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ABSTRACT 

This thesis aims to obtain high performance, small size and low cost SAW/BAW 

filters. To achieve this, several problems from traditional SAW/BAW filters are solved by 

applying special designed topological structures where one–port SAW/BAW resonators 

are combined with lumped circuit elements. 

First, SAW-BAW-based band reject filter composed of the impedance converters 

is studied. Basic properties of the unit cell are studied including pass band and reject 

band. It also shows that when two notches caused by the resonators are placed in 

proximity, two synergy effects occur and the filter performance enhanced. Then, two 

resonators are fabricated, measured and combined with inductors in circuit simulator to 

demonstrate functionality of the basic cell design. Finally, the wide rejection band filter 

is designed by cascading multi-stages, and effectiveness of the device configurations is 

demonstrated. 

Then, possibility is discussed to realize multimode filters composed of multiple 

single-mode resonators by using radio frequency surface and bulk acoustic wave 

(SAW/BAW) technologies. The filter operation and design principle are given. 

Excellent filter characteristics have been achieved by combining multiple one-port 

resonators with identical capacitance ratios. Next, the effect of balun performance is 

investigated. It is shown that the total filter performance is significantly degraded by 

balun imperfections such as the common-mode rejection. At last, two circuits are 

proposed to improve the common-mode rejection, and their effectiveness are 

demonstrated. 



LIST OF CONTENTS 

 

 Page 

Introduction .............................................................................................................................. 1 

1.1 Background ..................................................................................................................... 1 

1.2 Motivation ....................................................................................................................... 7 

1.3 Purpose ............................................................................................................................ 8 

1.4 Organization of this thesis ............................................................................................... 8 

Reference ............................................................................................................................... 9 

2. Band reject filters using SAW/BAW resonators embedded into 

impedance converter .......................................................................................................... 15 

2.1 Introduction ................................................................................................................... 15 

2.2 Design principle of traditional ladder-type filter ........................................................... 16 

2.3 Consideration on basic cells of band reject filter .......................................................... 17 

2.3.1 L-matching network ........................................................................................... 18 

2.3.2 Passband characteristics ..................................................................................... 21 

2.3.3 Stopband considerations..................................................................................... 25 

2.4 Experimental Verification ............................................................................................. 30 

2.5 Design of Multi-stage band reject filters ....................................................................... 34 

2.6 Conclusion ..................................................................................................................... 36 

Reference ............................................................................................................................. 37 

3. Multimode filters using one-port SAW/BAW resonators ............................................... 39 

3.1 Introduction ................................................................................................................... 39 

3.2 Design principle of traditional DMS filters ................................................................... 39 

3.3 Electrically coupled multimode filter ............................................................................ 41 

3.4 Impact of balun performance ........................................................................................ 47 

3.5 Conclusion ..................................................................................................................... 56 

Reference ............................................................................................................................. 57 



4. Conclusions and outlooks ................................................................................................... 58 

4.1 Conclusions ................................................................................................................... 58 

4.2 Outlooks ........................................................................................................................ 59 

Lists of publications ................................................................................................................ 60 

 

 



 

1 

 

Introduction 

1.1 Background 

Acoustic devices are fabricated on piezoelectric materials such like quartz, LiTaO3, 

LiNbO3 etc., and are recognized as one of the key elements in communication systems. 

Piezoelectricity is the ability of materials with crystallographic asymmetry to generate 

electric charges in response to applied mechanical stress. Since the propagation speed 

of acoustic wave is 5 orders smaller than the electromagnetic wave, the size of acoustic 

devices can be much smaller than traditional electromagnetic ones. From this advantage, 

SAW devices have been widely used in military radar, electromagnetic countermeasure 

and commercial wireless communication systems. 

Acoustic waves include the surface and the bulk acoustic waves (SAW/BAW). 

SAW was firstly derived theoretically by Lord Rayleigh in 1885 [1.1] as an acoustic wave 

with energy concentration in the depth smaller than one wavelength from the surface. 

The typical structure of SAW resonators is shown in Figure 1.1. It contains an 

interdigital transducers (IDT) and grating reflectors on the piezoelectric substrate. SAW 

resonances between the grating reflectors are excited and detected electrically by the 

IDT. Use of IDTs for SAW excitation was firstly proposed by R. M. White and F. M. 

Voltmer in 1965 [1.2]. Because the electrode and grating film thicknesses is usually 

uniform, SAW fabrication process is relatively simple. Nevertheless, tight control of 
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the film thickness and properties is mandatory in addition to fine patterning of these 

electrodes. 

 

Figure 1.1 Typical structure of SAW resonator 

BAW, which propagates in the bulk instead of the surface, is also widely used as 

acoustic resonators. The BAW resonators can be categorized to two types: the film bulk 

acoustic resonator (FBAR) [1.3][1.4] and solidly mounted resonators (SMR) [1.5]~[1.7] as 

shown in Figure 1.2. FBAR isolates the piezoelectric layer from the substrate 

acoustically by the air cavity while SMR employs the Bragg reflector. Acoustic 

resonances occur mainly between two electrodes, and are excited by electric fields 

between them. 

The lateral size of the electrodes is much larger than the wavelength determined 

by the thickness of piezoelectric layer. Since BAW energy is confined in this layer and 

it is isolated acoustically from the supporting substrate, BAW resonators are believed 

to offer better quality factor Q than SAW resonators. Furthermore, BAW devices offer 

better durability against radio frequency (RF) signal power. This is because the 

acoustic-migration limiting life time of SAW devices hardly occurs in BAW devices.  
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(a) 

 

(b) 

Figure 1.2 Typical structure of BAW resonator for (a) FBAR and (b) SMR 

Presently, main application of SAW/BAW resonators is filters for frequency 

selection in the RF range. They play very important roles in wireless communications. 

Representative is RF frontend filters and duplexers in mobile and smart phones. In 

addition to their vast number of annual sales, introduction of new frequency bands and 

standards expands the market size of SAW/BAW resonators explosively. Nowadays, 

there are more than 40 LTE (long time evolution) bands. In the market, SAW devices 

are dominant for the frequency bands under 1 GHz while SAW and BAW devices have 

their own shares above 1 GHz [1.3][1.8][1.9].  

