compact

constraints called consolidation was introduced in the first half of [37]. Some of the important

definitions and the major theorem that establishes the viability of consolidation as a method of

constructing compact constraints are stated in Appendix A.

B. Extending LP decoding Methods

The LP decoding methods expressed in the introduction of this chapter were originally intended

for permutation codes where the metric in use is the Euclidean metric. With the proper choice of

polytope, decoding to the nearest (in the Euclidean metric) geometric vertex will yield the same

result as when decoding to the nearest permutation in terms of the Kendall tau distance, which

we define subsequently. When the linear constraints are compact, LP decoding will naturally

yield a permutation matrix. We provide in Definition 3-B and subsequent lemmas a necessary and

sufficient condition for the LP decoding methods proposed in [75] to be utilized to detect/correct

Kendall tau errors.

Extending LP-decoding in this manner is significant, since the Kendall tau distance has been

of recent interest in the context of permutation codes particularly in coding for flash memory.

Rank modulation was suggested by Jiang. et al. for improving the efficiency and stability of

flash devices [44, 45]. In this scheme the Kendall tau distance was the primary metric and was

used to account for errors of the relative order or rank in permutation entries. Moreover, it was

proven by Buchheim et. al. that finding an element of a permutation group with minimal Kendall

tau distance from a given permutation of Sn is an NP-complete problem [18]. However, linear

programming problems are guaranteed to be solvable in polynomial time [48], meaning that we

have an efficient decoding algorithm to correct errors in the Kendall tau distance whenever the

LP-decoding extension condition is satisfied.



13

We begin our discussion by introducing notation and definitions necessary to read this chapter.

The permutation group Sn on {0, 1, . . . , n−1} may be embedded into the set Mn(R) of matrices

by associating each permutation σ of Sn with an n-by-n matrix Xσ := δj=σ(i), where δ is the

Kronecker’s delta. For the ease of discussion of metrics, we prefer the following notation for

subsequent sections. For any permutation σ in Sn, we use the notation σ = [σ0, σ1, . . . , σn−1],

where σi is in the set {0, 1, . . . , n − 1} and whenever i 6= j, then σi 6= σj . We may define an

action of Sn on Rn by allowing σ = [σ0, σ1, . . . , σn−1] to be the permutation sending the ith

position of a vector ~µ ∈ Rn upon which σ acts to the σith position. We denote this action by

σ ◦ ~µ. Note that if Xσ is the permutation matrix associated with the permutation σ and ~µ ∈ Rn,

then the action σ ◦ ~µ is equivalent to the natural action Xσ~µ.

Permutations are multiplied in the typical manner, from right to left. The identity permutation

is denoted by e := [0, 1, . . . , n−1] ∈ Sn, while the inverse of a permutation σ ∈ Sn is denoted by

σ−1. We embed Sn into Rn in the following manner. For any permutation σ = [σ0, σ1, . . . , σn−1]

in Sn, we associate the vector ~σ := ((σ−1)0, (σ
−1)1, . . . , (σ

−1)n−1) in Rn. It is worth noting that

σ ◦ ~µ = −→σµ and in particular σ ◦ ~e = ~σ.

It is known that the Kendall tau distance between two permutations σ and τ is equivalent to

the minimum number of pairwise adjacent transpositions necessary to transform σ into τ, or τ

into σ [26]. We denote this distance by dK(σ, τ). The precise definition is as follows.

Definition (Kendall tau Distance). Given σ, τ ∈ Sn, the Kendall tau distance dK(σ, τ) between

σ and τ is defined as

dK(σ, τ) := #{(i, j) : 0 ≤ i < j ≤ n− 1, (σ−1τ)i > (σ−1τ)j},

where recall that #A denotes the cardinality of the set A.

It is also known that the Kendall tau distance is left-invariant, i.e., given any σ, τ, λ ∈ Sn,

then dK(σ, τ) = dK(λσ, λτ). The standard Euclidean distance between two vectors ~σ and ~τ is

denoted by dE(~σ, ~τ) in this paper. The following table compares the Kendall tau and Euclidean

distances between some permutations and their associated vectors respectively.
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TABLE I
KENDALL TAU, EUCLIDEAN DISTANCES

σ τ dK(σ, τ) dE(~σ, ~τ)

[1, 0, 3, 2] [1, 0, 3, 2] 0 0

[1, 0, 3, 2] [1, 0, 2, 3] 1
√

2 ≈ 1.1421
[0, 1, 2, 3] [1, 0, 3, 2] 2 2

[0, 1, 2, 3] [0, 3, 1, 2] 2
√

6 ≈ 2.44949

[0, 1, 2, 3] [1, 3, 2, 0] 4
√

14 ≈ 3.74166
[0, 1, 2, 3] [2, 3, 0, 1] 4 4

[1, 0, 3, 2] [2, 3, 0, 1] 6 2
√

5 ≈ 4.4721

We are now equipped to discuss what it means for a code to be Kendall tau LP-Decodable.

That is, we are able to explain the conditions under which LP-decoding methods may be used

to correct Kendall tau metric errors. Let us first consider a small subgroup example where

LP-decoding can be used to correct Kendall tau errors.

As discussed previously, there exists a compact constraint set L such that Ver(D[L]) = Cn ⊂

Sn, where Cn is the cyclic group of order n. This makes Cn a natural candidate for extending

LP-decoding. Moreover, a construction for Cn using only the “push-to-the-top” operation was

provided in [44]. The “push-to-the-top” operation was proposed as a promising improvement

over programming operations currently employed in flash memory technology.

As a small example, consider the permutation code (C4, ~e) consisting of four cyclic rotations

of the identity vector. Explicitly, the codewords are: (0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), and

(3, 0, 1, 2), with minimum Euclidean distance of about 3.4641. The associated permutations for

these codewords are [0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], and [3, 0, 1, 2] respectively, with minimum

Kendall tau distance of 3 between permutations.

Suppose now that the codeword (0, 1, 2, 3) is transmitted, but the corrupted message (1, 0, 2, 3)

is received. Notice that in this instance sufficient corruption occurred so that the relative ranks of

vector components were altered. The following table shows a comparison between the Euclidean

distances between the vector (1, 0, 2, 3) and codewords, and the Kendall tau distances between

the permutation [1,0,2,3] and the permutations associated with each codeword.

From Table II we can see that the received vector (1, 0, 2, 3) would be decoded to the codeword
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TABLE II
EUCLIDEAN, KENDALL TAU DISTANCES FROM (1, 0, 2, 3) AND [1, 0, 2, 3]

Codeword dE from (1, 0, 2, 3) Permutation dK from [1, 0, 2, 3]

(0, 1, 2, 3) 1.4142 [0, 1, 2, 3] 1
(1, 2, 3, 0) 3.7417 [1, 2, 3, 0] 4
(2, 3, 0, 1) 4.2426 [2, 3, 0, 1] 5
(3, 0, 1, 2) 2.4495 [3, 0, 1, 2] 2

(0, 1, 2, 3) based on Euclidean distance, and likewise the permutation [1, 0, 2, 3] would be decoded

to [0, 1, 2, 3] based on Kendall tau distance. In fact, it is easily verified that for any element

σ ∈ S4, the closest codeword to ~σ ∈ R4 in terms of dE has an associated permutation that is

also closest to σ ∈ Sn in terms of dK . We call such a code Kendall tau LP-Decodable.

Definition. [Kendall tau LP-Decodable] Let λ, µ ∈ Sn, and G be a subgroup of Sn. Let g0 ∈ G.

We say G~µ is Kendall tau LP-decodable if the permutation code (G, ~µ) is first LP-decodable

i.e., GL := Ver(Dn[L])∩Sn for some doubly stochastic constraint L, and the following statement

called the LP-decoding extension condition is satisfied.

dE(~λ,−→g0µ) ≤ dE(~λ,−→gµ) for all g ∈ G

=⇒ dK(λ, g0µ) ≤ dK(λ, gµ) for all g ∈ G.
(1)

In this scheme, suppose a potentially corrupted transmitted vector ~λ is received. The decoder

will attempt to find the closest codeword g0 ◦ ~µ = −→g0µ from ~λ in terms of dE via linear

programming methods [75]. If the LP-decoding extension condition holds, then the permutation,

g0µ associated with −→g0µ will also be the closest permutation to λ ∈ Sn in terms of dK . This

essentially means that we have a polynomial time algorithm for finding/correcting Kendall tau

metric errors for the right choice of subgroup of Sn. Actually, we are not limited to subgroups,

but this paper focuses its analysis on subgroups because of their mathematical structure. Further

research may be conducted to consider non-group subsets of Sn.

In order to simplify the comparison of Euclidean and Kendall tau distance, we make use of

the left invariance of both metrics. Since Kendall tau distance is left invariant, there always
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exists a permutation such that the distance between two permutations can be rewritten in terms

of the distance between the identity permutation and some other permutation. More precisely,

dK(σ, τ) = dK(e, σ−1τ). The distance dK(e, σ) between the identity permutation e and σ ∈ Sn

is a previously studied value called the length of σ [43]. The Kendall tau distance between the

identity e and an element has also been referred to by Barg et al. as the weight of that element.

We will denote the Kendall tau weight of a permutation σ by wtK(σ). [10].

Similarly to Kendall tau distance, Euclidean distance is also left invariant, i.e. given λ ∈ Sn

and ~σ, ~τ in Rn, we have dE(~σ, ~τ) = dE(λ~σ, λ~τ). Hence since dE(λ~σ, λ~τ) = dE(
−→
λσ,
−→
λτ), then

dE(~σ, ~τ) = dE(~e,
−−→
σ−1τ). Thus, it is natural to consider the distance between an element of Rn

and the vector ~e associated with the identity permutation. In this paper we refer to one half of

the square of Euclidean distance between an a vector ~σ and ~e as the Euclidean weight of ~σ and

denote this weight by wtE(~σ).

Definition (Euclidean Weight). Given σ ∈ Sn, the Euclidean weight wtE(~σ) of ~σ is defined as

wtE(~σ) :=
1

2
(dE(~e, ~σ))2.

We also include the factor of 1
2

since all squared distances between ~e and another permutation

vector ~σ are even. Indeed, given ~σ ∈ Rn, we have (dE(~e, ~σ))2 = 2〈~e,~e〉 − 2〈~e, ~σ〉, where 〈x, y〉

denotes the standard dot product between x and y so that 〈~e,~e〉 and 〈~e, ~σ〉 are integers. The

following table compares Kendall tau and Euclidean weights for some permutations and their

associated vectors.

TABLE III
KENDALL TAU, EUCLIDEAN WEIGHTS

σ wtK(σ) wtE(~σ)

[0, 1, 2, 3, 5, 4] 1 1
[1, 0, 2, 3, 5, 4] 2 2
[0, 2, 3, 5, 4, 2] 4 7
[1, 2, 3, 4, 5, 0] 5 15
[2, 1, 0, 5, 4, 3] 6 8

Because of the left invariance of both metrics, the LP-decoding extension condition can be
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simplified as follows.

Lemma 3.1. Let λ, µ ∈ Sn, and G be a subgroup of Sn. Let g0 ∈ G.

dE(~λ, ~µ) ≤ dE(~λ,−→gµ) for all g ∈ G

=⇒ dK(λ, µ) ≤ dK(λ, gµ) for all g ∈ G
(2)

if and only if

dE(~λ,−→g0µ) ≤ dE(~λ,−→gµ) for all g ∈ G

=⇒ dK(λ, g0µ) ≤ dK(λ, gµ) for all g ∈ G.

Proof. To justify this lemma, notice that dE(~λ,−→g0µ) = dE(
−−→
g−1

0 λ, ~µ) and likewise dK(λ, g0µ) =

dK(g−1
0 λ, µ). Since λ is taken over all of Sn, the desired result follows.

For the case when µ = e, we may simplify the LP-decoding extension condition even further

using the weights discussed earlier.

Lemma 3.2. Let λ,∈ Sn, µ = e, and G be a subgroup of Sn. Let g0 ∈ G.

wtE(
−→
λ−1) ≤ wtE(

−−→
λ−1g) for all g ∈ G

=⇒ wtK(λ−1) ≤ wtK(λ−1g) for all g ∈ G
(3)

if and only if

dE(~λ,−→g0µ) ≤ dE(~λ,−→gµ) for all g ∈ G

=⇒ dK(λ, g0µ) ≤ dK(λ, gµ) for all g ∈ G.

Proof. The lemma follows immediately from the definitions of dK ,wtK , dE, and wtE .

The above lemma essentially reduces the LP-decoding extension condition to a comparison of

weights whenever µ = e. It states that if a received vector
−→
λ−1 having minimal Euclidean weight

among vectors of the form
−→
λ−1g implies that the Kendall tau weight of λ−1 is also minimal in

the coset λ−1G, then the LP-decoding extension condition is satisfied.

Through computer programming methods, the authors have confirmed that Cn is Kendall tau

LP-decodable for all 1 ≤ n ≤ 10. However, it remains an open question to prove that Cn is
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Kendall tau LP-decodable for all n ∈ N. The following is an example of a subgroup that does

not satisfy the LP-decoding extension condition.

Example 3.3 (D12). The dihedral group D12 does not satisfy statement (3). Consider λ−1 :=

[1, 0, 4, 3, 2, 5]. λ−1D12 = {λ−1g : g ∈ D12}. It is easily verified that min
λ−1g ∈ λ−1D12

wtE(
−−→
λ−1g) =

5 = wtE(
−→
λ−1). However, g0 := [1, 0, 5, 4, 3, 2] ∈ D12 which implies that λ−1g0 = [0, 1, 5, 2, 3, 4] ∈

λ−1D12 and wtK(λ−1g0) = 3 < 4 = wtK(λ−1). Therefore wtE(
−→
λ−1) ≤ wtE(

−−→
λ−1g) for all g ∈ G,

but there exists g ∈ G such that wtK(λ−1) > wtK(λ−1g).

C. Minimum Weight

Determining minimal weights is often an important question in coding theory, since this

provides insight into the minimum distance between codewords. A non-identity element is said

to have minimum Kendall tau (Euclidean) weight if there exist no elements with a smaller Kendall

tau (Euclidean) weight value (other than the identity element.) In the cases of the Kendall tau

and Euclidean distances, the minimum distance is equivalent to the respective minimum weight

since in both instances we can rewrite the distance between any two elements as the weight of

some element.

We begin this section with a discussion on Cn ⊂ Sn, the cyclic subgroup of order n generated

by σ[n−1] := [1, 2, 3 . . . , n− 1, 0]. Before determining the elements of minimal Kendall tau and

Euclidean weight in Cn and explicitly calculating their values, we first prove a linear relationship

between the two weights.

Proposition 3.4. Let σ[i] := (σ[n−1])n−i, the unique permutation of Cn with 0 in the (i)th position.

Then wtK(σ[i]) = (i)(n− i).

Proof. For any σ[i] ∈ Cn, we have

σ[i] = [n− i, n− i+ 1, . . . , n− 1,︸ ︷︷ ︸
i

0, 1, . . . , n− i− 1︸ ︷︷ ︸
n−i

].

Note that σ[i] splits into two sub-sequences of length i and n−i respectively. For any element j of

the left sub-seqence, j > k for all k in the right sub-sequence. Thus the Kendall tau weight of σ[i]
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is determined by the product of the length of each sub-sequence, i.e., wtK(σ[i]) = (i)(n− i).

There is a linear relationship between wtK(σ) and wtE(~σ) for all σ ∈ Cn. The following

proposition is directly obtained by routine calculation.

Proposition 3.5. Let σ[i] := (σ[n−1])n−i, the unique permutation of Cn with 0 in the ith position.

Then wtE(
−→
σ[i]) =

n

2
(i)(n− i) i.e., wtE(

−→
σ[i]) =

n

2
wtK(σ[i]).

The subsequent table, showing the elements of C5 and their respective Kendall tau and

Euclidean weights, depicts a concrete example of the linear relationship between the two weights

for Cn.

TABLE IV
KENDALL TAU, EUCLIDEAN WEIGHTS OF C5

σ ∈ C5 wtK(σ) wtE(~σ)
σ[0] = [0, 1, 2, 3, 4] 0 0
σ[1] = [4, 0, 1, 2, 3] 4 10
σ[2] = [3, 4, 0, 1, 2] 6 15
σ[3] = [2, 3, 4, 0, 1] 6 15
σ[4] = [1, 2, 3, 4, 0] 4 10

Remark 3.6. Based on proposition 3.4, it is clear that the the elements of minimal Kendall tau

weight in Cn are σ[1] and σ[n−1], with wtK(σ[1]) = wtK(σ[n−1]) = n− 1.

Since there is a linear relationship between the Kendall tau weight and the Euclidean weight

for elements of Cn and their associated vectors, it is a simple matter to determine the elements

of minimal Euclidean weight and their corresponding values in the Cn case.

Remark 3.7. The elements of minimal Euclidean weight for all associated vectors of permuta-

tions of Cn are
−→
σ[1] and

−−−→
σ[n−1], with wtE(

−→
σ[1]) = wtE(

−−−→
σ[n−1]) = n

2
(n− 1).

In the case of Sn, calculating minimal weight elements is a trivial matter, since for any

natural number n, there exists a permutation of Sn with a Kendall tau or Euclidean weight of 1.

Specifically, any adjacent transposition (i, i+ 1) in Sn will have both Kendall tau and Euclidean

weight of 1.
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D. Weight Enumerator Polynomials

Continuing our exposition on the relationship between Kendall tau and Euclidean weights, we

consider now their respective weight enumerator polynomials [39], also known as the generating

functions [53]. Weight enumerator polynomials are useful for analyzing the performance of a

code such as the probability of error detection.

The weight enumerator polynomial is defined as follows.

Definition (Weight Enumerator Polynomials). Let G ⊂ Sn. The weight enumerator polynomial

WK (resp. WE) of G for wtK (resp. wtE) is:

WK(G; t) :=
∑
σ∈G

twtK(σ) (resp. WE(G; t) :=
∑
σ∈G

twtE(~σ) ).

We shall begin our discussion of weight enumerator polynomials with the cyclic subgroup

case.

Example 3.8. The Kendall tau weight enumerator polynomials of Cn for n = 1, . . . , 7 are as

follows.

WK(C1; t) = 1.

WK(C2; t) = 1 +t.

WK(C3; t) = 1 +2t2.

WK(C4; t) = 1 +2t3 +t4.

WK(C5; t) = 1 +2t4 +2t6.

WK(C6; t) = 1 +2t5 +2t8 +t9.

WK(C7; t) = 1 +2t6 +2t10 +2t12.

Proposition 3.9. WK(Cn; t) =
∑n

i=1 t
(i−1)(n−i+1).

Proof. The desired result follows immediately from Proposition 3.4.

Example 3.10. The Euclidean weight enumerator polynomials of Cn for n = 1, . . . , 7 are as

follows.
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WE(C1; t) = 1.

WE(C2; t) = 1 +t.

WE(C3; t) = 1 +2t3.

WE(C4; t) = 1 +2t6 +t8.

WE(C5; t) = 1 +2t10 +2t15.

WE(C6; t) = 1 +2t15 +2t24 +t27.

WE(C7; t) = 1 +2t21 +2t35 +2t42.

Proposition 3.11. The Euclidean weight enumerator polynomials for Cn is characterized by:

WE(Cn; t) =
∑n

i=1 t
n
2

(i−1)(n−i+1).

Proof. The desired result follows immediately from Proposition 3.5.

Proposition 3.12. WE(Cn; t) = WK(Cn; t
n
2 ).

Proof. The desired result follows from the previous two propositions.

Example 3.13. The Kendall tau weight enumerator polynomials of Sn for n = 1, . . . , 7 are as

follows.
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WK(S1; t) = 1

WK(S2; t) = 1 +t

WK(S3; t) = 1 +2t +2t2 +t3

WK(S4; t) = 1 +3t +5t2 +6t3 +5t4 +3t5 +t6

WK(S5; t) = 1 +4t +9t2 +15t3 +20t4 +22t5 +20t6 +15t7

+9t8 +4t9 +t10

WK(S6; t) = 1 +5t +14t2 +29t3 +49t4 +71t5 +90t6 +101t7

+101t8 +90t9 +71t10 +49t11 +29t12 +14t13 +5t14

+t15

WK(S7; t) = 1 +6t +20t2 +49t3 +98t4 +169t5 +259t6 +359t7

+455t8 +531t9 +573t10 +573t11 +531q12 +455t13 +359t14

+259t15 +169t16 +98t17 +49t18 +20t19 +6t20 +t21

The following general formula of WK(Sn; t) for n ≥ 2 is well-known [6].

WK(Sn; t) = (1 + t)(1 + t+ t2) · · · (1 + t+ · · ·+ tn−1).

This formula is a special case of Weyl’s character formula for Lie theory [32]. It is a relatively

simple matter to see why it is true. From the above example the formula is easily verifiable for

n = 2. Notice that any permutation of S3 can be obtained from a permutation of S2 by simply
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inserting the number 2 into some position. For example, the permutation [0, 1, 2] is simply

the permutation [0, 1], with 2 inserted into the third position. Similarly [0, 2, 1] is simply the

permutation [0, 1] with 2 inserted in the second position and [2, 0, 1] is [0, 1] with 2 inserted into

the first position. In general, inserting n−1 into the (n−i)th position for i = 0, . . . , n−1 in each

of the permutation σ of Sn−1 corresponds to a new permutation of Sn with weight wtK(σ) + i.

Thus an inductive argument yields the desired formula.

It is clear that the powers of WK(Sn; t) are consecutive, running from 1 through 1
2
(n2 − n).

That is, for all values k between 0 and 1
2
(n2−n), there exists a σ ∈ Sn such that wtK(σ) = k. It

remains an open question to find a concise formula for WE(Sn; t) similar to the formula above.

The following example shows the Euclidean weight enumerator polynomials corresponding

to the example above.

Example 3.14. The Euclidean weight enumerator polynomials of Sn for n = 1, . . . , 7 are as

follows.
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WE(S1; t) = 1

WE(S2; t) = 1 +t

WE(S3; t) = 1 +2t +2t3 +t4

WE(S4; t) = 1 +3t +t2 +4t3 +2t4 +2t5 +2t6 +4t7

+t8 +3t9 +t10

WE(S5; t) = 1 +4t +3t2 +6t3 +7t4 +6t5 +4t6 +10t7

+6t8 +10t9 +6t10 +10t11 +6t12 +10t14 +4t14

+6t15 +7t16 +6t17 +3t18 +4t19 +t20

WE(S6; t) = 1 +5t +6t2 +9t3 +16t4 +12t5 +14t6 +24t7

+20t8 +21t9 +23t10 +28t11 +24t12 +34t13 +20t14

+32t15 +42t16 +29t17 +29t18 +42t19 +32t20 +20t21

+34t22 +24t23 +28t24 +23t25 +21t26 +20t27 +24t28

+14t29 +12t30 +16t31 +9t32 +6t33 +5t34 +t35

WE(S7; t) = 1 +6t +10t2 +14t3 +29t4 +26t5 +35t6 +46t7

+55t8 +54t9 +74t10 +70t11 +84t12 +90t13 +78t14

+90t15 +129t16 +106t17 +123t18 +134t19 +147t20 +98t21

+168t22 +130t23 +175t24 +144t25 +168t26 +144t27 +184t28

+144t29 +168t30 +144t31 +175t32 +130t33 +168t34 +98t35

+147t36 +134t37 +123t38 +106t39 +129t40 +90t41 +78t42

+90t43 +84t44 +70t45 +74t46 +54t47 +55t48 +46t49

+35t50 +26t51 +29t52 +14t53 +10t54 +6t55 +t56
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From Example 3.14 it can be observed that all the Euclidean weight values appear to be

consecutive for n 6= 3. In other words, for all values k between 0 and 1
6
(n3 − n), where

wtK(e) = 0 and wtK(ω0) = 1
2
(n2 − n), there exists a σ ∈ Sn such that wtE(~σ) = k. To prove

that this observation is true, we first introduce a small theorem about the maximal Kendall tau

weight element, which we will show corresponds exactly with the maximal Euclidean weight

element.

It is well-known that ω0 := [n− 1, n− 2, . . . , 0] is the unique element of Sn having maximal

Kendall tau weight, wtK(ω0) = n(n−1)
2

; it is called the longest element. It is also a known

property that for all σ in Sn, wtK(ω0σ) = wtK(ω0)− wtK(σ) [43]. We proceed to show that a

similar property also holds for the associated vector of ω0 in terms of the wtE , making ~ω0 the

element of maximal Euclidean weight.

Theorem 3.1. Let ω0 ∈ Sn be the longest element and let σ ∈ Sn. Then wtE(−−→ω0σ) = wtE( ~ω0)−

wtE(~σ).

Proof. Note first that 2wtE(~σ) = 〈~e,~e〉 − 2〈~e, ~σ〉+ 〈~σ, ~σ〉. Furthermore, 〈~e,~e〉 = 〈~σ, ~σ〉. Thus to

prove that wtE(−−→ω0σ) = wtE( ~ω0) − wtE(~σ), it suffices to show that 〈~e,~e〉 + 〈~e, ~ω0〉 = 〈~e, ~σ〉 +

〈~e,−−→ω0σ〉. On the left hand side we have 〈~e,~e〉+ 〈~e, ~ω0〉 = 〈~e, (n− 1, n− 1, . . . , n− 1)〉. On the

right hand side we have 〈~σ,~e〉 + 〈~σ, ~ω0〉 = 〈~σ, (n − 1, n − 1, . . . , n − 1)〉. Equality holds since

~σ is simply a permutation of ~e.

Corollary 3.15. Let ω0 ∈ Sn be the longest element. Then ω0 is the unique element such that

wtE( ~ω0) > wtE(~σ) for all ω0 6= σ ∈ Sn.

Proof. By Theorem 3.1, for any σ ∈ Sn, we have wtE(~σ) = wtE( ~ω0)− wtE(−−→ω0σ) ≤ wtE( ~ω0),

since wtE(−−→ω0σ) ≥ 0. Equality holds only if ω0σ = e, which is true only when σ = ω0. Thus the

statement holds.

It is a simple matter to calculate the Euclidean weight of ~ω0, which will be useful when we

prove that the Euclidean Weight Enumerator Polynomial of Sn is consecutive in powers.
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Proposition 3.16. wtE( ~ω0) =
1

6
(n3 − n) =

n+ 1

3
wtK(ω0).

Proof. For any even positive integer n,

wtE( ~ω0) =

n
2
−1∑
i=0

(1 + 2i)2 =
1

6
(n3 − n).

For any odd positive integer n,

wtE( ~ω0) =

n−1
2∑
i=0

(2i)2 =
1

6
(n3 − n).

Proposition 3.17. For n ≥ 1 and n 6= 3, the powers of t in WE(Sn; t) are consecutive.

Proof. Note that t in WE(Sn; t) are consecutive for n = 1 and n = 2. We proceed by induction

on n. For the base case of n = 4, note that WE(S4; t) = 1 + 3t + t2 + 4t3 + 2t4 + 2t5 + 2t6 +

4t7 + t8 + 3t9 + t10, where we can easily observe that the powers of t are consecutive. Suppose

now that the powers of t in WE(Sn; t) are consecutive. We will show that this implies that the

powers of t are consecutive for WE(Sn+1; t).

Let us begin by showing that the first 1
6
(n3 − n) + 1 powers of t are consecutive. Since

Sn ⊂ Sn+1, we conclude that each of the powers 0 through max{wtE(~σ) : σ ∈ Sn} = 1
6
(n3−n)

are contained in WE(Sn+1; t). Hence the first 1
6
(n3 − n) + 1 powers are consecutive. Next, let

us show that the last 1
6
(n3 − n) + 1 powers of t are consecutive.

Let j = 0, . . . , 1
6
(n3 − n) Then for each j there exists a σ(j) ∈ Sn+1 such that wtE(

−→
σ(j)) = j.

By Theorem 3.1, for each σ(j) ∈ Sn+1 there exists a σ(j∗) ∈ Sn+1 such that wtE(
−−→
σ(j∗)) =

wtE( ~ω0)−wtE(~σ) = 1
6
((n+1)3−(n+1))−j. Since j = 0, . . . , 1

6
(n3−n), the last 1

6
(n3−n)+1

powers of t are in fact consecutive. Thus to show that the powers of t in WE(Sn+1; t) are

consecutive, it suffices to show that 2 · 1
6
(n3 − n) ≥ 1

6
((n+ 1)3 − (n+ 1)).

2 · 1

6
(n3 − n) ≥ 1

6
((n+ 1)3 − (n+ 1))

⇐⇒ n3 − 3n2 − 4n ≥ 0 ⇐⇒ n(n− 4)(n+ 1) ≥ 0
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The above inequality is satisfied for all n ≥ 4. Hence by induction, the powers of WE(Sn; t)

are consecutive for n ≥ 4.

E. Parabolic Subgroups and Reflection Subgroups

In this section we consider Parabolic subgroups and more generally, Reflection subgroups.

