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Abstract

Rapid increase in the world's population, urbanization and allocation of agri-

cultural products towards non-food use has propelled pressure on arable land

and poses a threat to food and nutrition security. In the coming years, it is

expected that there will be additional encumbrances on existing agricultural

production due to the need to intensify and enhance production and e�ciency,

while maintaining environmentally friendly and sustainable practices. There is

thus an urgent need for up-to-date spatial information on agricultural produc-

tion enterprises and continuous monitoring in order to support key decision and

policy making activities at various administrative levels. This is particularly

imperative for urban populations since more than half the world's population

currently reside in urban areas and this �gure is set to rise.

While food production in urban and peri-urban areas is fast becoming en-

trenched and integrated into the fabric of urban life, it is market demand

driven and caters to provision of the most perishable food products. It is

therefore highly dynamic in terms of spatial location, due to conversion of

valuable agricultural land to urban land-use, and what is produced, as land

owners seek to maximize returns on the land. As such, methods used to ac-

quire information on cropland location and what is produced in urban and

peri-urban areas need to be spatially and temporally �exible. Remote Sens-

ing allows for repetitive acquisition of information pertaining to land cover use

and type and can be easily operationalized compared to classical methods such

as �eld surveys. However, limitations imposed by spatial-temporal resolution

trade-o�s of imaging systems and atmospheric artefacts inhibit the acquisition

of spatially and temporally conterminous data that is necessary for agricultural

mapping and monitoring applications.

Towards meeting the need for consistent and timely information on urban and

peri-urban agricultural production, this study seeks to evaluate the application
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of intra-annual optical earth observation data with exploitation of the simple

phenological metric, the Normalized Di�erence Vegetation Index (NDVI). A

high density NDVI time series data set is generated via fusion of daily MODIS

NDVI and intermittent Landsat NDVI images within one year for seven mu-

nicipalities in Chiba Prefecture, which is adjacent to the Tokyo metropolis.

Pixel-based classi�cation using the ensemble-learning Random Forest classi-

�er is then applied to the time series stack with training data derived from

the maximum value composite NDVI stack of the available Landsat imagery

and corroborated by Google earth and Google Maps. The methodology pre-

sented serves as an analytical framework for operational annual mapping and

estimation of cropland extent and cropping regimes, using a creative means of

acquiring reference data thus eliminating the need for time and cost intensive

�eld surveys.
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Your reason and your passion are the rudder and The sails of your seafaring

soul.

If either your sails or your rudder be broken, you can but toss and drift, or

else be held at a standstill in mid-seas.

For reason, ruling alone, is a force con�ning; and passion, unattended, is a

�ame that burns to its own destruction.

Therefore, let your soul exalt your reason to the height of passion, that it may

sing;

And let it direct your passion with reason, that your passion may live through

its own daily resurrection, and like the phoenix rise above its own ashes.

� Khalil Gibran, The Prophet
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Chapter 1

Introduction

1.1 Background

Regional food security is threatened by uncertain global climatic conditions

and global commodity price �uctuations which have resulted in decreased

yields and dependence on local food production respectively (Brown and Funk,

2008). In addition, due to urbanization and an increase in demand for settle-

ment land, production of food crops in urban areas and the regions neighbour-

ing them is increasingly becoming necessary. This is especially the case for

the highly perishable but nutritious food crops which are progressively becom-

ing harder to access in urban areas (Opitz et al., 2016). However, urban and

peri-urban food production units are limited in size due to competing land

use demands and the high value attached to land in urban and peri-urban

areas (Eigenbrod and Gruda, 2015). To counter these challenges, adaptation

strategies are imperative and are aimed towards achieving food security as

de�ned by the Food and Agriculture Organization (FAO, 2004). Adaptation

and mitigation strategies include but are not limited to, formulation of short
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1.1. Background 2

and long-term policies for improvement, sustenance, and protection of natu-

ral resources, modi�cation of farming practices via technological uptake and

adaptation of new crops and cropping systems (Jat et al. ,2016; Waldner

and Defourny, 2015). There is therefore exigency for timely and dependable

information on agricultural production for capacity building, forecasting and

constitution of contingency plans for vulnerable areas (Jat et al., 2016; Wald-

ner and Defourny, 2015 ; Toma et al., 2016).

As a precursor to the aforementioned activities relating to monitoring of agri-

cultural production and formulation of policies towards improvement of agri-

cultural practices, it is necessary to know where crop production is taking

place, what crops are being produced and when they are produced, that is,

cropland and crop-type mapping and inventorying. Currently, there is an

opportunity to develop a cohesive analytical framework suitable for assess-

ing spatial and temporal trends in land cover and land use at local scales in

agricultural landscapes. Such a framework involves collection and analysis

of information that will enable integration with other information databases

necessary for agricultural development such as soil and weather information

databases (Teluguntla et al., 2015). The time sensitive nature of data related

to the environment and agriculture, demands that such a framework be ca-

pable of acquiring consistent and timely information to enhance integration

with other regional environmental reporting frameworks. Towards this goal,

this thesis presents a method that allows for processing of earth observation

imagery and agricultural land use information in a cohesive manner suitable

for annual regional agricultural land-use/cover mapping and monitoring.
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1.2 Motivations and Problem statement

Cropland and crop-type mapping and assessment activities using remote sens-

ing have been around for a long time but have recently gained momentum

due to advancements in data collection and ingestion technologies that have

resulted in 'big data' (Bronson and Knezevic, 2016). Formerly restricted by

spatial resolution of imaging systems, higher spatial resolutions are now possi-

ble with higher revisit frequency and therefore better temporal resolution, thus

providing more information on the agricultural landscape. While there have

been major advancements in optical imaging systems, agricultural land use

mapping, monitoring and assessment activities require temporally continous

data. A major limitation to acquisition of continuous optical remote sensing

data is the presence of atmospheric artefacts such as haze or cloud cover. Sen-

sor failures and atmospheric artefacts result in acquisition of images where

information about the ground surface cannot be directly retrieved and hence

missing data and irregular sampling of the phenomena under investigation

(Petitjean, Inglada and Gançarski, 2012).

Various techniques have been developed to deal with missing data in remote

sensing imagery (Julien and Sobrino, 2010; Shukla et al., 2011; Cheng et al.,

2017; Ramoino et al., 2017). According to Shen et al. (2015), these techniques

can be broadly classi�ed into four main categories, on the basis of the source

of ancillary information for �lling in the missing data:

1. Spatial-based methods: The most basic category of methods in which

the supplemental information comes from the remaining parts of the

data. They are based on the assumption that the missing data and the

remaining parts have a statistical or geometrical relationship.
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2. Spectral-based methods: Methods that utilize redundant information in

the spectral dimension of multispectral and hyperspectral data, on the

basis that for a given dataset, there are both complete and incomplete

spectral bands, and that the incomplete bands have some residual infor-

mation that can be used to model their relationship.

3. Temporal-based methods: They include the tempoal replacement, tem-

poral �lter and temporal learning methods which use the information

about a spatial location acquired at di�erent periods in time.

4. Hybrid methods: These methods take advantage of the correlations in the

spatial, spectral and temporal domains and include the spatio-temporal,

and spatio-spectral methods.

Spatial methods are relatively simple and e�cient to implement since they

require no complementary information from another data source or domain.

However, they are not well suited for large regions or areas with complex

ground features (Shen et al., 2015; Cheng et al., 2017). Spectral methods on

the one hand, reconstruct a singular image based on all the spectral informa-

tion available in it in order to di�erentiate cloud cover from other features

(Julien and Sobrino, 2010). Although spectral reconstruction methods are

suitable for detection of cloud cover, they do not provide a means for estima-

tion of the missing data, resulting in non-conterminous imagery and hence loss

of information, (Julien and Sobrino, 2010). On the other hand, temporal in-

terpolation methods do not depend on detection of atmospheric contaminants,

instead estimating missing information by modelling the continuous temporal

behaviour of biophysical phenomena. However, in order to accurately �t the

model, high regular temporal frequency imaging of the phenomena is required.

The high temporal resolution necessary for temporal interpolation methods
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restricts their application to low resolution imagery such as NOAA's AVHRR

(National Oceanic and Atmospheric Administration Advanced Very High Res-

olution Radiometer) and MODIS (Moderate Resolution Imaging Spectrora-

diometer) data. As such, spatially and temporally heterogeneous agricultural

landscapes, such as those prevalent in urban and peri-urban areas, requiring

high spatial and temporal resolution data, cannot be adequately mapped and

monitored using data reconstructed using either of the two broad satellite data

reconstruction methods on their own (Hazaymeh and Hassan, 2015; Shen et

al., 2015).

Techniques for generation of synthetic high spatial and temporal resolution

images via spatio-temporal data fusion have emerged as an important area of

remote sensing (Hazaymeh and Hassan, 2015). This is due to the fact that,

even as imaging systems' technology advances, satellite payload limitations

impose a spatial-temporal resolution trade-o� where high spatial resolution

imaging systems tend to have low temporal resolution and contrariwise (Zhu

et al., 2016; Liao et al., 2017). The overarching objective of spatio-temporal

image fusion is to estimate missing high spatial resolution data that may be

as a result of imaging systems' trade-o�s, sensor failures or noise and atmo-

spheric artefacts such as cloud cover by using a combination of high spatial -

low temporal resolution data (e.g., Landsat 8 Operational Land Imager (OLI))

with high temporal - low spatial resolution data (e.g., MODIS) ( Zhao, Huang,

and Song, 2018).Spatio-temporal fusion methods may be broadly categorized

into four groups including; weighted function based, unmixing based, data-

assimilation based and dictionary-pair learning based algorithms (Zhu et al.,

2016; Liao et al., 2017). These methods all require as inputs, one or more

pairs of observed low and high spatial resolution images, and a low spatial res-

olution image for the desired high spatial resolution prediction time or date.
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The choice of fusion method is highly dependent on the application (e.g., agri-

cultural or disaster monitoring and assessment), the nature of the landscape

under observation, that is, homogeneous or heterogeneous landscapes, quality

and availability of the data, and complexity of the method vis-a-vis available

computational resources and technical skills (Alparone et al., 2015; Pohl and

van Genderen, 2015; Schmitt and Zhu, 2016; Pohl and van Genderen, 2016;

Zhu et al., 2018). Despite the growth of interest in spatio-temporal fusion, the

diversity inherent in the large number of algorithms proposed, lack of standard-

ized approaches to implementation and accuracy assessment of fusion results,

and computational complexity and ine�ciency have limited widespread oper-

ational application ( Pohl and van Genderen, 2016; Zhu et al., 2018) .

In addition to quality continuous data acquisition constraints, further chal-

lenges in mapping and monitoring of croplands and crop-type in urban areas

arise from the unavailability of, or lack of access to timely ground-truth data

necessary for classi�cation and validation. Generally, satellite images are, for

most applications, processed and analysed retrospectively unless the data ac-

quisition and processing are real-time or near real-time, as is the case for

meteorological prediction applications. For agricultural applications, inter-

annual cropland and crop-type mapping has been successfully implemented in

the case of �eld crops such as wheat, paddy rice and maize using a variety

of sensors at global, regional and national scales (Jakubauskas, Legates and

Kastens, 2002; Mingwei et al., 2008; McNairn et al., 2009; Siachalou, Mallinis

and Tsakiri-Strati, 2015; Inglada et al., 2015). This has been made possible

by, among other factors, the fact that �eld crops are cultivated over larger

areas than most of the horticultural food crops typically cultivated in urban

and peri-urban croplands and that they tend to be national staple foods, hence

they are of great social, economical and political importance (Eigenbrod and
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Gruda, 2015). As such, detection and extraction of their phenological proper-

ties has been the focus of most research works since they are more extensively

and intensively cultivated and have for a long-time been deemed to be the

key to building food security (Eigenbrod and Gruda, 2015; Hisano, 2015). In

contrast, studies on production of horticultural food crops in the geospatial

context have been far fewer, in part due to the focus on global and regional

food production systems especially in developing countries and regions and

under appreciation of the importance of urban horticulture in advancing food

and nutritional security (Eigenbrod and Gruda, 2015; Hisano, 2015).

Further, the intra- and inter-annual variability of horticultural food crop types

produced in urban and peri-urban holdings, presents a challenge in terms of

continuous monitoring even at local scales. In order to counter the challenges

of acquiring up-to-date ground-truth data, various country's mapping and re-

search agencies have adopted ground-truth information acquisition modalities

that involve inter-governmental agency cooperation with farmers and regu-

lar surveys by o�cials a�liated with agricultural agencies and private agri-

business enterprises. However, these approaches can be time, cost and re-

source intensive. The Agricultural Land Information System (ALIS) used

in Japan and Phillipines estimates agricultural land and crop area using the

most recent detailed satellite map derived from Google Earth imagery but

requires ground surveys in order to verify the results, albeit on a subsam-

ple of observations (https://www.adb.org/publications/crop-monitoring-

improved-food-security). Similarly, the Agriculture and Agri-Food Canada

agency (AAFC) geospatial science, which has been in operation for over 20

years and is currently in the operational application mode, utilizes satel-

lite earth observation data for among other applications, monitoring of land

cover, annual national crop inventorying, estimatiuon of agricultural land use

https://www.adb.org/publications/crop-monitoring-improved-food-security
https://www.adb.org/publications/crop-monitoring-improved-food-security
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change indicators and near real-time weekly crop condition assessment (https:

//ec.europa.eu/jrc/sites/jrcsh/files/09_champagne.pdf). The AAFC's

success in acquisition, processing and dissemination of information relevant

to agricultural monitoring and forecasting can be attributed to a tenacious

accumulation of data and expertise over time. Accordingly collection and ac-

cumulation of ground-truth information remains a daunting task, especially

for spatially and temporally complex croplands, that requires investigation of

application of novel approaches. Innovative approaches include but are not lim-

ited to, using the freely accessible high resolution satellite imagery with near

ubiquitous repetitive coverage such as Google Earth and Bing, and crowd-

sourcing initiatives such as the Geo-Wiki platform (Xiao et al., 2011; Fritz et

al., 2012).

This research focuses on mapping cropland area and crop types intra-annually

in Chiba Prefecture which is a hinterland of the Japan Capital Region (JCR)

as de�ned in Porter et al. (2014). While Japan is a developed country and

is widely considered to be food secure, decreasing food self-su�ciency ratio

and nutritional insu�ciency are major issues which are highlighted in the An-

nual Report on Food, Agriculture and Rural Areas in Japan (MAFF, 1999).

Hisano (2015) elaborates on these issues by pointing out that more than 60%

of Japanese caloric intake is imported and the domestic agricultural sector re-

lies on small-scale producers whose aging and declining population is facing

production challenges further exacerbated by external and internal trade pres-

sures. In Porter et al. (2014), the JCR is presented as a model example of how

huge cities may feed themselves by relying on overseas land areas with pro-

duction surplus to meet their own de�cit via economic power. Notably, Porter

et al. (2014) focussed on food availability and accessibility, in other words,

volume aspect of food security, thus demonstrating the importance of urban

https://ec.europa.eu/jrc/sites/jrcsh/files/09_champagne.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/09_champagne.pdf
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and peri-urban horticultural production in the JCR, from a nutritional security

perspective. This study seeks to characterize these food production units using

satellite earth observation data acquired in one year, by identifying horticul-

tural croplands and distingusihing them from other land cover types and uses,

including paddy �elds. Using the Normalized Di�erence Vegetation Index (

NDVI) as a phenological indicator, the parcel level intra- and inter-seasonal

characteristics of various crop production units are investigated at pixel level

in order to estimate croplands using reference data corroborated by Google

Earth imagery for the same time as the study's period and expert knowledge

on post-harvest practices for some crops. The methodology presented herein,

provides an operational application framework for cropland mapping at local

scales in spatially and temporally heterogeneous and dynamic landscapes.

1.3 Objectives

1.3.1 General Objective

The primary objective of this research is mapping and monitoring of urban and

peri-urban agriculture in a complex landscape by exploiting multi-resolution

spatio-temporal information.

1.3.2 Speci�c objectives

Towards achievement of the overall aim of this study, the following are the

speci�c objectives:

1. To evaluate the application of fusion of multi-source satellite imagery to
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generation of synthetic high spatio-temporal resolution time series

2. To distinguish cropland from non-cropland and make a distinction be-

tween upland cropland and paddy rice �elds with limited reference data

3. To extract temporal phenological metrics to enable cropping pattern or

cropping intensity estimation in a limited reference data scenario

4. To test the applicability of empirical data, speci�cally post-harvest prac-

tices information, in distinguishing peanuts from other crops in the study

area

1.4 Outline

This thesis is organized into �ve chapters. Chapter 2 presents a review of

research on land-use/cover mapping, spatio-temporal image fusion, cropland

mapping and urban and peri-urban agriculture (UPA). Chapter 3 outlines the

methodology used in this research including the rationale behind the data and

methods as presented in the application requirements evaluation. The results

and discussion of the outcomes of the processes implemented including image

fusion and classi�cation are described in Chapter 4. Conclusions and future

prospects of the study are presented in chapter 5.



Chapter 2

Literature Review

2.1 Land-use and Land Cover Mapping

Information pertaining to land use activities and land cover has long been

recognized as pertinent to the core business of many governments and non-

governmental agencies and institutions (Anderson et al., 1976; Kerr and Os-

trovsky, 2003; Hermosilla et al., 2014). Anderson et al. (1976) noted the im-

portance of land-use and land cover information for a better understanding of

living conditions towards maintaining or improving them by addressing prob-

lems such as haphazard and uncontrolled urban development, loss of biodiver-

sity and agricultural land and assessment of environmental processes. Beyond

the terrestrial biosphere, it is widely known and understood that both natural

and anthropogenic-induced land cover changes have an e�ect on atmospheric

and hydrological phenomena such as carbon concentrations, hydrological cycles

and the surface-atmosphere interface energy balance, all of which in�uence lo-

cal, regional and global climates (Ramankutty and Foley, 1999; Lepers et al.,

2005; Monteith and Unsworth, 2007; Houghton et al., 2012; Gomez et al.,

11
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2016).

Land cover has been variously de�ned as the observed biophysical cover on the

earth's surface or the terrestrial biosphere cover, upon which humans depend

in order to derive resources such as food, water and energy (Ramankutty and

Foley, 1999; Bartholome and Belward, 2005; Di Gregario, 2005; Grekousis,

Mountrakis and Kavouras, 2015; Gomez et al., 2016). Numerous studies have

been carried out to document and predict the nature and extent of changes in

land cover as a result of human activities (Findell, Shevliakova and Stou�er,

2007; Kaplan et al., 2011; Ellis et al., 2013). In Lepers et al. (2005), an

analysis via synthesis of information on land cover changes based on previous

studies in the last twenty years of the twentieth century and the data generated

thereof found that at regional scales, deforestation was the most signi�cantly

measured process but found gaps in spatially de�nitive data. Further, the

study found that cropland increase was pervasive and associated with large-

scale deforestation, most notably in Southeast Asia. In addition, most of the

tropical studies used in the information synthesis were derived from remotely-

sensed data due to unavailability of reliable statistical data. Therefore, at the

close of the twentieth century, land-use and land cover change characterization

and monitoring was largely based on remote sensing data and geographical

information analysis techniques, with increased frequency of dissemination of

datasets, made accessible to a wide range of users for diverse applications.

However, as noted by Anderson et al. (1976) and later by Comber, Fisher

and Wadsworth (2005), the collection and dissemination of geographical in-

formation on land-use and land cover is carried out against a backdrop of the

conceptualized representations of the real world with respect to the intended

application and end-user needs, which are diverse and dynamic. Various re-
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searchers and institutions have developed de�nitions of land cover and carried

out associated classi�cations at varied spatial scales using multifarious methods

(Anderson et al. 1976; Bartholome and Belward, 2005; Bontemps et al., 2011;

Takahashi et al., 2013). The increasing ease of access to these datasets and

eventual use by non-specialist users is having a negative e�ect due to a failure,

on the part of the users, to understand or interact with information speci�-

cations and the contextual background of its generation (Comber, Fisher and

Wadsworth, 2005). This section presents an overview of some of the various

remote sensing-based classi�cations adopted for global, regional and national

scale land-use/ land cover mapping, the classi�cation methods used in their

implementation and accuracy assessment of the subsequent products. The re-

view is carried out in order to illuminate the various ways in which the real

world is represented, and the relationship and underlying logic or motivation

to the categories or classes in various products, thus laying a basis for the

importance of the classi�cation work carried out in this study.

The �rst global land cover mapping products exploiting remote sensing arose

out of the need for datasets to support international e�orts towards under-

standing and monitoring of environmental changes and the coordination of

adaptation and mitigation strategies (Mora et al., 2014). These datasets had

low spatial resolution (e.g. 1°NDVI-derived land cover classi�cation by De-

Fries and Townshend (1994)), but have since been improved to yield higher

spatial resolution products (e.g. 300m ESA CCI global LC maps) through

incorporation of the temporal dimension (Bontemps et al., 2013; Mora et al.,

2014; Gomez et al., 2016). In response to the Essential Climate Variables

(ECV's) list established by the Global Climate Observing System (GCOS),

the European Space Agency (ESA) initiated the Climate Change Initiative

Land Cover project (CCI-LC) with a primary focus on land cover character-
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ization (Bontemps et al., 2013). Through a system needs assessment carried

out in consultation with climate modelling users, CCL-LC found that the need

for stable and dynamic information about land cover far outstripped all other

user requirements for this particular user group. This necessitated a revi-

sion of the land cover concept (LC concept) which was dichotomized into 'LC

state ' and 'LC condition ', the former of which was found to be adequately

described within the United Nations Land Cover Classi�cation System (UN-

LCCS) (Bontemps et al., 2013). LC state refers to the set of land cover

features that do not change over time as a result of non-permanent or natural

variability, while LC condition is related to the biogeophysical processes that

drive temporary changes in land cover features, such as phenology, that do not

alter its integral characteristics. In other words, any changes in the LC state,

result in a permanent change in the de�nition of land cover by its observable

and measurable attributes, while changes in the LC condition are temporary

and do not alter the essential de�nition of the land cover.