Usually SAW/BAW filters offer band pass characteristics. Figure 1.3 shows the 

filter configuration called the ladder-type [1.10]. The basic concept is to set the anti-
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resonance frequency of the parallel resonators equal to the resonance frequency of the 

series resonators. Then almost 100% signal transfer is possible between the input and 

output ports at this frequency. At frequencies far from these resonances, since 

resonators can be regarded as simple capacitors, cascading multiple sections allows us 

to enhance suppression of the signal transfer. Note that the resonance of the parallel 

resonators and the anti-resonance of the series resonators create transmission zeros. 

Then a flat passband sandwiched in between two zeros appears. This filter topology 

offers low insertion loss in the passband and high durability against RF input power 

[1.11]~[1.14]. From these features, this topology is widely used in duplexers which will be 

described later. One drawback is inferior out of band rejection.  

 

Figure 1.3 Structure of ladder-type filter 

The lattice filter configuration is another choice [1.15]~[1.17]. However, its 

applicability is limited because it is only applicable to cases with balanced input and 

output. 

Duplexers are three port devices realized by parallel connecting input ports of two 

filters with different passbands, one is called the receive (Rx) band for the signal 

transmission from the antenna to the hand set, and another one is call the transmit (Tx) 

band for the signal transmission from the hand set to the antenna. Parallel connected 
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port is called the antenna (ANT) port while remaining two are called the Tx and Rx 

ports. Duplexer, antenna and amplifiers formed the RF front-end as shown in Figure 

1.4. The most important function of the duplexer is to suppress signal transfer between 

the Tx and Rx ports, and the suppression level called isolation is highly demanded to 

be enhanced to 70 dB. For efficient use of frequency resources, the frequency gap 

between Tx and Rx bands is going to be extremely narrow. For example, the fractional 

gap width in Band 25 is only 0.75%. 

 

Figure 1.4 Structure of RF front-end 

Since SAW/BAW duplexers are used in the RF frontend of transceivers, ultimate 

loss reduction is requested in the Rx band not to deteriorate detection sensitivity. 

Furthermore, it is also requested for the Tx band so as to reduce the battery power 

consumption and self-heating [1.18]. So as to fulfill these tight requirements, inclusion 

of the band reject function is paid much attention in SAW/BAW filters and duplexers. 

For example, the function may be able to enhance the isolation without scarcely 

deteriorating the passband characteristics [1.19][1.20]. 
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SAW notch filters can be composed by embedding SAW resonators in all pass 

filters [1.21]~[1.23]. C.S.Hartmann, et al, proposed to use twin-peak IDTs for expanding 

the rejection bandwidth [1.24]. In 1990, S.Gompani, et al. proposed a notch filter using a 

two-pole waveguide coupled resonator embedded in an all pass network [1.25]. 

Expansion of the rejection bandwidth was also discussed in [1.26] where multiple SAW 

resonators are series connected. 

Another type of SAW filters called the double mode SAW (DMS) filters [1.27] is 

also widely used. Figure 1.5 shows its basic configuration, the structure is designed so 

as to support multiple resonances, and proper arrangement of these resonances enables 

us to synthesize the flat passband and sharp cutoff characteristics [1.28]. Far from the 

resonances, signal transfer between two IDTs is weak, and thus good out-of-band 

rejection can be achievable [1.28]~[1.31]. However, DMS filters exhibit higher insertion 

loss than ladder-type SAW filters. Furthermore, DMS filters have much worse power 

durability than the ladder-type. In recent duplexers, it is common to use ladder-type and 

DMS filters for Tx and Rx bands, respectively. 

Reflector IDT

 

Figure 1.5 Structure of DMS filter 

The ladder type configuration is widely used also for BAW devices. Acoustically 
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coupled BAW resonator filters are investigated extensively to realize excellent out-of-

band rejection like DMS filters. Figure 1.6 shows an example called coupled-resonator-

filter (CRF) [1.32]~[1.35]. Two BAW resonators are stacked and their acoustic coupling is 

adjusted by the sandwiched center layer. Its operation principle is the same as that of 

the DMS filter, and flat passband and good out-of-band rejection can be achieved 

simultaneously by properly designing the coupling layer.  

 

Figure 1.6 Structure of coupled resonator filter 

Although excellent performances were reported [1.35], CRFs are never mass 

produced. This is because tricky mechanisms and materials are needed for weakening 

the coupling, and their process control is extremely difficult. 

1.2 Motivation 

To enhance performance of SAW/BAW filters further, the following problems 

should be solved. 

1) SAW/BAW band reject filters are paid much interested, and many devices with 
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excellent performance are published. However, their design procedures have never been 

discussed in detail.  

2) DMS filters offer excellent out of band rejection but inferior power durability. 

Although CRFs offer both good out-of-band rejection and good power durability, their 

mass production is difficult.  

1.3 Purpose 

To solve the problems listed above, this thesis studied the following topics. 

1). A band reject filter embedded in impedance converter is studied to verify the 

possibility of impedance converter combination and discuss the design procedure in 

detail.  

2). A multi-mode filter is proposed based on electrical coupling to support both SAW 

and BAW resonators and its differential structure will ensure the excellent out of band 

attenuation. 

1.4 Organization of this thesis 

Chapter 2 studied the SAW-BAW-based band reject filter composed of the 

impedance converters. Basic properties of the unit cell are studied including pass band 

and reject band. It also shows that when two notches caused by the resonators are placed 

in proximity, two synergy effects occur and the filter performance enhanced. Then, two 

resonators are fabricated, measured and combined with inductors in circuit simulator to 

demonstrate functionality of the basic cell design. Finally, the wide rejection band filter 
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is designed by cascading multi-stages, and effectiveness of the device configurations is 

demonstrated. 

Chapter 3 discussed the possibility of realizing multimode filters composed of 

multiple single-mode resonators by using radio frequency surface and bulk acoustic 

wave (SAW/BAW) technologies. The filter operation and design principle are given. It 

is shown that excellent filter characteristics are achievable by combining multiple 

single-mode resonators with identical capacitance ratios provided that their resonance 

frequencies and clamped capacitances are set properly. Next, the effect of balun 

performance is investigated. It is shown that the total filter performance is significantly 

degraded by balun imperfections such as the common-mode rejection. Then, two 

circuits are proposed to improve the common-mode rejection, and their effectiveness is 

demonstrated. 

