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ABSTRACT

Fast and accurate simulation methods are strongly demanded to reduce the cost of de-

veloping high-performance surface and bulk acoustic wave (SAW/BAW) devices. This

thesis deals with the development of fast and accurate simulation techniques for RF

SAW/BAW devices. They are based on the hierarchical cascading technique (HCT)

proposed recently, and several extensions are proposed for its skillful use in addition to

further speed up and memory saving. The extended HCT is applied to various acoustic

problems, and its effectiveness is demonstrated.

First, the basic algorithm of the overall process of HCT is discussed step by step.

Relating matrix operations are presented in detail. It is demonstrated that extremely

huge FEM model with periodic units can be assembled and solved at a fast speed. It

is also shown that HCT is quite effective for the structural design using the parameter

sweep because a small portion of the FEM model is changed while the remaining por-

tion is unchanged. Mirror cascading method is proposed to accelerate the HCT when

the structure under concern possesses symmetry. It halves the time consumption and

memory usage compared with the traditional HCT. After the introduction, behaviors of

SAW resonators are analyzed by the HCT as a demonstration.

Next, HCT is applied to obtain a unique kind of energy-absorbing boundary condi-

tion called infinite long damping boundary (ILDB). The perfect matching layer (PML)

giving the same functionality is widely used, but it does not work properly when one

of the wave components possesses negative group velocity. In contrast, ILDB works

properly anytime. As a trade-off, execution times become long. HCT and ILDB are im-

plemented into traveling-wave excitation sources model for scattering analysis at side

edges of both BAW and SAW devices. It is shown that both execution time and memory

consumption of HCT are much less than those of full FEM analysis. Owing to the de-

veloped HCT implemented traveling wave source(TWS) model, the computation time

shrinks from days to less than 1 hour for designing the optimal side edge structure in

SAW devices. Furthermore, scattering caused by the discontinuity between two periodic

gratings in the longitudinal direction is also investigated.

Finally, HCT is implemented into 3D FEM simulation for practical SAW devices.

The general-purpose graphics processing units (GPGPU) is introduced to accelerate ma-

trix processing. With the help of GPGPU, extremely large full 3D SAW model can be

simulated at a surprising speed. Acceleration more than ten times is achievable. The

obtained electrical frequency response includes all kinds of effects in the SAW device.

Moreover, the acquired displacement field is quite helpful in diagnosing spurious re-

sponses and scattering in real SAW device structures.
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Chapter 1

Introduction

1.1 Background

Nowadays, wireless communication is replacing fixed-line services as the most popular

way for people to access the Internet. There are more than 7.9 billion mobile subscripti-

ons in the world until 2018 [1]. It is expected that the market will keep increasing rapidly

as the Fifth-Generation (5G) wireless technology is arriving [2, 3]. Filters have become

a significant part in the radio frequency (RF) front-end system due to the spectrum frag-

mentation [4]. More than 60 filters are installed in one state of the art smart phones

supporting 30 bands [5], while more new bands for 5G is on the way. The vast majority

of these filters in hand-held wireless devices are acoustic filters based on the piezoelec-

tric effect [6]. Since acoustic wave owns a velocity five orders smaller than the speed

of the electromagnetic wave, its typical wavelength at GHz range is in the order of μm.

Thus, high quality factor (Q) filters can be packaged in a small size [7].

There are two basic types of acoustic waves applied in piezoelectric devices: surface

acoustic wave (SAW) and bulk acoustic wave (BAW). In 1885, Lord Rayleigh firstly

described SAW in solids in theory [8], which is now well-known as Rayleigh wave.

In 1965, 80 years after SAW proposed, R. M. White and F. W. Voltmer successfully

generated and detected SAW in a piezoelectric substrate with an interdigital transducer

(IDT) [9]. From then on, SAW devices went into a rapid development and applied in

various fields [10–13].

Figure 1.1 shows the typical structure of a SAW resonator. Lithium niobate (LiNbO3,

LN) [14,15], lithium tantalate (LiTaO3, LT) [16], and quartz [17] are common materials

for the substrate. The metal layer on the piezoelectric substrate is prepared and patter-
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Figure 1.1: Typical structure of SAW resonator.

ned into gratings. SAW is excited by the central IDT, and two Bragg reflectors confine

the energy from lateral dissipating.

Comparing with SAW, RF application of BAW devices based on the piezoelectric

thin film started late. Three research groups of Lakin [18], Nakamura [19], and Grud-

kowski [20] published their papers on fabricated BAW devices using Zinc Oxide (ZnO)

almost simultaneously in 1980. Later, the development of BAW devices separated into

two technical routes: film bulk acoustic resonator (FBAR) [21–23] and solidly mounted

resonators (SMR) [24–26]. Their typical structures are shown in Figure 1.2. Both of

them operate in the thickness extensional (TE1) mode. At present, Aluminum Nitride

(AlN) has replaced ZnO as the piezoelectric material in all commercial BAW devices,

due to its perfect balance in performance and reliable deposition [27–29]. Metal with

high acoustic impedance and low resistivity, such as ruthenium (Ru) and molybdenum

(Mo), are suitable for electrodes [30,31]. The major difference between FBAR and SMR

is the way of reflecting acoustic energy from the bottom. The free surface is selected

in FBAR, while SMR uses the Bragg reflector (alternating layers of materials with high

and low acoustic impedances). Since the acoustic wave can be better reflected by the

interface between metal and air than the Bragg reflector, the FBAR establishes higher

Q factor than SMR. Meanwhile, BAW resonators own advantages in energy loss than

SAW resonators due to the same reason.

2
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Figure 1.2: Typical structures of BAW devices (a) FBAR (b) SMR.

To satisfy the developing high demands of modern communication system, the per-

formance of SAW/BAW filters are required to be enhanced every year. Innumerable

researchers in SAW/BAW society have proposed and is still looking for novel ideas to

improve the performance of SAW/BAW filters [32, 33]. As the fundamental unit in the

filter, an ideal resonator based on both SAW and BAW should satisfy the following

requirements:

a) High Q factor;

b) Weak spurious responses;

c) Large coupling coefficient;

d) Large power durability;

3



e) Weak nonlinearity;

f) Good thermal stability;

g) Small in size, weight and price.

The Q decides the filter’s insertion loss (IL) in the passband and the steepness of

skirt [34, 35]. The definition of Q value is expressed as [36]:

Q= 2π
Estored

Eloss

, (1.1)

where Estored is the total stored energy in the resonator in peak, and Eloss is energy

dissipated per cycle. Giving all kinds of energy loss mechanisms is known, the total

quality factor of the resonator can be expressed as

Qtotal =

(∑ 1

Qi

)−1

, (1.2)

where 1/Qi corresponds to each loss component. Numerous researches have been pu-

blished aiming at improving each Qi.

As to FBAR, since surrounding tether is expected to be its major origin of acou-

stic losses (Figure 1.3 (a)), structure designs such as just-etched edge [37], thin bottom

electrode [38] and raised frame border [39] were proposed. In SAW cases, special la-

yout could be placed in all directions to avoid energy losses in various ways (as shown

in Figure 1.3 (b)). An optimized cut angle of LT substrate is found to reduce the le-

akage to the bottom substrate [16]. Side radiation of leaky waves into the busbars can

be restrained by narrowing the gap region [40, 41]. In temperature compensated SAW

(TC-SAW), several strategies have been applied to minimize the side radiation [42, 43].

Recently, great progress has been made by the so-called incredible high performance

SAW resonator (IHP SAW) proposed by Takai et al. from Murata [44]. Thinned LiTaO3

is bonded on a hard wafer to prevent bulk wave leakage.

It is also known that acoustic waves reflected at the side edges will cause unne-

cessary resonances called transverse mode resonances (shown in Figure 1.4). Spurious

responses occur in the electrical response (see Figure 1.5), and their ultimate suppres-
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Figure 1.3: Various loss mechanism in acoustic devices. (a) FBAR, (b) SAW
resonator.

sion is also necessary to obtain a flat passband in the filter response. Thus, the design of

side edges is critical to realize high-performance SAW/BAW resonators [45, 46].

A famous strategy is the piston mode structure proposed by Kaitila et at., for BAW

devices [47]. By adding a fast phase shifting region in the outside of the central active

region and giving an appropriate width, the boundaries with the active region will be-

have as if mechanically free boundaries. This configuration allows only the lowest order

TE1 mode (n=0 in Figure 1.6) to be excited, while the other spurious lateral modes (n>0

in Figure 1.6) are neither electrically driven nor sensed in the active region. Although

its operating mechanism is explained by the dispersion characteristics of laterally pro-
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Figure 1.4: Modal shapes of transverse modes. (a) SAW resonator, (b) FBAR.

pagating modes, their mode conversion and additional phase shift at the reflection must

be taken into account during the implementation of designed side edges to the physical

layout. With a delicate design of the border region, suppressed spurious responses and

improved Q at the anti-resonant frequency can coexist [48].

Piston mode design is also introduced to SAW devices [49]. Besides, it is interesting

that transverse-mode responses in SAW resonators can be suppressed even without the

slow region (worked as phase shifter) [50], which is believed indispensable from Kai-

tila’s theory. This phenomenon is explained by the special coupling between multiple

SAW modes when the structure is intelligently designed [51, 52].

