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1. Abstract 

Identification of the specific genetic variants responsible for increased 

susceptibility to familial or sporadic cancers remains important. Using a forward 

genetics approach to map such loci in a mouse skin cancer model, we previously 

identified a strong genetic locus, Stmm3 (skin tumor modifier of MSM 3), conferring 

resistance to chemically induced skin papillomas on chromosome 4. Here we report the 

cyclin-dependent kinase inhibitor gene Cdkn2a/p19
Arf

 as a major responsible gene for 

the Stmm3 locus. We provide evidence that the function of Stmm3 is dependent on p53 

and that p19
Arf MSM

 confers stronger resistance to papillomas than p16
Ink4a MSM 

in vivo. In 

addition, we found that genetic polymorphism in p19
Arf

 between MSM/Ms (Val) and 

FVB/N (Leu) modifies the susceptibility to skin carcinogenesis. Moreover, we 

demonstrated that the p19
Arf MSM

 allele more efficiently activates the p53 pathway than 

the p19
Arf FVB 

allele in vitro and in vivo. Furthermore, we found novel (non-reported) 

polymorphisms in CDKN2A that are in the vicinity of a polymorphism in mouse 

Cdkn2a associated with the risk of human cancers in the Japanese population. Genetic 

polymorphisms in Cdkn2a and CDKN2A may modulate cancer risk in both mice and 

humans. 
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2. Introduction 

Cancer risk is regulated by the environment and the complex influence of genetic 

background factors. The effects of high penetrance genetic variants are identified 

through studies of cancer occurrence in human families. On the other hand, cancer risk 

is mainly related to multiple low-penetrance cancer (sporadic cancers) susceptibility 

genes
1-3

. Sporadic cancers have major implications for the prediction of individual 

cancer risk. Therefore, the identification of sporadic tumor modifiers leads to prevention 

strategies or targeted therapy. In recent years, next generation sequencing has enabled us 

to perform a genome-wide association study (Case-control GWAS) using human 

samples. However, such studies involve a huge number of DNA samples from cancer 

patients, and an equal number of well-matched controls. Such studies are plagued by 

confounding factors, such as population heterogeneity, variability of environmental 

exposures, weak effects, and genetic interactions, and require a very large number of 

cases and controls to reach significance
4-7

.  

The susceptibility of the two-stage skin carcinogenesis model varies among mouse 

strains and the genetic approach has been employed to identify genes related to tumor- 

susceptibility
8, 9

. Using the genetic approach, several skin tumor-susceptibility loci were 

identified using commonly inbred strains or wild-derived strains
10-20

, some of which 
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have clear translatability to cancer susceptibility in humans
1-23

. 
 

Previously, we reported that the Japanese wild-derived mouse strain MSM/Ms is 

dominantly resistant to two-stage skin carcinogenesis when crossed with susceptible 

FVB/N mice
14

. We identified a series of skin papilloma resistance loci, Stmm (Skin 

tumor modifier of MSM) loci using a forward genetics approach to map such loci in a 

mouse skin cancer model
14, 24, 25

. Pth (Parathyroid hormone) was recently identified as a 

responsible gene for Stmm1 on chromosome 7
26

. We therefore focused on the Stmm3 

locus on chromosome 4. Stmm3 was originally identified as a p53-dependent modifier 

locus
14

. We generated a series of sub-congenic lines to refine the locus to identify the 

gene responsible for the effects of the locus. Cdkn2a, a known tumor suppressor, was 

found in the Stmm3 locus. Previous studies reported that Pctr1 and 2 (Plasmacytoma 

resistance1 and 2) are plasmacytoma susceptibility loci, and Cdkn2a was suggested to 

be a corresponding gene for Pctr1
27, 28

. Cdkn2a is also a strong candidate gene for 

Papg1 (Pulmonary adenoma progression 1). Papg1 was mapped as a lung cancer 

susceptibility locus
29

. The Cdkn2a locus encodes two separate proteins, p16
Ink4a

 and 

p19
Arf

, which are generated from alternative open reading frames. p16
Ink4a

 and p19
Arf

, 

two distinct tumor suppressors, enhance the growth-suppressive functions of the 

retinoblastoma protein pRb and p53 protein, respectively. The separate promoters 
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upstream of exon1α (encoding p16
Ink4a

) and exon1β (encoding p19
Arf

) are induced by 

hyperproliferative signals generated by activated oncoproteins, triggering RB- and 

p53-dependent programs, respectively
30-31

. Deletion or epigenetic silencing of the 

p16
Ink4a

/p19
Arf

 locus is one of the most frequently observed events in cancer. 

Furthermore, previous reports suggested that polymorphisms in CDKN2A are associated 

with the risk or prognosis of several human cancers
32-41

. Accordingly, the Cdkn2a locus 

is considered to be a strong candidate for Stmm3.  

In this study, we identified the cyclin-dependent kinase inhibitor gene 

Cdkn2a/p19
Arf

 as a major responsible gene for the Stmm3 locus. We provide evidence 

that the function of Stmm3 is dependent on p53, and that p19
Arf MSM

 confers stronger 

resistance to papillomas than p16
Ink4a MSM 

in vivo. In addition, we found that the genetic 

polymorphism in p19
Arf

 between MSM/Ms (Val) and FVB/N (Leu) modifies the 

susceptibility to skin carcinogenesis. Moreover, we demonstrated that the p19
Arf MSM

 

allele more efficiently activates the p53 pathway than the p19
Arf FVB 

allele in vitro and in 

vivo. Furthermore, we found novel (non-reported) polymorphisms in CDKN2A in the 

vicinity of a polymorphism in mouse Cdkn2a that are associated with the risk of human 

cancers in the Japanese population. Thus, genetic polymorphisms in Cdkn2a and 

CDKN2A should modulate cancer risk in both mice and humans. 
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3. Materials and Methods 

 

3-1 Generation of p16
Ink4a MSM 

and p19
Arf MSM

 allele knockout mice  

p16
Ink4a MSM 

and p19
Arf MSM

 allele knockout mice were generated using 

CRISPR/Cas9. Cas9/sgRNA target sequences were designed from p16
Ink4a 

and p19
Arf

 

genomic sequences (http://molossinus.nig.ac.jp/mog2; p16
Ink4a

: GCC TCG AGT TCG 

CTT TCC TCG CGG and GGT ACG ACC GAA AGA GTT CGG GG, p19
Arf

: GAG 

GTG CCT CAA CGC CGA AG GGG and GAG CTG CAC GCA CAG GTG CCG 

TGG). These sequences were cloned into the pX459 vector (Addgene). Using an ES cell 

line previously established from MSM/Ms
42

, 5×10
6
 cells and 40 µg of pX459 were 

mixed and electroporated using a Bio-Rad Gene Pulser (Bio-Rad, Hercules, CA) set at 

400 V and 125 µF. After 24-48 hours of electroporation, the cells were selected with 

puromycin (4 μg/ml). ES cells were aggregated with ICR embryos, and the chimeric 

blastocysts were transferred into the uteri of pseudo-pregnant females. Knockout alleles 

were detected by PCR amplification. The following primers generated p16
Ink4a

: Forward 

Primer; ACC ATC CTC AGA GGA AGG and Reverse Primer; ATC TGG GGT ATG 

CAT TTC, p19
Arf

: Forward Primer; TGG GCG CCT CTG GGA AGC and Reverse 

Primer; CAG CCT CAC CGT GTG CAA. Off-target cleavage sites were predicted and 
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searched by CRISPR direct (http://crispr.dbcls.jp/). All potential off-target sites were 

PCR amplified and sequenced to confirm off-target effects. The primers for amplifying 

the off-target sites are listed in Table 1. 

