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 Abstract 

Ground surface deformations due to human and naturally induced factors are geohazards and 

may cause damage to buildings and other infrastructures. Excessive ground movements can even 

lead to loss of human lives. Therefore, Identifying and regularly monitoring the ground 

deformations is crucial before it could become latent risk factors. Interferometric synthetic 

aperture radar (InSAR) technique provides an all-weather imaging capability for measuring 

continuous ground surface deformation and detecting minor surface changes. In this research, 

several InSAR techniques were applied to multi-satellite SAR images to monitor the surface 

deformation induced by human activities and natural causes.  

The first case study was conducted for the Xinjiang Uyghur Autonomous Region, China. 

The land-surface deformation was investigated in Karamay, a typical oil-producing city, using 

both ALOS PALSAR and ENVISAT ASAR data. Two-pass differential SAR interferometry (D-

InSAR), Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) processes 

were applied to the two datasets. The influences caused by the different band wavelengths and the 

methods were compared and discussed. The second case was conducted in Urayasu City, Chiba 

Prefecture. The long-term land deformation patterns were investigated using ERS-1/-2 (C-band), 

ALOS PALSAR and ALOS-2 PALSAR-2 (L-band) images. Comparing with the leveling data 

obtained by field surveys, the results obtained by InSAR techniques showed good agreement. The 

last case study was detecting the landslides induced by the 2018 Hokkaido Eastern-Iburi 

Earthquake. The coherence and the intensity difference were calculated from the pre- and post-

event ALOS-2 PALSAR-2 images to extract changed regions. The results were verified by 

comparing with optical satellite images and truth data. The outcome of this research further proves 

the suitability and effectiveness of InSAR measurements in the ground surface deformation 

monitoring. 

 

Keywords: ERS-1/-2; ENVISAT-ASAR; PALSAR; PALSAR-2; ground surface deformation; 
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Chapter 1 

1. Introduction  

1.1 . Background and objective 

In general, the ground surface of the earth deforms either by anthropogenic or naturally 

induced factors and by their integrated effects. Natural factors such as big earthquakes (Massonnet 

et al., 1993; Ozawa et al., 2011), slow-moving landslides (Calò et al., 2012), volcanic activities 

and land subsidence (Ruch et al., 2008; Bayuaji, Sumantyo and Kuze, 2010)etc., are the main 

contributors of ground surface deformation. Anthropological causes such as mining activities (i.e. 

extraction of groundwater, oil and gas from underground reservoirs, and the injection of waste-

water) would induce deformation in reservoirs by changing the reservoir pressure and 

consequently generate measurable surface deformations in the form of subsidence or uplift 

(Khakim, Tsuji and Matsuoka, 2012; Aimaiti et al., 2017). The excessive surface deformation can 

cause damage to engineering structures and other infrastructure, such as railroads, roads, buildings, 

and oil and gas pipelines (Guéguen et al., 2009; Grzovic and Ghulam, 2015). Those geohazards 

may threaten human lives and lead to enormous economic losses. Thus, identifying the signs of 

impending land deformation is mandatory in correcting the potential problems before associated 

accidents/incidents occur (Guglielmi et al., 2015). 

Ground surface deformations can be detected and monitored by various geodetic techniques, 

such as global positioning system (GPS)/global navigation satellite system (GNSS), tiltmeter and 

leveling survey. Although these techniques can provide precise ground deformation 

measurements at millimeter or centimeter level, due to their spatial density is limited, they cannot 

acquire dense ground displacement measurements with a large-scale coverage in a short time and 

at a low cost (Hsieh et al., 2011). Synthetic aperture radar (SAR) interferometry (InSAR) is a 

proven remote sensing technique that uses the phase differences information of SAR images to 

measure ground surface deformations. Since the first application of InSAR to detecting the small 

ground motion of agricultural field (Gabriel, Goldstein and Zebker, 1989), it has been giving 

increasing attention and widely used because of its large scale coverage and high temporal 

measurement capability (Pepe and Calò, 2017). Over the years, the new generation and increase 

of satellite SAR sensors have enabled us to compute surface deformations from the global scale 

to individual buildings. And the new advanced InSAR techniques have also been proposed to 
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improve the precision of deformation measurement by the joint analysis of a set of SAR images 

(Zhang, Ding and Lu, 2015; Osmanoğlu et al., 2016). However, it is evident that both leveling 

and InSAR technique has advantages and disadvantages. How to determine the optimal method 

should be depending on the characteristic of measured ground deformation and the availability of 

the data. The combination of both techniques can be an effective way to optimize the accuracy of 

ground deformation measurement (Zhu et al., 2014). 

The research objective of this thesis is to investigate the features and feasibility of C-band and 

L-band radar images in the extraction of ground deformations at different study areas. The 

traditional and advanced InSAR methods and GPS observations are also implemented to improve 

the accuracy of estimated ground deformations. We also present the 2018 Hokkaido Eastern-Iburi 

Earthquake as a model case of natural disasters. The landslide areas induced by the earthquake 

are detected using coherence and intensity difference of the pre and post-event ALOS-2 PALSAR-

2 images.    

1.2 . Outline of the thesis 

This dissertation is composed of six chapters. The flowchart of the thesis is shown in Figure 

1.1. The basic organization of this dissertation is as follows: 

Chapter 1 introduces the outline of the dissertation, which includes the main topics, background, 

objectives, and structure of the thesis. 

Chapter 2 describes the principle and history of SAR interferometry. In addition, the general 

information of four primarily used SAR sensors also described.  

Chapter 3 presents a case study of ground surface deformation monitoring in Karamay, a typical 

oil-producing city, in the Xinjiang Uyghur Autonomous Region, China. The Two-pass differential 

SAR interferometry (D-InSAR), Persistent Scatterer (PS-InSAR) and Small Baseline Subset 

(SBAS-InSAR) processes were applied to the ALOS PALSAR and ENVISAT ASAR data sets. 

The influences caused by the different band wavelengths and the methods were compared and 

discussed. The subsurface water injection was the primary contributor to the ground deformation. 

Chapter 4 presents the analysis of progressive land subsidence over the coastal city of Urayasu, 

Japan. In this chapter, we investigate the long-term land deformation patterns in Urayasu City, 

three sets of synthetic aperture radar (SAR) data acquired during 1993–2006 from European 

Remote Sensing satellites (ERS-1/-2 (C-band)), during 2006–2010 from the Phased Array L-band 
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Synthetic Aperture Radar onboard the Advanced Land Observation Satellite (ALOS PALSAR 

(L-band)) and from 2014–2017 from the ALOS-2 PALSAR-2 (L-band) were processed by using 

multitemporal interferometric SAR (InSAR) techniques. Leveling survey data were also used to 

verify the accuracy of the InSAR-derived results. 

Chapter 5 presents our attempt to identify the landslides induced by the 2018 Hokkaido Eastern-

Iburi Earthquake. The coherence and intensity calculated from the six pre- and post-event ALOS-

2 PALSAR-2 images in descending and ascending orbit were used to extract landslide areas. To 

improve the accuracy of identified landslides, I have tried six different combination methods. 

Moreover, the results were verified by comparing with optical satellite images and truth data.  

Chapter 6 describes the general conclusion and summary from all the chapters of the 

dissertation. The discussions and future prospective of the study are also presented.  

 

Figure 1-1 Flowchart of the dissertation 

CHAPTER 1 

Introduction 

CHAPTER 2 

SAR interferometry 

CHAPTER 3 

Ground surface deformation 

monitoring in Karamay 

CHAPTER 5 

Identification of earthquake 

induced landslide  

(2018 Hokkaido Eastern-

Iburi Earthquake) 

 

CHAPTER 6 

General Conclusions 

CHAPTER 4 
Analysis of progressive Land 

Subsidence in Urayasu 
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Chapter 2 

2. Theoretical concepts of SAR interferometry 

 

2.1. Synthetic Aperture Radar (SAR)  

Radio Detection and Ranging (Radar) is a detection system that emits electromagnetic 

waves from the transmitter (Antenna) and receiving the returned signals from the object to 

determine the range, angle, and velocity of objects. It was initially developed and used in the 

military to detect the location and motion of airplanes and sea vessels (Watson, 2009). 

Although the Radar could detect the object during all weather conditions, it was difficult to 

achieve high azimuth resolution which needs a very big antenna (impossible to carry by 

aircraft). To overcome the limitation of Radar, Carl Wiley was first introduced the synthetic 

aperture radar (SAR) in 1951 and followed the first experiment carried out in 1953 (WILEY 

and A., 1985). Since then, experiments continued with the airborne SAR, and the first 

spaceborne SAR-SEASAT was on board in 1978 (Jordan, 1980). As a pioneering mission, 

it leads a new generation of SAR sensors and has been widely used in various earth 

observation missions.  

 

Figure 2.1 A general scheme of formation of a synthetic antenna array 

Synthesized Antenna 
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SAR is an imaging Radar which utilizes the flight path of the platform (space and airborne) 

to simulate an extremely large antenna to generate high-resolution radar images of the 

observing objects (Figure 2.1). Most of the airborne and spaceborne SAR systems have a 

fixed side-looking geometry (Moreira et al., 2013), and measuring the distance to objects in 

slant-range rather than the true horizontal distance of the ground (Figure 2.2). Hence, it 

produces images in varying scale, moving from near to far range. Radar's side-looking 

geometry can result in several image effects (Slant-range distortion) such as foreshortening, 

layover, and shadow. 

  

Figure 2.2 An illustration of side looking Radar imaging geometry and timing (image credit: 

DLR) 

( https://earth.esa.int/documents/10174/642943/6-LTC2013-SAR-Moreira.pdf.) 

2.2. SAR sensors 

The SAR sensors are different from the optical sensors, which observes the ground surface 

through actively sending microwave and receiving its reflections from the object. Because of its 

ability to measure ground surface differences at any time (independent of weather and daylight 

conditions,), it has become one of the most valuable tools for remote sensing of the earth and its 

environment. Due to the remarkable improvements in SAR sensors, more than 15 spaceborne 

https://earth.esa.int/documents/10174/642943/6-LTC2013-SAR-Moreira.pdf
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SAR sensors are being operated for various applications (Moreira et al., 2013). And the high-

resolution SAR sensors, COSMO-SkyMed (CSM) and TerraSAR-X (TSX) SAR sensors can 

acquire images with a ground resolution of 1 to 5 m, providing detailed surface information. 

In this study, considering the availability of SAR sensors, four sets of SAR images taken by 

different satellite sensors were used. Since our research is observing the ground surface 

deformation and its changing trends at a regional level, we used the moderate resolution ERS-1/-

2, ENVISAT ASAR, and ALOS PALSAR, a high-resolution mode ALOS-2 PALSAR-2 images. 

An overview of these sensors and their main characteristics are as follows. 

2.2.1. ERS-1/-2 and ENVISAT ASAR 

The European Space Agency developed the European Remote Sensing satellites ERS-1 and 

ERS-2 as a family of multi-disciplinary Earth Observation Satellites. The ERS-1 was launched on 

17 July 1991 into a sun-synchronous polar orbit at an altitude of 782-785 km, with an overall 

weight of 2384 kg (at launch) and an overall height of 11.8 m. It carried an array of earth-

observation instruments (i.e., RA (Radar Altimeter-Ku band), ATSR-1 (Along-Track Scanning 

Radiometer), SAR-C band, Wind Scatterometer, and MWR is a Microwave Radiometer) could 

gather information about the land, water, ice, and atmosphere. ERS-1 has 3 and 35-day repeat 

cycles and a resolution of around 20 m and 100 km coverage (Figure 2.3). ERS-1 has ended its 

mission on 10 March 2000, after a nearly two-decade (1991-2000). 

As a successor to ERS-1, ERS-2 was launched on 21 April 1995. It carried one new instrument, 

the Global Ozone Monitoring Experiment (GOME). It has a total weight of 2,516 kg, with a repeat 

cycle of three or 35 days, and shares the same orbit with ERS-1 and passes the same point on the 

ground one day later than ERS-1 (Figure 2.4). After spent 16 years in orbit, ERS-2 has ended its 

mission on Sept. 5, 2011 (1995-2011). 
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Figure 2.3 A view of the ERS-1 spacecraft in orbit (left) and Illustration of the deployed ERS-

1 spacecraft (right) (image credit: ESA) 

 

Figure 2.4 A view of the ERS-2 spacecraft (left) and Illustration of the deployed ERS-2 

spacecraft (right) (image credit: ESA) 
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The Environmental satellite (Envisat) is a successor to ERS and was launched by the European 

Space Agency on 1 March 2002 with 10 instruments. Envisat has a total weight of eight tons, with 

a repeat cycle of 35 days. The Advanced Synthetic Aperture Radar (ASAR) operated in the C 

band in image mode was used in this thesis. Envisat has ended its mission on 08 April 2012.  

 

Figure 2.5 A view of the Envisat spacecraft (left) and Illustration of the Envisat spacecraft 

(right) (image credit: ESA) 

2.2.2. ALOS PALSAR and ALOS-2 PALSAR-2 

Phased Array L-band Synthetic Aperture Radar (PALSAR) is one of the sensors on board the 

Advanced Land Observing Satellite “DAICHI” (ALOS), which is shown in Figure. 2.6. ALOS 

was launched on January 24, 2006 and operated by Japan Aerospace Exploration Agency (JAXA). 

When the Tohoku earthquake hit Japan in March 2011, the ALOS took more than 400 images 

over disaster-stricken areas to provide disaster information. However, a power generation 

anomaly caused a communication loss on April 22, 2011, and thus JAXA completed its operation 

on May 12, 2011. The observation of PALSAR sensor was carried out by the L-band with the 

23.6 mm wavelength and had three main modes: High resolution, ScanSAR, and Polarimetric 

mode. The High-resolution mode includes two types: single (FBS) and dual polarization (FBD). 

In this study, the SAR images taken by the FBS and FBD mode are mainly used to mapping the 

ground deformation. The detailed information of the PALSAR sensor and detail information for 

each mode is shown in Table 2.1. 
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Figure 2.6 The overall view and Illustration of the ALOS satellite (image credit: JAXA) 

Table 2.1 Parameters for each observing mode (adapted from the website of PASCO Co.) 

Mode High resolution ScanSAR  
Polarimetric 

(Experimental*1) 

Bandwidth 28 MHz 14 MHz  14 MHz, 28 MHz 14 MHz 

Polarization HH or VV 
HH+HV or 

VV+VH 
HH or VV HH+HV+VH+VV 

Range of incidence 

angles 
8 - 60° 8 - 60° 18 - 43° 8 - 30° 

Ground resolution 7 – 44 m 14 – 88 m 100m（multi look） 24 – 89 m 

Swath 40 – 70 km 40 – 70 km 250 – 350 km 20 – 65 km 

(Source: http://en.alos-pasco.com/alos/palsar/. ) 

The ALOS-2 is the successor of the ALOS launched on May 24, 2014, yet the structure is quite different 

from ALOS. The ALOS equipped with three sensors, AVNIR-2, PRISM, and PALSAR, and the new 

satellite is specialized for SAR. As a new generation, the capacity of the PALSAR-2 sensor has 

significantly improved from the PALSAR in all aspects, such as resolution, observation band, and repeat 

cycle. PALSAR-2 have a spotlight mode (1m×3m (in azimuth and range direction)), while PALSAR has 

http://en.alos-pasco.com/alos/palsar/
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a maximum of 10-meter resolution (Figure 2.7). The revisit time was also reduced from 46 days to 14 

days. Therefore, it will allow comprehensive monitoring of disasters around the world with more detailed 

information. 