Other methods to suppress spurious responses include apodization in SAW [53] and

BAW [54,55], tilted resonator in SAW [56]. However, these kinds of design will worsen

6
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Figure 1.6: Modal shapes of high order modes in piston mode design.
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the Q factor at anti-resonance frequency [57].

All these considerations mentioned above makes designing SAW/BAW resonators

quite complicated. To avoid wasting time and money in fabricating devices, fast and

accurate simulation tools are greatly needed. Behavior models like coupling-of-modes

theory [58–60] are widely used for SAW device design. The equivalent circuit for the

physical models can be derived by the Mason model [61, 62]. On the other hand, full

wave analyses are used for extraction of parameters necessary for behavior models. The

finite element method (FEM) [63, 64] and its combination with the spectral domain

analysis (SDA) [65] or the boundary element method (BEM) [66] are representatives.

All these tools developed for SAW/BAW simulation are based on certain simplifi-

cation and assumption. Information in one or two dimensions are lost inevitably and

cannot include all kinds of effects in the structure. Even though IHP SAW resonators

attained a remarkable performance [44], it is still believed that there is still certain room

to enhance the Q factor further. And this further improvement calls for better understan-

ding of the overall acoustic wave leakage.

Because of its simplicity and flexibility, FEM is also widely used for finding optimal

structures [67–70]. In 2017, the author’s group proposed the traveling wave source

(TWS) which bases on the FEM simulation as a straight forward approach for analyzing

scattering quantitatively [71]. Its model setting is exhibited in Figure 1.7.

O x
y

2
0

j x j f tT x T e e

n

2
0

j x j f tT x T e e

Piezo-
electric

metal

metal w

Figure 1.7: Operation principle of TWS in waveguide.
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A wave source T (x) is placed to the top surface and is driven by a sinusoidal sig-

nal with the frequency f . TWS enables selective excitation of one specific propagating

mode. Because of single mode excitation, scattering coefficients at the structural dis-

continuity under concern can be evaluated directly and accurately from obtained field

distribution. Even though it is much easier to implement than the method proposed by

Florian, et al. previously [72], further accelerating speed is still required to apply this

method for structural optimization through parameter sweep analyses.

Meanwhile, although FEM has a capability to simulate practical three dimensional

(3D) SAW/BAW device including all details in the structure [73, 74], its applicability

was believed to be limited because of required computing power and memory size.

Another problem in FEM is simulating problems with open boundaries. One pos-

sible way is applying a coordinate scaling to a layer of finite domains surrounding. In

the Perfectly Matched Layer (PML) [75, 76], a complex coordinate is stretched along a

direction. The stretching function requires a predefined typical wavelength λ [77]. Furt-

hermore, the PML will not work properly when multiple acoustic waves with largely

different velocities exist simultaneously (multiple λ in different order of magnitude)

and/or the group velocity of at least one mode is opposite to its phase velocity (wrong

decay direction).

Normalized dispersion relations of Lamb modes in ZnO and AlN plates are shown

in Figure 1.8. The branches of first-order symmetric (S1) Lamb mode are marked as red.

It is called type II dispersion curve in Figure 1.8(b), where the S1 branch is evanescent

at frequencies above the main resonance [47, 78]. The group velocity of S1 wave at

the beginning part is opposite to its phase velocity. Meanwhile, A0 Lamb wave has

a much shorter wavelength than S1 Lamb wave. Both these two conditions lead to

a bad absorbing performance of PML, although Lamb mode characteristics must be

understood well in this frequency region for designing FBAR side edges to suppress

transverse mode resonances.

SAW resonators include multiple periodic gratings, and sometimes discontinuities

are embedded between two gratings (Figure 1.9) for special usage [79,80]. For instance,
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Figure 1.8: Normalized dispersion relation of Lamb modes in thin plates. (a)
type I of ZnO plate, (b) type II of AlN plate.
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Figure 1.9: Multi-electrode grating structure with discontinuous gap.
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it is indispensable in a double mode SAW (DMS) filter [81, 82]. Many researchers paid

attention to understand the SAW scattering behaviors at this discontinuities because

they may give a significant discrepancy in the electrical response. Even though some

progress have been made based on the coupling-of-modes (COM) theory with empirical

modification by fitting with experiments [83–85], the strategy is quite uncertain because

of lack of its theoretical background. The proposed TWS model provides a potential

way to analyze it. But it requires a special absorbing mechanism to avoid new scattering

at the interface between the absorbing region and periodic grating.

In 2016, Koskela, et al. proposed the hierarchical cascading technique (HCT) for fast

FEM simulation of SAW devices [86]. The similar idea was once published by Hofer,

et al. to calculate eigenvalue of wavenumber at a specific frequency [87]. Several unit

cells are enough to assemble the whole large FEM model when it is composed of many

identical structures as shown in Figure 1.10. The mechanism of HCT will be discussed

in details later. It is quite powerful when the device structure under concern is mainly

composed of identical cells [88,89]. Its time consumption is almost in proportion to the

logarithm of the number of cell units, while the required memory is almost independent

0000001212121212121000000

0000001212121212121

0000 1212

12

0000001212121212121000000

000000

12

12121212100

1200

0000

Figure 1.10: Hierarchical cascading tree of a synchronous SAW resonator (cited
from Ref. [86]).
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of the number of cells. In comparison, the computing time and required memory of

conventional FEM are almost proportional to the number of DOFs in the model.

Provided that material constants are accurate enough, the FEM simulation of a full

3D SAW model offers a very accurate electrical response. Solal, et al. verified that 3D

FEM simulation of whole SAW device structures is possible by the use of HCT. High

accuracy of this simulation result was verified by its comparison with the measured

result. Nevertheless, calculation time reported in Ref. 90 was enormous even high-end

workstation was used for the calculation.

1.2 Motivation

Based on the background mentioned above, the following problems should be solved to

design SAW/BAW devices more efficiently.

1) PML has some disadvantages in simulating SAW/BAW devices in some cases;

2) TWS model is good at quantitative analysis of wave scattering at edges, but its

simulation will be quite slow when the frequency is close to the resonance;

3) HCT based FEM simulation is not fast enough for full 3D SAW problems.

1.3 Purpose

In order to solve the problems listed above, this thesis proposes the following solutions.

1) HCT is introduced into constructing energy absorbing boundary condition. The

obtained infinite long waveguide with little damping offers better absorbing property

than PML as a trade-off with the computational time;

2) HCT is implemented with TWS model. This improved the calculation speed

significantly;

3) Mirror cascading method and general-purpose graphics processing unit (GPGPU)

are introduced for further acceleration of HCT FEM. The acceleration is significant for

large problems, and full 3D SAW simulation becomes practical.
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1.4 Organization of This Thesis

This thesis is organized as following:

Chapter 2 starts from basics of the hierarchical cascading algorithm. Various know-

hows are also introduced. Next, HCT-FEM simulation is implemented in the platforms

of COMSOL and MATLAB. As a demonstration, 2.5D simulation is performed for a

SAW synchronous resonator based on the proposed processing flow.

Chapter 3 discusses the implementation of the HCT into the TWS model. An absor-

bing boundary condition named ILDB is developed using HCT. It is shown that unwan-

ted reflections are suppressed well by the ILDB. HCT based TWS model is applied to

analyze various scattering problems related to the FBAR design, and its effectiveness is

demonstrated. Then, it is also demonstrated how the combination of HCT and TWS can

be used for designing side edges in of SAW devices for the piston mode operation.

Chapter 4 investigates fast simulation of full 3D SAW resonator structure. Use of the

GPGPU is proposed for further acceleration of HCT based FEM. It is shown that practi-

cal SAW resonator models with 30 million DOFs can be simulated in 2.5 minutes for

each frequency point. SAW scattering is also investigated by the wavenumber domain

analysis of the calculated field distribution, and its usefulness is also demonstrated.

The conclusion and outlook are drawn in the last Chapter 5.
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Chapter 2

Theory of Hierarchical Cascading
Technique

2.1 Introduction

Even though the hierarchical cascading technique (HCT) is a tool emerged recently,

the HCT has already brought a revolutionary impact on the design of SAW/BAW devi-

ces [86,88,90–93]. HCT based FEM software called "Layers" was released recently by

Plessky’s group which proposed HCT. It specializes in simulating any 2D SAW device

with many hundreds of electrodes [91]. Meanwhile, there is no doubt that HCT is appli-

cable not only to piezoelectric devices, but also to many other scenarios. For example,

optical fiber transmission [94], medical ultrasound imaging [95] and electromagnetic

waveguide cavity [96] all include long uniform structures.

This chapter details the overall processes of this significant technique in both algo-

rithm and practical implementation. Some specific modifications are also introduced.

First, all matrix operations related to HCT are presented. The overall process is

separated into three steps:

1) Obtaining B matrices from the original FEM matrices where the degrees-of-

freedoms (DOFs) remain only in boundaries;

2) Cascading B matrices repeatedly to build the whole structure;

3) Solving out the final equation and tracing back the eliminated inner DOFs.

Next, a special cascading method, mirror cascading, is introduced. When a unit

cell possesses mirror symmetry, some relations hold among B matrix elements. This

characteristic can accelerate the cascading calculation of symmetrical unit cells.