 

3-2 Mice and tumor induction 

This experiment was carried out in strict accordance with the recommendations in 

the Guide for the Care and Use of Laboratory Animals by the Ministry of Education, 

Culture, Sports, Science, and Technology of Japan. The protocol was approved by the 

Committee on the Ethics of Animal Experiments of the Chiba Cancer Center (Permit 

Number: 13–18). All efforts were made to minimize pain. FVB/N mice were purchased 

from Japan Clea. MSM/Ms mice have been maintained in the experimental animal 

facility at Niigata University and Chiba Cancer Center for more than 20 years. Resistant 

[(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice were selected for further 

backcrossing to FVB/N mice for over at least 10 generations, ultimately leading to 

congenic mice containing the MSM allele of Stmm3 in a FVB/N background. These 

mice were then crossed with p53-deficient mice
43

 to generate p53
+/-

congenic mice. In 

addition, p19
Arf

-deficient mice (C57BL/6×129SvJ) were provided by Dr. kamijo
44

. 

p19
Arf

-deficient mice were backcrossed to FVB/N mice or MSM/Ms mice for over at 



7 

 

least 10 generations to generate p19
Arf+/-

 (FVB/N×MSM/Ms) F1 mice. These mice were 

treated following the two-stage carcinogenesis protocol. At 8–10 weeks of age, the 

backs of mice were carefully shaved with an electric clipper. Two days after shaving, a 

single dose of DMBA (25 μg per mouse in 200 μl of acetone) was applied to the shaved 

dorsal back skin. One week after initiation, tumors were promoted with TPA (10 μg per 

mouse in 200 μl of acetone) twice weekly for 20 weeks. Papilloma number and size 

(mm in diameter) was recorded from 10 weeks to 20 weeks.  

 

3-3 Construction of expression plasmids 

The p19
Arf 

(FVB/N)
 
cDNA vector was purchased from OriGENE (Rockville, MD, 

USA). This sequence was designed from the p19
Arf

 transcript sequence (Ensemble, 

ENSMUST00000044303). The MSM/Ms derived variant L149V was prepared using 

the PrimeSTAR mutagenesis basal kit (Takara Bio Inc., Kusatsu, Japan) according to 

the instructions provided by the manufacturer. The following primers generated the 

L149V variant: Forward Primer; GCG TTC CGC TGG GTG GTC TTT GTG TTC CGC 

TG and Reverse Primer; AAA CGC AAG GCG ACC CAC CAG AAA CAC. 

HA-tagged MSM/Ms and FVB/N sequences of p19
Arf 

were cloned into the pMSCVpuro 

vector (Clontech). The following primer sets were designed to clone into pMSCVPuro: 
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Forward Primer; TTA TGG GTC GCA GGT TCT TGG TCA CTG TGA GGA TTC 

AGC GCG CGG GCC G and Reverse Primer; TTC TAC TAA GCG TAA TCT GGA 

ACG TCG TAT GGG TAT GCC CGT CGG TCT GGG CG.  

 

3-4 Cell culture and retrovirus infection 

NIH/3T3 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

(Sigma) containing 10% Fetal Bovine Serum (FBS) (CCB) and 1% 

Penicillin-Streptomycin mixed solution (Nacalai Tesque). PlatE ecotropic packaging 

cells were transfected with p19
Arf MSM

-HA or p19
Arf FVB

-HA
 
using the FuGENE

®
 

Transfection Reagent (Promega) following the manufacturer’s recommendation. The 

retrovirus-containing medium was collected 48 hours after transfection and 

supplemented with 4 μg/mL polybrene (MILLIPORE) to NIH/3T3 cells.  

 

3-5 Quantitative real-time RT-PCR 

Total RNA was isolated from the indicated cells using TRIzol (Invitrogen) in 

accordance with the manufacturer’s protocol. cDNA was generated with the iScript
TM

 

Select cDNA Synthesis Kit (Bio-Rad) using 100 ng of DNase-pretreated total RNA. 

qRT-PCR was performed using GeneAce SYBR
®

 qPCR Mix α Low ROX in accordance 
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with the manufacturer’s protocol (NIPPON GENE). p19
Arf

 expression levels were 

measured using the Applied Biosystems
®
 7500 (Life Technologies) and normalized by 

β-Actin. The following primers generated p19
Arf

: Forward Primer; GTC GCA GGT TCT 

TGG TCA CT and Reverse Primer; GCC CTC TTC TCA AGA TCC TCT, β-Actin: 

Forward Primer; ACC TCA TGA AGA TCC TGA CC and Reverse Primer; CGT TGCC 

AAT AGT GAT GAC C, p21: Forward Primer; CCA CTT TGC CAG CAG AAT AA 

and Reverse Primer; ACG GGA CCG AAG AGA CAA C, Noxa: Forward Primer; 

GCA GAG CTA CCA CCT GAG TTC and Reverse Primer; CTT TTG CGA CTT CCC 

AGG CA, Bax: Forward Primer; CTG AGC TGA CCT TGG AGC and Reverse Primer; 

GAC TCC AGC CAC AAA GAT G. 

 

3-6 SYBR Green real-time genomic PCR 

Genomic PCR was performed using GeneAce SYBR
®
 qPCR Mix α Low ROX in 

accordance with the manufacturer’s protocol (NIPPON GENE) and as described 

previously
45

. The DNA solution comprised approximately 10 ng of genomic DNA. The 

following primers generated p53: Forward Primer; ACT CTC CTC CCC TCA ATA 

AGC and Reverse Primer; GCA GCG TCT CAC GAC CTC, β-Actin: Forward Primer; 

ACC TCA TGA AGA TCC TGA CC and Reverse Primer; CGT TGCC AAT AGT GAT 
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GAC C. 

 

3-7 Cell cycle analysis 

NIH/3T3 cells were cultured for 24 hours after being treated with DMSO (0.1%) or 

TPA (100 ng). Mouse keratinocytes were isolated from TPA (10 μg per mouse in 200 μl 

of acetone)-treated mice. Isolation of keratinocytes from mice was performed as 

described previously
46

. They were then collected and fixed in 70% ethanol at 4°C for 30 

min. The fixed cells were stained with propidium iodide (50 μg/mL) containing 200 μg 

of RNaseA/mL and 1% Triton at 37°C for 40 min.  Flow cytometry was conducted 

with JSAN (Japan-made sorter, analyzer) (Bay Bioscience). Approximately 1.0×10
5
 

cells were scanned to analyze DNA content. Necrotic cells were excluded, and the 

percentage of cells in the G1, S, and G2/M phases was determined. 

 

3-8 Immunoblotting 

Proteins were extracted from cells using the T-PER Protein Extraction Reagent 

(Thermo). Protein concentrations were quantified with the Quick Start Bradford Protein 

Assay (Bio-Rad). Denatured proteins (mouse skins: 60 μg, NIH/3T3 cells: 20 μg) were 

then analyzed using 15% e-PAGELs (ATTO). After electrophoresis, they were 
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transferred to polyvinylidene difluoride (PVDF) membranes (Merck Millipore). The 

membranes were blocked with 0.5% skim milk or 1% BSA in phosphate buffered saline 

solution (pH 7.6) containing 0.1% Tween-20 (PBS/T), and then analyzed with the 

SNAPi.d. 2.0 Protein Detection System (Merck Millipore). Primary antibodies were as 

follows: anti-p19
Arf

 (1:500 5-C3-1, Santa Cruz), anti-HA (1:1000 16B12, BioLegend), 

anti-MDM2 (1:1000 SMP 14, abcam), anti-p53 (1:1000 PAb421, Merck Millipore), 

anti-ACTIN (Sigma-Merck Millipore). HRP-conjugated secondary antibodies were 

used at a dilution of 1:2000 and developed using the ECL Prime Western Blotting 

Detection Kit (GE Healthcare). Exposure for chemiluminescent samples or membrane 

analysis for the blots was performed by LAS4000 (GE Healthcare). 

 

3-9 Subcellular localization assay 

Subcellular fractionation of NIH/3T3 cells was carried out using the NE-PER 

Nuclear and Cytoplasmic Extraction Reagent (Thermo). In order to analyze p19
Arf

 

protein distribution in the nuclear and cytoplasmic compartments, an equal number of 

cells and nuclei were processed following the manufacturer’s protocol. To verify the 

purity of the subcellular fractionation, anti-α-Tubulin (1:2000 DM1A, Cell Signaling) 

antibody and anti-Histone H3 (1:1000 D1H2, Cell Signaling) antibody were used for 
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immunoblotting. 

 

3-10 Immunoprecipitation 

Lysates (cytoplasmic extracts: 600 μg, nuclear extracts: 300 μg) were precleared 

with control agarose resin (Pierce) at 4°C for 60 min on a shaker. The binding of 

anti-MDM2 (10 μg; SMP 14, abcam) antibody to protein A/G agarose was performed 

following the protocol described in the Pierce crosslink immunoprecipitation kit 

(Thermo). The antibody-crosslinked beads were incubated overnight at 4°C with 

precleared lysates. After the incubation, the beads were washed three times with 

lysis/wash buffer, and the eluted complex was subjected to SDS-PAGE separation and 

immunoblotting. 