The UN-LCCS is predicated on some assumptions as outlined by Di Gregorio

et al. (2016) including:

1. Mapping is a local activity therefore there may be need to establish

unique classi�cation systems to �t local conditions;

2. At a certain scale, any feature can be heterogeneous and the variety of

standards for representation and generalization of land characteristics

can be as diverse as the heterogeneity of the land itself;

3. In geographic information, truth as a distinct, incontrovertible and cor-

rect fact, cannot exist since a classi�cation of geographic phenomena is

inherently subject to indeterminacy and relativism mostly re�ected in
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its ontology;

4. No classi�cation system can fully capture or re�ect the social and/or

natural world accurately;

5. Classi�cation or categorization is a highly dynamic process related to

geographical areas, time and culture;

6. The process of classi�cation is a �balancing act� that must strike a bal-

ance between the huge complexity of the �continuum� nature of the real

world and the necessity to represent or utilize it in a database with a

�nite boundary;

7. There are and there will always be multiple ways to categorize (segment)

real world phenomena, and all are equally legitimate;

8. In the process of classifying or categorizing the real world, both stan-

dardization and harmonization e�orts are needed. The e�ectiveness of a

classi�cation process depends on the levels at which standardization and

harmonization are used.

The LCCS was formalized as an international standard for LC classi�cation

systems in 2012 by the International Standards Organization (ISO) and is re-

ferred to as the Land Cover Meta Language (LCML) (Di Gregorio et al., 2016).

In the LCML ontology, land cover classes are linked to clearly de�ned diagnos-

tic attributes rather than text descriptions, thus allowing for speci�cation of

land cover features anywhere in the world using a set of independent diagnos-

tic criteria that allow for linkage with other existing classi�cations at global,

regional and national scales (Di Gregorio et al., 2016). There are two main

LC hierachies within the LCML framework; Biotic and Abiotic, from which



2.1. Land-use and Land Cover Mapping 16

sub-classes can be derived but are still related to a measureable, observable

attribute of the LC feature. The assumptions inherent in the UN-LCCS and

the robust LCML ontology inform the land cover classi�cation methodology

employed by CCI-LC for the generation of 300m global LC state and condi-

tion maps centered to the years 2000, 2005, 2010 and 2015, and derived from

MERIS and SPOT-VGT datasets (Bontemps et al., 2013; Lamarche et al.,

2013). Figure 2.1 shows the ESA CCI-LC map v2.0.7 which has twenty two

macro-classes excluding 'No data' as shown in Figure 2.2. Of the twenty two

macro-classes, eighteen belong to the biotic macro-class as per the UN-LCCS

and are sub-categorized on the basis of growth forms, leaf type and phenol-

ogy, while four belong to the abiotic macro-class, with sub-categories derived

on the basis of arti�cal or natural surface elements and water bodies. The

use of multi-year Earth Observation (EO) datasets makes the classi�cation

less sensitive to the period of observation assuming that no LC state changes

have occured in the multi-year period, thus satisfying the climate modelling

user group's requirement of stability and dynamicity in land cover information.

Moreover, categorization based on the UN-LCCS ensures compatibility with

plant functional types which are used in many models. The ESA CCI-LC maps

are generated via machine learning and unsupervised classi�cation processes

whose input is the 7-day time series of MERIS FR and RR L1 and SPOT-

VGT global composites. Prior to classi�cation, a reference LC dataset from

existing global, regional and local land cover maps is generated. The reference

LC dataset acts as an a-priori strati�cation of the world into equal-reasoning

areas upon which the classi�cation algorithms are run and also enables change

detection. Validation of this dataset is underway (Grekousis, Mountrakis and

Kavouras, 2015).

According to Lepers et al. (2005), the greatest concentration of rapid land-
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cover changes observed in that study were in Asia and the study recommended

that "operational monitoring of land cover should be extended to regions that

are not known as hotspots but where rapid changes may still take place and

catch the scienti�c community by surprise". Figure 2.3 shows the locational

distribution of Regional LC maps according to Grekousis, Mountrakis and

Kavouras (2015), which highlights the fact that Asia and Africa are not fully

covered by regional maps solely developed for those regions but are covered by

maps generated by national agencies such as the Japan Aerospace Exploration

Agency (JAXA) which produces high resolution land cover maps for Japan

and Vietnam (Takahashi et al., 2013; JAXA, 2018).

Takahashi et al. (2013) describes the production process of the JAXA High

Resolution LULC Map of Japan (JHR LULC Map) version 13.02 which was

released in March 2013. The latest JAXA High Resolution LULC map is the

HRLULC map version 18.03 which in addition to providing continuity for the

earlier versions has been time-pegged as a LC map of Japan for 2015 with

data inputs ranging from 2014 to 2016. The reported overall accuracy for ver-

sion 16.09 was 78% while that for version 18.03 is 81.6%. Improvements made

include the use of Landsat 8 (OLI) imagery, application of cloud masks, intro-

duction of terrain correction and visual collection of training and validation

data. The JAXA HRLULC map has ten classes excluding the 'Unclassi�ed' or

'unknown' and 'No data' or 'nodata' as shown in Figure 2.4. An integration

of bayesian estimation, likelihood estimation by kernel density (Hashimoto et

al. 2014) and post-classi�cation editing were used for version 18.03 (JAXA,

2018). The class de�nitions within the JAXA HRLULC mapping framework

are consistent with the UN-LCCS. However, in the course of this review, no

comparison of the consistency of these products with any global LC products

was found. The research community would bene�t from a qualitative and/or
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quantitative comparison of the JAXA products to other global LC mapping

products since they contribute to regional LC coverage of the southeast Asia

region.
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Figure 2.2: Legend of the global CCI-LC Maps
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Figure 2.4: LULC categories in JAXA HRLULC maps
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2.2 Cropland Mapping

Population growth leading to an increase in labour and land productivity led

to the advent of the agricultural revolution and with it the modi�cation of

vast amounts of the natural landscape for the growth of food crops and animal

husbandry. The need to manage land resources in order to enhance e�ciency

of production and a greater awareness of the impacts of anthropogenic land

use has led to ever increasing e�orts to not only know where production is

taking place via mapping, but to quantify, monitor and predict production

e�orts (Pongratz et al., 2008). In addition, food security challenges at global,

regional and spatial scales, necessitate the generation of information relating

to agricultural production at varying spatial and temporal scales. In See et al.,

(2015), approaches to cropland information generation are broadly classi�ed on

the basis of spatial scale and the type of data used in terms of its acquisition,

processing, temporal and spatial consistency and relative cost of acquisition

and maintenance.

Climate variability and its associated impacts on food production has created

an urgent need for timely and cost e�ective agricultural production information

especially for croplands due to the fact that croplands ar space intensive and

have been found to have a direct impact on climate. As such, cropland map-

ping approaches that are scalable and hence easily generated operationally are

of great importance (Inglada et al., 2015 ; Torbick et al., 2018). In the appli-

cation of remote sensing to cropland mapping and monitoring, the underlying

principles of image classi�cation and the data needs or �nal application dictate

the methods used to generate the maps. Table 2.1 summarizes by application,

various studies as presented in Atzberberger (2013) that have been employed
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in remote sensing for cropland mapping and monitoring and their drawbacks

or limitations.

Pixel-based and object-based image analysis approaches have been imple-

mented in various studies for classifying broad land cover classes over agricul-

tural landscapes using a variety of classi�cation algorithms including decision

tree (DT), random forest (RF), and the support vector machine (SVM) algo-

rithms and machine learning classi�ers. While pixel-based analysis have long

been the mainstay for classifying remotely sensed imagery due to their relative

ease of implementation, object-based image analysis have become increasingly

popular (Blaschke, 2010). Whether pixels or objects are used as underlying

units for the purposes of classifying remotely derived imagery, the information

contained within and among these units can be subjected to a variety of clas-

si�cation algorithms. Previous comparative studies have been conducted that

examine the relative performance of di�erent classi�cation algorithms using

pixel-based, and/or object-based image analysis, and conclude that the choice

of classi�cation methods for cropland mapping is contingent on availability of

data and the intended application (Teluguntla et al., 2015; Matton et al., 2015;

Waldner et al., 2016).



2.2. Cropland Mapping 25

T
a
b
le
2
.1
:
Su

m
m
ar
y
of

st
ud

ie
s
on

cr
op
la
nd

m
ap
pi
ng

an
d
m
on
it
or
in
g
m
et
ho
ds

by
ap
pl
ic
at
io
n

A
p
p
li
c
a
ti
o
n

M
e
th
o
d

D
ra
w
b
a
c
k

S
tu
d
y

B
io
m
as
s
an
d
yi
el
d
es
ti
m
at
io
n

R
eg
re
ss
io
n
;

Y
ie
ld

co
rr
el
at
io
n
m
as
ki
n
g;

C
ro
p
gr
ow

th
m
od
el
s

C
ro
p
la
n
d
M
as
k
is
n
ec
es
sa
ry

R
em

b
ol
d
,
F
.,
A
tz
b
er
ge
r,
C
.,
S
av
in
,
I.
,
&
R
o
ja
s,
O
.
(2
01
3)

V
eg
et
at
io
n
vi
go
r
an
d
d
ro
u
gh
t
st
re
ss

m
on
it
or
in
g

D
ro
u
gh
t
in
d
ic
es

e.
g.

P
D
I,
T
D
I
&
V
D
I

R
el
ia
n
ce

on
on
e
p
ar
am

et
er
;

N
ee
d
fo
r
n
ea
r-
re
al
-t
im
e
d
at
a

B
al
in
t,
Z
.,
M
u
tu
a,
F
.,
M
u
ch
ir
i,
P
.,
&
O
m
u
to
,
C
.
T
.
(2
01
3)

C
ro
p
p
h
en
ol
og
y
as
se
ss
m
en
t

T
im
e
se
ri
es

m
od
el
li
n
g

e.
g.

cu
rv
e
�
tt
in
g
u
si
n
g
p
re
-d
e�
n
ed

fu
n
ct
io
n
s

N
ee
d
fo
r
a
p
ro
ir
i
in
fo
rm

at
io
n

to
in
fo
rm

th
e
m
od
el

B
ec
k,

P
.
S
.,
A
tz
b
er
ge
r,
C
.,
H
øg
d
a,
K
.
A
.,
Jo
h
an
se
n
,
B
.,

&
S
ki
d
m
or
e,
A
.
K
.
(2
00
6)

C
ro
p
ac
re
ag
e
es
ti
m
at
io
n
an
d

C
ro
p
la
n
d
M
ap
p
in
g

T
im
e
se
ri
es

an
al
ys
is

(g
ra
p
h
ic
al
an
d
st
at
is
ti
ca
l)

E
va
lu
at
io
n
on
ly

fo
r
re
gi
on
al
sc
al
e

W
ar
d
lo
w
,
B
.
D
.,
E
gb
er
t,
S
.
L
.,
&
K
as
te
n
s,
J.

H
.
(2
00
7)

M
ap
p
in
g
of

D
is
tu
rb
an
ce
s
an
d
L
U
C
C

P
re
-
an
d
P
os
t-
cl
as
si
�
ca
ti
on

ch
an
ge

d
et
ec
ti
on

S
in
gh
,
A
.
(1
98
9)



2.3. Urban and Peri-urban Agriculture (UPA) 26

2.3 Urban and Peri-urban Agriculture (UPA)

Over half of the world's population (55 per cent) reside in urban areas with

a projected increase to 68 percent by 2050 (UN, 2018). As the population

increases, demand for food and settlement areas is set to rise in tandem. The

fringe areas or zones abounding, rapidly growing urban areas have long been

recognized to have a transformational in�uence on the societies and economies

of rural areas they abut and in turn respond to changes in the urban areas

(Zasada, 2012). Traditionally, peri-urban areas are considered to be zones

of spatial transition from 'urban' to 'rural', while simultaneously in temporal

transition to 'urban' land use (Iaqinta and Drescher, 2000; Castles, 2014). The

dynamic nature of peri-urban areas necessitates proper de�nition of fundamen-

tal terminology associated with these regions in order to understand the social,

environmental and economic changes they drive and respond to (Iaqinta and

Drescher, 2003).

The term 'peri' is a pre�x meaning 'about' or 'around' and therefore has ge-

ographical implications (Castles, 2014). While there is no universally agreed

upon de�nition of the compound term peri-urban, these areas are commonly

understood to be the transitional zones between distinctly urban and unam-

biguously rural areas (Simon, 2008). The role and importance of these areas

with respect to planning and policy development in both rural and urban ar-

eas has been brought into sharp relief through various studies (Iaqinta and

Drescher, 2000; Allen, 2003; Thornton, 2008; Zasada, 2011; McGregor and

Simon, 2012; Schneider, 2012). Iaqinta and Drescher (2003) highlight the dif-

�culty in distilling a singular de�nition concluding that existing de�nitions are

based on operational variables that are subject to the research discipline. In
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this section, multi-disciplinary de�nitions are presented with a view of particu-

larizing the selection of regions considered in this study. Further, the de�nition

and characterization of peri-urban agriculture is presented in the context of

various studies.

There exist various modalities for de�nition of the term peri-urban as iden-

ti�ed by Iaqinta and Drescher (2003) including but not limited to: implicit

de�nition where an area is de�ned as peri-urban if it is neither rural nor urban

and is located in the fringes of an urban area; conceptual theoretical de�nition

where a peri-urban area is de�ned based on its demographic and geographi-

cal characteristics with respect to an urban area; land-use de�nition where an

area is deemed to be peri-urban based on the factors that in�uence it derived

from land-use relations, and de�nition via characterization of the physical con-

�guration, economic activities and social relationships. The aforementioned

methods of de�nition are surmised primarily from sociology studies and draw

on three components used to de�ne 'urban', that is, the demographic (high

population density), economic (primarily non-agricultural economic activities)

and social-psychological (urban consciousness) components. The study con-

cludes that a peri-urban area is a variation of these components. In the realm

of Remote Sensing and Geospatial Information Science, the de�nitions of peri-

urban largely focus on institutional physical de�nition (zoning) or lack thereof,

demographic, land-use and economic characteristics of a region (Mbiba and

Huchzermeyer, 2002; Thapa and Murayama, 2008; Thornton, 2008).

Variations in global, regional and local socio-cultutal-economic characteristics,

�ows and interactions, and their relationship with urban and rural develop-

ment rend the task of eliciting a universal de�nition of peri-urban arduous.

In developing countries, particularly in Africa, distinction between peri-urban
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and rural areas on the basis of demographics and land-use is exacerbated by

a rapidly increasing rural population density, growing infrastructure and cul-

tural and colonial in�uences on land-use and land tenure systems (Smith and

Memon, 1994; Atukunda and Maxwell, 1996; Foeken and Mboganie-Mwangi,

2000, Thapa and Murayama, 2008). The complexities associated with charac-

terization of peri-urban areas extend to the distinction between urban and

peri-urban agriculture (Mougeot, 2000; Thornton, 2008; Schneider, 2012).

However, the importance of urban and peri-urban agriculture and their role in

food security and sustainable livelihoods is widely recognized and has been the

subject of numerous studies in the last three decades (Appeaning Addo, 2010;

Lwasa et al., 2014; Thebo, Drechsel and Lambin, 2014; Opitz et al., 2016). Key

to distinguishing urban agriculture from peri-urban agriculture are the dimen-

sions of urban agriculture outlined by Mougeot (2000) as: types of economic

activities, types of products, characteristics of production locations, destina-

tion of products and production scale. Preeminently contentious among these

facets is location since it broaches the issue of the dichotomous typi�cation of

rural and urban areas in which it is assumed that agriculture is the primary

economic activity of rural populations and thus fails to acknowledge urban

agriculture (Tacoli, 1998; Mougeot, 2000). However, the locational aspect is

critical to de�ning peri-urban agriculture since the bene�ts and challenges ac-

crued from proximity to urban areas while maintaing non-urban characteristics

provide a means of spatial delineation. Farming in peri-urban areas is carried

out on small non-contiguous units which result in a heterogenous landscape

as land-use competes with non-agricultural uses as a result of urban pressures

(Zasada, 2011; Schneider, 2012).
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2.4 Spatio-temporal Image Fusion

Image fusion refers to the combination of two or more images from di�erent

sensors or sources using an appropriate algorithm, in order to obtain a new

image from which, more precise information regarding the scene, than that

available from a singular image source independently, can be derived (Pohl and

Van Genderen, 1998; Solberg, 2006; Hazaymeh and Hassan, 2015; Schmitt and

Zhu, 2016). Earth observation using satellite-based sensors has been around

since the 1970s and has evolved over time to include multiple sensors captur-

ing data about the earth's surface at ever increasing spatial detail, acquired

for the same location at a higher temporal frequency, over an increasingly dis-

cretized electromagnetic spectrum, that is, high spatial, temporal and spectral

resolution. The increasing coverage of the earth in space, time and spectrum

has enabled expansion of earth observation data analysis techniques, formerly

con�ned to single source or sensor images, to allow for multi-source, multi-

scale, multi-polarization, multi-frequency and multi-temporal image analysis

(Solberg, 2006).

In addition to technological advancements, limitations in currently available

data vis-a-vis application requirements have spurred the growth in image fu-

sion techniques for application speci�c exploitation of the most advantageous

attributes of this data. Applications like cropland mapping, drought moni-

toring and irrigation and grassland management, which involve monitoring of

dynamics require high temporal resolution data (Hazaymeh and Hassan, 2015;

Liao et al., 2017). From national to global scales, low spatial-high temporal res-

olution data sets such as NOAA-AVHRR, SPOT-VGT and MODIS have been

used to map and monitor vegetion cover and changes through programmes
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such as the International Geosphere-Biosphere Program's Global Land Cover

Characterization (IGBP-GLCC), which used 1-km AVHRR 10-day NDVI com-

posites for 1992 to 1993 (https://lta.cr.usgs.gov/GLCC; Xie, Sha and Yu,

2008). An example of large scale vegetation monitoring with regional cov-

erage is Copernicus's pan-European High Resolution Layers data set which

provides information on speci�c land cover characteristics such as forests,

grassland and imperviousness for 39 countries and is complementary to the

CORINE land use/ cover datasets which are produced using medium resolu-

tion and high resolution images including Landsat, SPOT-5, IRS and RapidEye

(https://land.copernicus.eu/pan-european). However, some land use/-

cover features cannot be adequately captured using the datasets and methods

heretofore mentioned. For instance, Lefebvre (2014) underscores the impor-

tance of Green Linear Features (GLF) including:

1. Soil and water conservation through �ltration of pesticides and other

pollutants from water by grass �lter strips before it reaches surface water

features

2. Aiding climate protection through carbon storage and sequestration and

promoting climate adaptation through mitigation of landslides and �oods

3. Promoting biodiversity by facilitating movement of some species between

disparate habitat patches

4. Preservation of cultural identity since they compose and structure rural

landscapes

The accurate mapping and monitoring of GLFs such as those found along

the banks of many hydrological features and roads, as well as hedges that

aid in demarcation of land is therefore relevant and the report concludes that

https://lta.cr.usgs.gov/GLCC
https://land.copernicus.eu/pan-european
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satellite images or aerial images with high or very high spatial resolution and

manual delineation methods provide the best results, (Lefebvre, 2014). How-

ever, typically, sensors with very high or high spatial resolution have a small

spatial footprint thus limiting their application for non-local scale monitoring

purposes due to prohibitive acquisition costs and limited coverage. Manual

delineation is also time consuming and the inevitable recourse tends towards

automatic methods that are pixel or object-based, (Lefebvre, 2014).

Prior to any vegetation extraction processes, image preprocessing is imperative

in order to remove the e�ects of noise and enhance interpretability of image

data, especially so for time series and mosaicked imagery, since it is essential

that the images are spatially and spectrally consistent and compatible (McCoy,

2005; Solberg, 2006; Xie, Sha and Yu, 2008; Han, Pei and Kamber, 2011;

Young et al., 2017). Preprocessing is comprised of a series of tasks, the extent

of which is in�uenced by among other factors, type of data (i.e. optical or

non-optical), the preprocessing level of data at the point of acquisition which

is contingent on the disseminating agency, spatial extent of the area of interest

and the intended application. For optical data, one of the main sources of

noise and a major drawback to its application in �elds requiring regular data

is atmospheric artefacts such as cloud cover. For vegetation mapping and

monitoring, a pertinent preprocessing step for optical datasets is handling of

cloud inundated images through removal or reconstruction (Xie, Sha and Yu,

2008; Julien and Sobrino, 2010; Ramoino et al., 2017 ).

Microwave remote sensing, also referred to as Long-wave, such as Synthetic

Aperture Radar (SAR), are relatively insusceptible to atmospheric noise due to

their penetrative capabilities, are available day and night as well as under any

meteorological event and have high resolution capabilities (Lillesand, Keifer
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and Chipman, 2014; Alparone et al., 2015; Du et al., 2015). For these and

other reasons including, direct relation of recorded data to the physical prop-

erties of natural features such as surface roughness and dielectric properties,

subsurface penetration, sensitivity to man-made objects and high temporal

resolution, microwave remote sensing has been used ina wide range of remote

sensing applications including environmental disaster detection and manage-

ment, deformation monitoring, crop-type mapping and preeminently in urban

mapping with capabilities of extention from two-dimensional analysis to three

dimensions using LiDAR and interferometric SAR (Donnay, Barnsley and Lon-

gley, 2014; Du et al., 2015; Kenduiywo, Bargie and Soergel, 2015; Notti et al.,

2015; Abdikan, et al., 2016).

Nevertheless, there are some impediments to the widespread operational ap-

plication of active remote sensing data. Due to the signi�cant di�erences

in imaging geometry between optical and microwave systems, optical data is

richer in detail at similar resolutions and is more amenable to human inter-

pretation in comaprison to SAR data (Zhu et al., 2012; Schmitt, Tupin and

Zhu, 2017; Haack and Mahabir, 2018). While microwave systems have been

around for a long time and the theoretical principles related to their utilization

in urban and natural environments are fairly well established, there has been

a dearth of agency in comparison to optical data, attributed to an overall lack

of understanding of the data structures and feasible exploitation of the same,

insu�cient or convoluted methods of processing and analysis, and di�erential

performance in characterizing certain land cover types especially in heteroge-

neous landscapes (Kerr and Ostrovsky, 2003; Rogan and Chen, 2004; (Zhu et

al., 2012; Van Tricht et al., 2018). In a comparative assessment of the relative

importance of the spectral, polarimetric, temporal and spatial dimensions of

remote sensing data for urban and peri-urban land cover classi�cation, Zhu
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et al. (2012) observed that when using PALSAR data by itself, the classi�-

cation accuracy was outmatched by the use of a single Landsat image, even

with the addition of the spatial dimension of PALSAR data. In another study

evaluating synergistic application of radar Sentinel-1 and Optical Sentinel-2

imagery for crop mapping within a season, Van Tricht et al. (2018) found

that overall classi�cation accuracy of optical-only data performed better than

SAR- only data but was improved by increasing the number of images made

available to the classi�er. In both studies, combined use of SAR and optical

data signi�cantly improved classi�cation results (Zhu et al., 2012; Van Tricht

et al., 2018).

