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ABSTRACT 

Anti-PUF60, poly(U)-binding-splicing factor, autoantibodies are reported to be 

detected in the sera of dermatomyositis and Sjogren’s syndrome that occasionally 

associated with malignancies. PUF60 is identical with far-upstream element-binding 

protein-interacting repressor (FIR) that is a transcriptional repressor of c-myc 

gene. In colorectal cancers, a splicing variant of FIR that lacks exon2 (FIRΔexon2) 

is overexpressed as a dominant negative form of FIR. In this study, to reveal the 

presence and the significance of anti-FIRs (FIR/FIRΔexon2) antibodies in cancers 

were explored in the sera of colorectal and other cancer patients. Anti-FIRs antibodies 

were surely detected in the preoperative sera of 28 colorectal cancer patients (32.2% 

of positive rates), and the detection rate was significantly higher than that in healthy 

control sera (Mann–Whitney U test, p < 0.01). The level of anti-FIRs antibodies 

significantly decreased after the operation (p < 0.01). Anti-FIRs antibodies were 

detected in the sera of early-stage and/or recurrent colon cancer patients in which 

anti-p53 antibodies, CEA, and CA19-9 were not detected as well as in the sera of 

other cancer patients. Furthermore, the area under the curve of receiver operating 

characteristic for anti-FIRs antibodies was significantly larger (0.85) than that for 

anti-p53 antibodies or CA19-9. In conclusions, the combination of anti-FIRs antibodies 

with other clinically available tumor markers further improved the specificity and 

accuracy of cancer diagnosis.  
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INTRODUCTION 

 

 A recent study reported that the detection of anti- PUF60, poly(U)-binding-splicing 

factor, auto-antibodies in dermatomyositis and Sjogren’s syndrome, indicating it reflects 

the immune responses of the diseases [1]. On the contrary, the far-upstream element 

(FUSE)- binding protein-interacting repressor (FIR), splicing variant of PUF60 lacking 

exon5, have been reported to be overexpressed in various malignant tumors, such as 

colorectal cancers [2, 3], hepatocellular carcinomas [4, 5], T-cell acute lymphoblastic 

leukemia [6],and non-small cell lung cancer [7]. Therefore, it is natural that anti-FIR 

(PUF60) antibodies could be detected in the sera of cancer patients as well as in 

dermatomyositis and Sjogren’s syndrome. So far, the significance of anti-FIR (PUF60) 

antibodies remains obscure in malignant complications of dermatomyositis or Sjogren’s 

syndrome.  

FIR is a c-Myc transcriptional repressor that is identical with PUF60. FUSE is a 

sequence required for the proper transcriptional regulation of the human c-myc [8]. c-

Myc is critically activated in tumorigenesis in various tumors [9]. FUSE is located 1.5 

kb upstream of the c-myc promoter P1 and recognized by FUSE-binding protein (FBP). 

FBP is a transcription factor that stimulates c-myc expression through FUSE [10–12]. 

Yeast two-hybrid analysis has demonstrated that FBP binds to FIR, and FIR represses c-

myc transcription [13–16]. This study revealed that anti-FIRs antibodies were detected 

in gastrointestinal cancers. Therefore, anti-FIRs antibodies potentially reflect c-myc 

activation in auto-immune diseases and cancers. 

  



4 

 

 

 

 

RESULTS 

 

Anti-FIR/FIRΔexon2 (FIRs) antibodies were detected in the sera of colorectal 

cancer patients.  

