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Abstract 

 

Owls are a master to achieve silent flight in gliding and flapping flights under natural 

turbulent environments owing to their unique wing morphologies, normally characterized 

by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these 

morphological features affect aerodynamic force production and aeroacoustic noise 

suppression is of significance for aerodynamic / aeroacoustic control in biomimetic 

designs of owl-inspired adaptations for various fluid machineries. In this study, aiming at 

providing a comprehensive understanding of the underlying serration-based aeroacoustic 

mechanisms, we address a large-eddy simulation (LES)-based study of owl-inspired 

single feather wing models with and without leading-edge serrations over a broad range 

of angles of attack (AoAs) from 0° to 20°.  

 

As our first step to investigate the essential mechanisms of the leading-edge 

serrations in steady flow condition, we pay specific attention to the aerodynamic 

characteristics of the single-feather models traveling in uniform incoming flow. Our 

results show that leading-edge serrations can passively control the laminar-turbulent 

transition over the upper wing surface, and hence stabilize the suction flow. The 

mechanisms is likely achieved by the leading-edge serrations, which, as a flow filter, 

break up the leading-edge vortex into numbers of small eddies and suppress the KH 

instability within the separated shear layer. We also find that there exists a tradeoff 

between force production and turbulent flow control (i.e. aeroacoustic control): poor at 

lower AoAs but capable of achieving equivalent aerodynamic performance at higher 

AoAs > 15° compared to the clean model. 

 

Furthermore, through mimicking wind-gusts under a longitudinal fluctuation in 

free-stream inflow and a lateral fluctuation in pitch angle, we continue our LES-based 

study to investigate the aerodynamic robustness to wind-gust associated with the 

owl-inspired leading-edge serrations. Based on the simulated results, it is revealed that 

the serrated model is capable of dynamically suppressing the turbulent instability and 

aerodynamic force fluctuations. The serration-based passive flow control mechanisms 

and the tradeoff are confirmed independently to the perturbed inflow and fluctuated pitch 

motion, demonstrating the aerodynamic robustness in wind-gust associated with the 

leading-edge serrations. 
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Our results reveal that the owl-inspired leading-edge serrations can be a robust 

micro-device for aeroacoustic control coping with unsteady and complex wind 

environments in biomimetic rotor designs for various fluid machineries. 

 

Keywords: owl, leading-edge serration, large-eddy simulation, computational fluid 

dynamic, aeroacoustic noise suppression, aerodynamic robustness 
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1. Introduction 

 

1.1 Background - The silent flight of the owl 

 

Owls are a master to achieve silent flight [1-9] in gliding and flapping flights even 

under natural turbulent environments. Unlike most bird hunters who fly faster than their 

prey during hunting, the owls develop a unique and sophisticated hunting strategy relies 

on the silent flight as shown in figure 1-1. 

 

   

 

 

 

 Figure 1-1. Sophisticated silent hunting skill performed by the owl. (Photograph 

by Tom Samuelson) 

 

   

 

Some species of owl, including the barn owl (Tyto alba) and the barred owl (Strix 

varia), can suppress the wing-induced aerodynamic sound to an extremely lower level 

of a frequency below 2 kHz during gliding or flapping flight [4] owing to their unique 

wing morphologies that evolved after a long period of evolution, which are normally 
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characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces 

as illustrated in figure 1-2. The silent flight allows them to be capable of attacking prey 

like mice and voles easily. Such aerodynamic sound suppression is achieved even below 

the hearing ranges of owls themselves [4], which is also important for them to refrain 

from distracting because owls require extreme concentration on their bi-aural hearing 

systems to localize prey during flight. 

 

   

 

 

 

 Figure 1-2. The outmost remex of an ural owl. Microstructures characterized by 

leading-edge serrations, trailing-edge fringes and velvet-like surfaces are 

highlighted. 

 

   

 

The robust mechanisms associated with silent owl flight have therefore 

considerable potential for shedding light on bringing an innovative biomimetic design 

or improving the technologies of noise reduction in blades or rotors of wind turbines, 

aircrafts as well as multi-rotor drones [10-17]. 

 

1.2 Literature review 

 

Graham [1] first reported that most species of owl evolved a unique wing structure 
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with adaptations such as the comb-like serrations at leading-edge, fringes at trailing-edge 

and a velvety wing surface. Kroeger et al. [3] later demonstrated experimentally that 

without leading-edge serrations and trailing-edge fringes, the modified owl wings emitted 

sounds as noisy as other birds with a similar body mass did while flying at a similar speed. 

Recently, acoustic measurements on live owls [5, 7] or realistic owl wing specimens [8, 9] 

also demonstrated the sound suppression characteristics compared with non-silent 

species (without the specified microstructures) or non-serrated wings. 

 

Meanwhile, the idea of equipping owl-inspired artificial serrations onto the 

leading-edge of airfoils or rotor blades has been frequently investigated [10-17]. All 

attempts demonstrated the beneficial effect of the leading-edge serrations on noise 

reduction especially at higher frequencies. Furthermore, recent numerical analysis also 

identified the mitigation of far-field overall sound pressure level (OASPL) via 

leading-edge serrations for a rod-airfoil configuration [18]. However, the serration-based 

aerodynamic performance could not reach an agreement. Sodermann [13] indicated that 

the serrations, when placed properly on the airfoil, could increase maximum lift and angle 

of attack for maximum lift, decrease the drag at large angles of attack. Collins [15] also 

proved that the leading-edge serrations yield improved low-speed performance of the 

NACA 2412 and NACA 0015 airfoils over the Reynolds number range of 2 ~ 5 × 105. In 

contrast, Arndt et al. [12] reported that the serrations alter the pressure distribution over 

the blade and the variation in blade loading apparently decreases the overall efficiency 

of the rotor. While Soderman [14] found the rotor performance is essentially unchanged 

by the presence or absence of serrations on the blades. Ito [16] additionally concluded 

that the aerodynamic characteristics of the serrated airfoils have a strong Reynolds 

number effect. 

 

While being a long-standing problem that the unique owl-wing morphologies show 

apparent association with sound suppression and aerodynamic force production, it 

remains unclear how the leading-edge serrations correlate with the aeroacoustic 

mechanisms. Bachmann et al. [19] presented a study of morphometric characterization of 

wing feathers of the barn owl, including characteristics and morphology of feathers, barbs, 

radiates in detail. A specific focus was given on the comb-like serrations, which could 

merely be found in very few feathers that form the distal part of the wing’s leading-edge. 

They reported that each serration was indeed the tip of a single barb, having a very 

complicated 3D shape, and the size and orientation of the serration differed depending on 

its spanwise position. Bachmann et al. [19] also reported that owls have much larger wing 
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areas compared to pigeon with the same body mass, which results in a reduced wing 

loading. This allows owls to glide at a relative lower speed of 2.5 ~ 7.5 m/s [20] while 

approaching the prey, and hence prevents extra noise emission. However, around a wing 

moving at the lower Reynolds numbers of owl flight, i.e. 20000 < Re < 80000 based on a 

chord length of approximately 150 mm, an inevitable separation bubble or leading-edge 

vortex is normally observed on the suction surface due to laminar-turbulent transition. 

This bubble or leading-edge vortex varies in shape and strength dependent upon moving 

velocities and angles of attack, normally enhancing aerodynamic noise production. And 

the unsteadiness of the separation bubble may lower the aerodynamic performance in 

flight maneuvers. Therefore, in addition to the general wing morphology and geometry, 

owls further require some novel flow control mechanisms, likely by using their unique 

wing structures to stabilize the suction surface flow and hence achieve silent flight. 

 

Bachmann et al. [21] further investigated the 3D characterization of natural 

serrations and reconstructed a highly approximated serration model for biomimetic 

applications based on quantitative morphometric data. Klän et al. [22] digitized natural 

wings through the scanning 3D surface of dead owls and reconstructed geometric wing 

models to yield a smooth surface while fixing the increased camber based on drying or 

narcotizing of the birds. They then built up a clean wing model and used it as a reference 

case resembling the basic wing geometry. Aerodynamic characteristics of the artificial 

models were then studied through particle-image velocimetry (PIV) and force 

measurements, for both clean and serrated wing models in a wind tunnel [20, 23]. It was 

found that, at lower angles of attack (0° ⩽ AoA ⩽ 6°), the serrations seemed to stabilize 

the flow by passively controlling the boundary layer and separation bubble, but the 

artificial leading-edge serrations obviously lowered the aerodynamic performance 

compared to a clean model. 

 

1.3 Objectives of this thesis 

 

As known the micro-structured fluid dynamics can play a significant role in 

controlling boundary layer [24], and the leading-edge serrations likely provide a tradeoff 

between aerodynamic force production and sound suppression [20, 23], hence play a 

crucial role in achieving silent flight of owls. However, the essential underlying 

mechanisms, such as how the serrated-structures influence the flow separations (or 

instability) and how this affects the force production, remain unclear so far. In this thesis, 

aiming at providing a comprehensive understanding of the underlying serration-based 
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aeroacoustic phenomenon, we herein address an integrated study by combining 

low-speed wind tunnel experiments and computational fluid dynamic (CFD) modeling 

with owl-inspired single-feather wing models. 

 

1.4 Outline of this thesis 

 

The outline of this thesis is organized as follow: 

 

In chapter 2, we introduce the experimental owl-inspired single-feather wing models 

which were artificially fabricated based on the outermost remex of realistic owl wing with 

serrated leading-edge. The experiments of particle-image velocimetry (PIV) and force 

measurements in low-speed wind tunnel are briefly introduced. 

 

In chapter 3, we further introduce two idealized numerical models for CFD 

modeling. The computational domain and grids, as well as the LES-based CFD solver for 

transient flow fields and acoustic solver for near-field noise spectra are presented. 