Then, one feasible practical process flow is presented to realize HCT FEM simula-
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tion, using commercial software. It may allow followers to extend and/or enhance the

HCT calculation for their own purposes. Finally, the HCT simulation is demonstrated

for a 2.5D model of SAW synchronous resonator, following the introduced process flow.

2.2 Basic Algorithm

2.2.1 Derive B matrix from FEM equation

The HCT starts from the decomposition of the whole structure into small cells. Meshed

2D FEM model of fundamental cell A in a SAW device is shown in Figure 2.1. It

consists of a substrate and an electrode. PML is placed at the bottom. The whole

problem domain is subdivided into a number of finite elements (grids in Figure 2.1).

DOFs (unknown variables) are located at the nodes (black dots in Figure 2.1). The

process of building the FEM equation from constitutive equations (Newton’s second

law of motion, Maxwell’s equation and piezoelectric equation) is not treated here, and

they are introduced well in Refs. 97–99.

uL uR

ve

PML

Substrate

Electrode

TL TR

Figure 2.1: A meshed FEM model: unit cell A.
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The resulting linear partial differential equation can be expressed as

(
K + iω D − ω2M

)
U = L, (2.1)

where ω = 2πf is the angular frequency, K, D and M represent the stiffness, damping

and mass matrices, respectively, U is the vector of DOFs and L on the right side is the

load the vector. In a piezoelectric FEM model, there are two types of DOFs: mechanical

displacement variables �u and electric potential variables φ. On the other hands, loads

are applied forces F and charges q.

Let us express the linear partial differential equation of a unit cell A as

⎡
⎢⎢⎢⎢⎢⎢⎣

ALL ALC 0 ALe

ACL ACC ACR ACe

0 ARC ARR ARe

AeL AeC AeR Aee

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

uL

uC

uR

ve

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

TL + FL

FC

TR + FR

−qe

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.2)

where Aij are sub-matrices of the FEM matrix, the subscripts R, L, e and C indicate

values at right and left boundaries (red lines in Figure 2.1), in the electrode (blue line

in Figure 2.1) and elsewhere, respectively. T is the stress given from neighboring units.

For DOFs located in the interior or on the free boundary, corresponding elements of T

should be zero. It is worth to notice that usually F is zero in SAW/BAW models and

the voltage applied in electrode should be regarded as the power source. In fact, ve is a

given constant. To make it simple, it is left along with other unknowns for now.

The next is to eliminate the internal DOFs uC from the equation by establishing the

Schur-complement [100], and the following B matrix equation is obtained:

⎡
⎢⎢⎢⎣

BLL BLR BLe

BRL BRR BRe

BeL BeR Bee

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

uL

uR

ve

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

F′
L + TL

F′
R + TR

−q′
e

⎤
⎥⎥⎥⎦ , (2.3)
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where

Bij = Aij − AiCA−1
CCACj, i, j ∈ {L,R, e} , (2.4)

and ⎡
⎢⎢⎢⎣

F′
L

F′
R

q′
e

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

FL − ALCA−1
CCFC

FR − ARCA−1
CCFC

qe + AeCA−1
CCFC

⎤
⎥⎥⎥⎦ . (2.5)

Comparing with the original A matrix equation, the size of B matrix is much smaller

since the proportion of DOFs at boundaries is less than 1 of 10 in many cases. Another

significant difference is the fact that B matrix is dense while the original FEM matrix is

sparse. Solving the B equation could acquire the same values of uL and uR as solving A

matrix when the same load is given in the right-hand side.

It should be noted that deriving the B matrix costs much more time than solving Eq.

(2.2) directly. This is because the Gauss elimination method can be applied in solving

Eq. (2.2), whereas the calculation of the inverse matrix A−1
CC is inevitable in deriving the

B matrix. The procedure of hierarchical cascading in the next section will compensate

for this time consumption.

2.2.2 Cascading B matrices

The second step is to cascade B matrices of two identical unit cells A and B into a new

unit C (see Figure 2.2). Since uA
L = uB

R and TA
L + TB

R = 0 at the attached boundary,

where the superscripts A and B indicate values in the cells A and B, one obtains the

A B

C

++ +D E

uL uR = uL uR

ve ve

A A B B

BA

Figure 2.2: Cascading two units A and B into C.
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following combined equation:

⎡
⎢⎢⎢⎢⎢⎢⎣

BLL BLR 0 BLe

BRL BRR + BLL BLR BRe

0 BRL BRR BRe

BeL BeR BeR 2Bee

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

uA
L

uA
R

(
= uB

L

)
uB
R

vAe
(
= vBe

)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

F′
L + TA

L

F′
R + F′

L

F′
R + TB

R

−2q′
e

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.6)

when electrodes in A and B are conductive, or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BLL BLR 0 BLe 0

BRL BRR + BLL BLR BRe BLe

0 BRL BRR 0 BRe

BeL BeR 0 Bee 0

0 BeL BeR 0 Bee

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uA
L

uA
R

(
= uB

L

)
uB
R

vAe
vBe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F′
L + TA

L

F′
R + F′

L

F′
R + TB

R

−q′
e

−q′
e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.7)

when they are electrically isolated. When there are several electrical terminals coexist

in A and B, a hybrid equation of Eqs. (2.6) and (2.7) should be applied.

Since Eq. (2.6) and/or Eq. (2.7) have the same form as Eq. (2.2), elimination of

uA
R results in the same form of Eq. (2.3). This means that when identical 2N blocks

are cascaded, the whole B matrix can be assembled by successive application of this

algorithm N times (see Figure 2.3).

Original

Self-cascading 
once

Self-cascading 
twice UnitUnitUnitUnit

UnitUnit

Unit

Self-cascading 
n times

1

21

22

2n

Figure 2.3: Algorithm of hierarchical cascading.
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Besides the main periodic structure, the remaining B matrices of some additional

non-periodic structures are also cascaded.

As mentioned in the last section, building B matrix itself has no advantage over

solving A matrix directly. The exponential growth of the model size is the key to the

acceleration the simulation of hierarchical cascading. Therefore, it is important to check

whether the target structure is composed of quite a large number of identical units. If

not, HCT based simulation may not be appropriate.

2.2.3 Solving and Traceback

The final result will be expressed in the form of

⎡
⎢⎢⎢⎣

Bf
LL Bf

LR Bf
Le

Bf
RL Bf

RR Bf
Re

Bf
eL Bf

eR Bf
ee

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

uf
L

uf
R

vfe

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ff
L

Ff
R

−qf
e

⎤
⎥⎥⎥⎦ , (2.8)

where Bf is the final B matrix, uf
L and uf

R are DOFs located at the final left and right

boundaries, and vfe is the vector includes all electrical terminals in the model.

It should be noted that all the elements of Ff
L and Ff

R are given because FR and/or FL

are zero for stress-free boundaries. For clamped boundaries, we can eliminate unknown

elements in Ff
L and Ff

R using the condition that corresponding elements in uR and/or uL

are zero.

Since the voltages applied in all terminals are determined, uf
R and uf

L are obtained

from ⎡
⎣ uf

L

uf
R

⎤
⎦=

⎡
⎣ Bf

LL Bf
LR

Bf
RL Bf

RR

⎤
⎦

−1 ⎛
⎝
⎡
⎣ Ff

L

Ff
R

⎤
⎦−

⎡
⎣ Bf

Le

Bf
Re

⎤
⎦ vfe

⎞
⎠ . (2.9)

Meanwhile, after the values of uf
R and uf

L are determined, the charges corresponding
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to each terminal can be calculated with

qf
e = −

[
Bf

eL Bf
eR Bf

ee

]
⎡
⎢⎢⎢⎣

uf
L

uf
R

vfe

⎤
⎥⎥⎥⎦ . (2.10)

Then, the electric currents through terminals can be directly calculated as

Ie =
∂qf

e

∂t
= iωqf

e. (2.11)

In some cases, data of those eliminated internal DOFs are also useful, and one addi-

tional procedure named traceback is given for data recovery.

To explain the algorithm of traceback step, let’s turn back to Eq. (2.2). With some

determinant transformation, the second line in this equation can be expressed as

uC = A−1
CC

⎛
⎜⎜⎜⎝FC −

[
ACL ACR ACe

]
⎡
⎢⎢⎢⎣

uL

uR

ve

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ . (2.12)

This means those eliminated internal DOFs (uC) could be calculated provided that uL,

uR and ve are given. Since uL and uR have become new uC in the next level of cascading,

the traceback procedure should start from the final boundaries where uf
L and uf

R are

determined, and reverse along the cascading tree as shown in Figure 2.4.

Tracing back all the DOFs in the region under concern requires additional computing

time and memory to store the inverse matrices generated during the cascading. In the

following chapters, the traceback will be used to observe bulk wave leakage in SAW

devices and evaluate mode components in BAW devices.

It is obvious that B matrix is a symmetrical dense matrix. Furthermore, when the unit

model is lossless, the matrices in Eq. (2.1) are real, and its B matrix is positive definite.

In this case, the Cholesky decomposition offers a faster speed in matrix inversion than

LU decomposition [101]. However, in most situation, the inclusion of energy loss (PML,
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thermoelastic damping, Ohmic loss) is inevitable to the model.

Periodic non-
periodic 

uL uR
ff

Figure 2.4: Algorithm solution of traceback step.