 

3-11 Immunofluorescence 

Samples were fixed with 4% paraformaldehyde at 4°C overnight. The endogenous 

peroxidase activity in the specimens was blocked by 0.3% H2O2 and samples were then 

rinsed with PBS. Sections were incubated with primary antibodies diluted in blocking 

buffer overnight at 4°C, and stained with anti-Ki67 (1:100 16A8, Biolegend), 

anti-keratin 14 (1:500 Poly19053, Biolegend), anti-Vimentin (1:100 EPR3776, abcam), 
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anti-E-cadherin (1:200 24E10, Cell Signaling), anti-HA (1:100 C29F4, Cell Signaling), 

anti-GAPDH (1:100 ab9485, abcam) antibody. The secondary antibodies were Alexa 

Fluor 488-conjugated anti-rat antibody (1:100, Molecular Probes, Invitrogen) and Alexa 

Fluor 568-conjugated anti-rabbit antibody (1:100, Molecular Probes, Invitrogen). Nuclei 

were counterstained with Hard Set Mounting Medium with DAPI (Vector). All 

fluorescence images were obtained with a Leica TCS SPE confocal microscope 

equipped with a DMI400B (10×/0.40, 20×/0.70, and 40×/1.25 oil immersion objective). 

 

3-12 Samples and genotyping 

All DNA samples used in the association analysis were obtained from Biobank 

Japan (Table 2). In this study, we used genotyping results of 6 cancers and non-cancer 

controls from previous studies by Illumina HumanHap610-Quad Beadchip (PMID: 

20139978). Only male and female cases or non-cancer control samples were used for 

the analyses of prostate and breast cancer, respectively. All participants provided written 

informed consent. We selected five SNPs within the CDKN2A locus and conducted the 

association analysis. The associations between each SNP and the 6 cancers were 

assessed using the logistic regression analysis using age and gender as covariates. The 

significance thresholds were set to be 0.05/30= 0.00167 after Bonferroni correction. 
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3-13 Statistical analysis 

All experiments were performed at least three times. Difference among multiple 

groups was calculated by one- and two-way ANOVA. Kaplan–Meier survival curve was 

analyzed by Log-rank test. These analyses used GraphPad Prism (GraphPad, San Diego, 

CA, USA).  
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4. Results 

 

4-1 Congenic mice strains with MSM/Ms alleles of genes surrounding Cdkn2a are 

resistant to larger papillomas. Using initial generations of congenic mouse strains, we 

refined the location of the Stmm3 locus within a physical interval of approximately 34 

Mb on the distal end of chromosome 4
25

. To further narrow down the Stmm3 locus, we 

generated Stmm3 sub-congenic mouse lines covering the extended region, including the 

Cdkn2a locus (Figure. 1a). First, p53
+/+

heterozygous FVB/MSM (F/M) and 

p53
+/+

homozygous FVB/FVB (F/F) congenic mice were subjected to a DMBA/TPA 

skin carcinogenesis experiment according to the standard protocol, and papilloma 

development was monitored for a period of 20 weeks. p53
+/+

F/M mice exhibited strong 

suppressive effects on papilloma development compared with p53
+/+

F/F mice at 20 

weeks after initiation (Figure. 1b, d). As a result, the Stmm3 region was narrowed down 

to 88-93 Mb (5 Mb) on chromosome 4 by sub-congenic mapping analysis. 

In our previous report, we concluded that Stmm3 genes function mainly involved in 

late stage papillomas (>6 mm in diameter), but have weaker effects in early stage 

papillomas (6 mm in diameter) such as in papilloma development
14

. We classified 

papillomas of sub-congenic mice into two categories based on size. p53
+/+

F/M mice 
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developed almost no late stage papillomas and p53
+/+

F/F mice developed late stage 

papillomas (Figure. 1c, d). These results suggest that the corresponding gene 

responsible for tumor development and growth is contained within the Stmm3 locus. In 

addition, we performed cell cycle analysis of TPA-treated skins of F/M and F/F mice, 

and found that untreated skins of F/M and F/F mice exhibited almost no cell cycle 

abnormalities (Figure. 2a, b). On the other hand, the percentage of cells in the G0/G1 

phase was significantly higher and the percentage of cells in the S phase was 

significantly lower in TPA-treated skins of F/M mice than those in TPA-treated skins of 

F/F mice (Figure. 2a, b). These results suggest that the Stmm3 locus induces G1 arrest in 

mouse skin following TPA treatment. 

 

4-2 The Stmm3 locus regulates tumor progression in a p53-dependent manner. In 

our previous report, we demonstrated a genome-wide significant linkage at Stmm3 on 

chromosome 4. However, this linkage peak at Stmm3 completely disappeared in p53
+/–

mice. Therefore we concluded that Stmm3 corresponding genes are genetically 

p53-dependent
14

. In this study, we generated p53
+/- 

and p53
+/+

 sub-congenic mouse lines 

for Stmm3. These mice were subjected to two-stage skin carcinogenesis using 

DMBA/TPA. p53
+/-

F/M mice exhibited weakly affected papilloma development 
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compared with p53
+/-

F/F mice (Figure. 3a, c).  

Next, we examined the size of papillomas in p53
+/-

sub-congenic mice as well as in 

p53
+/+

 mice. The skin carcinogenesis experiments revealed that both p53
+/-

F/M and 

p53
+/-

F/F mice developed late stage (larger than 6 mm in diameter) papillomas (Figure. 

3b, c). In contrast, when we measured the size of papillomas in p53
+/+

sub-congenic mice, 

only p53
+/+

 F/F mice developed late stage papillomas and the size difference between 

F/M and F/F mice was significantly larger in p53
+/+ 

than in p53
+/- 

(Figure. 1 b, Figure. 

3b). Thus, the Stmm3 region exerted stronger suppressive effects on papillomas in the 

presence of two copies of p53, indicating that the effects of Stmm3 are dependent on 

p53. We then carried out histological analysis of papillomas from p53
+/-

sub-congenic 

mice. No morphological change or significant difference between p53
+/-

F/M and 

p53
+/-

F/F mice was noted on HE (hematoxylin and eosin) staining or 

immunohistochemical analysis with the cell proliferation marker Ki67 (Figure. 4a-e). 
 

p53 heterozygosity has been reported to be associated with a higher frequency of 

progression to carcinomas without affecting papilloma development
47

. However, in 

order to eliminate the possibility that deletion of p53 promotes papillomagenesis in 

p53
+/+

F/F mice, we examined the p53 allele using papillomas from F/M mice and F/F 

mice. We found that the p53 allele level in papillomas was similar between p53
+/+

F/M 
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and p53
+/+

F/F mice (Figure. 5). Therefore, the p53 allele was not deleted in papillomas 

from p53
+/+

F/F mice and the effects of the Stmm3 locus were dependent on p53.  

 

4-3 A candidate gene for Stmm3, Cdkn2a/p19
Arf

. Our animal experiments 

demonstrated that the Stmm3 locus regulated tumor progression in a p53-dependent 

manner. The p53-dependent tumor suppressor gene Cdkn2a/p19
Arf

 was found to be 

located in the minimal congenic interval (Figure. 1a). Therefore, we initially focused on 

Cdkn2a/p19
Arf

.  

A previous report suggested that p19
Arf 

expression was regulated by TPA in mouse 

skin
48

. In addition, p19
Arf

 was not expressed in mouse skin in the absence of TPA. 

Therefore, we examined the p19
Arf

 expression levels using TPA-treated mouse skin from 

sub-congenic mice (M/M and F/F mice), and found that p19
Arf

 expression was almost 

the same in M/M and F/F mice (Figure. 6a). In addition, we measured the p19
Arf

 

expression levels using TPA treated mouse skin from p19
Arf+/- 

(FVB/N×MSM/Ms) F1 

mice, and found that p19
Arf

 expression was almost the same in p19
Arf -/MSM

 (p19
Arf FVB

 

allele knockout F1) and p19
Arf FVB/- 

(p19
Arf MSM

 allele knockout F1) mice (Figure. 6b). On 

the other hand, according to the database 

(http://molossinus.lab.nig.ac.jp/msmdb/index.jsp), a genetic variant is located in exon 2 
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(149 aa) of the Cdkn2a/p19
Arf 

locus between MSM/Ms (Val) and FVB/N (Leu) (Figure. 