Both optical and microwave imaging and non-imaging systems have demon-

strable value in acquisition of data and information on the earth's surface and

even to some extent, sub-surface features, in order to address various problems.

However, limitations inherent in the nature of available data and the common

processing and analysis mechanisms, versus speci�c application demands and

non-uniform distribution of land use/cover features (i.e. landscape heterogene-

ity), have led to the need for image fusion and development of fusion methods

amid a deluge of optical and microwave remote sensing data that is held in

archives and is currently being acquired (Schmitt and Zhu, 2016; Schmitt,

Tupin and Zhu, 2017). An initial categorization of multi-sensor data fusion is

on the basis of the representational elements fused. Fusion can be implemented

at the signal level where signals from di�erent sensors are blended in order to

obtain a signal with improved signal-to-noise ratio compared to the original

independent signals (Solberg, 2006). From a remote sensing perspective, the

lowest element re�nement level is at the pixel level, which requires multi-source

data that are aligned (co-registered) and involves attribute estimation by com-

bining information on a pixel-by-pixel basis and resulting in a new enhanced
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image (Pohl and Van Genderen, 1998; Solberg, 2006; Schmitt and Zhu, 2016).

The other level is the feature-based fusion methods which operate at a higher

level of processing compared to the pixel-based fusion methods and require ex-

traction of features via segmentation from the multi-source data prior to fusion

(Pohl and Van Genderen, 1998; Solberg, 2006; Ghassemian, 2016). Decision

level fusion methods, also referred to as interpretation level or symbol-level,

are the highest level of fusion and involve merging information from various

sources, post preliminary classi�cation (Pohl and Van Genderen, 1998; Solberg,

2006; Ghassemian, 2016). In all levels of fusion, matching and coregistration of

data is essential and while it has been investigated rigorously, it remains a sig-

ni�cant challenge especially for heterogeneous sensor data fusion (Schmitt and

Zhu, 2016). Moreover, among the three levels of fusion, the best fusion level

and methodology depends on the application and is in�uenced by among other

factors, availability of data, complexity of the classi�cation problem and the

primary objective of the analysis (Solberg, 2006). Figure 2.5 depicts the three

fusion levels as categorized by representation features fused. The remainder of

this review will focus on pixel-level fusion methods.

Pixel-based fusion methods may be categorized on the basis of the type of

data fused and the dimension enhanced by the fusion process, that is, spatial

or temporal, as shown in Table 2.2 as proposed in Pohl and Van Genderen

(1998). An alternative approach to grouping of pixel-level fusion based on

the techniques exploited towards achieving either spatial or temporal enhance-

ment was detailed in Pohl and Van Genderen (1998), dividing them into colour-

related and statistical/numerical methods, with further subgroupings as shown

in 2.6, (Pohl and Van Genderen, 1998; Pohl and Van Genderen, 2015). The

colour-based techniques include RGB, which is a simple overlay of multi-source

data in the Red-Green-Blue colour space and colour transformations including
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Intensity-Hue-Saturation (IHS) in which, spatial (I) and spectral (H, S) infor-

mation from a standard RGB image is separated and YIQ, which is a colour

encoding system that combines RGB signals in proportion to the sensitivity of

the human eye thus enhancing visual interpretation (Pohl and Van Genderen,

1998; Pohl and Van Genderen, 2015; Ghassemian, 2016). The arithmetic meth-

ods within the approach shown in Figure 2.6 include Brovey Transform (BT),

high-pass �ltering (HPF), Component Substitution (CS), Principal Compo-

nent Analysis (PCA), Regression Variable Substitution (RVS) and Wavelet

Transform (WT). Following an earlier taxonomy proposed by Schowengerdt

(2006), in which fusion methods were divided into spectral, spatial and space

scale techniques, and its subsequent adoption by various other scientists, Pohl

and Van Genderen (2015) proposed a general categorization, summarised in

Table 2.3, with �ve groups including:

1. Component Substitution

2. Numerical and statistical image fusion

3. Modulation-based techniques

4. Multi-resolution approaches (MRA)

5. Hybrid techniques
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(a) Pixel-level fusion

(b) Feature-level fusion

(c) Decision-level fusion

Figure 2.5: Fusion methods categorized by representational elements fused
from multi-source data. (Adapted from Ghassemian, 2016)
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Table 2.2: Categorization of fusion methods based on type of data sets fused
and dimension enhanced by fusion. (Adapted from Pohl and Van Genderen,
1998)

Data Set Type Dimension Sample Application Reference

Single sensor Temporal Kussul et al. (2017)

Multi sensor Temporal Shimoni et al. (2015)

Single sensor Spatial Vivone et al. (2017)

Multi sensor Spatial Yokoya (2017)

Multi sensor Spatio-temporal Zhao et al. (2017)
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Table 2.3: Proposed categorization of pixel-based image fusion algorithms.
(Adapted from Pohl and Van Genderen, 2015)

CS Num/Stat Modulation MRA Hybrid

BT x

IHS x

YIQ x

PCA x

WT x

LP x

IHS/BT x

Modulation/SFIM x



Chapter 3

Methodology

3.1 Study area

The study area is made up of seven municipalities within Chiba prefecture

which is located in the Southeastern part of Japan and is adjacent to the Tokyo

Metropolis to the east. The seven municipalities are Yotsukaido-shi, Inzai-shi,

Yachimata-shi, Narita-shi, Sakura-shi, Tomisato-shi and Shisui-machi, with a

total area and population of 623.15 km2 and 668,603 respectively as shown in

Figure 3.1. Chiba prefecture has an annual average temperature of 16.3°C,

with annual monthly average maximum and minimum temperatures of 30.8°C

and 2°C respectively. The annual average precipitation is 1496mm and approx-

imately 2113 hours of sunlight are received yearly, making it highly favorable

for agricultural production. Chiba prefecture is a valuable source of agricul-

tural food crops and was ranked sixth in vegetable production in Japan with

vegetable production worth more than half a billion yen in 2015 according to

the Ministry of Agriculture, Forestry and Fisheries 2016 report on food, agri-

culture and rural areas in Japan. The main crops in the regions selected are

40



3.1. Study area 41

rice, which is cultivated on irrigated paddy �elds and vegetables including but

not limited to carrots, daikon radish, taro, cabbages and spinach. It has a

highly heterogeneous landscape comprised of urban or built-up areas, Forests

(Evergreen and Deciduous), grasslands (land covered with grass or shrubs),

paddy �elds, croplands (also described as upland cropland) and water bod-

ies. There are two types of grasslands, natural as in the case of land covered

by grass and shrubs not managed by man, as well as abandoned cropland or

paddy �elds and arti�cial or man-made grasslands such as golf courses.
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3.2 Data and Methods

3.2.1 Application requirements evaluation

In this section, the data and technological factors considered in designing and

settling on the �nal research design are discussed with respect to this study's

objectives. The overarching goal of this study was to describe the distinctive

nature of upland croplands used for cultivation of horticultural food crops at

pixel-level, by identifying and distinguishing them from other land use/ land

cover, within a complex urban/peri-urban landscape and with data acquired

within one year. In Oliphant et al. (2017), the Global Food Security-Support

Analysis Data at 30m (GFSAD30) project identi�es some limitations of current

cropland extent map products as:

1. Absence of precise spatial location of cultivated areas

2. Coarse resolution nature of map products with signi�cant uncertainities

in areas, locations and detail

3. Absence of crop types and cropping intensities

4. Absence of a dedicated dissemination portal for cropland information

products

Key to addressing the aforementioned limitations is the development of tech-

niques for mapping croplands routinely, rapidly, consistently and with su�cient

accuracy (Teluguntla et al., 2015). Croplands are spatio-temporally dynamic

in nature and their changes are subject to inter-related factors including cli-

matic factors (e.g. precipitation and temperature), bio-geophysical factors (e.g.
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soil type and topography) and human factors (e.g. management practices and

choice of crop type to cultivate). As such, the data requirements for mapping

of croplands demand spatio-temporal continuity and detail in order to estimate

distinguishing characteristics such as biophysical changes, thus necessitating

high spatial and temporal resolution data. For all imaging systems, there ex-

ists a primary trade-o� between spatial and temporal resolution, with systems

having one of each at a time but not both at the same time. The Sentinel

2 constellation of satellites aims to bridge this gap by acquiring images at a

high spatial resolution (10 �20m) and high remporal frequency (5 � 10 days).

However, presence of cloud cover and other atmospheric artefacts imposes the

trade-o� by having spatial discontinuity where they occur despite regular imag-

ing frequency. In order to address the issue of discontinuity, spatio-temporal

image fusion methods have been developed.

An assessment of agricultural statistical survey data for the year 2015 for the

seven municipalities under consideration and Chiba prefecture as a whole, layed

out some initial criteria for our data needs. Figure 3.2 shows the proportions of

area according to size of cultivated area managed by farmers surveyed during

the Agriculture and Forestry census of 2015. Majority of the farmers surveyed

(23 %) had parcels of land ranging from 2 to 3 ha, while 22 % had parcels of

between 3 to 5 ha. Bearing in mind the need for continuous data, MODIS daily

surface re�ectance data at 250m spatial resolution provide continuity at a high

frequency. However, the area of one pixel (62,500 m2) is much larger than the

area of the highest proportion of parcels of land under cultivation (20000 m2

� 50000 m2). On the other hand, Landsat moderate resolution images at

30m spatial resolution, provide adequate spatial detail for characterization of

croplands at parcel level (approx. 20 � 30 Landsat pixels) but are spatially

and temporally intermittent due to cloud cover. Similarly, Sentinel 2 images
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provide much greater detail but are limited by cloud cover and the fact that for

the study area, the tile coverage is not always the same as seen in Figure 3.3.

Further,the latest agricultural statistical data available was released in 2015

and it was desired in this study, to see how remote sensing based estimation

of cropland extents compares to statistical data. As such, Sentinel 2 data was

inadequate for a time series in that year since the earliest available image for

the study area is in August (7th August, 2015) and only two images meet the

cloud cover threshold of less than 10%. It was therefore decided that the fusion

of MODIS and Landsat products was the best approach.
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Figure 3.2: Proportional distribution of cultivated area size per farmer
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3.2.2 Data acquisition and processing

3.2.2.1 MODIS Data

Two sets of MODIS surface re�ectance datasets were acquired; MOD09GA and

MOD09GQ. The MOD09GQ data set was used for extraction of the red (620-

670 nm) and Near-infrared (841-876 nm) bands necessary for computation of

NDVI. The MOD09GA dataset was necessary for quality assessment and gen-

eration of masks necessary for reconstruction of cloud-free daily NDVI images.

The re�ectance band quality scienti�c data set (SDS) in the MOD09GQ con-

tains band quality assessment nformation including a bit parameter for cloud

state. However, this parameter has not been populated since Version 3 of the

MOD09GQ product and therefore can only be retrieved from the MOD09GA

1 km state SDS. Pre-processing of the MODIS data therefore involved extrac-

tion of the red and NIR surface re�ectance bands and the 1 km state SDS

band from MOD09GQ and MOD09GA HDF �les respectively. The extracted

bands were then reprojected to UTM Zone 54N, subset to cover the whole

of Chiba prefecture, and in the case of the state 1 km SDS, after bit con-

version and generation of QC masks, resampling to the nominal resolution of

the MOD09GQ data set of 250m. After scaling the surface re�ectance bands,

NDVI was computed and the masks applied, resulting in daily NDVI images

at 250m which had gaps due to masking of clouds and bad quality pixels. The

entire process was carried out using custom written scripts using R (Version

3.4.4) in RStudio (Version 1.1.456) and is depicted in Figure 3.4.
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3.2.2.2 Landsat Data

Landsat 8 Operational Land Imager (OLI) surface re�ectance Level-2 images

for the year 2015 were acquired for WRS path/row 107/035, which covers

the study area. An initial threshold of less than 10 % cloud cover yielded

four images within the year, with one image for winter (January 10th, 2015),

one in spring (April 16th, 2015) and two in the fall (9th and 25th October,

2015). Adequate seasonal distribution was desired and therefore the threshold

was decreased to 20 % cloud cover over land and 30 % in an entire scene.

The revised threshold yielded 8 images with su�cient seasonal distribution.

NDVI was then computed using the red (636-673 nm) and NIR (851-879 nm)

bands. Figure 3.5 depicts the relative temporal distribution of the Landsat and

MODIS images. In addition, the Maximum Value Composite NDVI (MVC-

NDVI) between consecutive dates of the eight images acquired was computed.
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Figure 3.5: Relative temporal distribution of Landsat-8 OLI and MODIS
NDVI images for the study epoch
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3.2.2.3 MODIS-Landsat NDVI Fusion

Only the most cloud-free images acquired using the �rst threshold (< 10%

cloud cover) were used in the fusion process. Spatio-temporal fusion via Index-

then-Blend (IB) was implemented using the MODIS Daily 250m NDVI and

Landsat 8 intermittent NDVI images as described in Zhu et al. (2010). The

MODIS NDVI images were �rst resampled to 30m and cropped to match the

extent of the Landsat 8 NDVI images using R (v3.4.4). Fusion was imple-

mented in ENVI IDL (v4.8) using the open-source Enhanced Spatio-Temporal

Adaptive Re�ectance Fusion Model (ESTARFM), available from the Remote

Sensing & Spatial Analysis Lab site. For a fusion block size of 500, it took

an average of 40 minutes to fuse each MODIS NDVI image with reference to

two Landsat images and their corresponding MODIS images. For computa-

tional e�ciency, an 8-day interval was chosen. This, in addition to signi�cantly

reducing the processing time, gave credence to the decision to aquire and pro-

cess the MODIS daily data, since it allowed for selection of a starting date

matching the availability of Landsat images. To put a �ner point on it, had

the standard 8-day interval surface re�ectance or MODIS NDVI product been

chosen, there would have been no corresponding Landsat images for reference

in the fusion process. Subsequent to the fusion process, the time series of

synthetic Landsat images was smoothed and �ltered to mitigate the e�ects of

noise due to gaps in the original MODIS data. It should be noted that the

decision to use the non-reconstructed i.e. non gap-�lled, unsmoothed and un-

�ltered, MODIS images was arrived at after a previous experiment in which

fully reconstructed MODIS NDVI images were used in the fusion process failed,

resulting in anomalous NDVI temporal pro�les as shown in Figure 3.6.
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(a) Cropland

(b) Forest

(c) Urban

(d) Paddy

Figure 3.6: Anomalous NDVI time-series pro�les for various land use/cover
types after fusion using fully reconstructed MODIS images
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3.3 Classi�cation

3.3.1 Training and Validation Samples

In this study, Random Forests (RF), an ensemble learning classi�er was used

for classi�cation of the synthetic Landsat-like NDVI fusion image time series

to:

1. Generate the annual cropland extent map of the study area

2. Estimate cropping regimes, patterns or intensities of the identi�ed crop-

lands

3. Assess the applicability of the data set to distinction of a single known

crop-type from other unknown crop types using a limited reference dataset.

RF classi�cation was chosen because it has been found to have a high capacity

for handling high data dimensionality such as is found in time series datasets

(Kloiber et al., 2015; Millard and Richardson, 2015). Key to any supervised

classi�cation process are the reference datasets necessary for training of the

classi�cation model and validation of the results. For the classi�cation of

cropland extent, two existing cropland datasets were assessed for viability as

reference data sets. JAXA's High Resolution Land-Use and Land-Cover map

of Japan (HRLULC Ver.18.03) is a 30m land cover map of Japan generated

using multi-temporal, multi-source data. It includes the upland cropland and

rice paddy �eld layers which were of particular interest in this study. However,

since the data used in its production is not temporally speci�c and ranges from

2014 to 2016, it was decided to use this dataset for comparison of the results

of this study.
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In addition, the recently released Global Food Security-Support Analysis Data

at 30m (GFSAD30) provides global cropland area data (Oliphant et al., 2017).

The Southeast and Northeast Asia dataset (GFSAD30SEACE) was acquired

and assessed for suitability as a source of training and validation data in this

study. The cropland extent in this dataset represents all cultivated land in-

cluding paddy, irrigated and rainfed areas. As the discrimination between

paddy rice �elds and other croplands was an objective of this study, the GF-

SAD30SEACE dataset was used for validation of our result in terms of total

cropland extent. In the absence of a reference dataset that was temporally

speci�c to the year 2015, training and validation samples were generated us-

ing the Maximum Value Composite NDVI (MVC-NDVI) computed between

consecutive NDVI images of the sparse Landsat image time series. In addi-

tion to minimizing the e�ects of cloud cover, the seasonal MVC-NDVI RGB

composite stacks revealed inter-seasonal pixel-level NDVI changes that made

it possible to determine seasonal behaviour of the major land cover types and

set rules for distinguishing the major land cover classes and cropping patterns.

The selection of sample data for the major classes was corroborated by the

Google Earth (GE) image available for 9th October, 2015 as shown in Figure

3.7. Figure 3.7a shows the Winter-Spring-Summer composite while Figure 3.7b

shows the Spring-Summer-Fall composite for 2015. The o�-white regions in

both Figures 3.7a and 3.7b depict dense vegetation such as forests which have

high NDVI with minimal variation intra-annually. The black and gray regions

are urban and water features which have low NDVI with minimal variation

within the year. The Red, Blue and Green regions represent vegetation whose

maximum NDVI corresponds with the seasonal order in the RGB composite.

Figure 3.8 depicts the subset of the study region shown in Figures 3.7a and

3.7b as captured on Google Earth on 9th October 2015.
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(a) Winter-Spring-Summer MVC-NDVI

(b) Spring-Summer-Fall MVC-NDVI

Figure 3.7: RGB composites of the seasonal Maximum Value Composite
NDVI (MVC-NDVI) for a subset of the study area.
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Figure 3.8: Google Earth image on9th October 2015 for the same area subset
shown in Figure 3.7
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3.3.2 Crop-type Mapping Experiment

Classi�cation of peanuts was tested using the time-series dataset and knowl-

edge on location of cultivation. Peanuts are a popular crop in this region,

grown for their commercial valuew with approximately 75% of Japan's domes-

tic production being attributed to Chiba prefecture. From aerial and satellite

images, it is impossible to distinguish with certainty, one crop (e.g. peanuts)

from another (e.g. carrots) during the growing season, hence the need forin

situ data such as �eld photos. As such, in order to know which crop was

growing at a certain location at a given time, �eld photos or farm surveys are

necessary, during the growing season in every year since farmers change crops

cultivated from year to year, especially in the case of horticultural food crops.

Given that acquisition of such information is time consuming and costly, cre-

ative means of inferring and deciphering such information from existing data

are necessary. In this study, the post-harvest practice of jiboshi by peanut

farmers in Japan, makes it possible to know on which �elds peanuts had been

growing within at least a month from the time of harvesting.

After harvest, peanut pods will typically have approximately 50% moisture

which renders them prone to contamination with mycotoxins which are a food

safety concern and may lead to major economic losses (Dickens, 1973; Allen,

Sorenson and Peterson, 1971). Peanut farmers in Chiba prefecture will after

harvest, leave the peanut plants and pods in inverted windrows which allow

for air to circulate around the pod and for the moisture content to diminish

signi�cantly for about a week. Thereafter, the peanut plants and pods are

piled into solitary heaps as shown in Figure 3.9a in a process referred to as

jiboshi (drying on the ground) for about a month. These piles or heaps are
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referred to as bocchi and are visible from GE images as shown in Figure 3.9b,

thus allowing one to know that peanuts had been growing on that �eld or an

adjacent one within at least a month of the acquisition of the image. A total

of 378 Training and validation samples were collected within the study area

for locations where bocchi were visible in the GE image for 9th October, 2015.
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(a) Google Maps Street View of post-harvest peanut heaps known
as bocchi

(b) Google Earth view of bocchi shown in 3.9a on 9th October, 2015

Figure 3.9: Google Maps Street View and Google Earth views of peanuts
post-harvest practice on (9th October, 2015) used for identi�cation of location
cultivation (N35°37', E140°14)



Chapter 4

Results and Discussion

4.1 MODIS-Landsat Fusion

The performance of the fusion process in generating synthetic Landsat images

was evaluated quantitatively and qualitatively. The quantitative assessment of

the results was carried out via a correlation test of the ESTARFM Fusion NDVI

images and the corresponding available observed Landsat NDVI images for the

dates when cloud cover was less than 10%. A random sample of 2,000,000 pixels

in each fusion NDVI image and its corresponding Landsat image was selected

and scatterplots of fusion NDVI against observed NDVI generated in order to

examine the association between the two. Overall, there was strong positive

linear correlation with R 2 > 0.9 for all dates as depicted in Figure 4.2.

The highest correlation was found in the early fall images of October 9th

and 25th , 0.95 and 0.96 respectively, while the winter (10th January) and

early Spring (16th April) images had lower R 2 values of 0.9 and 0.91 respec-

tively. On examining the relative density distribution of NDVI in each image,

we see that there are three main clusters in the January and April images,

61
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(-0.5 < NDVI < 0), (0 < NDVI < 0.5) and NDVI > 0.6. Further, majority of

the outliers in these images, lie in the lower ranges (-0.75 < NDVI < 0). In the

subsequent October images, the trend appears to dissipate and a comet-like

con�guration with one cluster in the upper ranges, NDVI > 0.5, emerges. As

NDVI is a measure of vegetation vigor, the higher association and number of

clusters in the early fall images when vegetation is more vibrant compared to

the Winter and early Spring images, may be attributed to seasonal variations

and an indication of vegetation land cover density in a region. Further investi-

gation of this phenomenon is necessary and could provide interesting insights

into how to implement fusion for vegetation monitoring in studies of regions

with disparate climates and land cover characteristics.