These subgroups can have a cardinality that is significantly larger than that of Cn discussed

previously, and the minimum Kendall tau and Euclidean distances can be arbitrarily large (at the

expense of code size). As the final main contribution of this chapter we will prove that these

subgroups are Kendall tau LP-Decodable and realizable as the vertex set of a doubly stochastic

polytope for the appropriate choice of consolidated constraint. We also provide some examples

of such subgroups and calculate their size and minimum distances.

It is known that Sn is a reflection group whose fundamental set of generators is {s0, . . . , sn−2},

where si denotes the adjacent transposition (i, i + 1). A parabolic subgroup P of Sn is simply

any subgroup generated by a subset of the fundamental set of generators {s0, . . . , sn−2} [47].

We would like to show that such a parabolic subgroup is Kendall tau LP-decodable. We first

show that P is LP-decodable. Notice that for any σ in P, the associated permutation matrix Xσ
i,j

will have blocks of permutation matrices along the main diagonal. For example, consider the

parabolic subgroup P ⊂ S6 such that P is generated by s0, s3, and s4. Then any permutation

of P will have an associated matrix of the following form:



X0,0 X0,1 0 0 0 0

X1,0 X1,1 0 0 0 0

0 0 1 0 0 0

0 0 0 X3,3 X3,4 X3,5

0 0 0 X4,3 X4,4 X4,5

0 0 0 X5,3 X5,4 X5,5


.
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Here the matrices

 X0,0 X0,1

X1,0 X1,1

 and


X3,3 X3,4 X3,5

X4,3 X4,4 X4,5

X5,3 X5,4 X5,5



have the form of permutation matrices for S2 and S3 respectively. In other words, for any

parabolic subgroup P ⊂ Sn, the set of all permutations in P is simply the set of all permutations

of Sn with the added constraint that Xi,j = Xj,i = 0 for all (i, j) in a subset of {0, . . . , n −

1}× {0, . . . , n− 1}. We can explicitly construct this subset by first characterizing the entries of

matrices in P that potentially have non-zero entries.

Definition (Block Index Set). Given a parabolic subgroup P of Sn, the block index set CP :=

{(i, σi) : 0 ≤ i ≤ n − 1, σ ∈ P} is the set of all ordered pairs (i, j) such that there exists a

permutation matrix X of P with Xi,j 6= 0.

As an example, let us calculate CP corresponding to the parabolic subgroup P of S6 generated

by s0, s3, and s4. For any permutation σ ∈ P, either σ0 = 0 or σ0 = 1 and similarly σ1 = 0 or

σ1 = 1. Hence the ordered pairs (0, 0), (0, 1), (1, 0), and (1, 1) are in CP , but no other ordered

pairs beginning with 0 or 1 are in CP . For all σ ∈ P, we have σ2 = 2, so that (2, 2) is the

only ordered pair CP beginning with 2. Continuing in this manner, the only other entries that

are included in CP are (3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), and (5, 5). For any

(i, j) /∈ CP , we have Xi,j = 0.

Theorem 3.2. Let P be a parabolic subgroup of Sn generated by a subset {sk1 , . . . , skm} of

{s0, . . . , sn−2}. Then P is LP-decodable, i.e., there exists a doubly stochastic constraint L such

that P = Ver(D[L]) ∩ Sn, where L consists of the following linear constraints:

(1) For j = 0, . . . , n− 1,
n−1∑
i=0

Xi,j = 1.

(2) For i = 0, . . . , n− 1,
n−1∑
j=0

Xi,j = 1.

(3) For all 0 ≤ i, j ≤ n− 1, Xi,j ≥ 0.
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(4) For all (i, j) ∈ {0, . . . , n− 1} × {0, . . . , n− 1} such that (i, j) /∈ CP , Xi,j = 0.

Proof. Notice that the first three constraints of L are exactly those in the definition of a doubly

stochastic matrix. By the Birkhoff von Neumann theorem, we know that the Birkhoff polytope Bn

consisting of stochastic matrices is the convex polytope satisfying the first three constraints, and

Ver(Bn) = Sn. Since constraint (4) consists strictly of linear equations, including constraint (4)

will remove permutations matrices such that Xi,j = 1 or Xj,i = 1 from the vertex set Ver(D(L))

but will have no effect on other vertices. Thus Ver(D[L]) ∩ Sn consists of all permutation

matrices such that Xi,j 6= 1 and Xj,i 6= 1, for all (i, j) ∈ {0, . . . , n − 1} × {0, . . . , n − 1} but

(i, j) /∈ CP . From the previous discussion, the linear constraint (4) is exactly the constraint

that retains permutation matrices of P while excluding permutation matrices outside of P. This

implies that Ver(D(L)) ∩ Sn = P.

A stronger result holds for parabolic subgroups P of Sn, namely that there exists a doubly

stochastic constraint L such that P = Ver(D[L]), rather than P = Ver(D[L]) ∩ Sn This result

is a consequence of Theorem A.2. This is significant, since in the decoding algorithm described

above, if the vertex set of the linear constraint L is a subset of Sn, then the solution to the linear

programming problem will be a permutation.

Theorem 3.3. Let P be a parabolic subgroup of Sn generated by a subset {sk1 , . . . skm} of

{s0, . . . , sn−2}. Then P = Ver(D[M�H]) where H consists of the following linear constraints:

(1) For j = 0, . . . , n− 1,
n−1∑
i=0

Xi,j = 1,

(2) For i = 0, . . . , n− 1,
n−1∑
j=0

Xi,j = 1,

(3) For all 0 ≤ i, j ≤ n− 1, Xi,j ≥ 0,

and M consists of the following linear constraints:

(4) For all (i, j) ∈ {0, . . . , n− 1} × {0, . . . , n− 1} such that (i, j) /∈ CP , Xi,j = 0.

Proof. Note first that for all 0 ≤ r0, r1 ≤ R−1, thenM[r0,r1] is a quasi-homogeneous constraint

since each M [r0,r1] is a linear constraint with a constant term of 0. By definition, H is a doubly
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stochastic matrix for an n× n matrix. Each M[r0,r1] is also trivially a compact constraint as it

is a constraint on a 1 × 1 matrix. By the Birkhoff-von Neumann theorem, H is also compact.

Therefore by Theorem A.2, Ver(D[M�H]) = P.

Thus far we have only considered parabolic subgroups generated by a subset of the fundamen-

tal set of reflections: {s0, . . . , sn−2}. It is known that any reflection subgroup W of Sn can be

generated by a set of transpositions of the form (i, j), and furthermore that any such subgroup is

a conjugate of some parabolic subgroup P ⊂ Sn. That is, any reflection subgroup of Sn is of the

form φPφ−1, where φ is an element of Sn. Furthermore, since conjugation is an automorphism,

there is a one-to-one correspondence between the block index set CP of P and the block index

set CφPφ−1 of φPφ−1.

As an example, consider the parabolic subgroup P ⊂ S6 generated by s0, s3, and s4, which

was previously discussed. Let φ := [4, 3, 2, 5, 0, 1]. Then φ−1 = [4, 5, 2, 1, 0, 3]. Any element

σ ∈ P has an associated permutation matrix of the form

Xσ =



X1 X2 0 0 0 0

X3 X4 0 0 0 0

0 0 1 0 0 0

0 0 0 X5 X6 X7

0 0 0 X8 X9 X10

0 0 0 X11 X12 X13


where Xi ∈ {0, 1} for all i.
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We also have Xφ =



0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0


and Xφ−1

=



0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0



so that XφXσXφ−1
=



X9 X10 0 0 0 X8

X12 X13 0 0 0 X11

0 0 1 0 0 0

0 0 0 X4 X3 0

0 0 0 X2 X1 0

X6 X7 0 0 0 X5


.

It follows from the previous theorem that for any reflection subgroup W of Sn, there exists

a doubly stochastic constraint having W as a vertex set.

Corollary 3.18. Let φ ∈ Sn, and P ⊂ Sn a parabolic subgroup generated by a subset of

{s0, . . . , sn−2}. Let H consist of the following linear constraints:

(1) For j = 0, . . . , n− 1,
n−1∑
i=0

Xi,j = 1,

(2) For i = 0, . . . , n− 1,
n−1∑
j=0

Xi,j = 1,

(3) For all 0 ≤ i, j ≤ n− 1, Xi,j ≥ 0,

and let M′ consist of the following linear constraints:

(4) For all (i, j) ∈ {0, . . . , n− 1} × {0, . . . , n− 1} such that (i, j) /∈ CφPφ−1 , Xi,j = 0.

Then φPφ−1 = Ver(D[M′ �H]).

Proof. Since P ∼= φPφ−1, we have that each ordered pair (i, j) in the block index set CP



32

corresponds exactly to an ordered pair (i′, j′) in the block index set CφPφ−1 . Moreover, φPφ−1

consists of all the permutation matrices satisfying the constraints of M′. The remainder of the

proof is the same as that of Theorem 3.3.

We have proven that any reflection subgroup W of Sn is LP-decodable. In fact, we have seen

that there exists a doubly stochastic constraint L such that Ver(D[L]) = W . Thus to show that W

is Kendall tau LP-decodable, it remains only to show that W satisfies the LP-decoding extension

condition. With this goal in mind, we next prove a relation between wtK(σ) and wtE(~σ) that

holds for all σ ∈ Sn. To prove this relation we recall a partial ordering known as the weak

Bruhat ordering.

Definition (Weak (right) Bruhat Ordering). Let σ, τ ∈ Sn. Define σ(0) := σ and σ(wtK(τ)−wtK(σ)) :=

τ. The weak (right) Bruhat ordering on Sn is a partial ordering ≤ where σ < τ if and only if

wtK(σ) < wtK(τ), and for all 1 ≤ r ≤ wtK(τ)−wtK(σ), there exists σ(r) ∈ Sn, and 1 ≤ ir < n

such that (σ(r−1))−1(σ(r)) = (ir, ir + 1) and wtK(σ(r)) = wtK(σ) + r. Here (ir, ir + 1) denotes

the adjacent transposition switching the (ir)th and (ir + 1)th position. We say σ ≤ τ if either

σ < τ or σ = τ .

Intuitively, the above definition states that a permutation σ is strictly less than a permutation

τ if σ has a smaller Kendall tau weight and τ can be obtained by applying a series of adjacent

transpositions to σ with the Kendall tau weight increasing by 1 with each adjacent transposition.

The following figure illustrates the weak (right) Bruhat ordering for S4. In the diagram, two

permutations are comparable under the weak Bruhat ordering if there is a strictly ascending

or strictly descending connected path between the two permutations. For example, [0, 1, 2, 3] <

[1, 0, 2, 3] < [1, 2, 0, 3] < [1, 2, 3, 0] < [2, 1, 3, 0] < [2, 3, 1, 0] < [3, 2, 1, 0] forms an ascending

chain under the weak Bruhat ordering. However, as another example, neither of the following

statements is true: [1, 0, 2, 3] ≤ [0, 3, 1, 2] or [0, 3, 1, 2] ≤ [1, 0, 2, 3]. Notice that both ω0 =

[3, 2, 1, 0] and e = [0, 1, 2, 3] are comparable to all other permutations of Sn.

Lemma 3.19. If σ < τ in the weak Bruhat ordering, then wtE(~σ) < wtE(~τ).

Proof. We proceed by induction. Suppose σ < τ . To prove the base case let σ−1τ = (i, i + 1)
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[3,2,1,0]

[3,1,2,0][2,3,1,0] [3,2,0,1]

[2,3,0,1][1,3,2,0][2,1,3,0] [3,1,0,2] [3,0,2,1]

[1,3,0,2][2,1,0,3][1,2,3,0] [2,0,3,1] [0,3,2,1] [3,0,1,2]

[1,0,3,2][2,0,1,3][1,2,0,3] [0,2,3,1] [0,3,1,2]

[0,2,1,3][1,0,2,3] [0,1,3,2]

[0,1,2,3]

Fig. 1. Weak Bruhat ordering for S4

and wtK(τ) = wtK(σ) + 1. Then τ = σsi where si ∈ Sn is the transposition (i, i + 1). Hence

wtK(σsi) = wtK(σ) + 1. It follows that σi+1 > σi. Therefore ((i + 1) − σi)2 + (i − σi+1)2 >

(i− σi)2 + ((i+ 1)− σi+1)2. Notice that ~σ and ~τ differ only in the σi and σi+1th position, with

~σσi = i, ~σσi+1
= i+ 1, ~τσi = i+ 1, and ~τσi+1

= i. Hence wtE(~σ) < wtE(~τ).

For our induction hypothesis, we shall suppose that τ = σsi1 · · · sim where

wtK(σsi1 · · · sir) = wtK(σsi1 · · · sir−1) + 1 for all 1 ≤ r ≤ m, implies that wtE(~σ) < wtE(~τ).

Consider now τ = σsi1 · · · sim+1 where wtK(σsi1 · · · sir) = wtK(σsi1 · · · sir−1) + 1 for all

1 ≤ r ≤ m + 1. Then there exists σ(m) such that σ(m) = σsi1 · · · sim with wtK(σsi1 · · · sir) =

wtK(σsi1 · · · sir−1) + 1 for all 1 ≤ r ≤ m. We also have τ = σ(m)sim+1 and wtK(τ) =

wtK(σ(m)) + 1. Thus by the base case and the induction hypothesis, wtE(~σ) < wtE(
−−→
σ(m)) <

wtE(~τ).

Corollary 3.20. wtK(σ) ≤ wtE(~σ) for all σ ∈ Sn.
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Theorem 3.4. If W is a reflection subgroup of Sn and µ = e, then W satisfies the LP-decoding

extension condition.

Proof. By Theorem 12 of [64], for any reflection subgroup G of Sn, there exists a unique element

g0 of minimal Kendall tau weight in the coset g0G. Therefore, since W is a reflection subgroup

of Sn, for each coset of W in Sn there exists a unique element λ−1 ∈ Sn such that wtK(λ−1) <

wtK(λ−1σ) for any σ ∈ W. We saw previously that for any element e 6= σ ∈ Sn, e < σ in

the weak (right) Bruhat ordering. Thus for all σ ∈ W, it follows that λ−1 < λ−1σ. By Lemma

3.19,
−→
λ−1 is the unique element of minimal Euclidean weight among all associated vectors for

permutations in the coset λ−1W, which implies that the LP-decoding extension condition is

satisfied.

Now that we have shown that reflection subgroups satisfy the LP-decoding extension condition,

we will consider some of the minimum distance and code size properties. Because of the varied

nature of reflection subgroups, we will focus on a brief example. This example is chosen in part

because of the ease with which it can be examined.

Example 3.21. Consider the reflection subgroup W ⊂ S8 generated by the fundamental set

of reflections: {(0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7)}. Any permutation σ ∈ W will be of the

following form: [σ0, σ1,σ2,σ3,σ4, σ5,σ6,σ7], where the bold-faced entries in the permutation

can be any permutation of {0, 2, 4, 6} while the remaining entries can be any permutation of

{1, 3, 5, 7}. Thus #W = (4!)2 = 576. It is clear that in this situation a minimum weight

permutation is obtained by applying to the identity permutation any single fundamental reflection,

such as (0, 2), resulting in [2, 1, 0, 3, 4, 5, 6, 7]. Therefore the minimum Kendall tau and Euclidean

weights are wtK([2, 1, 0, 3, 4, 5, 6, 7]) = 3 and wtE(2, 1, 0, 3, 4, 5, 6, 7) = 4.

The above example is easily generalized to a reflection subgroup W of Sn generated by

{(k, k + 2) : 0 ≤ k ≤ n− 3} where n is an even number. The size of W would be
(
n
2
!
)2

and

the minimum Kendall tau and Euclidean weights would remain 3 and 4 respectively. We may

also further generalize the above example to increase the minimum Kendall tau and Euclidean

weights by choosing fundamental reflections with larger gaps. For example, we might take the
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generating set to be of the form {(k, k + 3) : 0 ≤ k ≤ n− 4}, where n is a multiple of 3. In

this case the minimum Kendall tau and Euclidean weights would be 5 and 9 respectively, and

#W =
(
n
3
!
)3

.

F. Conclusion

In this chapter we provided a necessary and sufficient condition for extending the LP decoding

of [75]. We gave some sample subgroups satisfying the condition and began to analyze related

weight distribution. We also proved that reflection subgroups satisfy the LP decoding extenstion

condition.
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4. ULAM PERMUTATION CODES

A. Introduction

The history of permutation codes dates as far back as the 1960’s and 70’s, with Slepian,

Berger, Blake, and others [11, 15, 69]. However, the application of permutation codes and mul-

tipermutation codes for use in non-volatile memory storage systems such as flash memory has

received attention in the coding theory literature in recent years [44, 45, 57, 75]. One of the main

distance metrics in the literature has been the Kendall tau metric, which is suitable for correction

of the type of error expected to occur in flash memory devices. Errors occur in these devices

when the electric cell charges storing information leak over time or there is an overshoot of

charge level in the rewriting process. For relatively small leak or overshoot errors the Kendtall-τ

metric is appropriate. However, it may not be well-suited for large errors within a single cell,

which could result when a cell is faulty or damaged.

In 2013, Farnoud et al. proposed permutation codes using the Ulam metric [29]. They showed

that the use of the Ulam metric would allow a large leakage or overshoot error within a single

cell to be viewed as a single error. This means the Ulam metric may be better suited to combat

errors resulting from faulty or damaged cells. Subsequent papers expounded on the use of Ulam

metric in multipermutation codes and bounds on the size of permutation codes in the Ulam

metric [30, 35]. Meanwhile, Buzaglo et al. discovered the existence of a perfect permutation

code under the cyclic Kendall tau metric, and proved the non-existence of perfect permutation

codes under the Kendall tau metric for certain parameters [20]. However, the possibility of

perfect permutation codes in the Ulam metric had not previously been considered. Exploring

this possibility requires first understanding the sizes of Ulam permutation spheres, of which only

limited research exists. Even less is known about the size of multipermutation Ulam spheres,

which we consider in the following chapter.

In the current chapter we consider two main questions. The first question is: How can

permutation Ulam sphere sizes be calculated? One answer to this question is to use Young

Tableaux and the RSK-Correspondence (Theorem 4.1). The second question is: Do perfect Ulam

permutation codes exists? The answer to this question is that nontrivial perfect Ulam permutation
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codes do not exist (Theorem 4.2). These two questions are closely related to each other since

perfect Ulam permutation code sizes are characterized by Ulam sphere sizes. These main results

are summarized in Tables V and VI. Notation appearing on the tables is defined subsequently.

TABLE V
PERMUTATION ULAM SPHERE SIZES

Permutation Ulam Sphere Size Formulas Reference

#S(σ, t) = #S(e, t) =
∑
λ∈Λ

(fλ)2 Theorem 4.1

#S(σ, 1) = 1 + (n− 1)2 Proposition 4.4

TABLE VI
THEORETICAL LIMIT ON MAXIMUM ULAM PERMUTATION CODE SIZE

Theorem on perfect Ulam permutation codes Reference

Nontrivial perfect t-error correcting permutation codes do not exist Theorem 4.2

B. Preliminaries and Notation

In this chapter and the next, we utilize the following notation and definitions, generally

following conventions established in [29] and [30]. Throughout the next two chapters we will

assume that n and r are positive integers, with r dividing n. The symbol [n] denotes the set of

integers {1, 2, . . . , n}. The symbol Sn stands for the set of permutations (automorphisms) on [n],

i.e., the symmetric group of order n!. Note that in this chapter and the next we begin indexes

from 1 instead of 0.

For a permutation σ ∈ Sn, we use the notation σ = [σ(1), σ(2), . . . , σ(n)], where for all

i ∈ [n], σ(i) is the image of i under σ. With some abuse of notation, we may also use σ to refer

to the sequence (σ(1), σ(2), . . . , σ(n)) ∈ [n]n. Given two permutations σ, π ∈ Sn, the product

σπ is defined in this chapter and the next by (σπ)(i) = σ(π(i)). In other words, we define

multiplication of permutations by composition, e.g., [2, 1, 5, 4, 3][5, 1, 4, 2, 3] = [3, 2, 4, 1, 5]. The
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reader should be cautioned that this differs from multiplication of the previous chapter, keeping

rather with the conventions of [29]. The identity permutation [1, 2, . . . , n] ∈ Sn is denoted by e.

An r-regular multiset is a multiset such that each of its element appears exactly r times

(i.e., each element is repeated r times). For example, {1, 1, 2, 2, 3, 3} is a 2-regular multiset.

A multipermutation is an ordered tuple whose entries exactly correspond to the elements of

a multiset, and in the instance of an r-regular multiset, we call the multipermutation an r-

regular multipermutation. For example, (3, 2, 2, 1, 3, 1) ∈ [3]6 is a 2-regular multipermutation

of {1, 1, 2, 2, 3, 3}. Following the work of [30], and because r-regular multipermutations result in

the largest potential code space [28], in this chapter we only consider r-regular multipermutations.

Hence for the remainder of this chapter “multipermutation” will always refer to an r-regular

multipermutation.

Definition (mr
σ). Given σ ∈ Sn we define a corresponding r-regular multipermutation mr

σ as

follows: for all i ∈ [n] and j ∈ [n/r],

mr
σ(i) := j if and only if (j − 1)r + 1 ≤ σ(i) ≤ jr,

and mr
σ := (mr

σ(1),mr
σ(2), . . . ,mr

σ(n)) ∈ [n/r]n.

As an example of mr
σ, let n = 6, r = 2, and σ = [1, 5, 2, 4, 3, 6]. Then mr

σ = (1, 3, 1, 2, 2, 3).

Note that this definition differs slightly from the correspondence defined in [30], which was

defined in terms of the inverse permutation. This is so that certain properties (Remarks 4.1 and

4.2) of the Ulam metric for permutations (the case when r = 1) will also hold for general

multipermutations. Notice that m1
σ = (σ(1), . . . , σ(n)) ∈ [n]n, so based on our abuse of notation

described in the first paragraph of this section, we may denote m1
σ simply by σ. In other words,

whenever r = 1, r-regular multipermutations reduce to permutations, or more accurately their

associated sequences.

With the correspondence above, we may define an equivalence relation between elements of

Sn. For permutations σ, π ∈ Sn, we say that σ ≡r π if and only if mr
σ = mr

π. The equivalence

class Rr(σ) of σ ∈ Sn is defined by Rr(σ) := {π ∈ Sn : π ≡r σ}. Note that if r = 1, then
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Rr(σ) is simply the singleton {σ}. For a subset S ⊆ Sn, define Mr(S) := {mr
σ : σ ∈ S}, i.e.

the set of r-regular multipermutations corresponding to elements of S. When r = 1, we may

identify Mr(S) simply by S.

We next define the r-regular Ulam distance. For the definition, it is first necessary to define

`(x,y). Given sequences x,y ∈ Zn, then `(x,y) denotes the length of the longest common

subsequence of x and y (not to be confused with the longest common substring). More precisely,

`(x,y) is the largest integer k ∈ Z>0 such that there exists a sequence (a1, a2, . . . , ak) where

for all l ∈ [k], we have al = x(il) = y(jl) with 1 ≤ i1 < i2 < · · · < ik ≤ n and 1 ≤ j1 < j2 <

· · · < jk ≤ n. For example, `((3, 1, 2, 1, 2, 3), (1, 1, 2, 2, 3, 3)) = 4, since (1, 1, 2, 3) is a common

subsequence of both (3, 1, 2, 1, 2, 3) and (1, 1, 2, 2, 3, 3) and its length is 4. It does not matter that

other equally long common subsequences exist (e.g. (1, 2, 2, 3)), as long as there do not exist

any longer common subsequences. If σ ∈ Sn, then `(σ, e) is the length of the longest increasing

subsequence of σ, which we denote simply by `(σ). Similarly, for an r-regular multipermutation

mr
σ, we denote the length of the longest non-decreasing subsequence `(mr

σ,m
r
e) of mr

σ simply

by `(mr
σ).

Definition (d◦(mr
σ,m

r
π), r-regular Ulam distance). Let mr

σ,m
r
π ∈Mr(Sn). Define

d◦(m
r
σ,m

r
π) := min

σ′∈Rr(σ),π′∈Rr(π)
d◦(σ

′, π′),

where d◦(σ, π) := n− `(σ, π). We call d◦(m
r
σ,m

r
π) the r-regular Ulam distance between mr

σ

and mr
π. In the case when r = 1, we may simply say the Ulam distance between σ and π and

use the notation d◦(σ, π).

The definition of r-regular Ulam distance above follows the convention of [30], defining the

distance in terms of equivalence classes comprised of permutations, although our notation differs.

However, it is convenient to think of the distance instead in terms of the multipermutations them-

selves. A simple argument shows that the r-regular Ulam distance between multipermutations

mr
σ and mr

π is equal to n minus the length of their longest common subsequence. The details

of the argument can be found in the appendices.
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Remark 4.1. Let mr
σ,m

r
π ∈Mr(Sn). Then

d◦(m
r
σ,m

r
π) = n− `(mr

σ,m
r
π).

Viewed this way, it is easily verified that the r-regular Ulam distance d◦(m
r
σ,m

r
π) is a

proper metric between the multipermutations mr
σ and mr

π. Additionally, it is known that in

the permutation case, the case when r = 1, that the Ulam distance can be characterized in

terms of a specific type of permutation known as translocations [29, 35]. We can show a similar

relationship for multipermutations. We define translocations below and then give the relationship

between the Ulam distance and translocations.

Definition (φ(i, j), translocation). Given distinct i, j ∈ [n], define φ(i, j) ∈ Sn as follows:

φ(i, j) :=


[1, 2, . . . , i− 1, i+ 1, i+ 2, . . . , j, i, j + 1, . . . , n] if i < j

[1, 2, . . . , j − 1, i, j, j + 1, . . . , i− 1, i+ 1, . . . , n] if i > j

If i = j, then define φ(i, j) := e. We refer to φ(i, j) as a translocation, and if we do not

specify the indexes i and j we may denote a translocation simply by φ.

Intuitively, a translocation is the permutation that results in a delete/insertion operation. More

specifically, given σ ∈ Sn and the translocation φ(i, j) ∈ Sn, the product σφ(i, j) is the result of

deleting σ(i) from the ith position of σ, then shifting all positions between the ith and jth position

by one (left if i < j and right if i > j), and finally reinserting σ(i) into the new jth position.

The top half of Figure 2 illustrates the permutation σ = [6, 2, 8, 5, 4, 1, 3, 9, 7] (or its related

3-regular multipermutation m3
σ = (2, 1, 3, 2, 2, 1, 1, 3, 3)) represented physically by relative cell

charge levels and the effect of multiplying σ (or m3
σ) on the right by the translocation φ(1, 9).

The bottom half of Figure 2 illustrates the same σ (or m3
σ) and the effect of φ(7, 4). Notice

that multiplying by φ(1, 9) corresponds to the error that occurs when the highest (1st) ranked

cell suffers charge leakage that results in it being the lowest (9th) ranked cell. Multiplying by

φ(7, 4) corresponds to the error that occurs when the 7th highest cell is overfilled so that it is

the 4th highest cell.
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It is well-known that d◦(σ, π) equals the minimum number of translocations needed to trans-

form σ into π [29, 35]. That is, d◦(σ, π) = min{k ∈ Z≥0 : there exist φ1, φ2, . . . , φk such that

σφ1φ2 · · ·φk = π}. By applying Remark 4.1, it is also a simple matter to prove that an analogous

relationship holds for the r-regular Ulam distance. First, it is necessary to define multiplication

between multipermutations and permutations.

The following definition is our own. We define the product mr
σ ·π as mr

σ ·π := mr
σπ. Technically

speaking, this can be seen as a right group action of the set Sn of permutations on the setMr(Sn).

Since it is possible for different permutations to correspond to the same multipermutation, we

should clarify that mr
σ = mr

τ implies mr
σπ = mr

τπ. Indeed this is true because if mr
σ = mr

τ then

for all i ∈ [n] we have mr
σ(i) = mr

τ (i), which implies for j := mr
σ(i) that (j−1)r+1 ≤ σ(i) ≤ jr

and (j − 1)r + 1 ≤ τ(i) ≤ jr. This in turn implies that (j − 1)r + 1 ≤ σπ(π(i)) ≤ jr and

(j − 1)r + 1 ≤ τπ(π(i)) ≤ jr, which means mσπ(π(i)) = mτπ(π(i)). Intuitively speaking, the

same corresponding elements of the sequences σ and τ still correspond (with a different index)

after being multiplied on the right by π. Hence mr
σπ = mr

τπ, or by our notation mr
σ ·π = mr

τ ·π.

If two multipermutations mr
σ and mr

π have a common subsequence of length k, then mr
σ can

be transformed into mr
π with n−k (but no fewer) delete/insert operations. As with permutations,

delete/insert operations correspond to applying (multiplying on the right) a translocation. Hence

by Remark 4.1 we can state the following remark about the r-regular Ulam distance. The details

of the proof can be found in the appendices.