FIR is a splice variant of PUF60 that lacks the exon 5 consists of 17 amino acids (Fig 

S1A). In colorectal cancers, FIR is alternatively spliced lacking exon 2 (FIRΔexon2) 

that function as a dominant negative of authentic FIR [2] (Fig S1A). FIRΔexon2/FIR 

mRNA is significantly elevated in colon cancer tissues [3]. The elevated FIRs 

expression has been reported to be overexpressed in various malignant tumors [2-7]. It 

has been reported that FIRs protein mainly located in the nucleus in colon cancers [3] 

and in hepatocellular carcinoma [5]. Interestingly, FIRs protein was overexpressed in 
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adenomatous polyps and cancers of colon (Fig. 1A and 1B and Table S1, [3]). Further, a 

60-kDa band (the molecular weight of FIR) and a 55-kDa band (the molecular weight of 

FIRΔexon2) were detected by western blot analysis with purified FIR/FIRΔexon2 as 

antigens in the colon cancer patients’ sera as test-sets (Fig. 1C, arrows). The bands were 

exactly overlapped with FIR/FIRΔexon2 proteins indicated by CBB staining (Fig. 1D, 

arrows). Of note, the intensity of western blot was revealed to be in a dose-dependent 

manner (Fig. 1D, arrows). These results strongly suggested that FIR/FIRΔexon2 

antibodies were present in the sera of colorectal cancer patients. Subsequently, serum 

samples from 87 colorectal cancer patients, and 27 esophageal cancer patients were 

examined by do blot assay. Serum samples from 42 healthy volunteers were used as 

control. The representative pictures of dot blot assay indicated FIR/FIRΔexon2 as an 

antigen in the sera of colorectal cancer patients (Fig. S2). The dot-blotted membranes 

were then stripped and incubated with purified anti-FIRs antibody (6B4) to confirm that 

handling inaccuracy was excluded (Fig. 2A and 2B). The cutoff value of the positive 

blot intensity of cancer patients’ serum was two times higher than that of the mean 

intensity of 42 healthy subjects (Fig. 2C). The sensitivity of serum samples toward FIRs 

antigens was significantly higher in cancer patient groups than in controls. The 

sensitivity of anti-FIRΔexon2 antibodies was significantly higher than that of controls 

in colorectal (p < 0.0001) and esophageal cancer patients (p < 0.0027) (Fig. 2D) 

detected by purified FIRΔexon2 proteins (Fig. S3). A positive predictive value of anti-

FIRs antibodies in the sera of colorectal patients was 87% (Table 1). 
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Figure 1. Auto-antibodies against FIR/FIRΔexon2 purified proteins were detected 

in the sera of colorectal cancer patients. (A) Expression of FIRs proteins were 

examined by western blotting in tumor (T) and adjacent non-tumor (N) tissue samples 

from colon cancers and colon polyps’ tissues. Representative cases were indicated. (B) 

Bands’ intensities were quantified using Scion Image imaging analysis software 

(National Institutes of Health. USA) and the average band intensity of proteins 

normalized to the corresponding β-actin were shown. (C) FIR and FIRΔexon2 purified 

proteins were prepared as antigens to detect the auto-antibodies against FIR/FIRΔexon2 

in colorectal cancer patients’ sera by western blotting (upper panel). The anti-FIRs 

(6B4) antibody was used as a positive control (middle panel). Molecular weight of 

bands detected by patients’ sera were exactly same size with those detected by anti-FIRs 

(6B4) antibodiy in western blot (middle panel) shown in CBB (Coomassie Brilliant 

Blue) staining (lower panel). (D) Auto-antibodies against FIR or FIRΔexon2 in 

colorectal cancer patients’ sera were further confirmed in dose dependent manner by 

western blotting. FIRwt: FIR purified protein. BSA: Bovine serum albumin. 
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Anti-FIRs antibodies were detected even in the early stages of colorectal and 

esophageal cancers.  