Table 2.2 Characteristics and specifications of PALSAR-2  

Observation 

mode 

Spotlight Stripmap ScanSAR 

Ultrafine 

[3m] 

High sensitive 

[6m] 

Fine 

[10m] 

Normal Wide 

Bandwidth 

(MHz) 

84 84 42 28 14 28 14 

Resolution(m) 3×1 

(Rg×Az) 

3 6 10 100 (3 

looks) 

60 

Incidence 

angle (deg.) 

8 - 70 8 - 70 8 - 70 20 

- 

40 

8 - 70 23.7 8 - 70 8 - 70 

Swath (km) 25×25 

(Rg×Az) 

50 50 40 70 30 350 (5 

scans) 

490 (7 

scans) 

Polarization∗ SP SP/DP SP/DP/CP FP SP/DP/CP FP SP/DP SP/DP 

NESZ (dB) -24 -24 -28 -

25 

-26 -23 -

26 

-

23 

-26 

S/A (dB) Rg 25 25 23 23 25 20 25 25 20 

 Az 20 25 20 20 23 20 20 

∗ SP: HH or HV or VV, DP: HH+HV or VV+VH, FP: HH+HV+VH+VV, CP: compact pol. (Source:  

JAXA) 
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Figure 2.7 A view of the ALOS-2 PALSAR-2 satellite in orbit. (Image source: JAXA) 

2.3. InSAR 

Interferometric Synthetic Aperture Radar (InSAR) is a proven remote sensing technique that 

uses the phase information of two or more SAR images over the same region to measure ground 

surface movements. Figure 2.8 shows the basic geometrical configuration of InSAR, both master 

and slave acquisitions illuminate the same ground on the earth. B is the distance between two 

antennas, called baseline, θ is the look angle, and the slant ranges from Master and Slave to the 

target points are R1 and R2, respectively and α is the angle between the baseline and the horizontal. 

The major component causing the interferogram can be resolved as ϕtopo (topographic change in 

the terrain), ϕdefo (Surface deformation caused by natural processes or human activities) and ϕatmo 

(temporal and spatial differences in atmospheric delays). In addition to these, there are some other 

noise factors that are due to various error and unknown factors. All these contributions are 

superimposed, resulting in the observed total interferometric phase: 

ϕ = ϕtopo + ϕdefo + ϕatmo+ ϕscat + ϕorb + ϕnoise + 2πa                    (2.1) 

With phase ϕscat is the phase due to changes in scattering characteristics of the reflected surface, 

phase ϕorb is the phase shift due to the error in orbit determination and phase ϕnoise is the remaining 
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phase delay due to the thermal noise of the instrument. The last term represents the unknown 

integer number of phase cycles. 

 

Figure 2.8 The geometry of InSAR 

In the above expression ϕtopo can be expressed as follows: 

  𝜙𝑡𝑜𝑝𝑜 = −
4𝜋

𝜆

𝐵⊥

𝑅 sin 𝜃
ℎ                                                      (2.2) 

with B⊥ the perpendicular baseline, λ the wavelength, R the slant range, θ the look angle and h 

the height above the reference spheroid or ellipsoid. 

If the slant range difference is given by 
12 RRR −= , then the measured interferometric phase 

is  

  R−=





4
                                                  (2.3) 

This is 2  times the round-trip distance difference in wavelengths. By applying the law of 

cosines in 
21PSS , R  can be solved as 

  
11

22

1 )sin(2 RBRBRR l −−−+=                               (2.4) 
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There are two InSAR techniques to remove topographic phase from the interferogram: one is 

the DEM method (Massonnet et al., 1993) and the other is the three-pass method (Zebker et al., 

1994). The first method is also called two path InSAR method (DInSAR), which uses an existing 

DEM and calculate the topographic phase from the DEM and subtracted from the interferogram. 

The second method uses three SAR image pairs and one interferogram as a reference, which is 

believed to contain the topographic phase only. This approach has the advantage in that all data 

structure is kept within the SAR data geometry while the DEM method can produce errors by 

misregistration between SAR data and cartographic DEM. However, the three-pass approach is 

restricted by data availability. In Figure 2.9, we show an example DInSAR interferometry 

computed over Urayasu city, Chiba Prefecture, Japan, using two SAR images acquired using 

ALOS-PALSAR 2 satellite on December 4, 2014, and September 07, 2017. 

 

Figure 2.9 An example interferogram computed over Urayasu city, Japan using the two-path 

DInSAR method. (note: a and b represent the master and slave image, respectively; c represents 

a b c 

d e f 
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the calculated first interferogram; d is the reference DEM (5m) in slant range; e represents the 

flattened and filtered interferogram; f represents the final geocoded product). 

2.4. Multi-temporal InSAR-stacking technique  

As the conventional InSAR method is limited by the so-called temporal and geometrical 

decorrelation as well as by atmospheric artifacts (Prati, Ferretti and Perissin, 2010). One of the 

big effects is an atmospheric delay, and it has significant characters that it is correlated spatially 

and uncorrelated temporally. These features inspired the development of multi-temporal InSAR 

analysis techniques. Over the years, new advanced InSAR techniques have been proposed to 

improve the precision of deformation measurement by the joint analysis of a set of SAR images.  

The advanced multi-temporal InSAR techniques are mainly classified into two categories, 

Permanent Scatterer InSAR (PSI) and Small Baseline Subset (SBAS). The PSI focuses on the use 

of time series SAR images to detect coherent radar signals (pointwise and stable scatterers) over 

a sequence of interferograms (Ferretti, Prati and Rocca, 2000, 2001; Hooper and Zebker, 2007). 

The introduce of PSI was a breakthrough that increased the estimation of terrain velocity up to 

millimeter level. SBAS-use of all available SAR images with small baselines and a time interval 

to achieve a high degree of the spatial coverage of distributed scatters (Berardino et al., 2002). 

PSI and SBAS can mitigate the random atmospheric noise with a statistical approach. Nowadays, 

the number of satellite data sources is increasing steadily, and several algorithms have been 

developed (e.g., Intermittent SBAS (ISBAS) (Sowter et al., 2013), SqueeSAR (Ferretti et al., 

2011), Stanford Method for Persistent Scatterers (StaMPS) (Hooper, 2008), Stable Points 

Network (SPN) (Crosetto et al., 2008), Quasi Persistent Scatterers (QPS) (Perissin and Wang, 

2012), Persistent Scatterer Pairs (PSP) (Costantini et al., 2008), Interferometric Point Target 

Analysis (IPTA) (Werner et al., 2004), Coherent Pixels Technique (CPT) (Blanco-Sánchez et al., 

2008), Temporarily Coherent Point InSAR (TCPInSAR) (Zhang, Ding and Lu, 2011) and Delft 

Persistent Scatterer Interferometry (DePSI) (Kampes, 2005) etc.). Therefore, the advanced multi-

temporal InSAR methods are becoming a standard for ground surface monitoring instead of 

conventional InSAR.  
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Chapter 3 

3. Monitoring of Land-Surface Deformation in the Karamay 

Oilfield, Xinjiang, China Using SAR Interferometry 

 

3.1. Introduction 

Interferometric Synthetic Aperture Radar (InSAR) is a proven remote sensing technique that 

uses the phase information of SAR images to measure ground surface movements. However, the 

conventional InSAR method is limited by the so-called temporal and geometrical decorrelation as 

well as by atmospheric artifacts (Prati, Ferretti and Perissin, 2010). Over the years, new advanced 

InSAR techniques have been proposed to improve the precision of deformation measurement by 

the joint analysis of a set of SAR images (Zhang, Ding and Lu, 2015; Osmanoğlu et al., 2016), 

for example, Permanent Scatterer InSAR (PS-InSAR™)—use of time series SAR images to detect 

coherent radar signals over a sequence of interferograms (Ferretti, Prati and Rocca, 2000, 2001); 

Small Baseline Subset (SBAS)—use of all available SAR images with small baselines to achieve 

a high degree of spatial coverage of distributed scatters (Berardino et al., 2002); Persistent 

Scatterer Pairs (PSP)—works with pairs of points to identify and analyze persistent scatterer 

(Costantini et al., 2008); Quasi Persistent Scatterers (QPS)—utilizes partially coherent targets to 

increase the spatial density of the observations (Perissin and Wang, 2012); Stable Points Network 

(SPN), which has three key features (i.e., pixel selection, use of multi-master images and modeling 

capability) and less sensitive to geometric decorrelation (Crosetto et al., 2008); SqueeSAR™—a 

second generation of PS-InSAR™ which combines both the persistent and distributed scatterers 

(Ferretti et al., 2011); Stanford Method for Persistent Scatterers (StaMPS)—similar to PS-InSAR, 

but the PS points are defined as the scatters with stable phase characters (Hooper, 2008); 

Temporarily Coherent Point InSAR (TCPInSAR)—detecting the ground deformation rate and 

solving the phase ambiguities without phase unwrapping (Zhang, Ding and Lu, 2011); and 

Intermittent SBAS (ISBAS)—an extension of SBAS-InSAR that use the pixels which are 

intermittently coherent in addition to those consistently stable over time (Sowter et al., 2013), etc. 

These methods have been widely used to measure human- and naturally induced ground 

deformation, such as earthquake deformation (Liu et al., 2015; Ganas et al., 2016), mining 
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subsidence (Samsonov, d’Oreye and Smets, 2013; Li et al., 2016), volcano deformation 

(Chaussard, Amelung and Aoki, 2013; Jo, Jung and Won, 2017), landslides (Calò et al., 2014; 

Schulz et al., 2017) and glacier movement (Satyabala, 2016; Sánchez-Gámez et al., 2017). 

Additionally, several studies pertaining to gas/oil extraction-induced and CO2/water injection-

induced surface deformation have been carried out (Tamburini et al., 2010; Heimlich et al., 2015; 

Yang et al., 2015; Shirzaei et al., 2016; Sun et al., 2017).  

In particular, the extraction of ground water, oil and gas from underground reservoirs, and the 

injection of waste-water would induce deformation in reservoirs by changing the reservoir 

pressure and consequently generate measurable surface deformations in the form of subsidence 

or uplift (Khakim, Tsuji and Matsuoka, 2012). The excessive surface deformation can cause 

damage to engineering structures and other infrastructure, such as railroads, roads, buildings, and 

oil and gas pipelines (Guéguen et al., 2009; Grzovic and Ghulam, 2015). Thus, identifying the 

signs of impending land deformation is important in correcting the potential problems before 

associated accidents/incidents occur (Guglielmi et al., 2015). 

As one of the largest oilfields in China, the Karamay oilfield has large amount of heavy and 

ultra-heavy oil deposits (Xu, 2013). After several years of oil field development, a subsurface 

water injection project was initiated in 1985 to increase the oil production (Li, X.; Li, W.; Gao, 

B.; Yang, 2012). Despite the Karamay oilfield being in production since 1897 (Pang, 2001), due 

to the lack of ground measurement data, few studies have been conducted related to the land 

deformation in this area. Ji et al. (Ji et al., 2016) first applied the InSAR technique with Advanced 

Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) 

images acquired between October 2006 and December 2010 for investigating land-surface 

displacement in the Karamay oil field, and they detected a significant land uplift area located 

around the Hei103 well region and concluded that the land uplift may have been caused by 

subsurface water injection. However, the agreement of the results obtained by different 

microwave bands of SAR has not yet been achieved. To further understand land-surface 

deformation in the Karamay oilfield, this paper will make use of three InSAR methods. First, the 

two-path differential SAR interferometry (D-InSAR) method was applied to three L-band SAR 

images acquired by ALOS-PALSAR over the study area in the period from 20 January 2007 to 

25 January 2009; Second, we further applied the Persistent Scatterer (PS) and Small baseline 

subset (SBAS)-InSAR technique to 21 C-band images acquired by the Environmental Satellite 

(ENVISAT) C-band Advanced Synthetic Aperture Radar (ASAR) for the period 30 September 
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2003 to 15 June 2010. Moreover, comparisons of different InSAR methods and the comparison 

of satellite-derived deformation rates with the results of a previous continuous Global Positioning 

System (GPS) station was conducted. This research is intended to assist with identifying areas 

experiencing ground deformations, in turn helping local authorities concentrate on the detailed 

monitoring, investigation and risk mitigation over large areas at relatively low costs. 

3.2. Study Area and Data Sets 

3.2.1. Study area 

Karamay is a prefecture-level city in the northern part of the Xinjiang Uyghur Autonomous 

Region, the People’s Republic of China. Karamay covers an area of 9500 km2 and consists of four 

administrative districts, Urho, Baijiantan, Karamay and Dushanzi (Figure 3.1). Oil and natural 

gas are the main natural resources in Karamay with characteristics of large storage and higher 

quality. The region is in the mid-latitudes and has a typical temperate continental desert climate. 

The geomorphological type is predominantly Gobi Desert (Pan et al., 2012) with an altitude of 

250 m to 500 m. Of interest, the relatively minor change in elevation assists with achieving a more 

accurate result in the SAR interferometry by minimizing the Digital Elevation Model (DEM) error. 
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Figure 3.1. (a) Geographic location of the study area; (b) Administrative districts of the study 

area superimposed on the topographic map; (c) ALOS-Advanced Visible and Near Infrared Radiometer 

type 2 (AVNIR-2) false color composite image of the study area on 15 July 2008. The red and blue dashed 

lines represent the coverage of ENVISAT-ASAR and ALOS-PALSAR data sets. ALOS: Advanced Land 

Observing Satellite; ENVISAT: Environmental Satellite; ASAR: Advanced Synthetic Aperture Radar; 

PALSAR: Phased Array L-band Synthetic Aperture Radar. 

3.2.2. Data Sets 

The L-band ALOS satellite data sets covering the region of interest were provided by the 

Japan Aerospace Exploration Agency (JAXA). The SAR interferograms were computed from 

PALSAR fine-beam single-polarization (FBS) data taken on three different dates (20 January 

2007, 10 December 2008, and 25 January 2009), and predominantly over the winter season to 

minimize the adverse impact that vegetation has on the accuracy of SAR interferometry. 

Observation parameters for all the images were as follows: reference system for planning (RSP) 

number 94; path number 501; and acquired in the ascending orbit with an off-nadir angle of 34.3°. 

We also used twenty-one C-band ENVISAT-ASAR images provided by the European Space 

Agency (ESA) and acquired in the period from 30 September 2003 to 15 June 2010. These data 
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sets were acquired in the descending orbit with an incidence angle of 22.9°. A Shuttle Radar 

Topography Mission-3 (SRTM-3) version-4 (90 m resolution) was used to eliminate the 

topographic phase, which was downloaded from (http://www.cgiar-csi.org/ ). Figure 3.1 shows 

the cover ranges of the ALOS and ENVISAT data. 

 3.3. Methodology 

3.3.1. D-InSAR 

D-InSAR is a technique capable of detecting land-surface deformation by analyzing a single 

interferogram that is derived from a pair of SAR images with the addition of a DEM (Rosen et al., 

2000). In this study, the two-pass interferometry method was implemented by using two ALOS-

PALSAR Single Look Complex (SLC) images for interferogram generation, and then, the 

topographic phase was removed using the SRTM DEM data. To remove noise and to smooth the 

interferogram, the Goldstein–Werner filtering process was applied (Goldstein and Werner, 1998), 

and the coefficient in the filtering process was set to 0.2. Finally, the InSAR products were 

geocoded from the Range-Doppler coordinates to the map geometry with a pixel resolution of 25 

m. The SARscape® Modules (5.1) for ENVI (5.3) software suit was employed to process the 

level-1.1 data and perform interferometric analyses. 