 

In chapter 4, a verification study of mesh independency is given. The CFD modeling 

is further validated through a comprehensive comparison with PIV measurements. Then, 

based on the simulated flow structures and velocity spectra, sound spectra, as well as 

aerodynamic forces, we give an extensive discussion on how the serrations are capable of 

passively controlling laminar-turbulent transition and suppressing the vortex 

shedding-induced instability and hence sound emission, as well as their correlations with 

aerodynamic performance. 

 

In chapter 5, motivated by the sophisticated maneuvering and silent flight that owls 

can achieve even while coping with natural turbulent environments, we further conducted 

a computational study of aerodynamic robustness in owl-inspired leading-edge serrations 

with the LES-based CFD solver. Two conceptual wind-gust models were employed to 

mimic perturbed inflow and fluctuated pitch motion. Based on the simulated results, we 

give an extensive discussion on the aerodynamic robustness associated with the 

capability of the leading-edge serrations in passively controlling laminar-turbulent 

transition as well as their correlations with aerodynamic performance under perturbed 

inflow and fluctuated pitch motion. 

 

In chapter 6, we make general conclusions of this study. 
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2. An owl-inspired single-feather wing model 

 

2.1 The wing and feathers of realistic owl 

 

  

 

 

 

 

 

   

 Figure 2-1. (A) Right wing of a female Ural owl (Strix uralensis). The arm and 

hand wings are highlighted by cyan and orange dashed line, respectively. (B) The 

comb-like serrated leading-edge at the vane of the outermost remex. 

 

  

 

 

 

Figure 2-1(A) shows the right wing of a female Ural owl (Strix uralensis). The 

specimen was collected in Iwate Prefecture, Japan and kindly provided by Yamashina 

Institute for Ornithology. The owl’s wing consists of an arm-wing (colored cyan) and a 

hand-wing (colored orange). The arm-wing is structured by bones and muscles, and 
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covered by velvety coverts that densely overlapped on the skin, forming a rounded 

leading-edge. The hand-wing is made up of remiges (or flight feathers) only with sharp 

leading- and trailing-edge. The vane of the outermost remex shows a comb-like serrated 

leading-edge as illustrated in figure 2-1(B). The second outermost remex has smaller 

serrations on its vane, overlapping with adjacent feathers to form a continuous wing 

surface, which acts as a secondary serrated leading-edge. 

 

  

 

 

 

 

 

   

 Figure 2-2. (A) Owl single feather (top)-inspired wing models with serrated 

(middle) and clean (bottom) leading-edges. (B) Close-up view of the leading-edge 

serrations of the serrated wing model. 
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2.2 Owl-inspired single-feather wing models with and without 

leading-edge serrations 

 

Motivated by the serrated leading-edge at the vane of the outermost remex, we 

fabricated two artificial single-feather wing models (figure 2-2(A)) as 2D rectangular 

models of leading-edge serrations with different configurations by using a wire electric 

discharge machine. Note that with a specific focus on the essential aerodynamic effects of 

comb-like serrations, we here neglected the inclination (bend and twist) angles and the 

realistic 3D shapes of the serrations. Both models have dimensions of 150 × 30 mm with 

an aspect ratio of AR = 5, identical to the outermost remex. For simplicity and 

tractability, the cross-section is set to be rectangular with a uniform thickness of 0.5 or 1 

mm for both models. The serrations-like leading-edge structures of the model are 

distributed uniformly with a length of 3 mm, matching the real serrations of the owl, 

approximately 10% of the chord length, with the same spacing and width of 0.5 mm as 

illustrated in figure 2-2(B). 

 

 

   

 

 

 

   

 Figure 2-3. Perspective view of an ultra low-speed wind tunnel.  
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2.3 PIV and force measurements in the low-speed tunnel experiments 

 

Flow fields and aerodynamic characteristics of the single-feather wing model with 

leading-edge serrations were firstly measured with an ultra low-speed wind tunnel 

(figure 2-3), which was specifically designed to have a test section of 1 × 1 × 2 m and to 

be capable for achieving a smooth air-flow (⩽ 2% turbulence) ranging from 0.5 to 11.0 

m/s. The airflow speed was set to be 3.0 m/s, which is within the range of the normal 

flying speed of owls when attacking prey [1]. 

 

   

 

 

 

   

 Figure 2-4. Experimental setup for PIV measurements viewing from downstream 

of the test section. 
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The single-feather wing models that sit at the center of the test section were put on 

a rotational motorized stage (SGSP-80YAW, SIGMAKOKI) and attached onto a 6DoF 

load cell (Nano17Ti, ATI). Time-varying dynamic forces (3000 Hz) acting upon the 

models were measured and averaged over 10 s to obtain the time-averaged (steady) 

aerodynamic forces. Near-field flow structures around the models were measured with a 

PIV system equipped into the low-speed wind tunnel, which was seeded with DEHS 

mist (1 μm of diameter) generated by a seeding generator (PivPart 14, PivTec). The 

vertical streamwise plane at mid-wing span was illuminated by a laser light generated 

by a pulsed laser (532 nm, LDP-100MQG, LeeLaser), which is guided to the top of the 

test section through optic fiber and then diverged into a 2 mm band sheet through a 

cylindrical lens with a pulse separation interval of 120 μs. The laser-sheeted area around 

the wing model (70 × 70 mm) was filmed at 350 Hz by a high-speed camera 

(FASTCAM SA3, Photron) fitted with a macro lens (150 mm F2.8, SIGMA). The 

PIV-based filming system was driven by a controller, LC880, LabSmith; and the images 

were processed by commercial software, Koncerto II, Seika Digital Image. The 

correlation window was set to have 24 × 24 pixels with 50% overlapped to yield 84 × 

84 vectors within one PIV image. The average pixel separation during 120 μs is about 

4-5 pixels, with the sub-pixel accuracy of 0.2 pixel according to the manufacturer, 

which leads to the estimated error of the velocity field between 4-5%. The resulting 

vectors were further filtered through a threshold to remove the vectors with relatively 

higher values, which was defined by the standard deviation and the median. The flow 

velocity field was then calculated by averaging the vectors over 2 s. 

 

More details on this integrated study using PIV and force measurements in wind 

tunnel experiments on morphology effects of leading-edge serrations can be found in 

Ikeda et al. [2] The experimental results will also be presented (chapter 4) in 

comprehensive comparisons with the CFD-based results for validation. 
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3. Numerical methods 

 

3.1 Overview 

 

In general, since the compressible Navier-Stokes equation describes both the flow 

and the aeroacoustic fields and thus both may be solved for directly. However, this 

requires very high numerical resolution due to the large differences in the length scale 

present between the acoustic variables and the flow variables. On the other hand, it has 

been widely recognized [1] that the approach splitting the computational domain into 

two different regions to solve the governing acoustic or flow field with different 

equations and numerical techniques. This usually involves using two different numerical 

solvers, first a CFD solver (e.g. direct numerical simulation (DNS), large-eddy 

simulation (LES), Reynolds-averaged Navier-Stokes equation (RANS)) to solve the 

flow field and secondly an acoustic solver (e.g. the formula of Lighthill-Curle) to the 

acoustical propagation. 

 

In this chapter, we first introduce the idealized numerical wing models for CFD 

modeling, as well as the computational domain and grids (section 3.2). Then, the 

incompressible LES-based CFD solver for transient flow fields (section 3.3) and 

acoustic solver for near-field noise spectra (section 3.4) are presented. Note that it is 

reasonable to assume an incompressible fluid in the LES-based modeling and then use 

the computed flow fields for the aeroacoustic analysis for a compact computational 

domain around the wing model [1]. 

 

3.2 Computational model of owl-inspired single-feather wing 

 

As illustrated in figure 3-1, based on the owl-inspired experimental models (figure 

2-2) we here introduced two idealized single-feather wing models with an infinite 

wingspan, involving a clean wing model without serrations and a leading-edge-serrated 

wing model. Note that with consideration of the infinite wingspan, it is reasonable to 

make CFD modeling of merely one element of the infinite wing and apply transitional 

periodic boundary conditions on two sides, which leads to a large reduction in 

computing time. This infinite wing-span model makes it capable to focus on 

investigating the essential 2D mechanisms associated with leading-edge serrations while 

neglecting the complexity of 3D effects. 
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The basic geometric characteristics are summarized in Table 3-1. The coordinate 

system is defined as in figure 3-1 with its origin at the left side of the leading-edge and 

located in the middle of the upper and lower surfaces. With consideration of the fact that 

the force (lift and drag forces) measurements of the artificial single-feather wing models 

showed little differences associated with the wing thickness [2], here we defined our 

CFD wing model with a thickness of 0.67 mm in between the range (0.5 ~ 1.0 mm) of 

the artificial wing models. 

 

   

 

 

 

   

 Figure 3-1. Computational model of an owl-inspired single-feather wing, with 

clean (top) and serrated (bottom) leading-edges. 

 

   

 

 

Table 3-1. Basic geometric characteristics of the computational models 

Chord length c 30 mm 

Span b 3 mm 

Thickness s 0.67 mm 

Length of serrations l 3 mm 

Width of serrations w 0.5 mm 

Interval between serrations d 1 mm 
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 Figure 3-2. Computational domains and grids: (A) H-type structured grids (green) 

for far-field domain, and (B) “Octree” unstructured grids (purple) for near-field 

domain. (C) Close-up view of the grids at leading-edge. 
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To resolve boundary layers and laminar-turbulent transition as well as flow 

separation around the wing model, a multi-blocked hybrid grid system (figure 3-2) was 

employed with the near-field domain of 0.5c from the wing surface, where c is the 

chord length. Three unstructured grids with varying mesh densities were generated to 

perform a mesh sensitivity study (to be discussed in section 4.2). The grids were 

clustered to the wing surface with the minimum grid spacing adjacent to the surface 

controlled by a formula [3] 

 min

0.1

Re

c
 = , (3-1) 

where Re is the chord-based Reynolds number. H-type structured grids were generated 

for the far-field domain with a distance of 20c from the wing surface. 