2.3 Mirror Cascading

When two unit cells possess mirror symmetry as shown in Figure 2.5, inner DOFs in

both units can be eliminated. This allows for reducing the number of DOFs.

P Q

x =0uL uR u'Ru'L

uLp

uLn

Figure 2.5: Units P and Q in mirror symmetry.

In FEM, the movement of each node is decomposed into two components in two

orthogonal directions. Therefore, the DOFs at boundaries are classified into two types
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based on the direction of its movement which is normal to x=0 (un), or parallel (up).

The B matrix of the unit P can be expressed as:

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

uLn

uLp

uRn

uRp

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

TLn

TLp

TRp

TRp

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.13)

Let us indicates the DOFs of the unit Q by giving a prime mark. The symmetrical

relation along x = 0 are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uLn = −u′
Rn

uLp = u′
Rp

uRn = −u′
Ln

uRp = u′
Lp

, (2.14)

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

TLn = −T′
Rn

TLp = T′
Rp

TRn = −T′
Ln

TRp = T′
Lp

. (2.15)

Then the B matrix of the unit Q can be expressed as:

⎡
⎢⎢⎢⎢⎢⎢⎣

B33 −B34 B31 −B32

−B43 B44 −B41 B42

B13 −B14 B11 −B12

−B23 B24 −B21 B22

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u′
Ln

u′
Lp

u′
Rn

u′
Rp

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

T′
Ln

T′
Lp

T′
Rn

T′
Rp

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.16)

Next, provided that unit P itself is symmetrical regarding to not only the model

structure but also the location of DOFs, the B matrix in Eq. (2.16) is identical with that
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given in Eq. (2.13). Therefore, the following relations should be hold:

⎡
⎢⎢⎢⎢⎢⎢⎣

B13 B14

B23 B24

B33 B34

B43 B44

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

B31 −B32

−B41 B42

B11 −B12

−B21 B22

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.17)

This relation can also be used for lossless compression of B matrices in memory.

When the mirror symmetry holds, the cascading shown in Figure 2.6(b) can be more

efficient because the structure is always symmetrical after the cascading. It is clear

that the relations given by Eq. (2.17) can be used to reduce the resulting data size.

Furthermore, since the relations are preserved after the cascading, we can skip redundant

calculation steps and speed up the cascade operation.

A A A A A A A

(a)

A A A AA' A' A'

(b)

Figure 2.6: Two cascading techniques. (a) Shift cascading, (b) Mirror cascading.

Now there are two kinds of cascading ways. One is special for the symmetrical

structure at a higher speed; the other is universal for any cases but slower. The design

principle of constructing a cascading tree (such as Figure 1.10) should be somewhat

changed due to the introduction of mirror cascading. To optimize the calculating speed

further, symmetrical structures in each level of the cascading tree should be placed as

many as possible.
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2.4 Practical Process

Nowadays, many commercial FEM software, such as COMSOL and ANSYS, has friendly

and convenient HMI (Human Machine Interface), and powerful modeling capability

across multiple physical fields. Figure 2.7 presents the developed practical process flow

for the HCT FEM simulation based on COMSOL Multiphysics 5.3a and MATLAB

2018b. [102].

unit 1

unit 2

unit n

Modeling
Meshing 

grid

A1

A2

An

Compile
Equations

A1

A2

An

B1

B2

Bn

Bf

Schur
ComplementReorder

uL, uR, qe

COMSOL Multiphysics MatlabLivelink

Solving

Figure 2.7: The process flow of realizing HCT FEM calculation based on COM-
SOL and Matlab.

The cross-platform of COMSOL allows dynamic visual operations of modeling, set-

ting multi-factor coupling physical fields and meshing grids with multiple options con-

veniently. After building units, COMSOL generates their FEM equations.

The next step is to import the generated A matrices from COMSOL to MATLAB

thorough COMSOL Livelink with MATLAB [103]. Another important data is the in-

formation of all DOFs. They include the coordinates and types of each DOF. Since the

sequence of DOFs in the matrices generated by COMSOL are sorted in its own rules,

classifying those uL and uR and then reordering the sequence of variables is necessary.

Based on my experiments, the speed of assembling A matrix at a specific frequency

in COMSOL is much slower than assembling it in Matlab. The data transfer from COM-

SOL to Matlab will also cost additional time. One efficient way is executing computa-
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tion in Matlab as much as possible. Based on Eq. (2.1), generating the A matrix in

COMSOL three times at different frequencies f1, f2 and f3, three components K, D and

M can be obtained with

⎡
⎢⎢⎢⎣

K

D

M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 i2πf1 −4π2f 2
1

1 i2πf2 −4π2f 2
2

1 i2πf3 −4π2f 2
3

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

A (f1)

A (f2)

A (f3)

⎤
⎥⎥⎥⎦ . (2.18)

It is also pointed that when PML region is included in model, its A matrix can be ex-

pressed a function of frequency f as [92]

A(f) = a · f−1 + b + c · f + d · f 2. (2.19)

Hence, A matrices are required at four different frequencies in this case.

After transporting the necessary number of A matrices and all DOFs’ information to

Matlab, remaining steps of this process flow can be operated in Matlab.

2.5 Simulation of 2.5D SAW Model with HCT

Next, HCT is applied to the simulation of a large 2.5D SAW model (a plane model as-

suming uniformity in one (y) direction.) with the process flow given in the last section.

This SAW simulation is the original purpose that HCT invented for [86]. The SAW

resonator model with a wavelength of 4.0 μm has a Cu electrode (0.2 μm) on the pie-

zoelectric LiTaO3 42◦ YX-cut substrate. As shown in Figure 2.8, there are 32 electrode

pairs in the center interdigital transducer. Bragg reflectors on both sides have 32 elec-

trodes. Two flat regions with a length of 32 μm are placed at the outside. The damping

absorbing boundaries which will be introduced in the next chapter are applied to perform

the same function as PML.

Table 2.1 shows the computation time required for the simulation. The number

of DOFs in the model of Figure 2.8 is larger than 2,000,000, which is too large to
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Figure 2.8: Structure of HCT SAW model of 42◦ YX-cut LiTaO3 with Cu electro-
des.

simulate it directly in a workstation using COMSOL or other commercial FEM software.

Nevertheless, with the help of HCT, the simulation time is only 19.9 sec. per each

frequency.

Actually, the total time can be further reduced. For example, most of the time is

spent for obtaining the absorbing lines. This part of time can be shortened significantly

if PML is used instead of absorbing line with sacrificing some accuracy.

Table 2.1: Time consumption in the simulation with HCT of the model in Figure
2.8.

Step Time (sec.)

Obtain absorbing lines 12.5

A matrices to B matrices 1.6

Cascade B matrices 3.0

Solve out all the DOFs 2.8

Total time 19.9

Figure 2.9 shows the simulated admittance curve of the SAW resonator in Figure

2.8. In addition to the main resonance and anti-resonance of 925 MHz and 978 MHz,

there are several spurious peaks in the admittance curve identified. To investigate the

reasons for each spurious peaks, the displacement component uy in the xz plane (sagittal

plane) are also calculated at these frequencies. The results are shown in Figure 2.10.
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It is obvious that the spurious peak around 1044 MHz is caused by the excitation and

scattering of the bulk wave. On the other hand, standing patterns are clearly seen at 927.5

MHz and 930.5 MHz. This indicates that they are due to longitudinal mode resonances.

These results coincide well with previously published work [93].
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Figure 2.9: Simulated admittance Y11 of a 42◦ YX-LiTaO3 resonator.

Next, an Al/128◦ YX-LiNbO3 resonator is also simulated. It has more IDT electro-

des and the number of DOFs is larger than 8 million. The obtained electrical response

is shown in Figure 2.11. Spurious peaks caused by different modes are all marked by

arrows in the figure. The calculation took 23 sec. for each frequency point, which is

only 3 sec. longer than the simulation of Figure 2.8.

2.6 Conclusion

This chapter details the HCT algorithm.

First, the overall process of HCT in the matrix operation level was illustrated. It in-

cludes deriving the B matrix from traditional FEM equations, combining and cascading

two B matrices and tracing back of eliminated DOFs after solving the B equation.

Mirror cascading was proposed as an auxiliary cascading way. Even though it is

only applicable for symmetrical structures, its time consumption is at least a half of

the traditional HCT for obtaining the same B matrix. This means that the hierarchical
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Figure 2.10: Simulated displacement fields in y direction. (a) 921.5 MHz, (b)
927.5 MHz, (c) 930.5 MHz, (d) 1044 MHz.
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Figure 2.11: Simulated admittance Y11 curve of a 128◦ YX-LiNbO3 resonator.

cascading tree should be chosen properly to take this advantage as much as possible

provided that the structural symmetry exists.

Then, a process flow of HCT based on commercial software was introduced. COM-

SOL’s GUI and Matlab’s calculation environment are combined in this method.

Finally, electrical response and field distribution of a 2.5D SAW resonator model

with 2 million DOFs was analyzed as a demonstration, and effectiveness of the HCT

based simulation was proven.
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Chapter 3

HCT Implementation in Traveling
Wave Source Model

3.1 Introduction

The radiation condition plays an important role in the analysis of wave propagation

in semi-infinite structures. In the FEM analysis, the PML is often used to suppress

unnecessary reflections [75, 76]. As introduced in Chapter 1, the conventional PML

setting is invalid when at least one of the wave components possesses negative group

velocity often referred to the type-II dispersion. For the TWS application to BAW device

structures, this is a serious problem because the main Lamb mode often exhibits this

property.