3.3.2. PS and SBAS-InSAR 

PS-InSAR is one of the promising approaches that improves the precision of conventional 

InSAR displacement measurements. The PS-InSAR algorithm utilizes a time series of radar 

images to detect coherent radar signals from PS points to derive information of the terrain motion 

(Ferretti, Prati and Rocca, 2000, 2001; Hooper et al., 2004). Another algorithm called SBAS-

InSAR was also employed, which utilizes all available SAR images with small baselines to get 

high degree of spatial coverage of distributed scatters (Berardino et al., 2002). Both algorithms 

can compensate the disadvantages of the conventional D-InSAR, namely, phase errors due to 

geometrical and temporal decorrelation as well as atmospheric disturbance (Grzovic and Ghulam, 

2015).  

The ENVISAT-ASAR data were processed using both the PS and SBAS-InSAR methods. For 

PS-InSAR, we selected the slant-range image (28 November 2006) as a master image and 

generated 20 interferograms. The perpendicular baseline ranged from 43 m to 951 m, the temporal 

baseline ranged from 68 days to 1277 days, and selected the potential PS candidates with a 

http://www.cgiar-csi.org/
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coherence threshold of 0.67. For SBAS-InSAR, we selected the slant-range image (28 October 

2008) as a super master image. To reduce the geometrical and temporal decorrelation, the 

threshold criteria with a maximum temporal baseline of 735 days and a maximum perpendicular 

baseline of 483 m were used, and then, 68 interferograms were generated. Figure 3.2 shows the 

time-baseline plot for the ENVISAT-ASAR images used for PS and SBAS-InSAR processing. A 

combination of the minimum cost flow (MCF) network (Costantini, 1998) and Delauney 3D 

method (Hooper and Zebker, 2007) was employed for phase unwrapping with an unwrapping 

coherence threshold of 0.35. After that, a screening process of flattened, filtered interferograms 

and unwrapped phases for checking some unwanted behaviors and data problems, which were 

caused by strong orbit inaccuracy, non-coherent pairs, atmospheric artefacts, residual topography 

etc., and 12 interferometric pairs were discarded from further processing. For refinement and 

reflattening, the reference points where the unwrapped phase value close to zero and flat areas 

identified from a topographic map projected in the line of sight (LOS) direction were chosen 

(Ahmad Abir et al., 2015). A custom atmospheric filtering was performed with a low-pass spatial 

filter with a 1.2 km × 1.2 km window on each single acquisition, and a high-pass filter at 365 days 

on these preliminary results to recover the final and cleaned displacement time series. Finally, 

geocoding was done in the original satellite LOS direction with a pixel resolution of 25 m. The 

same software package used for D-InSAR was also used in the PS and SBAS-InSAR processing 

chain. 

 

Figure 3.2. Perpendicular baseline variations for both PS and SBAS-InSAR interferograms. 

Green diamonds represent selected interferogram pairs, and the yellow diamonds represent the 

selected master image of PS (left side: 28 November 2006) and SBAS (right side: 28 October 

2008). PS: Persistent Scatterer; SBAS-InSAR: Small Baseline Subset-Interferometric Synthetic 

Aperture Radar. 
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3.3.3. Pearson Correlation Coefficient and Root Mean Square Error 

The deformation rate derived from different methods with respect to each pixel in major 

deformation areas were compared using the Pearson correlation coefficient (r) and the root mean 

square error (RMSE). During the estimation, we only considered the common valid pixels taken 

from the deformation map of three InSAR methods. The Pearson’s r is often measured as a 

correlation coefficient with 0 indicating no linear relationship between the variables, +1 indicating 

a perfect increasing linear relationship and vice versa (Lawrence, I., 1989). 
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where n is the total number of common valid pixels of the selected reference points, x and y 

( x and y mean values) are the values of the pixels taken from the selected reference points. 

The RMSE values can be used to compare the individual model performance to that of other 

predictive models; it is often used in the field of geosciences, where researchers use the RMSE 

for model errors and comparison (McKeen et al., 2005; Chatterjee et al., 2013; Du et al., 2016). 
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where n is the total number of common valid pixels of the selected reference points, Xm,i and 

Xs,i are the deformation rate values of the reference points taken from the deformation map of two 

InSAR methods, respectively. 

3.4. Results and Analysis 

3.4.1. Results of D-InSAR Interferometry 

The coherence is an indicator of InSAR data quality and significantly influences the accuracy 

of the phase in interferograms (Zou et al., 2009). As shown in Figure 3.3, the mean coherence is 

lower (0.39) for the data pairs with long time intervals and relatively large perpendicular baselines 

(20 January 2007 and 10 December 2008, Bp = 643 m). Meanwhile, the mean coherence is higher 

(0.65) for the data pairs with short time intervals and relatively small perpendicular baselines (10 
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December 2008 and 25 January 2009, Bp = 472 m). Good quality interferograms were generated 

from these two data pairs (Figure 3.4); the interferogram with a relatively small perpendicular 

baseline shows good coherence (Figure 3.3b), but no significant land deformation was found 

(Figure 3.4b). It is due to the short interval of time, which was 46 days. Therefore, we used the 

differential interferogram generated from the large perpendicular baseline pair, which showed 

clear deformation at two sites in the study area. These areas are indicated by blue dashed circles 

in Figure 3.4a. Although the small time baseline image pair was not used for final displacement 

map generation, it served as a good example of showing the difference of different perpendicular 

baseline image pairs, and, provided useful clues for further data selection and analyzes.  

 

Figure 3.3. Coherence images of the interferograms generated from the data pair (a) (20 

January 2007 and 10 December 2008, Bp = 643 m) and (b) (10 December 2008 and 25 January 

2009, Bp = 472 m). 
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Figure 3.4. Differential interferograms generated from the data pair (a) (20 January 2007 and 

10 December 2008, Bp = 643 m) and (b) (10 December 2008 and 25 January 2009, Bp = 472 m) 

after the removal of topographic phase and noise filtering; (c,d) are the close-up view of a typical 

fringe maps, where the locations are indicated by the black dashed lines in (a).  

In general, the sequence of color fringes in the interferogram can be used to determine whether 

uplift or subsidence has taken place. We chose two close-up views of typical fringe maps (Figures 

4c, d) from these two deformation sites for further analysis. The ALOS-PALSAR data were in 

the ascending orbit in which observations were made from the west. The sequence of color fringes 

in these two figures shows a decrease in range (yellow–purple–blue), which denotes that the 

ground objective moves closer to the satellite. In this study, we did not consider the horizontal 

movement, and thus, it corresponded to an uplift. During the process of extracting the ground 

displacement, we unwrapped the interferogram in order to solve the 2π ambiguity, and corrected 

the satellite orbit inaccuracy and phase offset using the collected external ground control points 

(GCPs). The final geocoded ground displacement map in the LOS direction is shown in Figure 
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3.5. The figure shows that two sites in the north-eastern part of the city exhibit clear indications 

of land uplift, and the maximum LOS displacement was approximately 13 cm in the study period.  

 

Figure 3.5. Geocoded displacement map in the line of sight (LOS) direction obtained by the 

differential SAR interferometry (D-InSAR) analysis from the ALOS-PALSAR data pair. Positive 

(negative) values indicates the ground close to (away from) the satellite.  

3.4.2. Results of PS and SBAS-InSAR Interferometry 

3.4.2.1. Interferometric Phase Change over Time 

The interferometric phase is useful for analyzing the ground deformation trends over time in 

the LOS direction [49]. The time series interferograms generated from each data pair from (a) to 

(k) are shown in Figure 3.6. Generally, we could roughly identify the deformation areas in the 

large scale by analyzing the fringe density in differential interferograms. In addition, the sequence 

of color fringes in the interferogram can be a good indicator of whether uplift or subsidence has 

taken place. Figure 3.6a shows a typical interferometric phase image, in which the fringes clearly 

show the areas with a high deformation rate.  
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The ENVISAT-ASAR data were in the descending orbit and observations were made from 

the east. As shown in Figure 3.6b, the sequence of color fringes shows a decrease in range 

(yellow–purple–blue), which denotes that the ground objective moves closer to the satellite. In 

this study, we did not consider the horizontal movement, and thus, it corresponded to an uplift. 

To identify and highlight the time series of ground deformation in the period of 30 September 

2003 to 15 June 2010, we selected a main deformation area, where the location is highlighted in 

red dashed lines in Figure 3.6a. As shown in the figure, a slight deformation can be observed 

from the earliest image in September 2003 to September 2006 (Figure 3.6c–f), the rate of 

deformation increases significantly from November 2007 (Figure 3.6g–k), and a pattern of 

rebound, expanding in area and increasing in quantity, can be observed during this period.  
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Figure 3.6. (a) The representative interferogram generated from the data pair (29 November 

2006 and 6 May 2008); (b) Close-up view of a typical fringe map, where the location is indicated 

by the black dashed lines in Figure 3.6a. Figure from (c) to (k) correspond to the main deformation 

area, which is highlighted in a red dashed line in (a), and they show the interferometric phase 

change in different time periods. The image in 29 November 2006 is the common master image. 
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3.4.2.2. Mean Deformation Velocities and Temporal Evolutions 

 

Figure 3.7. Mean displacement map of ENVISAT-ASAR data from 2003 to 2010. (a) The 

mean displacement velocity map of the PS-InSAR method; (b) The mean displacement velocity 

map of the SBAS-InSAR method. Positive (negative) values indicates the ground close to (away 
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from) the satellite. The points T1, T2, T3 and T4 are chosen for showing the accumulative time 

series land deformation pattern. 

Analyses of the PS and SBAS-InSAR results from the ENVISAT-ASAR dataset show that 

significant surface uplift occurred over or near the oilfields over the study period (Figure 3.7). 

The spatial distributions and mean displacement velocity for the period from 30 September 2003 

to 15 June 2010 are shown in Figure 3.7a (for PS-InSAR), Figure 3.7b (for SBAS-InSAR). 

Temporal decorrelation of bare land and agricultural areas were excluded by the coherence 

threshold. Major uplifted areas were highlighted by both PS and SBAS-InSAR methods and 

indicated in red dashed circles in Figure 3.7a, b. Dense PS points were detected around the 

reservoir area, whereas the distributions of PS points were sparse in other areas. The maximum 

deformation velocity was approximately 24 mm/year. The locations and the mean deformation 

velocity detected by the SBAS-InSAR technique were much clearer than the PS-InSAR results 

(Figure 3.7b). SBAS-InSAR also revealed a major uplift area that was not detected using the PS-

InSAR, as indicated by the black dashed circles in Figure 3.7a, b. The estimated maximum 

deformation velocity was approximately 33 mm/year in the LOS direction.  

Figure 3.8 shows the PS and SBAS-InSAR measured displacements over time, from 30 

September 2003 to 15 June 2010, for four specific points located within the major deformation 

area (Figure 3.7). Three typical reference points were selected with the induced deformation as 

T1–T3 and one stable reference point as T4, which are shown in Figure 3.7a, b. Figure 3.8 

illustrates that both PS-InSAR and SBAS-InSAR methods have good agreement in the 

deformation trend, with the time evolutions of each selected pixel sharing similar characteristics, 

such as increasing uplift. Despite a notable difference in values for T3, both PS-InSAR and SBAS-

InSAR show a trend of consistently increasing deformation. The point T1 shows the largest 

deformation with the maximum uplift of 151.8 mm in 2010 in the LOS direction. The activity of 

the wastewater injection of the area may be responsible for the continuing land uplift.  
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Figure 3.8. (a–d) Comparison of time series deformation obtained by the PS-InSAR and 

SBAS-InSAR methods at the selected locations T1 to T4 (Figure 3.7). 

3.5. Comparison and Discussion 

Quantitative accuracy assessment is essential for evaluating the usability and reliability of 

InSAR-derived deformation (Tantianuparp et al., 2013). However, except for the one GPS station, 

no other ground measurements are available, and thus, an alternative approach was used to 

perform cross-validation among the results from the three InSAR methods.  

To compare the deformation results obtained from the D-InSAR, PS and SBAS-InSAR 

methods, the mean deformation velocity of D-InSAR processing results was calculated by 

averaging the displacement values. As explained in previous Section 3.4.2.1, the rate of 

deformation in 2003–2006 is different from that in 2006–2010, and the D-InSAR derived 

deformation is obtained from the data in 2007–2009. That is, the D-InSAR results are only 

comparable to the deformation rate in 2006–2010. Therefore, the deformation rate of PS and 

SBAS-InSAR in 2006–2010 are considered for further comparison. We selected 500 reference 
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points from the PS-InSAR results in the study area, including both the stable and deformed areas 

(Figure 3.9d). The LOS displacement velocity for these points was plotted compared with the 

SBAS and D-InSAR results, and the correlation coefficients were calculated. The results show 

good agreement between the SBAS and D-InSAR methods with a correlation of 0.75, and the 

RMSE was approximately 4.918 mm/year. However, the results from the D-InSAR and PS-

InSAR were not as comparable, with a low correlation of 0.54 and an RMSE of 6.043 mm/year. 

However, all the three methods could identify the main deformation areas, except for one of the 

main deformation areas in PS-InSAR indicated in black circles in Figure 3.7a. This may be 

caused by low backscatter in the wide non-urban land use, where the sufficient number of PS 

points could not be detected in the PS-InSAR processing.  

 

Figure 3.9. Comparison of mean deformation velocity among D-InSAR, PS-InSAR and 

SBAS-InSAR methods (a–c) for the selected locations, shown as pink cross lines, in (d), showing 

the distribution of the selected 500 reference points. The blue triangle denotes the location of 

previous GPS station (Ji et al., 2016).  
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Although the XJKL is the only GPS station located within the study area and is insufficient to 

measure and represent the entire deformation area, it provides a means of assessing the accuracy 

of the InSAR data and methods used in this study. The deformation rate at the XJKL continuous 

GPS station was 9.6 mm/year, while the D-InSAR and SBAS-InSAR derived deformation rates 

were 1.2 and 7.4 mm/year, respectively. No displacement was found in the PS-InSAR 

measurement results. In addition, the identified deformation area and the temporal evolution 

pattern in this study agree well with the results obtained by Ji et al. (Ji et al., 2016). In our study, 

the maximum deformations from 2003 to 2010 for SBAS and PS-InSAR were approximately 22.7 

cm and 17.8 cm, respectively, and the results of D-InSAR was 13 cm for the period 2007 to 2009, 

which are comparable to the previous research results in which the maximum uplift magnitude 

was reported as 20 cm over the years 2006 to 2010 (Ji et al., 2016). The comparison result shows 

slight differences between the two results, which might be caused by the differences in the 

deformation trend in the different periods, rather than any deficiencies in one method over the 

other. As shown in Figure 3.6, the deformation was evident and more accelerated from 2006 to 

2010 than during the previous time of 2003 to 2006. 