Chapter 4 draws the conclusion of the whole thesis. 
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2 Band reject filters using SAW/BAW resonators embedded 

into impedance converter 

2.1 Introduction 

Impedance converters are quite often used in RF circuits and modules such as the 

output stage of power amplifiers [2.1]. Thus use of SAW/BAW resonators may embed 

the band reject function into RF modules in order to decrease the complexity of circuit 

and further minimize the device size. Furthermore, since inductors are also quite often 

used for impedance matching in RF circuits including SAW/BAW filters and duplexers, 

they may be also used for the same purpose. 

This chapter describes a filter based on ladder like structures and the filter both 

has the band stop function and impedance convert function. 

After a brief introduction of traditional ladder type filter design, the basic 

properties of the unit cell including pass band and reject band are discussed. It is shown 

that when two notches are placed in proximity, two synergy effects occur: (i) an extra 

matching point appears on one side of the transition band. This make the insertion loss 

at the point smaller and the transition band steeper, and (ii) the dip level becomes deeper, 

and the total rejection level becomes better. 

Then, functionality of the basic cell design is demonstrated using two SAW 

resonators fabricated on 42-LT. The filter operation is examined on a circuit simulator 

in combination with built-in inductors. 
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Finally, the wide rejection band filter is designed by cascading multi-stages, and 

effectiveness of the proposed design procedure is examined. 

2.2 Design principle of traditional ladder-type filter 

The idea of designing traditional ladder-type bandpass filter is utilizing the poles 

from acoustic resonators to create low loss signal path. Figure 2.1 shows the typical 

topology of a ladder-type filter, which applies SAW/BAW resonator R1 on the serial 

arm and R2 on the parallel arm.  

 

Figure 2.1 Ladder type bandpass filter topological structure 

Figure 2.2 shows the characteristics of the filter comparing with its resonators 

impedance. In the figure, fpr and fpa represent the resonance and anti-resonance 

frequency of R1, fsr and fsa represent the ones of R2. In the passband, the serial resonator 

should work near fsr to obtain impedance close to zero, while the parallel resonator 

should work near fpa for very high impedance. So that the serial path is close to short 

circuited and parallel path is close to open circuited, and low loss transmission is 

achieved. With the single mode acoustic resonator, the resonance frequency always 

appears lower than the anti-resonance frequency. Then fsr should be larger than fpa in 

order to have a flat passband. There are two deep notches just below and above the 
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passband. The one below the passband is caused by the small parallel impedance on fpr, 

which makes most of the signal been absorbed by ground. The one above the passband 

is caused by the large serial impedance on fsa, which reflected most of the signal back 

to source. Far away from the passband, the acoustic resonator act as capacitors and the 

out-of-band attenuation becomes bad. 

 

Figure 2.2 Ladder type bandpass filter characteristics variating with the serial and 

parallel arm impedance 

2.3 Consideration on basic cells of band reject filter  

Similar to the filter described above, this band reject filter applies ladder-like 

topological structure. However, its transmission function is opposite to the band pass 
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filter and requires different settings such like the resonator notch positions and 

additional inductive elements. 

2.3.1 L-matching network 

L-matching network is a well-known two port network combined of one serial 

impedance and one parallel impedance as shown in Figure 2.3, where Zs and Zp are the 

impedance of serial arm and parallel arm, Z1 and Z2 are the smaller and larger input 

impedance of two ports, respectively. Due to its asymmetric nature, its input impedance 

of two ports should be different when the whole structure is well matched. Thus, the L-

matching network is usually used as the impedance converter. 

 

Figure 2.3 Impedance converters (L-matching network) 

 

Figure 2.4 L-matching network with lumped elements 

Zs and Zp are usually set to be pure imaginary for lossless signal transmission. For 

lumped element case, the pure imaginary impedance could be realized by replacing two 

arms with capacitors and inductors as shown in Figure 2.4. However, since their 
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impedance are frequency dependent, the theoretical 100% energy transmission is true 

only on one frequency point. 

For SAW/BAW resonators, away from the resonance and anti-resonance 

frequencies, the resonator works as a capacitor. Thus, by replacing the capacitors in 

Figure 2.4 with SAW/BAW resonators, the L-matching network will still be lossless in 

a certain frequency range. However, near the resonance and anti-resonance frequency, 

Zp is far away from the lossless transmission condition. The impedance mismatch of 

the network will be serious and it leads to deep notches on the transmission performance. 

Further, to create more notches, the inductor in Figure 2.4 could also be replaced 

by the combination of SAW/BAW resonator and inductor. Figure 2.5 shows four 

possible structures of impedance converters, which are also used in the ladder topology 

band reject filters [2.2][2.3]: 

(a) the serial arm is a serial connection of inductor and SAW/BAW resonator for the 

left port input impedance is smaller than right side one; 

(b) the parallel arm is a parallel connection of inductor and SAW/BAW resonator for 

the left port input impedance is larger than right side one; 

(c) the serial arm is a parallel connection of inductor and SAW/BAW resonator for the 

left port input impedance is smaller than right side one; 

(d) the parallel arm is a serial connection of inductor and SAW/BAW resonator for the 

left port input impedance is larger than right side one. 
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Figure 2.5 Basic L-matching network including SAW/BAW resonators 

It seems these four structures should have similar performance as bandstop filters. 

However, for the inductors in practical use are usually not accurate enough, the 

sensitive transition band should not be influenced by the inductor value. In structure (a), 

the impedance of the serial resonator will be very large in stopband, so the contribution 

of the serial inductor could be neglect. In structure (b), the impedance of the parallel 

resonator will be very small in stopband, so the contribution of the parallel inductor 

could also be neglect. However, in structure (c), if anti-resonant on the serial arm is 

needed, which is the condition of stopband, the anti-resonance frequency will depend 

on the value of the inductor. For the same reason, the resonance frequency of the 

parallel arm in structure (d) will depend on the inductor value again. Although the 

inaccuracy of inductor value will also influence the passband performance of structure 

(a) and (b), the L-matching network passband position is much more insensitive, and 
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the designed passband specification is usually not so strict. Thus, in this thesis, structure 

(a) and (b) are selected as the basic cell for the notch filter. 