In this chapter, a new type of absorbing setting named infinite long damping boun-

dary (ILDB) is proposed. It is shown that various kinds of SAW/BAW scattering pro-

blems can be solved speedily and accurately when ILDB and HCT are implemented

simultaneously into the TWS model.

Unlike the stretching coordinate strategy used in PML, neither typical wavelength

nor stretching direction is needed to define. The next section illustrates the operation

mechanism of this new absorbing boundary, and how to apply it in the model. Then, a

comparison between conventional PML and ILDB will be given.

Next, HCT combined with TWS and ILDB is applied to the analysis of the Lamb

wave scattering at a free end. Simulated results are compared between calculations using

traditional FEM and HCT based one. Huge advantages are obtained in both simulation

speed and accuracy.

Then, HCT is used to accelerate the parametric sweeping simulation for transverse
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mode analysis in SAW devices. The developed technique is applied for the calculation

of input admittance Y of infinitely long IDTs, and also the estimation of the reflection

coefficient Γ at the IDT fingertips using TWS model. It is shown that the Γ estimation

is more efficient than the Y calculation for designing the piston mode structure.

Finally, HCT implemented TWS model is also applied to the analysis of scattering at

the discontinuity between two periodic gratings. To the author’s best knowledge, this is

the first approach to analyze wave scattering phenomena at a discontinuity sandwiched

between two semi-infinite long periodic structures.

3.2 Infinite Long Damping Boundary

3.2.1 Building B Matrix

HCT allows us to extend the length of the simulation target easily. For example, when a

thin slice waveguide with 1 μm length is cascaded 20 times, the final waveguide is longer

than 1 km. Note that the meshed grid remains the same fineness as the original mesh

grid even after cascading. In this long waveguide, waves can not transmit between two

ends when tiny damping is given. Furthermore, when waves are incident from another

identical but loss-less waveguide, no reflection will occur at the boundary. This means

that the long waveguide is ideal as a radiation boundary for the FEM analysis.

Figure 3.1 shows the composition of the proposed damping mechanism. The wave

is supposed to propagate from the right side to the left. The isotropic damping factor

ηs is introduced to each unit as an imaginary part in the mass. Its effect is the same

as damping matrix D. The value of ηs increases for the first unit (unit (a) in Figure

3.1), and becomes constant (unit (b) in Figure 3.1). The HCT enables calculating the

total B matrix of the cascaded region even when the cascading number is extremely

large, provided that the number is an integer power of 2. The gradual increase in ηs is

introduced to avoid reflection caused by the variation of acoustic impedance.

As mentioned, wave injected from one end cannot reach to the other end in this wa-

veguide when the cascading time is large enough. Namely, uL and uR will not influence
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Figure 3.1: Variation of damping factor ηs in damping region where waves are
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each other. Then the B matrix equation for ILDB will be in the form of

⎡
⎣ BILDB

LL 0

0 BILDB
RR

⎤
⎦
⎡
⎣ uILDB

L

uILDB
R

⎤
⎦ =

⎡
⎣ TILDB

L

TILDB
R

⎤
⎦ . (3.1)

It can be split into two independent equations. The lower one is regarded as a re-

striction equation at the right boundary:

BILDB
RR uILDB

R = TILDB
R . (3.2)

When ILDB is placed on the left side of unit C, the cascading operation of their B

matrices gives

⎡
⎣ BC

LL + BILDB
RR 0

0 BC
RR

⎤
⎦
⎡
⎣ uC

L(= uILDB
R )

uC
R

⎤
⎦ =

⎡
⎣ 0

TC
R

⎤
⎦ . (3.3)

3.2.2 Performance of ILDB

Next, the generated ILDB is used to check with PML on the absorption performance

of Lamb waves in an AlN thin plate. Figure 3.2 shows the dispersion curves of Lamb
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waves propagating in the plate. Horizontal and vertical axes are B = βh and F = fh

where β is the wavenumber, f is the frequency, and h is the AlN thickness. Usually,

F increases with B. This is called the type-I dispersion, and indicates that the group

velocity is directed to the same direction as the phase velocity. In contrast, F decreases

with B on one branch labeled "S1-". This is called the type-II dispersion and indicates

that the directions of phase and group velocities are opposite.
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Figure 3.2: Normalized dispersion relations of Lamb modes of a AlN plate.

Figure 3.3 shows the FEM models used to check the wave absorption. Normal forces

are applied in the right free end of the waveguide. Forces at the top and bottom surfa-

ces have equi-amplitude but opposite direction. Symmetrical Lamb waves are excited

selectively and propagate to the −x direction. The frequency of driving force is set a

little below FS1c shown in Figure 3.2. The wavelength of S1- wave is hundreds of times

AlN 
Waveguide

Fy

-Fy

PML

y
xo

Free
end

(a)

AlN
Waveguide

Fy

-Fy

ILDB
Free
end

(b)

Figure 3.3: FEM models for absorption test. (a) PML, (b) ILDB.
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longer than that of the S0 mode.

After the FEM calculation, displacements at the top surface (blue line) are extracted,

and the fast Fourier transform (FFT) is applied to decompose into Lamb mode compo-

nents. Figure 3.4(a) shows the resulting wave spectrum utilizing PML. Incident waves

are labeled as (i) while reflected waves as (r). It should be noted that owing to the type-II

dispersion, the direction of the group velocity of the S1- wave is opposite to that of the

phase velocity, and so an incident S1- mode wave possesses a positive wavenumber.

Although various parameter settings were examined in the PML [77], it was not

possible to suppress reflected waves, especially S1-(r).

Figure 3.4(b) shows the spectrum obtained when the damping boundary is applied

instead of the PML region. In contrast to Figure 3.4(a), all incident waves are absorbed

completely. Even the reflected S1- wave whose B is close to zero is absorbed well.

3.3 Scattering analysis of BAW

In the last section, the problem of absorbing energy in a waveguide under the peculiar

condition is perfectly resolved by ILDB. In this section, HCT was implemented into the

entire TWS model to accelerate the simulation for both BAW and SAW devices.

3.3.1 Model Setting

Since the main body of BAW devices is laterally uniform in general, it is clear that the

HCT is more effective for BAW devices than for SAW devices. HCT and ILDB are

applied to the 2D TWS BAW model shown in Figure 3.5, which is used to analyze the

scattering of Lamb waves at the free plate edge of the FBAR structure. The waveguide

is made of a piezoelectric material AlN, whose top and bottom surfaces are metallized.

Phase variation of the TWS is set so that either S1+ or S0 Lamb wave with the

wavenumber β is predominantly excited at the active area. The relationship between

frequency f and corresponding β in the active region can be referred to normalized
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dispersion curves of Lamb modes in Figure 3.2. The excited Lamb wave will reach

the free end boundary, and scattered waves are sensed at the passive region 2. Those

reflected waves are finally absorbed in the absorbing region.

The B matrix of the active area is assembled by the HCT using a number of thin

slices. The traveling wave sources require a phase shift φ = −βΔ per unit slice in F.

This requires slight modification of the original HCT.

Here, expressing the B matrix after cascading n times as Bn. Then the combined B

matrix after cascading n+ 1 times is given by

⎛
⎜⎜⎜⎝

Bn
11 Bn

12 0

Bn
21 Bn

22 + Bn
11 Bn

12

0 Bn
21 Bn

22

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

un+1
L (= un

L)

un+1
I (= un

R)

un+1
R

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Fn
L

Fn
R + ejnφFn

L

ejnφFn
R

⎞
⎟⎟⎟⎠ . (3.4)

Several repetitions of hierarchical cascading are enough to build a long waveguide

from a thin slice. The whole model is assembled from one thin slice, as shown in Figure

3.6. First, the Bf matrix of the main body is calculated using the HCT. Then ILDB matrix

is calculated and placed at the left end. Finally, uf
L and uf

R are derived by solving the

linear equations, and the remaining DOFs are estimated recursively using the traceback

procedure. To save time, passive regions share the same B matrix with the active region

but F = 0.

+ + +

Passive
region 1

Passive
region 2

Active
region

ILDB

x

y

O

... ...... Free
end

Figure 3.6: Assembled TWS BAW model.
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3.3.2 Simulation result

The simulation was performed using a PC (CPU i7-5820K, 3.3 GHz, 128 GB RAM).

The driving frequency was set below the cutoff frequency of the main (S1-) mode FS1c

owing to its type-II dispersion [78].

For comparison, the whole model was also directly analyzed by the FEM. It is worth

noting that the damping area was shortened and the damping factor ηs was made lar-

ger for the direct FEM analysis to shrink the model size and shorten the calculation

time. This change would somewhat worsen the attenuation especially when the driving

frequency is close to the cutoff frequency.

Figure 3.7 shows the calculated out-of-plane displacement at the top surface in pas-

sive region 2. The displacement calculated by the conventional FEM is also shown for

comparison. They show good agreement, and it is difficult to determine which method

is more correct.

Figure 3.7: Calculated out-of-plane displacement.