3.6. Conclusion 

To assess the degree of deformation in the oilfields of Karamay, Xinjiang, China, the D-

InSAR technique was applied to ALOS-PALSAR data and the PS-InSAR and SBAS-InSAR to 

the ENVISAT-ASAR dataset. The results showed that all the three methods could provide useful 

information for identifying the boundaries of deformation and revealed two areas of land uplift 

near the oilfield. The maximum deformation velocity was estimated to be 33 mm/year. As 

previous research suggests, the subsurface water injection used to enhance oil recovery is the 

likely cause of this land uplift. The comparison of results from each of the three methods indicates 

that the correlation of the SBAS-InSAR and D-InSAR results is higher than that of the PS-InSAR 

and D-InSAR results. For this study area, the SBAS-InSAR method was found to be more robust 

than the PS-InSAR method. Future investigation can improve the findings of this study by 

utilizing GPS base stations in the high deformation areas and monitoring long-time land 

deformation in combination with more accurate and improved satellite data. 
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Chapter 4 

4. Multi-Sensor InSAR Analysis of Progressive Land 

Subsidence over the Coastal City of Urayasu, Japan 

 

4.1. Introduction 

Land subsidence is one of the most serious environmental problems in many urban areas 

around the world (Pradhan et al., 2014). In particular, coastal areas, which contain young and 

compressible deposits, are often vulnerable to subsidence caused by either anthropogenic or 

natural factors (Chaussard et al., 2013; Tessler et al., 2015). This phenomenon is evident in the 

coastal city of New Orleans, LA in the USA (Jones et al., 2016), Jakarta in Indonesia (Abidin et 

al., 2011; Ng et al., 2012), Ho Chi Minh in Vietnam (Ho Tong Minh, Van Trung and Le Toan, 

2015), Bangkok in Thailand (Aobpaet et al., 2013), Shanghai and Shenzhen in China (Dong et al., 

2014; Xu et al., 2016), Venice in Italy (Tosi, Teatini and Strozzi, 2013) and in the western 

Netherlands (Koster, Erkens and Zwanenburg, 2016). Continuous land subsidence causes 

remarkable economic losses in the form of building damages leading to high maintenance costs 

(Raspini et al., 2014). Thus, identifying land deformation trends is a crucial task to maintain the 

sustainability of coastal urban areas (Normand and Heggy, 2015). 

Over the past two decades, land subsidence monitoring has been significantly improved by 

the use of interferometric synthetic aperture radar (InSAR) techniques (Cianflone et al., 2015). 

Although the traditional methods (i.e., global positioning system (GPS) and leveling) can also 

provide precise measurements, they cannot acquire dense ground displacement measurements 

with a large-scale coverage in a short time and at a low cost (Hsieh et al., 2011). The advanced 

time-series InSAR techniques, such as persistent scatterers interferometry (PSI) and the small 

baseline subset (SBAS) technique, can achieve results in better spatial and temporal resolutions 

with higher precision (Ferretti, Prati and Rocca, 2000, 2001; Berardino et al., 2002; Hooper et al., 

2004). Furthermore, the increase in the available synthetic aperture radar (SAR) satellites with 

different temporal and spatial resolutions has provided a great opportunity for researchers to 

perform long-term geohazard monitoring by combining observations from those satellites (Armas 

et al., 2017). 
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Urayasu City is located in the Tokyo Bay area, where more than 70% of the area was reclaimed 

from 1964 to 1980 (Tokimatsu et al., 2012; Yasuda et al., 2012). The reclamation was performed 

using the sand and soil dredged from the seabed off the coast of Urayasu (Nigorikawa and Asaka, 

2015). In addition, Urayasu City is located in an earthquake-prone area, which increases the risk 

of land subsidence due to the combined effects of seismicity and the natural consolidation of soil 

(Okada et al., 2011; Zhou et al., 2017). On 11 March 2011, a devastating earthquake of moment 

magnitude Mw 9.0 occurred off the coast of Tohoku, Japan, which caused severe damage to 

buildings and infrastructures and created large ground settlements of up to 60 cm in the reclaimed 

areas (Bhattacharya et al., 2011; Tokimatsu and Katsumata, 2012). This catastrophic event has 

attracted a great deal of attention from researchers and organizations. The Geospatial Information 

Authority of Japan (GSI) carried out a leveling survey, comparing the results with light detection 

and ranging (LiDAR) survey data, and concluded that the surface subsidence was not caused only 

by the soil liquefaction but also by pro-earthquake consolidation (Imakiire and Koarai, 2012). 

Konagai et al. (Konagai et al., 2013) mapped the soil subsidence using LiDAR data taken before 

and after the earthquake. Pasquali et al. (Pasquali et al., 2015) measured the land subsidence 

during 2006–2010 using both the Environment Satellite Advanced Sythetic Aperture Radar 

(ENVISAT ASAR) and the Advanced Land Observation Satellite Phased Array L-band Synthetic 

Aperture Radar ALOS PALSAR data. ElGharbawi and Tamura (ElGharbawi and Tamura, 2015) 

estimated the liquefaction induced deformation using ALOS PALSAR images spanning from 

August 2006 to April 2011. Nigorikawa and Asaka (Nigorikawa and Asaka, 2015) conducted a 

leveling survey from April 2011 to April 2013 and found accelerated land settlement only in the 

reclaimed land areas rather than in the natural alluvial low land and pointed out the settlement 

may still be ongoing. However, the previous studies mainly focused on the soil liquefaction-

induced subsidence during the earthquake, and the long-term spatiotemporal evolution of land 

subsidence before and after the earthquake has not yet been clearly identified. 

In this study, we used three different SAR datasets, the European Remote Sensing satellites 

(ERS-1/-2) and ALOS PALSAR & ALOS-2 PALSAR-2 to identify the trends of land subsidence 

dynamics in Urayasu City over a period of 24 years by using multitemporal InSAR techniques. 

Moreover, the InSAR results were compared with leveling survey data. The observed results may 

provide useful information for identifying and understanding the behavior of the slow subsidence 

phenomenon over a long-time period, which plays an important role in future risk mitigation 

strategies. 
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4.2. Study area 

 

 

Figure 4.1. The map of the study area, Urayasu City, Japan. (a) The geographic location of 

Urayasu City; (b) the distribution and development history of the reclaimed areas, namely Moto-

Machi (old town) outlined in green, Naka-Machi (central town) outlined in yellow and Shin-

Machi (new town) outlined in red. A to G represent the reclaimed areas at different times. The 

background image is a Phased Array L-band Synthetic Aperture Radar onboard the Advanced 
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Land Observation Satellite (ALOS-2 PALSAR-2) intensity image acquired on 4 December 2014; 

and (c) the topography of the study area (GSI, 2018b). 

Urayasu City is located in the Tokyo Bay area of Chiba Prefecture, from 139°56’22’’E to 

139°52’20’’E and from 35°37’N to 35°40’23’’N. The total area is 16.98 km2, and the total 

population was 167,950 in February 2018 (Urayasu City population statistics, 2018). As shown 

in Figure 4.1, Urayasu City is divided into three areas, namely, Moto-Machi (old town), Naka-

Machi (central town) and Shin-Machi (new town). Moto-Machi is a naturally formed Holocene 

lowland, and the other two areas were reclaimed from 1964 to 1980 (Urayasu City, 2009; 

Tokimatsu et al., 2013). Figure 4.1b and Table 4.1 shows the distribution and other detailed 

information of those reclaimed areas. The elevation in the old coastline area of Moto-Machi is 

approximately 0 to 2 m and gradually increases towards the coastal levee, becoming especially 

high in Sogo Park of Akemi district and the Tokyo Disney resort area (Figure 4.1c). The thickness 

of the alluvial soil layers varies from 20 m in the Moto-Machi area to 60–80 m in the Naka-Machi 

and Shin-Machi areas, which indicates the complexity of the soft soil distribution in those areas 

(Tokimatsu et al., 2012; Yasuda et al., 2012).  

Table 4.1. The detailed history of reclaimed areas and the districts. 

Reclaimed 

Areas 

Reclaimed 

Year 
Districts 

A 1975 Maihama 

B 1968 
Higashino, Tomioka, Imagawa, 

Benten and Tekkodori 

C 1971 Kairaku, Mihama and Irifune 

D 1978 Akemi and Hinode 

E 1980 Takasu 

F 1979 Minato 

G 
1979 and 

1981 
Chidori 

 

4.3. Data Sets and Methods 

4.3.1. Data Sets 

In this study, the SAR data collected by the ERS-1/-2 and ALOS-1/-2 satellites were used to 

monitor the long-term deformation pattern of Urayasu City. The ERS-1/-2 data were provided by 

the European Space Agency (ESA) and the PALSAR & PALSAR-2 data by the Japan Aerospace 

Exploration Agency (JAXA). A total of 52 C-band ERS-1/-2 single look complex (SLC) scenes 
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were acquired from the track/frame 489/2889 during the period from May 1993 to February 2006. 

Note that there is a data gap in 1994 and 1995 due to the limited acquisitions of ERS-1 data; 24 

L-band ALOS PALSAR SLC data were acquired from the path/frame 58/2900 during the period 

from June 2006 to December 2010; 13 L-band ALOS-2 PALSAR-2 SLC data were acquired from 

the path/frame 18/2900 during the period from December 2014 to November 2017. The detailed 

acquisition parameters of these three SAR data are given in Table 4.2.  

A 5-m high-resolution digital elevation model (DEM) provided by the GSI was used as a 

reference to remove the topographic phase in the multitemporal InSAR processing (GSI, 2018b). 

The daily GPS data observed by the GPS earth observation network system was used as reference 

point, and the leveling survey measurement data was used to validate the InSAR derived 

deformation. The daily GPS data was provided by the GSI of Japan. The leveling survey 

measurements have been conducted by the Chiba Prefecture on an annual basis, and the results 

are publicly available at their official website (Chiba Prefecture, 2017a). The archived leveling 

survey data before 2008 was obtained from the Chiba Prefectural Archives. 

 Table 4.2. Acquisition parameters of the ERS-1/-2, ALOS PALSAR and ALOS-2 

PALSAR-2 data sets. 

SAR1 Sensor ERS-1/-22 ALOS PALSAR ALOS-2 PALSAR-2 

Orbit direction Descending Descending Descending 

Operation mode SAR/IM3 FBS/FBD4 Strip map (SM)1 

Band (wavelength) C-band (5.6 cm) L-band (23 cm) L-band (23 cm) 

Resolution 20 m 10/20 m 3 m 

Revisit cycle 35 days 46 days 14 days 

Look angle 23° 34.3° 35.4° 

Incidence angle 23.3° 38.7° 39.7° 

Swath 100 km 70 km 50 km 

Number of images 52 24 13 

Temporal coverage 
May 1993 to 

February 2006 

June 2006 to 

December 2010 

December 2014 to 

November 2017 

 

 

4.3.2 Methodology 

The multitemporal InSAR methodologies involve the use of multiple SAR datasets to 

overcome the limitations of conventional InSAR (e.g., spatial and temporal decorrelations and 

atmospheric disturbance) and measure the land surface displacements with high precision (Hooper, 

2008; Grzovic and Ghulam, 2015; Qu et al., 2015). In this study, the PSI and the SBAS were 

applied to the archived (i.e., ERS-1/-2 and ALOS PALSAR) and recent (i.e., ALOS-2 PALSAR-

1 synthetic aperture radar; 2 European Remote Sensing satellites; 3IM: image mode; 4 FBS: fine 

beam single; FBD: fine beam double. 
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2) SAR data. The PSI method utilizes a time-series of radar images to identify high coherent 

points, the so-called persistent scatterers (PS) (Ferretti, Prati and Rocca, 2000, 2001; Hooper et 

al., 2004); the SBAS method uses distributed scatterers from all available SAR images with 

corresponding small baselines in order to reduce the spatial decorrelation and obtain the time-

series displacements (Berardino et al., 2002). The reason for using both techniques relies on the 

fact that the PSI applicability is limited to temporally uniform rates of displacement, while the 

SBAS has the ability to capture strong nonlinearities in the study area (Hooper et al., 2012). The 

PSI has a high sensitivity to slow displacements but suffers severe limitations in the capability to 

measure ‘‘fast” deformation phenomena, and the PS density is usually low in vegetated, forested 

and low-reflectivity areas (e.g. very smooth surfaces) (Crosetto et al., 2016), while the SBAS 

performs better in nonurban vegetated areas, and also in areas with high deformation rates 

(Gourmelen, Amelung and Lanari, 2010; Chaussard et al., 2014). 

As shown in Figure 4.2, the ERS-1/-2 and PALSAR data were processed using both the PSI 

and SBAS methods. Due to the limited number of PALSAR-2 acquisitions, we used only the 

SBAS method. The SARscape® Modules (5.4) for ENVI (5.4) software suite (HARRIS 

Geospatial Solutions, Broomfield, CO, USA) was employed to perform the interferometric 

analyses. For the ERS-1/-2 data, we used the latest precise orbit products provided by the ESA to 

correct the orbit inaccuracies (ESA, no date) and generate a total of 424 interferograms, including 

36 for PSI processing and 388 for SBAS processing pairs (Figure 4.2a and b). The PSI pairs were 

generated with respect to the master image from 24 January 2000. The normal baselines range 

from 22 m to 557 m. A custom atmospheric filtering was performed with a low pass spatial filter 

with a 1.2 km × 1.2 km window and a temporal high pass filter at 365 days. The mean coherence 

threshold of 0.56 was used to identify the PS candidates. To obtain more accurate displacement 

measurements, the GPS base station was used as a reference point in the geocoding process 

(Figure 4.1b). The SBAS pairs were generated with respect to the multi-master images and by 

setting spatial and temporal threshold criteria. The threshold criteria for the absolute mean of the 

normal baselines was 210 m and that for the absolute mean of the temporal baselines was 937 

days. Moreover, the image acquired on 2 August 1999 formed the largest number of 

interferometric pairs, when used as a master scene. For that reason, it was chosen as a reference 

(i.e., super master image). Therefore, all the slave scenes are co-registered to this reference 

geometry (Figure 4.2b). To increase the signal-to-noise ratio of the interferograms, a multi-

looking factor of one in range and five in azimuth was used, producing a ground resolution of 

about 20 m. The topographic phases in both the PSI and SBAS interferograms were removed 
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using the 5-m DEM data. After that, we visually checked the intermediate products (i.e., flattened 

and filtered (wrapped) interferograms and the unwrapped phases) to detect possible errors, which 

were caused by strong orbit inaccuracy, non‐coherent pairs, atmospheric artefacts, residual 

topography etc., and 23 interferometric pairs were discarded from further processing. For 

refinement and re-flattening, we selected 45 reference points where the unwrapped phase value 

was close to zero and the flat areas were identified from the unwrapped interferograms and the 

topographic map. The linear inversion model was used to estimate the residual height and the 

displacement velocity for both the PSI and SBAS processing (Berardino et al., 2002). 

For the PALSAR data, we used both fine beam single (FBS) polarization and fine beam double 

(FBD) polarization images, with an horizontal transmit and horizontal receive (HH) polarization 

mode, and generated a total of 150 interferograms, including 21 for PSI processing and 129 for 

SBAS processing pairs (Figure 4.2c and 4.2d). The PSI pairs were generated with respect to the 

master image of 5 August 2009. The normal baselines range from 237 m to 3084 m. The same 

atmospheric filter which was used for the ERS-1/-2 PSI processing was also used to remove the 

atmospheric phase components. The mean coherence threshold of 0.75 was used to identify the 

PS candidates. The same GPS base station used for the ERS-1/-2 PSI processing was used as a 

reference point in the geocoding process. The SBAS pairs were generated with respect to the 

multi-master images and by setting spatial and temporal threshold criteria. The threshold criteria 

for the absolute mean of the normal baselines was 1084 m and that for the absolute mean of the 

temporal baselines was 453 days. The image acquired on 20 March 2009 was chosen as a super 

master image (Figure 4.2d). A multi-looking factor of one in range and five in azimuth was used, 

producing a ground resolution of about 15 m. The topographic phase in both the PSI and SBAS 

interferograms was removed using the same DEM used for the ERS data. Four interferometric 

pairs were removed due to the unwrapping errors. The same reference points used in ERS-1/-2 

SBAS processing were also used for the refinement and re-flattening. The same linear inversion 

model was used for both the PSI and SBAS processing. In Figure 4.2, (a) is the time–position 

plot of PSI interferograms generated by the ERS-1/-2 data, with 24 January 2000 as the master 

image; (b) time–baseline plot of SBAS interferograms generated by the ERS-1/-2 data, with 2 

August 1999 as the super master image; (c) time–position plot of PSI interferograms generated 

by the ALOS PALSAR data, with 5 August 2009 as the master image; (d) time–position Delaunay 

3D plot of SBAS interferograms generated by the ALOS PALSAR data, with March 20, 2009 as 

the super master image; (e) time–position Delaunay 3D plot of SBAS interferograms generated 

by the ALOS-2 PALSAR-2 data, with 4 December 2014 as the super master image; and (f) the 
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histogram of the average coherence for the three satellite datasets. These connections in (d) and 

(e) are a subset of the whole main network and represent such interferograms that will be 

unwrapped in a 3D way. 

