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Abstract 
High resolution Doppler Observations of clouds have been done with the millimeter-wave cloud profiling 

radar (CPR) FALCON-I developed at Chiba University. FALCON-I operated at 95 GHz has a high spatial 
resolution of 15 m in the ranging direction and of 0.2°in the perpendicular directions. Precise observations of 
melting layers at the bottom of clouds reveal that rain drops whose diameters would be around 1 mm are 
generated and accelerated up to 7 m/s downward in quite thin layer of about 200 m. Doppler Observations of 
interior of cumulonimbus suggest existence of small structures of about 1 km in which abrupt up and downward 
flow occurs. These results will be useful to investigate characteristics of clouds in various places and oceans in 
order to make global model of atmosphere. 
Keywords : Cloud Profiling Radar, Millimeter Wave Radar, Cloud Properties, Height Distribution of Clouds,  

Structure of melting layer, dynamics of interior clouds, Global Model of Atmosphere. 

 
1. Introduction 

It is getting more important to know the global 
environment and the global change of climate for the human 
beings.  It is necessary to know balance of solar energy 
coming to the Earth and cycle of water for the 
comprehension and to solve severe problems such as the 
greenhouse warming, the drying, the ozone holes and so on.  
One of the most significant features to know them is cloud.  
Information on 3-dimensional structures of clouds, sizes and 
distribution of cloud particles, dependence on size of optical 
characteristics of cloud particles, motions of particles in 
clouds, and so on are all desirable to determine the role of 
clouds.   

 

Fig.1. Cloud profiling radar FALCON-I. It has two 1-m 
diameter antennas which transmit and receive radio waves at 95 
GHz.  
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Table 1. Parameters and performance of FALCON-I. 
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werful method to derive the information because of the 
following advantages:  a) radio waves do not suffer from 
heavy extinction such as visible light, and consequently can 
investigate the interior of clouds,  b) the radar technique, 
which is an active sensing method, has great advantage to 
investigate interior structures of clouds to passive methods 
such as total power observations of irradiance of clouds,  c) 
Doppler measurements of clouds is applicable only to radio 
frequency waves.  

We have originally
ofiling radar at 95GHz. We adopt a frequency-modulated 

continuous wave (FM-CW) radar rather than a pulse radar 
because the former can easily achieve more sensitive and 
high-resolution system than the latter. Whole view of the 
developed radar, which is named “FALCON-I” is shown in 
Fig.1 and its parameters and performance of are summarized 
in Table 1. Detail of FALCON-I is described in the papers 
[1]-[4].  

 

 
Antenna Diameter          1 m × 2 
Frequency               94.79 GHz 
Output Power            0.5 W (+27 d
Beam Width              0.18 degree 
Range Resolution          15 m 
Direction of Antennas      Zenith 
Polarization              1 Linear
Temporal Resolution       1 msec (Ty
Sensiutivity  (at 5 km)     -32 dBZ (Typical) 
Doppler Velocity Range     ±3.2 m/sec (Typ) 
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2. Observations with FALCON-I 
Using FALCON-I, we observed clouds in

at Chiba (Fig.2), at cape Hedo in Okinaw
oceans on board MIRAI (Fig.4): a Japa

research vessel operated by Japan Agency fo
Science and Technology (JAMSTEC). FA

mobile facility which is able to operate through
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connection with the commercial power supp

100V 15A. During these observations, FALCON-I worked 
stable 7]. 

 

3. Observations of cumulonimbus 
3-1. Reflectivity profiles  

We continuously observed clouds in summer 2010 at 

Chiba University. High resolution Doppler Observations of 
 reflectivity profiles  

 

 

IRAI observations (see Fig.4). 
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for several large cumulonimbus during the per
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cumulonimbus on July 25, 2010. The
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clouds have been obtained as well as

Fig.2. FALCON-I installed on a truck in the campus of Chiba 
University. The container behind the truck is housing of 
FALCON-I with two Teflon sheet windows on the ceiling for 
M
 

 

 
Fig.4(a). Japanese scientific research vessel, MIRAI, operated 

by Japan Agency for Marine-Earth Science and 
Technology (JAMSTEC).  
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At lower frequency, for example, X-band (10 GHz) 
observations, strong enhancement of reflectivity called 

“bright band is usually recognized in the melting layer. At 95 
GHz, however, bright enhancement cannot be seen but 

abrupt increase of reflectivity is only seen. 
 

 
Fig.3. FALCON-I set in the Cape Hedo Station in Okinawa, 
Japan, of National Institute for Environmental Studies during 
the campaign in spring, 2008. 
 
 
 

. Container of FALCON-I settled on the upper deck of  
RAI.  