Figure 4.3 shows NDVI temporal evolution in the smoothed fusion series and

the original Landsat 8 series, sampled from the main land cover classes in the

study area in a qualitative assessment of the fusion result. Several points per

land cover class were sampled and the mean NDVI across the study epoch in

both the fusion NDVI and observed NDVI time series stacks extracted. The

con�gurations or shapes of temporal pro�les in both data sets were analogous

though the amplitude in the observed NDVI stack was higher than in the fusion

stack. This is expected since ESTARFM fusion model is a weighted function

based model and it has been found that while these models adequately predict

changes in attributes of land cover, they assume that the rate of change between

the two reference periods is constant and may result in a muted prediction,

(Zhu et al., 2015; Liao et al., 2017 ). The di�erence in NDVI amplitude between

the fusion and observed time series stacks was not deemed to have negative

implications on achieving the objectives of this study since we were interested

in the attribute changes especially in the vegetation classes and these were well

captured, based on the con�gurations of the pro�les.
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(a) 2015-01-10 Scatterplot

(b) 2015-04-16 Scatterplot
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(a) 2015-10-09 Scatterplot

(b) 2015-10-25 Scatterplot

Figure 4.2: Scatterplots showing results of comparison of synthetic fusion
NDVI images with original Landsat images
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(a) Forest

(b) Cropland
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(c) Grassland

(d) Paddy
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(e) Urban

(f) All land cover/use types fusion NDVI pro�les

Figure 4.3: Comparison of synthetic and original Landsat NDVI time series
pro�les of major land cover types
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4.2 Cropland identi�cation and discrimination

Cropland extent in the context of this study was de�ned as all land used

for crop cultivation excluding paddy �elds. Figure 4.4 shows the results of

land use/cover classi�cation of the study area for the year of study with the

main land use/cover classes being cropland, forest, grassland paddy, urban and

water. The estimated area of croplands for the study area in 2015 was 85.5

Km2 and is as depicted in Figure 4.5a. Table 4.1 shows the random forest

classi�cation error matrix.

An overall classi�cation accuracy of 91.65% was achieved and the dominant

land cover classes of forest, grassland, urban and water and paddy had the

highest Producer's (PA)and User's accuracies (UA) of more than 90%. The

cropland area estimation had the lowest, albeit acceptable, PA and UA of

79.8% and 86.4% respectively, given the size and heterogeneity of the cropland

areas. Based on the classi�cation result, cropland area accounts for just over

10% of the total land cover (13.7%) and is therefore not a dominant land use/

cover class. As such, the classifcation accuracy was deemed to be su�cient.

Further, the intra-annual temporal evolution of NDVI of the grassland, paddy

and cropland land use/cover types as seen in Figure 4.3f shows the relative

similarity between cropland pro�les and paddy and grassland pro�les. Vege-

tation along urban features such as roads and banks of water bodies was also

misclassi�ed as cropland and paddy. This study's result was compared to the

Japan Aerospace Exploration Agency (JAXA) High Resolution Land Use Land

Cover (HRLULC) map and the Global Food Security-Support Analysis Data

30m (GFSAD30) maps.
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Figure 4.4: Land use/cover map of 2015 as mapped in this study
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4.2.1 JAXA HRLULC map comparison

The cropland area according to the JAXA HRLULC map was approximately

367.9 Km 2 which is signi�cantly higher than this study's estimate. In Sharma

et al. (2016) disparities between the land use/cover map produced in that

study, the JpLC-30m and the JAXA HRLULC (ver.14.02) were reported for all

land cover classes including cropland. It should be noted that in this study, we

compared our result to the more recently released JAXA HRLULC (ver.18.03)

in which reported improvements from the earlier version (ver. 16.09) included

an input data set that was more temporally speci�c (2014 to 2016) and visual

interpretation of training and validation data. The input data for the JAXA

HRLULC map included Landsat 8 images, ALOS-2/ PALSAR-2 25m 2015

mosaic dataset, ALOS PRISM Digital Surface Model (DSM) and auxiliary

datasets from the Geographical Survey Institute (GSI), Open Street Map and

Ministry of Agriculture, Forestry and Fisheries. Training data was acquired

from the crowd-sourced �eld photo database, SACLAJ and ground survey

information.

An overall classi�cation accuracy of 81.6% is reported for the JAXA HRLULC

map, with the highest PA and UA reported being that for the water class,

93.6% and 97.9% respectively. For the cropland class, the PA is 83.8 % and

the UA is reported as 74.1%. Arguably, the task of national land use/cover

mapping at the update rate demonstrated by JAXA is both arduous and

formidable, requiring continuous improvement in data inputs and methods.

These improvements require signi�cant monetary and technical investment

and the resulting product should be a re�ection of this. It was therefore neces-

sary to compare this study's result to this product, even though the production
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scale in this study was local, since the JAXA HRLULC is intended for use as a

base map for various applications (JAXA, 2018). Figures 4.5a and 4.5b depict

the cropland extent as estimated in this study and JAXA HRLULC map's

cropland respectively.

4.2.2 GFSAD30m map comparison

The GFSAD30 product covering Japan and other Northeastern and Southeast-

ern Asian countries is the GFSAD30mSEACE data set and was acquired since

it is the only global cropland dataset disseminated at 30m. The GFSAD30

product represents cropland and non-cropland globally and therefore does not

currently make a distinction between di�erent types of croplands, though plans

are afoot (Oliphant et al. (2017)). The cropland extent according to the GF-

SAD30 map is as shown in Figure 4.6 and the area is 129.4 Km2. Figure 4.7 is

a spatial overlay of the GFSAD cropland and this study's cropland and paddy

layers, showing that the former adequately captures the paddy �elds and com-

pares favorably with our result in that regard. However, upland croplands are

underestimated in comparison to both this study's result and JAXA HRLULC,

its limitations notwithstanding. Our result does overestimate paddy �elds with

a commission error of 2.3% and 4.15% as cropland and grassland respectively.

However, this is almost balanced out by misclassi�cation of some paddy �elds

as croplands. Using other metrics other than NDVI, for the same one-year

data-set such as the NDWI index or shape and texture features may resolve

this and enhance the accuracy of distinction between upland croplands and

paddy �elds.
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(a) Cropland extent as estimated in this study for year 2015
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(b) JAXA HRLULC cropland extent

Figure 4.5: Comparison of cropland extent of this study's result with JAXA
HRLULC map
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Figure 4.6: GFSAD30 cropland extent
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This study demonstrates that using the simple yet robust NDVI with high tem-

poral frequency, dynamic heterogeneous landscapes can be adequately mapped

and monitored using data available within a year. From a policy develop-

ment perspective, this aspect of our methodology is desirable as it allows for

changes taking place in the landscape to be catalogued using the most recent

data and disseminated with reasonable frequency and accuracy. Further, as

demonstrated by the comparison of our result with the JAXA HRLULC and

GFSAD30 maps, there is great value in local scale mapping e�orts that can

aid in the accurate production of national and global scale maps.

4.3 Estimation of cropping regimes

The estimation of cropping regimes, patterns or intensities within the year was

based on two premises. The �rst being that, in this area while irrigation is

available for most farmers and precipitation is stable thus favouring rainfed

cultivation, farming of horticultural crops, which are the main products, is

still dependent on seasonal market demand. Accordingly, while farmers are

not restricted by availability of water, types of crops planted will still in e�ect

be dictated by the season, hence indicating that cropping intensity can be as

high as seasonal changes. The second premise was that in order to maximize

returns on the land, since Chiba prefecture's climate is suitable for agriculture

even in the winter, farmers may tend to plant as many di�erent crops within

a year, with the only restriction being the duration of growth per crop.
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Table 4.2: Best periods for some of Chiba prefecture's representative crops

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cabbage

Carrot

Daikon Radish

Spinach

Taro

Turnip
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Table 4.2 shows the months when the market volume of some of Chiba pre-

fecture's representative crop products is high. From this table, the seasonal

nature of cultivation is apparent and while not exhaustive, it indicates that

for most farmers, depending on the crop, the cropping intensity varies since

for all crops apart from taro and daikon radish, market volume is high for

more than two seasons in an year. Due to the sensitive nature of rice paddy

�elds, they are typically not used for cultivation of other crops after harvest

within the year as this may upset the soils mineral balance. Consequently,

paddy �elds were expected to exhibit single cropping intensity. Figure 4.8

shows the map of estimated cropping patterns for the study area in 2015. The

previously stated suppositions regarding cropping intensity vis-a-vis upland

croplands and paddy �elds hold true with a few exceptions.
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Figure 4.8: Cropping regimes estimated in this study for the year 2015
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Cropping regimes estimation is essentially a change detection operation that is

speci�c to crop cover and when implemented for all land cover types, it yields

the land use/cover changes. Typically, land use/cover change evaluation is

carried out for periods longer than one year due to the assumption that signif-

icant and permanent changes that have e�ects on the character of a location's

land use/land cover take long. However, in urban and peri-urban landscapes,

these changes can be e�ected intra-annually especially in vibrant economies,

leading to rapid or even abrupt changes in the character and composition of

land use/cover. A simple way of identifying these changes is through the use of

bitemporal image analysis methods. However, as highlighted in Petitjean at al.

(2010), changes do not commence at the same time, nor do they take place over

the same period of time, necessitating more than two images since the number

of possible combinations of change are limitless. In addition, there are other

considerations impinging on the ability of classi�ers to detect abrupt changes

including; geometrical and spectral resolution, data acquisition frequency, at-

mospheric artefacts, application or user requirements and availability of or

access to baseline a priori information and ground reference data, that must

be taken into consideration. In this study, cropping regimes and intra-annual

changes in land use/ cover were estimated by considering that annual NDVI

evolution metrics in a dense time series provide a generalized feature space to

the classi�cation algorithm by capturing the salient features of phenological

variation without reference to the time of the year as described in Schneider

(2012). Changes from forest and grassland to mini-solar farms which are des-

ignated as urban land use/cover were detected after classi�cation as shown in

Figure 4.9. At the locations identi�ed, the land cover was classi�ed as urban

in the land use/cover classi�cation but classi�ed as double cropping in the

intra-annual change evaluation, indicating that there was a signi�cant change
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within the year. While the exact time of the change cannot be identi�ed,

comparison between GE images available for the 2015 and the previous year

2014 corroborate the occurence of such a change event. Figure 4.10 shows a

detailed representation at two (1 and 2) of the locations identi�ed with respect

to the Land Use/Cover and Cropping Regimes and Land Cover change maps

generated in this study for 2015. Figure 4.11 shows that in the GE image of

2014, both locations 1 and 2 were grassland areas which were converted to

solar farms, and therefore urban land cover, as seen in Figure 4.12.

4.4 Peanuts Mapping

Peanuts are an important crop for Chiba prefecture since approximately 75%

of Japan's domestic supply of peanuts comes from here, (Japan Brand, n.d.;

Ito, Aoki and Shimuzu, 2009). However, data on production of peanuts is

sparse and no statistical data is available from the Ministry of Agriculture,

Forestry and Fisheries. As dietary and nutrition trends change in Japan, the

demand for peanuts as a snack and peanuts based products such as peanut

butter is growing. Further, given the high quality of peanuts produced in

Japan and the government's drive towards strategic development of Japan's

agriculture for global supply as local food demand declines, it is important to

have information on peanuts production, (MAFF, 2017). Given the scarcity

of data, spatial reference data for classi�cation of peanut production units was

obtained via collection of samples for locations where the post-havest practice

of jiboshi was identi�ed on the google earth image for October 9th, 2015, as

explained in chapter 3. The overall classi�cation accuracy of peanuts versus

other crops was 67.1% with a producer's accuracy of 63.6% and user's accuracy

of 71.4%. This accuracies were deemed to be satisfactory since the number of
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reference data sample points was low (378) and random forest classi�cation

usually requires a large reference dataset in order to achieve high accuracies.

Figure ?? shows the results of the classi�cation of peanuts, while Table 4.3

shows the classi�cation matrix. More needs to be done to accurately map

peanuts but this study's result provides a starting point.
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Figure 4.13: Distinction of peanuts cultivation from other crops within the
study area for the year 2015
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Cropland area estimation and distinction from other land cover types in het-

erogeneous landscapes can be challenging due to inadequate information es-

pecially in a dynamic landscape. However, it is imperative that this kind of

information is available since it provides a basis for monitoring and managing

agricultural production. While the �eld of remote sensing has in the recent

years seen an increase in the number of sensors providing high and medium

spatial resolution (10m 30m) data, these sensors tend to have a lower tem-

poral resolution. On the other hand, low spatial resolution datasets such as

MODIS and NOAA-AVHRR (> 100m), have a higher temporal resoution due

to their large spatial footprint. However, applications such as agriculture re-

quire continuous data in order to accurately estimate the phenological and

biophysical properties. This is particularly true for croplands used for the cul-

tivation of high value horticultural crops, which typically have short growing

periods and whose numerous varieties result in spatially and temporally com-

90
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plex dynamics. The mapping of these croplands thus requires data that has

both high spatial and temporal resolution in order to adequately characterize

these complex landscapes and discriminate from other land cover types and

uses. This kind of data is currently unavailable due to technical and �nancial

trade-o�s that apply to construction of optical satellites in terms of spatial and

temporal resolution. In view of these limitations, fusion methods have been

developed with the aim of merging high spatial-low temporal resolution data

with high temporal-low spatial resolution data.

The main objective of this study was to evaluate mapping and monitoring of

urban and peri-urban agriculture in a complex landscape by exploiting multi-

resolution spatio-temporal information. Towards the achievement of this goal,

the speci�c objectives were:

1. To evaluate the application of fusion of multi-source satellite imagery to

generation of synthetic high spatio-temporal resolution time series

2. To distinguish cropland from non-cropland and make a distinction be-

tween upland cropland and paddy rice �elds with limited reference data

3. To extract temporal phenological metrics to enable cropping pattern or

cropping intensity estimation in a limited reference data scenario

4. To test the applicability of empirical data, speci�cally post-harvest prac-

tices information, in distinguishing peanuts from other crops in the study

area

In this study, we demonstrated that using intermittent moderate spatial res-

olution Landsat imagery and low spatial resolution daily MODIS surface re-

�ectance imagery, information that can be used to distinguish croplands from



5.1. Conclusions 92

other land cover types can be retrieved. Fusion of the MODIS NDVI and

Landsat NDVI images using the ESTARFM algorithm yielded reliable syn-

thetic Landsat imagery with R2 > 0.9. The use of daily MODIS data proved

to be bene�cial since the beginning of the synthetic image time series can

be set with respect to the available reference Landsat images thus allowing for

quantitative evaluation of the fusion time series. An Index-then-Blend (IB) ap-

proach was used in this study since the fusion process can be time consuming

especially if implemented on a band-by-band basis. The results of this study

indicate that for operation local scale agricultural monitoring, the classi�ca-

tion of high spatio-temporal resolution time series can be easily implemented.

This is further demonstrated by a test carried out on the application of the

cropland mapping methodology developed in this study, on a cropland area

with di�erent socio-economic, geographical and climatic characteristics from

this study's research area, presented in A.1.

The regular moderate resolution image time series with an 8-day interval

proved to be adequate to the task of estimating cropland area and cropping pat-

terns in a complex heterogeneous urban landscape. In addition, using knowl-

edge of post-harvest practices of peanut farmers in the region, we were able to

distinguish peanuts from other crops with an acceptable accuracy. The method

used can be extended to crop type mapping provided that adequate ground

truth or reference data is available. In a world that is increasingly being doc-

umented through amateur photography, various platforms for the mining and

cataloguing of photographs shared on the internet for remote sensing product

validation have emerged. The proliferation of crowd-sourced reference libraries

such as the Site-based data for Assessment of Changing Landcover by JAXA

(SACLAJ) and the Earth Observation and Modelling Facility's Field Photo

will enable better construction of reference datasets for training and valida-
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tion of classi�cation models.

5.2 Contributions

This thesis makes novel contributions to the �eld of agricultural remote sensing

for agricultural mapping and monitoring, especially in distinguishing croplands

from other land cover types using intra-annual time series analysis.

The speci�c contributions of this research are summarised as follows:

1. We have classi�ed land use and land cover using a temporally speci�c

dataset and scalable analytical framework thus generating an annual land

use/ cover map that can allow for operational annual land cover change

monitoring.

2. We estimated annual cropland extent and reliably distinguished upland

cropland from paddy rice as demonstrated via comparison with the ex-

isting national scale JAXA HRLULC.

3. We used a novel means of acquiring crop type information, speci�c to

peanuts and based on post-harvest practices. We then tested the appli-

cability of such data to peanuts classi�cation and obtained satisfactory

results.

5.3 Future Work

The research presented in this thesis will be extended in a variety of ways in

the near future, including:
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1. In this study, we used only the NDVI index as a predictor in a machine

learning classi�cation model. In future, we shall incorporate other indices

using the same IB fusion approach and evaluate the performance.

2. This study was implemented at a local scale and while we recognize

the importance of local datasets, it is hoped that the methodology can

be scaled up to national and global scales. There are of course many

factors that may restrict wholesale application of the method as-is but

the overarching goal is to have a method that is easily operationalized.

Using a simple index like NDVI has advantages with respect to inter-

and trans-disciplinary cooperation. However, there are limitations that

may arise as a result of data availability, computational resources and

expertise.

3. The proliferation of crowd-sourced �eld photo libraries and the nearly

universal coverage of Google Maps Street View provides an excellent

opportunity for building the crop spectral library. We are currently eval-

uating this approach using the 2012 dataset for Chiba Prefecture and

hope for positive results.



Bibliography

[1] S Abdikan, FB Sanli, M Ustuner, and F Calò. �Land cover mapping us-

ing Sentinel-1 SAR data�. In: The International Archives of Photogram-

metry, Remote Sensing and Spatial Information Sciences 41 (2016),

p. 757.

[2] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. �E�cient sim-

ilarity search in sequence databases�. In: International conference on

foundations of data organization and algorithms. Springer, Berlin, Hei-

delberg. 1993, pp. 69�84.

[3] Adriana Allen. �Environmental planning and management of the peri-

urban interface: perspectives on an emerging �eld�. In: Environment

and urbanization 15.1 (2003), pp. 135�148.

[4] WS Allen, JW Sorenson, and NK Person Jr. �Guide for Harvesting,

Handling and Drying Peanuts.� In: Lea�et/Texas Agricultural Extension

Service; no. 1029. (1971).

[5] Luciano Alparone, Bruno Aiazzi, Stefano Baronti, and Andrea Garzelli.

Remote sensing image fusion. Crc Press, 2015.

[6] James Richard Anderson. A land use and land cover classi�cation sys-

tem for use with remote sensor data. Vol. 964. US Government Printing

O�ce, 1976.

95



BIBLIOGRAPHY 96

[7] Kwasi Appeaning Addo. �Urban and peri-urban agriculture in devel-

oping countries studied using remote sensing and in situ methods�. In:

Remote Sensing 2.2 (2010), pp. 497�513.

[8] Dalila Attaf, Djamila Hamdadou, Sidahmed Benabderrahmane, and

Aicha Lafrid. �Satellite Images Analysis with Symbolic Time Series: A

Case Study of the Algerian Zone�. In: arXiv preprint arXiv:1606.07784

(2016).

[9] Gertrude Atukunda and Daniel Maxwell. �Farming in the city of Kam-

pala: Issues for urban management�. In: African Urban Quarterly 11.2-3

(1996), pp. 264�275.

[10] Clement Atzberger. �Advances in remote sensing of agriculture: Con-

text description, existing operational monitoring systems and major

information needs�. In: Remote sensing 5.2 (2013), pp. 949�981.

[11] Etienne Bartholome and Allan S Belward. �GLC2000: a new approach

to global land cover mapping from Earth observation data�. In: Inter-

national Journal of Remote Sensing 26.9 (2005), pp. 1959�1977.

[12] Mariana Belgiu and Ovidiu Csillik. �Sentinel-2 cropland mapping us-

ing pixel-based and object-based time-weighted dynamic time warping

analysis�. In: Remote sensing of environment 204 (2018), pp. 509�523.

[13] Chandrashekhar M Biradar, Prasad S Thenkabail, Praveen Noojipady,

Yuanjie Li, Venkateswarlu Dheeravath, Hugh Turral, Manohar Velpuri,

Murali K Gumma, Obi Reddy P Gangalakunta, Xueliang L Cai, et al.

�A global map of rainfed cropland areas (GMRCA) at the end of last

millennium using remote sensing�. In: International journal of applied

earth observation and geoinformation 11.2 (2009), pp. 114�129.



BIBLIOGRAPHY 97

[14] JW Birch. �Rural Land Use and Location Theory: A Review�. In: Eco-

nomic Geography 39.3 (1963), pp. 273�276.

[15] S Bontemps, P Defourny, J Radoux, E Van Bogaert, C Lamarche, F

Achard, P Mayaux, M Boettcher, C Brockmann, G Kirches, et al. �Con-

sistent global land cover maps for climate modelling communities: cur-

rent achievements of the ESA's land cover CCI�. In: Proceedings of the

ESA Living Planet Symposium. 2013, pp. 9�13.

[16] Sophie Bontemps, Pierre Defourny, Eric V Bogaert, Olivier Arino, Vasileios

Kalogirou, and Jose R Perez. GLOBCOVER 2009 - Products descrip-

tion and validation report. Tech. rep. Louvain-la-Neuve, Belgium: Uni-

versite Catholique de Louvain and European Space Agency, 2011.

[17] Sophie Bontemps, M Herold, L Kooistra, A Van Groenestijn, A Hart-

ley, O Arino, Inès Moreau, and Pierre Defourny. �Revisiting land cover

observation to address the needs of the climate modeling community.�

In: Biogeosciences 9.6 (2012).

[18] Goedele Van den Broeck and Miet Maertens. �Horticultural exports

and food security in developing countries�. In: Global food security 10

(2016), pp. 11�20.

[19] Kelly Bronson and Irena Knezevic. �Big Data in food and agriculture�.

In: Big Data & Society 3.1 (2016), p. 2053951716648174.

[20] Molly E Brown, Jorge E Pinzón, Kamel Didan, Je�rey T Morisette, and

Compton J Tucker. �Evaluation of the consistency of long-term NDVI

time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS,

and Landsat ETM+ sensors�. In: IEEE Transactions on Geoscience and

Remote Sensing 44.7 (2006), pp. 1787�1793.



BIBLIOGRAPHY 98

[21] Toby N Carlson and David A Ripley. �On the relation between NDVI,

fractional vegetation cover, and leaf area index�. In: Remote sensing of

Environment 62.3 (1997), pp. 241�252.