Colorectal cancer patients were classified into early (Dukes stages A, B) and advanced 

(Dukes stages C, D) cancers. The percentage of anti-FIRs antibodies-positive cases 

were higher in early stage cancers (18/49, 36.7%) than in progressive cancers (9/38, 

23.7%) (Fig. 3A). Anti-p53 antibody, CEA, and CA19-9 were also examined in the 

serum. Unlike the anti-FIRs antibodies, these tumor markers were more frequently 

detected in advanced cancers (anti-p53 antibody: 13/36, 36.1%; CEA: 21/38, 55.3%; 

CA19-9: 20/38, 52.6%) than in early stage cancers (anti-p53 antibody: 8/48, 16.7%; 

CEA: 14/49, 28.6%; CA19-9: 11/49, 22.4%) (Fig. 3A, 3B and Table 2). Based on the 

quantified dot blot data of 87 colorectal cancer patients and 42 healthy controls, an ROC 

curve of detected anti-FIRs antibodies and three clinically used tumor markers (anti-p53 

antibody, CEA, and CA19-9) was examined (Fig. 3C). There was no significant 

correlation among anti-FIRs antibodies with those three tumor markers, thereby anti-

FIRs antibodies are independent markers for colorectal cancer (Fig. S4). The combined 

detection rate of anti-FIRs antibodies with anti-p53 antibodies, CEA and CA-19-9 

indicated 74.7% (Fig. 3D). 
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Figure 2. Detection of the anti-FIRs antibodies in the serum of colon cancer 

patients. (A) The relative expression of anti-FIRs antibodies in the serum was detected 

against 5, 10, 50 ng of FIRΔexon2 purified proteins by dot blot analysis. The intensities 

of the dot signals were quantified by Lumi Vision Imager analysis software (Aisin Seiki 

Co., Ltd. Aichi, Japan). The relative intensity of the signals was compared between 

colorectal cancer patients and healthy subjects. (B) The dot blot membranes were 

stripped and reprobed with anti-FIRs (6B4) antibody for the confirmation of the dose of 

antigens. Dot blot intensities were standardized by positive control anti-FIRs (6B4) 

antibody. (C) Dose dependent curves of each patient were shown. (D) The levels of anti-

FIRs antibodies in esophageal cancer (EC), colorectal cancer (CC) and were examined 

by AlphaLISA. Healthy subjects (HS) were as control. P values were calculated by 

Mann-Whitney U test. 

 

The anti-FIRs antibodies in the sera decreased after colon cancer excision.  

We selected 19 out of 28 patients whose sera were determined as positive for anti-FIRs 

antibodies, according to the results of dot blot assay for 87 colorectal cancer cases. 
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Serum samples from 19 patients were again collected after the absolutely complete 

surgical excision of the tumor. The expression level of anti-FIRs antibodies in the pre-

and the post- operation was analyzed by a dot blot assay (Fig. 4A). We compared the 

expression levels of pre- and postoperative anti-FIRs antibodies based on the antigen 

concentration. As a result, the expression levels of anti-FIRs antibodies significantly 

after surgical treatment (antigen concentration 2 ng/spot, p < 0.005; 10 ng/spot, p < 

0.0008; 50 ng/spot, p < 0.001) (Fig. 4B). We also measured the levels of tumor markers 

CEA and CA19-9 in postoperative sera for reference. We observed a significant 

decrease in the level of anti-FIRs antibodies after surgical treatment, whereas the 

changes in the levels of CEA and CA19-9 were not significant (Fig. 4C). As for 

screening sets, AlphaLISA assay was performed in the sera of other cancer patients to 

confirm the results. The levels of anti-FIR and -FIRΔexon2 antibodies were re-elevated 

along with cancer recurrences (Fig.S5). Anti-FIRΔexon2 were more sensitive than 

anti-FIR antibodies also in other cancers, such as pancreas, esophageal, gastric and 

colorectal cancers (Fig. 5) detected by purified FIR or FIRΔexon2 proteins (Fig. S6). 