 

3.3 Large-eddy simulation using WALE model 

 

With consideration of the large scale separated flows at a moderate Reynolds 

number of 6000 (based on inflow velocity Uref = 3 m/s and chord length c = 3 cm) in 

this study, modeling of large-eddy simulation (LES) was adopted, which is capable of 

resolving laminar-turbulent transition as well as turbulent flow without applying 

turbulent models rather than RANS (Reynolds-averaged Navier-Stokes equation) 

modeling. All simulations were herein conducted with commercial software ANSYS 

CFX (ANSYS, Inc.). Those eddies with smaller scales than the grid size were filtered 

and involved in a subgrid-scale model in order to reduce computational cost. 

 

For incompressible flows, the filtered governing equations involving the equations 

of continuity and the momentum can be written such as: 

 0i

i

U

x


=


, (3-2) 
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, (3-3) 

where the subgrid-scale stress tensor τij accounts for the influence of the filtered small 

scale eddies, and is defined by 

 ij i j i jU U U U = − . (3-4) 

Here an eddy-viscosity assumption is used to close the τij term, modeled as 
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 2
3

ij

ij kk ijS


  − = − , (3-5) 

where δij is the Kronecker symbol, νt is the turbulent eddy viscosity, and ijS  denotes 

the strain rate tensor of the resolved field defined by 
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. (3-6) 

 

We further used the wall-adapted local eddy-viscosity (WALE) model, proposed by 

Nicoud et al. [4], to compute the eddy viscosity νt. The WALE model reads as 

 ( )
( )
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where d

ijS  is the traceless symmetric part of the square of the velocity gradient tensor 

 ( )2 2 21 1

2 3

d
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and 
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ij
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g
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=


, (3-10) 

denote the velocity gradient tensors. The default value of the constant Cω is taken to be 

0.5. More details on the WALE model can be found in Nicoud et al. [4]. 

 

3.4 Calculation of the near-field noise spectrum 

 

With the LES-based transient information of the flow fields we can further conduct 

an aeroacoustic analysis of the so-called self-noise or near-field noise, which are 

generally caused by the interaction between a rigid surface and its near-field boundary 

layer. The calculation of the self-noise spectrum was then done with a post-processing 

function of CFD-Post (ANSYS, Inc.) through a fast Fourier transform (FFT) algorithm 
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for the time-varying surface pressures. The signal power of the near-field noise 

spectrum can be calculated in decibel (dB) to give sound amplitude, 

 10

ref

( )
( ) 10 log n

sp n

p f
A f

p

 
=   

 
, (3-11) 

where p(fn) denotes the distribution of pressure in the frequency domain, and pref the 

reference acoustic pressure, which is equal to 20 μPa. 
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4. Owl-inspired leading-edge serrations play a 

crucial role in aerodynamic force production 

and sound suppression 

 

4.1 Overview 

 

While being a long-standing problem that the unique owl-wing morphologies show 

apparent association with aerodynamic force production and noise suppression since 

first reported by Graham [1], it remains unclear how the three morphological 

characteristics correlate with the aeroacoustic mechanisms. The leading-edge serrations 

have been the main subject as a sophisticated micro device for passive flow control and 

aeroacoustic control, which has been widely studied [2-23]. According to the PIV and 

force measurements on both clean and artificial serrated wing models in a wind tunnel 

by Klän et al. [23] and Winzen et al. [20], the leading-edge serrations likely provide a 

tradeoff between aerodynamic force production and noise suppression, and hence play a 

crucial role in achieving the silent flight of owls. However, the essential underlying 

mechanisms, such as how the serrated structures influence the flow separations (or 

instability) and how this affects the force production, still remain uncovered so far. 

Therefore, aiming at providing a comprehensive understanding of the underlying 

serration-based aeroacoustic phenomenon, we herein address an integrated study by 

combining low-speed wind tunnel experiments (introduced in chapter 2) and 

computational fluid dynamic (CFD) modeling (introduced in chapter 3) with 

owl-inspired single-feather wing models. 

 

Although the wing motions of free-flying owls generally show complex patterns in 

wing kinematics and deformations as reported by Wolf et al. [24], as our first step to 

investigate the essential mechanisms of the leading-edge serrations in steady flow 

condition, here we pay specific attention to the aerodynamic characteristics of the 

single-feather models traveling in a uniform incoming flow. 

 

Given the unifrom free-stream velocity Uref = 3 m/s and the chord length c = 3 cm, a 

chord-based Reynolds number was calculated to be Re = 6000. An initial velocity 

fluctuation was set as 2%Uref, which is identical to the turbulence intensity of the wind 
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tunnel [25]. A broad range of angles of attack (AoAs) over 0° ⩽ AoA ⩽ 20° was taken 

into consideration in the CFD modeling based on the measurements by Wolf et al. [24] in 

which the effective angle of attack was observed to range from -20° to 20° in flapping 

flights of barn owls. All simulations were performed with a time step of 5 × 10-5 s up to 1 

s when the flow fields turned to be stable. 

 

In this chapter, the reliability of our CFD modeling was first verified in section 4.2 in 

terms of mesh independency, and then further validated in section 4.3 through a 

comprehensive comparison with PIV and force measurements in wind tunnel [25]. Then, 

based on the simulated flow structures around clean and serrated models, we give an 

extensive discussion on how the serrations are capable of passively controlling 

laminar-turbulent transition and the associated swirling features of leading-edge vortices 

(section 4.4). Further with an integrated analysis of the simulated velocity spectra, sound 

spectra, as well as aerodynamic forces, we discuss how the serration-based flows can 

suppress the vortex shedding-induced instability and hence noise emission, as well as 

their correlations with lift and drag coefficients, and lift-to-drag ratios (section 4.5). 

 

4.2 Mesh independence study 

 

Here we carried out an extensive verification study of the clean wing model with a 

specific focus on its self-consistency in terms of mesh independency, which was 

undertaken at AoA = 5° for steady state with three mesh systems as summarized in 

Table 4-1. 

 

To evaluate aerodynamic characteristics, e.g. the flow separation and reattachment 

as well as the laminar-turbulent transition, we calculate pressure and friction 

coefficients acting upon suction surfaces, which are non-dimensionalized by 

 
2
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= , (4-1) 
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U





= , (4-2) 

where P and τx denote pressure and streamwise shear stress variations at corresponding 

node respectively, and ρ is the air density of 1.185 kg/m3 at 25 °C and 1 atm. 
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 Figure 4-1. Grid independency in terms of time-averaged pressure coefficients (A) 

and friction coefficients (B) on suction surface of clean leading-edge wing model 

at AoA = 5° with Mesh I (dotted line), Mesh II (dashed line) and Mesh III (solid 

line). 

 

   

 

Among coarse Mesh I, medium Mesh II, and fine Mesh III with different minimum 

grid spacing adjacent to the surface and mesh numbers, marginal differences are 

observed in the distributions of time-averaged pressure coefficient (Cp, see equation 4-1) 

on the suction surface (figure 4-1(A)). Note that the plateau immediately downstream 

the suction-pressure peak in the Cp curves indicates a separation bubble and shows 

seldom discrepancy among the three meshes. Moreover, corresponding with the zero 
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points and the negative peak of friction coefficient (Cf, see equation 4-2), the separation 

and reattachment as well as the averaged transition point of the turbulent boundary layer 

that may be very sensitive to mesh dependency, however, are consistently well predicted 

with the three meshes (figure 4-1(B)), with a Mesh I-based relative difference by 

0.153%c (separation), 1.43%c (transition), 0.47%c (reattachment) as summarized in 

Table 4-1. The Mesh II could both provide good estimation and save computational time 

compared with the Mesh III, and therefore was employed for all the other simulations in 

this study. 

 

Table 4-1. Mesh independency study of clean wing model at AoA = 5° in steady state 

 Mesh I Mesh II Mesh III 

Minimum grid spacing 0.075 mm 0.050 mm 0.025 mm 

Node number of the inner domain 308 275 502 622 691 042 

Separation point (x/c) 1.206 × 10-2 1.359 × 10-2 1.337 × 10-2 

Transition point (x/c) 5.981 × 10-1 6.124 × 10-1 6.058 × 10-1 

Reattachment point (x/c) 7.429 × 10-1 7.464 × 10-1 7.476 × 10-1 

 

 

4.3 Results and validation 

 

4.3.1 Mean velocities 

 

The main flow features around the clean and serrated wing models were visualized 

by mean velocities in terms of flow separation and reattachment, and compared between 

the two wing configurations. With ANSYS CFX, it was actually realized by running 

arithmetic averages of instantaneous velocities, which were statistically generated from 

the transient velocity fields during LES simulation. 

 

Contours of the time-averaged streamwise velocities normalized by the free-stream 

velocity are illustrated in figure 4-2 for both serrated and clean wing models at AoAs of 

5°, 10°, and 15°, respectively. For comparison and validation of the CFD-based 

simulations, contours of the PIV-based mean velocity fields measured in wind tunnel 

experiments are further plotted in figure 4-3 in the same manner, which are in 

reasonable agreement with the simulated results (to be discussed in section 4.4), and 

hence validates the reliability of LES-based simulations. 
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 Figure 4-2. Contours of time-averaged velocities normalized by uniform income 

velocity Uref around a clean leading-edge wing model (left: A, C, E), and a serrated 

leading-edge wing model (right: B, D, F) at AoAs of 5° (A, B), 10° (C, D), and 15° 

(E, F), respectively. 