 

Figure 4.2. The temporal and spatial baseline distributions of the SAR interferograms from the 

ERS-1/-2, ALOS PALSAR and ALOS-2 PALSAR-2 data sets (a–e), where each acquisition is 

represented by a diamond associated to an ID number; the green diamonds represent the valid 

acquisitions and the yellow diamonds represent the selected master image of persistent scatterers 

interferometry (PSI) and super master image of the small baseline subset (SBAS). 
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The histogram of the average coherence for the PALSAR-2 data shows the relatively good 

coherence of PALSAR-2 when compared with the ERS-1/-2 and PALSAR data (Figure 4.2f). 

For the PALSAR-2 data, we generated 78 interferograms for SBAS processing (Figure 4.2e), 

with respect to the multi-master images. The threshold criteria for the absolute mean of the normal 

baselines was 182 m and that for the absolute mean of the temporal baselines was 386 days. The 

image acquired on 4 December 2014 was chosen as a super master image. A multi-looking factor 

of six in range and seven in azimuth was used, producing a ground resolution of about 15 m. The 

topographic phase was removed using the same DEM used for the PALSAR data processing. To 

smooth the differential phase, the Goldstein filter was applied (Goldstein and Werner, 1998). The 

minimum cost flow (MCF) network and Delaunay 3D method were employed to unwrap the 

differential interferograms (Costantini, 1998; Hooper and Zebker, 2007) with an unwrapping 

coherence threshold of 0.35. The same reference points used in PALSAR SBAS processing was 

also used for the refinement and re-flattening. The linear inversion model was used in the 

processing. All the final displacement measurements were measured in the satellite line of sight 

(LOS) direction and were geocoded in the WGS84 reference ellipsoid with a 25-m ground 

resolution. 

4.4. Results 

4.4.1. Time-Series Analysis of the ERS-1/-2 Data from May 1993 to February 2006 

The mean velocity (mm/year) maps of the final geocoded displacements generated from the 

ERS-1/-2 data are shown in Figure 4.3a (for PSI) and 4.3b (for SBAS). The color cycle from 

green to purple indicates the positive to negative velocities in the LOS direction. The negative 

values indicate that the surface is moving away from the satellite (i.e., subsidence) while the 

positive values indicate the opposite direction of movement (i.e., uplift). As shown in Figure 4.3a 

and 4.3b, the major subsidence areas were highlighted by both InSAR measurements, which were 

located on the borders of the Naka-Machi and Shin-Machi areas. The results derived from the 

SBAS method show higher densities of the obtained points than those of the PSI. In the study area 

of over 860,256 pixels, 54,458 measurement points were obtained by the PSI method, and 89,251 

points by the SBAS method. The presence of vegetation in Urayasu City, namely the palm trees 

in the streets and parks might cause this difference. The histograms of the estimated displacement 

velocities by the PSI and SBAS for the study area are shown in Figure 4.4a and 4.4b, respectively. 

The average displacement rate and the standard deviation for the PSI were -1.0 and 4.9 mm/year, 

while those for the SBAS were -0.95 and 1.9 mm/year, respectively. In general, the ERS-1/-2 
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results show that approximately 85% of the PS points indicate displacement rates between -4 

mm/year and 2 mm/year (Figure 4.4). 

Figure 4.5 shows the measured displacement histories for eight representative points, which 

are shown in Figure 4.3. For both the PSI and SBAS measurements, the patterns of subsidence 

for each point show similar characteristics, such as an increase in subsidence rates. However, 

point P1 located in Moto-Machi shows very low subsidence rates (−0.1 and −0.9 mm/year for PSI 

and SBAS, respectively) compared to those in other areas. This suggests that the Moto-Machi 

area had relatively stable ground conditions during the ERS-1/-2 monitoring period. It is worth 

mentioning that the PSI’s estimated displacement velocity is almost two times more than the 

SBAS results; this may be caused by the different reference points selected in the two methods. 

We also calculated the correlation coefficient between PSI and SBAS results over those selected 

points using the Pearson correlation coefficient (Lawrence, I., 1989; Aimaiti et al., 2017). Most 

of those points showed relatively good correlation, while the P1 and P3 showed low correlation. 

However, the points P1 (−0.1mm/year vs −0.8mm/year) and P3 (−0.7 mm/year vs −2.3 mm/year) 

both show a small displacement velocity. To provide a quantitative comparison of the estimated 

time series for those selected points, we calculated the velocity difference between the two 

methods. The smallest velocity difference was 0.7 mm/year (P1), while the largest velocity 

difference was 12.6 mm/year (P7). The average velocity difference for all points between the two 

methods was 4.6 mm/year.  
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Figure 4.3. Line of sight (LOS) displacement velocity in Urayasu City from 1993 to 2006 for 

the ERS-1/-2 data: (a) Estimated mean displacement velocity using the PSI method; (b) estimated 
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mean displacement velocity using the SBAS method. The background image is an ERS-2 intensity 

image acquired on May 24, 1999. The red points P1 to P8 are the selected points to show the time-

series LOS displacements estimated by the PSI and SBAS measurements in (a) and (b), 

respectively.   

 

Figure 4.4. Histogram distribution for the ERS-1/-2-derived displacement rates from May 

1993 to February 2006: (a) the corresponding histogram of the PSI measurements from the ERS-

1/-2 data; and (b) the corresponding histogram of the SBAS measurements from the ERS-1/-2 

data.  
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Figure 4.5. Time-series LOS displacement plots of the PSI and SBAS measurements from the 

ERS-1/-2 data (a–h) for the selected points P1 to P8, which are indicated by red points in Figure 

3. 
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4.4.2. Time-Series Analysis of the PALSAR Data from June 2006 to December 2010 

The mean velocity (mm/year) maps of the displacements for the period from June 2006 to 

December 2010 is shown in Figure 4.6a for PSI and 4.6b for SBAS. The same color cycle from 

green to purple was used for those results. As shown in Figure 4.6a and 4.6b, the density of the 

measured points by the PSI is coarser than those by the SBAS, due to the existence of vegetation 

in the study area. In the study area of over 695,387 pixels, 50,441 measurement points were 

obtained by the PSI method, and 78,044 points by the SBAS method. The histograms of the 

estimated displacement velocity by the PSI and SBAS for the study area are shown in Figure 4.7a 

and 4.7b, respectively. The average displacement rate and the standard deviation for the PSI were 

-1.3 and 3.9 mm/year, whereas those for the SBAS were -1.7 and 3.3 mm/year, respectively. 

Overall, the PALSAR results show that approximately 85% of the PS points indicate displacement 

rates between -6 mm/year and 3 mm/year (Figure 4.7).  

During the PALSAR monitoring period, most of the previously detected subsidence areas 

were also detected in this period, but the spatial distributions of subsidence are reduced (e.g., the 

areas such as points P2, P4, P5 and P8 located in Figure 4.6a and 4.6b). This indicates that most 

of those areas were experiencing continuous subsidence over the study period, but the magnitude 

was beginning to decrease. This is evident at the points P2 and P4 (Naka-Machi) and P8 (Shin-

Machi) that showed a decrease in displacement velocity compared to the ERS-1/-2 monitoring 

period. In addition, the leveling data at the points U-8, U-10, U-11, U-13 and U-14 also reveal 

that the subsidence rate has begun to decrease from 2003 (Chiba Prefecture, 2017a). However, 

significant subsidence was identified in the coastal levee areas (i.e., the Maihama (A), Akemi and 

Hinode (D), Takasu (E), Minato (F) and Chidori (G) districts), which was not identified by the 

ERS-1/-2 data (Figure 4.6). In general, the PALSAR (L-band) has a longer wavelength than the 

ERS-1/-2 (C-band), which has less decorrelation over vegetated terrain and has better coherence 

(Rosen et al., 1996). Thus, the results of the PALSAR data offer a higher density of PS pixels. 

Therefore, we can assume that these areas may have been experiencing subsidence during the 

ERS-1/-2 monitoring period and may have been excluded from further processing due to the low 

coherence exhibited in these areas in the ERS-1/-2 data. Another reason for those differences is 

that the subsidence in the coastal levee may have started during the PALSAR monitoring period.  
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Figure 4.6. Mean LOS displacement velocity in Urayasu City from 2006 to 2010 for the 

PALSAR data: (a) estimated mean displacement velocity using the PSI method; (b) estimated 
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mean displacement velocity using the SBAS method. The background image is a PALSAR-2 

intensity image acquired on 04 December 2014. The red points P1 to P8 are the selected points to 

show the time-series LOS displacements estimated by the PSI and SBAS measurements in (a) and 

(b), respectively. A-G represent the reclaimed areas and districts which described in table 4.1.  

 

Figure 4.7. Histogram distribution for the PALSAR-derived results from June 2006 to 

December 2010. (a) The corresponding histogram of the PSI measurements from the PALSAR 

data; and (b) the corresponding histogram of the SBAS measurements from the PALSAR data. 

 

Figure 4.8a to 4.8h shows the measured displacement time-series for eight representative 

points, which are shown in Figure 4.6a and 4.6b (the same points in Figure 4.3a and 4.3b). From 

Figures 4.8a to 4.8h, we can see that the time-series LOS deformations derived by both the PSI 

and SBAS processing showed good agreement in the subsidence trend. The estimated deformation 

rates by the PSI and SBAS measurements on points P1, P2, P4, P7 and P8 showed a velocity 

difference of less than 3 mm/year, while the points P3, P5 and P6 showed the largest velocity 

difference of over 5 mm/year. The average velocity difference for all points between the two 

methods was 2.9 mm/year. In general, similar to the ERS-1/-2 monitoring period, the Moto-Machi 

area also showed very low subsidence rates in the PALSAR monitoring period. This may be 

related to the fact that, in most parts of the Moto-Machi area, the urban infrastructures and houses 

are built over the naturally formed Holocene lowland that has stable ground conditions over time.  
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Figure 4.8 Time-series LOS displacement plots of the PSI and SBAS measurements (a–h) for 

points P1 to P8, which are indicated as red points in Figure 4.6a and 4.6b, respectively. 
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4.4.3. Time-Series Analysis of the PALSAR-2 Data from December 2014 to November 2017 

The mean velocity (mm/year) maps of the displacements for the period from December 2014 

to November 2017 are shown in Figure 4.9. The same color cycle from green to purple was used 

for the result. In the study area of over 690,336 pixels, 76,500 measurement points were obtained 

by the SBAS method. The histogram of the SBAS-derived displacement velocity for the study 

area is shown in Figure 4.10. The average displacement rate and the standard deviation are −0.5 

mm/year and 1.9 mm/year, which are lower than those obtained with the ERS-1/-2 and PALSAR 

data. In general, the PALSAR-2 results show that approximately 85% of the PS points indicate 

displacement rates between -3 mm/year and 1 mm/year (Figure 4.10). To show the variations in 

the LOS displacement velocities at different locations over the three observation periods, six 

profiles across several locations in Urayasu City were selected (Figure 4.9). We can see from 

Figure 4.11 that these selected profiles show different displacement dispersion patterns, such as 

profiles P1–P1’ and P5–P5’ which show a dispersion of approximately -0.5 mm/year to -2.6 

mm/year. Along profile P4–P4’, the subsidence rate increased from 0.1 to 21 mm/year within the 

distance of 0.6 km. The profiles in Figure 4.11(b, c, d and f) reveal that the PALSAR-estimated 

subsidence rate has a larger value than those from the ERS-1/-2 and PALSAR-2. Contrary to the 

ERS-1/-2 and PALSAR-estimated displacement velocity, the PALSAR-2 results show an uplift 

within the distance of 300 to 900 m in the profile P1–P1’ across the Moto-Machi area (Figure 

11a). Moreover, both PALSAR and PALSAR-2 estimated displacement rates show a significantly 

decrease along P4–P4’ (Figure 4.11d). 

During the PALSAR-2 monitoring period, because of the high spatial resolution and shorter 

revisiting time compared to the ERS-1/-2 and PALSAR data, a subsidence estimation with better 

spatial coverage and precision was achieved. Figure 4.9 shows that the three areas that have 

subsided during the previous monitoring periods have also showed land subsidence in this 

PALSAR-2 monitoring period (i.e., the border areas between Naka-Machi and Shin-Machi; the 

areas close to the levee of Hinode and Akemi (D); the Maihama area (A)). This may further imply 

that these areas were experiencing continuous subsidence during the entire monitoring period. 

Considering the existence of non-linear subsidence, the actual subsidence may not be a linear 

motion overtime, and the results by PSI and SBAS simply reflect the subsidence phenomena. 

However, the spatial extent and the magnitude of subsidence over Urayasu City is shrinking. The 

Moto-Machi area is in a relatively stable ground condition over the whole monitoring period, and 

the areas close to the borders of Moto-Machi and Naka-Machi began to stabilize over time. A 
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further detailed discussion about the evolutions and the causes of land subsidence in Urayasu City 

are given in section 5.4.  

 

Figure 4.9 Mean LOS displacement velocity in Urayasu City from 2014 to 2017 for the PALSAR-

2 data. The background image is a PALSAR-2 intensity image acquired on 4 December 2014. 

P1–P1’ to P6–P6’ are the selected profiles to show the displacement velocities at different sites.  

 

Figure 4.10. The corresponding histogram of the SBAS measurements from the PALSAR-2 data 
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Figure 4.11. Mean LOS displacement velocities for the three observation periods (a–f) along 

the six profiles whose positions are indicated as purple lines in Figure 4.9. 

 

4.5. Discussion 
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4.5.1. Comparison of the InSAR-Derived Results with the Leveling Data 

To assess the accuracy of the InSAR-derived results over the three observation periods, a 

quantitative comparison of the time-series displacements with the leveling survey data provided 

by the Chiba Prefecture at 22 measurement points was performed. To locate each leveling point, 

we referenced the online version of the Chiba information map and the illustration figures of each 

leveling point provided (Chiba Prefecture, 2018). For the InSAR measurement points, especially 

those in incoherent areas, the pixels that lay within 100 m of the corresponding leveling points 

were assigned, and the average velocity of these pixels was calculated. We selected the leveling 

data in the same overlapping periods as the three InSAR measurement periods. We assumed the 

horizontal deformation was negligible, and the LOS displacement velocity was converted into the 

vertical displacement velocity by dividing the cosine of the sensor incidence angle (Pepe and Calò, 

2017). 

Figure 4.12 shows the spatial distribution of the leveling points and the comparison between 

the leveling and InSAR-derived linear subsidence rate. Note that the number of leveling points 

are different among the different InSAR observation periods; 17 leveling points were used for the 

comparison of the ERS-1/-2 and PALSAR observation periods, while 21 leveling points were 

used for the PALSAR-2 observation period, which is due to five new leveling points being 

established after the 2011 Tohoku Earthquake and the leveling point U-12A being missing in 2016. 

We also used different plot scales (20 mm/year vs 12 mm/year) and (2/4 mm vs 1/2 mm for error 

lines), due to the smaller errors shown in PALSAR data using the SBAS method (Figure 4.12d). 