These results further suggested that anti-FIRs antibodies may also serve as a novel 

independent marker for the evaluation of postoperative monitoring and prognosis of 

cancers. 
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Figure 3. Diagnostic value of anti-FIRs antibodies in the sera of colorectal and 

esophageal cancer patients. (A) The detection frequencies of anti-FIRs antibodies, His-

tagged-FIRΔexon2 purified proteins as antigens, in the sera of early/advanced stages of 

colorectal cancer patients and healthy subjects were shown. (B) ROC (receiver operating 

characteristic) curve of colorectal cancer is indicated. The area under the curve (AUC) 

for anti-FIRs antibodies is 0.85, for anti-p53 antibody is 0.61, for CEA is 0.87 and for 

CA19-9 is 0.67. The best cutoff values for anti-FIRs antibodies, anti-p53 antibody, CEA 

and CA19-9 are 0.926%, 0.719 U/ml, 1.953 ng/ml and 12.8 U/ml, respectively. (C) The 

detection frequencies of anti-FIRs antibodies in the different stages of esophageal cancer 

patients and healthy subjects were also shown in graphical view. (D) The detection 

frequencies of anti-FIRs antibodies and three tumor markers in the different stages of 

colorectal cancer patients were shown in graphical view. The combination of three 

markers with anti-FIRs antibodies further increased the detection rate up to 74.7%.  

 

DISCUSSION 
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In this study, purified full-length FIRΔexon2 protein (Supplementary Figure S1) was 

used as an antigen for western and dot blot analysis because it was more stable than 

full-length FIR protein (Fig S3). The level of anti-FIRs antibodies in the sera of colon 

cancer patients was significantly more elevated than those of healthy controls (p < 

0.01). Additionally, anti-FIRs antibodies were elevated in relatively early-stage 

colorectal cancer patients whose anti-p53 antibodies, CEA, and CA19-9 were below 

detection levels. Notably, FIRs were found in adenomatous polyps of colon (Fig 1A). 

Furthermore, the AUC of ROC for anti-FIRs antibodies was significantly larger than 

that for anti-p53 antibodies or CA19-9 (Fig 3B). Therefore, anti-FIRs antibodies are 

promising candidates for the diagnosis and postoperative monitoring of colon cancer 

patients (Fig S1B). Altered FIR/FIRΔexon2 expression was detected as potential cancer-

associated antigens in cancer tissues [3]. FIRΔexon2 activated c-myc mRNA expression 

whereas its levels were negatively correlated with interferon-gamma mRNA level which 

indicates local immune responses in cancer tissues [17]. Of note, anti-FIR/FIRΔexon2 

antibodies were detected in the sera of early-stage cancer patients (Figure 3A, 3C). 

Together, anti-FIR/FIRΔexon2 antibodies could be helpful for detecting or discerning 

relatively early cancers especially in high risk population. Clinically, auto-antibodies 

have been applied for the diagnosis of colorectal cancer, breast cancer, and HCC [18, 

19]. Anti-FIRs antibodies have different clinical profiles from anti-p53 antibodies (Fig 

3C). The detection rates of colorectal cancers between anti-FIRs antibodies and anti-p53 

antibodies were the same (Fig 3D); however, anti-FIRs antibodies were detected even in 

the early stages of cancer detection (Fig 3A). Some autoantibodies are reported to be 

detected in early cancer [21]. Therefore, the combination of anti-FIRs antibodies with 

anti-p53 antibodies, CEA, and CA19-9 is beneficial for colorectal cancer monitoring. 
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The detection rates of colon cancer by anti-FIRs antibodies were almost the same rate as 

reported in meningioma cases by detecting the splicing variant of MGEA6/11 (41.7%) 

[20]. FIRΔexon2, a dominant negative form of FIR, competitively prevents FIR’s 

ability to repress c-myc and contributes to c-myc transcriptional activation in several 

types of human cancers [5, 23]. Recently, anti-transcriptional intermediary factor 1-

gamma (TIF1γ) /tripartite motifcontaining protein 33 (TRIM33) antibodies have been 

detected in dermatomyositis patients with malignancies [24]. Since both FIR and 

TIF1γ/TRIM33 engage in Wnt-signaling pathway to suppress tumor progression [25–

27], anti-FIRs antibodies could be helpful for the screening of dermatomyositis patients 

with malignancies as well as anti-TIF1γ/TRIM33 antibodies. Further examination is 

required in this field. In conclusion, anti-FIRs antibodies were detected in relatively 

early-stage colorectal cancers (Fig 1, 3, and Fig S7). Therefore, the combination of anti-