Remark 4.2. Let mr
σ,m

r
π ∈Mr(Sn). Then

d◦(m
r
σ,m

r
π) = min{k ∈ Z≥0 : there exist φ1, φ2, . . . , φk such that mr

σ · φ1φ2 · · ·φk = mr
π}.

We now define the notions of a multipermutation code and an r-regular Ulam sphere.

Definition (r-regular multipermutation code, MPC(n, r), MPC◦(n, r, d)). Recall that n, r ∈ Z>0

with r|n. An r-regular multipermutation code (or simply a multipermutation code) is a subset

C ⊆Mr(Sn). Such a code is denoted by MPC(n, r), and we say that C is an MPC(n, r). If C

is an MPC(n, r) such that min
mr
σ ,m

r
π∈C,mr

σ 6=mr
π

d◦(m
r
σ,m

r
π) = d, then we call C an MPC◦(n, r, d).
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Fig. 2. Translocation illustration
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We refer to any 1-regular multipermutation code simply as a permutation code.

Our definition of multipermutation codes is in terms of multipermutations, i.e. ordered tuples,

rather than in terms of permutations, i.e. automorphisms. This differs slightly from [30], where

multipermutation codes were defined as subsets of Sn with the requirement that the entire

equivalence class of each element in a code was a subset of the code. Next, we define r-regular

Ulam spheres.

Definition (S(mr
σ, t), r-regular multipermutation Ulam sphere). Let t ∈ Z≥0, and mr

σ ∈Mr(Sn).
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Define

S(mr
σ, t) := {mr

π ∈Mr(Sn) : d◦(m
r
σ,m

r
π) ≤ t}

We call S(mr
σ, t) the r-regular multipermutation Ulam sphere, (or simply the multiper-

mutation Ulam sphere) centered at mr
σ of radius t. We refer to any 1-regular multipermutation

Ulam sphere as a permutation Ulam sphere and use the simplified notation S(σ, t) instead of

S(mr
σ, t).

By Remark 4.1, S(mr
σ, t) = {mr

π ∈ Mr(Sn) : n − `(mr
σ,m

r
π) ≤ t}. The r-regular Ulam

sphere definition can also be viewed in terms of translocations. Remark 4.2 implies that S(mr
σ, t)

is equivalent to {mr
π ∈ Mr(Sn) : there exist k ∈ {0, 1, . . . , t} and φ1, . . . , φk such that mr

σ ·

φ1 · · ·φk = mr
π}. This is the set of all multipermutations reachable by applying t translocations

to the center multipermutation mr
σ.

It is well-known that an MPC◦(n, r, d) code is t-error correcting if and only if d ≥ 2t+1 [30].

This is because if the distance between two codewords is greater or equal to 2t + 1, then after

t or fewer errors (multiplication by t or fewer translocations), the resulting multipermutation

remains closer to the original multipermutation than any other multipermutation. We finish this

section by defining perfect t error-correcting codes.

Definition (perfect code). Let C ⊆ Mr(Sn) be an MPC(n, r). Then C is a perfect t-error

correcting code if and only if for all mr
σ ∈ Mr(Sn), there exists a unique mr

c ∈ Mr(C)

such that mr
σ ∈ S(mr

c, t). We call such C a perfect t-error correcting MPC(n, r), or simply

a perfect code if the context is clear. A permutation code that is perfect is called a perfect

permutation code.

A perfect MPC(n, r) partitions Mr(Sn). This means the spheres centered at codewords fill

the space without overlapping. A perfect code C ⊆ Mr(Sn) is said to be trivial if either (1)

C =Mr(Sn) (occurring when t = 0); or (2) #C = 1 (occurring when t = n− r).
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C. Permutation Ulam Sphere Size

This section focuses on the first of two main questions in this chapter: how can we calculate the

sizes of permutation Ulam spheres? The answer to this question, in the form of Theorem 4.1, is

the first main result of this chapter. The theorem is actually stated in terms of multipermutations,

making it also a partial answer to a main question of the following chapter concerning how to

calculate multipermutation Ulam sphere sizes. However, unlike permutations, in the case of

multipermutations sphere sizes may depend upon the choice of center, limiting the applicability

of the theorem for multipermutation Ulam spheres. The proof of the theorem is provided after

a necessary lemma is recalled and notation used in the theorem is clarified.

Theorem 4.1. Let t ∈ {0, 1, 2 . . . , n− r}, and Λ := {λ ` n : λ1 ≥ n− t}. Then

#S(mr
e, t) =

∑
λ∈Λ

(fλ)(Kλ
r ). (4)

Although this section is primarily concerned with permutation Ulam sphere sizes, many of

the results hold for multipermutation Ulam spheres as well, and lemmas and propositions in

this section are stated with as much generality as possible. In the case of permutation codes,

perfect codes and sphere sizes are related as follows: a perfect t-error correcting permutation

code C ⊆ Sn, if it exists, will have cardinality #C = n!/#S(c, t), where c ∈ C. Hence one

of the first questions that may be considered in exploring the possibility of a perfect code (the

second main question of the chapter) is the feasibility of a code of such size. As noted in [29],

for any σ ∈ Sn, we have #S(σ, t) = #S(e, t). Hence calculation of permutation Ulam sphere

sizes can be reduced to the case when the identity is the center.

One way to calculate permutation Ulam sphere sizes centered at e is to use Young tableaux and

the RSK-Correspondence. It is first necessary to introduce some basic notation and definitions

regarding Young diagrams and Young tableaux. Additional information on the subject can be

found in resources such as [32, 67, 70].

A Young diagram is a left-justified collection of cells with a (weakly) decreasing number

of cells in each row below. Listing the number of cells in each row gives a partition λ =

(λ1, λ2, . . . , λk) of n, where n is the total number of cells in the Young diagram. The notation
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λ ` n is used to mean λ is a partition of n. Because the partition λ ` n defines a unique Young

diagram and vice versa, a Young diagram may be referred to by its associated partition λ ` n.

For example, the partition λ := (4, 3, 3, 2) ` 12 has the corresponding Young diagram pictured

on the left side of Figure 3.

Fig. 3. Young diagram and SYT

λ:=(4,3,3,2)

1 1 2 3
2 3 4
4 5 5
6 6

Young tableau on λ

1 3 4 9
2 5 8
6 1011
7 12
SY T on λ

A Young tableau is a filling of a Young diagram λ ` n with the following two qualities:

(1) cell values are weakly increasing across each row; and (2) cell values are strictly increasing

down each column. One possible Young tableau is pictured in the center of Figure 3. A standard

Young tableau, abbreviated by SY T , is a filling of a Young diagram λ ` n with the following

three qualities: (1) cell values are strictly increasing across each row; (2) cell values are strictly

increasing down each column; and (3) each of the integers 1 through n appears exactly once.

One possible SY T on λ := (4, 3, 3, 2) is pictured in the right side of Figure 3.

Among other things, the famous RSK-correspondence ([32, 70]) provides a bijection between

r-regular multipermutations mr
σ and ordered pairs (P,Q) on the same Young diagram λ ` n,

where P is a Young tableau whose members come from mr
σ and Q is a SY T . The next lemma,

a stronger form of which appears in [32], is an application of the RSK-correspondence.

Lemma 4.3. Let mr
σ ∈Mr(Sn) and let P and Q, both on λ ` n, be the pair of Young tableaux

associated with mr
σ by the RSK-correspondence. Then

λ1 = `(mr
σ).

In words, the above lemma says that λ1, the number of columns in the P (or equivalently Q)

associated with mr
σ by the RSK-correspondence, is equal to `(mr

σ), the length of the longest

non-decreasing subsequence of mr
σ. The lemma implies that for all k ∈ [n], the size of the set

{mr
σ ∈ Mr(Sn) : `(mr

σ) = k} is equal to the sum of the number of ordered pairs (P,Q) on
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each Young diagram λ ` n. Following conventional notation ([32, 70]), fλ denotes the number

of SY T on λ ` n. We denote by Kλ
r (our own notation) the number of Young tableaux on

λ ` n such that each i ∈ [n/r] appears exactly r times. We are now able to prove Theorem 4.1,

which states the relationship between #S(mr
e, t), fλ, and Kλ

r .

Proof of Theorem 4.1:

Assume t ∈ {0, 1, . . . , n − 1}, and let Λ := {λ ` n : λ1 ≥ n − t}. Furthermore, let

Λ(l) := {λ ` n : λ1 = l}, the set of all partitions of n having exactly l columns. By the

RSK-Correspondence and Lemma 4.3, there is a bijection between the set {mr
σ : `(mr

σ) = l}

and the set of ordered pairs (P,Q) where both P and Q have exactly l columns. This im-

plies that #{mr
σ : `(mr

σ) = l} =
∑

λ∈Λ(l)

(fλ)(Kλ
r ) (here #A is an alternate notation

for the cardinality of a set that we prefer for conditionally defined sets). By Remark 4.1,

#S(mr
e, t) = #{mσ : d◦(m

r
e,m

r
σ) ≤ t} = #{mσ : `(mr

σ) ≥ n − t}. Hence it

follows that #S(mr
e, t) =

∑
λ∈Λ

(fλ)(Kλ
r ). �

Because Kλ
1 is equivalent to fλ by definition, in the case of permutation Ulam spheres,

equation (4) simplifies to

#S(e, t) =
∑
λ∈Λ

(fλ)2. (5)

In both equation (4) and (5), the famous hook length formula, due to Frame, Robinson, and

Thrall [31, 32], provides a way to calculate fλ. Within the hook length formula, the notation

(i, j) ∈ λ is used to refer to the cell in the ith row and jth column of a Young diagram λ ` n.

The notation h(i, j) denotes the hook length of (i, j) ∈ λ, i.e., the number of boxes below or

to the right of (i, j), including the box (i, j) itself. More formally, h(i, j) := #({(i, j∗) ∈ λ :

j∗ ≥ j} ∪ {(i∗, j) ∈ λ : i∗ ≥ i}). The hook-length formula is as follows:

fλ =
n!

Π
(i,j)∈λ

h(i, j)
.
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Applying the hook length formula to Theorem 4.1, we may explicitly calculate Ulam permu-

tation sphere sizes, as demonstrated in the following propositions. These propositions will be

useful later to show the nonexistence of nontrivial t-error correcting perfect permutation codes

for t ∈ {1, 2, 3}. Proposition 4.4 is stated in terms of general multipermutation Ulam spheres.

Proposition 4.4. #S(mr
e, 1) = 1 + (n− 1)(n/r − 1).

Proof. First note that #S(mr
e, 0) = #{mr

e} = 1. There is only one possible partition λ ` n

such that λ1 = n− 1, namely λ′ := (n− 1, 1), with its Young diagram pictured below.

n−1︷ ︸︸ ︷
. . .

Therefore by Theorem 4.1, #S(mr
e, 1) = 1 + (fλ

′
)(Kλ′

r ). Applying the hook length formula,

we obtain fλ
′

= n − 1. The value Kλ′
r is characterized by possible fillings of row 2 with the

stipulation that each i ∈ [n/r] must appear exactly r times in the diagram. In this case, since

there is only a single box in row 2, the possible fillings are i ∈ [n/r − 1], each of which

yields a unique Young tableau of the desired type. Hence Kλ′
r = n/r − 1, which implies that

#S(mr
e, 1) = 1 + (n− 1)(n/r − 1).

Setting r = 1, Proposition 4.4 implies that #S(e, 1) = 1+(n−1)2. The next two propositions

continue the same vein of reasoning, but focus on permutation Ulam spheres. Such individual

cases could be considered indefinitely. In fact, a recurrence equation providing an alternative

method of calculating permutation Ulam sphere sizes for reasonably small radii is also known

[50]. However, the following two propositions are the last instances of significance in this chapter

as their results will be necessary to prove the second main result of the chapter.

Proposition 4.5. Let n > 3 and σ ∈ Sn. Then

#S(σ, 2) = 1 + (n− 1)2 +

(
(n)(n− 3)

2

)2

+

(
(n− 1)(n− 2)

2

)2

.

Proof. Assume n > 3 and σ ∈ Sn. Note first that #S(σ, 2) = #S(σ, 1) + #{π ∈ Sn :

`(π) = n − 2}. The only partitions λ ` n such that λ1 = n − 2 are λ(1) := (n − 2, 1, 1) and
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λ(2) := (n− 2, 2), with their respective Young diagrams pictured below.

n−2︷ ︸︸ ︷
. . .

n−2︷ ︸︸ ︷
. . .

Using the hook length formula, fλ(1) and fλ(2) may be calculated to yield: fλ(1) = ((n)(n−3))/2

and fλ
(2)

= ((n− 1)(n− 2))/2. Following the same reasoning as in Proposition 4.4 yields the

desired result.

Lemma 4.6. Let n > 5 and σ ∈ Sn Then

#S(σ, 3) = 1 + (n− 1)2 +

(
(n)(n− 3)

2

)2

+

(
(n− 1)(n− 2)

2

)2

+

(
(n)(n− 1)(n− 5)

6

)2

+

(
(n)(n− 2)(n− 4)

3

)2

+

(
(n− 1)(n− 2)(n− 3)

6

)2

.

Proof. The proof is essentially the same as the proof for Proposition 4.5. In this case #{π ∈

Sn : `(π) = n − 3} can be calculated by considering the partitions λ(1) := (n − 3, 3),

λ(2) := (n−3, 2, 1), and λ(3) := (n−3, 1, 1, 1), the only Young diagrams having n−3 columns.

These Young diagrams are pictured below.

n−3︷ ︸︸ ︷
. . .

n−3︷ ︸︸ ︷
. . .

n−3︷ ︸︸ ︷
. . .

Applying the hook length formula to λ(1), λ(2), and λ(3) and adding the value from Proposition

4.5 yields the result.

D. Nonexistence of Nontrivial Perfect Ulam Permutation Codes

The previous section demonstrated how to calculate permutation Ulam sphere sizes. In this

section, again focusing on permutation codes, we utilize sphere size calculations to prove the
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following theorem, establishing a theoretical limit on the maximum size of Ulam permutation

codes. This is the second main contribution of this chapter. The proof of the theorem can be

found at the end of the current section.

Theorem 4.2. There do not exist any nontrivial perfect permutation codes in the Ulam metric.

In 2013, Farnoud et. al ([29]) proved the following upper bound on the size of an Ulam

permutation code C ⊆ Sn with minimum Ulam distance d (i.e. C is an MPC(n, 1, d)).

#C ≤ (n− d+ 1)! (6)

Hence one strategy to prove the non-existence of perfect permutation codes is to show that

the size of a perfect code must necessarily be larger than the upper-bound given above. Note

that for equation (6) to make sense, d must be less than or equal to n− 1. This is always true

since the maximum Ulam distance between any two permutations in Sn is n−1, achieved when

permutations are in reverse order of each other (e.g., d◦(e, [n, n− 1, ..., 1]) = n− 1).

Lemma 4.7. There do not exist any (nontrivial) single-error correcting perfect permutation

codes.

Proof. Assume that C ⊆ Sn is a perfect single-error correcting permutation code. Recall that

C is trivial code if either C = Sn or if #C = 1. If n ≤ 2, then for all σ, π ∈ Sn, we have

π ∈ S(σ, 1), which implies that C is a trivial code. Thus we may assume that n > 2.

We proceed by contradiction. Since C is a perfect single-error correcting permutation code,

C is an MPC◦(n, 1, d) with 3 ≤ d ≤ n − 1 and #C = n!/#S(σ, 1) = n!/(1 + (n− 1)2)

by Proposition 4.4. However, inequality (6) implies that the code size #C ≤ (n − 2)!. Hence,

it suffices to show that #C = n!/(1 + (n− 1)2) > (n − 2)!, which is true if and only if

n > 2.

Similar arguments may also be applied to show that no nontrivial perfect t-error correcting

codes exist for t ∈ {2, 3}. This is the subject of the next two lemmas. The remaining cases,

when t > 3, are treated toward the end of this section.
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Lemma 4.8. There do not exist any (nontrivial) perfect 2-error correcting permutation codes.

Proof. Assume that C is a perfect 2-error correcting permutation code. Similarly to the proof of

Lemma 4.7, if n ≤ 3, then C is a trivial code consisting of a single element, so we may assume

n > 3. Again we proceed by contradiction.

Since C ⊆ Sn is a perfect 2-error correcting code, then C is an MPC◦(n, 1, d) code with

5 ≤ d ≤ n− 1 and Proposition 4.5 implies

#C =
n!

#S(σ, 2)
=

n!

1 + (n− 1)2 +
(

(n)(n−3)
2

)2

+
(

(n−1)(n−2)
2

)2 .

By Inequality (6), #C ≤ (n− 4)!, so it suffices to prove that

n!

1 + (n− 1)2 +
(

(n)(n−3)
2

)2

+
(

(n−1)(n−2)
2

)2 − (n− 4)! > 0,

which is easily shown by elementary methods to be true for n > 3.

Lemma 4.9. There do not exist any (nontrivial) perfect 3-error correcting codes.

Proof outline. Assume that C ⊆ Sn is a perfect 3-error correcting code. Similarly to the proof

of Lemmas 4.7 and 4.8, if n ≤ 7, then C is a trivial code, so we may assume that n > 7. The

remainder of the proof follows the same reasoning as the proof for Lemma 4.8, utilizing the

sphere size calculated in Proposition 4.6. �

For small values of t, explicit sphere calculations work well for showing the non-existence

of nontrivial perfect t-error correcting codes. However, for each radius t, the size of the sphere

S(e, t) is equal to #S(e, t − 1) + #{π ∈ Sn : `(π) = n − t}. This means each sphere size

calculation of radius t requires calculation of sphere sizes for radii from 0 through t− 1. Hence

such explicit calculations are impractical for large values of t. For values of t > 3, another

method can be used to show that nontrivial perfect codes do not exist. The next lemma provides

a sufficient condition to conclude that perfect codes do not exist. In the proof of the lemma, the

notation
(
n
t

)
denotes the usual combinatorial choice function.

Lemma 4.10. Let t be a nonnegative integer such that n ≥ 2t. If the following inequality holds,
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then no nontrivial perfect t-error correcting permutation codes exist in Sn :

F (n, t) :=
((n− t)!)2 t!

n!(n− 2t)!
> 1. (7)

We call the above inequality the overlapping condition.

Proof. Assume that t is a nonnegative integer such that n ≥ 2t. We proceed by contrapositive.

Suppose C ⊂ Sn is a nontrivial perfect t-error correcting permutation code. We want to show

that F (n, t) ≤ 1. Since C is a perfect code, we know it is also an MPC◦(n, 1, d) code with

2t+ 1 ≤ d and by inequality (6), #C ≤ (n− 2t)!. At the same time, for any σ ∈ Sn, we have

#S(σ, t) = #S(e, t), which is less than or equal to
(
n
n−t

)
(n!)/(n − t)!, since any permutation

π ∈ S(e, t) can be obtained by first choosing n− r elements of e to be in increasing order, and

then arranging the remaining t elements into π. Of course this method will generally result in

double counting some permutations in S(e, t), hence the inequality. Now

#S(σ, t) ≤
(

n

n− t

)
n!

(n− t)!
implies that

(n− t)!(
n
t

) ≤ n!

#S(σ, t)
= #C ≤ (n− 2t)!.

Moreover, (n− t)!/
(
n
t

)
≤ (n− 2t)! if and only if F (n, t) ≤ 1.

Notice that the overlapping condition is never satisfied for t = 1. However, the following

proposition will imply that as long as t > 1, then the overlapping condition may be satisfied for

sufficiently large n.

Proposition 4.11. Let t be a nonnegative integer such that n ≥ 2t. Then lim
n→∞

F (n, t) = t!.

Proof. Assume t is a nonnegative integer such that n ≥ 2t. Then

lim
n→∞

F (n, t) = lim
n→∞

(n− t)(n− t− 1) · · · (n− 2t+ 1)(n− 2t)!(n− t)!t!
(n)(n− 1) · · · (n− t+ 1)(n− t)!(n− 2t)!

= lim
n→∞

(n− t)(n− t− 1) · · · (n− 2t+ 1)t!

(n)(n− 1) · · · (n− t+ 1)

= lim
n→∞

(nt−1)t!

nt−1
= t!
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The proposition above means that for any nonnegative integer t less than or equal to n/2,

there is some value k such that for all values of n larger than k, there does not exist a perfect

t-error correcting code. The question remains of how large the value of k must be before it is

guaranteed that perfect t-error correcting codes do not exist.

TABLE VII
NON-FEASIBILITY OF PERFECT t-ERROR CORRECTING CODES

t minn satisfying (7) t minn satisfying (7)
1 N/A 6 13
2 8 7 14
3 8 8 16
4 10 9 18
5 11 10 20

Table VII compares positive integer values t versus min{n ∈ Z>0 : F (n, t) > 1}. Values

were determined via numerical computer calculation. The table suggests that for t > 6, the

minimum value of n satisfying the overlapping condition is n = 2t. If what the table appears

to suggest is true, then in view of Proposition 4.11, we may rule out perfect t-correcting codes

for any t > 6. The next lemma formalizes what is implied in the table by providing parameters

for which the overlapping condition is always satisfied. In combination with Lemma 4.10, the

implication is that nontrivial perfect permutation codes do not exist for these parameters. The

remaining cases are also easily dealt with.

Lemma 4.12. Let t be an integer greater than 6. Then n ≥ 2t implies that the overlapping

condition is satisfied.

Proof. Assume t is an integer greater than 6. We begin the proof of the lemma by showing that

if n = 2t, then the desired inequality holds. We assume that n = 2t and proceed by induction

on t.
For the base case, let t = 7. Then n = 14, and F (n, t) = ((7!)3)/(14!) ≈ 1.46 > 1. As

the induction hypothesis, suppose it is true that F (2t, t) = ((t!)3)/((tk)!) > 1. We wish to
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show that the following inequality holds:

F (2(t+ 1), t+ 1) =
((t+ 1)!)3

(2(t+ 1))!
> 1.

Here
((t+ 1)!)3

(2(t+ 1))!
=

(
(t!)3

(2t)!

)(
(t+ 1)3

(2t+ 1)(2t+ 2)

)
.

By our induction hypothesis, the first term of the right hand side, (t!)3/(2t)!, is greater than 1,

so it suffices to show that (t+ 1)3/(2t+ 1)(2t+ 2)) ≥ 1. Note here that

(t+ 1)3

(2t+ 1)(2t+ 2)
>

(t+ 1)3

(2t+ 2)(2t+ 2)
=

(t+ 1)3

4(t+ 1)2
=

t+ 1

4
,

which is greater than 1 whenever t > 3. Of course t > 6 by assumption, so the desired conclusion
follows.

Thus far we have technically only proven that F (n, t) > 1 whenever n = 2t. However, it is
a simple matter to show that the same is true whenever n > 2t as well. We begin by supposing
that F (n, t) > 1. Then

F (n+ 1, t) =
((n+ 1− t)!)2t!

(n+ 1)!(n+ 1− 2t)!
= F (n, t) · (n+ 1− t)2

(n+ 1)(n+ 1− 2t)

is necessarily greater than 1 whenever ((n+ 1− t)2)/((n+ 1)(n+ 1− 2t)) ≥ 1, which is true
for all values of n and t.

Lemma 4.12 required that n ≥ 2t. However, if n < 2t, then it is impossible for a nontrivial

perfect t-error correcting permutation code to exist. In fact, we may say something even stronger.

Remark 4.13. If t ∈ Z>0 such that n ≤ 2t + 1, then it is impossible for a nontrivial perfect

t-error correcting permutation code to exist.

To understand why Remark 4.13 is true, consider two permutations within Sn of maximal Ulam

distance apart. The most obvious example of which would be the identity element e and the only-

decreasing permutation ω∗ := [n, n− 1, ..., 1]. Notice that S(e, t) = {π ∈ Sn : `(π) ≥ n− t},

which means that every permutation whose longest increasing subsequence is at least n − t

is in the sphere centered at e. Meanwhile, there is at least one permutation σ ∈ Sn such that

`(σ) = 1 + t and σ ∈ S(ω∗, t), since we may apply successive translocations to ω∗ in such a

way that the longest increasing subsequence is increased with each translocation. As long as

n ≤ 2t+ 1, then n− t ≤ t+ 1 = 1 + t, implying that `(σ) = 1 + t ≥ n− t, which implies that
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σ ∈ S(e, t) ∩ S(ω∗, t). Therefore the only perfect code possible when n ≤ 2t + 1 is a single

element code, i.e. a trivial code. Consolidating all previous results, we are now able to prove

Theorem 4.2.

Proof of Theorem 4.2: First, by Lemmas 4.7, 4.8, and 4.9, there do not exist any nontrivial

perfect t-error correcting permutation codes for t ∈ {1, 2, 3}. Next note that F (n, r) increases as

n increases, and thus by numerical results (see Table VII), for all t ∈ {4, 5, 6} the overlapping

condition is satisfied whenever n ≥ 2t+2. Therefore by Lemma 4.10, and Remark 4.13, there are

no nontrivial perfect t-error correcting permutation codes for t ∈ {4, 5, 6}. Finally, by Lemmas

4.10, 4.12, and Remark 4.13, there are no nontrivial perfect r-error correcting permutation codes

for t > 6. �

E. Conclusion

This chapter first considered and answered two questions. The first question concerned Ulam

sphere sizes and the second concerned the possibility of perfect codes. It was shown that Ulam

sphere sizes can be calculated explicitly for reasonably small radii using an application of the

RSK-correspondence. It was then shown, partially using the aforementioned sphere-calculation

method, that nontrivial perfect Ulam permutation codes do not exist. These new results are

summarized in Tables V and VI, found in the introduction.
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5. ULAM MULTIPERMUTATION CODES

A. Introduction

The previous chapter focused on permutation codes. This chapter focuses on multipermutation

codes, We consider two questions. First: how can multipermutation Ulam sphere sizes be calcu-

lated? Theorem 4.1 and Theorem 5.1 show how to calculate sphere sizes for certain parameters.

Second: What is the maximum possible Ulam multipermutation code size? Lemmas 5.11, 5.13,

and 5.14 (as well as Lemmas 5.26 and 5.27 for the special binary case) provide new upper and

lower bounds on the maximal code size. These main results are summarized in Tables VIII and

IX. Notation appearing on the tables is defined in subsequent sections.

TABLE VIII
MULTIPERMUTATION ULAM SPHERE SIZES

Multipermutation Ulam Sphere Size Formulas and Bounds Reference

#S(mr
e, t) =

∑
λ∈Λ

(fλ)(Kλ
r ) Theorem 4.1

#S(mr
σ, 1) = 1 + (n− 1)2 −#SD(mr

σ)−#AD(mr
σ) Theorem 5.1

1 + (n− 1)(n/r − 1) = #S(mr
e, 1) ≤ #S(mr

σ, 1) Lemma 5.10 and Theorem 4.1

Non-Binary Case: #S(mr
σ, 1) ≤ #S(mr

ω, 1) = 1 + (n− 1)2 − (r − 1)n Lemma 5.12

Binary Case: #S(mr
σ, 1) < U(r) Corollary 5.25

B. Multipermutation Ulam Sphere Size and Duplication Sets

Thus far we have focused primarily on permutations, but we wish to extend the discussion

to multipermutations. With both permutations and multipermutations, the number of possible

messages is limited by the number of distinguishable relative rankings in the physical scheme.

However, multipermutations may significantly increase the total possible messages compared

to ordinary permutations, as observed in [30]. For example, if only k different charge levels

are utilized at a given time, then permutations of length k can be stored. Hence, in r blocks

of length k, one may store (k!)r potential messages. On the other hand, if one uses r-regular

multipermutations in the same set of blocks, then (kr)!/(r!)k potential messages are possible.
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TABLE IX
THEORETICAL LIMITS ON MAXIMUM ULAM MULTIPERMUTATION CODE SIZE

Ulam Multipermutation Code Max Size Bounds Value Reference

1-error correcting code upper bound #C ≤ n!
(r!)n/r(1+(n−1)(n/r−1))

Lemma 5.11

Non-Binary Case: Perfect 1-error correcting code lower bound n!
(r!)n/r((1+(n−1)2)−(r−1)n)

≤ #C Lemma 5.13

Binary Case: Perfect 1-error correcting code lower bound n!
(r!)2(U(r)) ≤ #C Lemma 5.26

Non-Binary Case: MPC◦(n, r, d) lower bound n!
(r!)n/r(1+(n−1)2−(r−1)n)d−1 ≤ #C Lemma 5.14

Binary Case: MPC◦(n, r, d) lower bound n!
(r!)2(U(r))d−1 ≤ #C Lemma 5.27

The r-regular multipermutation Ulam sphere sizes play an important role in understanding

the potential code size for MPC◦(n, r, d)’s. For example, the well-known sphere-packing bounds

and Gilbert-Varshamov type bounds rely on calculating, or at least bounding sphere sizes. In this

section we analyze how to calculate r-regular multipermutation Ulam sphere sizes, providing

an answer to the first of the two main questions addressed in this chapter. Recall that a partial

answer to this question was given in Theorem 4.1, but the theorem was applicable to the special

case when mr
e was chosen as the center. The next theorem provides a way to calculate radius

1 spheres for any center using the concept of duplication sets. Notation used in the theorem is

defined subsequently and the proof is given toward the end of the section.