Assume the characteristic impedance of two ports are pure real. The transmission 

coefficient S21 of the network is given by 
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where R1=Re[Z1], R2=Re[Z2]. As discussed above, notch appears and S21 approaches 

zero when Zs is extremely large on its anti-resonance frequency or Zp is close to zero 

on its resonance frequency. 

2.3.2 Passband characteristics 

When the impedance of parallel arm and serial arm are well designed, the two 

ports are both matched, then the transmission could be lossless and the following 

conditions are satisfied: 

 s 2 (1 )Z jR r r     (2-2) 

 1 1 1
2 1pZ jR r       (2-3) 

where the double signs are in same order, r is the impedance ratio of two ports (R1/R2) 

and r should be smaller than unity because the left sides of equation are pure imaginary. 

Then (2-1) reduces to 
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where Rs=Re[Zs] and Gp=Re[Zp
-1]. Since dielectric and ohmic losses are not significant 
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in present SAW/BAW resonators, Rs and Gp will be mainly determined by the finite 

quality factor of inductors QL. To study the performance of the filter in passband, 

SAW/BAW resonators in series and parallel arms are replaced with capacitors, C0s and 

C0p, respectively, because the SAW/BAW resonators act as capacitors far away from its 

resonance and anti-resonance frequencies. Figure 2.6 shows the corresponding circuit 

for passband, where Rs and Gp are two kinds of equivalent resistance of the inductor, 

while Rs = jωLI / QL and Gp = 1 / jωLIQL. 

 

Figure 2.6 L-matching network with lumped elements 

First, the influence of the inductor quality factor is discussed. Figure 2.7 shows the 

|S21| of structure in Figure 2.6(a) with the inductor quality factor QL increasing from 25 

to 100. The horizontal axis is the frequency deviation from the matching frequency fc, 

which satisfies the conditions given by (2-2) and (2-3). The result indicates that the 

insertion loss of passband decreases rapidly with the increase of QL, and the decreasing 

speed significantly drops (less than 0.1 dB) when QL is larger than 50. It indicates that 

to keep the passband insertion loss small, general commercial lumped inductors are 

enough to fulfill the requirement. 

Next, it seems there are 6 variates in Figure 2.6 to design. However, their values 

are related with each other when the matching condition in (2-2) and (2-3) are fulfilled. 
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Following research fixed R1 to 50 Ω, QL to 50 and center frequency to 750 MHz. Then 

there are two choices, fix the combined capacitor (C0s in Figure 2.6(a) and C0p in Figure 

2.6(b)) or fix the individual capacitor (C0p in Figure 2.6(a) and C0s in Figure 2.6(b)). 

The first choice will cause C0s/C0p depending on r while the second choice requires r 

be a constant. 

 

Figure 2.7 Performance of L-network with various inductor quality factor 

Figure 2.8 shows the |S21| variating with r when the combined capacitor is fixed. 

As shown in the figure, the insertion loss grows and the passband flatness becomes 

worse with the decreasing of r. This is because when r is smaller, the impedance 

difference between two ports is lager. Then the impedance matching is possible only 

for a narrower frequency range. At the same time, the inductor value will become larger, 

with the same QL, the real part of the inductor also increased, which leads the insertion 

loss grows. 
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Figure 2.8 Pass band characteristic of L-matching network 

 

Figure 2.9 Pass band characteristic of L-matching network 
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Figure 2.9 shows the |S21| variating with C0s/C0p when the individual capacitor is 

fixed. As shown in the figure, the insertion loss grows and the passband flatness 

becomes worse with the decreasing of C0s/C0p. The mechanism of insertion loss 

growing is the same with Figure 2.8, the value of inductor grows with the decreasing 

of C0s/C0p. On the other side, both in configuration (a) and (b), the influence of the 

combined capacitor to the circuit will decrease when C0s/C0p decreased. Because the 

impedance of the combined arm is composed by the inductor and the combined 

capacitor, and the influence of capacitor is always negative to the circuit impedance. 

Thus, smaller influence of combined capacitor corresponds to lower insertion loss. 

2.3.3 Stopband considerations 

Next, rejection characteristics near the resonance frequencies are discussed. For 

the purpose, each resonator in Figure 2.5 (a) and (b) is modeled by the simple LCR 

model in Figure 2.10, 

 

Figure 2.10 LCR model of SAW/BAW resonator 

where Lm, Cm and Rm are the motional inductance, capacitance, and resistance, 

respectively, and C0 is the clamped capacitance. The resonance frequency fr is given by 

1/2π(LmCm)0.5, while the anti-resonance frequency fa is given by fr(1+-1)0.5, where  
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(=C0/Cm) is the capacitance ratio. The resonance and anti-resonance quality factors, Qr 

and Qa, respectively, are given by 2πfrLm/Rm and πfaLm/Rm for this case. 

Two dips occur near the resonance frp of the parallel resonator and the anti-

resonance fas of the series resonator. When frp and fas are not close to each other, the 

term ZsYp in (2-1) is negligible. |S21| at these frequencies and -3 dB rejection bandwidths 

contributed by each resonator are approximately given by 
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where C0p and C0s are C0 of the parallel and series resonators, respectively. BWs and 

BWp are the bandwidth contributed by the serial and parallel resonators, respectively. 

This analysis shows rough characteristics of a single resonator which will be used for 

further design. When these two nulls are placed in proximity, the transition bands of 

the two resonators will overlap, and a bump occurs. Provided that the resonator Q is 

somewhat large, the attenuation level Ae is determined by this bump height, which 

becomes large with an increase in the frequency separation d between the two nulls. On 

the other hand, the total transition bandwidth BWe is also determined by d. Figure 2.11 
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shows a designed example with the structure in Figure 2.5 (b), where r=0.69, =15, and 

Qr=Qa=500 while d is swept from 5 MHz to 20 MHz. It is seen that smaller d makes 

the dip levels deeper and the bandwidth smaller. Anyway, Ae and BWe are in tradeoff. 