FIRs antibodies with other clinically available tumor markers increased the specificity 

and sensitivity for detecting colorectal cancers. Further, anti-FIRs antibodies could be 

applicable for detecting malignant tumors that sometimes associates with 

dermatomyositis or Sjogren’s syndrome. 
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Figure 4. Evaluation of postoperative monitoring in colorectal cancer. (A) Detection 

frequency of anti-FIRs antibodies in CRC sera before and after surgical operation. After 

surgical operation, anti-FIRs antibodies were detected in 19 cases out of 28 cases that 

were anti-FIR antibody positive before operation. (B) The level of anti-FIRs antibodies 

was significantly decreased after operation. (C) Comparison of the levels of anti-FIRs 

antibodies and clinically adopted tumor markers before and after surgical operation. The 

level of anti-FIRs antibodies was significantly decreased after operation similar to those 

clinically adopted tumor makers. 

 

MATERIALS AND METHODS 

Clinical samples 

Human colorectal cancers and colon polyp tissues were obtained at the Department of 

General Surgery, Chiba University Hospital, Chiba, Japan. Written informed consent 

was obtained from each patient before this study. All excised tissues were immediately 
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placed in liquid nitrogen and stored at −80 °C until analysis. Sera samples were 

obtained from: breast cancer (n = 82), pancreatic cancer (n = 80). bile duct cancer (n = 

77), gall bladder stones (n = 48), pancreatic neuroendocrine tumor (n = 24), esophageal 

cancer (n = 91), gastric cancer (n = 89), colorectal cancer (n = 90) patients and healthy 

subjects (n = 92). These patients received surgical treatment in the Chiba University 

Hospital. Samples were collected during the pre- and postoperative periods. This study 

was conducted in accordance with “The Code of Ethics of the World Medical               

Association” (Declaration of Helsinki), and all study procedures were approved by the 

Ethics Committee of Chiba University. 

 

 

Figure 5. Evaluation of postoperative. Anti-FIRΔexon2 or anti-FIR antibodies were 

detected in the sera of various cancer patients. Purified proteins were prepared by Nus-

tag FIR or -FIRΔexon2 as antigens. Alpha counts against FIR or FIRΔexon2 proteins 

were indicated in healthy subjects (n = 92), breast cancer (n = 82), pancreatic cancer (n = 

80). bile duct cancer (n = 77), gall bladder stones (n = 48), pancreatic neuroendocrine 
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tumor (n = 24), esophageal cancer (n = 91), gastric cancer (n = 90), and colorectal cancer 

(n = 89) patients. 

 

 

Preparation of purified full-length FIR or FIRΔexon2 proteins 

A DNA code for FIR and/or FIRΔexon2 was cloned into the pET-50(b) expression 

vector (Novagen) (Fig. S3A). The pET-50(b) has the 6×His-conjugated Nus-tag and the 

HRV 3C cleavage site before its multiple cloning site. The Escherichia coli strain 

Rosetta (DE3) pLysS (Novagen), which was transformed with the pET-50(b) vector 

containing the FIR or FIRΔexon2 gene, was cultured in 4 L of lysogeny broth medium. 