[22] Angela Katherine Castles. �A new identity for the peri-urban�. PhD

thesis. University of Tasmania, 2014.

[23] Kin-Pong Chan and Wai-Chee Fu. �E�cient time series matching by

wavelets�. In: icde. IEEE. 1999, p. 126.

[24] Bin Chen, Bo Huang, and Bing Xu. �Comparison of spatiotemporal

fusion models: A review�. In: Remote Sensing 7.2 (2015), pp. 1798�

1835.

[25] Qing Cheng, Huanfeng Shen, Liangpei Zhang, and Zhenghong Peng.

�Missing Information Reconstruction for Single Remote Sensing Images

Using Structure-Preserving Global Optimization�. In: IEEE Signal Pro-

cessing Letters 24.8 (2017), pp. 1163�1167.

[26] Kenneth M Chomitz, Piet Buys, and Timothy S Thomas. Quantifying

the rural-urban gradient in Latin America and the Caribbean. Vol. 3634.

World Bank Publications, 2005.

[27] Alexis Comber, Peter Fisher, and Richard Wadsworth. �What is land

cover?� In: Environment and Planning B: Planning and Design 32.2

(2005), pp. 199�209.

[28] William H Cooper, J Michael Donnelly, and Renée Johnson. �Japan's

2011 earthquake and tsunami: economic e�ects and implications for the

United States�. In: Congressional research service (2011).

[29] Mihai Datcu, Klaus Seidel, Andrea Pelizarri, Michael Schroeder, Hubert

Rehrauer, Gintautas Palubinskas, and Marc Walessa. �Image informa-

tion mining and remote sensing data interpretation�. In: Geoscience and



BIBLIOGRAPHY 99

Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE

2000 International. Vol. 7. IEEE. 2000, pp. 3057�3059.

[30] RS DeFries and JRG Townshend. �NDVI-derived land cover classi�ca-

tions at a global scale�. In: International Journal of Remote Sensing

15.17 (1994), pp. 3567�3586.

[31] Nicolas Delbart, Vaudour Emmanuelle, Maignan Fabienne, Ottlé Cather-

ine, and Gilliot Jean-Marc. �Combining optical remote sensing, agri-

cultural statistics and �eld observations for culture recognition over a

peri-urban region�. In: EGU General Assembly Conference Abstracts.

Vol. 19. 2017, p. 3585.

[32] Antonio Di Gregorio. Land cover classi�cation system: classi�cation

concepts and user manual: LCCS. Vol. 8. Food & Agriculture Org.,

2005.

[33] Donegan E. Finegold Y. Latham J. Jonckheere I. Di Gregorio A. Henry

M. and Cumani R. Land Cover Classi�cation System: Software Version

3. 2016. url: http://www.fao.org/3/a-i5232e.pdf.

[34] JW Dickens. �Peanut curing and post-harvest physiology�. In: Peanuts

Culture and Uses (1973).

[35] Ntwali Didier. �Comparison of spatial and temporal cloud coverage de-

rived from CloudSat, CERES, ISCCP and their relationship with pre-

cipitation over Africa�. In: Am J Remote Sens 3.2 (2015), pp. 17�28.

[36] Jean-Paul Donnay, Mike J Barnsley, and Paul A Longley. Remote sens-

ing and urban analysis: GISDATA 9. CRC Press, 2014.

[37] Peijun Du, Alim Samat, Björn Waske, Sicong Liu, and Zhenhong Li.

�Random forest and rotation forest for fully polarized SAR image clas-

http://www.fao.org/3/a-i5232e.pdf


BIBLIOGRAPHY 100

si�cation using polarimetric and spatial features�. In: ISPRS Journal of

Photogrammetry and Remote Sensing 105 (2015), pp. 38�53.

[38] John S Du�eld and Brian Woodall. �Japan's new basic energy plan�.

In: Energy Policy 39.6 (2011), pp. 3741�3749.

[39] Christine Eigenbrod and Nazim Gruda. �Urban vegetable for food se-

curity in cities. A review�. In: Agronomy for Sustainable Development

35.2 (2015), pp. 483�498.

[40] Erle C Ellis, Jed O Kaplan, Dorian Q Fuller, Steve Vavrus, Kees Klein

Goldewijk, and Peter H Verburg. �Used planet: A global history�. In:

Proceedings of the National Academy of Sciences (2013), p. 201217241.

[41] Irina V Emelyanova, Tim R McVicar, Thomas G Van Niel, Ling Tao Li,

and Albert IJM van Dijk. �Assessing the accuracy of blending Landsat�

MODIS surface re�ectances in two landscapes with contrasting spatial

and temporal dynamics: A framework for algorithm selection�. In: Re-

mote Sensing of Environment 133 (2013), pp. 193�209.

[42] Kirsten L Findell, Elena Shevliakova, PCD Milly, and Ronald J Stouf-

fer. �Modeled impact of anthropogenic land cover change on climate�.

In: Journal of Climate 20.14 (2007), pp. 3621�3634.

[43] DWJ Foeken and Alice Mboganie-Mwangi. Increasing food security through

urban farming in Nairobi. DSE, Felda�ng, 2000.

[44] Giles M Foody. �Thematic map comparison�. In: Photogrammetric En-

gineering & Remote Sensing 70.5 (2004), pp. 627�633.

[45] Gerald Forkuor and Olufunke Co�e. �Dynamics of land-use and land-

cover change in Freetown, Sierra Leone and its e�ects on urban and

peri-urban agriculture�a remote sensing approach�. In: International

Journal of Remote Sensing 32.4 (2011), pp. 1017�1037.



BIBLIOGRAPHY 101

[46] Ste�en Fritz, Ian McCallum, Christian Schill, Christoph Perger, Linda

See, Dmitry Schepaschenko, Marijn Van der Velde, Florian Kraxner,

and Michael Obersteiner. �Geo-Wiki: An online platform for improving

global land cover�. In: Environmental Modelling & Software 31 (2012),

pp. 110�123.

[47] Feng Gao, William P Kustas, and Martha C Anderson. �A data min-

ing approach for sharpening thermal satellite imagery over land�. In:

Remote Sensing 4.11 (2012), pp. 3287�3319.

[48] Feng Gao, Je� Masek, Matt Schwaller, and Forrest Hall. �On the blend-

ing of the Landsat and MODIS surface re�ectance: Predicting daily

Landsat surface re�ectance�. In: IEEE Transactions on Geoscience and

Remote sensing 44.8 (2006), pp. 2207�2218.

[49] Hassan Ghassemian. �A review of remote sensing image fusion meth-

ods�. In: Information Fusion 32 (2016), pp. 75�89.

[50] Cristina Gómez, Joanne C White, and Michael A Wulder. �Optical

remotely sensed time series data for land cover classi�cation: A review�.

In: ISPRS Journal of Photogrammetry and Remote Sensing 116 (2016),

pp. 55�72.

[51] George Grekousis, Giorgos Mountrakis, and Marinos Kavouras. �An

overview of 21 global and 43 regional land-cover mapping products�.

In: International Journal of Remote Sensing 36.21 (2015), pp. 5309�

5335.

[52] Åsa Gren and Erik Andersson. �Being e�cient and green by rethinking

the urban-rural divide�Combining urban expansion and food produc-

tion by integrating an ecosystem service perspective into urban plan-

ning�. In: Sustainable cities and society 40 (2018), pp. 75�82.



BIBLIOGRAPHY 102

[53] Barry Haack and Ron Mahabir. �Relative value of radar and optical

data for land cover/use mapping: Peru example�. In: International Jour-

nal of Image and Data Fusion 9.1 (2018), pp. 1�20.

[54] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts

and techniques. Elsevier, 2011.

[55] Pengyu Hao, Yulin Zhan, Li Wang, Zheng Niu, and Muhammad Shakir.

�Feature selection of time series MODIS data for early crop classi�cation

using random forest: A case study in Kansas, USA�. In: Remote Sensing

7.5 (2015), pp. 5347�5369.

[56] Onosato Masahiko Hori Masahiro Shiomi Kei Hashimoto Hidetoshiro

Tadashi Takeo. �Development of High Accuracy Land Cover Classi�-

cation Method Using Multiple Period Optical Observation Data�. In:

Journal of Japan Remote Sensing Society 34.2 (2014), pp. 102�112.

[57] Masatsugu Hayashi and Larry Hughes. �The policy responses to the

Fukushima nuclear accident and their e�ect on Japanese energy secu-

rity�. In: Energy Policy 59 (2013), pp. 86�101.

[58] Khaled Hazaymeh and Quazi K Hassan. �Spatiotemporal image-fusion

model for enhancing the temporal resolution of Landsat-8 surface re-

�ectance images using MODIS images�. In: Journal of Applied Remote

Sensing 9.1 (2015), p. 096095.

[59] Konrad Hentze, Frank Thonfeld, and Gunter Menz. �Evaluating crop

area mapping from MODIS time-series as an assessment tool for Zim-

babwe's �fast track land reform programme��. In: PloS one 11.6 (2016),

e0156630.



BIBLIOGRAPHY 103

[60] Txomin Hermosilla, Michael A Wulder, Joanne C White, Nicholas C

Coops, and Geordie W Hobart. �An integrated Landsat time series

protocol for change detection and generation of annual gap-free sur-

face re�ectance composites�. In: Remote Sensing of Environment 158

(2015), pp. 220�234.

[61] Shuji Hisano. �Food security politics and alternative agri-food initia-

tives in Japan�. In: Kyoto University Graduate School of Economics

(2015).

[62] Richard A Houghton, Jo I House, Julia Pongratz, Guido R Van Der

Werf, Ruth S DeFries, Mathew C Hansen, C Le Quéré, and Navin Ra-

mankutty. �Carbon emissions from land use and land-cover change�. In:

Biogeosciences 9.12 (2012), pp. 5125�5142.

[63] David L Iaquinta, Axel W Drescher, et al. �De�ning the peri-urban:

rural-urban linkages and institutional connections�. In: Land reform 2

(2000), pp. 8�27.

[64] Toshichika Iizumi and Navin Ramankutty. �How do weather and cli-

mate in�uence cropping area and intensity?� In: Global Food Security

4 (2015), pp. 46�50.

[65] Markus Immitzer, Francesco Vuolo, and Clement Atzberger. �First ex-

perience with Sentinel-2 data for crop and tree species classi�cations in

central Europe�. In: Remote Sensing 8.3 (2016), p. 166.

[66] Jordi Inglada, Marcela Arias, Benjamin Tardy, Olivier Hagolle, Silvia

Valero, David Morin, Gérard Dedieu, Guadalupe Sepulcre, Sophie Bon-

temps, Pierre Defourny, et al. �Assessment of an operational system for

crop type map production using high temporal and spatial resolution



BIBLIOGRAPHY 104

satellite optical imagery�. In: Remote Sensing 7.9 (2015), pp. 12356�

12379.

[67] JAXA. High Resolution Land Use and Land Cover Map Products. Sept.

2018. url: https://www.eorc.jaxa.jp/ALOS/en/lulc/data/index.

htm#vietnam_v18.09.

[68] Gao Jie. �Data Mining from Remote Sensing Snow and Vegetation

Product�. In: Advances in Data Mining Knowledge Discovery and Ap-

plications. InTech, 2012.

[69] Renée Johnson. �Japan's 2011 earthquake and tsunami: Food and agri-

culture implications�. In: Current Politics and Economics of Northern

and Western Asia 20.4 (2011), p. 651.

[70] Andreea Julea, Nicolas Méger, Philippe Bolon, Christophe Rigotti, Marie-

Pierre Doin, Cécile Lasserre, Emmanuel Trouvé, and Vasile N Lazarescu.

�Unsupervised spatiotemporal mining of satellite image time series us-

ing grouped frequent sequential patterns�. In: IEEE Transactions on

Geoscience and Remote Sensing 49.4 (2011), pp. 1417�1430.

[71] Yves Julien and José A Sobrino. �Comparison of cloud-reconstruction

methods for time series of composite NDVI data�. In: Remote Sensing

of Environment 114.3 (2010), pp. 618�625.

[72] ZD Kalensky. �AFRICOVER land cover database and map of Africa�.

In: Canadian journal of remote sensing 24.3 (1998), pp. 292�297.

[73] Jed O Kaplan, Kristen M Krumhardt, Erle C Ellis, William F Rud-

diman, Carsten Lemmen, and Kees Klein Goldewijk. �Holocene car-

bon emissions as a result of anthropogenic land cover change�. In: The

Holocene 21.5 (2011), pp. 775�791.

https://www.eorc.jaxa.jp/ALOS/en/lulc/data/index.htm#vietnam_v18.09
https://www.eorc.jaxa.jp/ALOS/en/lulc/data/index.htm#vietnam_v18.09


BIBLIOGRAPHY 105

[74] Rajmita Kar, GP Obi Reddy, Nirmal Kumar, and SK Singh. �Mon-

itoring spatio-temporal dynamics of urban and peri-urban landscape

using remote sensing and GIS�A case study from Central India�. In:

The Egyptian Journal of Remote Sensing and Space Science (2018).

[75] BK Kenduiywo, D Bargiel, and U Soergel. �Spatial-temporal condi-

tional random �elds crop classi�cation from TerraSAR-X Images.� In:

ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Informa-

tion Sciences 2 (2015).

[76] Eamonn J Keogh and Michael J Pazzani. �Scaling up dynamic time

warping for datamining applications�. In: Proceedings of the sixth ACM

SIGKDD international conference on Knowledge discovery and data

mining. ACM. 2000, pp. 285�289.

[77] Jeremy T Kerr and Marsha Ostrovsky. �From space to species: ecolog-

ical applications for remote sensing�. In: Trends in ecology & evolution

18.6 (2003), pp. 299�305.

[78] Kees Klein Goldewijk, Arthur Beusen, Gerard Van Drecht, and Martine

De Vos. �The HYDE 3.1 spatially explicit database of human-induced

global land-use change over the past 12,000 years�. In: Global Ecology

and Biogeography 20.1 (2011), pp. 73�86.

[79] Steven M Kloiber, Robb D Macleod, Aaron J Smith, Joseph F Knight,

and Brian J Huberty. �A semi-automated, multi-source data fusion up-

date of a wetland inventory for east-central Minnesota, USA�. In: Wet-

lands 35.2 (2015), pp. 335�348.

[80] Nataliia Kussul, Andrii Shelestov, Mykola Lavreniuk, Alexei Novikov,

and Bohdan Yailymov. �Fusion Of Sentinel-1A And Sentinel-1B Data

To Discover Of Crop Planting And Crop Phenology Phases�. In: (2017).



BIBLIOGRAPHY 106

[81] Celine Lamarche, Sophie Bontemps, Astrid Verhegghen, Jullien Radoux,

Eric Vanbogaert, Vasileios Kalogirou, Frank Martin Seifert, Olivier Arino,

and Pierre Defourny. �Characterizing The Surface Dynamics For Land

Cover Mapping: Current Achievements Of The ESA CCI Land Cover�.

In: ESA Special Publication 72279 (2013).

[82] Marie-Julie Lambert, François Waldner, and Pierre Defourny. �Crop-

land mapping over Sahelian and Sudanian agrosystems: A knowledge-

based approach using PROBA-V time series at 100-m�. In: Remote

Sensing 8.3 (2016), p. 232.

[83] Valentine Lebourgeois, Stéphane Dupuy, Élodie Vintrou, Maël Ame-

line, Suzanne Butler, and Agnès Bégué. �A combined random forest and

OBIA classi�cation scheme for mapping smallholder agriculture at dif-

ferent nomenclature levels using multisource data (simulated Sentinel-2

time series, VHRS and DEM)�. In: Remote Sensing 9.3 (2017), p. 259.

[84] Diana Lee-Smith and Pyar Ali Memon. Kenya. Urban agriculture in

Kenya. 1994.

[85] Antoine Lefebvre. Feasibility study about the mapping and monitoring of

green linear features based on VHR. Tech. rep. Systèmes d'Information

à Référence Spatiale (SIRS), 2014. url: https://land.copernicus.

eu/user-corner/technical-library/study-lead-by-sirs.

[86] Erika Lepers, Eric F Lambin, Anthony C Janetos, Ruth DeFries, Fred-

eric Achard, Navin Ramankutty, and Robert J Scholes. �A synthesis of

information on rapid land-cover change for the period 1981�2000�. In:

AIBS Bulletin 55.2 (2005), pp. 115�124.

https://land.copernicus.eu/user-corner/technical-library/study-lead-by-sirs
https://land.copernicus.eu/user-corner/technical-library/study-lead-by-sirs


BIBLIOGRAPHY 107

[87] Le Li, Yaolong Zhao, Yingchun Fu, Yaozhong Pan, Le Yu, and Qinchuan

Xin. �High resolution mapping of cropping cycles by fusion of landsat

and MODIS data�. In: Remote Sensing 9.12 (2017), p. 1232.

[88] Chunhua Liao, Jinfei Wang, Ian Pritchard, Jiangui Liu, and Jiali Shang.

�A spatio-temporal data fusion model for generating NDVI time series

in heterogeneous regions�. In: Remote Sensing 9.11 (2017), p. 1125.

[89] Martin Liggins II, David Hall, and James Llinas. Handbook of multi-

sensor data fusion: theory and practice. CRC press, 2017.

[90] Thomas Lillesand, Ralph W Kiefer, and Jonathan Chipman. Remote

sensing and image interpretation. John Wiley & Sons, 2014.

[91] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. �Experi-

encing SAX: a novel symbolic representation of time series�. In: Data

Mining and knowledge discovery 15.2 (2007), pp. 107�144.

[92] David B Lobell and Gregory P Asner. �Cropland distributions from

temporal unmixing of MODIS data�. In: Remote Sensing of Environ-

ment 93.3 (2004), pp. 412�422.

[93] F Löw, U Michel, S Dech, and C Conrad. �Impact of feature selection

on the accuracy and spatial uncertainty of per-�eld crop classi�cation

using support vector machines�. In: ISPRS journal of photogrammetry

and remote sensing 85 (2013), pp. 102�119.

[94] Shuaib Lwasa, Frank Mugagga, Bolanle Wahab, David Simon, John

Connors, and Corrie Gri�th. �Urban and peri-urban agriculture and

forestry: Transcending poverty alleviation to climate change mitigation

and adaptation�. In: Urban Climate 7 (2014), pp. 92�106.



BIBLIOGRAPHY 108

[95] M Mattingly and A Allen. Living Between Urban and Rural Areas:

Guidelines for Strategic Environment Planning and Management of the

Peri-Urban Interface. 2001.

[96] Nicolas Matton, Guadalupe Sepulcre Canto, François Waldner, Silvia

Valero, David Morin, Jordi Inglada, Marcela Arias, Sophie Bontemps,

Benjamin Koetz, and Pierre Defourny. �An automated method for an-

nual cropland mapping along the season for various globally-distributed

agrosystems using high spatial and temporal resolution time series�. In:

Remote Sensing 7.10 (2015), pp. 13208�13232.

[97] Beacon Mbiba and Marie Huchzermeyer. �Contentious development:

peri-urban studies in sub-Saharan Africa�. In: Progress in Development

Studies 2.2 (2002), pp. 113�131.

[98] Roger M McCoy. Field methods in remote sensing. Guilford Press, 2005.

[99] Duncan McGregor and David Simon. The peri-urban interface: Ap-

proaches to sustainable natural and human resource use. Routledge,

2012.

[100] Koreen Millard and Murray Richardson. �On the importance of train-

ing data sample selection in random forest image classi�cation: A case

study in peatland ecosystem mapping�. In: Remote sensing 7.7 (2015),

pp. 8489�8515.

[101] John Monteith and Mike Unsworth. Principles of environmental physics.

Academic Press, 2007.

[102] Brice Mora, Nandin-Erdene Tsendbazar, Martin Herold, and Olivier

Arino. �Global land cover mapping: Current status and future trends�.

In: Land Use and Land Cover Mapping in Europe. Springer, 2014,

pp. 11�30.



BIBLIOGRAPHY 109

[103] Luc JA Mougeot. �Urban agriculture: De�nition, presence, potentials

and risks, and policy challenges�. In: Cities feeding people series; rept.

31 (2000).

[104] Bouchra Nechad, Aida Alvera-Azcaràte, Kevin Ruddick, and Naomi

Greenwood. �Reconstruction of MODIS total suspended matter time se-

ries maps by DINEOF and validation with autonomous platform data�.

In: Ocean Dynamics 61.8 (2011), pp. 1205�1214.

[105] Okada Norio, Tao Ye, Yoshio Kajitani, Peijun Shi, and Hirokazu Tatano.

�The 2011 eastern Japan great earthquake disaster: Overview and com-

ments�. In: International Journal of Disaster Risk Science 2.1 (2011),

pp. 34�42.

[106] Davide Notti, Fabiana Calò, Francesca Cigna, Michele Manunta, Ger-

ardo Herrera, Matteo Berti, Claudia Meisina, Deodato Tapete, and

Francesco Zucca. �A user-oriented methodology for DInSAR time series

analysis and interpretation: Landslides and subsidence case studies�. In:

Pure and Applied Geophysics 172.11 (2015), pp. 3081�3105.

[107] I Wayan Nuarsa, Fumihiko Nishio, and Chiharu Hongo. �Spectral Char-

acteristics and Mapping of Rice Plants Using Multi-Temporal Landsat

Data�. In: Journal of Agricultural Science 3.1 (2011).

[108] A. J. Oliphant, P. S. Thenkabail, P. Teluguntla, J. Xiong, R. G. Con-

galton, K. Yadav, R. Massey, M. K. Gumma, and C. Smith. �NASA

Making Earth System Data Records for Use in Research Environments

(MEaSUREs) Global Food Security-support Analysis Data (GFSAD)

Cropland Extent 2015 Southeast Asia 30 m V001�. In: NASA EOSDIS

Land Processes DAAC (2017).



BIBLIOGRAPHY 110

[109] Ina Opitz, Regine Berges, Annette Piorr, and Thomas Krikser. �Con-

tributing to food security in urban areas: Di�erences between urban

agriculture and peri-urban agriculture in the Global North�. In: Agri-

culture and Human Values 33.2 (2016), pp. 341�358.

[110] Francesco Orsini, Daniela Gasperi, Livia Marchetti, Chiara Piovene,

Stefano Draghetti, Solange Ramazzotti, Giovanni Bazzocchi, and Gior-

gio Gianquinto. �Exploring the production capacity of rooftop gardens

(RTGs) in urban agriculture: the potential impact on food and nutri-

tion security, biodiversity and other ecosystem services in the city of

Bologna�. In: Food Security 6.6 (2014), pp. 781�792.