 

Figure 2.11 Bandwidth and attenuation of reject band variation with d 

Figure 2.12 compares the result shown in Figure 2.11 when d is 10 MHz with 

results when one of the resonators is replaced with a simple capacitor. The topologies 

(a.1) to (a.3) are equivalent with the legends in the figure. So is (b.1) to (b.3). These 

results reveal that the following two synergy effects appear when two nulls are placed 

in proximity. 
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Figure 2.12 Rejection band characteristics of L-networks when two resonators are 

combined 

(i) The upper edge of the rejection band becomes steep for the configuration (a). This 

is caused by fulfillment of (2-2) and (2-3) at a frequency just above the upper edge 

where the series resonator is capacitive and the parallel one is inductive. As a tradeoff, 

the lower edge becomes gradual. This effect also occurs to the configuration (b). In this 

case, the lower edge becomes steep while the upper edge becomes gradual. 
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(ii) For the configuration (a), the dip at fas is much deeper than the value given by (2-5) 

while that at frp is mostly equal to that given by (2-6). Furthermore, the bump height in 

the rejection band is lower than the value given by a product of values given by (2-5) 

and (2-6). This is due to the term ZsYp in (2-3) is not negligible when the distance 

between the two nulls is small. These effects also occur to the configuration (b).  

It should be noted that setting frp>fas for the case (a) and setting fas>frp for the case 

(b) offer negative effects: the bump become higher, and the two edges become 

unbalanced. 

Figure 2.13 shows variation of |S21| of structure in Figure 2.5 (a) with the resonator 

quality factor Q from 1000 to 250. With the Q decrease, the passband band edges 

become round and two notches do shallow. However, Ae and BWe do not change too 

much as expected, because d remains the same. Sharpness of the upper edge is mainly 

governed by the maximum value of Bode Q [2.4]. 

 

Figure 2.13 Performance of L-network with various resonator quality factor 
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2.4 Experimental Verification 

To demonstrate the basic cell design, two one-port SAW resonators were 

fabricated, and band reject filters shown in Figure 2.12 were composed in a free circuit 

simulation tool called Qucs (Quite Universal Circuit Simulator) [2.5] using their 

measured admittance resonance characteristics. 

Two resonators A and B were fabricated on 42oYX-LiTaO3 (42-LT) substrate [2.6]. 

Copper was chosen as the electrode material, and the thickness was set at 300 nm. The 

SAW resonators employ the standard short-circuited (SC) reflector – interdigital 

transducer (IDT) – SC reflector structure shown in an inset of Figure 2.14. The IDT has 

65 finger pairs while the number of electrodes is 30 for each reflector, The IDT 

periodicity for the resonator 1 and 2 are 5.854 m and 5.697 m, respectively. 

Figure 2.14 depicts the measured admittance of the two resonators. The solid and 

dashed curves represent that of the resonator 1 and 2, respectively. Strong resonance 

can be seen at 638 MHz (1) and 654 MHz (2), which are caused by the main SAW 

mode. Resonance Q of these resonators was estimated as circa 450 from the fitting of 

these responses to the modified BVD (mBVD) model [2.7]. Spurious resonances can be 

seen at 881 MHz (1) and 912 MHz (2), which are caused by the bulk wave radiation 

intrinsic in 42-LT [2.8]. 

Then the measured S parameter files were loaded as a “black box” in Qucs, and 

the basic cell circuit was composed in combination with two built-in inductors. Their 
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inductance was set at 137 nH from (2-2) and (2-3), and their Q factor was set at 50 on 

600 MHz. In the design, r=0.69. 

 

Figure 2.14 Measured admittance of the serial and parallel SAW resonators 

 

Figure 2.15 |S21| of the basic cell circuit (b) based on the MBVD model vs. the 

measured resonators 
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Figure 2.16 Zoom in of Figure 2.15 with a frequency range from 600 MHz to 700 

MHz  

Figure 2.15 and Figure 2.16 show calculated transmission response |S21| when the 

circuit shown in Figure 2.12 (b.3) was chosen. Here, a pair of resonator 1 are parallel 

connected to achieve double capacitance. This method is used to reduce the lithography 

area for each resonator. The rejection band with two dips can be seen at ~654 MHz and 

~662 MHz, which correspond to the resonance frequency of the resonator 2 and the 

anti-resonance frequency of the resonator 1, respectively. For comparison, |S21| 

calculated by using the mBVD model is also shown. In this calculation, the resonance 

Q was limited to 250 intentionally. Nevertheless, this calculation agrees quite well with 

the original simulation except the dip depth at ~653 MHz, which is mainly determined 

by the anti-resonance Q of the series resonator. Although the resonator Q and assumed 
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inductance Q was low (450 and 50, respectively), achieved insertion loss is relatively 

small. 

Another notch is seen at ~907 MHz, which is caused by the bulk wave radiation. 

Use of other SAW substrates such as 128oYX-LiNbO3 
[2.9] may relax this problem. 

Figure 2.17 and Figure 2.18 show calculated transmission response |S21| when the 

circuit shown in Figure 2.12 (a.3) was chosen. Here, a pair of resonator 2 are serial 

connected to reduce capacitance. The rejection band with two dips can be seen at ~654 

MHz and ~662 MHz, which correspond to the resonance frequency of the resonator 2 

and the anti-resonance frequency of the resonator 1, respectively. The simulated result 

using the measured admittance agrees well with the one obtained by using the mBVD 

model. 

 

Figure 2.17 |S21| of the basic cell circuit (a) based on the MBVD model vs. the 

measured resonators 
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Figure 2.18 Zoom in of Figure 2.17 with a frequency range from 600 MHz to 700 

MHz 

2.5 Design of Multi-stage band reject filters 

Since cascade connection of N-stages generates 2N nulls, their proper allocation 

enables the rejection band to be wider, deeper, etc. Cascading with mirror inversion 

makes the input and output impedance identical, and the circuit can be used as an 

isolated band reject filter. (2-7) and (2-8) indicate that the fractional bandwidth of 

SAW/BAW resonator is very narrow and is limited by  or the electromechanical 

coupling coefficient Ke
2. 