The protein was expressed at 30 °C overnight after induction with 0.2 mM isopropyl-β-

D-thiogalactopyranoside (IPTG) at an OD600 value of 0.6. A cell pellet obtained via 

centrifugation of the cultured medium was resuspended in 40 mL buffer of 50 mM Tris-

HCl (pH 8.0), 150 mM NaCl, 10 mM imidazole, and 1 mM phenylmethylsulfonyl 

fluoride (PMSF). The bacterial cell membrane was disrupted by sonication. After 

removing unnecessary disrupted fragments from lysate by using centrifugation, the 

expressed protein was obtained from the supernatant. The protein was first purified by a 

Ni-affinity column (HiTrap HP: GE healthcare) with a gradient rise of up to 500 mM in 

the imidazole concentration in elution buffer. The eluted protein fraction was dialyzed 

overnight against the buffer containing 50 mM Tris-HCl (pH 8.0) and 150 mM NaCl. 

The Nus-tag was then cleaved by HRV 3C protease for 24 h at 4 °C. The cleaved 

protein was purified by a Co affinity column to remove the cleaved Nus-tag, the 

remaining uncleaved protein, and HRV 3C protease. The protein was purified for a third 

time by an anion exchange column with a gradient increase in the NaCl concentration in 
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an elution buffer of 50 mM Tris-HCl (pH 8.0). The protein was finally purified by gel 

filtration (Hi-Load Superdex 200 pg, GE Healthcare) with a running buffer of 10 mM 

Tris-HCl (pH 8.0) and 150 mM NaCl. Purity of the sample was examined by 

electrophoresis with 10% polyacrylamide gel. The gel was stained by a fluorescent 

agent (Oriole, Bio-Rad) using a standard protein marker (Precision Plus, Bio-Rad). 

Molecular weights of FIR and FIRΔexon2 were 58,460 and 55,688, respectively (Fig. 

S3). 

Expression and purification of GST-fused FIR and FIRΔexon2 recombinant 

proteins 

GST-fused FIR and FIRΔexon2 were expressed and purified for AlphaLISA 

measurement. As a reference, GST recombinant protein without FIR nor FIRΔexon2 

was also obtained in the same manner. A DNA coding for GST-fused FIR and/or 

FIRΔexon2 was cloned into the pET-50(b) expression vector (Novagen) (Fig. S6). The 

E. coli strain, Rosetta (DE3) pLysS (Novagen), transformed with the pET-50(b) vector 

containing GST-fused FIR and/or FIRΔexon2 gene was cultured in 1L LB (Lysogeny 

Broth) medium. The protein was expressed at 30 °C for overnight after induction at an 

OD600 value of 0.6 with 0.2 mM (IPTG). A cell pellet obtained with centrifugation of 

the cultured medium was resuspended in a 40mL buffer of 50 mM Tris-HCl at pH 8.0, 

150 mM NaCl, 10mM imidazole, and 1mM (PMSF). Bacterial cell membrane was 

disrupted by sonication. After removing unnecessary disrupted fragments from lysate 

with centrifugation, the expressed protein was obtained from the supernatant. First, the 

protein was purified by a Ni-affinity column (HiTrap HP: GE healthcare) with a 

gradient rise of the concentration of imidazole in an elution buffer up to 500 mM. The 

eluted protein fraction was dialyzed overnight against the buffer without imidazole. 
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Then, the Nus-tag was cleaved by HRV 3C protease for 24 hours at 4 °C. The cleaved 

protein was purified by a Ni resin to remove the cleaved Nus-tag, the remaining 

uncleaved protein, and HRV 3C protease. The protein was finally purified by GST-

affinity column with a step-wise increase of the concentration of reduced glutathione to 

50mM in an elution buffer of 50 mM Tris-HCl, 150mM NaCl, and 1mM 

ethylenediaminetetraacetic acid (EDTA) at pH 7.8. The purification was examined by an 

electrophoresis. Molecular weights of GST-fused FIR (793 a.a.) and FIRΔexon2 (764 

a.a.) were 86,776 and 84,004, respectively.  