[111] Jong-Geol PARK, Ryutaro TATEISHI, and Masayuki MATSUOKA.

�A proposal of the Temporal Window Operation (TWO) method to

remove high-frequency noises in AVHRR NDVI time series data�. In:

Journal of the Japan Society of Photogrammetry and Remote Sensing

38.5 (1999), pp. 36�47.

[112] Janila Pasupuleti, SN Nigam, Manish K Pandey, P Nagesh, and Ra-

jeev K Varshney. �Groundnut improvement: use of genetic and genomic

tools�. In: Frontiers in plant science 4 (2013), p. 23.

[113] François Petitjean, Pierre Gançarski, Florent Masseglia, and Germain

Forestier. �Analysing satellite image time series by means of pattern

mining�. In: International Conference on Intelligent Data Engineering

and Automated Learning. Springer. 2010, pp. 45�52.

[114] Christine Pohl and John van Genderen. �Structuring contemporary re-

mote sensing image fusion�. In: International Journal of Image and Data

Fusion 6.1 (2015), pp. 3�21.



BIBLIOGRAPHY 111

[115] Christine Pohl and John Van Genderen. Remote sensing image fusion:

A practical guide. Crc Press, 2016.

[116] Cle Pohl and John L Van Genderen. �Review article multisensor im-

age fusion in remote sensing: concepts, methods and applications�. In:

International journal of remote sensing 19.5 (1998), pp. 823�854.

[117] Julia Pongratz, Christian Reick, Thomas Raddatz, and Martin Claussen.

�A reconstruction of global agricultural areas and land cover for the last

millennium�. In: Global Biogeochemical Cycles 22.3 (2008).

[118] John R Porter, Robert Dyball, David Dumaresq, Lisa Deutsch, and

Hirotaka Matsuda. �Feeding capitals: Urban food security and self-

provisioning in Canberra, Copenhagen and Tokyo�. In: Global food se-

curity 3.1 (2014), pp. 1�7.

[119] Niraj Priyadarshi, VM Chowdary, YK Srivastava, Iswar Chandra Das,

and Chandra Shekhar Jha. �Reconstruction of time series MODIS EVI

data using de-noising algorithms�. In:Geocarto International 33.10 (2018),

pp. 1095�1113.

[120] Navin Ramankutty and Jonathan A Foley. �Characterizing patterns

of global land use: An analysis of global croplands data�. In: Global

Biogeochemical Cycles 12.4 (1998), pp. 667�685.

[121] Navin Ramankutty and Jonathan A Foley. �Estimating historical changes

in global land cover: Croplands from 1700 to 1992�. In: Global biogeo-

chemical cycles 13.4 (1999), pp. 997�1027.

[122] Fabrizio Ramoino, Florin Tutunaru, Fabrizio Pera, and Olivier Arino.

�Ten-Meter Sentinel-2A Cloud-Free Composite�Southern Africa 2016�.

In: Remote Sensing 9.7 (2017), p. 652.



BIBLIOGRAPHY 112

[123] John Alan Richards. Remote sensing digital image analysis: an intro-

duction. 5th. Heidelberg: Springer, 2013.

[124] John Rogan and DongMei Chen. �Remote sensing technology for map-

ping and monitoring land-cover and land-use change�. In: Progress in

planning 61.4 (2004), pp. 301�325.

[125] Maria Esther Sanz Sanz, Davide Martinetti, and Claude Napoleone.

�Operational modelling of peri-urban farmland for food planning in

Mediterranean region�. In: 8. Annual Conference of the AESOP Sus-

tainable Food Planning group. 2017, 159�p.

[126] Michael Schmitt, Florence Tupin, and Xiao Xiang Zhu. �Fusion of SAR

and optical remote sensing data�Challenges and recent trends�. In:

Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE In-

ternational. IEEE. 2017, pp. 5458�5461.

[127] Michael Schmitt and Xiao Xiang Zhu. �Data fusion and remote sens-

ing: An ever-growing relationship�. In: IEEE Geoscience and Remote

Sensing Magazine 4.4 (2016), pp. 6�23.

[128] Annemarie Schneider. �Monitoring land cover change in urban and peri-

urban areas using dense time stacks of Landsat satellite data and a

data mining approach�. In: Remote Sensing of Environment 124 (2012),

pp. 689�704.

[129] Annemarie Schneider and Curtis E Woodcock. �Compact, dispersed,

fragmented, extensive? A comparison of urban growth in twenty-�ve

global cities using remotely sensed data, pattern metrics and census

information�. In: Urban Studies 45.3 (2008), pp. 659�692.

[130] Robert A Schowengerdt. Remote sensing: models and methods for image

processing. Elsevier, 2006.



BIBLIOGRAPHY 113

[131] Linda See, Ste�en Fritz, Liangzhi You, Navin Ramankutty, Mario Her-

rero, Chris Justice, Inbal Becker-Reshef, Philip Thornton, Karlheinz

Erb, Peng Gong, et al. �Improved global cropland data as an essential

ingredient for food security�. In: Global Food Security 4 (2015), pp. 37�

45.

[132] Yang Shao, Ross S Lunetta, Jayantha Ediriwickrema, and John Iiames.

�Mapping cropland and major crop types across the Great Lakes Basin

using MODIS-NDVI data�. In: Photogrammetric Engineering & Remote

Sensing 76.1 (2010), pp. 73�84.

[133] Huanfeng Shen, Xinghua Li, Qing Cheng, Chao Zeng, Gang Yang,

Huifang Li, and Liangpei Zhang. �Missing information reconstruction

of remote sensing data: A technical review�. In: IEEE Geoscience and

Remote Sensing Magazine 3.3 (2015), pp. 61�85.

[134] Michal Shimoni, Juanfran Lopez, Y Forget, Eléonore Wol�, C Michel-

lier, Taïs Grippa, Catherine Linard, and M Gilbert. �An urban expan-

sion model for African cities using fused multi temporal optical and

SAR data�. In: 2015 IEEE International Geoscience and Remote Sens-

ing Symposium (IGARSS). IEEE. 2015, pp. 1159�1162.

[135] Bipasha Paul Shukla, PK Pal, and PC Joshi. �A novel approach for se-

lective reconstruction of cloud-contaminated satellite images�. In: Jour-

nal of Atmospheric and Oceanic Technology 28.8 (2011), pp. 1028�1035.

[136] Marcelino Pereira S Silva, Gilberto Câmara, Ricardo Cartaxo M Souza,

Dalton M Valeriano, and Maria Isabel Sobral Escada. �Mining patterns

of change in remote sensing image databases�. In: Data Mining, Fifth

IEEE International Conference on. IEEE. 2005, 8�pp.



BIBLIOGRAPHY 114

[137] David Simon. �Urban environments: issues on the peri-urban fringe�. In:

Annual review of environment and resources 33 (2008), pp. 167�185.

[138] David Simon and Friedrich Schiemer. �Crossing boundaries: complex

systems, transdisciplinarity and applied impact agendas�. In: Current

Opinion in Environmental Sustainability 12 (2015), pp. 6�11.

[139] Anne HS Solberg. �Data fusion for remote sensing applications�. In:

Signal and image processing for remote sensing (2006), pp. 249�271.

[140] Qian Song, Qiong Hu, Qingbo Zhou, Ciara Hovis, Mingtao Xiang, Hua-

jun Tang, and Wenbin Wu. �In-Season Crop Mapping with GF-1/WFV

Data by Combining Object-Based Image Analysis and Random Forest�.

In: Remote Sensing 9.11 (2017), p. 1184.

[141] Wei Song, Bryan C Pijanowski, and Amin Tayyebi. �Urban expansion

and its consumption of high-quality farmland in Beijing, China�. In:

Ecological indicators 54 (2015), pp. 60�70.

[142] Rei Sonobe, Hiroshi Tani, Xiufeng Wang, Nobuyuki Kobayashi, and

Hideki Shimamura. �Random forest classi�cation of crop type using

multi-temporal TerraSAR-X dual-polarimetric data�. In: Remote Sens-

ing Letters 5.2 (2014), pp. 157�164.

[143] Sean Sweeney, Tatyana Ruseva, Lyndon Estes, and Tom Evans. �Map-

ping cropland in smallholder-dominated savannas: integrating remote

sensing techniques and probabilistic modeling�. In: Remote Sensing 7.11

(2015), pp. 15295�15317.

[144] Cecilia Tacoli. �Rural-urban interactions: a guide to the literature�. In:

Environment and urbanization 10.1 (1998), pp. 147�166.



BIBLIOGRAPHY 115

[145] Masuo Takahashi, Kenlo Nishida Nasahara, Takeo Tadono, Tomohiro

Watanabe, Masanori Dotsu, Toshiro Sugimura, and Nobuhiro Tomiyama.

�JAXA high resolution land-use and land-cover map of Japan�. In: Geo-

science and Remote Sensing Symposium (IGARSS), 2013 IEEE Inter-

national. IEEE. 2013, pp. 2384�2387.

[146] Kenichi Tatsumi, Yosuke Yamashiki, Miguel Angel Canales Torres, and

Cayo Leonidas Ramos Taipe. �Crop classi�cation of upland �elds using

Random forest of time-series Landsat 7 ETM+ data�. In: Computers

and Electronics in Agriculture 115 (2015), pp. 171�179.

[147] Pardhasaradhi G Teluguntla, Prasad S Thenkabail, Jun Xiong, Murali

Krishna Gumma, Chandra Giri, Cristina Milesi, Mutlu Ozdogan, Russ

Congalton, James Tilton, Temuulen Tsagaan Sankey, et al. �Global

cropland area database (GCAD) derived from remote sensing in support

of food security in the twenty-�rst century: current achievements and fu-

ture possibilities�. In: Land resources: monitoring, modelling, and map-

ping, Taylor & Francis, Boca Raton, Florida, available at: http://pubs.

er. usgs. gov/publication/70117684 (2015).

[148] Rajesh Bahadur Thapa and Yuji Murayama. �Land evaluation for peri-

urban agriculture using analytical hierarchical process and geographic

information system techniques: A case study of Hanoi�. In: Land use

policy 25.2 (2008), pp. 225�239.

[149] AL Thebo, Pay Drechsel, and EF Lambin. �Global assessment of ur-

ban and peri-urban agriculture: irrigated and rainfed croplands�. In:

Environmental Research Letters 9.11 (2014), p. 114002.



BIBLIOGRAPHY 116

[150] Alexander Thornton. �Beyond the metropolis: Small town case studies

of urban and peri-urban agriculture in South Africa�. In: Urban forum.

Vol. 19. 3. Springer. 2008, p. 243.

[151] Joy Tivy. Agricultural ecology. Routledge, 2014.

[152] L Toma, AP Barnes, L-A Sutherland, S Thomson, F Burnett, and K

Mathews. �Impact of information transfer on farmers' uptake of inno-

vative crop technologies: a structural equation model applied to survey

data�. In: The Journal of Technology Transfer (2016), pp. 1�18.

[153] Nathan Torbick, Xiaodong Huang, Beth Ziniti, David Johnson, Je�

Masek, and Michele Reba. �Fusion of Moderate Resolution Earth Ob-

servations for Operational Crop Type Mapping�. In: Remote Sensing

10.7 (2018), p. 1058.

[154] Compton J Tucker, Jorge E Pinzon, Molly E Brown, Daniel A Slayback,

EdwinW Pak, Robert Mahoney, Eric F Vermote, and Nazmi El Saleous.

�An extended AVHRR 8-km NDVI dataset compatible with MODIS

and SPOT vegetation NDVI data�. In: International Journal of Remote

Sensing 26.20 (2005), pp. 4485�4498.

[155] Kristof Van Tricht, Anne Gobin, Sven Gilliams, and Isabelle Piccard.

�Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for

crop mapping: a case study for Belgium�. In: Remote Sensing 10.10

(2018), p. 1642.

[156] Murali T Variath and P Janila. �Economic and Academic Importance

of Peanut�. In: The Peanut Genome. Springer, 2017, pp. 7�26.

[157] S Velickov, DP Solomatine, X Yu, and RK Price. �Application of data

mining techniques for remote sensing image analysis�. In: Proc. 4th Int.

Conference on Hydroinformatics, USA. 2000.



BIBLIOGRAPHY 117

[158] Michel Verleysen and Damien François. �The curse of dimensionality

in data mining and time series prediction�. In: International Work-

Conference on Arti�cial Neural Networks. Springer. 2005, pp. 758�770.

[159] Diego Vidaurre, Iead Rezek, Samuel L Harrison, Stephen S Smith, and

Mark Woolrich. �Dimensionality reduction for time series data�. In:

arXiv preprint arXiv:1406.3711 (2014).

[160] Gemine Vivone, Rocco Restaino, Mauro Dalla Mura, Giorgio Licciardi,

and Jocelyn Chanussot. �Contrast and error-based fusion schemes for

multispectral image pansharpening�. In: IEEE Geoscience and Remote

Sensing Letters 11.5 (2014), pp. 930�934.

[161] MFA Vogels, Steven M De Jong, Geert Sterk, and Elisabeth A Addink.

�Agricultural cropland mapping using black-and-white aerial photogra-

phy, object-based image analysis and random forests�. In: International

Journal of Applied Earth Observation and Geoinformation 54 (2017),

pp. 114�123.

[162] François Waldner, Ste�en Fritz, Antonio Di Gregorio, and Pierre De-

fourny. �Mapping priorities to focus cropland mapping activities: Fit-

ness assessment of existing global, regional and national cropland maps�.

In: Remote Sensing 7.6 (2015), pp. 7959�7986.

[163] François Waldner, Diego De Abelleyra, Santiago R Verón, Miao Zhang,

Bingfang Wu, Dmitry Plotnikov, Sergey Bartalev, Mykola Lavreniuk,

Sergii Skakun, and Nataliia Kussul. �Towards a set of agrosystem-

speci�c cropland mapping methods to address the global cropland di-

versity�. In: International Journal of Remote Sensing 37.14 (2016),

pp. 3196�3231.



BIBLIOGRAPHY 118

[164] Li'ai Wang, Xudong Zhou, Xinkai Zhu, Zhaodi Dong, and Wenshan

Guo. �Estimation of biomass in wheat using random forest regression

algorithm and remote sensing data�. In: The Crop Journal 4.3 (2016),

pp. 212�219.

[165] Qunming Wang and Peter M Atkinson. �Spatio-temporal fusion for

daily sentinel-2 images�. In: Remote Sensing of Environment 204 (2018),

pp. 31�42.

[166] Anna WATANABE. �Agricultural impact of the nuclear accidents in

Fukushima: the case of Ibaraki Prefecture�. In: DISASTER, INFRAS-

TRUCTURE AND SOCIETY: Learning from the 2011 Earthquake in

Japan Disaster foundation - Thinking from the Great East Japan Earth-

quake 1 (2011), pp. 291�298.

[167] Jennifer D Watts, Scott L Powell, Rick L Lawrence, and Thomas Hilker.

�Improved classi�cation of conservation tillage adoption using high tem-

poral and synthetic satellite imagery�. In: Remote Sensing of Environ-

ment 115.1 (2011), pp. 66�75.

[168] Wei Wei, Wenbin Wu, Zhengguo Li, Peng Yang, and Qingbo Zhou.

�Selecting the optimal NDVI time-series reconstruction technique for

crop phenology detection�. In: Intelligent Automation & Soft Computing

22.2 (2016), pp. 237�247.

[169] Mingquan Wu, Chenghai Yang, Xiaoyu Song, Wesley Clint Ho�mann,

Wenjiang Huang, Zheng Niu, Changyao Wang, Wang Li, and Bo Yu.

�Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series

using improved spatial and temporal data fusion�. In: Scienti�c reports

8.1 (2018), p. 2016.



BIBLIOGRAPHY 119

[170] MingquanWu, Xiaoyang Zhang, Wenjiang Huang, Zheng Niu, Changyao

Wang, Wang Li, and Pengyu Hao. �Reconstruction of daily 30 m data

from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop moni-

toring�. In: Remote Sensing 7.12 (2015), pp. 16293�16314.

[171] Xiangming Xiao, Pavel Dorovskoy, Chandrashekhar Biradar, and Eli

Bridge. �A library of georeferenced photos from the �eld�. In: Eos,

Transactions American Geophysical Union 92.49 (2011), pp. 453�454.

[172] Yichun Xie, Zongyao Sha, and Mei Yu. �Remote sensing imagery in

vegetation mapping: a review�. In: Journal of plant ecology 1.1 (2008),

pp. 9�23.

[173] Tao Yang and Bill Hillier. �The fuzzy boundary: the spatial de�nition

of urban areas�. In: Proceedings, 6th International Space Syntax Sym-

posium, �stanbul, 2007. Istanbul Technical University. 2007, pp. 091�

01.

[174] Naoto Yokoya. �Texture-Guided Multisensor Superresolution for Re-

motely Sensed Images�. In: Remote Sensing 9.4 (2017), p. 316.

[175] JAMES H Young, NK Person, JAMES O Donald, WILLIAM D May-

�eld, HE Pattee, and CT Young. �Harvesting, curing, and energy uti-

lization�. In: Peanut Science and Technology. Yoakum, TX: American

Peanut Research and Education Society (1982), pp. 458�487.

[176] Nicholas E Young, Ryan S Anderson, Stephen M Chignell, Anthony G

Vorster, Rick Lawrence, and Paul H Evangelista. �A survival guide to

Landsat preprocessing�. In: Ecology 98.4 (2017), pp. 920�932.

[177] Ingo Zasada. �Multifunctional peri-urban agriculture�A review of so-

cietal demands and the provision of goods and services by farming�. In:

Land use policy 28.4 (2011), pp. 639�648.



BIBLIOGRAPHY 120

[178] Ingo Zasada. �Peri-urban agriculture and multifunctionality: urban in-

�uence, farm adaptation behaviour and development perspectives�. PhD

thesis. Technische Universität München, 2012.

[179] Yongquan Zhao, Bo Huang, and Huihui Song. �A robust adaptive spa-

tial and temporal image fusion model for complex land surface changes�.

In: Remote Sensing of Environment 208 (2018), pp. 42�62.

[180] Xiaolin Zhu, Eileen H Helmer, Feng Gao, Desheng Liu, Jin Chen, and

Michael A Lefsky. �A �exible spatiotemporal method for fusing satellite

images with di�erent resolutions�. In: Remote sensing of environment

172 (2016), pp. 165�177.

[181] Xiaolin Zhu, Jin Chen, Feng Gao, Xuehong Chen, and Je�rey G Masek.

�An enhanced spatial and temporal adaptive re�ectance fusion model

for complex heterogeneous regions�. In: Remote Sensing of Environment

114.11 (2010), pp. 2610�2623.

[182] Xiaolin Zhu, Fangyi Cai, Jiaqi Tian, and Trecia Williams. �Spatiotem-

poral fusion of multisource remote sensing data: literature survey, tax-

onomy, principles, applications, and future directions�. In: Remote Sens-

ing 10.4 (2018), p. 527.

[183] Zhe Zhu, Curtis E Woodcock, John Rogan, and Josef Kellndorfer. �As-

sessment of spectral, polarimetric, temporal, and spatial dimensions for

urban and peri-urban land cover classi�cation using Landsat and SAR

data�. In: Remote Sensing of Environment 117 (2012), pp. 72�82.

[184] Hania Zlotnik. �World urbanization: trends and prospects�. In: New

Forms of Urbanization. Routledge, 2017, pp. 43�64.



Appendix

A.1 Methodology Test Case: Kenya

A.1.1 Introduction

It is estimated that approximately 40% of the total African poplation reside in

urban areas and this proportion is set to grow due to major demographic and

economic changes occuring in the region (Lwasa et al., 2014; Zlotnik, 2017).

According to Lee-Smith and Memon (1994), urban agriculture in Kenya is vital

to the livelihoods of urban residents and more than two-thirds of urban farmers

rely on subsistence farming which is characterized by poor investment and high

intensity in small towns. High agricultural potential regions of Kenya, which

are also densely populated, are located mainly around the central and western

parts of the country as shown in Figure A.1.1 .

Mapping and monitoring of agriculture in Kenya, as in other parts of Africa, is

not a continuous exercise due to low investment in research and development

for smallholder subsistence farming and the resource intensive nature of such

activities if conventional data collection methods are used ( Lee-Smith and

Memon, 1994). Moreover, there are numerous challenges to agricultural pro-

duction including �oods, droughts, soil degradation, and pests and diseases,
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all of which create an urgent need for continuous mapping and monitoring

(Lwasa et al., 2014). This therefore makes remote sensing particularly propi-

tious since it provides repetitive, synoptic views of the earth and can provide

a basis for reliable cropland mapping especially in the sub-Saharan savanna

landscape (Sweeney et al., 2015).

The application of fusion of multi-sensor optical remote sensing datasets to-

wards agricultural mapping and monitoring has been demonstrated in this

thesis, with respect to a study area in Japan which is located in the northern

hemisphere. Whilst cloud cover is a major challenge for all optical remote sens-

ing datasets, studies have shown that high spatial cloud cover is more frequent

around the equator, due to stronger convection compared to other regions (Di-

dier, 2015). Figure A.1.2 shows the relative spatial and temporal variations in

the monthly percentage cloud cover for three regions in Africa. Precipitation is

positively corelated with cloud cover and therefore, in the west African region,

the rainy season is in June, July and August (JJA), in December, January and

February (DJF) for south Africa and in both March, April and May (MAM)

and September, October and November (SON) for east Africa (Didier, 2015.

As most crop production in Africa is rainfed, the rainy seasons are crucial for

agricultural monitoring. However, due to the high cloud cover, utilization of

optical satellite imagery is severely limited.

Apart from cloud cover, an additional challenge with regards to missing data

is prevalent in daily MODIS data over equatorial regions as shown in Figure

A.1.3 , due to daily variations in the satellites orbital path and geometry (Li

et al., 2017). This information can be reconstructed via composites such as

the 8-day composite surface re�ectance product. However, as shown in this

thesis, the use of daily data for spatio-temporal fusion provides more reliable
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synthetic data sets since the time series can be set to fully coincide with the

available landsat images. For Kenya, this data gap is approximately 200 km

and varies with time.