The bandwidth can be increased by cascading multiple stages and setting 

resonance frequencies appropriately. As an example, here a notch filter for a 

specification given in Table 2.1 is designed. 
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Table. 2.1 Design specification of the band reject filter 

Freq. Min Typ Max 

470…603 MHz - - 2 dB 

603…653 MHz - - 5 dB 

703…748 MHz 10 dB 27 dB - 

 

The structure in Figure 2.5 (b) is selected as the basic cell of the band reject filter. 

Use of SAW resonators on 42-LT are assumed and  is set at 15. 

The discussion in Section II indicated larger r results in better insertion loss. 

However, if r is too close to unity, the capacitance given by (2-2) and (2-3) will be 

extremely large and impractical. As a compromise, here r is set at 0.69 which 

corresponds to C0s = 8.2 pF. Location of resonance frequencies are adjusted so that the 

bump level is -27 dB, while the number of stages are adjusted so that the required 

rejection bandwidth is obtained. 

  

Figure 2.19 Performance of designed band reject filters 
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The designed result is shown in Figure 2.19. Two cascading methods are designed. 

For the design (a), the input and output impedance are both 50 Ω. The mirror inversion 

is applied, and the adjacent two inductors are combined to one. On the other hand, the 

input impedance is 50 Ω and the output impedance is 72.4 Ω for the design (b). For 

both cases, all the requirements given in Table are satisfied. The maximum insertion 

losses in 470-603 MHz and 603-653 MHz are 0.93 dB and 1.90 dB, respectively for the 

case (a), and are 0.82 dB and 1.54 dB, respectively for the case (b). Note that required 

Q factor of the resonators is 250 for this specification. The value is quite easy to realize. 

As indicated in Figure 2.12, there are two dips in |S11| at frequencies close to the 

rejection band edges. They are the extra matching points mentioned in the last section. 

These points enhance the steepness of the transition band. 

2.6 Conclusion 

This chapter discussed design of a band reject filter composed of the impedance 

converters. 

First, basic properties of the unit cell are studied. It was shown how the pass band 

insertion loss, rejection bandwidth and its attenuation level change with the design for 

a unit cell. It was found that when two notches are placed in proximity, two synergy 

effects occur: (i) an extra matching point appears on one side of the transition band. 

This make the insertion loss at the point smaller and the transition band steeper, and (ii) 

the dip level becomes deeper, and the total rejection level becomes better. 
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Then two SAW resonators were fabricated on 42-LT, and the filter operation was 

examined on the circuit simulator in combination with built-in inductors. The simulated 

result agrees well with the one based on mBVD model, and functionality of the basic 

cell design was demonstrated. 

Finally, the wide rejection band filter was designed for the given specification. 

The rejection bandwidth was expanded by cascading multiple unit cells with different 

design. The designed performance revealed effectiveness of the design. 
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3 Multimode filters using one-port SAW/BAW resonators 

3.1 Introduction 

This chapter discusses the possibility of realizing multimode filters composed of 

multiple single-mode resonators.  

After a brief introduction of DMS filter design, the multimode filter operation and 

design principle are given. It is shown that excellent filter characteristics are achievable 

by combining multiple single-mode resonators with identical capacitance ratios 

provided that their resonance frequencies and clamped capacitances are set properly. 

Next, the influence of the balun performance is investigated. It is shown that the 

total filter performance is significantly degraded by balun imperfections such as the 

common-mode rejection. Then, two circuits are proposed to improve the common-

mode rejection, and their effectiveness is demonstrated. 

3.2 Design principle of traditional DMS filters 

Designing of the traditional DMS filter is based on the acoustic coupling between 

its symmetric and anti-symmetric modes. Figure 3.4 shows the typical structure of a 

DMS filter, which contains two IDT and two reflectors. In the figure, LI and Lr represent 

the length of IDT region and reflector region, LT and Lg represent the gap length 

between two IDT and IDT with reflector, respectively. This structure could excite two 

modes simultaneously, the symmetric mode is shown in dashed line and the anti-

symmetric mode is shown in dot line. 
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Figure 3.1 Typical DMS filter structure with two possible excited modes 

 

Figure 3.2 DMS filter equivalent circuit 

Figure 3.2 shows the equivalent circuit of the DMS filter, where Rs and Ra 

represent the equivalent model of the symmetric and anti-symmetric modes, 

respectively. Each model could be further expressed by the circuit in the inset, which 

is similar to a single resonator. The location and separation of the resonance and anti-

resonance frequencies of Rs and Ra are mainly determined by LI and LT. 

Figure 3.3 shows the DMS filter characteristics variating with the admittance of 

Rs and Ra, where fsr and fsa represent the resonance and anti-resonance frequency of Rs, 

far and faa represent the ones of Ra. In the passband, Rs should work near fsr to obtain 

impedance close to zero, which Ra should work near faa for very high impedance. So 
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that most of the energy flows through Rs, and low loss transmission is achieved. Out of 

passband, the two resonators act as capacitors and are coupled with 180° phase shift in 

circuit. Since the static capacitance of Rs and Ra are designed equal, the signal from two 

paths are cancelled and the filter output will be very small. 

 

Figure 3.3 DMS filter characteristics variating with the symmetric and anti-symmetric 

resonator admittance 

 

 

3.3 Electrically coupled multimode filter 

Different from the DMS filter, this multimode filter applies electrical coupling. 

Figure 3.4 (a) shows the equivalent circuit of a multimode filter, where R1 and R2 



 

42 

 

represent the resonators supporting multiple resonances. Attempt has been made to 

compose this circuit using multiple single-mode resonators, which are realizable using 

RF SAW/BAW technologies in Figure 3.4 (b). 

 

(a) 

 

(b) 

Figure 3.4 Equivalent circuit of multimode filter: using (a) multimode resonators and 

(b) multiple single-mode resonators 

 

First, the design of the filter structure shown in Figure 3.4 (a) is discussed. The 

LCR model shown in the inset is used as a model of multimode resonators [3.1]. In the 
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following numerical calculations, the quality factor Q and the ratio of capacitance γ of 

resonator elements are set at 2,000 and 15, respectively. 