Western blot and dot blot analysis 

To detect the anti-FIRs-antibodies in the sera samples, purified FIRΔexon2 protein was 

used as an antigen and diluted with 1× sodium dodecyl sulfate (SDS) sample buffer to 

the concentration of 50 ng/μL. The molecular size of anti-FIR/FIRΔexon2 (FIRs) 

autoantibodies or expression of FIRs proteins was confirmed by Western blot analysis 

as described previously [13]. Anti-FIRs antibodies were also detected by dot blot 

analysis and quantified using the Bio-Rad Immuno-Blot assay kit and the Bio-Dot 

microfiltration apparatus (Bio-Rad Laboratories, Hercules, California 94547 USA). This 

enzyme immunoassay optimizes the detection of a specific antigen by immobilizing the 

antigen on PVDF membranes (dot blot). All assay procedures were performed 

according to the manufacturer’s instructions. In brief, the PVDF membrane was 

hydrophilized via incubation with 100% methanol for 15 min with continuous shaking, 

followed by incubation with 1×Tris-buffered saline (TBS)/0.1% Tween 20 for 15 min 

with continuous shaking. Purified FIRΔexon2 protein was diluted with 0.1% 

trifluoroacetic acid to the concentrations of 2, 10, and 50 ng/μL. These three 

concentrations of purified FIRΔexon2 protein were applied onto the hydrophilized 
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PVDF membrane assembled in the Bio-Dot apparatus. The PVDF membrane was cut 

into appropriate sizes and blocked with 0.5% skimmed milk in 1×PBS/0.1% Tween 20 

overnight at 4 °C. Resized membranes were incubated with patient’s serum (1:2000 

dilution) for 1 h at room temperature, followed by three 10-min washes with 

1×PBS/0.01% Tween 20. Membranes were then incubated with commercial secondary 

antibody (1:10000 diluted anti-human IgG antibody), followed by three 15-min washes 

with 1×PBS/0.01% Tween 20. The membranes were incubated in Western blot detection 

reagent (Pierce ECL Plus Western Blotting Substrate, 32132, Thermo Fisher Scientific, 

Waltham, MA). Stained bands were detected using a LPR-400EX chemiluminescence 

imager (Taitec, Tokyo, Japan) [28–31]. 

AlphaLISA 

The AlphaLISA method was used to evaluate the antibody levels in sera. The serum 

specimens used were obtained from 96 healthy subjects, 96 gastric cancer patients, 96 

colon carcinoma patients, and 96 esophageal carcinoma patients. AlphaLISA was 

performed in 384-well microtiter plates (white opaque OptiPlate™, Perkin Elmer, 

Waltham, MA, USA) containing 2.5 μL of 1:100-diluted serum and 2.5 μL of GST-

fusion antigen proteins (10 μg/mL) in AlphaLISA buffer (25 mM HEPES, pH 7.4, 0.1% 

casein, 0.5% Triton X-100, 1 mg/mL Dextran 500, and 0.05% Proclin 300). The 

reaction mixture was incubated at room temperature for 6–8 h, mixed with anti-human 

IgG-conjugated acceptor beads (2.5 μL at 40 μg/mL), and glutathione-conjugated donor 

beads (2.5 μL at 40 μg/mL), and then incubated for seven days at room temperature in 

the dark. The chemical emission was read on an EnSpire Alpha microplate reader 

(PerkinElmer) as described previously [32–34]. Specific reactions were calculated by 

subtracting Alpha values of GST control from the values of GST-fusion proteins. 
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Statistical analysis 

Fisher’s exact (two-sided) probability test and the Mann–Whitney U test were used to 

determine the significance of the differences between the two groups. All statistical 

analyses were carried out using StatFlex software version 6.0 (Artech, Osaka, Japan). p 

< 0.05 was considered statistically significant. 

Serum tumor marker (anti-p53 antibody, CEA, and CA19-9) measurement 

Anti-p53 antibody was measured by ELISA using AP-960 (Kyowa Medx, Tokyo, 

Japan) with a cutoff value of 1.30 U/mL. CEA and CA 19-9 were measured by CLEIA 

using a Lumipulse Presto II (Fujirebio, Tokyo, Japan), with cutoff values of 5.2 ng/mL 

and 36.8 U/mL, respectively. 