Evaluation of applicability of the methodology presented in this thesis within

this area thus validates the operational framework for disparate geographical

regions. Landsat and MODIS surface re�ectance data covering the region

depicted in Figure A.1.4 , with a relative distribution as shown in Figure A.1.5

, were acquired for the year 2016. Processing and analysis of the data was

implemented as described in Chapter3 of this thesis. The next subsection

presents the preliminary results of processing and analysis for the test study

site in Kenya.
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Figure A.1.1 : The European Space Agency Climate Change Intiative (ESA
CCI) Land use/ cover map of Kenya for 2016
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Figure A.1.2 : Percentage monthly total cloud cover in the west, east and
southern Africa regions
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Figure A.1.3 : MODIS Terra daily corrected surface re�ectance data for
January 2019
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Figure A.1.4 : The test study area in Kenya located in the central highlands
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Figure A.1.5 : Relative temporal distribution of Landsat and MODIS surface
re�ectance images acquired for the year 2016 for the Kenyan test study area
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A.1.2 Results of preliminary processing and analysis

A.1.2.1 Spatio-temporal fusion

Spatio-temporal fusion of the daily MODIS and intermittent Landsat NDVI

images was carried out with the four available Landsat images as the reference

image pairs. The results of the quantitative assessment of the synthetic images

generated by fusion, which also coincide with the reference image pairs are as

shown in Figure A.1.6 . The January, February and March synthetic NDVI

images have strong positive correlations with the observed Landsat NDVI im-

ages. However, the August synthetic image had a marginally positive corre-

lation since the images used as reference pairs in its generation were those of

February and March.

The results support the observations made in this thesis, that for generation of

good synthetic images via spatio-temporal fusion, it is ideal to have reference

image pairs that are temporally close to the prediction date. In this regard,

it is the recommendation of this study that spatio-temporal fusion of images

in this region should be carried out in a manner that maximizes the chances

of acquiring cloud-free Landsat images. As such, a calendar year would not

be ideal since the later part of the year, and especially during the planting

and growing season, total percentage cloud cover tends to be high, as shown

in Figure A.1.2 . Additional evaluation will be carried out using di�erenct

con�gurations of annual data e.g. April-to-April using multi-year datasets.
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A.1.2.2 Land Use/Cover classi�cation

Land use/cover classi�cation of the eight-day synthetic NDVI time series was

carried out using the Random Forest classi�er, as described in Chapter3 of

this thesis. A collection of over 1000 reference points with labels derived from

visual inspection of the Google Earth images of 2016 in the test site was used

as the training and validation data with a 30:70 split. The land use/cover

classes were:

1. Bare land

2. Co�ee

3. Forest

4. Grassland

5. Other crop

6. Tea

7. Urban

An overall accuracy of 92.7% and kappa of 0.91 were obtained and Figure

A.1.7 shows the land use/cover map including the cropland classes of co�ee,

tea and other crops. Further validation and re�nement of the classi�cation is

necessary for two main reasons:

1. Empirical knowledge of cultivation practices was used to distinguish and

therefore label the tea, co�ee and other crop reference points.
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2. MIxed cropping e.g. co�ee and maize is common in the test site. More

predictors are therefore necessary in order to e�ectively separate the

annual crops such as maize and beans and the perrenial crops such as

co�ee.

These preliminary results thus show that the operational framework presented

in this thesis is robust. It can be applied with ease in regions with disparate

geoclimatic conditions and agricultural practices to map and monitor croplands

that are spatially and temporally heterogeneous and dynamic with regular high

frequency.
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Figure A.1.6 : Scatterplots showing results of comparison of synthetic NDVI
images with original Landsat NDVI images
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Figure A.1.7 : Land Use/ Cover map of 2016 for the test study area in Kenya
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Abstract: Urban and Peri-urban Agriculture (UPA) has recently come into sharp focus as a valuable
source of food for urban populations. High population density and competing land use demands
lend a spatiotemporally dynamic and heterogeneous nature to urban and peri-urban croplands.
For the provision of information to stakeholders in agriculture and urban planning and management,
it is necessary to characterize UPA by means of regular mapping. In this study, partially cloudy,
intermittent moderate resolution Landsat images were acquired for an area adjacent to the Tokyo
Metropolis, and their Normalized Difference Vegetation Index (NDVI) was computed. Daily MODIS
250 m NDVI and intermittent Landsat NDVI images were then fused, to generate a high temporal
frequency synthetic NDVI data set. The identification and distinction of upland croplands from other
classes (including paddy rice fields), within the year, was evaluated on the temporally dense synthetic
NDVI image time-series, using Random Forest classification. An overall classification accuracy of
91.7% was achieved, with user’s and producer’s accuracies of 86.4% and 79.8%, respectively, for the
cropland class. Cropping patterns were also estimated, and classification of peanut cultivation based
on post-harvest practices was assessed. Image spatiotemporal fusion provides a means for frequent
mapping and continuous monitoring of complex UPA in a dynamic landscape.

Keywords: Urban and Peri-urban Agriculture (UPA); heterogeneous; spatio-temporal fusion;
synthetic NDVI

1. Introduction

Uncertain climatic conditions, high population growth, commodity price fluctuation, urbanization,
and allocation of agricultural produce to non-food consumption uses all threaten global and regional
food security [1–6]. Eigenbrod and Gruda [3] highlighted the need for analysis of crop area and
production that takes into account changing demographics vis-a-vis urbanization. In a global
assessment of urban and peri-urban agriculture, Thebo et al. [7] noted that, despite the increasing
significance of urban and peri-urban agriculture (UPA), it remains poorly quantified. Common to
UPA-related studies is the need for spatially explicit cropland data [7–9]. Numerous studies and
projects on cropland and crop-type mapping have been conducted to provide information about
crop distribution, crop types, and cropping frequency, at global, regional, and local scales [10–22]. In
particular, remote sensing is a critical source of data for agricultural mapping and monitoring, since

Remote Sens. 2019, 11, 207; doi:10.3390/rs11020207 www.mdpi.com/journal/remotesensing
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it offers synoptic earth observations with repetitive coverage. Teluguntla et al. [13] found that most
of the cropland mapping activities were applied to multi-temporal moderate resolution (250 m or
more) remotely sensed data or high resolution (Landsat 30 m) limited time-series remotely sensed
data, thus limiting mapping of small, fragmented croplands. Due to competing land use demands
and the high value attached to land in urban and peri-urban areas, UPA agricultural production units
tend to be small, spatially dispersed, and fragmented. This finding is supported by Thebo et al. [7] and
Martellozzo et al. [8], who observed that the scale and methods used to generate cropland information
are ill-suited to capturing urban croplands and that, given the local nature of UPA, global scale analysis
leads to generalizations which can be misleading.

In addition to spatial scale, due consideration for the crop types cultivated and management
practices in UPA croplands are necessary. Vegetables and fruits are the most commonly grown crops in
UPA [4,9]. Mapping of major staples such as rice, wheat, maize, and soybeans using remote sensing has
been successful due to the spatial scale of production and the relatively uniform regional cultivation
and management practices [9,16–22]. However, varied crop types, crop varieties, tillage practices, and
planting times characterize UPA crop production, resulting in misaligned phenological development
and thus necessitating multi-temporal classification approaches which utilize time-series data [22].
Cropland mapping approaches that use time-series data have been shown to perform better than
single-date methods [15,23]. One of the main challenges of time-series analysis and classification
for cropland mapping is that it requires timely a priori knowledge of the cropland landscape for
labeling of clusters (in the case of unsupervised classification), and derivation of the signature files
needed to guide supervised classification models [14,15,23–25]. Generally, satellite images are, for
most applications, processed and analyzed retrospectively unless the data acquisition and processing
are real-time or near real-time, as is the case for meteorological monitoring and prediction applications.
The most reliable source of reference data is in situ field observations, collected through farmer
surveys and field campaigns [14]. However, the acquisition of this data, especially for large areas
and heterogeneous croplands, is an expensive and time-consuming exercise [14]. The collection of
ground-truth information for UPA croplands, therefore, remains a daunting task that requires an
investigation into the application of novel approaches, such as crop-specific post-harvest practices, for
reference data acquisition.

Another challenge of time-series analysis is missing data due to atmospheric artefacts, which
results in an irregular sampling frequency of the phenomena of interest [15,24,25]. At any one time,
approximately 35% of the global land surface is under cloud cover, thus limiting information retrieval
and meaningful interpretation of optical satellite data [25,26]. Various techniques have been developed
to deal with cloud cover and other causes of missing data, such as sensor failures [26–28]. Shen et al. [26]
broadly classified these methods into spatial, spectral, temporal, and hybrid categories, which vary by
the type of images they can be applied to, and the sources of information used to fill the missing data.
The synthesis of multisource data with complementary information; data integration in the spatial,
spectral, and temporal domains; and development of efficient, accurate, and task-oriented algorithms
are areas of potential improvement for missing data reconstruction [26]. The last decade has seen
a proliferation in the development of multi-sensor image fusion or blending methods that exploit
redundant and complementary information in the spatial and temporal dimensions of remote sensing
data, to enhance interpretation and classification accuracy [29,30]. There are several detailed reviews on
the types of fusion in remote sensing, state of the art best practices, and advancements [30–32]. Fusion of
high spatial–low temporal resolution images (e.g., Landsat 30 m) with low spatial–high temporal
resolution satellite images (e.g., MODIS 250 m or 500 m), to generate synthetic high spatial–high
temporal resolution data, can enable mapping of small, fragmented, and spatially and temporally
heterogeneous UPA croplands at a regular frequency (e.g., seasonally or annually).

This study, therefore, seeks to characterize urban and peri-urban agricultural crop production
units in a complex landscape using satellite earth observation data acquired in one year, by identifying
horticultural croplands and distinguishing them from other land cover types and uses, including



Remote Sens. 2019, 11, 207 3 of 24

paddy fields. Using the Normalized Difference Vegetation Index (NDVI) as a phenological indicator,
the inter-seasonal variations of various crop production units are investigated at pixel-level, to estimate
cropland extent and cropping patterns. An experiment on distinguishing peanuts from other crops
within the year of study, using training and validation samples obtained by inference of post-harvest
practices, is also evaluated. The objectives of this study are, therefore, to generate a cropland mask,
excluding paddy rice fields, determination of cropping patterns intra-annually within the cropland area,
and classification of peanuts versus other crops using post-harvest practices information as training
data, via classification of a dense regular high resolution (30 m) image time series. The overarching
goal of this research is to develop a coherent methodology that promotes acquisition and dissemination
of information on agricultural production units in urban and peri-urban areas with regular frequency,
and compatibility with global and regional scale datasets for food and nutrition security. The image
processing and analysis procedures are implemented mainly using open source software, including R
and QGIS [33,34]. For rapidly urbanizing developing countries, this study is relevant for the provision
of data to support food security initiatives, and the planning and management of urban spaces.

2. Data and Methods

2.1. Site Description

The study area, shown in Figure 1, is made up of seven municipalities within the Chiba prefecture,
which is in the South-eastern part of Japan and is adjacent to the Tokyo Metropolis to the east. The seven
municipalities are Yotsukaido-shi, Inzai-shi, Yachimata-shi, Narita-shi, Sakura-shi, Tomisato-shi, and
Shisui-machi, with a total area of 623.15 km2 and a population of 668,603.

Figure 1. The seven municipalities in the Chiba prefecture that constitute the study area.

The Chiba prefecture is a valuable source of agricultural food crops and was ranked sixth in
agricultural production in Japan, with vegetable production worth more than half a billion yen in
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2015 [35]. It has a varied landscape, comprised of urban or built-up areas, forests (evergreen and
deciduous), grasslands (land covered with grass or shrubs), paddy fields, croplands (also described as
upland cropland), and water bodies. Grasslands in the area consist of two types: Natural and managed.
On the one hand, natural grasslands contain untended grass and shrubs, and include abandoned
croplands and paddy fields. On the other hand, there are the managed grasslands, such as golf courses,
which are numerous due to proximity to Tokyo.

The Chiba prefecture has an annual average temperature of 16 ◦C, with annual and monthly
average maximum and minimum temperatures of 31 ◦C and 2 ◦C, respectively. The annual average
precipitation is 1496 mm, and it receives approximately 2113 h of sunlight yearly, making it highly
favorable for agricultural production [35,36]. The main crops, in the regions selected, are rice (which is
cultivated on irrigated paddy rice fields) and vegetables; including, but not limited to, carrot, daikon
radish, taro, cabbage, and spinach.

2.2. Data Acquisition and Pre-Processing

The overall flow of processing and analysis activities in this study is as depicted in
Figure 2. Two satellite earth observation datasets, Landsat 8 and Moderate Resolution Imaging
Spectroradiometer (MODIS) data, were acquired from the United States Geological Survey’s (USGS)
EarthExplorer site [37]. Landsat 8 has a spatial resolution of 30 m and a temporal resolution of 16 days,
while the MODIS data used in this study were daily 250 m images. In an initial application needs
assessment, the suitability of the independent use of Landsat with respect to the study’s objectives
and knowledge of the prevailing conditions on the ground was evaluated. Table 1 shows all of the
images for the year 2015 for the Landsat tile, WRS Path/Row 107/035 covering the study area, and
their corresponding land cloud cover. Twelve of the images had more than 30% land cloud cover and
were excluded from any further evaluation.
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Figure 2. Schematic representation of the overall research methodology. The Normalized Difference
Vegetation Index (NDVI) was computed for the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Landsat Surface Reflectance Climate Data Record (LSR-CDR) datasets. Synthetic NDVI
images were generated using the Enhanced Spatio-Temporal Adaptive Reflectance (ESTARFM) Fusion
of the NDVI images. The Maximum Value Composite NDVI (MVC-NDVI) was computed using
Landsat NDVI and used to generate reference data.

Moreover, the period between April and September (that is, spring to fall) is critical, as crops in
the field are in the vegetative phase and are thus useful for remote sensing detection. In June, July, and
September, four images had 100% cloud cover—thus ruling out single sensor reconstruction [26,27].
Also, approximately 75% of the cultivated land in the study area is less than 5 Ha, as shown in Figure 3,
including paddy rice fields and land under permanent crops. The Landsat 8 30-m resolution is suitable
for the mapping of paddy rice fields since they are spatially contiguous, have relatively uniform
cultivation and management practices, and the phenology of rice is well understood [38,39].
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Table 1. Landsat 8 images for the study area’s scene Path/Row 107/035 in 2015.

Date (Year 2015) Day of Year (DOY) % Land Cloud Cover

10th January 10 16.31
26th January 26 50.37

11th February 42 50.63
27th February 58 31.79

15th March 74 83.76
31st March 90 3.71
16th April 106 9.11
2nd May 122 1.92
18th May 138 59.24
3rd June 154 100
19th June 170 100
5th July 186 100
21st July 202 10.38

6th August 218 3.52
22nd August 234 52.59

7th September 250 100
23rd September 266 19.39

9th October 282 0.92
25th October 298 2.28

10th November 314 68.93
26th November 330 42.17
12th December 346 12.42
28th December 362 15.26

However, the upland croplands tend to be small, fragmented, dispersed, and have diverse
cropping patterns and crop varieties, due to varied management practices. Single-date Landsat image
classification would therefore not adequately capture these food production units since, at any one
time, not all fields have crops and bare or fallow parcels would be classified as bare land or grassland.
Thus, time-series classification was more suitable [15,23]. Further evaluation of the Landsat images
for cloud cover, focussing on the study area, was carried out, and eight images were finally selected,
resulting in an irregular time series.

Figure 3. Proportions of cultivated land area in 2015. [35]

Two daily MODIS surface reflectance products (MOD09GA and MOD09GQ) were acquired,
for horizontal tile 29 and vertical tile 5 (h29v05), for the period spanning 1 January 2015 to
31 December 2015. The two surface reflectance bands contained in the MOD09GQ scientific dataset
(SDS), red (620–670 nm) and near-infrared (NIR) (841–876 nm), and the state 1 km SDS in MOD09GA
SDS, were extracted. MODIS data are delivered in the sinusoidal projection, and were therefore
reprojected to the Universal Transverse Mercator Projection (UTM) zone 54N. The reflectance bands
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and state 1 km SDS were then subset to the Chiba prefecture bounds. A scale factor of 0.0001 was
applied to the red and NIR bands, prior to computation of NDVI. The state 1 km SDS was used to
retrieve cloud-specific information during quality assessment, because this parameter has not been
populated in the reflectance band quality SDS included in the MOD09GQ product since MODIS version
3, as detailed in [40,41]. The Quality Control (QC) masks from the state 1 km SDS were resampled to
250 m using bilinear interpolation, and applied to the NDVI images through masking. The resulting
daily NDVI images at 250 m resolution had gaps due to masking, and gap-filling was carried out via
linear interpolation in the temporal dimension [42].

2.3. Spatio-Temporal Image Fusion

Landsat 8 irregular time-series data and daily MODIS images were fused to generate a regular
time series. MODIS data supports Landsat via fusion to inform phenological traits and maintain
temporal continuity in the observed phenomena [23,25]. Fusion methods are categorized by the
mathematical relationships between the reference and observation data into four groups, including
weighted function based, unmixing based, dictionary-pair learning based, and data-assimilation based
algorithms [29,43]. The weighted function based methods include the Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM) , which assume that
no land cover type changes occur between the reference and prediction dates [43,44]. While this
assumption limits the performance of weight function based algorithms in heterogeneous landscapes
where rapid, abrupt changes occur, they are popular since they require no auxiliary data as inputs
and are robust enough to predict pixels with changes in biophysical attributes [44–46]. In remote
sensing, indices enhance spectral information and class separability and are, therefore, an essential
basis for the estimation of the biophysical characteristics of land cover, such as vegetation vigor [44,46].
Fusion may be applied to the reflectance bands of images or the indices, via Blend-then-Index (BI) or
Index-then-Blend (IB), respectively [43]. Research has found that IB is more computationally efficient
and accurate, and its performance is influenced less by choice of algorithm [45,46]. Li et al. [46] found
that the use of a MODIS 8-day composite surface reflectance product (MOD09A1 and MYD09A1) with
a temporal mismatch between the Landsat and MODIS images resulted in weaker correlations between
the observed and synthetic images, due to the day-to-day variation in the MODIS viewing geometry.
Table 2 shows the relative distribution of the eight selected Landsat 8 images for this study, and the
corresponding available dates in MODIS 8-day composite data, which shows a one-day difference. For
this study, we used the daily MODIS surface reflectance products (MOD09GQ and MOD09GA), thus
allowing the selection of a start date within the MODIS daily time-series that would fully match the
available Landsat image time-series.

Table 2. Relative temporal distribution of irregular Landsat 8 time-series to MODIS 8-day composite.

Day of Year (DOY)

Available Landsat 8 Images (Cloud Cover < 20%) 10 90 106 122 202 218 282 298
MODIS 8-day Composite 9 89 105 121 201 217 281 297

Spatio-temporal fusion via IB was implemented using the MODIS Daily 250 m NDVI and Landsat
8 intermittent NDVI images, as described in [45]. The MODIS NDVI images were first resampled to 30
m through bilinear interpolation to reduce the effects of geo-referencing error, then cropped to match
the extent of the Landsat 8 NDVI images using R (v3.4.4) [33]. Fusion was implemented in ENVI IDL
version 4.8 (Exelis Visual Information Solutions, Boulder, Colorado) using the open-source Enhanced
Spatio-Temporal Adaptive Reflectance Fusion Model (ESTARFM) [47]. Many spatiotemporal fusion
models have been developed, but ESTARFM has been found to be effective in generating synthetic
high-resolution images for heterogeneous regions [44–47].

ESTARFM requires at least two pairs of temporally coincident fine-resolution (moderate to high
spatial resolution–low temporal resolution) and coarse resolution (low spatial resolution–high temporal
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resolution) images as inputs. Using a specified moving window size within the image, and thereby
having a central pixel, similarity of pixels with reference to the central pixel is evaluated and weights
computed. Working on the assumption that, for a heterogeneous landscape, the changes in reflectance
within a mixed pixel are representative of the weighted sum of changes for each land cover type, and
that these changes do not change significantly over a short period of time, the relationship then can be
inferred from the pixel value of the fine resolution pixels [45]. Additionally, given that predictions for
fine-resolution pixels are likely to be more accurate from a pure coarse-resolution pixel, larger weights
are assigned to these pixels, and so conversion coefficients are thus computed and used to predict the
fine-resolution reflectance or index value per pixel. As the objective of this study was to classify land
cover annually and, specifically, to discriminate cropland from non-cropland, the prediction of land
cover changes was not necessary and the ESTARFM algorithm has been found to predict phenology
changes satisfactorily [43–47]. The fine-resolution reference images, used in the fusion process, were
the most cloud-free Landsat 8 NDVI images for 2015, acquired in late winter (10th January), early
spring (16th April), and mid-fall (9th and 25th October). For computational efficiency, an 8-day interval
was chosen.

2.4. Training and Validation Data Collection

Two main land cover and cropland datasets were evaluated as potential sources of training and
validation data. The Japan Aerospace Exploration Agency’s (JAXA’s) High Resolution Land Use
and Land Cover map of Japan (HRLULC Ver.18.03) is a 30 m land cover map of Japan, generated
using multi-temporal, multi-source data. The data includes Landsat 8 OLI collection 1 images, 10 m
geographical and topographic data from the Geographical Survey Institute (GSI) of Japan, Advanced
Land Observing Satellite (ALOS-2)/ Phased Array type L-band Synthetic Aperture Rader(PALSAR)
25 m 2015 mosaic dataset, and ALOS Panchromatic Remote-sensing Instrument for Stereo Mapping
(PRISM) Digital Surface Model (DSM). A Bayesian estimation classifier, followed by post-classification
editing, was used for the latest version. The JAXA High Resolution land use/land cover maps have
a regular update frequency, and were identified in Waldner et al. [48] as a freely available regional
cropland-related dataset for Japan. It has ten land use/land cover classes, including water, urban, rice
paddy, crop, grass, deciduous hardwood forest, deciduous softwood forest, evergreen broad-leaved
forest, evergreen conifers forest, and bare land. The reported producer’s and user’s accuracy for the
cropland class are 83.8% and 74.1%, respectively. However, since the data used in its production is not
temporally specific and ranges from 2014 to 2016, it was decided to use this dataset for validation of
the results of this study. Further details on its production are available in [49].