 

   

 

4.3.2 Turbulent fluctuations 

 

To evaluated the turbulent fluctuations in fluid momentum we further plotted the 

contours of normalized streamwise Reynolds stress Ruu (see equations 4-5) in figure 4-4 

to visualize the features of laminar-turbulent transition on upper surface. Here the 

time-averaged Reynolds stress component u'v' , where u'  and v'  denote the 

fluctuation of the corresponding velocity components, is defined as 

 -u'v' uv uv= , (4-3) 

where the arithmetic averages of the velocity correlation uv  are statistically generated 

during the LES computation. The statistical Reynolds stresses can be 

non-dimensionalized as 
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whereas the streamwise component is as 
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 Figure 4-3. Comparison of contours of time-averaged velocities normalized by 

uniform income velocity Uref between PIV measurements (left) and LES results 

(right): a clean leading-edge wing model (A, C, E) and a serrated leading-edge 

wing model (B, D, F) at AoAs of 5° (A, B), 10° (C, D), and 15° (E, F), 

respectively. In PIV-based contours, the wing locations are illustrated with grey 

lines. 

 

   



Chapter 4. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force 

production and sound suppression                                                                

37 

 

 

   

 

 

F
ig

u
re

 4
-4

. 
C

o
n
to

u
rs

 o
f 

n
o
rm

al
iz

ed
 s

tr
ea

m
w

is
e 

R
ey

n
o
ld

s 
sh

ea
r 

st
re

ss
es

 (
R

u
u
):

 a
 c

le
an

 l
ea

d
in

g
-e

d
g

e 
w

in
g
 m

o
d
el

 (
A

, 
C

, 

E
) 

an
d
 a

 s
er

ra
te

d
 l

ea
d
in

g
-e

d
g

e 
w

in
g
 m

o
d
el

 (
B

, 
D

, 
F

) 
at

 A
o
A

s 
o
f 

5
° 

(A
, 
B

),
 1

0
° 

(C
, 
D

),
 a

n
d
 1

5
° 

(E
, 
F

),
 r

es
p
ec

ti
v
el

y.
 

 

 

 



Chapter 4. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force 

production and sound suppression                                                                

38 

 

 

   

 

 

 

   

 Figure 4-5. Instantaneous iso-surfaces of swirling strength = 500 s-1, highlighted by 

normalized helicity density: a clean leading-edge wing model (A, C) and a serrated 

leading-edge wing model (B, D) at AoAs of 5° (A, B), 15° (C, D), respectively. 

 

   

 

 

4.3.3 Vortical structures 

 

Because the laminar-turbulent transition is characterized by vortical structures at 

leading- and trailing-edge as well as vortex shedding and break-up, we further 

visualized the instantaneous iso-surfaces of swirling strength that identifies and frames 

the vortical structure as the region of strengthened vorticity as shown in figure 4-5, with 

snapshots of the instantaneous iso-surfaces of swirling strength of 500 s-1 at AoAs of 5° 

and 15°. The normalized helicity density [26] is employed simultaneously to visualize 

the helical feature of the vortical structures, which is defined by 

 
U

h
U






=


, (4-6) 

where U and ω denote velocity and vortical vectors, respectively. Note that the 
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normalized helicity density h is defined as the projection of a fluid’s spin vector in the 

direction of its momentum vector, being positive (red) if it points in the same direction 

but negative (blue) in the opposite direction. 

 

   

 

 

 

   

 Figure 4-6. Color balls display the positions of three points at leading-edge 

(yellow, x/c = 0), mid-chord (green, x/c = 0.5) and trailing-edge (purple, x/c = 1). 

 

   

 

 

4.3.4 Velocity spectrum 

 

In order to investigate the nature of flow-fluctuation phenomenon during 

laminar-turbulent transition we further made an analysis and comparison of velocity 

spectra between the two models at three feature points (as displayed by color balls in 

figure 4-6) over the upper surface to identify the dominant frequencies of the local 

velocity fluctuations. The spectrum was obtained via a fast Fourier transform (FFT) 

algorithm for the time-varying streamwise velocities of the last 4096 time steps. Figure 

4-7 illustrates the spectra of streamwise velocities at the leading-edge (x/c = 0), the 

mid-chord (x/c = 0.5) and the trailing-edge (x/c = 1) and at AoA = 5°, 20°. 

 

4.3.5 Self-noise spectrum 

 

As previously described in section 3.4, with the LES-based transient information of 

the flow we can further conduct an aeroacoustic analysis of the co-called self-noise or 

near-field noise, which are generally caused by the interaction between a rigid surface 

and its near-field boundary layer. The calculation of the self-noise spectrum was then 

done with a post-processing function of CFD-Post (ANSYS, Inc.) through a FFT of 

time-varying surface pressures. The signal power of the self-noise spectrum can be 

calculated in decibel (dB) to give the sound amplitude (see equation 3-11). With the 

computational time step of 5 × 10-5 s, the upper limit of the spectrum can be calculated 

up to 20 kHz. 
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 Figure 4-7. Streamwise velocity spectra at leading-edge (A, B), mid-chord (C, D), 

and trailing-edge (E, F) of a clean leading-edge wing model (blue) and a serrated 

leading-edge wing model (red) at AoAs of 5° (A, C, E), and 20° (B, D, F), 

respectively. 

 

   

 

As seen in figure 4-4, compared to the leading-edge, distinguished turbulent 

fluctuations are observed at the trailing-edge. This may lead to a significant increase in 

the radiated sound power and thus implies that the trailing-edge noise is apparently a 
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key noise source. To quantify the aerodynamic noise production, we computed the 

sound amplitude spectra of the trailing-edge self-noise and compared between the clean 

and serrated wing models at AoA = 20° (figure 4-8), which are identical to an effective 

angle of attack observed in forward flight of barn owls [24]. Note that the aerodynamic 

noise is not completely evaluated here because additional noise production may also 

occur due to flow transition and reattachment, and / or vortex shedding in the separated 

shear layer and / or in the wake. However, it is obvious that the serrated wing model 

seems to be capable of remarkably suppressing the level of turbulent fluctuations and 

hence the noise production at the trailing-edge. 

 

   

 

 

 

   

 Figure 4-8. Self-noise amplitude spectra at trailing-edge of a clean leading-edge 

wing model (blue) and a serrated leading-edge wing model (red) at AoA of 20°. 
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 Figure 4-9. Comparison of lift (A) and drag (B) coefficients, and lift-to-drag ratios 

(C) vs. angles of attack between LES (lines) and wind tunnel experiments (0.5 

mm: circles, 1mm: triangles): a clean leading-edge wing model (blue) and a 

serrated leading-edge wing model (red). Green lines denote lift-curve slopes of a 

2D infinite plate (green solid line) and a 3D plate with aspect ratio AR = 5 (green 

dashed line), respectively, estimated by lifting-line theory. 
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4.3.6 Aerodynamic forces 

 

As shown in figure 4-9, effects of the leading-edge serrations on aerodynamic 

performance was further evaluated through a comparison of the time-averaged lift and 

drag coefficients as well as lift-to-drag ratios via angles of attack between the 

measurements and simulations. The lift and drag coefficients are defined as follows, 
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where ρ denotes the air density of 1.185 kg/m3 at 25 °C and 1 atm, and S the wing area 

of the upper surface that takes into account the area of serrations in the serrated model. 

It should be noted that the measured aerodynamic force coefficients are for the 3D 

artificial wing models (see section 2.2) whereas the computed ones are for the 2D 

infinite wing models without consideration of the 3D effects. In this respect, although 

we see that the lift-to-drag ratios and the trend of lift and drag coefficients are in very 

good agreement with each other, there does exist pronounced differences in the 

magnitudes of lift and drag coefficients in comparison to the EXP models. It should be 

reasonable to consider that the 3D effect owing to the interplay among the leading-edge 

vortex, the wing tip vortex and the trailing-edge vortex for the low aspect ratio wing 

(AR = 5) may largely reduce the aerodynamic force production, in particular at larger 

angles of attack (figure 4-9). 

 

To further validate our CFD-based results of the 2D wing models, we herein 

predict the slope of the lift-curve by introducing the thin airfoil theory for 2D flow, 

which (green solid line) is equal to 2π, agreeing well with our LES-based results (blue 

solid line) at lower AoAs (figure 4-9). Moreover, the lifting-line theory by Prandtl [27] 

can be used to quantitatively estimate the lift-curve slope (a) of a 3D plate with medium 

to large ARs in the following way [28], 

 0

2
1

AR

a
a =

+

, (4-9) 

where a0 = 2π is taken to be the lift-curve slope of a 2D infinite plate, and AR = 5 the 
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aspect ratio of the artificial wing models. Apparently the estimated slope (green dashed 

line) matches better the measured lift coefficients (blue circles) at low angles of attack. 

Note that the lifting-line model does not hold for the cases of larger AoAs and stalls. 

 

4.4 Serration-based passive flow control mechanisms 

 

Here, based on the simulated flow structures (mean velocities, turbulent 

fluctuations and vortical structures) around the clean and serrated wing models, we 

investigate how the leading-edge serrations passively control the flows during 

laminar-turbulent transition with a focus on the features of flow separation and 

reattachment and the associated swirling features of leading-edge vortices, as well as 

their correlations with the aerodynamic force production of lift and drag. 