－ 14 －



3-2. High resolution Doppler observations 
  Fig.6 shows Doppler spectral diagrams of the 

cumulonimbus on July 25, 2010 observed with FALCON-I 
at Chiba University. This cumulonimbus was generated 

several hours before observations in the northwest direction 
and moved toward Chiba area. We obtain one Doppler 

spectral diagram in every minute with 250 ms observations. 
Because Doppler velocity is derived by measuring phase 

shift of return signal scattered by objects, there are 

ambiguities of 2π. This causes that, for example, an echo 

observed to be 0 m/s may have real vertical velocity of ±

6.38 ×n  m/s, where n is an integer. 
We found, first, the anvil of the cumulonimbus around 

9:30 UT at about 12 km in height. Vertical velocity of the 

anvil was about 0 to -1.5 m/s at 10:08 UT, where negative 
velocity means downward motion of the matter.  Such range  

s cloud and these do not maintain its 

str

Fig.5. Time-height diagram of reflectivity observed with 
of the cumulonimbus began to be seen around 9:30 
came down to lower height.  The main part of the 
height. Rain started around 10:50. The intensity scale 
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Fig.6.  Doppler spectral diagrams of the cumulonimbus 
 Chiba University. Panels show the velocity structure 
 UT, at start of the rain at 10:44 UT, and during hevy 

of small negative velocities is usually observed even for 
quiet and stable clouds. This fact can be explained that only 

largest cloud particles would be able to detect with 
FALCON-I, which have slight downward velocities about 1 

m/s. In the lower part of the anvil shown at 10:29 UT, thin 
up and downward structures were seen projected form the 

main echo of the cloud. Thin upward cloud of 0 to +1 m/s 
was revealed at the height of 8.0 km as well as thin 

downward clouds of -1.5 to -2.5 m/s at 7.3 km and -2 to -3 
m/s at 8.3 km. These clouds are as thin as about 100 m in the 

vertical direction. We can find such thin structures in other 
temporal data in thi

ucture in the next minute data. These facts suggest that 
these thin structures have also horizontal sizes of about 100 

m if we assume the horizontal velocity is 1 to 2 m/s and/or 
life time of the structure is less than 1 minute.  

FALCON-I on July 25, 2010 at Chiba University. The anvil  
T (18:30 JST) from about 12 km in height and gradually  

umulonimbus was shown in 10:40-11:20 UT at 4-9 km in  
s dB in an arbitral unit.  

 sho  2010 at 

rain

wn in Fig.5 observed with FALCON-I on July 25, 
of matter in the anvil at 10:08 UT, lower part of the anvil at 10:29 

 at 10:58 UT.   
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Rain started at around 10:44 UT as shown in Fig.5 and 
orresponding Doppler spectral diagram is the third panel in 

ig.6.  We can see thin line structure of a few hundred 
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3-3. Discussion  
Observing frequency ν of FALCON-I is 94.79 GHz 

which correspond to the wavelength λ= 3.16 mm. For the 
wavelength, spherical particles whose diameter D is smaller 
than about 1 mm scatter the radio wave with Rayleigh 

scattering region, in which scatter cross section σ is in 
proportion to ν4. Particles larger than 1 mm scatter the 

wave with Mie scattering region, in which σ changes up 
and down resonating with the particle diameter and 

converges in its geometric cross section. A rough estimation 
of the raindrop size distribution N(D) would be in proportion 

to D-3 if we assume total volume of each size is constant.   
We may, therefore, consider that the most effective 

diameters of raindrops for scattering the wave of FALCON-I 

are 1 ±0.5 mm.  
The thin and sharp line structure shown in Fig.6. at 10:44 

UT, which is the echo by the beginning of the precipitation, 

suggests following facts as well as related structures. Rain 
drops of about 1 mm diameter are rapidly generated in the 

thin sheet of less than 100m thick in the melting layer at the 
bottom of the cumulonimbus. They are accelerated from -2 

up to -7 m/s during 400 m drop, where this downward 
velocity corresponds with a usual terminal velocity for 1 mm 

diameter raindrops. The up and down motions in the anvil 
and the main body of the cumulonimbus suggest the 

existence of turbulences of several 100m in size in 
cumulonimbus 
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meters of vertical width at 4.2 km in height whose vertical 

elocities are from -0.7 to +3.16 m/s in Doppler diagram at 
0:44 UT. It is obvious that this thin line is the echo of the 

ery beginning of precipitation when we look successive 
spectral diagrams. The real vertical velocities of this line 

tructure should be from -7 to -3.16 m/s instead of from –0.7 

 +3.16 m/s, i.e. 2π= 6.32 m/s should be subtracted. The 
ne structure should be connected to the left end of the panel 
nd continued to the bottom of the main body of 

umulonimbus. We notice a small velocity gradient in the 
line structure in the vertical direction: the height of the line is 

bout 3.9 km at the lowest velocity of -7 m/s, and is about 
2 km at the velocity of -3.16 m/s. The whole structure of 

e thin line is followings: it starts from about -2 m/s on the 
bottom of the cumulonimbus at 4.3 km in height, and 

ontinues up to -7 m/s at 3.9 km. Turbulent up and down 

ard motions of ±few m/s also exist in the main body of 
e cumulonimbus as shown in the Doppler diagrams at 
0:44 and 10:58 UT. 
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