6c). Therefore, we hypothesized that a nonsynonymous substitution in p19
Arf

 rather than 

expression was more likely to play a role in the modification of tumor resistance. 

 

4-4 p19
Arf MSM 

allele confers resistance to papilloma development. In this study, we 

considered Cdkn2a/p19
Arf 

to be one
 

of the important modifier genes of skin 

carcinogenesis because of its p53 dependency. However, the Cdkn2a locus encodes two 

separate proteins (Cdkn2a, also known as p16
Ink4a

, and p19
Arf

) generated from 

alternative open reading frames. Accordingly, we knocked out the p16
Ink4a MSM

 and 

p19
Arf MSM

 alleles using CRISPR/Cas9 in the (FVB/N×MSM/Ms) F1 background and 

generated p16
Ink4a FVB/-

 (p16
Ink4a MSM

 allele knockout F1) and p19
Arf FVB/-

 (p19
Arf MSM

 

allele knockout F1) mice. These mice were subjected to two-stage skin carcinogenesis 

using DMBA/TPA, and papilloma development was monitored for a period of 20 weeks. 

As a result, p19
Arf FVB/-

 mice exhibited a significantly higher number of papilloma 

compared with p19
Arf FVB/MSM

 (Figure. 7a). On the other hand, p16
Ink4a FVB/-

 mice had 

minimal change in the papilloma number compared with p16
Ink4a FVB/MSM

 (Figure. 7b). 

These results suggested that the p19
Arf MSM

 allele conferred tronger resistance to 

papilloma number compared with the p16
Ink4a MSM

 allele. Thus, p19
Arf 

was more likely to 
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be a Stmm3 responsible gene than p16
Ink4a

. Based on these results, we separately 

knocked out p19
Arf MSM

 and p19
Arf FVB

 in a (FVB/N×MSM/MS) F1 background, and 

generated p19
Arf FVB/-

 (p19
Arf MSM

 allele knockout F1) and p19
Arf -/MSM

 (p19
Arf FVB

 allele 

knockout F1) mice in order to investigate the functions of the p19
Arf MSM

 and p19
Arf FVB

 

alleles (Figure. 7c). These mice were subjected to DMBA/TPA skin carcinogenesis, and 

papilloma development was monitored for a period of 20 weeks. As a result, p19
Arf FVB/-

 

mice exhibited a significantly higher number of papilloma compared with p19
Arf -/MSM

 

and p19
Arf FVB/MSM 

mice (Figure. 7 d, f). In addition, p19
Arf FVB/-

 mice developed a 

significantly higher number of late stage (>6 mm) papillomas compared with p19
Arf 

-/MSM 
and p19

Arf FVB/MSM 
mice (Figure. 7e). These results demonstrate that the MSM 

allele of p19
Arf

 suppresses papilloma development and growth more than the FVB allele, 

confirming p19
Arf 

as a responsible gene for Stmm3.  

We next performed histological analysis using papillomas from p19
Arf FVB/-

, p19
Arf 

-/MSM
, and p19

Arf FVB/MSM 
mice. As HE staining revealed no significant morphological 

changes among these mice (Figure. 8a-c), we carried out immunohistochemical analysis 

with the cell proliferation marker Ki67. As a result, papillomas from p19
Arf FVB/-

 mice 

had a significantly higher number of Ki67-positive cells, compared with that in 

papillomas from p19
Arf -/MSM

 and p19
Arf FVB/MSM

 mice (Figure. 8d-g). These results 
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suggest that the p19
Arf MSM

 allele downregulates papilloma development by reducing 

proliferative cells. 

 

4-5 The p19
Arf MSM 

allele controls malignant conversion. In order to investigate the 

effects of p19
Arf MSM 

and p19
Arf FVB

 alleles on malignant conversion in p19
Arf FVB/-

, p19
Arf 

-/MSM
, and p19

Arf FVB/MSM
 mice, we monitored carcinoma development up to 40 weeks 

after initiation. As a result, p19
Arf FVB/-

 mice had a significantly higher incidence of 

papillomas compared with p19
Arf -/MSM

 and p19
Arf FVB/MSM

 mice (Figure. 9a). 

Furthermore, the survival rate of p19
Arf FVB/-

 mice was significantly lower than that of 

p19
Arf -/MSM

 mice and p19
Arf FVB/MSM

 mice (Figure. 9b). These results suggest that p19
Arf 

MSM
 strongly suppresses malignant conversion to carcinoma and prolongs the survival of 

mice compared with p19
Arf FVB

.  

Next, we performed histological analysis using carcinomas from p19
Arf FVB/-

, p19
Arf 

-/MSM
, and p19

Arf FVB/MSM
 mice. Since HE staining revealed no significant morphological 

changes among these mice (Figure. 10a-l), we then carried out immunohistochemical 

analysis with the mesenchymal marker vimentin and the epithelial marker K14 and E 

-cadherin. As a result, carcinomas from p19
Arf FVB/-

 mice had a significantly higher 

number of vimentin-positive cells than papillomas from p19
Arf -/MSM

 and p19
Arf FVB/MSM
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mice (Figure. 11a-m). On the other hand, carcinomas from p19
Arf FVB/-

 mice had a 

significantly lower number of K14-positive cells compared with papillomas from p19
Arf 

-/MSM
 and p19

Arf FVB/MSM
 (Figure. 12a-m). In addition, the expression pattern of 

E-cadherin was similar to K14 (Figure.13a-l). These results suggest that the p19
Arf MSM

 

allele inhibits the epithelial-mesenchymal transition (EMT), as well as papilloma 

development and malignant conversion.  

 

4-6 The p19
Arf MSM 

allele reduces proliferative cells in mouse skin after TPA 

treatment. To investigate the effects of the p19
Arf

 allele on cell proliferation in mouse 

skin, we carried out immunohistochemical analysis with the cell proliferation marker 

Ki67. As a result, there was no difference in the number of Ki67-positive cells in p19
Arf 

FVB/-
, p19

Arf -/MSM 
or p19

Arf FVB/MSM 
mice in the absence of TPA (Figure. 14a, c, e, g). On 

the other hand, papillomas from p19
Arf FVB/-

 mice had a significantly higher number of 

Ki67-positive cells compared with papillomas from p19
Arf -/MSM

 and p19
Arf FVB/MSM

 mice 

in the presence of TPA (Figure.14b, d, f, g). These results suggest that the p19
Arf MSM 

allele more strongly suppresses cell proliferation in mouse skins after TPA treatment 

compared with the p19
Arf FVB 

allele.  
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4-7 The genetic polymorphisms in p19
Arf

 differ in biological activity. To examine the 

function of the genetic polymorphisms in p19
Arf

, we used mouse skins of p19
Arf FVB/-

, 

p19
Arf -/MSM

 and p19
Arf FVB/MSM

, as well as NIH/3T3 cells overexpressing p19
Arf MSM

 or 

p19
Arf FVB

. We originally attempted to generate a mouse keratinocyte cell line (C5N) and 

carcinoma cell lines (B9, D3) that overexpressed p19
Arf

. However, we were unable to 

generate cells overexpressing p19
Arf

, probably because endogenous p19
Arf 

was highly 

expressed in these cell lines (C5N, B9, D3). Therefore, we used NIH/3T3 cells in which 

endogenous p19
Arf 

was nearly silenced
49

. NIH/3T3 cells were successfully transduced 

with retroviral vectors expressing p19
Arf MSM

-HA or p19
Arf FVB

-HA (Figure. 15a). These 

cells exhibited no difference in mRNA or protein expression levels between 

p19
ArfMSM

-HA and p19
Arf FVB

-HA (Figure. 15b-d).  

As we observed an effect of the p19
Arf

 allele on cell proliferation in mouse skin (Fig. 

14), we performed cell cycle analysis using skins of p19
Arf FVB/-

, p19
Arf -/MSM

 and p19
Arf 

FVB/MSM
 mice, as well as NIH/3T3 cells overexpressing p19

Arf MSM
 or p19

Arf FVB
. We 

observed subtle effects on cell cycle progression in untreated mouse skins and NIH/3T3 

cells overexpressing p19
Arf MSM

 or p19
Arf FVB

 after DMSO treatment (Figure. 16a, b). On 

the other hand, the percentage of cells in G0/G1 phase was significantly lower in skin of 

p19
Arf FVB/-

 mice than in skin of p19
Arf -/MSM

 mice after TPA treatment (Figure. 16a). 
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Similarly, the percentage of NIH/3T3 cells overexpressing p19
Arf FVB

 in G0/G1 phase was 

significantly lower than that of p19
Arf MSM

-overexpressing
 
cells after TPA treatment 

(Figure. 16b). In addition, the percentage of cells in S phase was significantly higher in 

skin of p19
Arf FVB/-

 mice than in skin of p19
Arf -/MSM

 mice after TPA treatment (Figure. 