Theorem 5.1. Recall that n, r ∈ Z>0 and r|n. Let mr
σ ∈Mr(Sn). Then

#S(mr
σ, 1) = 1 + (n− 1)2 −#SD(mr

σ)−#AD(mr
σ).

In the permutation case, the Ulam metric is known to be left-invariant, i.e. given σ, π, τ ∈ Sn,

we have d◦(σ, π) = d◦(τσ, τπ) [29]. Left-invariance implies that permutation sphere sizes do

not depend on the choice of center. Unfortunately, it is easily confirmed by counterexample that

left invariance does not generally hold for the r-regular Ulam metric. Moreover, it is also easily

confirmed that in the multipermutation Ulam sphere case, the choice of center has an impact on

the size of the sphere, even when the radius remains unchanged (e.g. compare Proposition 4.4
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to Proposition 5.12 in the next section). Hence we wish to consider spheres with various center

multipermutations.

To aid with calculating such sphere sizes, we first find it convenient to introduce (as our own

definition) the following subset of the set of translocations.

Definition (Tn, unique set of translocations). Define Tn := {φ(i, j) ∈ Sn : i− j 6= 1}.

We call Tn the unique set of translocations.

In words, Tn is the set of all translocations, except translocations of the form φ(i, i − 1).

We exclude translocations of this form because they can be modeled by translocations of the

form φ(i − 1, i), and are therefore redundant. We claim that the set Tn is precisely the set of

translocations needed to obtain all unique permutations within the Ulam sphere of radius 1 via

multiplication (right action). Moreover, there is no redundancy in the set, meaning no smaller set

of translocations yields the entire Ulam sphere of radius 1 when multiplied with a given center

permutation. These facts are stated in the next lemma.

Lemma 5.1. Let σ ∈ Sn. Then S(σ, 1) = {σφ ∈ Sn : φ ∈ Tn}, and #Tn = #S(σ, 1).

Proof. Let σ ∈ Sn. We will first show that S(σ, 1) = {σφ ∈ Sn : φ ∈ Tn}. Note that

S(σ, 1) = {π ∈ Sn : d◦(σ, π) ≤ 1} = {σφ(i, j) ∈ Sn : i, j ∈ [n]}.

It is trivial that

Tn = {φ(i, j) ∈ Sn : i− j 6= 1} ⊆ {φ(i, j) ∈ Sn : i, j ∈ [n]}.

Therefore {σφ ∈ Sn : φ ∈ Tn} ⊆ S(σ, 1).

To see why S(σ, 1) ⊆ {σφ ∈ Sn : φ ∈ Tn}, consider any σφ(i, j) ∈ {σφ(i, j) ∈ Sn : i, j ∈

[n]} = S(σ, 1). If i − j 6= 1, then φ(i, j) ∈ Tn, and thus σφ(i, j) ∈ {σφ ∈ Sn : φ ∈ Tn}.

Otherwise, if i − j = 1, then σφ(i, j) = σφ(j, i), and i − j = 1 implies j − i = −1 6= 1, so

φ(j, i) ∈ Tn. Hence σφ(i, j) = σφ(j, i) ∈ {σφ ∈ Sn : φ ∈ Tn}.

Next we show that #Tn = #S(σ, 1). By Proposition 4.4, #S(σ, 1) = 1 + (n − 1)2. On the

other hand, #Tn = #{φ(i, j) ∈ Sn : i− j 6= 1}. If i = 1, then there are n values j ∈ [n] such
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that i − j 6= 1. Otherwise, if i ∈ [n] but i 6= 1, then there are n − 1 values j ∈ [n] such that

i− j 6= 1. However, for all i, j ∈ [n], φ(i, i) = φ(j, j) = e so that there are n− 1 redundancies.

Therefore #Tn = n+ (n− 1)(n− 1)− (n− 1) = 1 + (n− 1)2.

Although the Ulam sphere centered at σ ∈ Sn of radius 1 can be characterized by all

permutations obtainable by applying (multiplying on the right) a translocation to σ, the previous

lemma shows that some translocations are redundant. That is, there are translocations φ1 6= φ2

such that σφ1 = σφ2. In the case of permutations, the set Tn has no such redundancies. If

φ1, φ2 ∈ Tn, then σφ1 = σφ2 implies φ1 = φ2. However, in the case of multipermutations, the

set Tn can generally be shrunken further to exclude redundancies.

Given mr
σ ∈Mr(Sn), the sphere S(mr

σ, 1) = {mr
π ∈Mr(Sn) : there exist φ such that mr

σ ·

φ = mπ} = {mr
σ · φ ∈ Mr(Sn) : φ ∈ Tn}. However, it is possible that there exist φ1, φ2 ∈ Tn

such that φ1 6= φ2, but mr
σ · φ1 = mr

σ · φ2. In such an instance we may refer to either φ1 or

φ2 as a duplicate translocation for mr
σ. If we remove all duplicate translocations for mr

σ from

Tn, then the resulting set will have the same cardinality as the r-regular Ulam sphere of radius

1 centered at mr
σ. The next definition (our own) is a standard set of duplicate translocations. It

is called standard because as long as r 6= 1 it always exists and is of predictable size.

Definition (SD(m), standard duplication set). Given a tuple m ∈ Zn, define

SD(m) := {φ(i, j) ∈ Tn\{e} : m(i) = m(j) or m(i) = m(i− 1)}

We call SD(m) the standard duplication set for m.

If we take an r-regular multipermutation mr
σ, then removing the general set of duplications

from Tn equates to removing a set of duplicate translocations. These duplications come in

two varieties. The first variety corresponds to the first condition of the SD(m) definition,

when m(i) = m(j). For example, if m2
σ = (1, 3, 2, 2, 3, 1), then we have m2

σ · φ(1, 5) =

(3, 2, 2, 3, 1, 1) = m2
σ · φ(1, 6), since m2

σ(1) = 1 = m2
σ(6). This is because moving the first 1 to

the left or to the right of the last 1 results in the same tuple. The second variety corresponds to

the second condition of the of SD(m) definition above, when m(i) = m(i− 1). For example,
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if m2
σ = (1, 3, 2, 2, 3, 1) as before, then for all j ∈ [6], we have m2

σ ·φ(3, j) = m2
σ ·φ(4, j). This

is because any translocation that deletes and inserts the second of the two adjacent 2’s does not

result in a different tuple when compared to deleting and inserting the first of the two adjacent

2’s.

Lemma 5.2. Let mr
σ ∈Mr(Sn). Then S(mr

σ, 1) = {mr
σ · φ ∈Mr(Sn) : φ ∈ Tn\SD(mr

σ)}.

Proof. Assume mr
σ ∈ Mr(Sn). First note that S(mr

σ, 1) = {mr
σ · φ ∈ Mr(Sn) : φ ∈ Tn}.

Hence it suffices to show that for all φ(i, j) ∈ SD(mr
σ), there exist some i′, j′ ∈ [n] such that

φ(i′, j′) ∈ Tn\SD(mr
σ) and mr

σ · φ(i, j) = mr
σ · φ(i′, j′). We proceed by dividing the proof into

two main cases. Case I is when mr
σ(i) 6= mr

σ(i−1) or i = 1. Case II is when mr
σ(i) = mr

σ(i−1).

Case I (when (mr
σ(i) 6= mr

σ(i− 1) or i = 1) can be split into two subcases:

Case IA: i < j

Case IB: i > j.

We can ignore the instance when i = j, since φ(i, j) ∈ SD(mr
σ) implies i 6= j. For case IA,

if for all p ∈ [i, j] (for a, b ∈ Z with a < b, the notation [a, b] := {a, a + 1, . . . , b}) we have

mr
σ(i) = mr

σ(p), then mr
σ · φ(i, j) = mr

σ · e. Thus setting i′ = j′ = 1 yields the desired result.

Otherwise, if there exists p ∈ [i, j] such that mr
σ(i) 6= mr

σ(p), then let j∗ := j−min{k ∈ Z>0 :

mr
σ(i) 6= mr

σ(j−k)}. Then φ(i, j∗) ∈ Tn\SD(mr
σ) and mr

σ ·φ(i, j) = mr
σ ·φ(i, j∗). Thus setting

i′ = i and j′ = j∗ yields the desired result. Case IB is similar to Case IA.

Case II (when mr
σ(i) = mr

σ(i− 1)), can also be divided into two subcases.

Case IIA: i < j

Case IIB: i > j.

As in Case I, we can ignore the instance when i = j. For Case IIA, if for all p ∈ [i, j] we

have mr
σ(i) = mr

σ(p), then mr
σ · φ(i, j) = mr

σ · e, so setting i = j = 1 achieves the desired

result. Otherwise, if there exists p ∈ [i, j] such that mr
σ(i) 6= mr

σ(p), then let i∗ := i−min{k ∈

Z>0 : (mr
σ(i) 6= mr

σ(i− k − 1)) or (i− k = 1)}. Then mr
σ · φ(i, j) = mr

σ · φ(i∗, j) and either
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one of the following is true: (1) φ(i∗, j) /∈ Di∗(m
r
σ) implies φ(i∗, j) /∈ SD(mr

σ), so set i′ = i∗

and j′ = j; or (2) by Case IA there exist i′, j′ ∈ [n] such that φ(i′, j′) ∈ Tn\SD(mr
σ) and

mr
σ · φ(i′, j′) = mr

σ · φ(i∗, j) = mr
σ · φ(i, j). Case IIB is similar to Case IIA.

While Lemma 5.2 shows that SD(mr
σ) is a set of duplicate translocations for mr

σ, we have not

shown that Tn\SD(mr
σ) is the set of minimal size having the quality that S(mr

σ, 1) = {mr
σ ·φ ∈

Mr(Sn) : φ ∈ Tn\SD(mr
σ)}. In fact it is not minimal. In some instances it is possible to

remove further duplicate translocations to reduce the set size. We will define another set of

duplicate translocations, but a few preliminary definitions are first necessary.

We say that m ∈ Zn is alternating if for all odd integers 1 ≤ i ≤ n, m(i) = m(1) and for all

even integers 2 ≤ i′ ≤ n, m(i′) = m(2) but m(1) 6= m(2). In other words, any alternating tuple

is of the form (a, b, a, b, . . . , a, b) or (a, b, a, b, . . . , a) where a, b ∈ Z and a 6= b. Any singleton

is also said to be alternating. Now for integers 1 ≤ i ≤ n and 0 ≤ k ≤ n − i, the substring

m[i, i + k] of m is defined as m[i, i + k] := (m(i),m(i + 1), . . .m(i + k)). Given a substring

m[i, j] of m, the length of m[i, j], denoted by |m[i, j]|, is defined as |m[i, j]| := j−i+1. As an

example, if m′ := (1, 2, 2, 4, 2, 4, 3, 1, 3), then m′[3, 6] = (2, 4, 2, 4) is an alternating substring

of m′ of length 4.

Definition (AD(m), alternating duplication set). Given m ∈ Zn, define

AD(m) := { φ(i, j) ∈ Tn\SD(m) : i < j and there exists k ∈ [i, j − 2] such that

(φ(j, k) ∈ Tn\SD(m)) and (m · φ(i, j) = m · φ(j, k)) }.

We call AD(m) the alternating duplication set for m because it is only nonempty when m

contains an alternating substring of length at least 4. For each i ∈ [n], also define ADi(m) :=

{φ(i, j) ∈ AD(m) : j ∈ [n]}. Notice that AD(m) =
n⋃
i=1

ADi(m).

In the example of m′ := (1, 2, 2, 4, 2, 4, 3, 1, 3) above, m′·φ(2, 6) = m′·φ(6, 3) and φ(2, 6), φ(6, 3) ∈

T9\SD(m′), implying that φ(2, 6) ∈ AD(m′). In fact, it can easily be shown that AD(m′) =

{φ(2, 6)}. In order to simplify the discussion of the alternating duplication set, we find the

following lemma useful.
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Lemma 5.3. Let m ∈ Zn and i ∈ [n]. Then ADi(m) 6= ∅ if and only if

1) m(i) 6= m(i− 1)

2) There exists j ∈ [i+ 1, n] and k ∈ [i, j − 2] such that

i) For all p ∈ [i, k − 1], m(p) = m(p+ 1)

ii) m[k, j] is alternating

iii) |m[k, j]| ≥ 4.

Proof. Let m ∈ Zn and i ∈ [n]. We will first assume 1) and 2) in the lemma statement and

show that ADi(m) is not empty. Suppose m(i) 6= m(i− 1), and that there exists j ∈ [i+ 1, n]

and k ∈ [i, j − 2] such that for all p ∈ [i, k − 1], we have m(p) = m(p+ 1). Suppose also that

m[k, j] is alternating with |m[k, j]| ≥ 4.

For ease of notation, let a := m(k) = m(k + 2) and b := m(k + 1) = m(k + 3) so that

m[k, k + 3] = (a, b, a, b) ∈ Z4. Then

(m · φ(i, k + 3))[k, k + 3] = (m · φ(k, k + 3))[k, k + 3]

= (b, a, b, a)

= (m · φ(k + 3, k))[k, k + 3].

Moreover, for all p /∈ [k, k + 3], we have (m · φ(i, k + 3))(p) = m(p) = (m · φ(k + 3, k))(p).

Therefore m · φ(i, k + 3) = m · φ(k + 3, k). Also notice that m(i) 6= m(i − 1) implies that

m · φ(i, k + 3) /∈ SD(m). Hence φ(i, k + 3) ∈ ADi(m).

We now prove the second half of the lemma. That is, we assume that ADi(m) 6= ∅ and then

show that 1) and 2) necessarily hold. Suppose that ADi(m) is nonempty. Then m(i) 6= m(i−1),

since otherwise there would not exist any φ(i, j) ∈ Tn\SD(m).

Let j ∈ [i+ 1, n] and k ∈ [i, j − 2] such that φ(j, k) ∈ Tn\SD(m) and m · φ(i, j) = m(j, k).

Existence of such j, k, and φ(j, k) is guaranteed by definition of ADi(m) and the fact that

ADi(m) was assumed to be nonempty. Then for all p ∈ [i, k − 1], we have m(p) = m(p + 1)

and for all p ∈ [k, j− 2], we have m(p) = m(p+ 2). Hence either m[k, j] is alternating, or else

for all p, q ∈ [k, j], we have m(p) = m(q). However, the latter case is impossible, since it would

imply that for all p, q ∈ [i, j] that m(p) = m(q), which would mean φ(j, k) /∈ Tn\SD(m), a
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contradiction. Therefore m[k, j] is alternating.

It remains only to show that |m[k, j]| ≥ 4. Since k ∈ [i, j − 2], it must be the case that

|m[k, j]| ≥ 3. However, if |m[k, j]| = 3 (which occurs when k = j− 2), then (m · φ(i, j))(j) =

m(i) = m(k) 6= m(k + 1) = (m · φ(j, k)(j), which implies that m · φ(i, j) 6= m · φ(j, k), a

contradiction. Hence |m[k, j]| ≥ 4.

One implication of Lemma 5.3 is that there are only two possible forms for m[i, j] where

φ(i, j) ∈ ADi(m). The first possibility is that m[i, j] is an alternating substring of the form

(a, b, a, b, . . . , a, b) (here a, b ∈ Z), so that m[i, j] · φ(i, j) is of the form (b, a, b, a . . . , b, a).

In this case, as long as |m[i, j]| ≥ 4, then setting k = i implies that k ∈ [i, j − 2], that

φ(j, k) ∈ Tn\SD(m), and that m[i, j] · φ(i, j) = m[i, j] · φ(j, k).

The other possibility is that m[i, j] is of the form (a, a, a, . . . , a︸ ︷︷ ︸
k

, b, a, b, . . . , a, b︸ ︷︷ ︸
n−k

) (again a, b ∈

Z), so that m[i, j] ·φ(i, j) is of the form (a, . . . , a︸ ︷︷ ︸
k−1

, b, a, b, . . . , b, a︸ ︷︷ ︸
n−k+1

). Again in this case, as long as

|m[i, j]| ≥ 4, then k ∈ [i, j−2] with φ(j, k) ∈ Tn\SD(m) and m[i, j] ·φ(i, j) = m[i, j] ·φ(j, k).

To simplify the calculation of #AD(mr
σ), we wish to define a set of equal size that is easier

to count. The two remarks that follow the definition are obvious, but are helpful in proving that

the size of the new set is equal to the size of AD(m).

Definition (AD∗(m)). Given m ∈ Zn, define

AD∗(m) := { (i, j) ∈ [n]× [n] : (m[i, j] is alternating), (|m[i, j]| ≥ 4), and (|m[i, j]| is even) }.

For each i ∈ [n], also define AD∗i (m) := {(i, j) ∈ AD∗(m) : j ∈ [n]}. Notice that AD∗(m) =
n⋃
i=1

AD∗i (m).

Remark 5.4. If m ∈ Zn is alternating and n is even, then m · φ(1, n) = m · φ(n, 1).

Remark 5.5. If m ∈ Zn is alternating, n ≥ 3, and n is odd, then m · φ(1, n) 6= m · φ(n, 1).

Lemma 5.6. Let m ∈ Zn. Then #AD(m) = #AD∗(m)

Proof. Let m ∈ Zn. The idea of the proof is simple. Each element φ(i, j) ∈ AD(m) involves

exactly one alternating sequence of length greater or equal to 4, so the set sizes must be equal.
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We formalize the argument by showing that #AD(m) ≤ #AD∗(m) and then that #AD∗(m) ≤

#AD(m).

To see why #AD(m) ≤ #AD∗(m), we define a mapping map : [n] → [n], which maps

index values either to the beginning of the nearest alternating subsequence to the right, or else

to n. For all i ∈ [n], let

map(i) :=


i+ min{p ∈ Z≥0 : (m(i) 6= m(i+ p+ 1)) or (i+ p = n)} (if m(i) 6= m(i− 1)

or i = 1)

n (otherwise)

Notice by definition of map, if i, i′ ∈ [n] such that i 6= i′, and if m(i) 6= m(i − 1) or i = 1

and at the same time m(i′) 6= m(i′ − 1) or i′ = 1, then map(i) 6= map(i′).

Now for each i ∈ [n], if m(i) 6= m(i − 1) or i = 1, then #ADi(m) = #AD∗map(i)(m) by

Lemma 5.3 and the two previous remarks. Otherwise, if m(i) = m(i − 1), then #ADi(m) =

#AD∗map(i)(m) = 0. Therefore #ADi(m) ≤ #AD∗i (m). This is true for all i ∈ [n], so

#AD(m) ≤ #AD∗(m).

The argument to show that #AD∗(m) ≤ #AD(m) is similar, except it uses the following

function map∗ : [n]→ [n] instead of map. For all i ∈ [n], let

map∗(i) :=


i−min{p ∈ Z≥0 : (m(i) 6= m(i− p− 1)) or (i− p = 1)} (if m(i) 6= m(i− 1)

or i = n)

n (otherwise)

By definition, calculating #AD∗(m) equates to calculating the number of alternating sub-

strings m[i, j] of m such that the length of the substring is both even and longer than 4. We can

simplify the calculation of AD(m) further by establishing a relation to the following quantity.
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Definition (ψ(n), ψ(x)). Define

ψ(n) :=

⌊
(n− 2)2

4

⌋
, and for x ∈ Z∗, define ψ(x) :=

|x|∑
i=1

ψ(x(i)),

where |x| denotes the length of the tuple x.

While we define both ψ(n) and ψ(x) here, we will not make use of ψ(x) until the following

section. The next lemma relates ψ(n) to the calculation of AD(m).

Lemma 5.7. Let m be an alternating string. Then

#AD(m) = ψ(|m|)

Proof. Assume m is an alternating string and let |m| = n. By Lemma 5.6, #AD(m) =

#AD∗(m) = #

(
n⋃
i=1

AD∗i (m)

)
. Since m was assumed to be alternating,

#

(
n⋃
i=1

AD∗i (m)

)
= #{(i, j) ∈ [n]× [n] : |m[i, j]| ≥ 4 and |m[i, j]| is even}

= #{(i, j) ∈ [n]× [n] : j − i+ 1 ∈ A},

where A is the set of even integers between 4 and n, i.e. A := {a ∈ [4, n] : a is even}. For

each a ∈ A, we have

#{(i, j) ∈ [n]× [n] : j − i+ 1 = a} = #{i ∈ [n] : i ∈ [1, n− a+ 1]}

= n− a+ 1.

Therefore #AD(m) =
∑
a∈A

(n− a+ 1). In the case that n is even, then

∑
a∈A

(n− a+ 1) =

n/2∑
i=2

(n− 2i+ 1) =

(
n− 2

2

)2

= ψ(n).

In the case that n is odd, then

∑
a∈A

(n− a+ 1) =

(n−1)/2∑
i=2

(n− 2i+ 1) =

(
n− 3

2

)(
n− 1

2

)
= ψ(n).
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Notice that by Lemma 5.7, it suffices to calculate #AD(m) for locally maximal length

alternating substrings of m. An alternating substring m[i, j] is of locally maximal length if

and only if 1) m[i− 1] is not alternating or i = 1; and 2) m[i, j+ 1] is not alternating or j = n.

Finally, we define the general set of duplications, D(m). The lemma that follows the definition

also shows that removing the set D(mr
σ) from Tn removes all duplicate translocations associated

with mr
σ.

Definition (D(m), duplication set). Given n ∈ Z>0 and m ∈ Zn, define

D(m) := SD(m) ∪ AD(m).

We call D(m) the duplication set for m. For each i ∈ [n], we also define Di(m) := {φ(i, j) ∈

D(m) : j ∈ [n]}.

Lemma 5.8. Let mσ ∈Mr(Sn) and φ1, φ2 ∈ Tn\D(mr
σ). Then φ1 = φ2 if and only if mr

σ ·φ1 =

mr
σ · φ2.

Proof. Assume mσ ∈ Mr(Sn) and φ1, φ2 ∈ Tn\D(mr
σ). If φ1 = φ2 then mr

σ · φ1 = mr
σ · φ2

trivially. It remains to prove that mr
σ·φ1 = mr

σ·φ2 implies φ1 = φ2. We proceed by contrapositive.

Suppose that φ1 6= φ2. We want to show that mr
σ · φ1 6= mr

σ · φ2. Let φ1 := φ(i1, j1) and

φ2 := φ(i2, j2). The remainder of the proof can be split into two main cases: Case I is if i1 = i2

and Case II is if i1 6= i2.

Case I (when i1 = i2), can be further divided into two subcases:

Case IA: mr
σ(i1) = mr

σ(i1 − 1)

Case IB: mr
σ(i1) 6= mr

σ(i1 − 1).

Case IA is easy to prove. We have Di1(m
r
σ) = Di2(m

r
σ) = {φ(i1, j) ∈ Tn\{e} : j ∈ [n]}, so

φ1 = e = φ2, a contradiction. For Case IB, we can first assume without loss of generality that
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j1 < j2 and then split into the following smaller subcases:

i) (j1 < i1) and (j2 > i1)

ii) (j1 < i1) and (j2 ≤ i1)

iii) (j1 > i1) and (j2 > i1)

iv) (j1 > i1) and (j2 ≤ i1).

However, subcase iv) is unnecessary since it was assumed that j1 < j2, so j1 > i1 implies j2 >

j1 > i1. Subcase ii) can also be reduced to (j1 < i1) and (j2 < i1) since j2 6= i2 = i1. Each

of the remaining subcases is proven by noting that there is some element in the multipermu-

tation mr
σ · φ1 that is necessarily different from mr

σ · φ2. For example, in subcase i), we have

mr
σ · φ1(j1) = mr

σ(i1) 6= mr
σ(j1) = mr

σ · φ2(j1). Subcases ii) and iii) are solved similarly.

Case II (when i1 6= i2) can be divided into three subcases:

Case IIA: (mr
σ(i1) = mr

σ(i1 − 1) and mr
σ(i2) = mr

σ(i2 − 1)),

Case IIB: either

(mr
σ(i1) = mr

σ(i1 − 1) and mr
σ(i2) 6= mr

σ(i2 − 1))

or (mr
σ(i1) 6= mr

σ(i1 − 1) and mr
σ(i2) = mr

σ(i2 − 1)),

Case IIC: (mr
σ(i1) 6= mr

σ(i1 − 1) and mr
σ(i2) 6= mr

σ(i2 − 1)).

Case IIA is easily solved by mimicking the proof of Case IA. Case IIB is also easily solved

as follows. First, without loss of generality, we assume that mr
σ(i1) = mr

σ(i1−1) and mr
σ(i2) 6=

mr
σ(i2 − 1). Then Di1(m

r
σ) = {φ(i1, j) ∈ Tn\{e} : j ∈ [n]}, so φ1 = e. Therefore we have

mr
σ · φ1(j2) = mr

σ(j2) 6= mr
σ(i2) = mr

σ · φ2(i2 − 1).

Finally, for Case IIC, without loss of generality we may assume that i1 < i2 and then split
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into the following four subcases:

i) (j1 < i2) and (j2 ≥ i2)

ii) (j1 < i2) and (j2 < i2)

iii) (j1 ≥ i2) and (j2 ≥ i2)

iv) (j1 ≥ i2) and (j2 < i2).

However, since φ(i2, j2) ∈ Tn\D(mr
σ) implies i2 6= j2, subcases i) and iii) can be reduced

to (j1 < i2) and (j2 > i2) and (j1 ≥ i2) and (j2 > i2) respectively. For subcase i), we have

mr
σ · φ1(j1) = mr

σ(i1) 6= mr
σ(j1) = mr

σ · φ2(j1). Subcases ii) and iii) are solved in a similar

manner. For subcase iv), if j1 > i2, then mr
σ · φ1(j1) = mr

σ(i1) 6= mr
σ(j1) = mr

σ · φ2(j1).

Otherwise, if j1 = i2, then φ1 = φ(i1, i2) and φ1 = φ(i2, j2). Thus if mr
σ · φ1 = mr

σ · φ2 then

φ1 ∈ Di1(m
r
σ), which implies that φ1 /∈ Tn\D(mr

σ), a contradiction.

Lemma 5.8 implies that we can calculate r-regular Ulam sphere sizes of radius 1 whenever

we can calculate the appropriate duplication set. This calculation can be simplified by noting

that for a sequence m ∈ Zn that SD(m) ∩ AD(m) = ∅ (by the definition of AD(m)) and

then decomposing the duplication set into these components. This idea is stated in Theorem 5.1

at the beginning of this section, which like Theorem 4.1, is a partial answer the the first main

question of this chapter. We now have the machinery to prove Theorem 5.1.

proof of Theorem 5.1

Let mr
σ ∈Mr(Sn). By the definition of D(mr

σ) and lemma 5.2,

{mr
σ · φ ∈Mr(Sn) : φ ∈ Tn\D(mr

σ)}

= {mr
σ · φ ∈Mr(Sn) : φ ∈ Tn\SD(mr

σ)}

= S(mr
σ, 1).

This implies #Tn\D(mr
σ) ≥ #S(mr

σ, 1). By lemma 5.8, for φ1, φ2 ∈ Tn\D(mr
σ), if φ1 6= φ2,

then mr
σ · φ1 6= mr

σ · φ2. Hence we have #Tn\D(mr
σ) ≤ #S(mr

σ, 1), which implies that
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#Tn\D(mr
σ) = #S(mr

σ, 1). It remains to show that #Tn\D(mr
σ) = 1+(n−1)2−#SD(mr

σ)−

#AD(mr
σ). This is an immediate consequence of the fact that #Tn = 1 + (n − 1)2 and

SD(mr
σ) ∩ AD(mr

σ) = ∅. �

Theorem 5.1 reduces the calculation of #S(mr
σ, 1) to calculating #SD(mr

σ) and #AD(mr
σ).

It is an easy matter to calculate #SD(mr
σ), since it is exactly equal to (n−2) times the number

of i ∈ [n] such that mr
σ(i) = mr

σ(i − 1) plus (r − 1) times the number of i ∈ [n] such that

mr
σ(i) 6= mr

σ(i − 1) or i = 1. We also showed how to calculate #AD(m) earlier. The next

example is an application of Theorem 5.1

Example 5.9. Suppose m3
σ = (1, 1, 1, 2, 3, 2, 3, 2, 4, 4, 3, 4). There are 3 values of i ∈ [12] such

that m3
σ(i) = m3

σ(i − 1), which implies that #SD(m3
σ = (3)(12 − 2) + (12 − 3)(3 − 1) = 48.

Meanwhile, by Lemmas 5.6 and 5.7, #AD(m3
σ) = ((5 − 3)/2)((5 − 1)/2)) = 2. By Theorem

5.1, #S(m3
σ), 1 = (12− 1)2 − 48− 2 = 71.