In the HCT, 2.9 sec. is necessary to extract the A matrix of the thin slice from

COMSOL to MATLAB, and obtaining the ILDB on both sides takes 4 sec. On the other

hand, time consumption in the hierarchical cascading and recursive calculation is only

0.7 sec.

In contrast, the direct FEM calculation needs 42 sec. to solve the whole model

including the damping area. Note that when more accuracy is necessary and attenuation
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is increased at the damping region, the execution time will increase further.

After the FEM analysis, the vibrating amplitude at the top surface was converted to

carrying power using the method proposed in [104]. Since no additional loss mecha-

nism is included, the law of power conservation requests that the total power reflection

coefficient Rp defined by the following equation should be unity:

Rp =
Pr,S1− + Pr,S1+ + Pr,S0 + Pr,S2

Pi,S1+ or Pi,S0

, (3.5)

where Pi and Pr are incident and back-scattered power, respectively, and the second

subscript specifies the mode.

Figure 3.8 shows the power scattering coefficients calculated by the TWS method.

In the figure, the horizontal axis is the frequency - (AlN) thickness product F , and FS1b,

FS1c and FS2c are those at the cutoff for the S1-, S1+, and S2 modes, respectively. The

deviation is quite small in Figure 3.8 even when F is close to FS1c. Since the wavelength

of S1- at FS1c is infinite (β=0 rad./μm), the extremely long waveguide is necessary. This

long model is difficult in direct FEM application, but an easy task for HCT.

3.4 Piston Mode Design of SAW

In this section, the design of piston mode structures is demonstrated with the help of

HCT.

3.4.1 Parametric Sweeping with HCT

Before specifying the model for simulation, another beneficial usage of HCT needs to

be introduced. One major consideration of HCT is reuse of intermediate results such

as cascaded B-matrices. For optimization of SAW devices, it is common that device

properties are simulated with scanning one or two parameters in the device structure, and

the remaining parts are unchanged. In the conventional parametric sweeping simulation,
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Figure 3.8: Scattering behavior at the free end calculated by the TWS-HCT
method. (a) S0 mode incidence, (b) S1+ mode incidence ( S1+ is evanescent
at F < FS1b)
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the FEM equation of the whole structure is built and solved for all parameter values. In

HCT, on the other hand, it is possible that omitting the B-matrix calculation for the

major portion, and thus the optimizing procedure can be simplified. Let us consider a

model shown in Figure 3.9. The B matrix of DOFs at the interface (red lines) represents

the whole static part. It can be used just like ILDB. This feature allows researchers to

shorten the calculating time significantly from the second iteration.

?
unchanged part

optimizing  part

?

unchanged 
part

Figure 3.9: Applying HCT for optimization.

3.4.2 Transverse Mode Suppression

Next, HCT is applied to design of side edges in SAW devices. The SiO2-overlay/Al-

electrode/128◦YX-LiNbO3-substrate structure similar to the one in Ref. 105 is chosen

as an example.

Figure 3.10 shows the border structure for piston mode operation. And Figure 3.11

shows the cross sectional (x − z) view of three functional regions in Figure 3.10. The

first one is the Al IDT region where SAW is excited. The second one is the slow region

placed for the piston mode operation [106–108], where a thin Cu layer is deposited on

the top of Al electrodes. The third one is the fast region placed in the outside of the slow

region. Here, the length of fast region is assumed to be semi-infinite, and the dummy

electrodes and bus-bars are ignored for simplicity.

PML are placed at the bottom of three regions. A half period is chosen, and the

symmetrical boundary condition is applied for the sections shown in Figure 3.11. The
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ILDB is applied to the side edges instead of PML to obtain better suppression of acoustic

reflection.
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Figure 3.11: Cross sectional view of three regions.

Key parameters are the Cu thickness hm2 and the length of slow region ls. Fixed

parameters are listed in Table 3.1.

Figure 3.12 shows a part of the SAW device model decomposed into several units.

In the figure, units b and c represent the piezoelectric substrate, while units a1 and a2

include electrodes. The structure is assumed to be periodic toward the x-direction, and

the periodicity is 2p.
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Table 3.1: Fixed parameters in model.

Symbol Value Description

p 2 μm grating period

ho1 2 μm SiO2 thickness

hm1 0.24 μm Al thickness

η 0.5 metallization ratio

lIDT 51p length of IDT region

x
y

z

O

+

+

+

+ +  +

unit a1 unit a2

unit b unit b

unit cunit c

+

segment 1 segment 2

Figure 3.12: Cascading SAW model in y and z directions.
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3.4.3 Parametric Sweeping in Y11 Model

The direct way is to calculate the input admittance (Y11). The whole FEM model is

decomposed into seven regions as shown in Figure 3.13. In this figure, F, S and I indicate

fast, slow and IDT regions, respectively. Seven kinds of segments marked as 1-7 in

Figure 3.13 are used to cascade.

F-S S

+ + + +
Absorb

boundary

S-I I I-S

+

S

+

S-F

Absorb
boundary

F

static part optimizing partoptimizing part static partstatic part
O y

z

Figure 3.13: Decomposition of the whole FEM model for Y11 calculation.

Ideally, only the region S changes with hm2 and ls. However, since the auto-mesh

function is employed in COMSOL, change in the parameters influences location of

DOFs near the region S. To avoid this problem, four transition regions F-S, S-F, S-I

and I-S are added. The width of unit S can be set any value as needed, and 0.4 μm is

chosen in this simulation. Mirror cascading is applied when cascading region I and S.

The total number of DOFs in the model is more than 2 millions (absorb boundary is

excluded).

Figure 3.14 shows variation of calculated Y11 with ls. In this calculation, hm2 =

0.08μm. It is seen that transverse mode resonances are well suppressed when ls ∼
2.4− 2.8μm.

When the calculation was performed by a CPU (Intel Xeon W-2123) with 128 GB

DDR4 memory, the simulation takes about 20 min. for each frequency point for the

initial parameter setting while it was shortened to 2.5 min. for the following parameter

settings.

The FEM analysis without HCT is also examined. Of course, no difference could be

found between two calculations. It took 25 min. for each case, and no acceleration was

obtained for the parameter scan.

44



864 866 868 870 872 874 876 878
Frequency (MHz)

20
lo

g|
Y

11
|

(d
B

)
0

-100

-200

-300
862

1.6 m
2.0 m
2.4 m
2.8 m

3.2 m

Figure 3.14: Variation of Y11 when ls is chosen as a parameter.

3.4.4 Parametric Sweep with TWS Model

One drawback of the method described above is that more than one hundred frequency

points are needed for the evaluation. When the frequency step is coarse, spurious peaks

may be hardly visible.

By the way, the operation mechanism of the piston mode is explained as follows.

The standing wave is created in the IDT region by superposition of laterally propaga-

ting forward and backward SAWs. The high-order modes occur when the following

condition is satisfied:

−2lIDT · βy(f) + 2∠Γ(f) = 2nπ (n = 1, 2, · · ·) , (3.6)

where βy is the lateral (y) wavenumber of SAW in the IDT region and Γ is the reflection

coefficient at the boundary between the IDT and slow region. The equation indicates

that ∠Γ and lIDT determine where the resonances occur. It is known that the piston

mode operation is possible provided that ∠Γ = 0◦ [106–108].

It should be noted that that |Γ| should be close to unity. Or the resonance quality

factor Q will be deteriorated not only for spurious resonances but also the main one.

Here HCT is combined with the TWS to estimate Γ directly. The model setup is
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Figure 3.15: Mode setup for Y11 and Γ evaluation.

shown in Figure 3.16. As the TWS, external physical force F (y) is given to active IDT

region (red arrows), and its y dependence is given by e−jβyy, where βy is the lateral SAW

wavenumber in the IDT region. The TWS allows us to excite the particular transverse

mode selectively. SAW scattering parameters at the region S can be evaluated by the

fast Fourier Transform (FFT) of the surface displacements in two passive regions. The

number of DOFs in TWS mode varies from 0.5 to 20 millions. It is due to the fact that

the smaller βy needs longer passive regions for accurate FFT.

The frequency dispersion of βy can be calculated by the use of the technique given

in Ref. [109]. Note βy is almost zero at the main resonance, and decreases with f .

Figure 3.17 shows variation of estimated ∠Γ with ls. It is seen that ∠Γ(βy) becomes

zero only when ls is smaller than 2.8 μm. The location of βy0 and f0 giving ∠Γ = 0

increase with ls. Furthermore, |∠Γ| is small for a wide range of βy and f . Therefore, it is

concluded that ls should be set around 2.4 μm for the transverse mode suppression. This
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Figure 3.16: Decomposition of the whole FEM model for Γ evaluation.

is consistent with the result shown in the above subsection. It is worth to notice that Γ

can be calculated when βy is very close to 0 by setting the lengths of active and passive

regions extremely long. Since Γ changes with βy smoothly, extrapolation is effective.

Standard piston mode points

y (rad./ m)

 (d
eg

.)

(a)

Standard piston mode points

Frequency f (MHz)

 (d
eg

.)

(b)

Figure 3.17: Variation of angle of Γ with ls. (a) βy dependence of angle of Γ, (b)
f dependence of angle of Γ
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When the only CPU was used, the calculation time is 30 min. for the first run and 2

min. for following runs.

Note that the curve of ∠Γ changes smoothly with βy and f . Therefore, twenty points

in βy or f are enough for the present purpose. Thus this approach requires much less

total computation time than the Y11 estimation.