16a). Similarly, the percentage of NIH/3T3 cells overexpressing p19
Arf FVB

 in S phase 

was significantly higher than that of p19
Arf MSM

-overexpressing cells after TPA treatment 

(Figure. 16b). These results are consistent with Figure. 14, and suggest that the p19
Arf 

MSM
 allele suppresses cell proliferation in normal cells by inducing G1 arrest after TPA 

treatment. 

Furthermore, we analyzed the p19
Arf

 expression level by Western blotting, and 

found that p19
Arf

 expression levels were increased by TPA treatment. In addition, p19
Arf

 

expression was significantly higher in skin of p19
Arf -/MSM

 mice than in
 
skin of

 
p19

Arf FVB/- 

mice
 
two days

 
after TPA treatment (Figure. 16c, d). Similarly, p19

Arf
 expression was 

significantly higher in NIH/3T3 cells overexpressing p19
Arf MSM

 than in p19
Arf 

FVB
-overexpressing cells after TPA treatment (Figure. 16e, f). As p19

Arf MSM
 and p19

Arf 

FVB 
are expressed under the same promoter in NIH/3T3 cells, it is unlikely that these two 

proteins differ in quantity. A previous report suggested that TPA mediates the 

stabilization of p19
Arf 50

, thus it is likely that p19
Arf MSM 

is more stable than p19
Arf FVB

. 



25 

 

 

4-8 Subcellular localization of p19
Arf 

is altered by TPA treatment. TPA was 

previously reported to upregulate Arf in the cytoplasm
50, 51

. p19
Arf

 mutants lacking the 

C-terminus were consistently expressed at lower levels compared with wild-type p19
Arf

. 

A region encoded by exon 2 helps to stabilize the protein
52

. Therefore, we generated 

NIH/3T3 cells overexpressing p19
Arf 

mutants lacking the C-terminal region where the 

SNP is located (⊿133-169) and checked subcellular localization by immunostaining. As 

a results, p19
Arf 

mutants (⊿133-169) localized in the cytoplasm (Figure.17a-c). This 

result suggested that C-terminus of p19
Arf

 is involved in protein localization. 

Next, we carried out immunostaining using NIH/3T3 cells overexpressing p19
Arf 

FVB 
or p19

Arf MSM
. We noted that p19

Arf MSM
 was preferentially localized in the nucleus 

after TPA treatment. In contrast, p19
Arf FVB

 was preferentially localized in the cytoplasm 

after TPA treatment (Figure. 18a-p). Furthermore, p19
Arf

 localization was confirmed by 

Western blot analysis using cytoplasmic and nuclear extracts. Efficient fractionation was 

confirmed by anti-α-Tubulin antibody for the cytoplasm and anti-Histone H3 antibody 

for the nucleus, as these proteins are mainly enriched in these cellular compartments. 

Fractionation experiments demonstrated that p19
Arf FVB

 was more highly enriched in the 

cytoplasm compared with p19
Arf MSM

 after TPA treatment (Figure. 18q, r). It has been 
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reported that Mdm2 mediates Arf degradation via proteasomes in the cytoplasm
51

. 

Accordingly, we evaluated the protein-protein interaction between ARF and Mdm2 in 

the cytoplasm and nucleus. p19
Arf MSM

 was pulled-down significantly more than p19
Arf 

FVB 
with Mdm2 in the nuclear extracts after TPA treatment (Figure. 19a, b). On the other 

hand, p19
Arf FVB

 was pulled-down significantly more than p19
Arf MSM 

with Mdm2 in the 

cytoplasmic extracts after TPA treatment (Figure. 19a, b). These results suggest that 

p19
Arf MSM

 is mainly localized with Mdm2
 
in the nucleus and p19

Arf FVB
 is mainly 

localized with Mdm2
 
in the cytoplasm. As Mdm2 mediates Arf degradation in the 

cytoplasm
46

, p19
Arf FVB 

may be more easily degraded compared with p19
Arf MSM

, being a 

possible explanation for why p19
Arf MSM 

is more stable than p19
Arf FVB 

(Figure. 16 c-f).  

 

4-9 p19
Arf MSM

 activates the p53 pathway. p19
Arf

 stabilizes p53 protein by inactivating 

Mdm2 protein to mediate p53 transactivation
49

. In addition, nuclear localization of p53 

is necessary for this transactivation function
53, 54

. In this study, we found that p19
Arf MSM

 

is mainly localized with Mdm2
 
in the nucleus. Therefore, we investigated whether 

p19
Arf MSM

 activates the p53 pathway more efficiently than p19
Arf FVB

. First, we analyzed 

p53 expression levels in skins of p19
Arf -/MSM

 and p19
Arf FVB/- 

mice by Western blotting. 

As a result, p53 expression was significantly higher in skin of p19
Arf -/MSM

 mice than in
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skin of
 
p19

Arf FVB/- 
mice

 
two days

 
after TPA treatment (Figure. 20a, b). Similarly, p53 

expression was significantly higher in NIH/3T3 cells overexpressing p19
Arf MSM

 than in 

p19
Arf FVB

-overexpressing cells after TPA treatment (Figure. 20c, d). Next, we measured 

mRNA expression levels of the p53 target genes p21, Noxa and Bax. p53 target gene 

expression was significantly higher in p19
Arf -/MSM

 mice than in
 
p19

Arf FVB/- 
mice two days

 

after TPA treatment (Figure. 20e). Similarly, p53 target gene expression was 

significantly higher in NIH/3T3 cells overexpressing p19
Arf MSM

 than in p19
Arf 

FVB
-overexpressing cells after TPA treatment (Figure. 20f). As increased p53 target gene 

expression strongly suggests the activation of p53
55-57

, these data indicate that p19
Arf 

MSM
 more efficiently induces the transcriptional activity of p53 compared with p19

Arf 

FVB
. 

 

4-10 Polymorphisms in CDKN2A are associated with human cancer risk. As a 

genetic variation in exon 2 of Cdkn2a/p19
Arf 

was demonstrated to modify tumorigenesis 

in mice, we hypothesized that genetic variations in CDKN2A can influence 

carcinogenesis in humans. To investigate whether the human CDKN2A gene is 

associated with the incidence of cancer, we examined a large scale GWAS panel using 

approximately ten thousand Japanese cancer patients. Five SNPs in CDKN2A loci were 
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genotyped by Illumina Human Hap610 BeadChip using DNA from breast, colorectal, 

lung, prostate, liver, and gastric cancer patients. As the result, three SNP markers 

(rs2811708, rs3731217, rs3731239) located near the CDKN2A gene were found to be 

associated with the incidence of breast cancer (Table 3, Figure. 21). Among them, 

rs2811708 and rs3731217 exhibited a significant association even after Bonferroni 

correction (P < 0.05/30). All of these SNPs are located within introns (Figure. 21). 

Although the molecular mechanisms of these SNPs conferring susceptibility to cancers 

are unknown, CDKN2A SNPs may be associated with human cancer risk, like mice. 
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5. Discussion 

In this study, we demonstrated that Cdkn2a/p19
Arf

 is one of the responsible genes 

for the Stmm3 locus. Our skin carcinogenesis experiments revealed that the p19
Arf MSM

 

allele suppresses papilloma development and growth by reducing proliferative cells and 

malignant conversion. In addition, degradation stable p19
Arf MSM

 protein is preferentially 

localized in the nucleus, which activates the p53 pathway. 