C. Min/Max Spheres and Code Size Bounds

In this section we show choices of center achieving minimum and maximum r-regular Ulam

sphere sizes for the radius t = 1 case. As an application, we also state new upper and lower

bounds on maximal code size in Lemmas 5.11, 5.13, and 5.14 (Lemmas 5.26 and 5.27 may also

be included in this list, which are bounds in the special case when n/r = 2). These bounds

represent the final main contribution of this chapter, answering the second main question.

The binary case, when n/r = 2, presents unique challenges because of the nature of its

alternating duplication sets. In particular, the choice of center multipermutation yielding the

maximal sphere size in the non-binary cases does not yield the maximal size in the binary case.

Thus we divide this section into parts – the first subsection treating the non-binary case, and the

remaining two subsections treating the binary case.

1) Non-Binary Case:

We begin by discussing the non-binary case in this subsection. The non-binary case is the general

case where n/r 6= 2. Tight minimum and maximum values of sphere sizes are explicitly given.
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We then discuss resulting bounds on code size. First let us consider the r-regular Ulam sphere of

minimal size. The first two lemmas presented in this section apply to all cases, both non-binary

and binary, while the remaining results only apply when n/r 6= 2.

Lemma 5.10. Recall that n, r ∈ Z>0 and r|n. Let mr
σ ∈Mr(Sn). Then

#S(mr
e, 1) ≤ #S(mr

σ, 1).

Proof. Assume mr
σ ∈ Mr(Sn). In the case that n/r = 1, then mr

e = e and mr
σ = σ, so

that #S(mr
e, 1) = #S(mr

σ, 1). Therefore we may assume that n/r ≥ 2. By Theorem 5.1,

min
σ∈Sn

(#S(mr
σ, 1)) = 1+(n−1)2−max

σ∈Sn
(#SD(mr

σ)+#AD(mr
σ)). Since n/r ≥ 2, we know that

n− 2 > r − 1, which implies that for all σ ∈ Sn, that #SD(mr
σ) is maximized by maximizing

the number of integers i ∈ [n] such that mr
σ(i) = mr

σ(i− 1). This is accomplished by choosing

σ = e, and hence for all σ ∈ Sn, we have #SD(mr
e) ≥ #SD(mr

σ).

We next will show that for any increase in the size of #AD(mr
σ) compared to #AD(mr

e),

that #SD(mr
σ) is decreased by a larger value compared to #SD(mr

e), so that (#SD(mr
σ) +

#AD(mr
σ)) is maximized when σ = e. By Lemmas 5.6 and 5.7, #AD(mr

σ) is characterized by

the lengths of its locally maximal alternating substrings. For every locally maximal alternating

substring mr
σ[a, a + k − 1] (here a, k ∈ Z>0) of mr

σ of length k, there are at least k − 2 fewer

instances where mr
σ = mr

σ(i−1) or i = 1 when compared to instances where mr
e(i) = mr

e(i−1).

This is because for all i ∈ [a+ 1, a+ k− 1], mr
σ(i) 6= mr

σ(i− 1) and i+ 1 6= 1. Hence for each

locally maximal alternating substring mr
σ[a, a+ k− 1], then #SD(mr

σ) is decreased by at least

(k−2)(n−2− (r−1)) ≥ (k−2)(r−1) when compared to #SD(mr
e). Meanwhile, #AD(mr

σ)

is increased by the same locally maximal alternating substring by at most (k − 2)((k − 2)/4)

by Lemma 5.7. However, since k ≤ 2r, we have (k − 2)((k − 2)/4) ≤ (k − 2)(r− 1)/2, which

is of course less than (k − 2)(r − 1).

Lemma 5.10, along with Proposition 4.4 implies that the r-regular Ulam sphere size of radius

t = 1 is bounded (tightly) below by (1 + (n− 1)(n/r − 1)). This in turn implies the following

sphere-packing type upper bound on any single-error correcting code.
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Lemma 5.11. If C is a single-error correcting MPC◦(n, r) code, then

#C ≤ n!

(r!)n/r (1 + (n− 1)(n/r − 1))
.

Proof. Let C be a single-error correcting MPC◦(n, r) code. A standard sphere-packing bound

argument implies that #C ≤ (n!)/((r!)n/r(min
σ∈Sn

#S(mr
σ, 1)). The remainder of the proof follows

from Proposition 4.4 and Lemma 5.10.

We have seen that #S(mr
σ) is minimized when σ = e. We now discuss the choice of

center yielding the maximal sphere size. Let ω ∈ Sn be defined as follows: ω(i) := ((i − 1)

mod (n/r))r + dir/ne and ω := [ω(1), ω(2), . . . , ω(n)]. With this definition, for all i ∈ [n], we

have mr
ω(i) = i mod (n/r) For example, if r = 3 and n = 12, then ω = [1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 12]

and mr
ω = (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4). We can use Theorem 5.1 to calculate #S(mr

ω, 1), and

then show that this is the maximal r-regular Ulam sphere size (except for the case when n/r = 2).

Lemma 5.12. Suppose n/r 6= 2. Then

#S(mr
σ, 1) ≤ #S(mr

ω, 1) = 1 + (n− 1)2 − (r − 1)n.

Proof. Assume n/r 6= 2. First notice that if n/r = 1 then for any σ ∈ Sn (including σ = ω),

the sphere S(mr
σ, 1) contains exactly one element (the tuple of the form (1, 1, . . . , 1)). Hence

the lemma holds trivially in this instance. Next, assume that n/r > 2. We will first prove that

#S(mr
ω, 1) = 1 + (n− 1)2 − (r − 1)n.

Since n/r > 2, it is clear that mr
ω contains no alternating subsequences of length greater

than 2. Thus by Lemma 5.3, AD(mr
ω) = ∅ and therefore by Theorem 5.1, #S(mr

ω, 1) =

1 + (n− 1)2 −#SD(mr
ω). Since there does not exist i ∈ [n] such that mr

ω(i) = mr
ω(i− 1), we

have #SD(mr
ω) = (r − 1)n, completing the proof of the first statement in the lemma.

We now prove that #S(mr
σ, 1) ≤ #S(mr

ω, 1). Recall that #SD(mr
σ) is equal to (n − 2)

times the number of i ∈ [n] such that mr
σ(i) = mr

σ(i − 1) plus (r − 1) times the number of

i ∈ [n] such that mr
σ(i) 6= mr

σ(i − 1). But n/r > 2 implies that r − 1 < n − 2, which implies

min
mr
π∈Mr(Sn)

#SD(mr
π, 1) = (r − 1)n. Therefore
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#S(mr
σ, 1) ≤ 1 + (n− 1)2 − min

mr
π∈Mr(Sn)

#SD(mr
π, 1)− min

mr
π∈Mr(Sn)

#AD(mr
π, 1)

≤ 1 + (n− 1)2 − min
mr
π∈Mr(Sn)

#SD(mr
π, 1)

= 1 + (n− 1)2 − (r − 1)n

= #S(mr
ω, 1).

The upper bound of lemma 5.12 implies a lower bound on a perfect single-error correcting

MPC(n, r).

Lemma 5.13. Suppose n/r 6= 2. If C is a perfect single-error correcting MPC(n, r), then

n!

(r!)n/r((1 + (n− 1)2)− (r − 1)n)
≤ #C.

Proof. Assume n/r 6= 2, and that C is a perfect single-error correcting MPC(n, r). Then∑
mr
c∈Mr(C)

#S(mr
c, 1) = (n!)/((r!)n/r). This means

n!

(r!)n/r
≤ (#C) ·

(
max

mr
c∈Mr(C)

(#S(mr
c, 1))

)
,

which by Lemma 5.12 implies the desired result.

A more general lower bound is easily obtained by applying Lemma 5.12 with a standard

Gilbert-Varshamov bound argument. While the lower bound of Lemma 5.13 applies only to

perfect codes that are MPC◦(n, r, d) with d ≥ 3, the next lemma applies to any MPC◦(n, r, d),

which may or may not be perfect.

Lemma 5.14. Suppose n/r 6= 2, and let C ⊆ Mr(Sn) be an MPC◦(n, r, d) code of maximal

cardinality. Then
n!

(r!)n/r(1 + (n− 1)2 − (r − 1)n)d−1
≤ #C

Proof. Assume that n/r 6= 2, and that C is an MPC◦(n, r, d) code of maximal cardinality. For
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all mr
σ ∈ Mr(Sn), there exists c ∈ C such that d◦(m

r
σ, c) ≤ d − 1. Otherwise, we could add

mr
σ /∈ C to C while maintaining a minimum distance of d, contradicting the assumption that

#C is maximal.

Therefore
⋃

mr
c∈Mr(C)

S(mr
c, d− 1) =Mr(Sn). This in turn implies that

n!

(r!)n/r
≤

∑
mr
c∈Mr(C)

#S(mr
c, d− 1).

The right hand side of the above inequality is less than or equal to (#C)·
(

max
mr
c∈Mr(C)

#S(mr
c, d− 1)

)
.

Finally Lemma 5.12 implies that

max
mr
c∈Mr(C)

(#S(mr
c, d− 1)) ≤ (1 + (n− 1)2 − (r − 1)n)d−1

so the conclusion holds.

2) Binary Case – Cut Location Maximizing Sphere Size:

In the previous subsection we were able to find center multipermutations whose sphere sizes

were both minimal (Lemma 5.10) and maximal (Lemma 5.12). These were used to provide

bounds on the maximum code size (Lemmas 5.11, 5.13, 5.14). However, a complication arises

that prevents Lemma 5.12 from applying to the binary case, the case when n/r = 2. We say

that mr
σ ∈ Mr(Sn) is a binary multipermutation if and only if n/r = 2. The next two

subsections focus on determining the maximum sphere size for binary multipermutations. The

current subsection addresses the question of cut location. The notion of cuts is defined in the

following paragraphs. For the remainder of the chapter we assume that n is an even integer and

that n/r = 2 (equivalently r = n/2).

Since we are assuming that n/r = 2, by definition mr
ω is an n-length alternating string, which

results in the size of the alternating duplication set AD(mr
ω) increasing rapidly as n increases.

This in turn results in #S(mr
ω, 1) no longer being maximal (in the sense of Lemma 5.12). For

example, if n = 12, then we have mr
ω = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2), which would imply

that #AD(mr
ω) = ψ(12) = 25.

To compensate for this problem, it is best to “cut” the original mr
ω into some number c of
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locally maximal alternating substrings. Whenever m is a tuple in two symbols, for example

when m ∈ {1, 2}n, we use the term cut to refer to any locally maximal alternating substring

of m. This language applies to binary multipermutations. Considering the example above when

n = 12, we could instead take the binary multipermutation (1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1), which

has two cuts of length 6, namely (1, 2, 1, 2, 1, 2) and (2, 1, 2, 1, 2, 1) as opposed to a single length

12 cut in the original mr
ω. Notice here that the standard duplication set increases by 5 but the

new alternating duplication set size is now ψ(6) + ψ(6) = 8, a decrease of 17.

Intuitively, these cuts should be chosen so that each is as similar in length as possible in order to

minimize the total size of the alternating duplication set. For example, (1, 2, 1, 2, 1, 2︸ ︷︷ ︸
1st cut

, 2, 1, 2, 1, 2, 1︸ ︷︷ ︸
2nd cut

),

which has an alternating duplication set of size 8 is preferable to ( 1, 2︸︷︷︸
1st cut

, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1︸ ︷︷ ︸
2nd cut

),

which has an alternating duplication set of size 16. This idea is proven subsequently. Another

question concerns the optimal number of such cuts, since each time a cut is introduced the stan-

dard duplication set size necessarily increases. This question is addressed in the next subsection,

and it turns out that having approximately
√
r cuts minimizes total duplications and thus results

in the maximum sphere size.

To start this subsection, we will show that given a multipermutation with a fixed number c of

cuts, the alternating duplication set is minimized when these cut lengths are as similar in length

as possible. In order to simplify the argument, the following two lemmas reduce the discussion

to the lengths of these alternating substrings.

Lemma 5.15. Let m ∈ {1, 2}n. Then there exists a binary multipermutation mr
σ ∈ Mr(Sn)

such that mr
σ = m if and only if #{i ∈ [n] : m(i) = 1} = #{i ∈ [n] : m(i) = 2}, i.e. the

number of 1’s and 2’s of m are equal.

Proof. Assume m ∈ {1, 2}n. First suppose that there exists a binary multipermutation mr
σ ∈ Sn

such that mr
σ = m. Then by the definition of binary multipermutations, #{i ∈ [n] : m(i) =

1} = r = #{i ∈ [n] : m(i) = 2}, completing the first direction.

For the second direction of the proof, suppose that #{i ∈ [n] : m(i) = 1} = #{i ∈

[n] : m(i) = 2} = n/2 = r. Then we can construct a binary multipermutation mr
σ with
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the property that mr
σ = m as follows: Define {i1, i2, . . . , ir} := {i ∈ [n] : m(i) = 1} and

{ir+1, ir+2, . . . , in} := {i ∈ [n] : m(i) = 2}. For all j ∈ [n], set σ(ij) := j and define

σ := (σ(1), σ(2), . . . σ(n)). Then mr
σ = m.

Lemma 5.16. Let c ∈ [n− 1], and (q(1), q(2), . . . , q(c)) ∈ Zc>0 such that
∑c

i=1 q(i) = n. Then

there exists i ∈ [c] such that q(i) is even if and only if there exists a binary multipermutation

mr
σ ∈Mr(Sn) such that

mr
σ = (mr

σ[a1, b1]︸ ︷︷ ︸
q(i1)

,mr
σ[a2, b2]︸ ︷︷ ︸
q(i2)

, . . . ,mr
σ[ac, bc]︸ ︷︷ ︸
q(ic)

),

where for all i ∈ [c], ai, bi ∈ [n], and ai ≤ bi such that mr
σ[ai, bi] is a cut (locally maximal

alternating substring).

The proof of Lemma 5.16 can be found in the appendices. In words, the lemma states that

given any tuple of positive integers (q(1), q(2), . . . q(c)) whose entries sum to n, as long as there

is at least one even integer in the tuple, then the entries can be made to correspond to the lengths

of the cuts of some binary mutlipermutation mr
σ. Notice that in the formulation resulting from

Lemma 5.16, the number of cuts c in a binary multipermutation mr
σ is one more than the number

of repeated adjacent digits. In other words, c = #{i ∈ [2, n] : mr
σ(i) = mr

σ(i−1)}+1. Hence

for a fixed number of cuts c, the standard duplication set size #SD(mr
σ) does not depend on

the lengths of individual cuts.

On the other hand, the size of the alternating duplication set #AD(mr
σ) does depend on the

lengths of the cuts. This means that if the number of cuts is fixed at c then by Lemma 5.7 and

Lemma 5.16, finding the maximum sphere size equates to minimizing ψ((q(1), q(2), . . . , q(c)),

where (q(1), q(2), . . . q(c)) ∈ Zc>0 has at least one even entry and whose entries sum to n. We

claim that the tuple defined next minimizes the sum in question.

Definition (qc, remc, qc). Let c ∈ [n − 1]. Denote by qc ∈ Z>0 and remc ∈ Z≥0 the unique

quotient and remainder when n is divided by c, i.e. c ∗ qc + remc = n where remc < c. Define
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qc :=


(qc + 1, qc, . . . qc︸ ︷︷ ︸

c−2

, qc − 1) if qc is odd and remc = 0

(qc + 1, . . . qc + 1︸ ︷︷ ︸
remc

, qc, . . . qc︸ ︷︷ ︸
c−remc

) otherwise

We also use the notation qc = (qc(1), . . .qc(c)) ∈ Zc>0.

The above definition guarantees that two important conditions are satisfied: (1) the entries of

qc sum to n; and (2) there exists some i ∈ [c] such that qc(i) is even. These two conditions

correspond with the conditions and statement of Lemma 5.16. Additionally, by definition, qc is

a weakly decreasing sequence with all entries being positive integers, and thus it is a partition

of n.

Standard calculation (see Remark E.3 in Appendix D) indicates that if two cuts of a binary

multipermutation differ by 2 or more, then the size of the alternating duplication set associated

with that multipermutation can be reduced by bringing the length of those two cuts closer

together. Generalizing over all the cuts in the multipermutation, we may minimize the alternating

duplication set and hence maximize sphere size by choosing all cuts to be as similar in length

as possible. Another way of saying that the cut sizes are as similar in length as possible is to

say that the cut sizes are precisely the values of qc. The fact that cut sizes equaling the values

of qc minimizes the associated alternating duplication set size is stated in the next theorem.

Theorem 5.2. Let c ∈ [n− 1]. Then

min
mr
σ∈Mc

r(Sn)
#AD(mr

σ) = ψ(qc),

where Mc
r(Sn) := {mr

π ∈ Mr(Sn) : #{mr
π(i) = mr

π(i− 1)}+ 1 = c}, i.e. Mc
r(Sn) is the set

of binary multipermutations with exactly c cuts.

Proof. Assume c ∈ [n−1]. Note first that by Lemma 5.16, there exists a binary multipermutation

with exactly c cuts, whose cut lengths correspond to qc. Now let (a(1), a(2), . . . , a(c)) ∈ Zc>0

such that
∑c

i=1 a(i) = n and there exists i ∈ [c] such that a(i) is even. Again by Lemma 5.16,

(a(1), a(2), . . . a(c) corresponds to the cut lengths of an arbitrary binary multipermutation with
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exactly c cuts. Hence by Lemma 5.7 it suffices to show that ψ(qc) ≤ ψ((a(1), a(2), . . . , a(c)).

We divide the remainder of the proof into two halves corresponding to the the split definition

of qc.

First, suppose qc is odd and remc = 0 so that qc = (qc+1, qc, . . . , qc, qc−1). Then since there

exists i ∈ [c] such that a(i) is even, there must be distinct i′ and j′ in [c] such that ai′ = qc +hi′

and aj′ = qc − hj′ where hi′ , hj′ ∈ Z>0. Hence, by Remark E.3 (see Appendix E),

ψ((qc, qc, . . . , qc︸ ︷︷ ︸
c

)) + 1 ≤ ψ((a(1), a(2), . . . , a(c)︸ ︷︷ ︸
c

)),

but also by Remark E.3 (applied to the first and last entry of qc),

ψ(qc) = ψ(qc + 1) + ψ((qc, qc, . . . , qc︸ ︷︷ ︸
c−2

)) + ψ(qc − 1) = ψ((qc, qc, . . . , qc︸ ︷︷ ︸
c

)) + 1.

For the second half, suppose that qc is even or that remc 6= 0. Then qc = (qc + 1, . . . , qc + 1︸ ︷︷ ︸
remc

, qc, . . . , qc︸ ︷︷ ︸
c−remc

).

This means that for all i, j ∈ [c], that |qc(i)− qc(j)| ≤ 1. Hence, by Remark E.3,

ψ(qc) ≤ ψ(a(1), a(2), . . . , a(c)︸ ︷︷ ︸
c

)).

We have shown that choosing cuts to be as evenly distributed as possible results in minimizing

the alternating duplication set. However, as mentioned before, while increasing cuts generally

decreases the size of the alternating duplication set, it also increases the size of the standard

duplication set. The question of the optimal number of cuts in a multipermutation mr
σ minimizing

#SD(mr
σ) + #AD(mr

σ) remains.

D. binary case – number of cuts maximizing sphere size

The previous subsection demonstrated the nature of cuts maximizing sphere size in the binary

case once the number of cuts c is fixed. This subsection focuses on determining the number

of cuts maximizing binary multipermutation sphere size. Computer analysis for values of r up

to 10, 000 suggests that c ≈
√
r cuts minimizes the sum of #SD(mr

σ) and #AD(mr
σ) (and
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therefore maximizes the sphere size). The next remark and subsequent lemmas prove that this

is indeed the case. We therefore call
√
r the ideal cut value and use the notation ĉ :=

√
r.

In practice the actual optimal number of cuts is only approximately equal to ĉ since ĉ is not

generally an integer. As in the previous subsection, recall that we assume n is a positve even

integer and that n/r = 2 for the remainder of this chapter.

Remark 5.17. Let mr
σ ∈Mr(Sn) be a binary multipermutation. Then

#SD(mr
σ) = (c− 1)(n− 2) + (n− (c− 1))(r − 1) = c(r − 1) + (n− 1)(r − 1),

where c := #{i ∈ [2, n] : mr
σ(i) = mr

σ(i− 1)}+ 1.

Note that the remark could technically be simplified by rewriting n as 2r, but here and

elsewhere n is kept in favor of 2r to retain intuition behind the meaning and for ease of

comparison with previous results in the non-binary case. Although the remark is obvious, its

significance is that the only component that depends upon c is c(r − 1). This means that each

time the number of cuts is increased by 1, the size of the standard duplication set is increased

by r − 1.

Therefore to show that ĉ cuts minimizes duplications, it is enough to show the following two

facts: (1) if the number of cuts is greater than or equal to ĉ, then increasing the number of

cuts by one causes a decrease in the alternating duplication set by at most r − 1; and (2) if the

number of cuts is less than or equal to ĉ, then a further decrease in cuts by one will enlarge

the alternating duplication set by at least r − 1. These two facts are expressed in the next two

lemmas.

Lemma 5.18. Let c ∈ [n− 2] and ĉ ≤ c. Then

ψ(qc)− ψ(qc+1) ≤ r − 1. (8)

The proof for Lemma 5.18 is in the appendices. The next example demonstrates how to

construct qc+1 from qc when ĉ ≤ c < n− 1. This corresponds to increasing the number of cuts

from c to c + 1. Notice that qc+1 > c and that each cut is decreased by at most 2, with some
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cuts decreased by only 1. This corresponds to the second case in the proof of Lemma 5.18.

Example 5.19. Let n = 30 and c = 4. Notice that ĉ =
√

15 ≈ 3.873 so that ĉ < c < n− 1. We

also have q4 = 7 and rem4 = 2 while q5 = 6 and rem5 = 0. Therefore q4 = (8, 8, 7, 7) and

q5 = (6, 6, 6, 6, 6).

We may visualize q4 and q5 respectively as the left and right diagrams in Figure 4, with the

ith row of the diagram corresponding to the ith cut, q4(i) or q5(i). The numbers in the blocks

in the left diagram of Figure 4 represent the order in which each row would be shortened to

construct the last cut of q4.

6 2
5 1
4
3 −→ 1 2 3 4 5 6

Fig. 4. Constructing q5 from q4 (when n = 30)

If mr
σ is a multipermutation with four cuts whose lengths correspond to q4, then applying

Remark 5.17 and Lemma 5.7, #SD(mσ) + #AD(mσ) = 492. By Theorem 5.1, this means

#S(mσ, 1) = 238. On the other hand, if mπ is a multipermutation with five cuts whose lengths

correspond to q5, then similar methods show #SD(mπ) + #AD(mπ) = 496, which implies

#S(mπ, 1) = 234, a smaller value.

Lemma 5.18 implied that if the number of cuts is greater or equal to ĉ, then increasing cuts

shrinks the overall possible sphere size. The next lemma is analogous. It says that if the number

of cuts is less than or equal to ĉ, then reducing the number of cuts shrinks the overall possible

sphere size.

Lemma 5.20. Let c ∈ [n− 1] and c ≤ ĉ. Then

ψ(qc−1)− ψ(qc) > r − 1. (9)

The proof for Lemma 5.20 is in the appendices. The next example demonstrates how to

construct qc from qc−1 when c ≤ ĉ. Notice that each cut length is decreased by at least 2.
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Example 5.21. Let n = 34 and c = 4. Notice that ĉ =
√

17 ≈ 4.123 so that c < ĉ. We also

have q3 = 11 and rem3 = 1 while q4 = 8 and rem4 = 2. Therefore q3 = (12, 11, 11) and

q4 = (9, 9, 8, 8). We can visualize q3 and q4 respectively as the left and right diagrams in

Figure 5, with the ith row of each diagram corresponding to the ith cut, q3(i) or q4(i). The

numbers in the blocks in the left diagram of Figure 5 represent the order in which each row

would be shortened to construct the last cut of q4.

7 4 1
6 3

8 5 2 −→ 1 2 3 4 5 6 7 8

Fig. 5. Constructing q4 from q3 (when n = 34)

If mσ is a multipermutation with three cuts whose lengths correspond to q3 above, then

applying Remark 5.17 and Lemma 5.7, #SD(mσ) + #AD(mσ) = 641. By Theorem 5.1, this

means #S(mσ, 1) = 449. On the other hand, if mπ is a multipermutation with four cuts whose

lengths correspond to q4 above, then similar methods show #SD(mπ) + #AD(mπ) = 634,

which implies that #S(mπ, 1) = 456, a larger value.

Lemmas 5.18 and 5.20 imply that the number of cuts c minimizing the sum #SD(mr
σ) +

#AD(mr
σ) (and thus maximizing sphere size) observes the inequalities ĉ− 1 < c < ĉ+ 1. This

answers the question of the optimal number of cuts. For a particular value r, it is a relatively

simple matter to calculate the exact size of the maximal Ulam multipermutation sphere. One

simply has to determine whether c = bĉc or c = dĉe yields a smaller #SD(mr
σ) + #AD(mr

σ)

(here dxe denotes the ceiling function on x ∈ R, i.e. the least integer greater than or equal to x).

Once the best choice for c is ascertained, an application of Theorem 5.1 will yield the maximum

size for that particular r. The above statements are summarized in the next theorem.
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Theorem 5.3.

max
mr
σ∈Mr(Sn)

#S(mr
σ, 1) = 1 + (n− 1)2 − min

c∈{bĉc,dĉe}

c(r − 1) + (n− 1)(r − 1) + ψ(qc)

.
(10)

Proof. The proof is an immediate consequence of Theorem 5.1, Theorem 5.2, Remark 5.17, and

Lemmas 5.18 and 5.20,

Once again we retain n instead of 2r in the theorem statement for intuition purposes. Theorem

5.3 indicates that the number of cuts c maximizing sphere size should be either bĉc or dĉe, but it

does not state when bĉc or dĉe is optimal. It turns out that whichever is closer to the true value of

ĉ will yield the maximal sphere size. That is, if ĉ−bĉc ≤ dĉe−ĉ, then bĉc (appropriately chosen)

cuts will yield the maximal sphere size and visa versa. Stated another way, if ĉ ≤ bĉc + 0.5,

then bĉc cuts provides the largest possible sphere size, but if ĉ > bĉc + 0.5, then dĉe cuts

provides the largest possible sphere size. To prove these facts, the next lemma is helpful.

Lemma 5.22. Recall r ∈ Z>0 and ĉ =
√
r. We have r ≤ bĉc2+bĉc if and only if ĉ ≤ bĉc+0.5.

Proof. We begin by showing that if ĉ ≤ bĉc + 0.5, then r ≤ bĉc2 + bĉc. Assume that

ĉ ≤ bĉc + 0.5. Squaring both sides, we have r ≤ bĉc2 + bĉc + 0.25, which implies that

r ≤ bĉc2 + bĉc.

Next we will show that if r ≤ bĉc2 +bĉc, then ĉ ≤ bĉc+0.5. We proceed by contrapositive.

Suppose that ĉ > bĉc + 0.5. Squaring both sides, we have r > bĉc2 + bĉc + 0.25, which

implies that r > bĉc2 + bĉc.

Lemma 5.22 means that if ĉ is closer to bĉc than it is to dĉe, then the inequality r ≤ bĉc2+bĉc is

satisfied. Otherwise, if ĉ is closer to dĉe, then the opposite inequality, r > bĉc2 +bĉc, is satisfied.

Besides being useful to prove the following two lemmas, Lemma 5.22 in conjunction with the

next two lemmas allows us to easily determine the number of cuts that will yield the maximal

sphere size for each r. This is explained after the statement of the next lemma.
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Lemma 5.23. ĉ ≤ bĉc+ 0.5 if and only if

ψ(qbĉc)− ψ(qdĉe) ≤ r − 1 (11)

The full proof can be found in the appendices. The crux of the argument is the same as that

of Lemmas 5.18 and 5.20.

Lemma 5.23 characterizes precisely when bĉc or dĉe cuts is optimal for maximizing sphere

size. The lemmas imply, as mentioned previously, that whichever of bĉc and dĉe is closer to ĉ is

the optimal cut value. However, also as mentioned previously, Lemma 5.22 allows us to easily

determine which is optimal by simply looking at r. Notice that bĉc2 + bĉc is exactly half way

between bĉc2 and bĉc2 + 2bĉc = dĉe − 1. Hence, Lemmas 5.22 and 5.23 imply that for r closer

to bĉc2, that bĉc cuts are better, but for r closer to dĉe2, that dĉe cuts are better. For example,

if r = 11, then bĉc2 = 9 and dĉe2 = 16. Since 11 is closer to 9, we know that bĉc = 3 cuts is

optimal. Moreover, if r ∈ {9, 10, 11, 12}, then bĉc = 3 cuts is optimal, but if r ∈ {13, 14, 15, 16},

then dĉe = 4 cuts is optimal.

Returning to Theorem 5.3, we can also easily obtain an upper bound on maximum sphere

size. This is shown in the next lemma and corollary.

Lemma 5.24.