The comparison results show that the results from the ERS-1/-2 data using the SBAS method have 

the largest root mean square errors (RMSEs) of 4.4 mm/year, while the results from PALSAR and 

PALSAR-2 data using the SBAS method have the smallest RMSEs of 0.9 and 2.2 mm/year, 

respectively. For the ERS-1/-2 and PALSAR data, more than 12 out of the 17 measurement points 

showed a residual value of less than 4 mm/year (Figure 4.12a–d); for the PALSAR-2 data, and 

14 out of the 21 measurement points showed a residual value of less than 2 mm/year (Figure 

4.12e). As shown in Figure 4.12a, 4.12b and 4.12e, the results from the ERS-1/-2 and PALSAR-

2 data using the PSI and SBAS method showed the largest discrepancies at several leveling points. 

This may have been caused by the low coherence of ERS-1/-2 datasets and the contribution of 

phase noise. The fewer PALSAR-2 image pairs and the sudden elevation changes in the ground, 

i.e., the leveling point U-17 subsided by the influence of construction work during 2015–2016 

(Chiba Prefecture, 2017a), may also affect the comparison result. Nevertheless, according to these 
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comparisons, the InSAR-derived results agree relatively well with the result of the leveling 

measurements and suggest the reliability of the InSAR-measured subsidence rate.  

 

Figure 4.12. Comparison between InSAR-derived linear subsidence velocity and leveling 

measured linear subsidence velocity during the three InSAR observation periods: (a) and (b) ERS- 
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1/-2 derived linear subsidence rate (May 1993 to February 2006) and leveling-derived linear 

subsidence rate (January 1993 to January 2006); (c) and (d) PALSAR-derived linear subsidence 

rate (June 2006 to December 2010) and leveling-derived linear subsidence rate (January 2006 to 

January 2011); (e) PALSAR-2-derived linear subsidence rate (December 2014 to November 

2017) and leveling-derived linear subsidence rate (January 2015 to January 2017); and (f) spatial 

distribution of leveling points in Urayasu City. 

 

4.5.2. Spatial and Temporal Patterns of Land Subsidence 

To further reveal the land subsidence patterns in different districts over the three observation 

periods, we generated the spatial distribution map of difference of land subsidence rates (Figure 

4.13) using the ArcGIS 10.3 (Esri, Redlands, California, USA) spatial analyst tool. As the 

incidence angles of those sensors are different, before comparison, the LOS displacement velocity 

was converted into the vertical displacement velocity by dividing the cosine of the sensor 

incidence angle (Pepe and Calò, 2017). It can be seen from Figure 4.13a that the areas in the 

central town (i.e., Maihama (A), Tekkodori, Benten, Imagawa (B) and Irifune (C)) and new town 

(i.e., Takasu (E), Minato (F) and Chidori (G)) show slight to moderate subsidence with a 2–13 

mm/year rate during the ERS-1/-2 observation period. From Figure 4.13b, we can see that the 

subsidence rate in some of the districts of the central town (e.g., Benten, Tekkodori and Imagawa 

(B)) has decreased up to 12 mm/year; while the areas in the new town showed increasing 

subsidence up to 28 mm/year, especially in Hinode (D) and Chidori (G). The comparison of 

PALSAR-2 and PALSAR estimated subsidence rate show that, the previous subsiding areas were 

experiencing a reduced subsiding rate, except some localized subsidence in the new town (Figure 

4.13c). The comparison of PALSAR-2 and ERS-1/-2 estimated subsidence rate show that, the 

subsidence in both of the central town and new town has significantly decreased, except for areas 

in Maihama (A), Irifune (C), Hinode and Akemi (D) (Figure 4.13d). In general, most of those 

areas in the central town are residential and commercial amusement land, while the bew town are 

parks and industrial land. The subsidence in parks can only be caused by the natural soil 

consolidation, while in the residential, commercial and industrial areas, the subsidence may be 

caused from the integrated effect of numerous natural and anthropogenic processes.  
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Figure 4.13 The spatial distribution map of difference of land subsidence rates during the 

three observation periods: (a) ERS-1/-2 derived subsidence rate using the SBAS method; (b) 

difference between ERS-1/-2 and PALSAR derived subsidence rates (subtracting ERS-1/-2 from 

PALSAR); (c) difference between PALSAR and PALSAR-2 derived subsidence rates 

(subtracting PALSAR from PALSAR-2); (d) difference between ERS-1/-2 and PALSAR-2 

derived subsidence rates (subtracting ERS-1/-2 from PALSAR-2). 
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4.5.3. The Use of Different SAR Sensors in Land Subsidence Monitoring 

The number of satellite data sources is currently increasing steadily. These datasets from the 

previous SAR sensors such as ESA archive (ERS-1/-2, ENVISAT) as well as the new generation 

of C, X and L-band SAR images provided by the RADARSAT-2, Sentinel-1A, ALOS-2, 

TerraSAR-X, Tandem-X and the COSMO-SkyMed constellation, etc. have enabled us to compute 

the time series of the occurred and on-going surface displacements from regional scale to 

individual buildings. In particular, the exploitation of the free and open access data archives 

collected by the Sentinel-1A system permit us to conduct continuous land deformation analysis 

over large areas. 

In this study, three different SAR datasets, the ERS-1/-2, ALOS PALSAR and ALOS-2 

PALSAR-2, were used to monitor the long-term land subsidence in Urayasu City. The C-band 

has a shorter wavelength and hence better displacement sensitivity, and the L-band has longer 

wavelength and lower frequency showing more extensive coverage over natural areas and less 

temporal decorrelation. The data acquired by these satellites cover long periods of time and 

enabled us to perform long-term deformation monitoring of the study area. However, those 

different sensors have different imaging parameters, e.g., spatial and temporal resolution, 

incidence angle, and wavelength, which show different characteristics in terms of their maximum 

detection gradient, degree of decorrelation, capability of noise rejection, etc. The different 

imaging parameters and the use of an uneven number of images among different sensors cause 

some difficulties in comparing their performance and the quality control of multi-sensor InSAR 

results. Moreover, the low resolution and the longer revisit time of ERS-1/-2 and PALSAR has 

prevented us from observing short-term land deformations caused by the anthropogenic activities. 

Furthermore, data gaps between the PALSAR and PALSAR-2 caused some difficulties in 

analyzing InSAR results. 

 

4.5.4. Land Subsidence and Possible Causes 

The origin of land subsidence in coastal areas can be summarized into two categories: either 

caused by natural causes (e.g., natural compaction/consolidation of soil or tectonic movements, 

such as earthquakes) or anthropogenic activities (e.g., oil, gas and ground water exploitation). In 

some cases, the pattern of land subsidence might be even more complicated when it is caused by 

the combined effects of multiple factors at different scales. In Urayasu City, since most of the 
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areas are land-filled, the natural consolidation of soil is postulated to be the primary driver of land 

subsidence. To further analyze the relation between subsidence and soil geology, we compared 

the InSAR-derived subsidence areas with the geologic map showing the depth of the upper surface 

of the solid geological stratum in Urayasu City (Figure 4.14a) and found a remarkable spatial 

correlation between the geologic map of the soil properties and the subsiding areas. In most of the 

reclaimed zones, the upper layer of soil filled with hill sand and dredged sandy soil (FS) with a 

standard penetration test (SPT) N-value of 2–8; an alluvial sand layer (AS) with SPT N-value of 

10–20 underlies the filled layer; a very soft alluvial clay (AC) is deposited under the AS layer 

with a low SPT N-value of 0–5; a diluvial (Pleistocene) dense sand layer (DS) with SPT N-value 

of 50 or greater is deposited blow the AC layer (Figure 4.14b) (Yasuda et al., 2012; Nigorikawa 

and Asaka, 2015). Along the line A–A’, the thickness of AC layer increases significantly between 

the Naka-Machi and Shin-Machi area, and it continues towards the sea (Figure 4.14b). As the 

consolidation of soil occurs in soft clay deposits, the thick AC layers in Naka-Machi and Shin-

Machi area are most probably responsible for the continuing subsidence in Urayasu City. 

  As shown in Figure 4.14a, the depth of the bottom of the alluvial layers increases from 20 

m in Moto-Machi to about 40 m in Shin-Machi, with several narrow-buried valleys of up to 70 m 

in depth. The buried-valleys, which are about 60 m deep, exist directly below the Minato, Chidori, 

Tekkodori, Imagawa, Akemi and Irifune areas, causing complicated changes in the thickness of 

the soft ground in those areas, while the depth increases up to 80 m in Maihama where the largest 

subsidence occurred. This further suggests that the areas undergoing large subsidence correspond 

to those having thick layers of soft soil over a stiff basement. The Moto-Machi area, with soil 

deposits consisting of sandy soils with an alluvial origin, was quite stable over the observation 

period, while the Naka-Machi and Shin-Machi areas, with thick layers of fine-grained soft soil 

overlying a stiff basement, had significant land subsidence over the study period. However, 

considering the complexity of the land use and the anthropogenic activities in different districts 

of Urayasu City, the subsidence may not be solely caused by the natural consolidation, but also 

from the integrated effects of numerous natural and anthropogenic processes.  

 



58 

 

 

Figure 4.14 Depth of the upper surface of the solid geological stratum (a) in Urayasu City 

(adapted from the public report by the technical committee of Urayasu City (Regional disaster 

prevention project of Urayasu City - earthquake disaster, 2011)). The points refer to the locations 

of borehole sites; (b) soil cross sections along the A–A’ line. FS + AS refer to filled sandy soil 
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and alluvial sand layers, and AC and DS refer to the alluvial clay layer and diluvial dense sandy 

layer, respectively. The borehole investigation data were obtained from the Chiba Prefecture 

(Chiba Prefecture, 2016a). 

 

The additional load of buildings and structures is also considered to be one of the causes of 

land subsidence in urban areas (Chen et al., 2018). In Urayasu City, since the establishment of 

Urayasu town in 1909 in the old town (Moto-Machi)—a naturally formed Holocene lowland—

the natural soil consolidation might be gradually reduced and stopped. Besides this, the density of 

buildings in the old town are lower than the central town. Many houses, commercial buildings 

and public facilities were built in the central town during the first phase of the project, ending in 

1975. Meanwhile, many high-rise buildings, universities, hotels and storehouses were built in the 

new town during the second phase of the project, ending in 1980 (Tokimatsu et al., 2012). The 

additional load during and after the building construction, especially the high-rise buildings, could 

transfer a high loading to the ground and may eventually lead to substantial land subsidence. 

However, these buildings use a pile foundation to satisfy bearing capacity and deformation and 

may not show significant subsidence while the surrounding areas are subsiding. Figure 4.15 

shows the InSAR-derived subsidence velocity (2006–2010) and the locations of high-rise 

buildings. Most of those buildings show stability, whereas their surroundings show land 

subsidence. However, further investigations are expected to determine the relationship between 

land subsidence and the building density/high rise buildings.  

The Maihama district in the central town, where Tokyo Disneyland is located, showed 

significant subsidence throughout the whole InSAR observation period. However, in this area, the 

pattern of land subsidence may be even more complicated due to the continuous construction and 

renovation/redevelopment of the fantasy-land and other anthropogenic activities. The SAR 

images with a low resolution and longer revisiting time, and the linear inversion model used in 

the InSAR processing, may hinder the effective monitoring of short-term movements such as 

those induced by human activities and may cause some biased results. Therefore, more high-

resolution SAR data with a short revisiting time and further investigation is required to understand 

the intricacies of the relationship between land subsidence, natural consolidation and load of 

buildings.  
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Figure 4.15 Subsidence rate map (2006–2010) generated with ALOS PALSAR data overlaid 

on a Google Earth image. The green polygons indicate the park area, red polygons indicate the 

location of high-rise buildings, the yellow polygon shows the highly populated residential area. 

The blue polygon indicates the border of Urayasu City and corresponds to the location of Figure 

4.14a, and the A–A’ line corresponds to the soil cross-section in Figure 4.14a and 4.14b.  
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Ground water exploitation is one of the major causes of land subsidence in many coastal cities, 

such as in Jakarta (Abidin et al., 2011), Bangkok (Aobpaet et al., 2013) and Shanghai (Chai et al., 

2004). Nevertheless, this may not be the cause of land subsidence in Urayasu City; this is because 

the ground water exploitation was gradually reduced and stopped in 1993 (Chiba Prefecture, 

2017b), and the city receives water from a water purification plant which uses the main water 

sources of the Tone river and Edogawa river (Chiba Prefecture, 2016b). Moreover, since April 

1992, Chiba Prefecture has been implementing restriction rules on groundwater use for the highly 

susceptible areas of land subsidence, including Urayasu City (Chiba prefecture, 2015). Thus, the 

ground water exploitation has insignificant impacts on land subsidence in Urayasu City. 

As an earthquake-prone country, earthquakes happen frequently in Japan. Earthquakes have 

significant influences on coastal areas, especially on reclaimed land. In the 2011 Tohoku 

earthquake, houses and infrastructures were severely damaged due to soil liquefaction in Urayasu 

City (Tokimatsu et al., 2012). In addition, long-term ground settlement was also observed after 

the earthquake, and the degree of subsidence was different in areas where reclaimed soils were 

improved or not (Nigorikawa and Asaka, 2015). In the areas where the soil was not improved, the 

subsidence may have been accelerated by the earthquake. The InSAR observation results derived 

from the PALSAR-2 data showed significant continuing land subsidence near the levee areas 

(mostly parks and vacant lands), which may have been accelerated by the effects of the earthquake. 

However, most areas showed a decrease of land subsidence, this may be related to the fact that 

the PALSAR-2 observations (December 2014 to November 2017) were collected almost 4 years 

after the Tohoku earthquake, and considering the soil aging effect and soil improvement, the land 

settlement in most of those areas caused by the natural soil consolidation and the earthquake might 

gradually decrease. It is worth mentioning that after the earthquake, the Urayasu government 

started to test several countermeasure methods, such as lowering the ground water level and grid 

wall soil improvement. Finally, Urayasu has adopted the grid wall soil improvements as a 

countermeasure to prevent future risks (Ishii et al., 2017). This project may also have played a 

positive role in alleviating the land subsidence in Urayasu City.  

 

4.6. Conclusion 

In this study, to monitor the long-term spatial patterns of land subsidence in Urayasu City, we 

used three sets of different SAR data and advanced InSAR techniques. The obtained InSAR 
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results during the three observation periods from 1993–2010 and 2014 to 2017 show continuing 

subsidence occurring in several reclaimed areas of Urayasu City. The maximum subsidence rate 

from 1993 to 2006 was approximately 27 mm/year, from 2006 to 2010 it was 30 mm/year, and 

from 2014 to 2017 it was about 18 mm/year. The results were verified by comparing them with 

the leveling survey data. The comparison shows that the obtained InSAR results agree well with 

the leveling measurements, with a correlation value of over 0.8. The natural consolidation of soil 

in the reclaimed areas can be considered as a primary driver of land subsidence in Urayasu City, 

while the integrated effects of numerous natural and anthropogenic processes are also not 

negligible. Considering the soil aging effect, water-use restriction rules and soil improvement 

work performed by the government and land owners might also have played a positive role in 

alleviating the land subsidence and related disasters. However, further investigation is required to 

understand the intricacies of the relationship between the land subsidence and anthropogenic 

activities. The outcome of this research further proves the suitability and effectiveness of InSAR 

measurements in the land subsidence monitoring of coastal urban areas. 
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Chapter 5 

5. Earthquake-induced landslide mapping using PALSAR-2 

data 

 

5.1. Introduction 

Earthquake is one of the most dangerous natural disaster events around the world, and most 

of the earthquakes are occurring in mountain areas. In general, the moderate to a severe earthquake 

could trigger landslides in the mountainous region (Roback et al., 2018). These landslides may 

cause injuries and loss of human life, damage to infrastructures, and lead to enormous economic 

losses. Therefore, quickly identifying and mapping of the landslide has great importance in 

emergency response and restoration activities after landslides (Plank, 2014). 