These findings are partly consistent with our hypothesis. First, our congenic study 

suggested that the function of Stmm3 is dependent on p53. The Cdkn2a locus encodes 

two major tumor suppressor genes, p16
Ink4a

 and p19
Arf

, which enhance the 

growth-suppressive functions of pRb and the p53 protein, respectively
30-31

. It has been 

reported that there is a regulatory feedback circuit between p53 and p16
Ink4a

, and the 

p16
Ink4a

 pathway is accelerated if p53 is deleted, indicating a backup tumor suppressor 

role for p16
Ink4a

 after p53 inactivation
58, 59

. In contrast, the function of p19
Arf 

is 

dependent on p53
58

. This is consistent with the results of our original linkage and 

congenic study. Second, previous reports suggested that p19
Arf

 regulates papilloma 

development, growth and malignant conversion
60

. However, p16
Ink4a 

did not regulate 

papilloma development or growth, and instead regulated malignant conversion 

according to another report
61

. Our congenic study suggested that Stmm3 regulates 
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papilloma development, growth and malignant conversion. These results are consistent 

with the previous reports on p19
Arf 

and p16
Ink4a

. Third, our animal experiments 

demonstrated that p19
Arf MSM

 confers stronger resistance to papillomas than p16
Ink4a MSM 

in vivo. Fourth, p19
Arf MSM

 is preferentially localized in the nucleus and activates the p53 

pathway, clarifying that the function of p19
Arf MSM

 is dependent on p53. Taken together, 

we conclude that p19
Arf

 and not p16
Ink4a 

is a major responsible gene for Stmm3. 

 

ARF is involved in the oncogenic checkpoint by sensitizing incipient cancer cells to 

growth arrest. This phenomenon is generally accompanied by parallel disruption of the 

inhibitory interaction between Mdm2 and p53
62, 63

. The Cdkn2a/p19
Arf

 locus is 

frequently deleted in human tumors, particularly in melanomas and pancreatic 

adenocarcinomas
64

. The N-terminal region of the human and mouse ARF proteins is 

necessary and sufficient for this function
65-67

. The stability and nucleolar sequestration 

of p19
Arf 

depends on its interaction with nucleophosmin (NPM), and the ability of p19
Arf

 

to bind either Mdm2 or NPM is determined by N-terminal amino acid residues encoded 

by exon1β
68-70

. A small polypeptide specified by exon1β alone is capable of interacting 

with NPM and Mdm2, inducing acute p53-dependent cell cycle arrest
51, 65, 66

. It has been 

reported that non-nucleolar forms of ARF are subjected to rapid degradation by 
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proteasomes, with MDM2 playing a role in the modulation of this phenomenon
69, 70

. On 

the other hand, the human p14
ARF 

mutation lacking the C-terminus (exon 2: 65-132 aa) 

does not affect the biological activity
65-68

. However, a genetic polymorphism which 

exists in the C-terminal region of p19
Arf

 between MSM/Ms (Val) and FVB/N (Leu) was 

found to stabilize the protein and cause the protein to be localized in the nucleus. Arf 

was reported to be degraded, at least in part, by proteasomes in the cytoplasm
50

. 

Therefore, nuclear localization of p19
Arf

 likely leads to stabilization of the protein. 

Indeed, human ARF lacks the C-terminal region where the SNP is located. As many 

studies have been performed using human ARF sequences, the biological importance of 

the C-terminal region may have been missed. Although the molecular mechanism of the 

C-terminus of p19
Arf

 is unclear, ligating the mouse C-terminal region with human ARF 

may be an important experiment in the near future. 

Furthermore, we clarified three novel SNPs in CDKN2A that are associated with the 

incidence of breast and lung cancer in the Japanese population. All of these SNPs are 

located in introns. However, the molecular mechanisms of these SNPs conferring 

susceptibility to cancers remain unknown. These SNPs may affect splicing or the 

expression of p14
ARF

. Genotyping and expression analyses using human lymphoblastoid 

cell lines may be required for further studies as to whether CDKN2A SNPs are 
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associated with human cancer risk, as in mice. 

In conclusion, we have demonstrated the cyclin-dependent kinase inhibitor gene 

p19
Arf

 to be a major responsible gene for the Stmm3 locus. In addition, we found that a 

genetic polymorphism in p19
Arf

 between MSM/Ms (Val) and FVB/N (Leu) can modify 

susceptibility to skin carcinogenesis. Moreover, the p19
Arf MSM

 allele more efficiently 

activates the p53 pathway compared with the p19
Arf FVB 

allele in vitro and in vivo. 

Furthermore, we clarified novel polymorphisms in CDKN2A, which are in the vicinity 

of a polymorphism in mouse Cdkn2a, to be associated with the risk of human cancers in 

the Japanese population. Genetic polymorphisms in Cdkn2a and CDKN2A may 

modulate cancer risk in both mice and humans. Our data confirm that genetic 

approaches using mouse models can be translated to humans in order to identify cancer 

susceptibility alleles and molecular target therapies. 
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8. Figures and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Stmm3 (Skin tumor modifier of MSM) locus controlling the 

transition to large papillomas on mouse chromosome 4. (a) A schematic 

representation of the genetic position around Stmm3. The red bar represents the region 

of Stmm3. Genetic positions shown are according to the Ensemble Database 

(http://www.ensembl.org/) and the Mouse Genome Informatics Database 

(http://www.informatics.jax.org/). (b) Comparison of average number of 

papillomas/mouse among p53
+/+

F/M (n=17; 13.2±6.0), p53
+/+

F/F mice (n=20; 32.5±

7.6). (c) Number of papillomas >6mm per mice in p53
+/+

F/M, p53
+/+

F/F mice (F/M: 

0.059±0.24, F/F: 4.32±4.58). Number of papillomas is shown at 20 weeks after 

initiation. (d) Representative photographs of p53
+/+

F/F congenic mice and p53
+/+

F/M 

congenic mice at 20 weeks after initiation. n.d., not detected. The P-values were 

calculated by one-way ANOVA (***P<0.001, **P<0.01). n.s., not significant. Error 

bars represent the standard deviation (S.D.). 
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Figure 2. The Stmm3 locus induces G1 arrest following TPA treatment. (a-b) Cell 

cycle analysis of TPA-treated skin from p53
+/+

F/M (n=3) (red bar) and p53
+/+

F/F mice 

(n=3) (green bar) (0 day and 2 days after TPA treatment). (a) G0/G1 phase, (b) S phase. 

DNA content was measured by propidium iodide (PI) staining. The P-values were 

calculated by one-way ANOVA (**P<0.01, *P<0.05). n.s., not significant. Error bars 

represent the standard deviation (S.D.). 
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Figure 3. The effects of the Stmm3 locus are dependent on p53. (a) Comparison of 

average number of papilllomas/mouse among p53
+/-

F/M (n=15; 15.2±14.9) and 

p53
+/-

F/F mice (n=15; 20.7±15.2). (b) Number of papillomas >6mm per mice in 

p53
+/-

F/M, and p53
+/-

F/F mice (F/M: 2.0±3.3, F/F: 4.2±5.7). Number of papillomas is 

shown at 20 weeks after initiation. (c) Representative photographs of p53
+/-

F/F congenic 

mice and p53
+/-

F/M congenic mice at 20 weeks after initiation. The P-values were 

calculated by one-way ANOVA. n.s., not significant. Error bars represent the standard 

deviation (S.D.). 
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Figure 4. Papillomas from p53
+/- 

sub-congenic mice have no differences in 

development. (a-b) HE staining patterns of papillomas from (a) p53
+/-

F/M and (b) 

p53
+/-

F/F. (c-d) Double-immunostaining patterns of Ki67 (green) and keratin 14 (K14) 

(red) in papillomas from (c) p53
+/-

F/M and (d) p53
+/-

F/F mice. Cells were 

counterstained with DAPI (blue). (e) The number of Ki67-positive cells in papillomas 

from p53
+/-

F/M (n=14) and p53
+/-

F/F mice (n=13). The P-value for the Ki67-positive 

cell number was calculated by one-way ANOVA (n.s., not significant.). Error bars 

represent the standard deviation (S.D.). 
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Figure 5. No difference between p53
+/+

heterozygous congenic mice and 

p53
+/+

homozygous congenic mice. ⊿Ct values (p53‐β-Actin) were detected by SYBR 

Green real-time genomic PCR using papilloma DNA from p53
+/+ 

or
 
p53

+/-
 F/M mice 

(blue diagonal line bars and green diagonal line bars, respectively) and p53
+/+ 

or
 
p53

+/-
 

F/F mice (blue bars and green bars, respectively). Tail samples were used as normal 

genomic DNA. All samples compared with p53
+/+

F/F tail. The P-values were calculated 

by two-way ANOVA (***P<0.001, **P<0.01). n.s., not significant. Error bars 

represent the standard deviation (S.D.). 