Let c ∈ [n− 1]. Then

ψ(qc) ≥ c

((r
c
− 1
)2

− 1

4

)
.

Proof. Suppose c ∈ [n− 1] and let a := (a(1), a(2), . . . , a(c)) ∈ Rc
>0 such that

∑c
i=1 a(i) = n.

Note first that

c∑
i=1

(
a(i)− 2

2

)2

=
c∑
i=1

(
a(i)2

4
− a(i) + 1

)
=

1

4

c∑
i=1

a(i)2 − n+ c. (12)
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Note also that by applying the Cauchy-Schwarz inequality to a and 1 ∈ Rc, the all-1 vector of

length c, we obtain

c∑
i=1

a(i)2 ≥
∑c

i=1 a(i)2

c
=

n2

c
=

c∑
i=1

(n
c

)2

(13)

Equation (12) and inequality (13) imply that choosing a = (n/c, n/c, . . . , n/c) minimizes the

sum on the far left of Equation (12). The minimum of the left side of Equation (12) is less than

or equal to
∑c

i=1((qc(i)−2)/2)2, with equality only holding when n/c ∈ Z. Thus an application

of Remark E.1 completes the proof.

Corollary 5.25. Let mr
σ be a binary multipermutation. Also define

U(r) := 1 + (n− 1)2 −

(
(ĉ− 1)(r − 1) + (n− 1)(r − 1) +

(
ĉ− 1

)
 r

ĉ+ 1
− 1

2

− 1

4

) .

Then

#S(mr
σ, 1) < U(r).

Proof. The proof follows from Theorem 5.3, Lemma 5.24, and the fact that ĉ−1 < bĉc ≤ dĉe <

ĉ+ 1.

The following table compares values from Corollary 5.25 versus the size of the actual largest

multipermutation sphere for given values of r. The actual values of largest sphere sizes were

calculated using Theorem 5.3.

As the table suggests, the estimated value of the maximum sphere size obtained by applying

Corollary 5.25 is asymptotically good. By asymptotically good we mean that the ratio between

the true maximum sphere size, max
mr
σ∈Mr(Sn)

#S(mr
σ, 1), and the upper bound value, U(r) from

Corollary 5.25, approaches 1 as r approaches infinity. This can be confirmed by observing that
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TABLE X
MAXIMUM SPHERE SIZE VERSES BOUNDED VALUE

r Max sphere size (10) Inequality (12) ratio
10 148 ∼ 168 ∼ .8819
100 18, 101 ∼ 18, 423 ∼ .9825
1000 1, 937, 753 ∼ 1, 941, 489 ∼ .9981

if

L(r) := 1 + (n− 1)2 −

(
(ĉ+ 1)(r − 1) + (n− 1)(r − 1) +

(
ĉ+ 1

) r

ĉ− 1
− 1

2

2)
,

then L(r) < max
mr
σ∈Mr(Sn)

#S(mr
σ, 1). After making this observation, the Squeeze Theorem

can then be applied with ( max
mr
σ∈Mr(Sn)

#S(mr
σ, 1))/U(r) being squeezed between L(r)/U(r) and

U(r)/L(r). As before, in the definitions of both U(r) and L(r), we keep n in favor of 2r.

Finally, Corollary 5.25 can be applied to establish a new lower bound on perfect single-error

correcting MPC(n, r)’s in the binary case. It can also be applied to establish a new Gilbert

Varshamov type lower bound. These two bounds are stated as the last two lemmas.

Lemma 5.26. Let C be a perfect single-error correcting MPC(n, r). Also let U(r) be defined

as in Corollary 5.25. Then
n!

(r!)2(U(r))
≤ #C.

Proof outline. The proof follows from Corollary 5.25. �

Lemma 5.27. Let C be an MPC◦(n, r, d). Also let U(r) be defined as in Corollary 5.25. Then

n!

(r!)2(U(r))d−1
≤ #C

Proof outline. The proof follows from Corollary 5.25 and a standard Gilbert-Varshamov argu-

ment (see the proof of Lemma 5.14 for such an argument). �
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E. Conclusion

This chapter considered multipermutation Ulam codes. Two questions were addressed. The

first question of calculating r-regular Ulam sphere sizes was addressed for the cases when the

center is mr
e or when the radius t = 1. This lead to new upper and lower bounds on maximal

code size, providing an answer to the second question. These new results are summarized in the

Tables VIII and IX, found in the introduction.
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6. FORMALIZATION OF CODING THEORY IN LEAN

A. Introduction

In 1994, the infamous Pentium FDIV computer bug was discovered in Intel Pentium proces-

sors, eventually costing the company hundreds of millions of dollars. More recently, in May 2015,

a bug was fixed in a prominent software package used for functional magnetic resonance imaging

(fMRI). The existence of the bug, which was previously unnoticed, potentially invalidates 15

years of brain research. Underlying this type of problem is a need for mathematical verification.

This is particularly true in the field of coding theory, which plays a major role in any form of

digital communication. When a code that is utilized fails to perform its purported function to the

degree of accuracy expected, errors in communication can occur. These errors can be especially

serious if sensitive/vital information is sent or if errors occur within heavily relied-upon computer

systems.

At the same time, advancements of communication technology often call for improved error-

correcting code schemes. The complete testing of these codes can be costly and time-consuming.

Hence competition between companies can lead to the utilization of codes before they are fully

reliable. Moreover, the study of coding theory is often complex and proofs of the properties of

a particular error-correcting code may be difficult to understand or verify for non-specialists in

coding theory. Even among coding theorists, the vast quantity of coding schemes can sometimes

lead to miscommunication.

Although in practice it may not always be necessary for every aspect of a particular error-

correcting code to be rigorously proven in order for it to be implemented, formally proving

correctness of codes confirms the theoretical foundations of the code and bolsters reliability. This

is especially important for newer codes. In the case of well-established codes with a long history,

their mathematical foundations have largely been established through numerous publications and

scrutiny in the mathematical community. On the other hand, coding theory is an active area of

research with new schemes being proposed every year. These proposals will not have had the

same benefit of prolonged scrutiny. It is also possible that private companies use codes whose

details are not publicly available, but whose verification is no less important. Mathematical
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formalization may help to solve these issues.

Mathematical formalization, or formal verification, is the precise statement of mathematical

theorems in a specified language in such a way that the veracity of these theorems may be

verified algorithmically. This verification may be carried out by computerized proof-assistants

such as the well-known HOL, Coq or Isabelle. These (and other) proof-assistants allow for

interactive theorem proving where a human interacts with a computer toward formalization with

the computer confirming the logical soundness of each input. When theorems of coding theory are

formalized, the mathematical soundness is simultaneously established. In fact, the formalization

of coding theory theorems achieves the most rigorous of mathematical standards, beyond that

of normal paper-and-pencil proofs.

This chapter focuses on work done toward formalizing theorems of coding theory in the Lean

Theorem Prover [7, 55]. One of our main contributions is the introduction of “error correcting

system” structures, which provide templates and systematic methods for formally defining an

error-correcting code and certain basic properties of the code in Lean. To the best of the authors’

knowledge, there has not been such an attempt to provide a systematic structure for formalizing

a code. Such structures may also be augmented to state and verify properties about future error-

correcting codes. Our current results include early examples of using these structures to formalize

repetition codes and the Hamming (7,4) code.

Another contribution of this chapter is the formalization of definitions and lemmas concerning

the Levenshtein distance and insertion/deletion correcting spheres and codes. In particular, we

define inductive versions of deletion, insertion, and edit spheres. We then formalize a lemma

relating edit spheres and the Levenshtein distance. The definitions and lemmas will aid formal-

ization in Lean moving forward.

The organization of this chapter is as follows. In Section 6-B, we introduce Lean as a theorem

prover and explain reasons for choosing Lean. In Section 6-C, we explain how to access our

library and give an overview of its contents. Section 6-D introduces our formalization of error

correcting systems and provides examples of how to formalize a code. Sections 6-E and 6-F

explain our formalization of definitions and lemmas concerning the Levenshtein distance and
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insertion/deletion spheres, topics in insertion/deletion correcting codes.

B. About Lean

In this section we briefly discuss the Lean Theorem Prover and reasons for using Lean to

formalize coding theory. As previously mentioned, Lean was released in 2015 and is still in

the process of further development by Microsoft Research and Carnegie Mellon University.

According to developers, Lean “aims to bridge the gap between interactive and automated

theorem proving, by situating automated tools and methods in a framework that supports user

interaction and the construction of fully specified axiomatic proofs” [55]. In other words, Lean

combines strengths of both interactive and automated theorem proving.

In interactive theorem proving, the focus is on verifying proofs. The strength of interactive

theorem proving is the soundness of proofs, as each step is justified by appealing to axioms or

rules. The weakness is that this can sometimes require large amounts of input and interaction

from the user. In automated theorem proving, the focus is on a program’s ability to find proofs.

The strength here is power and efficiency. Unfortunately, this is sometimes at the cost of absolute

reliability. Lean combines both reliability and efficiency. Lean maintains reliability because of a

relatively small and trusted kernel of axioms and inference rules based on dependent type theory

[55]. At the same time, Lean utilizes a powerful elaborator that is able to infer much information

such as type classes, coercions, overloading, etc.

Besides power and reliability, the flexibility of Lean makes it attractive for use in formalizing

coding theory. Lean supports a variant of the Calculus of Inductive Constructions (CIC), itself a

variant of the Calculus of Constructions (CoC), the strongest of the lambda calculi. This allows

for flexible formalization of various mathematical notions.

Lean is also attractive for formalizing coding theory because of the ease of access and use. An

Emacs version Lean is available free online. For newcomers to formalization, an in-depth tutorial

is also available [7], allowing readers to immediately begin formalization in coding theory.
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C. File access and overview

Our library, Cotoleta, can be downloaded from [36]. There are two .zip files, one for Lean 2

and one for Lean 3.3. The first file, Cotoleta, contains the formalization of Repetition codes and

Hamming codes, as well as error correcting systems and other helpful mathematical lemmas.

The second file, CotoletaInsDel contains formalization for insertion/deletion correcting codes and

related definitions and lemmas. Once the .zip files are downloaded and files are decompressed,

the .lean files should be placed in the Lean emacs search path. In the emacs version, this is

accomplished, for example, by placing files in the folder emacs/Lean/library that is included

with the Lean emacs installation. Files from Cotoleta should be compiled in the order of their

dependencies, beginning with binaryField.lean and ECCsystems.lean. The file dependencies are

depicted in Figure 1 below. Each file is a “.lean” file, but the suffix is omitted in the figure for

brevity.

HammingCode OneErrorCorrecting

HammingCode

F2vec7 4 3

MatExt FoldlExt repCodes

F2vec mtrx HammingDistWt

binaryTupleVector

binaryField ECCsystems

Fig. 6. File dependencies

The first file, binaryField.lean, defines the binary field F2 as a type named F2 and provides

other related definitions and theorems. In addition, the file contains definitions and lemmas for

proving that a binary set endowed with the proper addition and multiplication operations is

isomorphic to F2. As an example, the file contains a proof that the boolean values “tt” (true)

and “ff” (false) with the “band” (and) and “bxor” (excluded or) operations is isomorphic to

F2. The file binaryTupleVector.lean, provides definitions and theorems concerning binary vectors

v ∈ Fn2 (where n ∈ N), ubiquitously used in coding theory. The file defines the type of such
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vectors as follows:

definition F2TVec (n : N) := tuple F2 n

This definition takes advantage of definitions and lemmas for the type “tuple” in Lean’s

library. A member of (F2TVec n) is comprised of two components: an ordered list of values

from F2 and a proof that the length of this list is equal to the natural number n. Members

of (F2TVec n) can be written and displayed explicitly and intuitively. This type is especially

convenient for examples or for use in conjunction with Lean’s “eval” command, which evaluates

and simplifies expressions.

However, a shortcoming of the type (F2TVec n) is that its members cannot immediately be

used with Lean’s standard definition of matrices and their associated operations and theorems.

The file F2vec mtrx.lean provides the following alternate definition for binary vectors as column

matrices:

definition F2MVec (n : N) := matrix F2 1 n

Members of (F2MVec n) may be multiplied with parity check matrices (a type of matrix

commonly used in coding theory) by using the standard matrix operations provided in Lean’s

library. The file F2vec mtrx.lean also provides functions to transform members of (F2TVec

n) into members of (F2MVec n) and vice versa. These functions are proven to be inverses of

each other. A function is also provided so that a matrix may be written explicitly as a tuple of

members of (F2TVec n) and then converted to a matrix according to Lean’s standard definition.

This allows for explicitly writing a parity check or generation matrix.

One property of matrices necessary for our formalization that was not found in the original

Lean matrix library is proven in the file MatExt FoldlExt.lean. The property is the multiplicative

transpose property of matrices, that given matrices A and B, we have (AB)T = BTAT . In

addition, the file contains lemmas concerning the underlying function, foldl, used in Lean’s



90

definition of matrix multiplication. These lemmas should aid future proofs involving this function.

The file HammingDistWt.lean defines the Hamming weight, wtH v of a member (v : F2TVec

n). The file also defines the Hamming distance, dH(x, y) between members (x y : F2TVec

n). Various lemmas and theorems are also proven, including the distance axioms establishing dH

as a metric. These definitions and lemmas are utilized in the formalization of repetition codes

and the Hamming (7,4) code.

The remaining files are ECCsystems.lean, repCodes.lean, F2vec7 4 3.lean, HammingCode.lean,

and HammingCode OneErrorCorrecting.lean. First, ECCsystems.lean provides frameworks for

formalizing general error correcting codes. Second, the file repCodes.lean provides the formal-

ization of repetition codes. Finally, the remaining files, F2vec7 4 3.lean, HammingCode.lean,

and HammingCode OneErrorCorrecting.lean, formalize the Hamming (7,4) code and some of

its properties. These files are discussed in greater detail in section Section 6-D.

One advantage of our current formalization is the use of Lean’s calc environment in writing

proofs. The calc environment allows for a chain of equalities to be written in a natural and

intuitive manner. For example, the following theorem and proof from the HammingDistWt.lean

file proves the symmetric property of the Hamming distance:

theorem hammingDist_symm {n : N}

(x y : F2TVec n) : dH(x, y) = dH(y, x) :=

calc dH(x,y) = wtH(x + y) : hammingDistWtTest

... = wtH(y + x) : addF2TVec_com

... = dH(y, x) : hammingDistWtTest

Note how the calc environment enables us to write versions of proof that mimic their paper

and pencil counterparts. Another unique strength of our current library is the possibility for

defining error-correcting codes as a structure. The structure command is unique to Lean.

It enables users to define a structure containing many fields, as well as a built-in mechanism

for obtaining these individual fields from any member of the defined structure. These fields
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can be thought of as projections for a structure member. For example, in the aforementioned

binaryField.lean file, we define the structure F2_ISO as follows:

structure F2_ISO [class] (carrier : Type) : Type := mk ::

(mapF2_C : F2 → carrier)

(mapC_F2 : carrier → F2)

(add : carrier → carrier → carrier)

(mul : carrier → carrier → carrier)

(cancel_F2_C_F2 : ∀ (x : F2),

mapC_F2 (mapF2_C x) = x)

(cancel_C_F2_C : ∀ (x : carrier),

mapF2_C (mapC_F2 x) = x)

(Hom_add : ∀ (x y : F2),

add (mapF2_C x)(mapF2_C y) = mapF2_C (x + y))

(Hom_mul : ∀ (x y : F2),

mul (mapF2_C x)(mapF2_C y) = mapF2_C (x * y))

In other words, a member of F2_ISO carrier contains eight different fields. Providing an

instance of F2_ISO carrier for a particular carrier involves instantiating each of these fields.

Providing such an instance equates to proving that carrier is isomorphic to F2. Furthermore,

given a member (mem : F2_ISO carrier), any of the individual fields can be extracted using

the syntax “F2_ISO.〈field〉.” For instance, F2_ISO.mapF2_C carrier is the mapping from

F2 → carrier provided during the instantiation of mem. Much more detailed information on

the structure command can be found in chapter 10 of the Lean tutorial [7]. We will discuss

the use of the structure command to systematically formalize error-correcting codes along

with the repetition code and Hamming (7,4) code examples in the second half of the following

section.

Similarly to lean files in the first zip file, Cotoleta, files in the second zip file, CotoletaInsDel,
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should be placed in Leans search path and then compiled in the order of their dependencies.

The order is as follows: 1) Subseqnece.lean, 2) LongestCommon.lean 3) LevenshteinDist.lean, 4)

Supersequence.lean, 5) InsDel.lean 6) InsDelSpheres.lean, and 7) InsDelCodes.lean. These files

are compatible with the current version of Lean, Lean 3.3.0, and bugs may occur if attempted

to run with older or newer versions.

In the first file, Subsequence.lean, the notions of a subsequence, a common subsequence,

and a longest common subsequence are defined, along with related lemmas. In standard math-

ematical language terms, we may define a subsequence as follows. Let Σ be an arbitrary set

(alphabet), and X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . yn) tuples in Σm and Σn respectively

(here m and n are positive integers). We say that X is a subsequence of Y if and only if

X = (yi1 , yi2 , . . . yim), where 1 ≤ i1 < i2 < · · · ≤ n. In the language of Lean, a subsequence is

defined in Subsequence.lean as follows:

def subseq: list α → list α → Prop

| [] _ := true

| (x :: X) [] := false

| (x :: X) (y :: Y) := ((x=y) ∧ (subseq X Y))

∨ (subseq (x :: X) Y)

The definition can be thought of as a function. The first line gives it a name “subseq” and

states that the defined function takes two lists (essentially tuples, although the length is not

indicated) over some arbitrary alphabet (technically a “Type”) α, and returns a proposition.

The next two lines go on to say that an empty list is always a subset of any other list, and

that any non-empty list is never a subset of the empty list. The final line, which is split into

two in this paper because of space constraints, states that whenever new elements x and y are

added to the head of their respective lists X and Y, then the new list (x :: X) (this is notation

for the list obtained when x is inserted at the head of list X) is a subsequence of (y :: Y)

whenever x = y and X is a subsequence of Y, or else x :: X is a subsequence of Y. In this way,
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a subsequence is inductively defined within Lean. Since completing our formalization, it has

come to our attention that a similar definition, sublist, exists within the current Lean library.

An interesting subquestion would be to formalize an equivalence between the definitions.

The remainder of the file Subsequence.lean states three more important definitions, com_subseq,

longest_common, and lcs_naive. The first, com_subseq, is the definition of a common subse-

quence, and simply states that a list V over α is a common subsequence of two other lists X and Y

whenever it is a subsequence of both X and Y individually. The next definition, longest_common

defines a longest common subsequence, and states that a list V is a longest common subsequence

of X and Y if it is first a common subsequence of X and Y, and then if for any other common

subsequence W of X and Y, the length of V is greater or equal to the length of W. These definitions

take as inputs respectively two or three lists and return a proposition that is either true or false.

The last important definition, lcs_naive, is another inductive definition that algorithmically

defines Included in the file is the definition of lcs_naive, which is a function that takes two

tuples (technically elements of type “list” in Lean) over an arbitrary alphabet (say N), and

returns a particular longest common subsequence of the two input tuples (lists). In the definition

name, “lcs” is short for longest common subsequence, and “naive” is added because the definition

follows a naive algorithm for finding a longest common subsequence, rather than known dynamic

programming algorithms that boast superior computational cost. In our formalization the naive

approach is preferred because of the relative ease with which other proofs can be carried out

with this definition, and because for the purpose of formalization we are not concerned with

extremely long lists where computation cost is a significant issue. However, an interesting side

question would be to define a dynamic programming based longest common subsequence within

Lean and prove that the length is equal to that of lcs_naive.

The next file, LongestCommon.lean primarily proves the theorem that lcs_naive, defined in

the first file, is a longest common subsequence. In the notation of Lean, this theorem is stated

as follows:

theorem lcs_naive_longest_com (X Y : list N) :
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longest_common (lcs_naive X Y) X Y

In words, the theorem states that given two arbitrary lists X and Y over N, that the list (lcs_naive

X Y) satisfies the definition of being a longest common subsequence of X and Y. Note that here

and in future definitions and lemmas, the α of the subseq definition in Subsequence.lean is often

replaced by N, the Type of natural numbers. This is because N provides some additional structure

within Lean that makes proving theorems easier, while still maintaining enough arbitrariness for

the purposes of insertion/deletion codes. It should also be noted that we consider 0 to belong to

N. LongestCommon.lean also contains other lemmas related to longest common subsequences.

After this, the file LevenshteinDist.lean defines the Levenshtein distance. This file is explained

in greater detail in Section 6-E. The file Supersequence.lean defines supersequences in a manner

similar to subsequences in the first file. It also includes lemmas necessary for proving an equiv-

alence between different types of error-correcting codes. InsDel.lean, and InsDelSpheres.lean,

provide definitions and lemmas about insertions and deletions, and about insertion, deletion,

and edit spheres. These are expounded upon in Section 6-F. The last file, InsDelCodes defines

insertion, deletion, and insertion/deletion (edit) correcting codes. It includes formal proofs of the

fact that all three of these are equivalent given a fixed codeword length.

D. Error correcting systems definition and examples

A t-error correcting code may be formalized by defining a few specific components and related

theorems. In particular, it is possible to formalize a t-error correcting code by first deciding upon

a code length n ∈ N, a message set M , a code alphabet Σ (for example binary or ternary digits),

and a receivable alphabet Σ∗ ⊇ Σ (appropriate for the channel). Next, an encoder function

enc : M → Σn and a decoder function dec : (Σ∗)n →M are defined. Finally an error-evaluator

function d : Σn×(Σ∗)n :→ N is defined and the t-error correcting property, that for any message

m ∈M and received word y ∈ (Σ∗)n, if d(enc(m), y) ≤ t, then dec(y) = m should be proven.

This schematic is reflected in the structure ErrorCorrectingSystemOfType1 definition

below, which may be found in the ECCsystems.lean file. We later define another similar structure

in the same file that separates the decoding process into two steps, which may be beneficial for
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certain decoding algorithms.

structure ErrorCorrectingSystemOfType1 [class]

mk :: (t : N) (leng : N)

(message_alphabet: Type)

(code_alphabet: Type)

(receivable_alphabet: Type)

(Encoder: message_alphabet →

tuple (code_alphabet) leng)

(Decoder: tuple (receivable_alphabet) leng →

message_alphabet)

(ErrorEvaluator: tuple (code_alphabet) leng →

tuple (receivable_alphabet) leng → N)

(tErrorCorrectingCode: ∀ (m: message_alphabet)

(y: tuple (receivable_alphabet) leng),

ErrorEvaluator (Encoder m) y ≤ t

→ m = Decoder y)

In the above structure definition, there are nine fields: t, leng, message_alphabet,

code_alphabet, receivable_alphabet, Encoder, Decoder, ErrorEvaluator, and

tErrorCorrectingCode. Each field corresponds to a component in the schematic described

earlier. The file repCodes.lean contains the formalization of the well-known repetition codes.

The following scripts provides a simple example that uses our structure definition to establish

that repCode is a b(len-1)/2c error-correcting code of length len with the message alphabet,

code alphabet, and receivable alphabet all being F2.

variable len : N

variable len_gt_0 : len > 0
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definition repCode [trans_instance] :=

{|ErrorCorrectingSystemOfType1

t := ((len-1)/2),

leng := len,

message_alphabet := F2,

code_alphabet := F2,

receivable_alphabet := F2,

Encoder := repEnc len,

Decoder := repDec,

ErrorEvaluator := hammingDistance,

tErrorCorrectingCode := reptErrCorr len_gt_0 |}

Before the repCode definition, the variable command is used to declare an arbitrary natural

number len and a proof len_gt_0 that len is greater than 0. These act as assumptions in the

definition that follows. In the definition, each instantiation for the last four fields is given by

another definition or theorem in the same file. For example, repEnc is defined as follows:

definition repEnc (n : N) (m : F2) : F2TVec n := [[ m ]]∧n

In other words, repEnc is a function that takes a natural number n (in the case of the repCode

definition that would be len) and a member m of F2, and then returns a member of F2TVec n

by essentially taking n repetitions of m.

The Hamming (7,4) code is similarly formalized using our structure definition. First, the file

F2vec7 4 3.lean provides some basic definitions and lemmas for the special cases of vectors

of length 7, 4, and 3. It also sets up some simple notions for use in Hamming codes, such

as a mapping from F2TVec 3 to N. Next, the file HammingCode.lean defines the generator

matrix G and parity-check matrix H for the Hamming (7,4) code, as well as encoder and
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decoder functions Enc and Dec. Some other properties are also proved, such as the fact that

ImEnc, the image of G, is equivalent to CodeSpace, defined as the kernel of H. Finally, the

file HammingCode OneErrorCorrecting.lean establishes the single-error correcting capability of

the Hamming code. These three files culminate in the following formalization at the end of

HammingCode OneErrorCorrecting.lean establishing the Hamming (7,4) code as a single-error

correcting code:

definition HammingCodeOfType1 [trans_instance] :=

{| ErrorCorrectingSystemOfType1

t := 1,

leng := 7,

message_alphabet := F2TVec 4,

code_alphabet := F2,

receivable_alphabet := F2,

Encoder := Enc,

Decoder := DecEC,

ErrorEvaluator := hammingDistance,

tErrorCorrectingCode := HammingCode_OneErrorCorrectableOfType1 |}

It is worth mentioning a little more detail about the above formalization. For instance, the

encoder function Enc is defined as multiplication of members of F2TVec 4 with the appropriate

generator matrix. To write the generator matrix we make use of the function Tvecs_to_mtrx

from the file F2vec mtrx.lean, which allows us to explicitly write sufficiently small matrices. In

HammingCode.lean, we define the generator matrix G and encoder Enc as follows:
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definition G : matrix F2 4 7 :=

Tvecs_to_mtrx (of_list ([

(tag (-[I, I, I, O, O, O, O]) rfl),

(tag (-[I, O, O, I, I, O, O]) rfl),

(tag (-[O, I, O, I, O, I, O]) rfl),

(tag (-[I, I, O, I, O, O, I]) rfl)]))

definition Enc (v : F2TVec 4) : F2TVec 7 :=

F2MVec_to_F2TVec (v × G)

In the G definition, we use our own notation “-[ ]”, which allows us to write an n-length

list in the natural order with the ith element in the ith position (from the left), where i ∈

{0, 1, . . . , n − 1}. In the Enc definition above, the coercion of v : F2TVec 4 to a member of

F2MVec 4 before being multiplied with G is hidden in the notation “×”. The other definitions

and theorems used to instantiate each field of HammingCodeOfType1 are found in the files

HammingCode.lean and HammingCode OneErrorCorrecting.lean as well.

The use of structures as templates for formalizing codes has another advantage. Lean provides

a convenient mechanism that will make extending structure definitions a simple matter in the

future. A structure definition can be extended to include all of the fields of the structure it

extends from, with additional fields being declared (see chapter 10 of the Lean tutorial). In this

way, something like a template for linear codes can be easily created by extending structure

ErrorCorrectingSystemOfType1 and adding the additional stipulation of closure under linear

combinations. Here a member of a linear code defined in this manner will also automatically be

coercible into a member of the parent structure.

E. Formalization of Levenshtein distance

In the file LevenshteinDist.lean, we define a distance function LDist between lists and prove

that the defined function satisfies three of the four metric axioms. The final axiom is proven in
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insDelSpheres.lean. LDist stands for Levenshtein distance, and is defined in Lean as follows:

def LDist (X Y : list N) := (length X) + (length Y) - (length_lcs_naive X Y)

- (length_lcs_naive X Y)

This definition is based on one of the standard ways that the Levenshtein distance `D(X, Y )

between tuples X and Y may be defined, as the sum of the lengths of X and Y subtracted by

two times the length of a longest common subsequence of X and Y ([56]). Note that in the

Lean implementation, rather than subtract twice the length of a longest common subsequence,

we instead subtract the length of a longest subsequence two times. This small adjustment helps

to make formalization of lemmas or theorems involving LDist easier.

In Lean’s notation, LDist X Y denotes the Levenshtein distance between X and Y. The first

three metric axioms for LDist, non-negativity, identity of indiscernibles, and symmetry are stated

and proved in LevenshteinDist.lean. The statements are as follows:

theorem LDist_non_neg (X Y : list N) :

LDist X Y ≥ 0

theorem LDist_zero_iff_eq (X Y : list N) :

LDist X Y = 0 ↔ X = Y

theorem LDist_symm (X Y : list N) :

LDist X Y = LDist Y X

In the statement of LDist_zero_iff_eq, the symbol ↔ is Lean’s notation for “if and only

if.” Several other useful lemmas are also proven in LevenshteinDist.lean, such as the fact that

if x :: X is a subsequence of y :: Y, then X is also a subsequence of Y. Recall that x :: X

is notation for the list obtained when x is inserted at the head of list X. The first three metric
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axioms can be shown directly, but it is not obvious how to prove directly from the definition

of LDist that the triangle inequality holds. Instead, we take advantage of an alternative view of

the Levenshtein distance in order to prove the triangle inequality.