Receiver operating characteristic (ROC) curves 

The overall diagnostic efficiencies of anti-FIR antibodies, CEA, CA19-9, and anti-p53 

antibodies were evaluated by comparing the ROC curves. The area under each ROC 

curve was calculated, and the statistical significance of the difference between ROC 

curves was assessed as described previously [35]. P < 0.05 was considered significant. 

ROC curves were generated, and the area under the curve (AUC) values were calculated 

using StatFlex software version 6.0. 
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Supplementary Figure 

 

Supplementary Figure S1. (A) Schematic view of splice variants of the FIR gene. (B) 

The adenoma-carcinoma sequence. Progression of FIRs is accumulated in adenoma.   
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Supplementary Figure S2. Purified FIRΔexon2 protein was used as antigen to detect the 

possible presence of anti-FIR antibodies in the sera of colorectal cancer patients in a dose-

dependent manner by dot blot assay. 
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Supplementary Figure S3. (A) Expression vector pET50b (+) -FIRΔexon2. pET50b (+) 

-FIRΔexon2 expression vector was constructed by inserting the FIRΔexon2 gene into the 

pET-50b (+) DNA (Novagen) vector. (B) Co-affinity chromatography of purified 

FIRΔexon2 protein at the second phase. Imidazole concentrations are shown in green, 

and absorbance of 280 nm ultraviolet rays is shown in blue (0% = 10 mM, 100% = 500 

mM). (C) The NaCl concentration of anion column chromatography of purified 

FIRΔexon2 protein is shown in green, and absorbance of 280 nm ultraviolet rays is shown 

in blue (0% = 50 mM, 100% = 1000 mM). (D) A 55.7-kDa band, which is the molecular 

weight of FIRΔexon2, was confirmed by gel electrophoresis after the His-Nus tag 

excision. 

 

Supplementary Figure S4. Correlation coefficient of anti-FIR antibodies with well-

known tumor markers. Correlation between anti-FIR antibodies and three well-known 
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tumor markers was analyzed by using statistical graphics. The level of anti-FIR antibodies 

detected in the sera of colorectal cancer patients was expressed as a percentage volume 

in the X-axis (horizontal axis). (A) The correlation between anti-FIR antibodies and anti-

p53 antibodies. The level of anti-p53 antibodies measured in the sera of colorectal cancer 

patients was labeled in the Y-axis (vertical axis). (B) The correlation between anti-FIR 

antibodies and tumor marker CEA. The level of CEA measured in the sera of colorectal 

cancer patients was labeled in the Y-axis. (C) The correlation between anti-FIR antibodies 

and tumor marker CA19-9. The level of CA19-9 antibody measured in the sera of 

colorectal cancer patients was labeled in the Y-axis. 

 

Supplementary Figure S5. (A) Anti-FIR or anti-FIRΔexon2 antibodies against Nus-tag 

FIR or -FIRΔexon2 as antigens were detected in nine relapsed cases of colon cancer 

patients after the operation. (B) The changes of anti-FIR or anti-FIRΔexon2 antibodies, 
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CEA, and CA19-9 in case 9 before and after operation with relapse of cancers. 

 

Supplementary Figure S6. Vector map for GST-fused FIR and FIRΔexon2 in the pET-

50(b) expression vector. Both of the GST-fused FIR (A) and FIRΔexon2 (B) were 

expressed in the Nus-tag conjugated form and the Nus-tag was removed by the cleavage 

with HRV-3C enzyme in the purification process. 
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Supplementary Figure S7. Detection rate of anti-FIRs or anti-FIRΔexon2 antibodies in 

early-stage (Dukes A, B) and advanced (Dukes C, D) colorectal cancers patients in < 70 

or 70 < year-old. 
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