 

 

 

 

 

 

 

 



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The p19
Arf

 expression levels in mouse skin and alignment of p19
Arf

 amino 

acid. (a) mRNA expression level of p19
Arf

. qRT-PCR analysis of TPA-treated skins from 

M/M (MSM/MSM) (n=3) and F/F mice (FVB/FVB) (n=3) (0 and 2 days after TPA 

treatment). (b) qRT-PCR analysis of TPA-treated skins from p19
Arf FVB/MSM 

(red bars), 

p19
Arf -/MSM

 (orange bars), and p19
Arf FVB/-

 (green bars) mice (n=3) (0 and 2 days after 

TPA treatment). The P-values were calculated by one- and two-way ANOVA 

(***P<0.001). n.s., not significant. Error bars represent the standard deviation (S.D.). 

(b) Alignment of p19
Arf 

of FVB/N and MSM/Ms. Red arrow indicates genetic variation 

between MSM/Ms (Val) and FVB/N (Leu). 
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Figure 7. The p19
Arf MSM

 allele confers resistance to larger papillomas. (a) 

Comparison of number of papillomas among p19
Arf FVB/MSM

-a (n=11; 1.50±2.56), p19
Arf 

FVB/MSM
-b (n=16: 0.18±0.40), p19

Arf FVB/-
-a (n=17: 5.65±5.67) and p19

Arf FVB/-
-b mice 

(n=17; 5.41±6.07). (b) Comparison of number of papillomas among p16
Ink4a FVB/MSM

-a
 

(n=16; 0.89±1.69),
 

p16
Ink4a FVB/MSM

-b
 

(n=13: 0.77±1.36),
 

p16
Ink4a FVB/-

-a
 

(n=21: 

1.43±1.75) and p16
Ink4a FVB/-

-b
 
mice

 
(n=19: 1.72±2.32). (c) A schematic drawing of the 

generation of p19
Arf+/-

 (FVB/N×MSM/MS) F1 mice. The orange bar indicates the MSM 

allele, whereas the white bar indicates the FVB allele. The red box indicates the p19
Arf 
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knockout allele. (d) Comparison of number of papillomas among p19
Arf FVB/MSM

 (n=22: 

0.52±0.47), p19
Arf -/MSM

 (n=20: 0.52±0.80), and p19
Arf FVB/-

 mice (n=21: 2.31±2.83). (e) 

Number of papillomas >6mm per mice inp19
Arf FVB/MSM

 (not detected), p19
Arf -/MSM 

(0.048±0.22), and p19
Arf FVB/-

 mice (0.32±0.58). Number of papillomas is shown at 20 

weeks after initiation. (f) Representative photographs of p19
Arf FVB/MSM

 (left), p19
Arf 

-/MSM
 (middle), and p19

Arf FVB/-
 mouse (right) at 20 weeks after initiation. The white 

arrow indicates papillomas. (a) Red asterisks indicated p19
Arf FVB/MSM

-a vs p19
Arf FVB/-

-a. 

Black asterisks indicated p19
Arf FVB/MSM

-b vs p19
Arf FVB/-

-b. (d, e) Red asterisks indicated 

p19
Arf -/MSM

 vs p19
Arf FVB/-

. Black asterisks indicated p19
Arf FVB/MSM

 vs p19
Arf FVB/-

. n.d., 

not detected. The P-values were calculated by two-way ANOVA (***P<0.001, 

**P<0.01, *<0.05). n.s., not significant. Error bars represent the standard deviation 

(S.D.). 
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Figure 8. The p19
Arf MSM

 allele regulates cell proliferation in papillomas. (a-c) HE 

staining patterns from a (a) p19
Arf FVB/MSM

, (b) p19
Arf -/MSM

, and (c) p19
Arf FVB/-

 mouse. 

(d-f) Double-immunostaining patterns of Ki67 (green) and keratin 14 (K14) (red) in 

papillomas from a (d) p19
Arf FVB/MSM

, (e) p19
Arf -/MSM

, and (f) p19
Arf FVB/-

 mouse. Cells 

were counterstained with DAPI (blue). (g) The number of Ki67-positive cells in 

papillomas from a p19
Arf FVB/MSM

 (n=11) (red bars), p19
Arf -/MSM

 (n=11) (orange bars), 

and p19
Arf FVB/-

 mouse (n=11) (green bars). The P-value for number of Ki 67-positive 

cells was calculated by two-way ANOVA (***P<0.001). n.s., not significant. Error bars 

represent the standard deviation (S.D.). 
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Figure 9. Malignant conversion differs between the p19
Arf MSM

 allele and p19
Arf FVB

 

allele. (a) Comparison of DMBA/TPA-induced carcinoma incidence among p19
Arf 

FVB/MSM
 (n=22: 9.1%), p19

Arf -/MSM
 (n=20: 25.0%), and p19

Arf FVB/-
 mice (n=21: 66.7%). 

Carcinoma incidences are shown at 40 weeks after initiation. (b) Survival curve of 

DMBA/TPA-treated p19
Arf FVB/MSM

 (n=22), p19
Arf -/MSM

 (n=20), and p19
Arf FVB/-

 mice 

(n=21: median survival, 35weeks after initiation) (***P < 0.0001, Kaplan–Meier 

method). The P-values were calculated for carcinoma incidence at 40 weeks by Fisher’s 

test (**P<0.01).  
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Figure 10. HE staining revealed no significant morphological changes. (a-l) HE 

staining patterns in carcinomas from p19
Arf FVB/MSM

, p19
Arf -/MSM

, and p19
Arf FVB/-

 mice. 

(d-l) are magnified regions in white boxes in (a-c). Scale bars=1,000 μm (a-c), 100 μm 

(d-l). 
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Figure 11. Immunostaining pattern of Vimentin in carcinomas. (a-l) 

Immunostaining pattern of vimentin (green) in carcinomas from p19
Arf FVB/MSM

, p19
Arf 

-/MSM
, and p19

Arf FVB/-
 mice. (d-l) are magnified regions in white boxes in (a-c). Cells 

were counterstained with DAPI (blue). Scale bars=1,000 μm (a-c), 100 μm (d-l). (m) 



56 

 

The number of vimentin-positive cells in carcinomas from a p19
Arf FVB/MSM

 (n=27) (red 

bars), p19
Arf -/MSM

 mouse (n=43) (orange bars), and p19
Arf FVB/-

 mice (n=46) (green bars). 

Vimentin-positive cells were calculated in magnified sections. The P-value for the 

vimentin-positive cell number was calculated by two-way ANOVA (***P<0.001, 

**P<0.01). Error bars represent the standard deviation (S.D.). 
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Figure 12. Immunostaining pattern of K14 in carcinomas. (a-l) Immunostaining 

patterns of K14 (green) in carcinomas from p19
Arf FVB/MSM

, p19
Arf -/MSM

, and p19
Arf FVB/-

 

mice. (d-l) are magnified regions in white boxes in (a-c). Cells were counterstained with 

DAPI (blue). Scale bars=1,000 μm (a-c), 100 μm (d-l). (m) The number of K14-positive 
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cells in carcinomas from a p19
Arf FVB/MSM

 (n=27) (red bars), p19
Arf -/MSM

 (n=43) (orange 

bars), and p19
Arf FVB/-

 mouse (n=46) (green bars). K14-positive cells were counted in 

magnified sections. The P-value for number of K14-positive cells was calculated by 

two-way ANOVA (**P<0.01, *P<0.05). n.s., not significant. Error bars represent the 

standard deviation (S.D.). 
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Figure 13. Immunostaining pattern of E-cadherin in carcinomas. (a-l) 

Immunostaining patterns of E-cadherin (green) in carcinomas from p19
Arf FVB/MSM

, 

p19
Arf -/MSM

, and p19
Arf FVB/-

 mice. (d-l) are magnified regions in white boxes in (a-c). 

Cells were counterstained with DAPI (blue). Scale bars=1,000 μm (a-c), 100 μm (d-l). 
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Figure 14. The p19
Arf MSM 

allele reduces proliferating cells in mouse skin after TPA 

treatment. (a-f) Immunostaining patterns of Ki67 (green) in skin from (a, b) p19
Arf 

FVB/MSM
, (c,d) p19

Arf -/MSM
, and (e, f) p19

Arf FVB/-
 mice (0 and 2 days after TPA treatment). 