 

As shown in figures 4-2 and 4-3, the normalized mean velocity fields demonstrate 

obvious discrepancy between clean and serrated wing models. An immediate flow 

separation at the leading-edge is observed in the clean wing model at all AoAs (figures 

4-2(A), (C), (E) and 4-3(A), (C), (E)), which is likely owing to the sharp leading-edge 

and the adverse pressure gradient. The serrated model, however, seems to be capable of 

filtering the flow via serrations and generates a partial-slip boundary layer in the 

vicinity of the leading-edge (figures 4-2(B), (D), (F) and 4-3(B), (D), (F)), which 

obviously delays and mitigates the flow separation downstream. This consequently 

leads to significantly different flow characteristics on the suction surface. 

 

At a lower AoA of 5°, it is seen that in the clean model (figures 4-2(A) and 4-3(A)) 

the separated flow reattaches onto the upper surface in the vicinity of approximately x/c 

= 0.65, forming a separation bubble, i.e. the leading-edge vortex, which supports the 

results by Winzen et al. [20]. This phenomenon is normally observed in the low 

Reynolds-number flow regime associated with laminar-turbulent transition on the 

suction surface [22, 29-30]. The distributions of streamwise Reynolds stress in figure 

4-4(A) further demonstrate a laminar flow region at the leading-edge, followed by a 

rapid transition immediately upstream of the reattachment point as well as an attached 

turbulent boundary layer. In contrast, the serrated wing model corresponds with a long 

suction-flow region without reattachment (figures 4-2(B) and 4-3(B)) throughout the 

upper surface, and shows almost no variations in the streamwise Reynolds stresses 

associated with the turbulent fluctuations (figure 4-4(B)). This indicates that the 

suction-flow remains in a completely laminar state owing to the serrations. On the other 
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hand, due to the lack of the leading-edge vortex, i.e. the leading-edge separation bubble, 

the serrated wing model obviously shows poor aerodynamic performance in lift (figure 

4-9(A)) and drag (figure 4-9(B)) coefficients as well as in lift-to-drag ratio (figure 

4-9(C)). This implies that at such a lower angle of attack, the serrated wing seems to pay 

a cost on stabilizing the flow through delaying the laminar-turbulent transition with a 

reduction in aerodynamic performance. 

 

Along with increasing of AoA to 10°, it is observed that the leading-edge vortex 

grows up quickly and it turns out to be difficult to localize the mean reattachment point 

from the velocity fields (figures 4-2(C), (D) and 4-3(C), (D)). A shear layer is then 

detected in both clean and serrated wing models at the leading-edge where the flows 

separate completely from the upper surface as seen in the streamwise Reynolds stresses 

(figures 4-4(C), (D)). The clean wing model (figure 4-4(C)) shows a complicated phase 

of laminar-turbulent transition with a shear layer initiated at the leading-edge but 

growing rapidly over the mid-chord, and substantially developing into fully turbulent at 

the trailing-edge. The serrated wing model (figure 4-4(D)), however, shows a larger 

shear layer region with more moderate turbulent fluctuations within it, and the 

suction-flow remains laminar over most parts of the upper surface, eventually transiting 

to fully turbulent at the trailing-edge. 

 

Further increase AoA to 15° or beyond leads to enlarging the flow separation, 

which eventually results in an apparently similar nature of the mean flow fields for the 

two wing models (figures 4-2(E), (F) and 4-3(E), (F)). The distribution of streamwise 

Reynolds stress, however, still remains apparently different: the clean wing model 

(figure 4-4(E)) shows significantly higher instability within the shear layer compared to 

the serrated wing model (figure 4-4(F)), corresponding to a much larger region of 

laminar-turbulent transition. Clearly, the turbulent fluctuations in the vicinity of the 

trailing-edge become much more pronounced with increasing AoAs because of the 

interplay between the shedding vortices induced by the separated shear layers and the 

trailing-edge vortices. 

 

To investigate the shear layer-induced flow instability, we further look at the 

swirling features associated with laminar-turbulent transition. For the clean wing model, 

it is seen that a free shear layer is formed at the separation point, where the 

Kelvin-Helmholtz (KH) instability occurs causing oscillations of the separated shear 

layer, which as shown in figures 4-5(A) and (C) substantially leads to vortex shedding. 
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These shedding vortices dynamically interact with each other and substantially merge 

together at the mid-chord, which enhances the flow instability, resulting in an intense 

transition to turbulence. At the lower AoA of 5°, over the mid-chord the turbulent flow 

entrain momentum to reattach and forms a fully developed turbulent boundary layer 

downstream (figures 4-2(A) and 4-3(A)) while the shedding vortices flow over the 

upper surface and shed off from the trailing-edge (figure 4-5(A)). At the higher AoA of 

15°, the shedding vortices obviously roll away quickly from the upper surface, growing 

up to a large-scale vortex sheet in the wake (figure 4-5(C)). In contrast, the serrated 

wing model shows an obvious different phase: the leading-edge vortex is broken up into 

numbers of small eddies (figures 4-5(B) and (D)), which likely scatters and mitigates 

the KH instability within the separated shear layer and hence suppresses the vortex 

shedding efficiently and consequently leads to enhanced stability of the suction flow. 

 

4.5 Tradeoff between force production and sound suppression 

 

Here we give an extensive discussion on whether serrations may be capable of 

providing a novel solution to the tradeoff between flow fluctuation-induced noise 

suppression and force production in owl silent flight. We investigate the dominant 

frequencies of the flow fluctuations through FFT-based velocity spectrum analysis to 

clarify how the leading-edge serrations contribute to suppressing the local velocity 

fluctuations. We further use an FFT-based pressure spectrum analysis to quantify how 

the discrepancy in the flow fluctuations leads to distinguished sound generation between 

the clean and serrated wing models. 

 

At a lower AoA of 5°, we see a pronounced difference of velocity spectra between 

the clean and serrated wing models. The clean model presents a highest peak at f = 58.6 

Hz at leading-edge (figure 4-7(A)), pointing to the dominant fluctuation frequency of 

the separated shear layer; and several prominent peaks are also notable at mid-chord and 

trailing-edge (figures 4-7(C) and (E)), corresponding to high harmonic-frequency eddies 

in figure 4-5(A), associated with the laminar-turbulent transition (figure 4-4(A)). The 

serrated wing model, however, obviously shows much lower magnitudes of the 

dominant fluctuation frequencies throughout the upper surface, merely with a spectral 

prominence at f = 195.3 Hz (figure 4-7(E)) corresponding to the shedding of 

trailing-edge vortices. This indicates that the leading-edge serrations are capable of 

suppressing velocity fluctuations to a lower level from leading-edge (figure 4-7(A)) to 

trailing-edge (figure 4-7(E)), and hence stabilizing the flows due to laminar-turbulent 
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transition at mid-chord (figure 4-7(C)). 

 

At a larger AoA of 20°, the clean wing model presents a notable increase in the 

magnitude of flow fluctuations corresponding to the intense laminar-turbulent transition 

at mid-chord whereas the serrated wing model is obviously capable of suppressing the 

velocity fluctuations to a lower level (figures 4-7(B) and (D)). At trailing-edge, the 

clean wing model presents a feature of multiple peaks while one single spectral spike is 

observed in the serrated wing model at the dominant frequency, f = 43.9 Hz (figure 

4-7(F)), which is identical to that observed at the leading-edge (figure 4-7(B)). This 

indicates that the vortices shedding off separately from both leading-edge and 

trailing-edge likely share the same frequency, which implies that the interactions due to 

the laminar-turbulent transition at mid-chord have been suppressed remarkably (figure 

4-7(D)). 

 

Furthermore, through the FFT-based pressure spectrum analysis, we investigated 

the sound amplitude spectrum of the trailing-edge self-noise at AoA = 20° (figure 4-8). 

Obviously, the serrated wing model distinguishably reduces the sound amplitudes by 

approximately 10 dB in the case when the dominant sound frequency is greater than 2 

kHz. This demonstrates that the leading-edge serrations are capable of suppressing 

high-frequency sound amplitudes at trailing-edge, which are initially induced by the 

high frequency eddies owing to intense laminar-turbulent transition. 

 

With respect to the force production as illustrated in figure 4-9, the leading-edge 

serrations demonstrate a distinguished aerodynamic performance between lower and 

higher angles of attack: reducing the lift coefficient and lift-to-drag ratios at AoAs less 

than 15° but being capable of achieving an even aerodynamic performance at AoAs 

greater than 15° compared to the clean wing model. Therefore, with consideration of the 

tradeoff between aerodynamic force production and sound suppression, it would be fair 

to say that the serrated wing model pays a cost of lowering aerodynamic performance to 

achieve sound suppression at lower AoAs < 15° but is capable of resolving the tradeoff 

to achieve both sound suppression and aerodynamic performance at higher AoAs > 15° 

where owl wings often reach at in flight [24]. 

 

4.6 Summary 

 

In this chapter, we conducted an integrated study by combining LES-based 
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simulations and low-speed wind tunnel experiments on highly unsteady flows 

associated with laminar-turbulent transition around owl-inspired single-feather wing 

models with and without leading-edge serrations. We find that the serrated wing model 

can passively control the laminar-turbulent transition to suppress the high frequency 

eddies, and hence leads to sound suppression. This mechanism is likely achieved by the 

leading-edge serrations, which as a flow filter, break up the leading-edge vortex into 

numbers of small eddies and hence suppress the KH instability within the separated 

shear layer. With velocity spectrum analysis, we confirm that the leading-edge 

serrations are capable of stabilizing the flow fluctuations due to laminar-turbulent 

transition. Further combining with pressure spectrum analysis, we discover that a 

distinguishable reduction in sound amplitudes of the trailing-edge self-noise can be 

achieved at a dominant sound frequency greater than 2 kHz. Moreover, the leading-edge 

serrations seem to be capable of providing a strategy in resolving the tradeoff between 

noise suppression and force production. We find that, compared to the clean 

single-feather wing model, the serrated wing model shows a reduction in aerodynamic 

force production at lower AoAs < 15° but obviously a capability to achieve an even 

aerodynamic performance at higher AoAs > 15° while significantly suppressing the 

aeroacoustic noise production. The results further indicate that the owl-inspired 

leading-edge serrations may provide a useful biomimetic design for flow control and 

aeroacoustic noise suppression in wind turbines, aircrafts, multi-rotor drones as well as 

other fluid machinery. 