Table 3.2: Comparison of simulation time between different approaches.

Approach Initial setting Time Ti Sweeping time Ts Freq. points Nf

CPU for Y11 20 min. 20 min. >200

CPU for Γ 30 min. 2 min. <30

GPGPU for Y11 2 min. 11 sec. >200

GPGPU for Γ 3 min. 9 sec. <30

Table 3.2 summaries the time consumption between different approaches. The total

time for piston mode design Ttotal is given by

Ttotal = (Ti + Ts ∗Ns) ∗Nf , (3.7)

where Ns is the number of trial cases. It is obvious that HCT based TWS model owns a

huge advantage in the rapid design of piston mode.

The table also shows the results when the general-purpose graphic processor unit

(GPGPU) is applied. It is seen that the total time is further reduced from days to several

minutes when HCT, TWS model and GPGPU are applied together. Details on this topic

will be given in the following chapter.

3.5 Scattering at Discontinuity Between Two Periodic
Gratings

The discontinuous gap under concern in this section is shown in Figure 3.18. The space

gap with length lg is embedded into two periodic gratings. It is worth to point out
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that lg could be set as a negative value which means shortening the space between two

electrodes. There will be two main problems when putting it directly in FEM simulation.

One is long simulation time because hundreds of gratings are included, the other is

setting of absorb region. Traditional PML is not feasible here due to additional reflection

is inevitable at the interface between the absorbing region and the passive region.

The TWS model is also shown in Figure 3.18. Traveling vertical forces (red arrows)

are applied to generate single SAW mode.

Absorbing 
region

Active
region

Passive
region 1

lg

Passive
region 2

o x

z

SiO2

Cu

 128°YX-LiNbO3

Absorbing 
region

Figure 3.18: TWS model for reflection analysis at discontinuous gap.

Since ILDB is generated by HCT, almost semi-infinite periodic gratings are appli-

cable to the absorbing regions. This characteristic of ILDB is perfect for application to

the absorbing regions in Figure 3.18.

After finishing the calculation, the fast Fourier transform is applied to the obtained

SAW fields at the top surface of two passive regions. The reflection and transmission

coefficients S11 and S21 can be evaluated from the calculated amplitudes in their wave

spectra, respectively.

Typical parameters are given in the following calculations. The grating period p is 2

μm, the thickness of SiO2 and Cu are set as 8p and 0.3p respectively. In this condition,

the SAW resonance frequency fr (lower edge of the stop band) is 926.4 MHz. The same

length of 256p is given in both active and passive regions.
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The calculated shear vertical (z) displacement is shown in Figure 3.19. The fre-

quency is set at 921 MHz, which is a little lower than fr. The corresponding wavenum-

ber of incident Rayleigh SAW is βi = 0.9821π/p. The gap of lg = −50%p is placed at

x = 512 μm.

Figure 3.19: Simulated shear vertical displacement (z direction) of passive regi-
ons 1 and 2.

Figure 3.20(a) shows the wavenumber domain spectrum of evaluated vertical displa-

cement obtained by the FFT of the surface amplitude in the passive region 1. The hori-

zontal axis is normalized by π/p. Four peaks can be seen. Two of the peaks labeled as s3

and s2 correspond to main bodies of SAWs propagating toward the ±x directions while

the other two peaks labeled s1 and s4 correspond to the field components caused by the

coupling between forward and backward propagating modes in the COM theory [110].

In fact, they possess the wavenumber of (2±0.9821)π/p. Thus the ratio between s2 and

s3 peaks gives the reflection coefficient, while that between s1 and s3 peaks (or s4 and s2

peaks) gives the coupling strength of the modes. Figure 3.20(b) shows the spectrum in

the passive region 2. In this case, only two peaks appear. This means that SAW energy

propagates only to the +x direction. This confirms that the ILDB works perfectly to

suppress SAW back scattering in the region.

Amplitudes of these six peaks were evaluated and given in Table 3.3. The reflection

and transmission coefficients S11 and S21, respectively, can be obtained by s2/s3 and

s6/s3.

Detailed discussions have been made on the influence of discontinuities for both

Rayleigh and SH SAWs, and its results can be seen in Ref. 111.
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(a)

(b)

Figure 3.20: Wave spectrum of displacement at the surface using FFT. (a) Pas-
sive region 1, (b) Passive region 2.

3.6 Conclusion

In this chapter, HCT was implemented into the TWS model to deal with several tough

problems in SAW/BAW devices. It was demonstrated that all these problems were sol-

ved rapidly and accurately with the help of HCT.

First, ILDB based on HCT was proposed and developed as a novel method to absorb

energy as the new type of radiation condition. Without stretching coordinate, ILDB can

replace PML to simulate infinite region in many cases with better performance.

Then, HCT and ILDB were implemented into the TWS model to accelerate the simu-

lation for scattering analysis in SAW/BAW devices. In the BAW case, it was shown that

the scattering behavior of Lamb modes could be extracted very quickly and accurately.

For the SAW case, two models were implemented: one was the impedance calcula-

tion, and another was the calculation of scattering coefficients at discontinuities. It was

51



Table 3.3: Values of the peaks in Figure 3.20.

Peaks S1 S2 S3 S4 S5 S6

Wavenumber (π/p) -1.018 -0.9821 0.9821 1.018 -1.018 0.9821

Amplitude (dB) -121.4 -118.2 -116.1 -123.3 -126.1 -120.5

Phase (deg.) -93.99 43.18 157.68 -96.01 -22.75 -96.02

shown that although the former is straightforward and comprehensive, the latter is more

efficient and accurate for the purpose.

Finally, the HCT implemented TWS was applied to analyze scattering at the discon-

tinuity between periodic gratings of Rayleigh wave in the SiO2/Cu/128-LN structure.

ILDB worked perfectly as absorbers in this TWS model. Scattering parameter of Ray-

leigh wave at the discontinuity could be calculated quickly and successfully.

52



Chapter 4

Simulation of Full 3D SAW Model
Using GPGPU

4.1 Introduction

Even though the competence of HCT has been proved in various aspects in SAW/BAW

simulation, it still encountered some troubles for simulation of whole 3D device structu-

res [90]. This problem is caused by the fact that the whole FEM model is too large. For

n× n dense matrices, time consumption for their operation is known to be proportional

to n3. In the 2D cases [89, 93], required n is usually smaller than 1000. In contrast, n

will be more than 5000 in the 3D case.

This chapter discusses the applicability of GPGPU to 3D FEM simulation of whole

SAW devices using HCT. SAW structures on a 42◦YX-LiTaO3 (42-LT) substrate are

chosen as an example, and variation of device performance with the electrode pattern is

discussed.

First, it is shown how high-end GPGPU is effective for the present purpose. When

the problem size is large, GPGPU accelerates the calculation speed more than ten times.

Next, a synchronous SAW resonator on a 42◦YX-LiTaO3 substrate is simulated

using GPGPU. Only 153 seconds is required to compute its electrical response at one

fquency point.

In the end, surface vibration fields are derived from the calculated result, and SAW

scattering properties are discussed using the wavenumber domain analysis.
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4.2 Cascading Using General-Purpose Graphics Proces-
sing Unit

In HCT, the computation time is mostly governed by the operation of the form of K−1
1 K2

instead of K−1
3 L in the traditional FEM, where K1 and K2 are dense complex matrices

for each cell, K3 is a sparse complex matrix for the whole model, and L is a vector.

When cascading two identical units, the sizes of K1 and K2 are all N -by-N , where N is

the number of DOFs in a unit cell. Note that since the matrices are dense, the calculation

time increases rapidly with N and is known to be proportional to N3. This tendency is

not important for 2D cases because N is not so large (< 1, 000) in general. On the other

hand, it is not true for the 3D case.

The situation is different when a high-spec GPGPU like NVIDIA GV100 is app-

lied for HCT calculation. Table 4.1 compares its catalog spec with that of Intel Xeon

microprocessor which used in the previous simulation.The GPGPU possesses so many

cores for the double-precision floating point (FP64) calculation and drastic acceleration

is possible by parallelization. The dense matrix operation fits well with this, and has

already been implemented in Matlab as parallel computing tool kit.

Figure 4.1 shows the performance comparison between Intel Xeon and GV100 in

solving K−1
1 K2 with different N . It is clear that use of GPGPU is advantageous when

N is large, and the acceleration reaches to more than 10 when N is close to 104. When

N is small, the core clock is more important than the number of cores.

Table 4.1: Catalog specs of selected CPU and GPGPU.

Intel Xeon W-2123 NVIDIA GV100

Number of Cores 4 5,120

FP64 Performance 0.23 TFLOPS 7.4 TFLOPS

Configured Memory 128 GB DDR4 32 GB HBM2

Core clock 3.6 GHz 1.2 GHz

The figure also shows the required memory size. It is proportional to N2, and the

maximum N is limited to circa 104 when GV100 is employed. It should be noted that
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Figure 4.1: Performance comparison between selected CPU and GPGPU in
calculation of K−1

1 K2.

memory chips of GPGPU are integrated into the board and not extendable by users.

Although external memories might be used, their use will result in drastic degradation

of total calculation speed.

These results indicate that although the use of GPGPU is effective for the numerical

calculation, limiting the required memory size is crucial.