The basic design rule of this filter is similar to that of the lattice filter [3.2]: (i) the 

clamped capacitance C0 of these resonators is 1/4πfcR0, where R0 is the peripheral 

circuit impedance and (ii) the resonance frequency of resonator 1 (R1) coincides with 

the anti-resonance frequency of resonator 2 (R2) and/or vice versa. 

Figure 3.5 shows a design example with two single-mode resonators. In the figure, 

the admittances of R1 and R2, which are Y1 and Y2, are also shown. Lossless 

transmission is possible at the frequency where condition (ii) is fulfilled. The passband 

width is given by the loaded Q of the circuit, which is basically determined by the γ of 

resonators. It is known that the passband width can be increased slightly by making 

these resonance frequencies slightly different [3.2]. 

The steepness of the filter cutoff is inherently limited by the number of frequencies 

satisfying condition (ii). There are three techniques to improve the steepness. The first 

is increasing the γ of the resonators, which will decrease the pass bandwidth at the same 

time. The second is cascading multiple filter sections. This is simple but requires 

multiple baluns. The third is using resonators that support multiple resonances to satisfy 

condition (ii) at multiple frequencies. 
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Figure 3.5 Performance of designed multimode resonators composed of two single-

mode resonators 

Next, the case is discussed where R1 and R2 support two resonances each. The 

resonance frequencies of resonator 1 are designated as f1 and f3 and those of resonator 

2 as f2 and f4. Then, the design rules require that resonator 1 causes anti-resonances at 

f2 and f4, and resonator 2 causes anti-resonances at f3 and f5. Thus, under the design 

rules, Y1 and Y2 can be expressed as 
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where ω = 2πf. The following condition is introduced so that Y1 and Y2 are almost equal 

at frequencies much higher than the passband: 
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When this condition is not applied, two zeros appear in the transmission response 

at frequencies satisfying Y1=Y2. They can be used to enhance the sharpness of the 

passband edges as a tradeoff of the deteriorated out-of-band rejection far from the 

passband [3.3]. 

Here, fi are set as  to satisfy (3-3). Then, (3-1) and (3-2) can be 

respectively rewritten as  
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Namely, Y1 and Y2 can be realized by using the configuration shown in Figure 3.4 

(b) which contains four single-mode resonators with identical γ values. The resonance 

frequency and clamped capacitance of the n-th resonator should be set as fn and Cn, 

respectively, given by (3-6)~(3-8). 

1 nn fcf
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Figure 3.6 shows the transmission response of the filter composed of four single-

mode resonators along with the synthesized Y1 and Y2. Comparison of this figure with 

Figure 3.5 indicates that the passband is flatter and wider and the cutoff is steeper owing 

to the triple-mode operation. 

 

Figure 3.6 Performance of designed multimode resonators composed of four single-

mode resonators 

Note that the setting of  is not mandatory. Even when fn (n=1~5) are 

set differently, Y1 and Y2 can be realized by combining four single-mode resonators, 

although the γ values of the resonators will not be identical. The same design protocol 

can be applied to cases where R1 and R2 each support N resonances. Ideally, the filter 

response improves with increasing N. However, it also results in the increased insertion 

loss and dully passband edges owing to the finite resonator Q. 

1 nn fcf
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3.4 Impact of balun performance 

Next, it is examined how balun performance influences filter performance. The 

commercial balun LDM0Q2G5010BE005 from MURATA was chosen for the analysis 

[3.4]. Its impedances are 50 and 100 Ω for the one unbalanced and two balanced ports, 

respectively. The typical passband and minimum insertion loss are 2500±200 MHz and 

0.57 dB, respectively. Figure 3.7 shows the transmission characteristics, which were 

given in the touchstone format from MURATA. It is seen that the difference between 

S21 and S31, giving the common-mode suppression, increases with the frequency 

separation from 2,500 MHz. This means that the device exhibits the balun function in 

a relatively narrow frequency range of approximately 2,500 MHz. 

 

Figure 3.7 Transmission characteristics of the commercial balun from MURATA 
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Then, a filter with a center frequency of 2,500 MHz was designed following the 

rules described in Sect. 2, and its ideal balun was replaced with the touchstone format 

data of the balun on a free circuit simulator Qucs (Quite Universal Circuit Simulator) 

[3.5]. 

Figure 3.8 shows the filter characteristics. In the figure, the simulated result for 

the ideal balun is also shown. It is seen that the balun imperfection causes significant 

deterioration of the filter characteristic. 

 

Figure 3.8 Performance of the designed multimode filter with the commercial balun 

Here, the circuit (balance enhancer) shown in Figure 3.9 is introduced to improve 

the common-mode rejection. For the differential mode, the circuit corresponds to the 

π-type equivalent circuit of transmission lines, since no voltage drop occurs in Lp. Thus, 

100% power transfer is possible between the input and output ports at a frequency under 
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the proper settings of Ls and Cp. On the other hand, for the common mode, Lp causes a 

series resonance with Cp. This forms a notch at this resonance frequency only for the 

common-mode response. Different values can be set for the left Lp and right Lp to form 

two notches at different frequencies. 

Figure 3.10 shows transmission characteristics of this circuit with a center 

frequency of 2.5 GHz in the differential and common modes. Here, the left Lp and right 

Lp are set to be equal, and Lp, Cp, and Ls were chosen to be 4.77 nH, 8.49 pF, 4.77 nH, 

respectively, and the Q factor of the inductors was set at 50 at 2.5 GHz. 

It is seen that good common mode rejection is achievable while the differential 

mode is not influenced too much with small losses. Owing to the intrinsic low-pass 

nature of this circuit, the common-mode rejection becomes worse at low frequencies. 

 

Figure 3.9 Low-pass-type balance enhancer 
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Figure 3.10 Transmission characteristics of low-pass balance enhancer in differential 

mode and common mode 

Figure 3.11 shows the transmission characteristics when the circuit is inserted in 

the filter topology as shown in the inset. Owing to the improved common-mode 

rejection, the filter response close to the original design can be achieved. It is interesting 

to note that the intrinsic low-pass characteristic of the enhancer does not significantly 

affect the total performance, and good out-of-band rejection is achieved at frequencies 

lower than the passband. Two notches appear on the blue curve at 2.34 and 2.69 GHz. 