It is known that the Levenshtein distance `D(X, Y ) between two tuples X and Y is equivalent

to the least number of insertions or deletions (edits) necessary to transform X into Y . From this

definition, it is obvious that the triangle inequality holds. To see why this is the case, suppose

that X , Y , and Z are tuples such that the Levenshtein distance between X and Y and between

Y and Z are k1 ∈ N and k2 ∈ N respectively. Then X can be transformed into Y with k1 edits

and Y can be transformed into Z with k2 edits. Thus clearly X can also be transformed into Z

in at most k1 + k2 edits, since X can first be transformed into Y and then into Z. This implies

that the Levenshtein distance between X and Z is at most k1 + k2.

Our actual formal proof of the triangle inequality in Lean follows a similar stream of thought,

but uses the idea of edit spheres instead. The next section explains the formal definitions of edit

spheres, and their relationship to the triangle inequality for LDist, but we state the final metric

axiom as it is stated and proven in InsDelSpheres.lean below:

theorem LDist_tri_ineq (X Y Z : list N) : LDist X Z ≤ LDist X Y + LDist Y Z

F. Formalization of Insertion/Deletion spheres

In this section we introduce the formal definitions of insertion spheres, deletion spheres, and

edit spheres. This section contains two contributions: 1) inductive versions of the definitions of

deletion, insertion, and edit spheres; and 2) a formal lemma proving a relationship between edit

spheres and the Levenshtein distance that significantly simplifies proofs involving edit spheres.

Before introducing any of the spheres, we must first mention the related notions of deletions

and insertions as defined in InsDel.lean. The deletion definition is as follows:
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def del_nth: list α→ N→ list α

| [] _ := []

| [x] _ := []

| (x :: X) 0 := X

| (x :: X) (i + 1) := x :: del_nth X i

In the definition, the first line names the deletion function del_nth and states that it takes

as input values: 1) a list over an arbitrary alphabet (technically a Type) α, and 2) a natural

number (the location of the deletion), and then outputs a list over α. The second and third

lines state that given the empty list or any singleton list, and any natural number as inputs, the

resulting output is the empty list. The fourth line states that given any non-empty list (x ::

X) with x at the head and the natural number 0 as inputs, the resulting output is the tail of the

list, i.e. the list with the head deleted. Finally, the last line gives a recursion for any non-empty

list (x :: X) and natural number (i + 1) by keeping the original head x and executing the

deletion function del_nth X i.

In this way the deletion function is inductively defined. The intuition behind the name of the

function is that given a list X, and natural number n, then del_nth X n is the resulting list after

the nth element of list X is deleted. Here, the index of elements in list X begins at 0. As a quick

example, note that del_nth [1,2,3] 0 = [2,3] and del_nth [1,2,3] 1 = [1,3].

Insertions are also defined in InsDel.lean. The definition is as follows:

def ins_nth: list α→ N→ α→ list α

| [] _ a := [a]

| (x :: X) 0 a := a :: x :: X

| (x :: X) (n+1) a := x :: ins_nth X n a

The format is similar to that of the del_nth definition, but in this instance the ins_nth
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function takes three input values: 1) the original list over α, 2) a natural number (the location of

the insertion), and 3) an element of α (to be inserted), and outputs a new list over α. There is also

one less line needed in the definition compared to the definition of del_nth since the last line,

where the recursive portion of the definition is given, accounts for the case of a singleton list

input and non-zero index. As a quick example, note that ins_nth [1,2,3] 0 4 = [4,1,2,3]

and ins_nth [1,2,3] 3 4 = [1,2,3,4].

Besides the above definitions, definitions of a list of deletions or insertions are also provided

in InsDel.lean, as well as several lemmas related to the defined deletions and insertions. The next

file, InsDelSpheres.lean uses these definitions to define three types of spheres: deletion spheres,

insertion spheres, and edit spheres. In typical mathematical language, we may define a deletion

sphere dSt(Y ) centered at a tuple Y ∈ Σ∗ of radius t ∈ N as follows: dSt(Y ) := {X ∈ Σ∗

such that X is obtainable from Y by t or fewer deletions}. In terms of Lean, this would be

difficult to define directly, but we define the equivalent sphere inductively below. This new way

of defining deletion spheres (and insertion spheres and edit spheres defined subsequently), is the

first of two contributions in this section.

def del_sphere: N→ list α→ list α→ Prop

| 0 X Y := X = Y

| (t + 1) X Y := del_sphere t X Y

∨ ∃ (n : N), del_sphere t X (del_nth Y n)

Similarly to previous definitions, the first line names the deletion sphere function del_sphere

and states that the defined function takes as inputs a natural number (the radius) and two lists,

then returns a proposition that is true or false. The second line states that in order for X to be

within a sphere of radius 0 centered at Y, then X must be equal to Y. The third line says that Y

is in the deletion sphere of radius t + 1 centered at Y if either of the following is true: 1) X is

in the deletion sphere of radius t centered at Y, or 2) there exists a natural number n such that

X is in the deletion sphere of radius t centered at del_nth Y n.
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The definition of an insertion sphere iSt(Y ) of radius t centered at Y ∈ Σ∗ is defined

analogously to the deletion sphere: iSt(Y ) := {X ∈ Σ∗ such that X is obtainable from Y

by t or fewer insertions}. The Lean version, ins_sphere, is analogous to the definition of

del_sphere, except using ins_nth rather than del_nth:

def ins_sphere: N→ list α→ list α→ Prop

| 0 X Y := X = Y

| (t+1) X Y := ins_sphere t X Y

∨ ∃ (n : N)(a : α), ins_sphere t X (ins_nth Y n a)

Finally, an edit sphere eSt(Y ) centered at Y may be defined as: eSt(Y ) := {X ∈ Σ∗ such

that X is obtainable from Y by t or fewer edits (deletions or insertions)}. The Lean version,

then, is as follows:

def edit_sphere: N→ list α→ list α→ Prop

| 0 X Y := X = Y

| (t + 1) X Y := edit_sphere t X Y

∨ ∃ (n : N), edit_sphere t X (del_nth Y n)

∨ ∃ (n : N)(a : α), edit_sphere t X (ins_nth Y n a)

Based on the above definition, the notation edit_sphere t X Y means that X is in the edit

sphere of radius t centered at Y. In order to formally prove that a list X is in the t edit sphere

of Y requires showing that one of the above statements in the definition is true. In the case that

X is equal to Y, this is a relatively trivial matter. In fact, in InsDelSpheres.lean we prove the

lemma that for for any natural number t and list X, we have ins_sphere t X X. Moreover,

the proof is only two lines and uses only the definition of ins_sphere and built-in tactics

within the standard Lean library. However, it is not so trivial to prove that a list X is within a t

radius edit sphere of Y when X is not equal to Y. For instance, the following example shows what
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a typical proof may look like that [1,3,4] is in the edit sphere of radius 2 centered at [1,2,3].

example : edit_sphere 2 [1,3,4][1,2,3] :=

begin

unfold edit_sphere, apply or.inr, apply or.inr,

apply exists.intro 3, apply exists.intro 4,

apply or.inr, apply or.inl,

apply exists.intro 1, refl

end

In the above example, the first line states an unnamed theorem, that [1,3,4] is in the radius

2 edit sphere of [1,2,3]. The “begin” and “end” below the statement indicate the start and

finish of a proof of that statement in Lean’s tactic mode (see [7] for more information on

Lean’s tactic mode). The remaining lines instruct Lean explicitly on which of the three “or”

statements in the definition of edit_sphere will be shown to complete the proof and then

explicitly providing the position to be deleted or the position and value to be inserted in order to

transform [1,2,3] into [1,3,4]. This process is carried out one edit at a time, so that the first

two lines, beginning with “unfold,” amount to a proof that inserting a 4 at position 3 brings

the resulting list ([1,2,3,4]) within the radius 1 sphere of [1,3,4]. The following two lines

amount to a proof that subsequently deleting position 1 brings the result within a radius 0 sphere

of [1,3,4]. It is only at this point that Lean can automatically infer the validity of the proof

using its built-in simplifier.

The example above was only for an edit sphere radius of 2, but illustrates how cumbersome

proofs can become. In fact, each time the radius is increased by 1, the current style of proof,

directly from the definition, will require two new lines. This is because the definition is inductive,

and the proof requires reducing to the base case. However, by relating edit_sphere and LDist,

we can significantly reduce the proof complexity. The following lemma allows us to treat a logical

proposition as a calculable function, and is the second contribution of this section.
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lemma edit_sphere_iff_LDist_le (t : N)(X Y : list N) :

edit_sphere t X Y ↔ LDist X Y ≤ t

The first line states the name of the lemma and indicates that an arbitrary natural number

t (the radius) and two arbitrary lists X and Y over N are assumed. The second line, which is

the actual statement of the lemma, states that X is in the t edit sphere of Y if and only if the

Levenshtein distance LDist X Y between X and Y is less than or equal to t. An application

of this lemma permits a significant simplification of proofs involving edit_sphere, because

LEAN can automatically and trivially determine the validity of statements involving LDist.

After applying edit_sphere_iff_LDist_le to define the decidability of edit_sphere, Lean

can similarly check the validity of statements involving edit_sphere. This allows us to rewrite

the previous example with a single line proof as follows:

example: edit_sphere 2 [1,3,4] [1,2,3] := dec_trivial

Moreover, the same proof will work for arbitrarily large radii and arbitrarily long lists. For

instance, the following is also a valid statement and proof:

example : edit_sphere 10 [1,2,3,4,5][6,7,8,9,0] := dec_trivial

In addition, the formalized relationship between LDist and edit_sphere enables us to prove

the triangle inequality mentioned at the end of section ref. To prove the triangle inequality,

we first formalize the fact that for lists X, Y, and Z and for natural numbers a and b, that

edit_sphere a X Y and edit_sphere b Y Z implies edit_sphere (a+b) X Z. This can be

thought of as a pseudo triangle inequality for edit spheres, although of course it is not a true

triangle inequality since edit_sphere (a+b) X Y is a proposition, not a number. This fact is

in turn used to complete the proof of the triangle inequality for LDist.
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G. Conclusion

In this chapter we reported on the creation of Cotoleta, the first coding theory library for

the Lean theorem-proof assistant. In particular, we defined structures that serve as templates

for formalizing error correcting systems and provided examples of code formalization using

repetition codes and the Hamming (7,4) code. Further research plans include building more

structures to serve as alternative templates for formalizing codes, defining other codes, and

proving properties about them.

We also formalized several fundamental topics for insertion/deletion codes in the Lean the-

orem prover. This includes concepts of deletions, insertions, and edit spheres using inductive

definitions. We formalized the Levenshtein distance (also proving it satisfies the metric axioms)

in terms of longest common subsequences and proved a relationship between this distance and

edit spheres. The relationship simplifies proofs related to edit spheres.

7. CONCLUSION

Contributions were divided into two general categories. The first was contributions to permuta-

tion and multipermutation codes, classes of nonlinear codes. For permutation codes in the Kendall

tau metric, we provided definitions and theorems that help to extend a linear programming

decoding technique that was originally invented for use in permutation codes in the Euclidean

metric. Efficient decoding is a necessity for codes to be practically implemented, so this is a

helpful result.

We also proved limits on the maximum possible code size of Ulam permutation codes by

first giving new methods of calculating Ulam sphere sizes. In particular, we proved the theorem

that perfect error correcting Ulam permutation codes do not exist. In the case of Ulam multi-

permutation codes, we also showed how to calculate Ulam multipermutation spheres for certain

parameters, and used these results to provide new bounds on the maximal code sizes. It is helpful

to know what is the maximum possible code size when attempting to construct codes because

this gives a frame of reference for how good the rate of the code, and hence to a degree how

good the code can be.
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The second general category of contribution was to formalization in coding theory. We pro-

vided a new library for coding theory in the Lean theorem proof assistant, named Cotoleta.

Two groups of files are contained in the library, the first group containing several underlying

mathematical definitions and lemmas as well as the formalization of Repetition codes and the

Hamming (7,4) code. The first group also contained structures for error correcting systems.

The second group contained definitions, lemmas, and theorems related to Levenshtein codes.

These are nonlinear codes capable of correcting deletions or insertions. The Levenshtein metric

and deletion, insertion, and edit spheres were all defined, as well as deletion, insertion, and edit

correcting codes.
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APPENDIX A

CONSOLIDATION FOR COMPACT CONSTRAINTS

Definition (Linear Constraints, Satisfy, |=). A linear constraint l(X) for an n-by-n matrix is

defined as either a linear equation or linear inequality on entries of a matrix.

Formally speaking, by regarding an entry Xi,j as a variable (0 ≤ i, j < n), we state either

l(X) :
∑

0≤i,j<n

ci,jXi,j = c0,

or

l(X) :
∑

0≤i,j<n

ci,jXi,j ≥ c0,

for some c0, ci,j ∈ R. The relation = or ≥ is uniquely determined by l(X). Instead of the

symbols = and ≥, we may use Dl (or simply D), e.g.,

l(X) :
∑

0≤i,j<n

ci,jXi,j Dl c0.

If we do not need to clarify the variable X of a linear constant l(X), we denote it simply by

l.

For a linear constraint l ∈ L and a matrix X ∈ Mn(R), if X satisfies l, we write X |= l. If

X |= l for every l ∈ L, we write X |= L.

Definition (Doubly Stochastic Constraint). A doubly stochastic constraint L for an n-by-n

matrix is a set of linear constraints such that, for any matrix X for which X |= L, X satisfies

the following three types of constraints:

1) (row-sum constraints)
∑

0≤j<nXi0,j = 1, for any 0 ≤ i0 < n,

2) (column-sum constraints)
∑

0≤i<nXi,j0 = 1, for any 0 ≤ j0 < n,

3) (positivity) Xi0,j0 ≥ 0, for any 0 ≤ i0, j0 < n.
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Note A.1. A trivial example of a doubly stochastic constraint LD is defined as

LD := {row-sum constraints}

∪{column-sum constraints}

∪{positivity}.

In other words, LD consists of only of the linear constraints that are in the definition of a doubly

stochastic constraint, with no additional constraints. For clarifying the size n of a matrix, we

may denote LD by LD(n) .

For any doubly stochastic constraint L ⊃ LD(n) , the set of n × n matrices satisfying L is

called a doubly stochastic polytope of L and is denoted by Dn[L].

Let us define the set DSMn as

DSMn := {X ∈ Mn(R) : X |= LD(n)}.

An element of DSMn is said to be a doubly stochastic matrix. Notice that the set DSMn

comprises precisely the set of matrices satisfying LD(n) , but no other linear constraints.

It can be shown that the symmetric group Sn of order n! is a subset of DSMn. Indeed, we

may embed the permutation group Sn on {0, 1, . . . , n−1} into the set Mn(R) of n by n matrices

over the real numbers in the following manner: for a permutation σ in Sn, we define an n-by-n

matrix Xσ by

Xσ
i,j := δj=σ(i), (14)

where δ is the Kronecker’s delta.

Since Xσ |= LD in Note A.1 for any permutation σ ∈ Sn, we have

Sn ⊂ DSMn.

Geometrically speaking, DSMn is a convex polytope and is known as the Birkhoff Polytope.

More generally, for any doubly stochastic constraint L ⊃ LD(n) , the set of n × n matrices

satisfying L is called a doubly stochastic polytope of L and is denoted by Dn[L]. We may
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also begin with a set of matrices rather than with a doubly stochastic constraint and utilize the

following variation in notation. A subset D ⊂ Mn(R) is a doubly stochastic polytope if there

exists a doubly stochastic constraint L such that D = Dn[L].

The Birkhoff Polytope, DSMn, is a specific example of a doubly stochastic polytope. Moreover,

any doubly stochastic polytope is a subset of DSMn. This is because adding any nontrivial linear

constraint to the set LD(n) yields a doubly stochastic constraint that excludes some element of

DSMn.

Definition (Vertex). Let D be a doubly stochastic polytope.

An element X ∈ D is said to be a vertex if there are neither elements X0, X1 ∈ D with

X0 6= X1 nor positive numbers c0, c1 ∈ R, c0 + c1 = 1, such that

X = c0X0 + c1X1.

We denote the set of vertices for D by Ver(D).

Definition (LP-decodable permutation code). We call a permutation code (G, ~µ) an LP (Linear

Programing)-decodable permutation code if there exists a doubly stochastic constraint L such

that G = GL, where GL := Ver(Dn[L]) ∩ Sn.

Definition (Compact Constraint). Let L be a doubly stochastic constraint for an n-by-n matrix.

We call L a compact constraint if

• L consists of a finite number of linear constraints,

• the doubly stochastic polytope Dn[L] is a bounded set,

• the vertex set satisfies Ver(Dn[L]) ⊂ Sn.

Theorem A.1 (Birkhoff von-Neuman Theorem [13, 74]).

Ver(DSMn) = Sn.

Merged Constraints

Merged constraints provide a novel technique to construct compact constraints. They were

introduced in [37] First, constraints that are obtained by relaxing doubly stochastic constraints
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are defined. We begin with a relaxed version of the “positivity” (all matrix entries ≥ 0) component

of a doubly stochastic constraint, calling this relaxed version a homogeneous constraint.

Definition (Homogeneous Constraints). Let l be a linear constraint for an n-by-n matrix. We

call l homogeneous if the constant term of l is 0.

Formally speaking,

l(X) :
∑

0≤i,j<n

ci,jXi,j D 0,

for some ci,j ∈ R. The symbol “D” is used to signify that the linear constraint could be an

equation (=) or an inequality (≥).

Example A.2. The “positivity” of a doubly stochastic constraint is homogeneous but the “row-

sum” constraint (all entries of a matrix row add to 1) is not. Linear constraints XAΓ = AΓX

obtained from a graph Γ are homogeneous.

The following constraints are relaxed versions of the “row-sum” (and “column-sum”) con-

straints of a doubly stochastic constraint. Recall that the original “row-sum” (or “column-sum”)

constraints required all entries of a particular row (or column) to sum to 1. The relaxed counter-

parts maintain the requirement that all rows (columns) are equal, but waive the requirement of

summing to 1. Although the original row and column sum constraints were not homogeneous,

these relaxed constraints, which we call weak row-sum (weak column-sum) constraints are

homogeneous constraints.

Definition (Weak Row-sum (Column-sum) Constraint). We call the following n-linear constraints

weak row-sum constraints:

∑
0≤j<n

Xi0,j =
∑

0≤j<n

X0,j, for any 0 ≤ i0 < n.

Similarly, we call the following n-linear constraints weak column-sum constraints:

∑
0≤i<n

Xi,j0 =
∑

0≤i<n

Xi,0, for any 0 ≤ j0 < n.

The following constraint, termed a quasi-homogeneous constraint, is a relaxed version of a
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doubly stochastic constraint. It is obtained by replacing the original “positivity” constraints with

homogeneous constraints.

Definition (Quasi-homogeneous Constraint). A linear constraint L is said to be a quasi-homogeneous

constraint if L consists of homogeneous constraints, “row-sum” constraints, and “column-sum”

constraints.

Next, a merged constraint is a relaxed version of a quasi-homogenous constraint. The intuition

behind the term “merged” is borrowed from the economic term of a merged company, where

two companies combine under a new set of rules. In context, a merged constraint is the result

of combining the row-sum (column-sum) constraints and homogeneous constraints of a quasi-

homogeneous constraint, but in the process changing the row-sum (column-sum) constraints to

weak row-sum (column-sum) constraint.

Definition (Merged Constraint). Let L be a quasi-homogeneous constraint. For L, we define

another set L� of linear constraints by replacing row-sum (column-sum) constraints in L with

weak row-sum (column-sum) constraints, while keeping the original homogeneous constraints

of L. We call L� a merged constraint for L.

Remark A.3. Merged constraints are homogeneous.

Example A.4. A merged constraint L�D for the constraints LD in Note A.1 consists of three

kinds of linear constraints:

• weak row-sum constraints,

• weak column-sum constraints,

• positivity (positivity remains unchanged as it is homogeneous).

Several constraints were introduced. To avoid confusion and aid comprehension, the following

tables summarize the relationship between categories of constraints and their relaxed counterparts

that have been discussed thus far. Table 2 compares positivity with its relaxed version of a

homogeneous constraint. Similarly, Table 3 compares Row and Column-sum constraints with

their relaxed versions. Finally, Table 4 shows the components that make up a doubly stochastic,
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quasi-homogeneous, and merged constraint respectively.

TABLE XI
POSITIVITY, HOMOGENEOUS CONSTRAINTS

Positivity Homogeneous Constraints
Xi,j ≥ 0 for any 0 ≤ i, j < n

∑
0≤i,j<n

ci,jXi,j D 0

TABLE XII
ROW-SUM (COLUMN-SUM) AND WEAK ROW-SUM (COLUMN-SUM) CONSTRAINTS

Row-sum Constraints Weak Row-sum Constraints∑
0≤j<n

Xi,j =
∑

0≤j<n
X0,j = 1, for any 0 ≤ i < n

∑
0≤j<n

Xi,j =
∑

0≤j<n
X0,j, for any 0 ≤ i < n

Column-sum Constraints Weak Column-sum Constraints∑
0≤i<n

Xi,j =
∑

0≤i<n
Xi,0 = 1, for any 0 ≤ j < n

∑
0≤i<n

Xi,j =
∑

0≤i<n
Xi,0, for any 0 ≤ j < n

TABLE XIII
DOUBLY STOCHASTIC CONSTRAINT, QUASI-HOMOGENEOUS CONSTRAINT, MERGED CONSTRAINT

Doubly Stochastic Constraint Quasi-Homogeneous Constraint Merged Constraint
Row-sum

Constraints
Row-sum

Constraints
Weak Row-sum

Constraints
Column-sum
Constraints

Column-sum
Constraints

Weak Column-sum
Constraints

Positivity
Homogeneous

Constraints
Homogeneous

Constraints

Holding Constraints

Next we propose an extension method for a given linear constraint of a small matrix to another

constraint of a larger matrix. Again, borrowing economic terminology, we call such constraints

“Holding Constraints,” as in a holding company that holds another company’s stock but does

not produce it’s own goods. In context, holding constraints essentially consist of constraints for

matrices that originate from other constraints for smaller matrices.

Let ν and R be positive integers. For a νR-by-νR matrix X , we may divide X into R-by-R

block matrices X [r0,r1] of size ν-by-ν via the following relation:

X
[r0,r1]
i,j = Xr0ν+i,r1ν+j,
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where 0 ≤ i, j < ν and 0 ≤ r0, r1 < R.

For example, if ν = 3 and R = 2, we have

X00 X01 X02 X03 X04 X05

X10 X11 X12 X13 X14 X15

X20 X21 X22 X23 X24 X25

X30 X31 X32 X33 X34 X35

X40 X41 X42 X43 X44 X45

X50 X51 X52 X53 X54 X55


=

 X [00] X [01]

X [10] X [11]


and

X [01] =


X03 X04 X05

X13 X14 X15

X23 X24 X25

 .

We call X [r0,r1] the (r0; r1)-th block of X .

Definition (Holding Constraints). Let H be a set of linear constraints for an R-by-R matrix H .

We associate with H another set of linear constraints H# of degree ν for a νR-by-νR matrix

X .

For h(H) ∈ H, we define the linear constraint h#(X) for a νR-by-νR matrix X by replacing

each component Hr0,r1 with a linear sum
∑

0≤j<ν X
[r0,r1]
0,j . For H, we define a set H# of linear

constraints for νR-by-νR matrix as

H# := {h# : h ∈ H}.

We call H# a holding constraint associated with H of degree ν.

Example A.5. Let us define a linear constraint set H for a 2-by-2 matrix H (that is R = 2)
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by H := {h1(H) : H00 + H01 = 1, h2(H) : H00 + H10 = 1, h3(H) : H11 ≥ 0}. The holding

constraint H# of degree 3 (that is ν = 3) is

H# = {

h#
1 (X) : (X

[00]
00 +X

[00]
01 +X

[00]
02 )

+(X
[01]
00 +X

[01]
01 +X

[01]
02 ) = 1,

h#
2 (X) : (X

[00]
00 +X

[00]
01 +X

[00]
02 )

+(X
[10]
00 +X

[10]
01 +X

[10]
02 ) = 1,

h#
3 (X) : (X

[11]
00 +X

[11]
01 +X

[11]
02 ) ≥ 0

}.

To better understand the above example, the reader is referred to the prior discussion on the

“(r0; r1)-th block, X [r0,r1] of a matrix X . For instance, h#
1 (X) in example 9 would be equivalent

to the following constraint: (X00 +X01 +X02) + (X03 +X04 +X05) = 1.

Consolidation

The method of “consolidation” was introduced in [37] to construct compact linear constraints

from two given types of constraints. Once again the intuition behind the name comes from

economics, where a consolidation is the gathering of smaller companies under a single head. In

the context of constraints, a consolidation is the result of taking the union of Holding constraints

and Merged constraints. We recommend reading the following definition in conjunction with

Figure 7.

Definition (Consolidation). Let M[r0,r1] be a quasi-homogeneous constraint for a ν-by-ν matrix

for 0 ≤ r0, r1 < R. Let H be a set of linear constraints for an R-by-R matrix.

For {M[r0,r1]} and H, we define another linear constraint M�H for a νR-by-νR matrix as



116

follows:

M�H := {m[r0,r1]�(X [r0,r1]) : m[r0,r1] ∈M[r0,r1], 0 ≤ r0, r1 < R}

∪{h# : h ∈ H},

where X is a νR-by-νR matrix and X [r0,r1] is the (r0; r1)-th block of X of size ν-by-ν. In

plain language, M�H consists of the union of all the merged constraint components m[r0,r1]�

originating from quasi-homogeneous constraint components m[r0,r1] of M[r0,r1] as well as all

holding constraints h# originating from constraints h of H. This is depicted in Figure 6.

We call M�H the consolidation of {M[r0,r1]} and H.

Fig. 7. Consolidation

Example A.6. Let LD(2) be the doubly stochastic constraint in Note A.1 (all rows and columns

add to 1 and all matrix entries are ≥ 0.) for a 2-by-2 matrix. LetM[0,0] := LD(2) ,M[0,1] := LD(2) ,

and M[1,0] := LD(2) . Let M[1,1] := LD(2) ∪ {X0,0 + X1,1 = 0}. Let H be the doubly stochastic

constraint in Note A.1 for a 3-by-3 matrix, i.e. H = LD(3) .

Then the consolidationM�H is a doubly stochastic constraint for a 6-by-6 matrix X .M�H
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consists of the following constraints, numbered 1 - 6:

1)
∑

0≤i<6

Xi,j0 = 1, for 0 ≤ j0 < 6,

2)
∑

0≤j<6

Xi0,j = 1, for 0 ≤ i0 < 6,

These first two constraints (arguably constraint 3 as well) originate from the Holding con-

straints formed from H and basically correspond to H# in Figure 6. However, because of the

interplay with the merged constraints that are added in the consolidation process, the stated

constraints are stronger. For example, by the original H#, the top row of X must sum to 1, but

nothing is said of the second row. Here the weak-row constraints of M[0,0]� and M[0,1]�, cause

the second row to also sum to 1.

3)Xi0,j0 ≥ 0, for 0 ≤ i0, j0 < 6,

4)
∑

0≤i<3

X2r0+i,2r1+j0 =
∑

0≤j<3

X2r0,2r1+j, for

0 ≤ j0 < 3, 0 ≤ r0, r1 < 2,

5)
∑

0≤j<3

X2r0+i0,2r1+j =
∑

0≤i<3

X2r0+i,2r1 , for

0 ≤ i0 < 3, 0 ≤ r0, r1 < 2,

6)X3,3 +X4,4 +X5,5 = 0.

The bottom four constraints listed above are essentially the merged constraints from M

(although there is some overlap with the holding constraints) and correspond toM[i,j]� in Figure
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6. Lemma 1 is used implicitly so that the stated constraints 4) and 5) are slightly stronger.

The main contribution of this section is the following:

Theorem A.2. [Theorem 2 of [37]] LetM[r0,r1] be a quasi-homogeneous constraint for a ν-by-ν

matrix for 0 ≤ r0, r1 < R. Let H be a doubly stochastic constraint for an R-by-R matrix.

If M[r0,r1] is compact for all r0, r1 and H is also compact, we have the following:

1) Ver(DνR[M�H]) = {(Hr0,r1X
[r0,r1]) : H ∈ Ver(DR[H]), X [r0,r1] ∈ Ver(Dν [M[r0,r1]]), 0 ≤

r0, r1 < R}.

2) the consolidation M�H is compact.