Nowadays, owing to its capability of wide-area observation, relatively low cost and rapid 

advances in remote sensing satellite observations have enabled us to effectively detect, and 

monitor landslides at an individual and regional scale. Optical (e.g., QuickBird, GeoEye-1, and 

WorldView-2), and synthetic aperture radar (SAR) data (e.g., TerraSAR -X, and COSMO-

SkyMed) are the commonly used Satellite sensors for detecting and analyzing slow to a rapid 

moving landslides (Masumi et al., 2013; Tofani et al., 2013; Casagli et al., 2017). When cloud-

free optical imagery is unavailable, and the coverage of ground-based observations are limited, 

the SAR data can be an optimal solution owing to its capability of day-and-night and all-weather 

imaging (Plank et al., 2016; Burrows et al., 2019). The number of SAR sensor is currently 

increasing steadily. These datasets from the previous SAR sensors (e.g., ERS-1/-2, ENVISAT and 

PALSAR) and the new generation of C, X and L-band SAR images provided by the RADARSAT-

2, Sentinel-1A, ALOS-2, TerraSAR-X, Tandem-X and the COSMO-SkyMed constellation, etc. 

have enabled us to compute the historical and current landslides with high precision (Strozzi et 

al., 2013; Bardi et al., 2014; Dong et al., 2018). 

On 6 September 2018, a powerful earthquake of moment magnitude Mw 6.7 occurred off the 

Iburi Subprefecture in southern Hokkaido, Japan. The earthquake took place just one day after the 

typhoon Jebi (No. 21 in Japan) left torrential rains in the region (Yamagishi and Yamazaki, 2018). 
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After the earthquake, up to 6000 landslides occurred near the epicenter-Atuma town, due to the 

heavy rains soaked subsurface deposits of volcanic soil in the region, turning them into a geologic 

grease layer (Normile, 2018; Yamagishi and Yamazaki, 2018). As an emergency response 

coordination, the Geospatial Information Authority of Japan (GSI) took aerial photographs on the 

same day and after the Earthquake (6, 8 and 11 September 2018) (GSI, 2018a). Several days later, 

on 12 September 2018, the GSI mapped the landslide area using those aerial photographs and 

published their results on their website (GSI, 2018a). Shao et al. produced a landslide 

susceptibility map of the area by applying the logistic regression (LR) and the support vector 

machine (SVM) to the high-resolution Planet images (optical) (Shao et al., 2019).  

In this study, we present a rule-based method to identify and map the Earthquake-induced 

landslide in Hokkaido, taking advantage of ALOS-2 PALSAR-2 SAR images taken before and 

after the event. Moreover, the high-resolution optical image- WorldView-2 and Geo-Eye-1, truth 

data (GSI, 2018a), and field survey data were used for reference and validation purpose. 

5.2. Study area 

An earthquake with magnitude off Mw6.7 struck the Iburi Subprefecture in southern 

Hokkaido, Japan. The epicenter of the 2018 Hokkaido Eastern Iburi earthquake is at 42.72° North, 

and 142.0° East, and the maximum intensity of 7 registered at Atsuma town. After considering 

the availability of ALOS-2 PALSAR-2 data, its coverage and reference optical data, we chose an 

area near the Atsuma town spanning from 42.43°North to 42.48°North of latitude and from 

141.52.5° East to 141.60° East of longitude as a study area (Figure 5.1a). From Figure 5.1c, we 

can see that the elevation of the study area is range from 48-348m, and most landslides are 

occurred between high to moderate elevations up to 348m (GSI, 2018b). The Figure 5.2 shows 

the land use land cover (LULC) map of the study area, the deciduous broadleaf forest (DBF), 

deciduous needleleaf forest (DNF), rice paddy and grassland are the dominant land use classes. 
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Figure 5.1 The map of the study area, Hokkaido, Japan. (a) the geographic location of the study 

area; (b) identified landslide areas by the GSI, Japan (GSI, 2018a); (c) the topography of the study 

area (GSI, 2018b). 

a 

b c 
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Figure 5.2 The Land Use and Land Cover Map of the study area. The data provided by JAXA 

and available at https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm 

5.3. Data sets and preprocessing 

5.3.1. SAR and optical satellite data 

In this study, the L-band PALSAR-2 satellite data sets covering the region of interest (Figure 

5.1) were provided by the Japan Aerospace Exploration Agency (JAXA). The interferometric 

coherence was computed from single look complex (SLC) PALSAR-2 data taken on 14 June 2018, 

23 August 2018, and 06 September 2018 (Descending), and on 09 August 2018, 23 August 2018, 

and 06 September 2018 (Ascending). Both Descending and Ascending data is in Stripmap (SM1) 

mode and HH polarization with a high resolution of 3 m. A 10-m high-resolution digital elevation 

model (DEM) provided by the GSI was used to co-register the InSAR pairs (GSI, 2018b). 

https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm
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We also collected two high-resolution optical images, WorldView-2 and GeoEye-1 acquired 

on 24 October 2017 and 20 October 2018 with a resolution of 2m (Figure 5.3). The optical image 

was used for the visual comparison of the landslide classification. To remove the effects, such as 

the image perspective (tilt) and relief (terrain) effect, we orthorectified the image using the same 

10-m DEM data used for the SAR data.  



68 

 

 

 Figure 5.3 The orthorectified image of WorldView-2 (left)-24 October 2017(a) and GeoEye-

1(right) 20 October 2018 (b); c1, d1 and c2, b2 are the enlarged view of a and b, respectively. 

 

d 

c a b 

c1 c2 

d1 d2 

c 
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5.3.2. Truth data and field survey  

In this study, we used the landslide distribution map produced by the GSI, Japan (GSI, 2018a) 

as a truth data. The landslide was visually interpreted using high-resolution aerial photos taken on 

September 6, 8 and 11, 2018 (Figure 5.1 b). The data is available on the website of GSI, Japan: 

http://www.gsi.go.jp/BOUSAI/H30-hokkaidoiburi-east-earthquake-index.html#1.  

After four weeks off the earthquake, a field survey was carried out on October 3~4, 2018 around 

the Atsuma town, Abira town and Mukawa town. Figure 5.4 shows the field survey route and 

some pictures taken during the survey. 

 

Figure 5.4 The field survey route and some of the collected photographs near the Atsuma town. 

http://www.gsi.go.jp/BOUSAI/H30-hokkaidoiburi-east-earthquake-index.html#1
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5.4. Methodology 

5.4.1. Synthetic Aperture Radar: Interferometry and coherence  

A Radar interferogram can be calculated using two SAR images acquired by the same satellite 

over the same region at different times (Bamler and Hartl, 1998). Generally, an interferometric 

map (e.g., Figure 5.5 b and d) shows the difference in phase between two SAR images. The 

sequence of color fringes in the interferogram can be used to determine the change in distance 

between the satellite and the object (close or away). For ALOS-2 PALSAR-2, each color fringe 

shows a phase change of two images and equal to a half wavelength of PALSAR-2 (11.6 cm).  

  

Figure 5.5. ALOS-2 interferogram from pre-and co-event image pairs (Descending). (a) and (b) 

are the coherence and interferogram of pre-event image pairs (20180823-20180614); (c) and (d) 

a b 

c d 

e 

f 

g 

h 

e 

g 

f 

h 
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are the coherence and interferogram of co-event image pairs (20180823-20180906); (e-h) are the 

enlarged view of the pre- and co-event interferograms.  

The coherence (γ) is the interferometric correlation of complex signals between two SAR data, 

which can be calculated as:  

γ =
∑ C1C2

√∑|C1|2 √∑|C1|2
  (1)  

Where C is a complex number with phase (φ) and amplitude (A) (Ferretti et al., 2007). 

Coherence is a normalized metric, and the values range from 0 to 1. It can be a good indicator of 

the quality of the interferogram, and a high coherence value is associated with a ‘good quality’ 

interferogram. Furthermore, coherence is sensitive to changes to either the phase or amplitude of 

a pixel. Hence, ground surface change due to Earthquake, landslide or flooding, etc. will alter the 

scattering properties of each pixel of SAR images will result in low coherence (Zebker and 

Villasenor, 1992). As shown in Figure 5.5 (c, d), the coherence was significantly decreased in 

the area where landslides occurred. Therefore, the SAR coherence was used as a starting point in 

this study. 

5.4.2. SAR coherence and intensity difference 

  SAR has the capability for obtaining both amplitude and phase backscattering echoes from the 

targets, the SAR products such as SAR amplitude and InSAR coherence are can be 

complementary to each other for landslide mapping in highly vegetated regions (Konishi and Suga, 

2018). Figure 5.6 shows both descending and ascending SAR coherence and intensity, and the 

corresponding landslide features on these images. The Interferometric coherence map for both 

ascending and descending PALSAR-2 data is generated by employing the SARscape® Modules 

(5.4) for ENVI (5.4) software. For the original descending PALSAR-2 data, the SLC image on 

August 23, 2018, was selected as a master image, June 14, 2018, and September 6, 2018, as a 

slave image, and generated two interferometric coherence image pairs. For the original ascending 

PALSAR-2 data, the SLC image on August 23, 2018, was selected as a master image, August 9, 

2018, and September 6, 2018, as a slave image, and generated two interferometric coherence 

image pairs. Both descending and descending coherence images were multi-looked by a factor of 

eight in azimuth and seven in range, giving a pixel size of approximately 15 m. A multi-temporal 

ANLD filtering with a 3 × 3-pixel window was applied to the multi-looked coherence images and 

were geocoded in the WGS84 reference ellipsoid. For the descending and ascending intensity 

images, the same multi-look, co-registration, and filtering process were performed and geocoded 
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in the same reference ellipsoid. The geocoded intensity images were calibrated to normalized 

backscattering coefficients (sigma-naught) using the equation:  

𝜎0 = 10 log10〈𝐷𝑁2〉 + 𝐶𝐹1                                          (2) 

Where σ0 is the backscattering coefficient (Sigma naught) [unit: dB], DN: digital number of 

SAR amplitude images, CF1 is the calibration factor [- 83 dB]. 

Speckle noise reduction is a crucial step for SAR applications. For the final geocoded products, 

we applied the same Enhanced Lee filter with 5 × 5 window size for both coherence and intensity 

images. And, calculated the difference between pre- and co-event coherence (Figure 5.6) and pre- 

and post-event intensity images (Figure 5.6). 

The SAR amplitude and phase are sensitive to the earth’ surface properties, such as changes in 

height and roughness and moisture content. As shown in Figure 5.2, almost 95% of the study area 

is covered by vegetation. Generally, when the landslide occurs, landslides replace the vegetated 

areas with bare soil or rock and alter the scattering properties of each pixel in SAR images 

spanning the landslide event, and leading to low temporal coherence (landslide pixels are expected 

to have low coherence.) (Figure 5.6). Therefore, interferometric coherence can be used to map 

landslides (Burrows et al., 2019). However, interferometric coherence is affected by temporal and 

spatial baselines. Since the study area is heavily vegetated, the low coherence may also be caused 

by the seasonal change or moister of the vegetation, which may lead to many false positives in 

the landslide classification. This is evident in Figure 5.6 ascending coherence difference that the 

cropland and grassland areas are also showed low coherence as landslides. The SAR intensity is 

sensitive to the roughness and slope of the ground surface, and less affected by the temporal and 

spatial baselines. Figure 5.6 shows the pre- and post-event intensity difference and color 

composite image. Generally, landslides will change the vegetation of the ground surface and 

topography, which alters the intensity of the backscattered wave. The removal of trees leads to 

the decrease in intensity images, and the accumulated debris leads to the increase in intensity 

(Figure 5.6). Therefore, the intensity difference could provide useful information for landslide 

identification (Konishi and Suga, 2018).  
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 Mode Difference Color composite (RGB) 

Intensity Descending   

 Ascending   

Coherence Descending   

 Ascending   

Figure 5.6 The SAR intensity and coherence difference and color composite map of the study 

area. The intensity difference was calculated by subtracting the pre-event from post-event SAR 

intensity image; descending and ascending coherence difference was calculated by subtracting 

pre-event from co-event InSAR coherence. 
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Landslide detection using SAR coherence and intensity images are affected by foreshortening, 

layover, and shadowing, due to the radar is measuring the distance to features in slant-range. 

Those factors will reduce landslide classification accuracy by adding commission and omission 

errors. While the SAR data from different orbits (i.e., descending and ascending) can be a good 

complementary to each other if such data are available. Therefore, we have examined the 

applicability of coherence and intensity on both descending and ascending orbits. The comparison 

results are described in section 5.6.1. 

5.4.3. Statistical method 

The statistical method refers to the use of the statistical parameters of the mean (μ) and the 

standard deviation (σ) to calculate the threshold by μ ± nσ (Figure 5.7). In this method, the density 

function of the continuous change image is almost equal to the density function of the unmodified 

pixels, and in the determination of the threshold statistically fixed (A. D’Addabbo, 2004), n is an 

empirical parameter set by the user that can be adjusted (Vázquez-Jiménez et al., 2018).  

As shown in Figure 5.6, the intensity difference of ascending and descending data shows both 

increase and decrease in landslides. Therefore, the optimal threshold for the intensity was decided 

based on the criteria, μ + nσ<Landslide<μ – nσ. The n is the threshold coefficient value and can 

be adjusted according to the histogram. For the coherence difference, most landslides show 

significant decrease in coherence, while the cropland and grass show an increase in coherence 

Figure 5.6. Therefore, only the left threshold criteria, Landslide<μ – nσ was used. 

 

Figure 5.7 Scheme of the definition of thresholds by the statistical method in a normal distribution. 

(adapted from (Vázquez-Jiménez et al., 2018)) 

5.4.4. Decision tree method  
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The decision tree (DT) classification technique was adopted to map landslide by using pre-

and co-event coherence images. The decision tree classifier is a type of multistage classifier that 

can be applied to a single image or a stack of images. Because of its simplicity, flexibility, and 

computational efficiency, it has been widely used in many studies ((Elnaggar et al., 2009; 

Aimaiti, Kasimu and Jing, 2016)). The decision tree scheme is built based on inputs from pre-

and co-event coherence, pre- and post-event intensity images, DEM, and Slope. 

 

5.6. Results 

5.6.1. Landslide classification using descending and ascending SAR images 

The intensity and InSAR coherence are providing useful information on landslide and can be 

used to extract landslides. However, their performances in identifying the landslide might be 

different to some extent. Thus, we have tried six different combinations to extract landslides, (1) 

using only the coherence difference in descending mode PALSAR-2 images; (2) using only the 

intensity difference in descending mode PALSAR-2 images; (3) using both coherence and 

intensity difference in descending mode PALSAR-2 images; (4) using coherence difference in 

descending and ascending mode PALSR-2 images; (5) using intensity difference in descending 

and ascending mode PALSR-2 images; (6) using both coherence and intensity difference in 

descending and ascending mode PALSR-2 images.  

In case 1, we have only used the coherence difference in descending mode PALSAR-2 images 

(pre-event:20180823-20180614 and co-event:20180823-20180906). Through the analysis of the 

nature of landslide, the topography of the study area, the decision tree classifier for the extraction 

of the landslide was established (Figure 5.8). At first, the DEM and slope were resampled to the 

same ground resolution as the SAR coherence (15 m), and the data sets were layer stacked. The 

optimal threshold values of coherence difference image were determined by the statistical method 

(based on calculated mean and standard deviation values of coherence); a natural break 

classification method was used to classify the slope using ArcGIS. In the first step, the input image 

pixels were divided into two groups: landslide and non-landslide by coherence difference (μ=-

0.12, n= 0.5, and σ=0.131) threshold of -0.19. In the second step, the pixels filtered through the 

above criteria were then divided into landslide and non-landslide by Slope threshold of 3.5 

(degree). In the third step, the remaining pixels classified as landslide were divided into landslide 

and non-landslide by DEM threshold values of 83 (m). Finally, to remove the isolated noisy pixels, 
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the classified image was segmented (Number of neighbors 8 and a population minimum of 30) 

into regions of connected pixels that are contained in the same class. The final classified image is 

shown in Figure 5.9. 