 

It should be mentioned that the measurements and simulations are all conducted in 

steady state in order to investigate the essential mechanisms of the leading-edge 

serrations in gliding flight specifically. It is known that the owls can achieve remarkable 

maneuvering sophisticatedly while aeroacoustic control even under complex natural 

turbulent environments. Therefore, the transient conditions will be considered in next 

chapter to analyze the aerodynamic robustness of the serrated feathers. 

 

Also noted that, for simplicity, in this study we neglected the inclination angles and 

the realistic 3D shapes of the serrations, as well as the 3D effects induced by wing tip 

vortices. In addition, other morphological characteristics such as trailing-edge fringes 

[31-33] and velvety surfaces [22, 29-30] that are not taken into account in this study 

may also play some role in flow control and aeroacoustic suppression of the serrated 

wings. Particularly the modifications of the trailing-edge to suppress the aerodynamic 

noise have been widely studied [34-36]. Furthermore, the flexibility of the natural 
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feathers leads to fluid-structure interactions during flight. The resulting deformation or 

aeroelastic flutter of the serrated feather may alter the flow field and the sound 

production significantly. Therefore, a realistic modeling of owl wings is our next task to 

unveil how owls utilize an integration of those morphological characteristics 

complimentarily to achieve silent gliding and flapping flights. 
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5. Aerodynamic robustness in owl-inspired 

leading-edge serrations 

 

5.1 Overview 

 

Owls can achieve silent flight and sophisticated maneuvering while coping with 

natural turbulent environments [1-9] as shown in figure 5-1. In last chapter, we have 

demonstrated that the leading-edge serrations can passively control the 

laminar-turbulent transition over the upper wing surface and hence play a crucial role in 

aerodynamic force and sound production [10]. However, the simulations [10] and 

measurements [11] in previous study were all conducted in steady state (i.e. uniform 

inflow), which means, the mechanisms of the leading-edge serrations were investigated 

specifically for serrated wings in steady gliding flight. On the other hand, turbulent 

rejection or aerodynamic robustness associated with leading-edge serrations has almost 

never been studied yet, according to the best of our knowledge. 

 

   

 

 

 

 Figure 5-1. An owl flies in wind-gust, which may be dealt with two conceptual 

physical models of wind-gust, (i) a longitudinal fluctuation in inflow; (ii) a lateral 

fluctuation in wing motion. 
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 Figure 5-2. (A) Computational model of an owl-inspired single-feather wing, with 

clean and serrated leading-edges in ideal wind-gust conditions with (B) a sinusoidal 

fluctuated free-stream velocity and (C) a sinusoidal fluctuated pitch angle. 

 

   

 

Here, follow our previous study in last chapter, we further address a large-eddy 

simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge 

serrations on two idealized owl-inspired single-feather wing models with infinite 

wingspan (figure 5-2(A)). The LES modeling of the two computational models in 

steady state (i.e. uniform free-stream velocity Uref = 3 m/s, chord-based Re = 6000) is 

used as a baseline to investigate the aerodynamic robustness. An initial velocity 

fluctuation was set as 2%Uref, a broad range of AoAs over 0° ⩽ Φ ⩽ 20° was considered, 

a time step of 5 × 10-5 s was specified and all simulations were performed up to 1 s when 

the flow fields were confirmed to become stable as presented in last chapter. 
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Then we propose two conceptual physical models (section 5.2) to mimic the 

wind-gusts under a longitudinal fluctuation in free-stream inflow (figure 5-1(i)) and a 

lateral fluctuation in pitch angle (figure 5-1(ii)) acting on the two models with and 

without leading-edge serrations over 0° ⩽ Φ ⩽ 20°. The computed flow structures in 

terms of streamwise Reynolds stress (section 5.3.1), velocity spectra (section 5.3.2) as 

well as lift and drag coefficients and lift-to-drag ratios (section 5.3.3) are described 

compared with the baseline cases respectively. We further give an extensive discussion on 

the aerodynamic robustness associated with the capability of the leading-edge serrations 

in passively controlling laminar-turbulent transitions as well as their correlations with lift 

and drag coefficients, and lift-to-drag ratios under fluctuated inflow (section 5.4) and 

fluctuated wing motion (section 5.5). 

 

5.2 Two conceptual wind-gust models 

 

As illustrated in figure 5-1, we assume that the wind-gust can be modeled in two 

manners: (i) a horizontal fluctuation in inflow; and (ii) a vertical fluctuation in wing 

motion. Here realistic turbulence environments in terms of the flow variability or 

gustiness are represented ideally by introducing the fluctuations in horizontal and 

vertical direction, which is linked to the aerodynamic force production and hence power 

requirements of flight [12]. 

 

Then the wind-gust disturbance acting on the computational models with and 

without leading-edge serrations was implemented with two proposed conceptual 

physical models as illustrated in figure 5-2(A): a periodic longitudinal fluctuation in 

free-stream velocity as a gust disturbance in horizontal direction, and a periodic lateral 

fluctuation in pitch angle as a gust disturbance in vertical direction. As shown in figures 

5-2(B) and (C), the wing model is either exposed to a horizontal disturbance with a 

fluctuated inflow or a vertical disturbance with a fluctuated wing pitch after a sufficient 

period of steady state, which are defined with a sinusoidal function, such as: 

 inflow ref( ) sin(2 )U t U u ft= +  , (5-1) 

 ( ) sin(2 )t ft  = +  , (5-2) 

where the fluctuations in inflow and pitch angle were taken to be u = 0.10Uref, 0.25Uref, 

and α = 1°, 2°, respectively. The fluctuation frequency was set to be f = 5 Hz, which is 

identical to the measured flapping frequency of a free-flying barn owl [13]. 
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Here with consideration of that sustained turbulence or gusts can influence 

aerodynamic performance as well as flight costs when the turbulent components are of 

similar scales to the animals themselves because kinematic or aerodynamic adjustments 

will be required to maintain flight stability [14]. Thus the wind-gust models are highly 

idealized and conceptual but the time scale, i.e. the period and the amplitude of the 

fluctuations are reasonable sufficiently to mimic the physical situations of the realistic 

wind-gusts in owl gliding and / or flapping flights. 

 

5.3 Results 

 

5.3.1 Unsteadiness in Reynolds stress 

 

To quantify and compare the aerodynamic unsteadiness in clean and serrated wing 

models undergoing gust disturbances, turbulent fluctuations in fluid momentum and 

mean flow fluctuations were first visualized in terms of Reynolds stress. For the case of 

longitudinal fluctuation in inflow with periodic gust disturbance, contours of streamwise 

component of the Reynolds stress tensor (Ruu, see equation 4-5) were depicted in figures 

5-3, 5-4, 5-5 and 5-6 to illustrate the features of laminar-turbulent transition on upper 

surface for both clean and serrated wing models at Φ = 5°, 10°, 15° and 20°, 

respectively. Similarly for the case of lateral fluctuation in pitch angle with periodic gust 

disturbance, we plotted the contours of streamwise Reynolds stress of the two models in 

figures 5-11, 5-12, 5-13 and 5-14 at Φ0 = 5°, 10°, 15° and 20°, respectively. 

 

5.3.2 Unsteadiness in velocity spectrum 

 

We further visualized and made a comparison of velocity spectrum between the 

two wing models at three feature points (displayed by color balls in figure 4-6) over the 

upper surface to investigate the unsteadiness nature of flow-fluctuation phenomenon in 

gust disturbance through analyzing the dominant frequencies of the local velocity 

fluctuations. The velocity spectra were calculated with a fast Fourier transform (FFT) 

algorithm for the time-varying streamwise velocities as previously introduced in last 

chapter. Figures 5-7 and 5-8 show the spectra of streamwise velocities for both clean 

and serrated models in inflow fluctuation at Φ = 5°, 15° whereas figures 5-15 and 5-16 

are in pitching fluctuation at Φ0 = 5°, 15°, respectively. 
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 Figure 5-7. Streamwise velocity spectra at leading-edge (A, B), mid-chord (C, D), 

and trailing-edge (E, F) of clean (blue) and serrated (red) leading-edge wing models 

at Φ = 5° in steady state (solid line) and with u = 0.10Uref (dashed line) and u = 

0.25Uref (dotted line) in unsteady state, respectively. 