(g) The number of Ki67-positive cells in papillomas from a p19
Arf FVB/MSM

 (n=7) (red 

bars), p19
Arf -/MSM

 (n=7) (orange bars), and p19
Arf FVB/-

 mice (n=7) (green bars). The 

P-value for number of Ki67-positive cells was calculated by two-way ANOVA 

(***P<0.001). n.s., not significant. Error bars represent the standard deviation (S.D.). 
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Figure 15. Generation of NIH/3T3 cells overexpressing p19
Arf MSM 

or
 
p19

Arf FVB
. (a) 

A schematic drawing of p19
Arf

-HA constructs for each allele. (b,c) p19
Arf

 mRNA 

expression levels detected by (b) RT-PCR and (c) qRT-PCR analysis using NIH/3T3 

cells 2 days after infection. (d) p19
Arf

 protein expression levels measured by Western 

blot analysis using NIH/3T3 cells 2 days after infection. Actin expression is shown as 

an internal control. Error bars represent the standard deviation (S.D.). n.s., not 

significant. 
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Figure 16. The p19
Arf MSM

 allele is more effective in inducing G1 arrest than the 

p19
Arf FVB

 allele after TPA treatment. (a-b) Cell cycle analysis of MSM/Ms and 

FVB/N variants of p19
Arf

. (a) TPA-treated skin from p19
Arf FVB/MSM

 (n=4) (red bars), 

p19
Arf -/MSM

 (n=4) (orange bars), and p19
Arf FVB/-

 mice (n=4) (green bars) (0 day and 2 
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days after TPA treatment). (b) NIH/3T3 cells infected with a control vector (pMSCV) 

(n=3) (red bars), p19
Arf MSM 

(n=3) (orange bars), or p19
Arf FVB 

(n=3)
 
(green bars) were 

treated with DMSO (0.01%) or TPA (100 ng). DNA content was measured by 

propidium iodide (PI) staining. (c-f) p19
Arf

 protein expression detected by western blot 

analysis and compared with the amount of p19
Arf

. (c, d) TPA-treated skin from p19
Arf 

FVB/MSM
 (n=5) (red bars), p19

Arf -/MSM
 (n=5) (orange bars) and p19

Arf FVB/-
 mice (n=5) (0 

and 2 days after TPA treatment). (e, f) NIH/3T3 cells infected with p19
Arf MSM 

(n=3) 

(orange bars) or p19
Arf FVB 

(n=3)
 
(green bars) were treated with DMSO (0.01%) or TPA 

(100 ng). Actin expression is shown as an internal control. The P-values were calculated 

by one- and two-way ANOVA (***P<0.001, **P<0.01, *P<0.05). n.s., not significant. 

Error bars represent the standard deviation (S.D.). 
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Figure 17. p19
Arf 

mutant lacking the C-terminal region is located in cytoplasm. (a) 

A schematic drawing of p19
Arf

-HA mutant constructs (⊿133-169). Red line indicates 

the SNP in MSM/Ms (149 aa). (b, c) Immunostaining patterns of p19
Arf

-HA
 
(green) in 

NIH/3T3 cells. Cells were infected with p19
Arf

 and ⊿ 133-169. Cells were 

counterstained with DAPI (blue). 
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Figure 18. Genetic polymorphism of p19
Arf

 alters subcellular localization. (a-p) 

Double-immunostaining patterns of p19
Arf

-HA
 
(green) and Gapdh (red) in NIH/3T3 
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cells. Cells were infected with p19
Arf MSM 

or p19
Arf FVB

 and
 
treated with DMSO (0.01%) 

or TPA (100 ng). Cells were counterstained with DAPI (blue). (q-r) Cytoplasmic and 

nuclear extracts from an equal number of cells treated with DMSO (0.01%) (n=3) or 

TPA (100 ng) (n=3). p19
Arf

 protein expression detected by Western blot analysis. 

α-Tubulin (cytoplasm) and Histone H3 (nucleus) expression is shown as an internal 

control. The P-values were calculated by one-way ANOVA (**P<0.01, *P<0.05). n.s., 

not significant. Error bars represent the standard deviation (S.D.).  
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Figure 19. p19
Arf MSM

 is mainly localized with Mdm2
 
in the nucleus. (a) NIH/3T3 

cells were transfected with p19
Arf MSM

-HA
 
or p19

Arf FVB
-HA

 
and treated with DMSO 

(0.01%) or TPA (100 ng) (n=3). Immunoprecipitation (IP) with anti-MDM2 antibody, 

and subsequent immunoblotting analysis with anti-HA and anti-MDM2 antibodies. (b) 

The amounts of p19
Arf

 normalized by Mdm2. The P-values were calculated by one-way 

ANOVA (**P<0.01, *P<0.05). n.s., not significant. Error bars represent the standard 

deviation (S.D.). 
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Figure 20.  p19
Arf MSM

 protein upregulates the expression of p53 and p53 target 

genes. (a-d) p53 protein expression detected by Western blot analysis and compared 

with the amount of p53. (a, b) TPA-treated skin from p19
Arf FVB/MSM

 (n=5) (red bars), 

p19
Arf -/MSM

 (n=5) (orange bars), and p19
Arf FVB/-

 mice (n=5) (0 and 2 days after TPA 

treatment). (c, d) NIH/3T3 cells infected with p19
Arf MSM 

(n=3) (orange bars) or p19
Arf 

FVB 
(n=3)

 
(green bars) were treated with DMSO (0.01%) or TPA (100 ng). Actin 
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expression is shown as an internal control. (e, f) mRNA expression levels of p53 target 

genes (p21, Noxa, and Bax). (e) qRT-PCR analysis of TPA-treated skin from p19
Arf 

FVB/MSM 
(n=3) (red bars), p19

Arf -/MSM
 (n=3) (orange bars), and p19

Arf FVB/-
 (n=3) (green 

bars) mice (0 and 2 days after TPA treatment). (f) qRT-PCR analysis of NIH/3T3 cells 

infected with p19
Arf MSM 

(n=3) (orange bars) or p19
Arf FVB 

(n=3)
 
(green bars) treated with 

DMSO (0.01%) or TPA (100 ng). The P-values were calculated by one- and two-way 

ANOVA (***P<0.001, **P<0.01, *P<0.05). n.s., not significant.  Error bars represent 

the standard deviation (S.D.). 
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Figure 21. The location of SNPs in the CDKN2A locus. A schematic representation of 

the location of three SNP markers (rs2811708, rs3731217, rs3731239) in the CDKN2A 

locus. The red line represents the genetic variant between MSM/Ms (G) and FVB/N 

(C). 
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Table 1. Primers for off-target sites. 

Chr 
a
Location (bp) Primer name Sequence (5’-3’) 

b
Mutation 

p16
Ink4a

 knockout mice 

13 113880603-113881085 Ch.13_F 

Ch.13_R 

CCGAGGTGGCTGGTGTCT 

CAGGATGGAGATGGCCCT 

N.D. 

19 57581017-57581450 Ch.19_F 

Ch.19_R 

TCACTATGTTGTGGATGC 

GCTAAGGCAGCACCACGT 

N.D. 

p19
Arf

 knockout mice 

8 34194827-34195350 Ch.8_F 

Ch.8_R 

GAGCTTCCCAGAGTCCGT 

ATGGGTGTAACGTTCTAG 

N.D. 

9 107698919-107699393 Ch.9_F 

Ch.9_R 

CAGCTCATCTTGAATCCA 

AGGCCTCTGAAGACCGGC 

N.D. 

18 38741970-38742006 Ch.18_F 

Ch.18_R 

CTGCACATGCTACCGCTT 

TACACCTGGATCCTATGG 

N.D. 

3 33914436-33914926 Ch.3_F 

Ch.3_R 

GCCATTCTACGTGGAGAA 

AGTCACCAGCTCACTGTG 

N.D. 

5 120493266-120493633 Ch.5_F 

Ch.5_R 

GGGCTCTGACCTGGCTCA 

CCATTCATCTGTCAGTCT 

N.D. 

5 146435170-146435539 Ch.5_F2 

Ch.5_R2 

GTATCAGCTTCTAGCCAA 

CCTCACAGTTGCCACTCA 

N.D. 

13 78203038-78203417 Ch.13_F2 

Ch.13_R2 

CAGGTAGGACCCGGAGAA 

ACAGCTCTGCACGGCCAC 

N.D. 

a
Amplified region. 

b
N.D: not detected. 
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