In addition, the recently released Global Food Security-Support Analysis Data at 30 m
(GFSAD30), benchmarked for 2015, was evaluated [50]. The Southeast and Northeast Asia dataset
(GFSAD30SEACE) were acquired and assessed for suitability as a source of training and validation
data in this study. The cropland extent in this dataset represents all cultivated land including paddy,
irrigated, and rainfed areas. As the discrimination between paddy rice fields and other croplands was
an objective of this study, the GFSAD30SEACE dataset was used for validation of our result, in terms
of total cropland extent.

In the absence of a reference dataset that was temporally specific to the year 2015 and
representative of the intended cropland class, reference data samples were generated using the
Maximum Value Composite NDVI (MVC-NDVI), computed between consecutive NDVI images of the
sparse Landsat image time series. In addition to minimizing the effects of cloud cover, the seasonal
MVC-NDVI Red-Green-Blue (RGB) composite stacks, as shown in Figure 4, revealed inter-seasonal
pixel-level NDVI changes which made it possible to determine seasonal behavior of the major land
cover types and set rules for distinguishing the major land cover classes and cropping patterns.
Through raster math of the MVC-NDVI layers, masks were generated for each land cover class. The
raster masks were then vectorized and cleaned-up, by comparison with the Google Earth (GE) image
available for 9th October 2015. A dense point cloud was then generated for each land cover class by
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joining the vector land cover masks with a 30 m point vector grid of the study area. The training and
validation points were then selected via stratified random sampling of the dense point cloud.

Figure 4. Red-Green-Blue (RGB) composites of the seasonal Maximum Value Composite-Normalized
Difference Vegetation Index (MVC-NDVI). (a) The winter-spring-summer composite, and (b) the
spring-summer-fall composite for 2015. Off-white regions in both (a) and (b) depict dense vegetation,
such as forests, which have high NDVI with minimal variation intra-annually. The black and grey
regions are urban and water features, which have low NDVI with minimal variation within the year.
Red, blue, green, cyan, yellow, and magenta regions represent vegetation whose maximum NDVI
corresponds with the seasonal order in the RGB composite.

In this study, distinguishing peanuts from other crops growing in the study area was tested.
Peanuts, grown for their commercial value, are a popular crop in this region. Approximately 75%
of Japan’s domestic supply of peanuts comes from the Chiba prefecture [51–53]. From moderate
resolution satellite images, it is impossible to distinguish, with certainty, one crop (e.g., peanuts) from
another (e.g., carrots) during the growing season. As such, to know which crop was growing at a
certain location at a given time, field photos or farm surveys are necessary during the growing season
in every year, since farmers regularly change crops cultivated, especially in the case of horticultural
food crops. Constant and regular acquisition of crop type information is time-consuming and costly.
Thus, creative means of inferring and deciphering such information from existing data are necessary.
In this study, the post-harvest practice of jiboshi by peanut farmers in Japan makes it possible to know
where peanuts had been growing, within at least a month from harvesting.

After harvest, peanut pods have approximately 50% moisture which renders them prone to
contamination with mycotoxins, which are a major food safety concern and may lead to considerable
economic losses [54,55]. Peanut farmers in the Chiba prefecture will, after harvest, leave the peanut
plants and pods in inverted windrows, which allows air to circulate around the pod and for the
moisture content to diminish significantly, for about a week [55]. Thereafter, the peanut plants and
pods are piled into solitary heaps, as shown in Figure 5a, in a process referred to as jiboshi (drying on
the ground) for about a month. These piles or heaps are referred to as bocchi, and are visible from GE
images (as shown in Figure 5b), thus allowing one to infer that peanuts had been growing on that field
within at least a month of acquisition of the image. Training and validation samples were collected
within the study area, for locations which were visible in the GE image of 9th and 29th October 2015.
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Figure 5. The post-harvest practice of on-field drying of peanuts, known as jiboshi; (a) shows the heaps
(bocchi), as seen on Google Maps Street View on 29th October, 2015, and (b) shows the aerial view of
the same field, as seen on Google Earth (35◦37′N, 140◦14′E) on 9th October, 2015.

2.5. Time Series Classification

The Random Forest (RF) classification algorithm was used in this study. RF is a robust ensemble
machine learning classifier, which has been used in numerous agricultural mapping application
studies [56–61]. RF has been found to be stable and efficient, with better performance in classification
of croplands with high intra-class variability than other classifiers, such as conventional decision trees
and time-weighted dynamic time warping (TWDTW) [15,61]. In this study, RF was implemented
using the RStoolbox (ver.0.2.3) package in R, by use of the ’superClass’ function [62]. The function
takes, as input, the raster image and reference data—either as spatial points or a spatial polygon data
frame, containing position and class attribute information. A separate validation dataset can also be
provided but, if not, the training dataset is split based on a partition proportion ranging from zero to
one, provided by the user. The model tuning parameters are the number of samples per land cover
class, the number of levels for each tuning parameter, and the number of cross-validation resamples,
for robust prediction performance [56]. To ensure non-overlap between training and validation data,
a minimum distance, in terms of pixels, can be provided [62]. Several combinations of the tuning
parameters, informed by the RStoolbox package literature, were tested with a 70% training data and
30% validation data split. The configuration with the best sensitivity in the cropland class was chosen.

2.6. Accuracy Assessment

The classification results were evaluated using error matrix accuracy assessment metrics, which
include producer’s, user’s, and overall accuracy, as well as the kappa coefficient, as defined in
Equation (1). The mathematical notation of the kappa coefficient, with respect to the error matrix, is
shown in Equation 2 [63,64].

K̂ =
Observed accuracy− Expected accuracy

1− Expected accuracy
(1)
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K̂ =
N ∑r

i=1 xii −∑r
i=1(xi+ ∗ x+i)

N2 −∑r
i=1(xi+ ∗ x+i)

, (2)

where ˆK is the kappa coefficient, N is the total number of observations, r is the number of rows in the
error matrix, xii is the number of observations in row i and column i, and xi+ and x+i are the marginal
totals of row i and column i, respectively [64]. The kappa coefficient provides a measure of how much
better the classification performed, compared to the probability of randomly assigning pixels to the
correct class.

3. Results

3.1. Fusion Results

Performance of the fusion process in generating synthetic NDVI images was evaluated
quantitatively by comparing the synthetic NDVI images to the reference observed Landsat NDVI
images. Overall, there was a strong agreement between the synthetic images and the observed Landsat
images, with R2 > 0.9 for all dates, as depicted in Figure 6. A higher association was found in the
mid-fall images (9th and 25th October) (Figure 6c,d), than in the late winter (10th January) (Figure 6a)
and early spring (16th April) (Figure 6b) images. Phenological changes in the landscape can also be
inferred from the point density in the scatterplots, shown by color—with blue being low density and
red showing high density. In the late winter and early spring images (when vegetation vigor is low),
there are two data clusters. The first, albeit lower density, lies in the mid NDVI ranges (0.125 to 0.5),
and the second within the higher NDVI ranges (0.6 to 0.8). However, in the mid-fall images (when
vegetation vigor is high), the scatterplot tapers with high density in the higher NDVI ranges. This may
be attributed to the intra-annual changes in vegetation density, and is demonstrative of more pure
vegetation pixels in the fall than in late winter and early spring. These observations may not hold for
other years of study for the same region, or other regions with different land cover and climate, and
require further investigation.

Figure 7 shows the qualitative assessment of the fusion results, in terms of the temporal evolution
of NDVI in the smoothed fusion series and the original Landsat 8 series for the main vegetation
cover types in the study area. The shape or configuration of the temporal profiles of the synthetic
NDVI time series are analogous to those of the observed NDVI, for all of the main vegetation cover
classes. The standard error in the synthetic NDVI time-series are also reflective of intra-class behavior.
For forest or dense vegetation, there is minimal variation throughout the year also detected in the
observed MVC-NDVI, as shown in Figure 4.

Internal variability is exhibited in the other vegetation types, and varies with season. In the case
of the grassland temporal evolution of NDVI, sample points were taken from both the artificial and
natural grasslands, and therefore exhibit high intra-class variability. However, towards the end of
the year (as winter commences), vegetation vigor decreases and the intra-class variability diminishes,
as seen from the error bars in that profile. The observed images do not cover this later part of the
temporal behavior of the grassland land cover, as the series ends in early fall, and demonstrates the
predictive capabilities of the ESTARFM fusion model. Based on the temporal information inferred
from the available coarse resolution images, the changes in the biophysical characteristics of land cover
features can be elicited, even in the absence of complete annual coverage of the fine resolution images.
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Figure 6. Scatterplots of the comparisons of synthetic Landsat images (generated by fusion) with the
original Landsat images: (a) 10th January 2015; (b) 16th April 2015; (c) 9th October 2015; (d) 25th
October 2015.

Figure 7. NDVI temporal evolution of the major vegetation land cover types in the study area, in the
fusion and original Landsat NDVI time-series. Dates along the time series are expressed as Day of Year
(DOY).

The temporal profiles of the cropland and paddy classes also reveal characteristics inherent to
these land cover classes. Intra-class variability in the cropland class exhibits a double cropping pattern,
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where fluctuations are detected during the growing seasons and abate (albeit minimally when the
curve is in decline and recovery). Contrastingly, for the paddy class, fluctuations are detected most
when it is expected that paddy rice is not on-field. That is, January to April and October to December,
or late winter to spring and late fall into the winter. This behavior is akin to that observed within the
grassland class, and is indicative of post-harvest vegetation whose vigor is not subject to management
practices by the farmer. However, as in the case of grassland land cover, the concluding part of the
year and the information elicited arises from the synthetic dataset, and would not have been available
within the available Landsat imagery. Overall, both the quantitative and qualitative assessments of
the fusion result, in comparison to the observed Landsat dataset, vis-à-vis conventional land cover
temporal changes, establish the value of fusion in providing information about land cover prior to
classification. Figure 8 depicts the temporal evolution of NDVI in the synthetic time-series stack for
representative sample points in the major land cover types of the study area. From this graph, the
significance of the synthetic time-series dataset is substantiated further, since we see that for grassland,
paddy, and cropland, the spring-summer seasons provide the best distinction points with continuity.
The observed Landsat image time-series was sparse, due to inundation with cloud cover during this
crucial period, hence making information unavailable; especially in the cropland class.

Figure 8. NDVI temporal evolution of the major land cover types of the study area in the fusion NDVI
time-series.

3.2. Classification Results

3.2.1. Cropland Extent

The cropland extent in the context of this study is all land used for crop cultivation, excluding
paddy fields. An initial land use/land cover classification was carried out for the main land use/cover
types in the region, as shown in Figure 9. An overall accuracy of 91.7% was achieved, with a stratified
random sample of over 1000 points per class. The dominant land use/cover classes of forest, grassland,
paddy, and urban and water had the highest producer’s (PA) and user’s accuracies (UA), both more
than 90%. The cropland area estimation had the lowest PA and UA, of 79.8% and 86.4%, respectively,
but was deemed to be acceptable, given the heterogeneity of the landscape. The estimated area of
croplands, excluding paddy fields, for the study area in 2015 was 85.5 Km2, as is depicted in Figure
10. Table 3 shows the classification’s error matrix. Vegetation along urban features and banks of
water bodies were also misclassified as cropland and paddy. Within the paddy field class, the timing
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of post-harvest vegetation in the fall within some paddy fields manifested as two peaks, similar to
croplands with double cropping, leading to misclassification as croplands.

Table 3. Confusion matrix of cropland extent classification.

Cropland Forest Grassland Paddy Urban & Water Total User’s Accuracy (UA) (%)

Cropland 542 2 38 15 30 627 86.4
Forest 7 691 4 0 0 702 98.4

Grassland 38 0 638 27 0 703 90.8
Paddy 36 0 11 597 7 651 91.7

Urban & Water 56 0 0 12 640 708 90.4
Total 679 693 691 651 677 3391

Producer’s Accuracy (PA) (%) 79.8 99.7 92.3 91.7 94.5
Overall Accuracy (OA) (%) 91.7

Kappa 0.9

Figure 9. Cropland extent map and other land cover types in 2015.



Remote Sens. 2019, 11, 207 15 of 24

Figure 10. Cropland extent in 2015, derived from this study.

3.2.2. Cropping Regimes

Two main cropping patterns or regimes were estimated, as shown in Figure 11: Single cropping,
where a pixel had a singular peak within the year, in a season or within two consecutive seasons;
and double cropping, for pixels with two peaks in non-consecutive seasons—that is, winter-summer,
winter-fall, and spring-fall. The cropping regimes estimation confusion matrix is as shown in Table 4.
Most of the croplands were found to be under double cropping intensity, while paddy rice was under
single cropping. This is expected, since the upland cropland is used mainly for the production of
horticultural food crops that have short durations of growth. Table 5 shows the best periods of market
availability for some of the Chiba prefecture’s representative crops. This table can be taken to represent
an inverse crop calendar, where periods of non-availability represent the growing periods. Therefore,
apart from taro and peanuts, which have high market availability for only one period within a year,
the rest of the crops can be said to be planted twice by one farmer or continuously by various farmers,
within the year. Taro has a long growth period between transplanting and maturation, approximately
six to eight months. The table also does not take into account market availability as a result of imports
from other regions or countries. Consequently, it is expected that most upland croplands will exhibit
double cropping, as our result indicates. Most paddy rice fields had a single cropping pattern, with
the exception of a few. This can be attributed to the fact that paddy rice fields are highly sensitive
to changes in soil composition, and therefore farmers prefer to leave the land fallow post-harvest in
order to maintain the soil nutrient balance necessary for paddy rice. In addition, paddy rice cultivation
is a highly specialized skill in Japan and is resource- and labor-intensive. Therefore, apart from the
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cultivation of other crops for subsistence consumption, which is normally carried out on other parcels
of land, paddy rice farmers tend to focus only on paddy rice.

Figure 11. Cropping patterns estimated for 2015 in this study.

Table 4. Confusion matrix of cropping regimes estimation

Double Cropping Forest Grassland Paddy Single Cropping Urban & Water Total User’s Accuracy (UA) (%)

Double Cropping 1546 4 65 17 716 48 2396 64.5
Forest 11 3217 1 0 104 0 3333 96.5

Grassland 124 1 3015 109 312 0 3561 84.7
Paddy 49 0 44 2467 82 41 2683 91.9

Single Cropping 735 27 173 80 1295 84 2394 54.1
Urban & Water 125 0 0 60 328 3068 3581 85.7

Total 2590 3249 3298 2733 2837 3241 17,948
Producer’s Accuracy (PA) (%) 59.7 99.0 91.4 90.3 45.6 94.7

Overall Accuracy (OA) (%) 81.4
Kappa 0.776
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Table 5. Market availability of various crops.

Crop Type Market Availability

* Cabbage March∼May; September and October
* Carrot April and May; September∼December

* Spinach April and May; September∼December
* Taro September∼December

* Turnip May; October∼January
** Peanuts September∼December

* [51]. ** Inferred from this study; Does not consider imports.

3.2.3. Peanuts and Other Crops

A total of 378 sample points representing peanuts were collected, as described in Section 2.4.
Non-cropland land cover classes including forest, grassland, paddy, and urban and water were masked
out from the fusion time-series, using the cropland mask produced in this study. A stratified random
sampling of the peanut samples and other croplands not designated as peanuts was carried out to yield
200 points per class, and a binary classification was implemented. The overall accuracy was 67.1%, and
the PA and UA for the peanut class were 63.2% and 71.2%, respectively. Given the limited amount of
reference data and the fact that peanuts are cultivated at the same time as other crops, as seen in Table
5, we found this classification accuracy to be sufficient. The phenological similarity between peanuts
and other crops, as well as high intra-class variability within the cropland class, requires that a large
number of training datasets is used to train the RF classifier [57]. Further research on the determination
of the distinct spectral-temporal characteristics of peanuts and other crops cultivated in the region,
with more training data and predictors, could improve the classification accuracy.

4. Discussion

In this study, the application of a high temporal density image time-series to intra-annual cropland
extent and cropping regime estimation was evaluated. Validation of the cropland extent or distribution
was carried out by comparing this study’s result with two existing cropland maps; that is, the regional
JAXA HRLULC and the global GFSAD30SEACE datasets. The upland cropland extent, according to the
JAXA HRLULC (version 18.03) map, was approximately 367.9 Km2, while, in the GFSAD30SEACE data
set (which includes paddy fields), it was 129.4 Km2. The cropland extent in this study was 85.5 Km2.
Sharma et al. [65] produced a land use/land cover map of Japan for 2013 to 2015, the JpLC-30 map, and
compared their result to the JAXA HRLULC map (version 14.02). Disparities between the JpLC-30m
map and the JAXA HRLULC map (version 14.02) were detected, including: Croplands in forests,
water-bodies in forests, water in croplands, and herbaceous land cover in croplands. Based on this
comparison, the classification of croplands in the JAXA HRLULC map (version 14.02) was severely
affected. The improvement over the earlier version (16.03) in cropland classification accuracy is
significant. In version 16.03, the reported producer’s and user’s accuracy for the cropland class were
63.9% and 45.2%, respectively, while, in version 18.03, the producer’s and user’s accuracy for the
cropland class were 83.8% and 74.1%, respectively. Figure 12 depicts the cropland extent, as per this
study, excluding paddy fields, and the JAXA HRLULC (version 18.03) cropland. The cropland extent
within the JAXA HRLULC (version 18.03) map far exceeds the extent in this study. Further inspection
of the land use/land cover map shows misclassification of urban land cover as cropland in the JAXA
map, as shown in Figure 13. This phenomenon, which has also been observed in other regional land
use/land cover maps, such as the GlobeLand30 map, may be attributed to spatial heterogeneity, but
further investigations are necessary [46].
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Figure 12. Cropland extent for 2015 in this study and in the JAXA HRLULC map.

Figure 14 shows our cropland and paddy extent, and the GFSAD30SEACE cropland extent.
The GFSAD30 product does not make a distinction between types of croplands—that is, upland
cropland and paddy rice—and, while it adequately captures the paddy fields and compares favorably
with our result, it underestimates the upland cropland. This may be attributed to the heterogeneous
nature of the upland croplands, which leads to misclassification of upland cropland as non-cropland
in the GFSAD30 framework. Our result overestimated paddy fields, with commission errors of
2.3% and 4.15% as cropland and grassland, respectively. However, this was almost balanced out by
misclassification of some paddy fields as croplands, and can be attributed to the fact that only NDVI
was used as a classification metric. Using other metrics for the same one-year data-set, such as the
NDWI index or shape and texture features, may solve this [66].

Statistical survey data at local and national scales can be useful in assessing the results of remote
sensing classification and estimates. While it can be time consuming and expensive, it allows for
various government agencies and stakeholders to engage directly with farmers. However, there
is no standard approach to collection and dissemination of such data and, for regional and global
upscaling, statistical data can prove to be problematic due to (among other issues) language barriers.
Understanding what variables are measured and how they are measured is key to consideration of
statistical data for reference.
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Figure 13. Comparison of the land use/land cover map of this study with the JAXA HRLULC map. Figures (a,d) show the land use/land cover map produced in this
study, while (b,e) show the JAXA HRLULC map. Figures (c,f) show the Google Earth images of the areas shown in (a,b,d,e).
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Figure 14. Cropland extent for 2015 in this study and in the GFSAD30SEACE map.

Japan carries out an agricultural census every five years via questionnaires, and the last census was
released on 1 February 2015. It is, therefore, not representative of the agricultural production situation
in the year 2015 but, rather, represents the preceding five years. Farmers respond to questionnaires
by regions referred to as ‘agricultural villages’, and respond to (among other questions) how much
land is under cultivation, whether the production is for commercial or subsistence purposes, and
what they grow. However, the boundaries of the agricultural villages do not match the current
national administrative boundaries. This, therefore, makes merging and comparison of this data
with data obtained based on administrative boundaries difficult. The total reported area of cropland
in the statistical data was 129.5 Km2. This figure is close to our estimated area of paddy rice fields
(123.21 Km2), and also matches the GFSAD30 cropland area. Spatial distribution of crops and cropping
regimes could not be inferred, due to the incongruence between the boundaries used in this study with
those of the statistical data. The results of this study, therefore, provide a base-map compatible with
national administrative boundaries, for future analysis and monitoring of agriculture in the region.

The fusion results confirmed that implementing Index-then-Blend with MODIS dates matching
the Landsat dates generates synthetic images with a strong agreement with the observed images.
However, the fusion process takes a long time and, for this reason, we applied fusion to a subset of the
Landsat scene covering the Chiba prefecture, rather than the entire scene. This led to the loss of data in
the northern part of our study area, which also coincides with the boundary of Chiba prefecture. It
would, therefore, be better to apply fusion to entire Landsat scenes or a mosaic of scenes, then subset
to the intended study area.

This study demonstrates that using the simple, yet robust, NDVI with high temporal frequency,
dynamic heterogeneous landscapes can be adequately mapped and monitored using data available
within a year. From a policy development perspective, this aspect of our methodology is desirable, as
it allows for changes taking place within the landscape to be catalogued using the most recent data
and disseminated with reasonable frequency and accuracy.
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5. Conclusions

Intra-annual cropland area estimation and distinction from other land cover types in
heterogeneous landscapes can be challenging, due to inadequate information. In this study, we
demonstrated how, using the intermittent moderate resolution Landsat and daily MODIS surface
reflectance imagery, information that can be used to distinguish croplands from other land cover types
can be retrieved. Fusion of the MODIS NDVI and Landsat NDVI images yielded synthetic Landsat
imagery with R2 > 0.9, indicating strong agreement with the observed NDVI. The regular moderate
resolution image time-series, with an 8-day interval, proved to be adequate for the task of estimating
cropland area and cropping patterns in a complex heterogeneous urban landscape. In addition, using
knowledge of post-harvest practices of peanut farmers in the region, we were able to distinguish
peanuts from other crops with reasonable accuracy. The Random Forest classifier requires a large
amount of training data, which was acquired based on the seasonal MVC-NDVI. However, this was
made possible by the availability of images in each season which met the cloud-cover threshold, and
may not be the case when carrying out analysis in other years or regions that are heavily inundated with
cloud cover. In this regard, efforts to establish spectral-temporal libraries for various land cover types
in disparate geographical locations would go a long way in enhancing local- and national-scale annual
cropland mapping. This study also demonstrates the importance of local-scale cropland mapping
towards validating regional- and global-scale cropland datasets. Future research work will involve
evaluation of the applicability of the methodology to larger regions, and in different geographical
locations which have different land cover and climate characteristics.
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