 

 

Figure 5.8 The scheme of the decision tree-based landslide mapping.  

Note: Coherence and intensity difference refer the both descending and ascending coherence and intensity.  
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Figure 5.9 The landslide classification map using only the descending SAR coherence. 

The background image is a high-resolution GeoEye-1 image taken on 20 October 2018. 

For assessing the accuracy of the classification result, we have compared the result with the 

high-resolution optical images (WorldView-2 and GeoEye-1). As shown in Figure 5.10c1 and c2, 

most of the landslide area were detected well by the proposed method. However, some small and 

medium scale landslides indicated in yellow circle and rectangle were omitted as non-landslide 

(Figure 5.10c1). Moreover, in Figure 5.10c2, a quite large landslide was also misclassified as 

non-landslide. This may be related to the SAR image geometry, and we used descending track 

PALSAR-2 image (west-facing sensor), the slopes facing away from the sensor (steep, west-

facing slopes) were not well imaged. Moreover, the quality of the coherence (e.g., geometrical, 

temporal decorrelations, and atmospheric noise) may also hinder the full use of InSAR coherence.  

a1 

a2 
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Figure 5.10 The comparison of the classification results with the pre- and post-event high-

resolution optical images. (a1 and a2) are the WorldView-2 image taken on 24 October 2017; (b1 

and b2) are the GeoEye-1 image taken on 20 October 2018; (c1 and c2) are the identified 

landslides overlaid on the optical image. 

In case 2, to examine the performance of SAR intensity in landslide mapping. We used the pre-

event (2018089) and post-event (20180906) PALSAR-2 intensity images in descending mode and 

calculated their difference by subtracting the pre-event intensity from post-event intensity image. 

The same decision tree classification procedure was used with the intensity threshold criteria of -

2.13 >Intensity>1.91 (μ=-0.781, σ=2.695, left threshold (n= 0.5), and right threshold (n= 1)). And 

then, the same threshold criteria of Slope and DEM was also used in this step to remove the flat 

areas which have classified as a landslide. The classification results were segmented to remove 

small speckles classified as a landslide. The final classification result is shown in Figure 5.11. 

From Figure 5.11, we can see that the intensity-based classification has shown a quite satisfactory 

result, especially the area in red rectangle has successfully classified as landslide, which has not 

been identified by the InSAR coherence-based method. However, many landslides are not fully 

identified by this method. 

a1 

b1 

c1 

a2 

b2 

c2 

a1 

a2 
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Figure 5.11 The landslide classification map using only the descending SAR intensity. The 

background image is a high-resolution GeoEye-1 image taken on 20 October 2018. 

In case 3, to improve the landslide classification results, we have combined the PASLAR-2 

coherence and intensity difference images in descending mode. The same decision tree 

classification procedure was used, while the intensity difference threshold criteria (-2.13 

>Intensity>1.91) was added to the coherence difference threshold (<-0.19) criteria in the main 

node. And then, the same threshold criteria of Slope and DEM was also used in this step to remove 

the flat areas which have classified as a landslide. The same segmentation criteria was used to 

remove small speckles classified as landslides. The final classification result is shown in Figure 

5.12. From Figure 5.12, we can see that, by combining the coherence and intensity difference, 

the possibilities of identifying landslides increased greatly. While the commission error (false 

landslide) was also increased (e.g., grassland and cropland classified as a landslide). 
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Figure 5.12 The landslide classification map using both coherence and intensity difference in 

descending SAR images. The background image is a high-resolution GeoEye-1 image taken on 

20 October 2018. 

In case 4 and 5, we have attempted to combine both PASLAR-2 coherence and intensity 

difference images in descending and ascending mode, respectively. In case 4, for the combination 

of PALSAR-2 ascending and descending coherence, the same decision tree classification 

procedure used for the descending coherence was also used, the coherence difference threshold 

criteria (ascending<-0.18 (μ=-0.117, σ=0.122, n=0.5) or descending<-0.19) was added in the main 

node. In case 5, for the combination of PALSAR-2 ascending and descending intensity, the 

intensity difference threshold criteria (-2.13 > descending intensity >1.91 or -1.64 >ascending 

intensity>2.83 (μ=0.593, σ=2.232, n= 1)) was added in the main node. And then, the same 

threshold criteria of Slope and DEM was also used to exclude the flat areas which have classified 

as a landslide. The same segmentation criteria was also used to remove small speckles classified 

as landslides. The final classification result is shown in Figure 5.13 and Figure 5.14, respectively. 
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From these figures, we can see that, by adding the ascending coherence and intensity images to 

the descending, the possibilities of correctly identified landslides are increased. The descending 

and ascending coherence combination tends to overestimate the landslide. While the descending 

and ascending intensity combination shows a better result than the coherence and show less 

commission error (e.g., cropland and grassland classified as a landslide). However, a quantitative 

analyze is needed for their performance evaluation. 

 

Figure 5.13 The landslide classification map using coherence difference in both descending and 

ascending SAR images. The background image is a high-resolution GeoEye-1 image taken on 20 

October 2018. 
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Figure 5.14 The landslide classification map using intensity difference in both descending and 

ascending SAR images. The background image is a high-resolution GeoEye-1 image taken on 20 

October 2018. 

In case 6, we have combined both coherence and intensity difference in descending and 

ascending PASLAR-2 images. The combination was based on the threshold criteria used for the 

intensity and coherence difference in the previous steps. The same segmentation criteria was also 

used to remove small speckles classified as landslides. The final classification result is shown in 

Figure 5.15. We can see that almost all the landslides are identified by this method. However, as 

shown in the yellow rectangle in Figure 5.15, the possibilities of non-landslide areas classified as 

landslide were also increased. The vegetation changes between the two SAR acquisitions may 

have resulted in significant modification of the ground surface and therefore its scattering 

properties of phase and amplitude in both ascending and descending images. Therefore, further 

consideration must be taken to reduce the uncertainties caused by vegetation change.     
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Figure 5.15 The landslide classification map using coherence and intensity difference in both 

descending and ascending SAR images. The background image is a high-resolution GeoEye-1 

image taken on 20 October 2018. 

5.6.2. Quantitative analysis of the landslide classification accuracy 

To evaluate the performance of six different combinations in landslide mapping, we compare 

the detected landslides with the polygon data of landslides released by GSI of Japan (GSI, 2018a). 

Before comparison, we have converted the classification results in raster to the same vector file 

as GSI (shapefile). And use the intersect tool in Analysis tool box in ArcGIS 10.3.1 software, we 

calculated the correctly classified landslides by comparing with the landslides released by GSI. 

Then, we computed the class statistics and confusion metrics for the six different combinations, 

as shown in Table 5.1~5.6. 
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Table 5.1. The accuracy assessment result of the landslide classification (case 1). ……. 

Note: UA and PA refer to the user’s and producer’s accuracy. 

  Truth data  

  
Landslides (Km2) Others (Km2) Total (Km2) UA (%) 

Landslides 10.39 12.34 22.72 45.72 

Others 8.20 52.49 60.70 86.49 

Total 18.59 64.83 83.42  

  PA (%)  55.87 80.97   

 Overall accuracy       75.38%             Kappa Coefficient         0.34 

  

Table 5.2. The accuracy assessment result of the landslide classification (case 2). 

 
Truth data  

  
Landslides (Km2) Others (Km2) Total (Km2) UA (%) 

Landslides 8.71 7.16 15.87 54.89 

Others 9.88 57.67 67.55 85.37 

Total 18.59 64.83 83.42  

  PA (%)  46.86 88.96   

 Overall accuracy       79.57%           Kappa Coefficient         0.38 

 

Table 5.3. The accuracy assessment result of the landslide classification (case 3). 

 

Truth data  
  

Landslides (Km2) Others (Km2) Total (Km2) UA (%) 

Landslides 14.05 16.46 30.51 46.06 

Others 4.54 48.38 52.91 91.42 

Total 18.59 64.83 83.42  

  PA (%)  75.58 74.55   

 Overall accuracy       74.83%            Kappa Coefficient       0.41 
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Table 5.4. The accuracy assessment result of the landslide classification (case 4). 

 
Truth data  

  
Landslides (Km2) Others (Km2) Total (Km2) UA (%) 

Landslides 12.62 16.99 29.61 42.61 

Others 5.97 47.84 53.81 88.89 

Total 18.59 64.83 83.42  

  PA (%)  67.86 73.79   

 Overall accuracy      72.47%            Kappa Coefficient        0.34 

Table 5.5. The accuracy assessment result of the landslide classification (case 5). 

 
Truth data  

  
Landslides (Km2) Others (Km2) Total (Km2) UA (%) 

Landslides 11.50 9.50 21 54.77 

Others 7.09 55.33 62.42 88.65 

Total 18.59 64.83 83.42  

  PA (%)  61.87 85.35   

 Overall accuracy       80.12%           Kappa Coefficient        0.45 

Table 5.6. The accuracy assessment result of the landslide classification (case 6). 

 
Truth data  

  
Landslides (Km2) Others (Km2) Total (Km2) UA (%) 

Landslides 16.01 20.98 36.99 43.28 

Others 2.58 43.85 46.43 93.6 

Total 18.59 64.83 83.42  

  PA (%)  86.12 67.64   

 Overall accuracy       71.75%           Kappa Coefficient       0.39 

   

Table 5.1 shows the accuracy assessment result of the landslide classification using only the 
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descending SAR coherence (case 1). We can see that, estimated landslide area was 10.39 km2 

(55.9%), and the overall accuracy and Kappa coefficient were 75.38% and 0.34, respectively; The 

descending SAR intensity-based classification has identified less landslide (8.71 km2) but with 

small commission error than the coherence-based classification Table 5.2 (case 2). The overall 

accuracy and Kappa coefficient were 79.47% and 0.38, respectively; The descending SAR 

coherence and intensity-based landslide classification (case 3) showed an increase in landslide 

identification (14.05 km2). However, the commission error was also increased and showed a lower 

overall accuracy (74.83%) than the single use of coherence and intensity (Table 5.3). The 

descending and ascending coherence-based classification lead more commission errors to 

landslides, which 16.99 km2 out of 29.61 km2 are wrongly classified as landslide (case 4). The 

overall accuracy and kappa coefficient were 72.47% and 0.34, respectively (Table 5.4). The 

descending and ascending intensity-based classification showed a better result than the coherence 

(case 5), the classified landslide was 11.5 km2 (62%), and the overall accuracy and Kappa 

coefficient were 80.12% and 0.45, respectively (Table 5.5). The from the combined use of both 

descending and ascending intensity and coherence (case 6) have increased the possibilities of 

landslide identification, and correctly classified landslides were 16.01 km2 (86.6%) out of total 

landslides (18.59 km2). However, the commission error was also increased accordingly, and up to 

20.98 km2 areas were misclassified as a landslide. The overall accuracy and kappa coefficient 

were 71.75% and 0.39, respectively (Table 5.6). 

   The quantitative comparison results show that the descending and ascending intensity-based 

classification has the best overall accuracy and kappa coefficient and less commission error. As 

the coherence is low in vegetation area and the geometrical and temporal decorrelations may also 

hinder the applicability of InSAR coherence, showed more commission error and lead lower 

overall accuracy in landslide classification.  

 

5.7. Conclusion 

In this study, to identify and map the landslides induced by the 2018 Hokkaido Eastern Iburi 

earthquake, we used six ALOS-2 PALSAR-2 data in descending and ascending mode taken before 

and after the earthquake. Six different combinations using the coherence and intensity difference 

were implemented in a rule-based decision tree classification scheme. The decision tree 

classification was established based on the calculated pre and co-event InSAR coherence 
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difference, pre and post-event intensity difference, DEM, and slope. Moreover, the accuracy of 

the classification results was compared with high-resolution optical images and truth data 

provided by GSI, japan. The results showed that SAR coherence and intensity have great 

potentials in quickly identifying and mapping the earthquake-induced landslide. The detected 

landslides have a good match with the reference optical images. The quantitative comparison 

results showed that the descending and ascending intensity-based landslide classification has the 

best accuracy compared to other methods. Considering the complexity of the vegetated mountain 

terrain, and since the SAR sensors are side-looking and not all the aspects of the mountain are 

measured. Therefore, combined use of both ascending and descending sensors can be 

complementary to each other.  
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Chapter 6 

6. General conclusions 

 

This research aimed to investigate the features and feasibility of different radar images in the 

extraction of ground deformations. The traditional and advanced InSAR methods and GPS 

observations are also implemented to improve the accuracy of estimated ground deformations. 

The InSAR coherence and intensity-based classifications for the earthquake-induced landslides 

have also carried out using ALOS-2 PALSAR-2 data. The general conclusions for the three most 

relevant chapters can be summarized as follows. 

   In chapter 3, I investigated the measuring capability of different microwave bands (C and L-

band) in small-scale ground deformation monitoring. A case study was conducted in a typical 

oilfield, in Karamay, China using ALOS-PALSAR and ENVISAT-ASAR data. The experimental 

results showed that the spatial patterns of the land uplift and their magnitudes between ALOS-

PALSAR and ENVISAT-ASAR results agreed well with a correlation of 0.76. While the 

comparison with the GPS showed that, the measurement precision of C-band (5.6 cm) and L-band 

(23.6 cm) was 2.2 mm and 8.4 mm, respectively. This further suggests the shorter wavelength is 

more sensitive to slow ground deformations than longer wavelength.  

In chapter 4, I applied the advanced InSAR techniques to monitor the long-term spatial 

patterns of land subsidence in the coastal city of Urayasu City using ERS-1/-2, ALOS-PALSAR, 

and ALOS-2PALSAR-2 data. The obtained InSAR results during the three observation periods 

from 1993–2006 and 2006-2010 and 2014 to 2017 show continuing subsidence occurring in 

several reclaimed areas of Urayasu City. The maximum subsidence rate from 1993 to 2006 was 

approximately 27 mm/year, from 2006 to 2010 it was 30 mm/year, and from 2014 to 2017 it was 

about 18 mm/year. The results form PALSAR-2 data showed better coherence than the PALSAR 

and ERS-1/-2, because of its higher resolution. The quantitative comparison with the leveling data 

showed that the results from ERS-1/-2 have the largest RMSE of 4.4 mm/year, while the RMSE 

for PALSAR and PALSAR-2 data was 0.9 and 2.2 mm/year, respectively. This may have been 

caused by the low resolution and coherence (in vegetated areas near the seaside) of ERS-1/-2 data. 
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Nevertheless, the InSAR-derived results agree relatively well with the result of the leveling 

measurements and suggest the reliability of the InSAR-measured subsidence rate.  

In chapter 5, the SAR intensity and coherence from both ascending and descending orbits 

were used to identify and map landslides induced by the 2018 Hokkaido Eastern Iburi earthquake. 

We have used six different combination methods to identify landslide areas. A rule-based decision 

tree classification was used to implement six different combinations. The decision tree 

classification was established based on the calculated pre and co-event InSAR coherence and 

intensity images, DEM, and slope. Moreover, the landslide classification results were compared 

with the high-resolution optical images and truth data. The detected landslides have a good match 

with the reference images. The quantitative accuracy assessment results showed that the 

descending and ascending SAR intensity-based classification results have the best accuracy than 

other methods. In general, the InSAR coherence and intensity has great potentials in quickly 

identifying and mapping earthquake-induced landslides.  
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