3) the cardinality of Ver(DνR[M�H]) is

∑
σ∈Ver(DR[H])

v[0,σ(0)]v[1,σ(1)] · · · v[R−1,σ(R−1)],

where v[r,σ(r)] denotes the cardinality of Ver(M[r,σ(r)]).
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APPENDIX B

Proof of Remark 4.1:

Let mr
σ,m

r
π ∈ Mr(Sn). We will first show that d◦(m

r
σ,m

r
π) ≥ n − `(mr

σ,m
r
π). By definition

of d◦(m
r
σ,m

r
π), there exist σ′ ∈ Rr(σ) and π′ ∈ Rr(π) such that d◦(m

r
σ,m

r
π) = d◦(σ

′, π′) =

n− `(σ′, π′). Hence if for all σ′ ∈ Rr(σ) and π′ ∈ Rr(π) we have `(σ′, π′) ≤ `(mr
σ,m

r
π), then

d◦(m
r
σ,m

r
π) ≥ n − `(mr

σ,m
r
π) (subtracting a larger value from n results in a smaller overall

value). Therefore it suffices to show that that for all σ′ ∈ Rr(σ) and π′ ∈ Rr(π), that `(σ′, π′) ≤

`(mr
σ,m

r
π). This is simple to prove because if two permutations have a common subsequence,

then their corresponding r-regular multipermutations will have a related common subsequence.

Let σ′ ∈ Rr(σ), π′ ∈ Rr(π), and `(σ′, π′) = k. Then there exist indexes 1 ≤ i1 < i2 < · · · < ik ≤

n and 1 ≤ j1 < j2 < · · · < jk ≤ n such that for all p ∈ [k], σ′(ip) = π′(jp). Of course, whenever

σ′(i) = π′(j), then mr
σ′(i) = mr

π′(j). Therefore `(σ′, π′) = k ≤ `(mr
σ′ ,m

r
π′) = `(mr

σ,m
r
π).

Next, we will show that d◦(m
r
σ,m

r
π) ≤ n− `(mr

σ,m
r
π). Note that

d◦(m
r
σ,m

r
π) = min

σ′∈Rr(σ),π′∈Rr(π)
d◦(σ

′, π′)

= min
σ′∈Rr(σ),π′∈Rr(π)

(n− `(σ′, π′))

= n− max
σ′∈Rr(σ),π′∈Rr(π)

`(σ′, π′).

Here if max
σ′∈Rr(σ),π′∈Rr(π)

`(σ′, π′) ≥ `(mr
σ,m

r
π), then d◦(m

r
σ,m

r
π) ≤ n − `(mr

σ,m
r
π) (subtracting

a smaller value from n results in a larger overall value). It is enough to show that there exist

σ′ ∈ Rr(σ) and π′ ∈ Rr(π) such that `(σ′, π′) ≥ `(mr
σ,m

r
π). To prove this fact, we take a longest

common subsequence of mr
σ and mr

π and then carefully choose σ′ ∈ Rr(σ) and π′ ∈ Rr(π) to

have an equally long common subsequence. The next paragraph describes how this can be done.

Let `(mr
σ,m

r
π) = k and let (1 ≤ i1 < i2 < · · · < ik ≤ n) and (1 ≤ j1 < j2 < · · · < jk ≤ n) be

integer sequences such that for all p ∈ [k],mr
σ(ip) = mr

π(jp). The existence of such sequences is

guaranteed by the definition of `(mr
σ,m

r
π). Now for all p ∈ [k], define σ′(ip) to be the smallest

integer l ∈ [n] such that mσ(l) = mσ(ip) and if q ∈ [k] with q < p, then mr
σ(iq) = mr

π(ip)

implies σ′(iq) < σ′(ip) = l. For all p ∈ [k], define π(jp) similarly. Then for all p ∈ [k],
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σ′(ip) = π′(jp). The remaining terms of σ′ and π′ may easily be chosen in such a manner

that σ′ ∈ Rr(σ) and π′ ∈ Rr(π). Thus there exist σ′ ∈ Rr(σ) and π′ ∈ Rr(π) such that

`(σ′, π′) ≥ `(mr
σ,m

r
π). �
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APPENDIX C

Proof of Remark 4.2:

Suppose mr
σ,m

r
π ∈ Mr(Sn). There exists a translocation φ ∈ Sn such that `(mr

σ · φ,mr
π) =

`(mr
σ,m

r
π) + 1, since it is always possible to arrange one element with a single translocation.

This then implies that min{k ∈ Z : there exists (φ1, . . . , φk) such that mr
σ · φ1 · · ·φk =

mr
π} ≤ n − `(mr

σ,m
r
π) = d◦(m

r
σ,m

r
π). At the same time, given `(mr

σ,m
r
π) ≤ n, then for

all translocations φ ∈ Sn, we have that `(mr
σ · φ,mr

π) ≤ `(mr
σ,m

r
π) + 1, since a single

translocation can only arrange one element at a time. Therefore by Remark 4.1, min{k ∈ Z :

there exists (φ1, . . . , φk) s.t mr
σ · φ1 · · ·φk = mr

π} ≥ n− `(mr
σ,m

r
π) = d◦(m

r
σ,m

r
π). �
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APPENDIX D

Proof of Lemma 5.16:

Recall that n is an even integer. Assume c ∈ [n − 1] and q := (q(1), q(2), . . . , q(c)) ∈ Zc>0

such that
∑c

i=1 q(i) = n. For the first direction, suppose there exists some i ∈ [c] such that

q(i) is even. Since n is even, the number of odd values in q is even, i.e. #{i ∈ [c] :

q(i) is odd} = 2k for some nonnegative integer k. We will now construct an m ∈ {1, 2}n with

an equal number of 1’s and 2’s, whose cuts correspond to q. We begin by defining two sets: first

{q∗(1), q∗(2), . . . , q∗(2k)} := {q(i) : q(i) is odd} and then {q∗(2k+1), q∗(2k+2), . . . q∗(c)} :=

{q(i) : q(i) is even}. Then define m as follows:

m := (m[a1, b1]︸ ︷︷ ︸
g∗(1)

,m[a2, b2]︸ ︷︷ ︸
g∗(2)

, . . . ,m[ak, bk]︸ ︷︷ ︸
g∗(k)

, m[ak+1, bk+1]︸ ︷︷ ︸
g∗(2k+1)

,

m[ak+2, bk+2]︸ ︷︷ ︸
g∗(k+1)

,m[ak+3, bk+3]︸ ︷︷ ︸
g∗(k+2)

, . . . ,m[a2k+1, b2k+1]︸ ︷︷ ︸
g∗(2k)

, m[a2k+2, b2k+2]︸ ︷︷ ︸
g∗(2k+2)

. . . ,m[ac, bc]︸ ︷︷ ︸
g∗(c)

)

where m(1) = 1 and for all j ∈ [c], m[aj, bj] is a cut.

The idea here is simple. By the definition of m, each of the first k cuts begin and end with

1 since they are all odd length cuts, and thus each will has one more 1 than 2. The (k + 1)th

cut, m[ak+1, bk+1], is taken to be of even length, which reverses the order of the subsequent k

cuts. Hence the k cuts from m[ak+2, bk+2] through m[a2k+1, b2k+1] each begin and end with 2,

so each will have one more 2 than 1. The remaining cuts from m[ak+2, bk+2] through m[ac, bc]

are even, which implies that the number of 1’s and 2’s in each of these cuts is equal. Hence,
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we may write the following:

#{i ∈ [n] : m(i) = 1} = #{i ∈ [a1, bk] : m(i) = 1}

+ #{i ∈ [ak+2, b2k+1] : m(i) = 1}

+ #{i ∈ [ak+1, bk+1] ∪ [a2k+2, bc] : m(i) = 1}

= #{i ∈ [a1, bk] : m(i) = 2}+ k

+ #{i ∈ [ak+2, b2k+1] : m(i) = 2} − k

+ #{i ∈ [ak+1, bk+1] ∪ [a2k+2, bc] : m(i) = 2}

= #{i ∈ [n] : m(i) = 2}.

Applying Lemma 5.15 completes the first direction.

For the second direction, let mσ ∈Mr(Sn) be a binary multipermutation such that

mr
σ = (mr

σ[a1, b1],mr
σ[a2, b2], . . .mr

σ[ac, bc]),

with each mr
σ[aj, bj] a cut whose length corresponds to an element of q. We want to show then

that there exists some i ∈ [c] such that q(i) is even. We proceed by contradiction.

Suppose that there does not exist an i ∈ [c] such that q(i) is even. Then for all j ∈ [c],

mr
σ[aj, bj] is odd. This then implies that for each cut mr

σ[aj, bj], that mr
σ(aj) = mr

σ(bj). In other

words, an odd-length cut necessarily begins and ends with the same element. However, to end

one cut and begin another, it is necessary to repeat a digit. This implies that for each j ∈ [c],

and cut mr
σ[aj, bj],

#{i ∈ [aj, bj] : mr
σ(i) = mr

σ(1)} = #{i ∈ [aj, bj] : mr
σ(i) 6= mr

σ(1)}+ 1,

which in turn implies that the total number of elements of mr
σ that equal to mr

σ(1) is exactly c

more than the number of elements not equal to mr
σ(1), contradicting Lemma 5.15. �
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APPENDIX E

Remark E.1. For any integer a ∈ Z, it is easily verified that

1) If a is even, then b(a/2)2c = (a/2)2

2) If a is odd, then b(a/2)2c = (a/2)2 − 1/4.

Remark E.2. Let a ∈ Z. Then the following is a direct consequence of the previous remark.

1) If a is even, then b(a/2)2c − b((a− 1)/2)2c = (a/2).

2) If a is odd, then b(a/2)2c − b((a− 1)/2)2c = (a/2)− 1/2.

Remark E.3. Let a, b ∈ Z≥1 such that a− b ≥ 2. Then⌊(
a− 2

2

)2
⌋

+

⌊(
b− 2

2

)2
⌋
≥

⌊(
(a− 1)− 2

2

)2
⌋

+

⌊(
(b+ 1)− 2

2

)2
⌋
, (15)

with equality holding only if a− b = 2 and both a and b are odd.

Proof. Assume that a, b ∈ Z≥1 and a − b ≥ 2. Then inequality (15) holds if and only if the

following inequality also holds.⌊(
a− 2

2

)2
⌋
−

⌊(
(a− 1)− 2

2

)2
⌋
−

(⌊(
(b+ 1)− 2

2

)2
⌋
−

⌊(
b− 2

2

)2
⌋)
≥ 0. (16)

Applying Remark E.2 to the four cases when a is either even or odd and b is either even or

odd, a routine calculation shows the following: If both a and b are even, then the left side of

inequality (16) equals (a− b)/2 > 0. If a is even and b is odd or if a is odd and b is even, then

the left side of inequality (16) equals (a− b− 1)/2 > 0. Finally, if both a and b are odd, then

the left side of inequality (16) equals (a− b− 2)/2 ≥ 0.
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APPENDIX F

Proof of Lemma 5.18:

Assume c ∈ [n− 2] and ĉ ≤ c. We will split the proof into two cases, when qc+1 ≤ c and when

qc+1 > c. Let us first suppose qc+1 ≤ c. This corresponds roughly to the case where ĉ ≤ c ≤
√
n.

In this instance, for all i ∈ [2, c], we have qc(i) − qc+1(i) ≤ 1 and qc(1) − qc+1(1) ≤ 2. This

is because qc+1 can be constructed from qc by shortening each cut qc in order to create the

(c+ 1)st cut. Since qc+1 ≤ c, each cut will decrease by at most one, except for one exceptional

case when qc is an odd integer and qc+1 = c, in which case qc(1)− qc+1(1) = 2.

Since for all i ∈ [2, c], qc(i) − qc+1(i) ≤ 1 and qc(1) − qc+1(1) ≤ 2, the left hand side of

inequality (9) is less than or equal to

ψ(qc) − ψ(qc(1)− 2) − ψ(qc(2)− 1,qc(3)− 1, . . . ,qc(c)− 1) − ψ(qc+1(c+ 1)). (17)

By adding and subtracting ψ(qc(1)−1) from expression (21) and also disregarding the last term,

−ψ(qc+1(c+ 1)), after some rearrangement expression (21) is less than or equal to

ψ(qc)− ψ(qc − 1) + ψ(qc(1)− 1)− ψ(qc(1)− 2),

which by Remark E.2 is less than or equal to

c∑
i=1

(
qc(i)

2
− 1

)
+

(
qc(1)− 1

2
− 1

)
≤

(n
2
− c
)

+

(
(qc + 1)− 1

2
− 1

)

= r − c+
qc
2
− 1,

where this last expression is less than or equal to r − 1 since qc+1 ≤ c implies that qc ≤

qc+1 + 1 ≤ 2c. This concludes the case where qc+1 ≤ c.

Next assume that qc+1 > c. This corresponds roughly to the case where
√
n < c < n − 1.

Note that

qc+1 =
n− remc+1

c+ 1
<

n

c
≤ 2r

ĉ
= 2ĉ ≤ 2c.
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Since qc+1 is strictly less than 2c, for all i ∈ [c] we have qc(i)−qc+1(i) ≤ 2. Moreover, because

c < qc+1 < 2c, the number of i ∈ [c] such that qc(i)− qc+1(i) = 2 is qc+1 − c. This means then

that the number of i ∈ [c] such that qc(i)− qc+1(i) = 1 is equal to c− (qc+1 − c). Similarly to

before, the reasoning for these set sizes comes from constructing qc+1 from qc and considering

how much each cut length is decreased to construct the final cut, qc+1(c + 1). Example (5.19)

helps here to aid comprehension.

It should be noted that there is one exceptional case, when qc+1 is an odd integer and remc+1 =

0. In this instance, qc+1(c + 1) = qc+1 − 1, which means the number of i ∈ [c] such that

qc(i)−qc+1(i) = 2 is decreased by one, while the number of i ∈ [c] such that qc(i)−qc+1(i) = 1

is increased by one. It is easily shown that the final effect on the size of the left hand side of

inequality (9) is a decrease, so it is enough to prove the inequality in the typical case, when

#{i ∈ [c] : qc(i)−qc+1(i) = 2} = qc+1−c and #{i ∈ [c] : qc(i)−qc+1(i) = 1} = c−(qc+1−c).

These set sizes imply that the left hand side of inequality (20) is less than or equal to

ψ(qc) − ψ(qc(1)− 2,qc(2)− 2, . . . ,qc(qc+1 − c)− 2)

− ψ(qc(qc+1 − c+ 1)− 1,qc(qc+1 − c+ 2)− 1, . . . ,qc(c)− 1)) − ψ(qc+1(c+ 1)).

By adding and subtracting
∑qc+1−c

i=1 b((qc(i)− 3)/2)2c, after some rearrangement expression (22)

can be rewritten as

ψ(qc) + ψ(qc(1)− 1,qc(2)− 1, . . . ,qc(qc+1 − c)− 1) − ψ(qc+1(c+ 1))

− ψ(qc − 1) − ψ(qc(1)− 2,qc(2)− 2, . . . ,qc(qc+1 − c)− 2)
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which by Remark E.2 is less than or equal to

c∑
i=1

(
qc(i)

2
− 1

)
+

qc+1−c∑
i=1

(
qc(i)− 1

2
− 1

)
− ψ(qc+1(c+ 1))

≤
(n

2
− c
)

+ (qc+1 − c)
(

(qc + 1)− 1

2
− 1

)
−

((
qc+1 − 2

2

)2

− 1

4

)

≤ (r − c) + (qc − c− 1)
(qc

2
− 1
)
−

((
qc − 3

2

)2

− 1

4
)

)
,

which reduces to r + q2
c/4 − (cqc)/2 − 1. Because of the fact that qc+1 < 2c implies qc ≤

qc+1 + 1 ≤ 2c, this final expression is guaranteed to be less than or equal to r− 1, completing

the proof.
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APPENDIX G

Proof of Lemma 5.20:

Assume c ∈ [n − 1] and c ≤ ĉ. The left hand side of inequality (9) depends on the difference

between qc−1(i) and qc(i) for each i ∈ [c − 1]. We wish to show that these differences are

sufficiently large to cause inequality (9) to be satisfied. Note that

qc =
n− remc

c
>

n− c
c

=
n

c
− 1 >

n

c2
(c− 1).

Since c ≤ ĉ, we have n/c2 = 2r/c2 ≥ 2, which implies that qc > 2(c − 1). Therefore, for all

i ∈ [c − 1], we have qc−1(i) − qc(i) ≥ 2. This is because qc can be constructed from qc−1 by

shortening each cut of qc−1 in order to create the cth cut of qc, whose length is at least qc − 1.

Example 5.21 helps comprehension here.

Next, let k := #{i ∈ [c− 1] : qc−1(i)− qc(i) > 2}. In other words, k is the number of cuts

in qc−1 that are decreased by more than 2 in the construction of qc from qc−1. Notice that if

qc−1(i)− qc(i) = 2 then by Remark E.1,

ψ(qc−1)− ψ(qc) =

(
qc−1(i)− 2

2

)2

−
(
qc(i)− 2

2

)2

.

Moreover, Remark E.1 also implies that in all other instances,

ψ(qc−1 − ψ(qc) ≥
(
qc−1(i)− 2

2

)2

−
(
qc(i)− 2

2

)2

− 1

4
.

Hence the left hand side of inequality (9) is greater than or equal to

c−1∑
i=1

(
qc−1(i)− 2

2

)2

−
c−1∑
i=1

(
(qc(i)− 2

2

)2

− k

4
−
(
qc(c)− 2

2

)2

. (18)

At this point, we split the remainder of the proof into two possibilities, the general case where

qc(c) = qc and the exceptional case where qc(c) = qc − 1, which only occurs when n/c is an

odd integer. We will treat the general case first and then end with some comments about the
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exceptional case. Since we are first assuming that qc(c) = qc, expression (18) is equal to

c−1∑
i=1

(
qc−1(i)− 2

2

)2

−
c−1∑
i=1

(
(qc(i)− 2

2

)2

− k

4
−
(
qc − 2

2

)2

=
c−1∑
i=1

(
q2
c−1(i)

4
− qc−1 + 1

)
−

c−1∑
i=1

(
q2
c(i)

4
− qc + 1

)
− k

4
− g2

c

4
+ qc − 1

=
c−1∑
i=1

(
q2
c−1(i)

4

)
− n+ (c− 1)−

[
c−1∑
i=1

(
q2
c(i)

4

)
− (n− qc) + (c− 1)

]
− k

4
− q2

c

4
+ qc − 1

=
1

4

c−1∑
i=1

(
q2
c−1(i)− q2

c(i)
)
− k

4
− q2

c

4
− 1. (19)

From here, we focus on the summation
∑c−1

i=1(q2
c−1(i) − q2

c(i)) to prove that the overall

expression is sufficiently large. The summation can be viewed as the sum of all shaded areas in

Figure 8. In the figure, squares of area q2
c−1(i) (with i ∈ [c−1]), are placed along the diagonal of

an n-by-n square. Within the bottom left corner of each of these squares is placed another square

of area q2
c(i) (again i ∈ [c− 1]). By carefully examining the total area of all shaded regions in

the figure, we can lower bound
∑c−1

i=1(q2
c−1(i)− q2

c(i)) to satisfy the desired inequality.

Figure 9 depicts the difference q2
c−1(i)− q2

c(i) for an individual i ∈ [c− 1]. This is a closer

view of one of the individual squares along the main diagonal in Figure 8. From Figure 9, we can

observe that the value (q2
c−1(i)−q2

c(i)) can be visualized geometrically as the combined areas of

two types of shapes - the rectangles shaded light gray and the square shaded dark gray. First, note

that there are two identical rectangles (shaded light grey) whose dimensions are qc−1(i)−qc(i) by

qc. We know that for all i ∈ [c−1], that qc(i) ≥ qc, and that
∑c−1

i=1(qc−1(i)−qc(i)) = qc(c) = qc.

Hence, the sum of the area of all lightly shaded rectangles in Figure 8 is at least 2q2
c .

Next, we will focus on the square shaped region (shaded dark grey) in Figure 9. The dimensions
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qc−1(1)

qc−1(2)

qc−1(3)

qc(1)

qc(2)

qc(3)

qc−1(c− 1)

qc(c− 1)

n

Fig. 8. Diagram of
∑c−1
i=1

(
q2
c−1(i)− q2

c(i)
)

qc(i)

qc−1(i)

qc(i) ≥ gc

≥ 2

Fig. 9. Diagram of q2
c−1(i)− q2

c(i)

of this square are (qc−1(i)− qc(i)) by (qc−1(i)− qc(i)). Therefore

c−1∑
i=1

(
q2
c−1(i)− q2

c(i)
)
≥ 2q2

c +
c−1∑
i=1

(qc−1(i)− qc(i))
2.

We saw previously that qc−1(i)−qc(i) ≥ 2, and again using the fact that
∑c−1

i=1(qc−1(i)−qc(i)) =
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qc(c) = qc, the total area of all the sum of all dark grey shaded square regions in Figure 8 is at

least 2qc. Moreover, each time the difference between qc−1(i) and qc(i) is greater than 2, this

means an overall increase of (qc−1(i)− qc(i))
2 by at least 3. Hence

∑c−1
i=1(qc−1(i)− qc(i))

2 ≥

2qc + 3k, which implies that expression (19) is greater than or equal to

q2
c

2
+
qc
2

+
3k

4
− q2

c

4
− k

4
− 1 =

q2
c

4
+
qc
2

+
k

2
− 1. (20)

To complete the proof in the general case, recall that qc > n/c−1. Thus, by replacing qc with

n/c− 1, we have that the right hand side of equation (20), afer some basic reduction, is greater

than

r2

c2
− 1

4
+
k

2
− 1. (21)

In this final expression, since c ≤ ĉ, we have r2/c2 ≥ r. Also, since qc was strictly greater than

2(c− 1), we know that k ≥ 1, completing the proof in the general case.

For the exceptional case, when qc(c) = qc − 1, we can follow the same argument as in the

general case with slight modification. In this instance the last term in expression (19) is reduced

since qc(c) = qc − 1 rather than qc, resulting in a larger overall value. Using this fact, we can

then show that whenever qc(c) = qc − 1, expression (19) is greater or equal to

1

4

c−1∑
i=1

(
q2
c−1(i)− q2

c(i)
)
− k

4
− q2

c

4
+
qc
2
− 5

4
. (22)

By a similar argument to the general case, we can also show that if qc(c) = qc − 1, then

c−1∑
i=1

(
q2
c−1(i)− q2

c(i)
)
≥ 2q2

c + 2.

This fact, along with the fact that qc > n/c− 1, implies that expression (19), and therefore the

left hand side of inequality (9), is greater than

r2

c2
+
k

2
− 1 ≥ r − 1.
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APPENDIX H

Proof of Lemma 5.23:

We first show that ĉ ≤ bĉc+ 0.5 implies

ψ(qbĉc)− ψ(qdĉe) ≤ r − 1.

Let ĉ ≤ bĉc+ 0.5. Then by Lemma 5.22, we know that r ≤ bĉc2 + bĉc. From here, we will

split the proof into two possibilities: (1) where r < bĉc2 + bĉc; and (2) where r = bĉc2 + bĉc.

First, suppose that r < bĉc2 + bĉc. In the event that ĉ = bĉc, then bĉc = dĉe, which implies

that the left hand side of inequality (11) is equal to 0, so that the conclusion holds trivially. Thus

we will assume that bĉc < ĉ, which implies that dĉe = bĉc+ 1. From here, for ease of notation,

and in order to see the connection to Lemma 5.18 more clearly, let c := bĉc so that c+ 1 = dĉe.

Next, note that

qc+1 =
n− remc+1

c+ 1
≤ n

c+ 1
=

2r

c+ 1
,

and that
2r

c+ 1
< 2c if and only if r < c(c+ 1) = bĉc2 + bĉc,

which is true by assumption. Therefore qc+1 < 2c. From this point, the proof for the case where

r < bĉc2 + bĉc is the same as that of Lemma 5.18.

We now consider the second possibility. Assume that r = bĉc2 + bĉc. We claim that this

implies that the left hand side of inequality (11) is exactly equal to r − 1. This also has the

implication that bĉc and dĉe both yield the same maximum sphere size. To see why the claim

is true, note first that

r = bĉc2 + bĉc = bĉc(bĉc+ 1) = bĉc · dĉe.

This implies that

qbĉc =
n

bĉc
= 2dĉe and that qdĉe =

n

dĉe
= 2bĉc.
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Therefore we have

ψ(qbĉc) = ψ((2dĉe, 2dĉe, . . . 2dĉe︸ ︷︷ ︸
bĉc

)) = bĉc (bĉc)2 = bĉc3, (23)

and similarly,

ψ(qdĉe) = ψ((2bĉc, 2bĉc, . . . 2bĉc︸ ︷︷ ︸
dĉe

)) = (bĉc+ 1) (bĉc − 1)2 = bĉc3 − bĉc2 − bĉc+ 1.

(24)

Finally, subtracting (23) and (24), we have that the left hand side of inequality (11) is equal to

bĉc2 + bĉc − 1, which is equal to r − 1 by the assumption that r = bĉc2 + bĉc. This completes

the first half of the proof.

We next show that ĉ > bĉc+ 0.5 implies

ψ(qbĉc)− ψ(qdĉe) > r − 1. (25)

Let ĉ > bĉc+0.5. For ease of notation and to see the connection to Lemma 5.20, let c := dĉe

so that c− 1 = bĉc. By Lemma 5.22, we have

r > (c− 1)2 + (c− 1) = (c− 1)(c) which implies that
r

c
> c− 1.

Note that

qc =
n− remc

c
>

n

c
−1 =

2r

c
−1 > 2(c−1)−1, which implies that qc ≥ 2(c−1).

At the same time, note that

qc =
n− remc

c
≤ n

c
=

2r

c
<

2r

ĉ− 1
,

which is easily shown to be strictly less than 3(ĉ − 1) as long as r ≥ 30, and clearly 3(ĉ − 1)

is strictly less than 3(c− 1). It is also easily verified numerically that inequality (25) is satisfied
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for r < 30 (assuming that ĉ > bĉc + 0.5). Hence, for the remainder of the proof, we shall

assume that r ≥ 30, which means that

2(c− 1) ≤ qc < 3(c− 1).

From here we split into two cases, (1) when qc = 2(c− 1) exactly; and (2) when qc > 2(c− 1).

First, assume that qc = 2(c − 1). Then following similar logic to the proof of Lemma 5.20,

we know that for all i ∈ [c− 1], that qc−1(i)− qc(i) = 2. Technically this is assuming that we

are not in the special case when n/(c− 1) is an odd integer, in which case qc−1(1)−qc(1) = 3

and qc−1(c − 1) − qc(c − 1) = 1. However, this would result in an overall increase of the left

hand side of inequality (25), so it is enough to consider the general case when n/(c− 1) is not

an odd integer.

Since qc−1(i) − qc(i) = 2 for each i ∈ [c − 1], then the left hand side of inequality (25) is

equal to

ψ(qc−1)− ψ(qc−1 − 2)− ψ(qc(c))

By Remark E.2 and the fact that qc(c) = qc = 2(c− 1), the above expression is equal to

c−1∑
i=1

(
qc−1(i)− 2

2

)2

−
c−1∑
i=1

(
(qc−1(i)− 4

2

)2

−
(

(2(c− 1)− 2

2

)2

=
c−1∑
i=1

(
q2
c−1(i)

4
− qc−1(i) + 1

)
−

c−1∑
i=1

(
q2
c−1(i)

4
− 2qc−1(i) + 4

)
− (c− 1)2

=
c−1∑
i=1

(qc−1(i)− 3)−
(
c2 − 4c+ 4

)2

= n− 3(c− 1)− c2 + 4c− 4

= 2r + c− c2 − 1

= r − 1 + r − (c− 1)c. (26)

We saw earlier that r > (c − 1)c, so expression 26 is greater than r − 1. This completes the

proof for the case when qc = 2(c− 1).
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Next suppose that qc > 2(c − 1). Let k := #{i ∈ [c − 1] : qc−1(i) − qc(i) = 3}. In other

words, k is the number of cuts in qc−1 that are decreased by 3 in the construction of qc from

qc−1. Recall that qc < 3(c− 1), so for all i ∈ [c− 1], we have qc−1(i)−qc(i) ≤ 3. Since we are

also assuming that qc > 2(c − 1), we know that qc = 2(c − 1) + k. This is because qc is equal

to 2 times the number of cuts in qc−1 decreased by 2, plus 3 times the number of cuts in qc−1

decreased by 3 in the construction of qc.

Following the same reasoning as in the proof of Lemma 5.20, we can then show that the left

hand side of inequality 25 is greater or equal to

q2
c

2
+
qc
2

+
k

2
− 1. (27)

Expression 27 is the same expression obtained as the right hand side of equation 20 in the proof

of Lemma 5.20. At this stage, however, we recall the fact that under the current assumptions,

qc = 2(c− 1) + k. Substituting 2(c− 1) + k for qc and simplifying, after some rearranging we

obtain that expression 27 is equal to

c2 − 1 + c(k − 1) +
k2

4
,

which is greater than r − 1 + c(k − 1) + k2/4 since by the assumption that ĉ > bĉc + 0.5, we

know c = dĉe > ĉ. Finally, this last expression is greater than r − 1 as long as k ≥ 1, which

we know is true since qc > 2(c− 1). �
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