 

  

 

 

 



Chapter 5. Aerodynamic robustness in owl-inspired leading-edge serrations                      

62 

 

  

 

 

 

 

 

  

 

 

 Figure 5-8. Streamwise velocity spectra at leading-edge (A, B), mid-chord (C, D), 

and trailing-edge (E, F) of clean (blue) and serrated (red) leading-edge wing models 

at Φ = 15° in steady state (solid line) and with u = 0.10Uref (dashed line) and u = 

0.25Uref (dotted line) in unsteady state, respectively. 
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 Figure 5-9. Transient characteristics in inflow disturbance. (A) Time-varying 

free-stream velocities with steady (u = 0) and unsteady (u = 0.10, 0.25Uref) phases, 

time courses of lift (B) and drag (C) coefficients, as well as lift-to-drag ratios (D) 

associated with clean (blue) and serrated (red) leading-edge wing models at Φ = 5° 

in steady (solid lines) and unsteady (dashed, dotted lines) state, respectively. 
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 Figure 5-10. Transient characteristics in inflow disturbance. (A) Time-varying 

free-stream velocities with steady (u = 0) and unsteady (u = 0.10, 0.25Uref) phases, 

time courses of lift (B) and drag (C) coefficients, as well as lift-to-drag ratios (D) 

associated with clean (blue) and serrated (red) leading-edge wing models at Φ = 

15° in steady (solid lines) and unsteady (dashed, dotted lines) state, respectively. 
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 Figure 5-15. Streamwise velocity spectra at leading-edge (A, B), mid-chord (C, D), 

and trailing-edge (E, F) of clean (blue) and serrated (red) leading-edge wing models 

at Φ0 = 5° in steady state (solid line) and with α = 1° (dashed line) and α = 2° 

(dotted line) in unsteady state, respectively. 
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 Figure 5-16. Streamwise velocity spectra at leading-edge (A, B), mid-chord (C, D), 

and trailing-edge (E, F) of clean (blue) and serrated (red) leading-edge wing models 

at Φ0 = 15° in steady state (solid line) and with α = 1° (dashed line) and α = 2° 

(dotted line) in unsteady state, respectively. 

 

  

 

 

 



Chapter 5. Aerodynamic robustness in owl-inspired leading-edge serrations                      

71 

 

  

 

 

 

 

 

  

 

 

 Figure 5-17. Transient characteristics in pitch disturbance. (A) Time-varying pitch 

angles with steady (α = 0°) and unsteady (α = 1°, α = 2°) phases, time courses of 

lift (B) and drag (C) coefficients, as well as lift-to-drag ratios (D) associated with 

clean (blue) and serrated (red) leading-edge wing models at Φ0 = 5° in steady (solid 

lines) and unsteady (dashed, dotted lines) state, respectively. 
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 Figure 5-18. Transient characteristics in pitch disturbance. (A) Time-varying pitch 

angles with steady (α = 0°) and unsteady (α = 1°, α = 2°) phases, time courses of 

lift (B) and drag (C) coefficients, as well as lift-to-drag ratios (D) associated with 

clean (blue) and serrated (red) leading-edge wing models at Φ0 = 15° in steady 

(solid lines) and unsteady (dashed, dotted lines) state, respectively. 
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5.3.3 Unsteadiness in aerodynamic forces 

 

Effects of gust disturbance on aerodynamic performance were further evaluated 

through a comparison of time-varying lift and drag coefficients (Cl, see equation 4-7; Cd, 

see equation 4-8), as well as lift-to-drag ratios via angles of attack between the clean 

and serrated wing models. Time courses of lift and drag coefficients and lift-to-drag 

ratios were plotted and compared in figures 5-9 and 5-10 for inflow fluctuation and in 

figures 5-17 and 5-18 for pitching fluctuation for both clean and serrated wing models 

at AoA = 5°, 15°, respectively. 

 

5.4 Aerodynamic robustness in fluctuated inflow 

 

Here we investigate whether the leading-edge serration-based mechanisms are of 

potential robustness under perturbed inflow in terms of flow separation and 

reattachment as well as their correlations with the aerodynamic force production of lift 

and drag. It is notable that the passive control mechanisms associated with 

laminar-turbulent transition in leading-edge serrations [10] still hold: the leading-edge 

serrations are in evidence capable of remarkably stabilizing the turbulent fluctuation in 

the fluctuated inflow over a broad range of AoAs up to 20° and hence providing 

robustness or gust disturbance rejection to the aerodynamic performance. 

 

5.4.1 At lower AoAs of 5° and 10° 

 

The clean wing model is obviously exposed to a large portion of turbulent 

fluctuations with a rapid laminar-turbulent transition on suction surface, followed by 

attached turbulent boundary layers downstream to the trailing-edge with stronger 

intensity (figures 5-3(A), (C), (E) and 5-4(A), (C), (E)). The intensity of the 

laminar-turbulent transition is significantly enhanced with increasing the inflow 

fluctuation up to u = 0.25Uref, while the turbulent fluctuation turns out to be more 

intense from mid-chord to the trailing-edge (figures 5-3(A), (C), (E) and 5-4(A), (C), 

(E)). In contrast, the serrated wing model clearly demonstrates the capability to suppress 

the turbulent fluctuations over most portion of the upper surface with the suction-flow 

remained in a completely laminar state (figures 5-3(B), (D), (F) and 5-4(B), (D), (F)). 

This passive flow control mechanism further works effectively for the unsteady case 

with the two disturbed inflows. Moreover, while the large fluctuation of u = 0.25Uref 

(figure 5-3(F)) seems to leave a notable region of high streamwise Reynolds stress over 
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the upper surface at AoA of 5°, the flow separation pattern turns out to become closer at 

the larger AoA of 10° among the steady (figure 5-4(B)) and unsteady (figures 5-4(D), 

(F)) cases. This implies that the leading-edge serrations can be a robust device 

effectively adaptive to high angles of attack. 

 

We further investigate the dominant frequencies of the flow fluctuations through 

FFT-based velocity spectrum analysis to clarify the inflow fluctuation dependency. As 

depicted in figure 5-7, at AoA of 5°, the velocity spectra show a pronounced difference 

between clean and serrated models. In the steady case, the clean model presents a 

highest peak at f = 58.6 Hz at leading-edge (figure 5-7(A)), pointing to the dominant 

fluctuation frequency of the separated shear layer; and several prominent peaks are also 

notable at mid-chord (figure 5-7(C)) and trailing-edge (figure 5-7(E), corresponding to 

high harmonic-frequency eddies, associated with the laminar-turbulent transition. In the 

unsteady case, with the enhancement of the Reyonlds stress instability owing to the 

perturbed inflow-induced fluctuation (5 Hz, see equation 5-1), the spectral magnitude 

demonstrates a remarked reduction (dashed line) with increasing the inflow velocity 

fluctuation or even breaking-up into two spectral prominences (dotted line) at u = 

0.25Uref in the vicinity of leading-edge (figure 5-7(A)). Because the fluctuated shear 

layer then transits rapidly into turbulence and interacts with the trailing-edge vortex, the 

harmonic-frequency peaks in the vicinity of mid-chord (figure 5-7(C)) and trailing-edge 

(figure 5-7(E)) are similarly weakened and broken up, eventually transformed into a 

broadband spectral fluctuation, which may be referred as the source of broadband nosie. 

 

The serrated model however obviously shows much lower magnitudes of the 

dominant fluctuation frequencies (solid lines) on the upper surface in the steady case, 

merely with a spectral prominence at f = 195.3 Hz (figures 5-7(B), (D) and (F)) 

corresponding to the shedding of trailing-edge vortices, indicating a completely laminar 

state of the suction flow (figure 5-3(B)). Moreover, the serrated model demonstrates a 

remarkable independency and robustness to the inflow fluctuation with the velocity 

spectra remained to the same lower level as in the steady case while showing a spectral 

fluctuation at frequencies ranging from 150 Hz to 250 Hz (dashed line) or 100 Hz to 

300 Hz (dotted line). 

 

While the leading-edge serrations are capable of suppressing the turbulent 

fluctuations and hence remarkably mitigating the aerodynamic force fluctuations (figure 

5-9), the serrated model shows poor aerodynamic performance in lift coefficient as well 
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as in lift-to-drag ratio at a lower AoA of 5° as pointed out in Chapter 4. Interestingly, the 

fluctuations in aerodynamic forces turn out to be even suppressed in amplitude under 

inflow disturbance compared to the steady case but are notable amplified during the 

deceleration of the sinusoidal inflow, in particular in the serrated model (red) (figures 

5-9(B), (C) and (D)), at u = 0.25Uref (dotted lines). This implies that the deceleration in 

inflow may induce some instability in the laminar-turbulent transition. 

 

5.4.2 At higher AoAs of 15° and 20° 

 

The clean model (see streamwise Reynolds stresses in figures 5-5(A), (C), (E) and 

5-6(A), (C), (E)) is apparently very sensitive to inflow fluctuation with a notable 

enhanced instability within the shear layer, which interacts with the trailing-edge vortex, 

resulting in much more pronounced turbulent fluctuations in the vicinity of the 

trailing-edge. The serrated model however can effectively suppress the 

laminar-turbulent transition and its interplay with the trailing-edge vortex, resulting in 

remarked suppression of the streamwise Reynolds stress in the vicinity of trailing-edge 

(figures 5-5(B), (D), (F) and 5-6(B), (D), (F)), which is of high robustness at high 

angles of attack. 

 

The clean model presents very complex spectra at AoA of 15°, with a feature of 

multiple spectral peaks at the mid-chord (figure 5-8(C)) and trailing-edge (figure 5-8(E)) 

in the steady case (solid line). The inflow fluctuation apparently further enhances the 

complexity and irregularity of the velocity spectral distributions (dashed and dotted 

lines), with the interactions among the fluctuated inflow, the laminar-turbulent transition, 

and the trailing-edge vortex. In the serrated model in the steady case (solid line), 

however, merely one single dominant peak is observed with the same frequency at all 

three feature points (figures 5-8(B), (D) and (F)), implying that the laminar-turbulent 

transition is successfully suppressed. Obviously this mechanism further demonstrates its 

capability in the fluctuated inflow, which resulted in two (dashed line) or three (dotted 

line) frequency prominences while reducing the dominant spectral magnitudes 

significantly. This corresponds with the distribution of streamwise Reynolds stresses 

(figure 5-5(B), (D) and (F)) that the turbulent fluctuation in the vicinity of trailing-edge 

slightly mitigates under perturbation. 