These notches enhance the sharpness of the transition bands but deteriorate the out-of-

band rejection far from the passband. They are related to the imperfection of the balun 

used, which may be difficult to control. 
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Figure 3.11 Performance of filter with low-pass balance enhancer and commercial 

balun from MURATA 

On the other hand, the out-of-band rejection is not good at frequencies higher than 

the passband. Further investigation indicated that this degradation is due to that of the 

common-mode rejection caused by the interaction between the enhancer and the balun. 

Figure 3.12 shows an alternative balance enhancer. Its operation is similar to that 

of the circuit shown in Figure 3.9. The circuit exhibits high-pass characteristics globally, 

and a notch is formed by the series resonance induced by Lp and Cs. Different values 

can be set for the left Cp and right Cp to form two notches of different frequencies.  

Figure 3.13 shows the transmission characteristics of the circuit in the differential 

and common modes. Here, the left Cp and right Cp are set to be equal, and Lp=4.77 nH, 

Cp=8.49 pF, and Cs=8.49 pF. They behave similarly to those shown in Figure 3.10. 
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However, owing to the intrinsic high-pass nature of this circuit, the common-mode 

rejection becomes worse at high frequencies. 

 

Figure 3.12 High-pass-type balance enhancer 

 

Figure 3.13 Transmission characteristics of high-pass balance enhancer in differential 

mode and common mode 

Figure 3.14 shows the transmission characteristics when the circuit is inserted in 

the filter topology as shown in the inset. Again, the filter response close to the original 
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design can be achieved owing to the improved common-mode rejection. The intrinsic 

high-pass characteristic of the enhancer does not significantly affect the total 

performance, and moderate out-of-band rejection is achieved. 

 

Figure 3.14 Performance of filter with high-pass balance enhancer and commercial 

balun from MURATA 

Note that the out-of-band rejection significantly changes with not only the balun 

performance but also the setting of the enhancer. For example, the out-of-band rejection 

above the passband can be improved by reducing the center frequency of the filter and 

enhancer in the trade off with the rejection level below the passband. 

To consider the impact of different balun, use of another commercial balun 

FI168T155021-T [3.6] from Taiyo Yuden CO., LTD is investigated. Its impedance is 50 

and 75 Ω for the unbalanced and two balanced ports, respectively. It has a wide 
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passband of 900-2200 MHz and its minimum insertion loss is 2.3 dB which is much 

larger than the MURATA one. Figure 3.15 shows the transmission characteristics, 

which was supplied in the touchstone format from Taiyo Yuden CO., LTD. Comparing 

with the MURATA one, its S21 and S31 are much flatter which means it exhibits balun 

function in much wider range. 

 

Figure 3.15 Transmission characteristic of the commercial balun from Taiyo Yuden 

Figure 3.16 shows the filter characteristic with this balun. In the figure, the 

simulated result using the ideal balun is also shown. Comparing with the MURATA 

one, this balun imperfection causes not so serious deterioration in the filter 

characteristic for its wide passband. 
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Figure 3.16 Performance of the designed multimode filter with the commercial balun 

from Taiyo Yuden 

Figure 3.17 shows the transmission characteristic when the enhance circuit is 

inserted in the filter topology as shown in the inset. Comparing with MURATA one, its 

out-of-band rejection is better especially for the frequencies higher than the passband. 

It contributes to the flat passband of this balun. The passband is narrower because the 

center frequency is half of the MURATA one. It is seen that its passband is flat and the 

average insertion loss is around 1.8 dB. The comparing shows that the filter 

performance is strongly related to the balun performance. 
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Figure 3.17 Filter performance using low-pass balance enhancer and commercial 

balun from Taiyo Yuden 

3.5 Conclusion 

This chapter discussed possibility of realizing multimode filters composed of 

multiple single-mode resonators by using RF SAW/BAW technologies. 

First, the filter operation and design principle were given. It was demonstrated that 

excellent filter characteristics are achievable by combining multiple single-mode 

resonators with identical γ values provided that their resonance frequencies and 

clamped capacitances are set properly. 
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Next, it was shown that balun imperfection significantly deteriorates the total 

device performance. Then, two circuits were proposed to improve the common-mode 

rejection, and their effectiveness was demonstrated. 
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4 Conclusions and outlooks 

4.1 Conclusions 

To obtain high performance, small size and low cost SAW/BAW filters, the 

following two filters, band reject filter embedded in impedance converter and multi-

mode filter with electrically coupled one port resonators were investigated. The results 

can be concluded as the following, 

In chapter 2, the design rule of band reject filter was discussed in detail and verified 

by fabrication and simulation. When two notches caused by the one port resonators 

were placed in proximity, two synergy effects occurred: (i) an extra matching point 

appeared on one side of the transition band. It made the insertion loss at the point 

smaller and the transition band steeper, and (ii) the dip level became deeper, and the 

total rejection level improved. 

In chapter 3, the design rule of multi-mode filter was discussed. Balun was applied 

to couple multi-mode resonators. The electrical coupling allowed applying both SAW 

and BAW one port resonators and good out-of-band rejection could be achieved 

contributing to the differential structure. Then, it was shown that commercial balun had 

great influence to the filter performance and additional balance enhance circuit was 

applied. With the balance enhance circuit, filter could response close to the original 

design. 
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4.2 Outlooks 

This thesis aims to research the theoretical characteristics of the band reject filter 

and multimode filter. For this reason, the band reject filter in chapter 2 is not fabricated 

in whole device but resonators instead. Then, circuit simulator is applied to evaluate the 

filter with the measured resonators data. Because the key element is based on measured 

data from practical device, this strategy is efficient to reduce the fabrication process 

while keeping enough reliability of simulation result. For the same reason, the 

multimode filter in chapter 3 applies the commercial balun. 

In the future, if necessary, the whole filter device could be fabricated and the 

influence of connection between each circuit element could be evaluated and the power 

durability and reliability of the whole device could be measured. 
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