4.3 3D Simulation of Whole SAW Devices

Here HCT is applied to the 3D simulation of SAW resonators on 42-LT, and the effecti-

veness of GPGPU is demonstrated.

4.3.1 Modeling Setting

Figure 4.2 shows the schematic of 3D FEM model used in this paper. The perfectly mat-

ched layers (PML) are placed in surroundings of the Cu electrode region and the bottom

of the piezoelectric substrate (42-LT). Parameters in the model are listed in Table. 4.2.

One major consideration on the models of basic cells is how to construct the hierar-

chical cascading tree so that the efficiency of cascading can reach maximum. In other
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Figure 4.2: Schematic of the final 3D FEM model. (a) Top view, (b) Cross section
in the middle.

Table 4.2: Parameters in the full 3D model.

Symbol Value Description

λ 5.854 μm length of lambda

hm 0.3 μm thickness of electrodes

ha 0.5*λ thickness of air

lIDT 15*λ length of IDT region

ld 1*λ length of dummy region

lg 0.5*λ length of gap

NBragg - reflector number

NIDT - number of electrodes
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words, obtained B matrices should have as high repetitive rate as possible. In Solal’s

work [90], the unit cells for cascading were divided as shown in Figure 4.3. Since the

nodes included in each unit is at least 19,000 [90], the time cost for building B matrix

from each A matrix could be huge.

Figure 4.3: Organizational structure of hierarchical cascading full 3D SAW mo-
del in Marc Solal’s research (cited from Ref. [90]).

As mentioned in Section 2.3, the proposed mirror cascading changes the rule of

setting a hierarchical cascading tree. Use of symmetric properties in every layer is im-

portant for saving simulation time. In this work, the FEM model of unit cells for full 3D

SAW simulation is demonstrated in Figure 4.4. Here, PML is selected as surrounding

absorbers instead of ILDB. It is because building ILDB for a large surface is not an easy

task. Utilization of mirror cascading is maximized during the model design. The slice

width to the x direction is uniform for all regions as λ/4. Therefore, all slices to be

cascaded share the same B matrix. Meanwhile, the mirror cascading is applied to the

substrate region for both x and y directions. Five kinds of basic unit cells are enough to

assemble the core structure. Units A, B, C and D are shown in Figure 4.5, and one more

unit for PML at the ends (see Figure 4.2).
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Figure 4.5: Cascading tree for a 3D Symmetrical SAW Model.
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4.3.2 Simulation of Synchronous Resonators

First, NIDT and NBragg were set at 5 and 2, respectively. Results obtained by the

CPU/GPGPU-based HCT and traditional FEM were compared. Although NIDT and

NBragg are so small, total DOFs are more than 0.9 million, which is almost the upper

limit for the traditional FEM in workstation.

Table 4.3 compares the required memory size and computation time. In this case, the

time consumption of CPU-HCT is even longer than that of the traditional FEM because

the cascading time is small. However, GPGPU-HCT enables to reduce these values

significantly even though NIDT and NBragg are small. Of course, the obtained frequency

responses by these methods are identical till 14th decimal place. This indicates that

errors caused by the hierarchical cascading are negligible.

Table 4.3: Simulation result of FEM model with and without GPGPU based HCT.

Method Without HCT CPU-HCT GPGPU-HCT

Time 745 s 1000 s 133 s

Memory 110 GB 30 GB 2 GB(CPU)+28 GB(GPGPU)

Next, NIDT and NBragg were set at 257 and 33, respectively. In this case, the tra-

ditional FEM is not applicable due to the required memory size. Figure 4.6 show the

simulated responses obtained for the resonators with different values of lg. In addition

to main and various spurious responses, the influence of lateral leakage is seen. The

result coincides well with previously published experimental results [112]. Although

the number of DOFs reached 30 million, the computational time was 153 sec. for one

frequency point, which is only 20 sec. longer than the value shown in Table 4.3. Note

that more than 20 min. is necessary if GPGPU is not used.

Figure 4.7 and Figure 4.8 show the calculated shear horizontal component of three

cross-sections (A-A’, B-B’ and C-C’ in Figure 4.2) at 630 MHz and 642 MHz. We

can identify them as the 3rd-order longitudinal mode and 5th-order transverse mode,

respectively, from the field distributions. It is seen that SAW energy is well confined

in the IDT region at 630 MHz (Figure 4.7(c)). On the other hand, lateral leakage and
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Figure 4.6: Simulated Y11 curves of SAW synchronous resonators.

transverse mode pattern are clearly seen in Figure 4.8(c).

4.3.3 Wavenumber Domain Analysis

Figure 4.9 shows the spectrum in the wavenumber (βx, βy) domain obtained by the 2-D

FFT of the calculated field distribution at 642 MHz. Bright spots exist at (βx, βy) =

(±1.07, 0) [rad./μm]. They represent the contribution of the main SH SAW. There are

also spots at (βx, βy) = (±1.07,±0.4) [rad./μm]. They represent lateral propagation of

the Rayleigh SAW coupled with the SH SAW.

Two elliptic traces are seen in Figure 4.9(a). They represent scattered wave com-

ponents [113]. Their velocities coincide well with calculated velocities of uncoupled

bulk acoustic waves along the top surface as marked in Figure 4.9(b). The inner one is

due to the longitudinal BAW in 42-LT while the outer one is due to the shear BAWs.

Note velocities of shear horizontal (SH) and shear vertical (SV) BAWs are close to each

other in 42-LT, and their traces are overlapped. It is clear that multiple waves are cou-

pled around βx = ±1.07 [rad./μm]. This makes it difficult to distinguish their complex

influence.
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Figure 4.7: Simulated field distribution of longitude mode at 630 MHz. (a) A-A’,
(b) B-B’, (c) C-C’.
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Figure 4.8: Simulated field distribution of transverse mode at 642 MHz. (a) A-A’,
(b) B-B’, (c) C-C’.
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Figure 4.9: Simulated field distribution in (βx, βy) domain at 642 MHz. (a) Origi-
nal one, (b) BAWs marked.

Next, numerical data around the inner oval are extracted, the inverse 2D FFT is

applied. [113, 114] Figure 4.10 shown the result. It is clearly seen that the scattering is

caused at the junctions between busbars of the IDT and those of Bragg reflectors. This

scattering may be one of the remaining loss mechanisms in current high-performance

SAW devices. [44]

4.4 Conclusion

This chapter demonstrated the full 3D simulation of SAW devices. Use of GPGPU

allowed us to reduce the required computational time significantly, and made the full 3D
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Figure 4.10: Field distribution of the inner circle after IFFT.

simulation practical. It was shown that proper design of the cascading tree is essential

for accelerating the simulation speed. Fast FEM simulation was demonstrated by the

use of GPGPU and HCT for a full 3D SAW resonator including 30 million DOFs. From

the obtained field distribution, various information such as type and characteristics of

the spurious signal and the source of energy leakage were obtained.
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

In this thesis, the HCT-based FEM simulation was extended, and the modification of

HCT and new extended simulation models can be concluded as the following.

First, a brief introduction of SAW/BAW technologies and their current status were

given in Chapter 1. It was revealed why fast and accurate simulation tools are important

in SAW/BAW device design. Then, several problems in SAW/BAW FEM simulation

were discussed. It was expected that HCT could solve these problems after some exten-

sion.

In chapter 2, the basics of the HCT calculation was introduced. Then, the new cas-

cading method of mirror cascading was proposed. This cascading was at least two times

faster than the original, and applicable for symmetrical structures. HCT was implemen-

ted by using Matlab and COMSOL as the platform. The experiments showed high-speed

HCT-FEM simulation could be obtained easily in this way.

In chapter 3, ILDB was proposed as a new boundary condition for infinite region

simulation with a better absorbing performance than PML. It was demonstrated the si-

mulation of large TWS model could be finished in a short time when HCT and ILDB

were implemented. Utilizing this accelerated TWS model, scattering behaviors at dis-

continuity could be easily solved for both BAWs and SAWs in a fast speed. The obtained

simulation data helped us to mathematically model these problems.

In chapter 4, GPGPU was introduced to boost HCT-FEM simulation of practical 3D

SAW device. More than ten times faster calculation speed was achieved. With the help

of GPGPU, simulation of extremely large full 3D SAW model was quickly realized in
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a workstation. The obtained electrical frequency response included all kinds of effects

in the SAW device. Moreover, the obtained displacement field was quite helpful in

diagnosing spurious peaks and scattering in SAW devices.

5.2 Outlook

HCT is applied successfully in accelerating the FEM simulation of SAW/BAW devices

in this thesis. But its application should not be limited in SAW/BAW FEM simulation.

It is expected that researchers of other fields could catch this powerful technology and

let HCT make a greater contribution.

As for the next step, the model will be applied for the tilted SAW device design. It is

known that transverse modes can be suppressed when gratings are placed in a particular

angle. However, the research about the optimal angle value is little. All behavior models

we have now are not applicable to calculate the influence brings by this angle. The full

3D SAW simulation might bring some information on the impact of the tilted angle.

Besides, a new energy loss mechanisms was found in this work. Its suppression

will offer further enhancement of device performances. GPGPU based HCT can be a

powerful tool for analyzing and understanding its behavior, and also finding out the best

solution.
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