 

The aerodynamic force production at AoA of 15° (figure 5-10) in the serrated 

model demonstrates potential robustness: suppressing the turbulent fluctuations while 
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achieving an equivalent aerodynamics performance compared to the clean model in 

terms of lift coefficient and lift-to-drag ratio but with significantly reduced fluctuations 

in amplitude. Moreover, there seemingly exists seldom discrepancy between the two 

fluctuated inflows of u = 0.1Uref, 0.25Uref as well as in the acceleration and deceleration 

phases of the sinusoidal inflow waveform. 

 

5.5 Aerodynamic robustness in fluctuated wing motion 

 

Here we further give an investigation on the aerodynamic robustness of the 

leading-edge serrations in fluctuated pitch-motion in terms of streamwise Reynolds 

stress, velocity spectra as well as lift and drag coefficients and lift-to-drag ratios. It is 

confirmed that the leading-edge serrations also demonstrates the capability of vertical 

disturbance rejection to the perturbed pitch motion over a broad range of AoAs up to 

20°. 

 

5.5.1 At lower AoAinitial of 5° and 10° 

 

As illustrated in figures 5-11 and 5-12, while the pitch fluctuation results in 

enhancement of the turbulent instability within the separated shear layer, particularly at 

the higher pitching fluctuation of α = 2°, interestingly the serrated model obviously led 

to a similar flow patterns as in the case of inflow fluctuation. The leading-edge 

serrations also work effectively to suppress the turbulent fluctuations over most portion 

of the upper surface with the suction-flow remained in a completely laminar state 

(figures 5-11(B), (D), (F) and 5-12(B), (D), (F)). The velocity spectra further provide 

evidence: the disturbed shear layer excites a broadband spectral fluctuation (figures 

5-15(C) and (E)) at α = 2° (dotted) in the clean model; the serrated model demonstrates 

remarked independency to the pitching disturbance with the velocity spectra remained 

to the same lower level as in the steady case while showing a slight shift of the 

dominant peak to the lower side (figures 5-15(B), (D) and (F)). 

 

5.5.2 At higher AoAinitial of 15° and 20° 

 

As shown in figures 5-13 and 5-14, the streamwise Reynolds stress distributions 

show less discrepancy between steady and unsteady cases in both clean and serrated 

models. The velocity spectra (figures 5-16) however still present pronounced 

differences in the clean model between steady (solid lines) and unsteady (dashed and 
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dotted lines) cases while in the serrated model the spectral distributions show remarked 

robustness in response to the pitch fluctuation (figures 5-16(B), (D) and (F)). 

 

5.5.3 Aerodynamic performance 

 

As illustrated in figures 5-17 and 5-18, while the leading-edge serrations are 

capable of mitigating the aerodynamic force fluctuations over a broad range of AoAs up 

to 20° even under dynamic pitching, the tradeoff between passive turbulence control (i.e. 

noise suppression) and force production still exists: lower lift coefficient and lift-to-drag 

ratio at AoAinitial of 5° (figures 5-17(B) and (D)) but an even aerodynamic performance 

at AoAinitial of 15° (figures 5-18(B), (C) and (D)) compared to the clean model. In 

addition, while the sinusoidal pitch-motion is observed to apparently result in a periodic 

feature of aerodynamic forces pronouncedly in the clean model, the serrated model is of 

potential robustness in lift-to-drag ratio at both lower and higher AoAinitial (figures 

5-17(D) and 5-18(D)). This implies that the capability of achieving both noise 

suppression and aerodynamic performance in leading-edge serrations is of highly 

potential robustness to the vertical fluctuation. 

 

5.6 Summary 

 

Motivated by the sophisticated silent flight of owls that can achieve remarkable 

maneuvering while aeroacoustic control under complex turbulent environments, we 

have conducted a computational study of aerodynamic robustness in owl-inspired 

leading-edge serrations by means of LES-based modeling of single-feather clean and 

serrated wing models. The CFD modeling was validated through a mesh independence 

study and a comprehensive comparison with PIV measurements in Chapter 4. Two 

conceptual wind-gust models were employed to mimic a horizontal disturbance in 

free-stream inflow and a vertical disturbance in pitch angle over a broad range of angles 

of attack (AoAs) over 0° ⩽ Φ ⩽ 20°, which were both implemented in a form of 

sinusoidal fluctuations. 

 

Our results indicate that the leading-edge serration-based passive control 

mechanisms associated with the laminar-turbulent transition still hold under perturbed 

inflow and pitch motion, and are of potential robustness in aerodynamic performance. 

 

(1) Under the sinusoidal inflow fluctuation, the serrated model is capable of 
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dynamically suppressing the turbulent and aerodynamic force fluctuations but pays 

a cost in lowering the lift coefficients and lift-to-drag ratios at a lower AoA = 5° but 

at a higher AoAs > 15° it is of potential robustness in achieving an equivalent 

aerodynamic performance compared to the clean model with largely reduced 

fluctuations in amplitude. 

 

(2) Under the sinusoidal pitching fluctuation, the serrated model demonstrates the 

capability of achieving similar aerodynamic robustness as observed in the fluctuated 

inflow while suppressing the pitch-induced fluctuating characteristic in aerodynamic 

force production. 

 

(3) The tradeoff between turbulent flow control, i.e. aeroacoustic suppression and force 

production in the serrated model is confirmed independently to the wind-gust 

conditions. 

 

It should be mentioned that, for simplicity, in this study we have idealized realistic 

wind-gust conditions by proposing two conceptual models with consideration of 

fluctuations in horizontal and vertical directions. We further neglected the realistic 3D 

shape of the serrations, as well as other morphological characteristics such as 

trailing-edge fringes and velvety surfaces as well as the feather flexibility, which may 

work complimentarily in passive flow control and aeroacoustic suppression of serrated 

wings under wind-gust. An integrated study on aerodynamic robustness in owl-inspired 

leading-edge serrations in a von-Karman vortex wake as well as realistic 3D modeling 

of owl wings undergoing realistic flapping is our next task to uncover how owls are 

capable of achieving the sophisticated silent flight in realistic turbulent environments. 
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6. Conclusion remarks and future work 

 

In this study, motivated by the sophisticated silent flight of owls that can achieve 

remarkable maneuvering while aeroacoustic control under turbulent environments, we 

conducted an integrated study by combining LES-based simulations and low-speed 

wind tunnel experiments on highly unsteady flows associated with laminar-turbulent 

transition around owl-inspired single-feather wing models with and without 

leading-edge serrations. The CFD modeling was validated through mesh independence 

study and a comprehensive comparison with PIV measurements in the wind tunnel. 

 

6.1 The mechanisms of leading-edge serrations in aeroacoustic noise 

suppression 

 

As our first step to investigate the essential mechanisms of the leading-edge 

serrations in steady flow condition, we pay specific attention to the aerodynamic 

characteristics of the wing models under uniform incoming flow. A broad range of 

angles of attack (AoAs) over 0° to 20° was taken into consideration based on the 

measurements by Wolf et al. [1] in which the effective angle of attack was observed to 

range from -20° to 20° in flapping flights of barn owls.  

 

Based on the simulated results, we find that the serrated wing model can passively 

control the laminar-turbulent transition to suppress the high frequency eddies, and hence 

leads to sound suppression. This mechanism is likely achieved by the leading-edge 

serrations, which, as a flow filter, break up the leading-edge vortex into numbers of 

small eddies and hence suppress the KH instability within the separated shear layer. 

Moreover, the leading-edge serrations seems to be capable of providing a strategy in 

resolving the tradeoff between sound suppression and force production. Compared to 

the clean wing model, the serrated wing model pays a cost of lowering aerodynamic 

performance to achieve sound suppression at lower AoAs < 15° but is capable to 

achieve both sound suppression and an even aerodynamic performance at higher AoAs > 

15° where owl wings often reach at in flight [1]. 

 

6.2 Aerodynamic robustness in owl-inspired leading-edge serrations 

 

 In order to further investigate the aerodynamic robustness in owl-inspired 
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leading-edge serrations, two conceptual wind-gust models were further employed to 

mimic a horizontal disturbance in free-stream inflow and a vertical disturbance in pitch 

angle, which were both implemented in a form of sinusoidal fluctuations. 

 

Our results indicate that the leading-edge serrations are of potential robustness in 

aerodynamic performance. The serrated model is capable of dynamically suppressing 

the turbulent and aerodynamic force fluctuations under perturbed inflow and fluctuated 

pitch motion. Furthermore, the tradeoff between aeroacoustic noise suppression and 

aerodynamic force production in the serrated model is confirmed independently to the 

wind-gust conditions. 

 

In general, based on this study, it is revealed that the owl-inspired leading-edge 

serrations can be a robust micro-device for aeroacoustic control coping with unsteady 

and complex wind environments in biomimetic rotor designs for various fluid 

machineries. 

 

6.3 Further works 

 

It should be mentioned that, for simplicity, in this study we have idealized realistic 

wind-gust conditions by proposing two conceptual models with consideration of 

fluctuations in horizontal and vertical directions. We further neglected the realistic 3D 

shapes of the serrations, as well as other morphological characteristics such as 

trailing-edge fringes and velvety surfaces as well as the feather flexibility, which may 

work complimentarily in passive flow control and aeroacoustic suppression of serrated 

wing under wind-gust. An integrated study on aerodynamic robustness in owl-inspired 

leading-edge serrations in a von-Karman vortex wake as well as realistic 3D modeling 

of owl wings undergoing realistic flapping is our next task to uncover how owls are 

capable of achieving the sophisticated silent flight in realistic turbulent environments. 

Furthermore, we will explore practical applications of the owl wing-inspired robust 

micro-devices as a biomimetic design for flow control and noise suppression in wind 

turbines, aircrafts, multi-rotor drones as well as other fluid machineries. 
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